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Abstract. A general Hamliltonian for a rotating moon in the field of the

earth is expanded in terms of parameters orienting the spin angular momentum

~relative to the principal axes of the moon and relative to coordinate axes

fixed in the orbit plane. The effects of elasfic distortion are included as
modifications of the moﬁent of inertia tensor, whére the magnitude of the
distortion is parameterized by the Love number k2' The priqcipal periodic
terms in the longitude of a point on the moon due to variatiohs of the tide

caused by the earth are shown to have amplitudes between 3'.'9><ZL0“3 and l'.'6x10-2

with a period of an anomalistic month, 3'.'O><10-4

and l?ZXIO—3 with a period of
one-half an anomalistic month and 24x10™% and 9%6x10™% witﬂ a period of
one-half of a nodical month, The extremes in the émplitudes correspond to
rigidities of SXI0+11 cgs and ZXI0+11 cgs respectively, the former rigidity
being comparable to that of the earth. Only'the largest amplitude given above
is comparable to that detectable by the projected precision of the laser
ranging to the lunar retroreflectors, aﬁd this amplitude corresponds to an
imﬁrobably low riéidity for.the moon. A detailed derivation of the free

wobble of the lunar spin axis about the axis of maximum moment of inertia is

given, where it is shown that elasticity can alter the period of the free
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'wﬁbble-of 75.3 years by onIy'BXIO-é‘to 10'_3 of this period. Also, the effeét
of elastiéity on the period of free libration is completely neéligible by
many orders of magnitude., If the moon's rigidity is close ﬁo that of the
earth there is no effect of elasticity on the rotation which can be measured
with the laser ranging, and the;efore no elastic properties of thé moon can

be determined from variations in the rotation.
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1. Introduction

drder of ﬁagnitude'estimaﬁes of the periédié variafions'in the rota-
tion rate of thé moon due ;o the changing magnitude of the tide inducéd by
‘tﬁe earth indicate marginal detectability of these'variations by future
laser ranging to the retroreflectors on the 1unar‘surface. It is thus
appropriate to determine more accurately the magnitude df the effects of
) elaéticity on lunar rotation to see Qhether any must be eventually included
in the reduction of the laser ranging daﬁa. If such effects are in fact
measurable, perhaps a more important result will be tﬁe determination of the
effective elastic properties of ;he entire moon with possible implications
about the nature of.thg interior.

Three possible effects of.elasticity are conéidered here. The first
is the above mentioned variétion in the rotation rate due to tidal changes in
the inertia tensor. In Section 2 the largest term of this variation is
calculated directly ffom the tidal variation in the moment of inertia about
the spin axis. This serves as a check on thé general theory described in
Section 3 from which all the perturbations of the lunar rotation, including
those due to elasticity, can be found to arbitrary order. Tﬁe amplitudes
of the three largest terms of the angular displacement of a point on the
lunar surface from its mean sidereal positioh (corresponding to uniform rota-
tion) are determined to Segtion 4 for effective rigidities corresponding to
those of steel and aluminum, |

For the second effect of elasticity to bg considered, the theory devel-
oped in Section 3 is used in Section 5 to determine the period of the free
wobble as modified by the presence of the earth and to demonstrate that the

effect of elasticity on the free wobble is negligible., This could be antici-
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pated'beforehand ffom the- functional dependence of the modification of the
wobble petiod of the Love ﬁumber_k2 (see Munk and MagDonald, 1960,-for a
discussion of Love numbers) and the 'spin rate ¢ and a comﬁarison &ith the
modification of the earth's Chandler wobblé period.

‘The period of the free libration in longitude is conéidered in Section 6,
where any élteratién of the peiiod by elasticity is‘quickly dismissed. Even
a small change in the free libration period is iﬁportant because of the exis-
tence of forced librations whose periods are very close.to the free libra- |
tion period (Jeffreys, 1957; Eckhardt, 1970; Williams et al. 1973). A few
percent éhange in the free period can lead to a change in the amplitude of
the near resonant forced libration of a factor 2 or 3. But no measurable
alteration, even wiéh the amplification, is evident.

Section 7 is a summary.of the results Qhere it is pointed out that
only the largest term in the variation of thé rotation rate is possibly
of measurable.amplitude and that only if the moon has what is perhaps an

" unusually low rigidity.

2. Tidally Induced Variations in the Spin Rate

If ¢ is the angle between the axis of minimum moment of inertia and
the ascending node of the lunar equator on the orbit plane then with suf-

ficient accuracy for the short term effects considered here,

—2 7T at at (1)

for a tidal variation in the moment of inertia C about the spin axis (spin
angular momentum is conserved). The time variation in C is determined from
the variation in the tidal mass distribution.

The magnitude of the tide at a point R on the lunar surface is given by



= n— 7}° ; - y iy, . )
AR =hy —=a " P)(cosb i (2)
r'g :
where R is measured from the lunar center of mass, P2 is the Legendre poly-
nomial, cos6" = Rer/(Rr), r being the position of the earth relative to the
moon, G is the gravitational constant, g is the surface gravity on the moon,

-a, is the lunar equatorial radius. ' My is the earth mass and h, is the Love

number defined by (Munk and MacDonald, 1960)

5/2 . v
h S em— e (3)
2 1+ 13 _u : : .

2 pga,
for a homogeneous sphere, where u is the coefficient of rigidity and o is
“the lunar mean density. The tidal mass per unit area of the lunar surface

Am/AA = pAR and

_ Am 2 2 _ .:
C-= C0 + A 2o sin"6dA | - (4)

A
where 6 is the polar angle measured from the spin axis.
Part of the mass in.Am is determined by the fluid Love ﬁumber (p = 0)
and correspon&s to the tide at the mean earth~moon separation. However,
this constanf tide vanishes in dC/dt, and h2 defined by Equation (3) is

appropriate for the varying tide. Then

dc _ d btm 2 . 2. .
ac N 3t A a, sin 6dA

Toe27 6 . , o (5

M, a
-3 2.
0 ‘0

8 my dr . 3
2 T r4 P2(c056 ) 3¢ sin 8de d¢

where M» is the lunar mass, ¢ is the azimuthal spherical polar coordinate
of position on the moon measured from the axis of minimum moment. of inertia
’ o 4 ' . /;
on the lunar equator. Substitution of MD =<§.nae3p, dr/dt = nae sin f/ l—e2

with n, a, e, f being respectively the lunar orbital mean motion, semimajor
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axis, eccentricity and true anomally, cos6" = sinBcos¢ and performing the

integration in Equation (5) yields

g
dc_ 3., y

T°-"% 2(B-—%-ensinnt _ I (6)
a

where only the first term in the expansién of (a4/r4) sin f in tﬁe mean
aﬁomaly (M = nt) has been kept, higher frequency terms being higher order
_in'e.' |
Substitution of Equation (6) into Equation (1), with dy/dt and C replaced
by_théir mean values n and 0.4 M ae2 respectively, gives
_ 3 :

dcy 3 2 %

M@ T .
7 =-3 0 —a?-M—-hzesnxnt (7

which upon integration yieids an amplitude of variation in ¢ from the

mean (uniform rotation) value of

3y My 31910
—~ e h. =
M ¢ M2

-3

e . K
) | (8)

3

le

1V6x10~
with a period of the anomalistic month, The two numerical values correspond
respectively £o a lunar rigidity like that of steel (u = 8 x 10" dynes/cmz)
and aluminum (ud= 2 x 10" dynes/cm?) . The rigidity of the earth is slightly
below that of steel (Munk and MacDonald, 1960), so one might expect that

of the moon to fall within the above extremes,

The sing;e term in Ay evaluated above is expected to be ﬁhe largest
effect of elasticity on the lunar rotation. Information about other terms
in the rotational variations requires a more general theory, which is
described below. This theory is sufficiently general to include rotational
distortions and deviations from principal axis rotations and is used to

investigate the free wobble in Section 5.
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3. __General Thebry

Parts of the folloﬁing development were used in earlier investigations
of the rotations of the moon, Mercury (Peale, 1969) and Venus (Goldreich and
Peale; 1970). 1In those applications the Hamiltonian did not include the
effeéts of noq‘prinéipal axis rotation which afe necessary for an invéstiga—
tion of the free wobble. These effects are added here, and an erfor-in the
definition of variables is also corrected heré..

A complete developmeﬁt of the variational equations and the form of the
Hamiltonian is beyond the scope of this paper. Let it suffice then to oﬁt—
line the procedure and then write the final form of the Hamiltonian and varia-
tional equations,

The origin of coofdinateslis at the center of mésg of the fotating body,
and the Hamiltonian is the sum of the rotational kineﬁic energy and the poten-
tial energy due to external gravitétional fields. The translatioﬁal kinetic
energy and central terms in the potential energy do not contain the coordi-
nates and momenta associated with the spin'and orientation and are therefore
suppressed. Body fixed axes'deéignated by the unit vectors i, i, K are the
principal inertial axes; A second set of axes designated by (I, J, K), are

fixed in the orbit plane of the disturbing body with K being normal to the .
orbit plane. The earth-moon orbit precesses on the ecliptic plane so I is
chosen to be along the mean ascending node on the ecliptic.of_the éarth's or-
bit relative to the moon.

The (i, i, k) system can be oriented with respect to'tﬁe (I, J, K) by the
ordinary Euler angles (¢,B,w)."The angular velocities Sx’ Sy’ Sz'can be
expressed in terms of the Euler angles (Goldstein, 1950) and generalized momen-

ta p¢;“pé, Py conjugate to ¢, 6{ ¥ can be used to express the kinetic energy
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part -of H with the resulting variational equations being canonical.
The set of variables (¢, 6, ¥, p¢, Pg» pw) is not convenient for expres-
sing the Hamiltonian or for‘interpreting the variations. The following series

of transformations is therefore effected:

(¢, ‘9,- Y, P¢9 Pe’ Pw) + (o, n, Kea, J-a, k-a, 2'3) >

(e, n, Kea, @, k*a, w) ,

where g = aa is the total spin angular momentum; a being a unit vector, n is

the angle between Kxa and 15;;3 and is thus a measure of the rotation about the

spin axis. The variables @ and w are defined by

: -=Ja I-a
coSf = ———m—— sinQ = ——————
V1-K- a2 V1-K+a?
. Tj-a ‘ j..i'
cos = ——— sin = ———
/1-k- a2 , Y1-k-a2

Q2 is thus the angle.between Kxa and I and w is the angle between kxa and i.

The above choicé.of variables conveniently orients the angular momentum
relative to spaée and body axes.and describes the rotation. - The variational

equations in terms of the final set of variables are

da _ _3H
dt an
dn o X2 5z kKa gy

__l3M Kadm |
dt  a d + a 9an : ' (10)
4o _ 1 _om
dt o 3K-a
dk*a a




do _

dt

SH
3k -

Q|+

(10)

™

The development of the>potential part of the Hamiltonian follows that of

Kaula (1961). The terms in the expansion used by Kaula are each expanded

to second order in JE:ETET sugﬁ that the variétional,equations are correct

at least to first order in thié quantity.. Thié'is sufficient accuracy, since
all sizable solar system bodies aré expected to be rotating nearly about a
principal axis (k+a = 1), driven there by eneigy.dissipation. The deveiop-
~ment of the kinetic energy part of the Hamiltonian follows that of Peale
(1969) except now.the allowed distortion of the elastic body introduces incre-
‘ments in the components of the inertia tensor which aré determined by rota-
tional and tidal distortions. As such, these distortions will depend on the
Qariables used in Equations (10), but this functionél gependenée of the distor—-
tions is:considered only after the diffefentiations have been performed on the

right hand sides of Equations (10); The Hamiltonian is
1 - : ‘ .
H=%g- [I]7g- pa+V (11

where [I]—1 is the inverse of the inertia tensor. J is the precessional angu-

lar velocity of the orbit plane and V is the potential.

1
n

af(L-a)i + (3+2)i + (k-a)k] | a2

e
U

-u[sin1J + cos 1K] ' | B (13)

where 1 is the inclination of the lunar orbit to the ecliptic.
Substitution of Equation (12) and (13) into Equation’ (11), use of Equa-
tions (9) and expénsion of the terms in V gives the final general form of H

expressed in the variables of Equation (10).
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2

y - 2
= Iy3" 1133 - Iy, ] +

2 2
=Ly 7 Ipplzg ¥ Iy, ]

o+ (1-k a ) 51n2w[I23113 - 112I33]
- Nkeal -
2/1-k+a2 sinw [112123 122113]
- ) - '
‘2/1-k-a2 cosw [113112 111123]

+ ua[-sint /1—I$-§2 cos  + cos 1 15-2.]

= (&) »

g'—

L] - . 2 .
[Fzmp(g a) + Ezmp(l k-a a C

TooZ A (Kea)
+ A A e o

sin(v

cos(v

L sin(v

- L] 2 .
+ (1-k-a )clmp(g a)|C,

L sin(v

cos(vz

z G (e) .

cos(vz
Lmpq

-n
impq ™"

2mpq

+2
apq 2"

m=0 p=0 gq=-=

ks’

2-m even

.COS Vg'mpq

Lm
sin v

+ S

Ampq z—m.odd

q+n) 2-m even

+ Sle
+n)
2-m odd

2-m even

+ Slm

2-m 6dd

£-m even

+2n){.
4 %-m odd

-cos(v2

sin(v

sin(v

~cos(v

Lmpq

sin(vlmp

-(:os(vlmp

2mpq+n)
+n)
pq

Sl,mpq_n

2
[111122 -1 ]

. 2-m eve
sin v

2m

-COoS v2
mpql_m odd

f-m even-

2-m odd -~

) 2-m evennq

-n)
£-m odd ~

q+2") ~-m even

+2n)
1 2-m odd

n
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\ L-m even ' L-m even

R oS (voo P"q_—z-n.) ) | s»m’(vzmpq_zn)
+. (~keg) D (Kra) | Cp » +s, -
‘ : sin(v 201 . ,
Ampq 2-m odd cos(vzmpq-Zn) 2-m odd
o (14) con't.

~where Iij are the_components of the inertia tensor, III is the determinant

of the inertia tensor, G, M_, Mv,'a,>ae‘e have been defined previously, sz,

Slm are the ordinary harmonic coefficients in the expansion of the lunar

gravitational field defined by

{sz} i (2-m)!(2-6,.)

Slm M aeg(2+m)!

+2 cosm¢

p(r',e',¢')r'2 sz(cose')-{

sinmé

the integration being over the entire volume of the moon. - Gzpq(e) are expan-

sions in the eccentricity and F (K+*a) are functions which are both defined

Lmp

and'ta§ulated by Kaula (1966) with (K*a) replacing cos i, Azmp’ Blmp’ Clmp’

D, , E are defined in terms of the F, , and are given in Table I for

fmp fmp
L= 2, Finally

fmp

Vompq = (2-2p) (m-y) + (2-2p+q)M +. m(7-n-w)

is eduivalent to Kaula's definition (1964) of this angle, but the variables

‘except for the mean anomaly M, are not those used in that work., We have

used the orBit plane as a reference whereas Kaula has used the instantaneous
equator plane. 'In addition, non-rincipal axis rotation forces us to use

the vector a parallel to the spin angular ﬁomentum for body orientation
rather than the principal axis coincident with the spin vector. This intro-
duceé n and w into vlmpq’ Qhere in the limit of principal axis rotation
(k*a=1)n+ w = ¢ locates the axis_of minimum moment of inertia from the

node of the.equator on the orbit plane. The angle y locates the pericenter of

the earth's apparent orbit about the moon relative to the X axis, which is

}sin¢'d6'd¢'dr' (15)




-12-

#long the orBit'node on the ecliptic.

In ;he moment of inértia tensor, the products of inertia come from
tidal and rotational distoftion of an elastic mobn and are therefore small
compared to the diagonal terms. The diagonal terms have small increments
as well due.tﬁ elastic distortiohs. This suggests that we write the,diagénal

terms .

,Ill = A+ 4A _
I, =B +4B : : (16)
133 = C+ AC

where A, B, C are the principal moments of inertia in the order of increas-
ing magnitude and AA, AB, AC are the contributions from elastic distortion

of the same order as the products of inertia. The determinant |I| can then
be expanded in the equations (after partial derivatives of H are taken) and
only first order terms in AI,,/I,., and I,,/I,, kept. This simplifies the

ii’" 7idi ij’ Tii

equations of motion considerably and sufficient accuracy is ensured by the
smallness of the increments. It will also be noticed that elastic distortion

introduces a time varying increment into the harmonic coefficients sz and

S, . However, since these coefficients are themselves very small and are

2m

preceded by another small coefficient, the effect of the small elastic varia-

tions in sz and S, are second order or higher in small quantities and can

im
be ignored. Elastic distortion has its major influence in the kinetic energy
terms except perhaps when the secular effects of dissipation are conéidered.
The increments in the moment of inertia tensor afe evaluated by compar-
ing the potential from the elastic redistribution of mass with the terms in

the expansion of the moon's gravitational field depending on the second moments

of the mass distribution. Both the rotational and tidal distortions are
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caused by harmonic disturbinmg potentials of the second degree (e.g., see

Munk and MacDonald, 1960). For rotation, the disturbing potential per unit

mass is
2.2 2.2
r - RS vy - R°S7
VR 3 Pz(cos6 3 (17)

where §S is the spin angular velocity, R is the position of the field point

relative to the lunar center of mass and cos8' = R*S/(RS). The central

- term in Equation (17) can be absorbed by the central term of the general

o ——

lunar field and will not be considered further. The tide raising potential

is given by

-GM@ 2
1 ] = " .
Vr 3 Py(cosd™) (18)
r
where cos8" = Rer/(Rr), Love (1944) has shown that the increment in the poten—

tial at the surface of a spherical body distorted by a spﬁerical harmonic
.potential is proportional to that distorting potential and falls off exterior

to the body as r—(n+l)

where n is the degree of the disturbing potential.
The external potentials due to the lunar mass redistributed by rotation and

tides are thus

k) ae5 3 2 1 .2.2
VR = 3 5 (7 (R*S)° - 5 R”S : (19)
R
- .
V. = -k To2 (3 ED 1 (20)
T 273 5|27 22 2
r R r R

where k2 is the Love number defined by

Z 3/2
2 1 19 u

2 pga

(21)

for a homogeneous sphere. If R, S, r are written in terms of their components

in Equations (19) and (20) and compared with a similar development of the
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second order term in the lumar gravitational field, the two representations
of the field are equivalent and the trace of the inertia tensor invariant
before and after distortion orily if the increments in the tensor components

are given by

- - 5.2, | 5. 2/ 2\
AL = kpae Sy . ! s? | %22 MoTi (1 - ar
1i 3G 332 S5 2 2
i o L SR
kzaes , kzae5 ' : (22)
Iij = ‘3G. ”Sisj - >£5‘ M$rirj . i 3 .

We can separate out that part of the rotational increment which appropriate

to the fluid Love number by assuming principal axis rotation (Sl = S2 =0,

'S3 = S)., These we shall include in the permanent moments A, B, C and write
5 5 ;
k,a k,a 2. .
: 2°e 2 27e 2 l r _
Li =736 5 ~— 35 MYt (1‘3 2); i=1,2
r r,
~k,a > “k,a > 2 (23)
1,,= 52 (s?+sh) E2mrl(1-155)
33 3G 1 27 - 5 83 3.2
) T Ty

-

where.Afij 1 # j) remains unchanged. The tidal increments will also have a
component appfopriate to the fluid Love number. However, since these involve
the coordinates of the earth, the tidal terms can be expanded in terms of the
variables and functions used in the Hamiltonién and it is a simplé matter to
- remove the constant terms from these expansions such that the éppropriate kz
for the remaining terms is that defined by Equation (21). The above develop-
ment can be applied in a stréightforward manner to the effects of elasticity

on the lunar rotation.

4, Application of General Theory to Fluctuations in the Rotation Rate

For our purposes here, it is sufficient to assume principal axis rotation

and to ignore the effects of the precessing coordinate system, since these can

B e r e ey
t R e s s
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be added at any time. Principal axis rotation eliminates the rotational
increments in the inertia.tensér,band since wé have neglected second order
effects, we need consider only the kinetic enérgy term of the Hamiltonian.
Both n and w are undefined when k = a, but their sum locates the.axis of

minimum moment of inertia from the node. Hence, we wish to determine

Lo sn L) = lin [%% + @i 3?§§;7] (24)
S kearl (k+a>1) ==

~where 3H/3(K*a) = 0 since only the kinetic energy terms are involved. The

. 1imit is taken after the differentiations of H. From Equations (14 and (24)

dy _ o o 2 . S
ac - T Paafee - T2 1 - | (25)

Using Equation (16) and keeping only the first order terms in the expansion

of both the numerator and denominator, we find

av _ af, _ AC - | | |
oo 1)

where AC is here the tidal increment. The angular part of AC(tide) is the

same as that in the coefficient of C,, in the general potential of the moon.

20
Hence, we can lift the coefficient of 0 from Equation (14) and write
5
k. M .a 2
dy ] 2 7278 e
Z==l1+s-"" 7 .7 G, (e)F,  (Ka) .
dt C 3 Ca3 p=0 2pq 20p
- . (27)

" cos [(2—2p)(H-Q+Y) + (2-2p+q)M - EZOpq]

where EZOpq is a phase lag due to dissipation (Kaula, 1964) and is included

here only for completeness. If we combine terms of the same frequency and

use Cassini's laws to set Q = ®, we have



A.d_‘P.=9.L.+.2__a_k2-M®\ 5 x
dt € 3.2 3 %
C a
2F200 G20—1 cos [2y+M]
f 2F200'G200 cos [2y+2M]
o F 2F500 Gypy COS [2y+3M] : . B (28)
.+ 2onO G202 cos [2y+4M]
+ 2F201 G212 cos [2M] |
+ 2F201 G211 cos [M] .

The last two terms depend on orbital position relative to the perigee and
are hence related to the changing magnitude of the tide. The first four

terms depend on position of the moon relative to the node and are related

: . . . 1ya = - _.2 =
to thevlatltude of the(tldal maximum. With FZOO = -3(1-K+a")/8, F201
1_3¢..2 - 2.2 =322 =3 a = °41"

z - 7 Kea , Gygg = 1 > € G212 =% ¢ Gy =3e, K+a = cos(6°41'),
e = 0,0549, integration of Equation (28) yields the following amplitudes

in Ay for the three largest terms:

~ Amplitude Period
3ugx1073 . .
-2 Anomalistic month
1V6x10
300x10™ %
-3 ( half of anomalistic month
1V'2x10
214x10”"
nodical month
976x10™ "

The values in each pair correspond respectively to lunar rigidities like that

of steel and aluminum. The term with the period of the anomalistic month is

b g
B T



-17-

just that determined in Sectfon-Z; and: its amplitude agrees with the one

determined there.

5. Free Uobble

The wobble of the lunar spin axis about the axis of maxiﬁum moment is
determined by the last two of Equations (10), In addition to the contribu-
“tions to d(keca)/dt and duw/dt by the kineéic energy terms, those terms from
the potential part of H which are constant or depend only on ®w must also be
retained. All other terms in the variation of w and k<a will have phases
and amplitudes determined by the forcing term and therefore do not contribute
to the "free'" wobble., let us first select the terms which must be retained
in the potential part of H.

- From Equation (14) a general term has arguments

Vlmpq

vlmpq n ' . . : - (29)

Vv + 2n .
Lmpq -

But from Cassini's laws Q = mrand n+ w ™S ¢y = M + wo where wo is the
value of § at perigee. For completely damped libratioms, wo = v completes
the law of stable synchronous rotation. These conditions can be applied only
after the partial differentiation of H in the equations of motion, but can
be used beforehand to select those terms which will depend oniy on w, Elimi-

nating n, @ and wo from the arguments by Cassini's laws leaves

(2-2p-m)y + (&~2p+q-m)M + mm
'(R-Zp-mtl)y + (2—2p+q—mjl)M + om + w

(2-2p-mt2)y + (2-2p+q-mi2)M + mm + 2w
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corresponding to the five arguments in (29). The only permitted arguments

for £ = 2 which are constant or depend only on w are

Voglg — constant
. v2200 ——'* constant
Va0tV @
V2100

V3210

V2020

VZCOO - 2n > +2_w
Selecting only fhese arguments from the Hamiltonian, the variatioms of

w and kea assume the forms

ﬂ':g--k.é 1__A_A _.15:_%. 1._.A..;B. +2k‘"§ 1_Ag
t 2 A ‘ A B B C C

&y 2 . '

+ 3 e k-a(Ey316990%0 * Ezzoczoonz)
2. 1 a1 _

+ _qﬁ._—Z_l_g_g__)- -é'g- cosw + Mfg sinw ' (30)

V1-k-a2 Vl-k-a

: 26M M
o f=2f_omY, of, - o), 2%, 2,

+{2 & -a—[ B ( - B) * A( A):I.J’ 3 % & ~[C221G210C22 *

: ' 1
12 .
* C202%220%20 * Dzooczooczé]}c°52“ *oka 7y sinZe

dk-a I I
— = - . “lenl ..E. - _.2_3. {
dt ok*a vV1-k-a [AC cosw ac Sinw
2 I12 '
+ a(l-k+a”) B cos2w (31)

ol 211 AB 1 AA
frorfie-9)-16-1)
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oy 2 2 | .
3 2 (k2 )[C221G210022 +(C202%20 * P200%00)C20 ¥ %I}smz“’ :

(31) cont‘d.

21? 821 and 822 have been

omitted since they involve products of inertia which are only induced by

In Equations (30) and (31) the terms involving C

elastic deformation and are preceded by a small factor: Also the AIij

wiil involve only the rotational deformation since the tidal increments
involve terms which contain w only in the sum n + w which is transformed

to M + wo by Cassini's laws. Hence,lthere is no way to isolate a term depend-~

ing only on w in the AI,, due to tides and the tidal distortion terms in the

i3

wobble classify as forced terms. For the rotational increments it is
sufficient for first order accuracy to write

[+

_ | . -
S; =71 (32)

and toset T =A=B=C=0.4M ae2 in the denominators of Equations (32).
Substitution of the above form for S; into Equations (22) (minus the tidal

contributions) and use of Equations.(9) gives

o qn? =tk asinle

%? = C(j'§)2 = C(I—E'gz)coszw

A_IC - E(i‘azﬂ"az) = -§(1-1.<.'§2)

I12 2

T = g(i+a)(jra) = t(l-k*a")sin2w/2 (33)
I13 5 |

5 = &(ira)(k-a) = -z/1-k*a2 kea sinw

o3

-z/1-k+a2 kea cosw

T T

C(z'g)(h'g)
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with a = I@ being used in Equation (34).
Using the expressions in Equations (33) in Equations (30) and (31) we

arrive at the expressions _

dy [K + K cosZw]k‘g

a - f ke
d(k-a) ) - (35)
dt = -KZ'(l—k°§ )sin2w
where
_ o [B-A _ 2(c-A) ]
5172 [ B ¢ *%
széM
8y 2
T [E201G210C20 * E220‘;200022] ~
= 26M (36)
_ a (B-4) ® 2 '
27778 T3 % -[szleloczz * (Czozczzo+DzooG200)Czo]
2GM M
v oo (B-4) ) 2 _ )
22777 TT_3 % [C221G210-C22 * (C302%220 *P200%2007 €20 a)]

In equations (36), z/A = ¢/B = 7/C was assumed for first order accuracy.
The expressions for K2 and Ké differ only by the factor k-a multiplying some
of the terms. However, d(k-a)/dt contains 1—§~§2 as a factor so it is consis-
tent with the first order accuracy to set kea = 1 in Ké in which case K2 =
K.
Equations (35) are more easily solved in terms' of the variables (i-a),
(j-a) which are related to k+*a and w by Equations (9). This transformation
. . - Al +
(with K2 hz) yields

d(i-g)

2 - (k4,) (3°2) ()
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T (Kl-Kz)(i-g)(&'é)
(37)
cd(kea) _ B : ' ~ cont'd.

—ac - Kl

which are just a form of Euler's equations for force free rigid body motion.
For small deviations from principal axis rotation (i-a, j-a << 1, k*a & 1),

.the solution is immediate with

1ea = Alcos(/(Kl+K2)(Kl—K2)t + ¢l)
K,-K, " (33_)
I'a= [T% Alsin(/(Kl+K2)(Kl—K2)t +9,)

172
giving the expected'ellipticalvmotion of a about k. The‘shape of the ellipse

and K2 which are obtained

and the wobble frequency follow f;om the values of.K1
with |
Co02 = Fazo =~ apH-®)’
a1 =3 Fypp =-30-32)
Dago == F Fago = =331+ )’ | (39)
Ejo1 =3 Fo01 = "%(1'315'§2)
Ey20 = '% Fpo0 = = 3(LHE: »’

1 2

where.§'§ = cos(6°41"). All of the G functions in K, and K, differ ffom 1 only
by terms of order e2 so will not be listed explicitly. Placing numerical |
values into Equations (39) and expressing moment of inertia differences in
terms of .a', B', yv' (correct to first order) where a' = Eig,s' = (C—A)/B,

y' =.(B-A)/C, we find
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K +K2 ] (L{Y'-B'h;} - ‘O@l";{;d'fﬁ"ﬂ'g
| | (40)
Kl-KZ ~ &I{—B*‘C} - 1048&1{(1';-'&-'3‘“‘}

'where the second.terms on the right hand sides of Equations (40) explicitly

demonstrate the influence of the.earth (with n = @). The effect of elasti-

city is contained in the parameter z. That elasticity has essentially no

effect on the wobble is seen by comparing the value of ¢ with a', B', v'.

With
o' = 3.97x107%
8" = 6.27x107%
L (41)
y' = 2,30x10 '

7= 1.5x10"7 to 6x10”7

we see that 7 influences the motion by only a few parts in 104 to a part in
103 and is likely to be comparable to or smaller than some of the neglected
confributions-to the free wobble from.Z = 3 terms in the potential.

This lack of influence of elasﬁicity could have been anticipatéd by the

functional dependence of ¢ and a knoﬁledge of the change in the period of

‘the Earth's Chandler wobble by elasticity. The ratio of z/R' is the important

parameter as seen from Equations (40),

k, =2 )
et (42)
o

where n is the orbital angular velocity of a satellite near the surface of
the moon (or earth)., The ratio in Equation (42) is about 0.35 for the earth

with ﬁ)/no = 1.5/24 and k, = 0.3, and one observes about this fractional in-

2

crease in the period of the Chandler wobble over that for a rigid earth. For

the moon this ratio is seen. from Equations (41) to be 2.5*10-4 to 1X10-3.
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The parameter ¢ depéﬁds on the LQVE'number and” on tlie squﬁre‘of'the rotation
period. The former quantity drops for the moon by an order of magnitude from
that of ﬁhe earth énd the latter drops By three orders of magnitude. These
th effects combine to reduce the influence of elasticity on the lunar wobble
by a comparable factor from the influence on ;he Chandlér wobble.

= -3.98x10™%) and K

Finally with K +K ~K, = -2.48x107°}, the ratio of

2 1

the major and minor axes of the elliptical path'of a ;elative to k is 2.57
with the long axis perpendicular to the axis of minimum moment of inertia.
The wobble.period is 75;3vyears,-which had been obtained earlier (Sekeguchi,
1970). This period would be increased by a factor of 2 if the earth were

removed.

6., Free Libration

The existence of a forced libration whose frequency is very near the

3 year period of the free libration motivates‘a check on possible alternations
-of.the frée libration period. However, we can quickly dismiss the effects

of elasticity-on this period. The major effect will be the tidal distortion,
but the variations in the rotation rate discussed in Sections 2 and 4 are
.high frequency and will not disturb the libration. We are thus left only
with the tidal torque arising from a dissipation caused phase lag. In the
limit of small tides the net torque on a librating moon is just the sum of
thét on the permanent lunar bulge and the tidal torque. The latter is given

approximately by

GMQZ ae5 .
2 2a6 Q -

where Q is the specific dissipation function (MacDonald, 1964). The torque

on the permanent.deformation is determined from the &mpq = 2200 term in the
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v Hamiltbnian_with Z(wo-y) = 28 being the libration angle. With ¢ = M+w§,

we have Cy = C(wo) = C(wo-;) since ; =~ 0, or

o 2
s = ~CMy e §  (B-H o _ LGl a5
.3 200 “220 7 C 228 ©

'If we make Q inversely proportional to frequency, then
GM

2 25% G, . F
., 359 3 Mo C200220 (B-a) .
*FT2T F oLt ¢ °° 0 )

Ca

where Q0 is the value of Q at a reference angular velocity 30. With the

‘

coefficients of § and § being wi and 2& respectively, the libration frequency

- Vo 2-€2 = y [1-£2/(24%)]. TFor F.. = ~
is just Wy £ wo[l £ /(zwo)]f 'For F220_ 3 and G200 1, we have that

-21

g2
—é- ~ 10 (46)
W

o

does not affeét the period. Alvalue of Qo = 100 with éo corresponding to a

3 year period was used in evaluating E. That the only effect of tides is

the ordinary torque due to a phase 1ég of the lunar response is verified by
evaluating do/dt from Eqpations (10) and selecting those terms in-AIij with
argumegts whicﬁ are integer multiples of (wo—y). All terms with these argu-~
ments cancel exactly to first order exceﬁt for the effects of phase lags con-

sidered above.

7. Discussion

The results of the previous sections imply that the onl& possiﬁly
important perturbations of the lunar rotation due to elasticity are the perio-
dic fluctuations in the spin angular &elocity. Even these are so small that
their measurement cannot be expected in the forseeable future. The ultimate
range accuracy of the laser radar to the moon now anticipated is on the order

of a few centimeters. (P, Bender private communication, 1972) which is

B
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comparable to thellineaf displacement on the lunar equator corresponding‘to
0V01 shift in.longitude. The results of Section 4. show that the ampiitude
Qf the longitude variafion from the mean is comparable to this valué only
for the low rigidity limit. Since siesmic wave velocities on.the moon are
comparéble.té those in the earth's Qpper mantle (Toksoz, et al., 1972) and
tﬁe density of the mantle and moon are éomparable, one infers comparable
rigidities of the moon and earth. Since the smaller amplitude of Equation
(8).is thus more likely appropriate to the moon; measurement of the effects
of elasticity on rotation must await the development of the next generation
of instrumentation perhaps requiring placement on the moon itself.

On the brighter side‘these results indicate that elasticity can most

probably be safely neglected in the reduction of the laser ranging data.
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