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ABSTRACT

This report provides a brief description of a canonical set

of equations which governs the behavior of an n-body spacecraft.

General results are given for the case in which the spacecraft is

modeled in terms of n rigid bodies connected by dissipative elas-

tic joints. The final equations are free from constraint torques

and involve only r variables (r is the number of degrees of free-

dom of the system). An advantage which accompanies the elimina-

tion of the constraint torques is a decrease in the computer run

time (especially when n is large).

Linearized models are obtained and are recast in the

familiar form

x(t) = F x(t) + G(x, t) u(t)

where x is the state vector, u is the control vector, F is a con-

stant matrix, and the matrix G depends on x and t. This form for

the equations is particularly useful when modern control theory

is used to arrive at a stochastic controller for a multi-hinged

rigid-body spacecraft.

The models provided in this report will be used in analyzing

the cruise, the thrust vector control (TVC), and the articulation

control (ARTC) modes associated with the Mariner Jupiter Mars

(MJS'77) spacecraft. Due to their generality, the models can

also be conveniently used for analyzing a spacecraft appropriate

for missions subsequent to the MJS'77 mission.
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1. INTRODUCTION

This report provides a brief description of a particularly elegant

formulation characterizing the rotational motion of a spacecraft idealized as

a set of multi-hinged rigid bodies. Assumptions made in this development

include the following:

(1) The spacecraft (S/C) can be adequately modeled as n hinged-rigid

bodies connected by dissipative elastic joints.

(2) Chains of connected bodies do not form closed loops.

(3) Only rotational motion is allowed at a joint.

(4) There is a vector constraint torque orthogonal to the axis of

rotation at a joint whenever the rotational motion has only one

or two degrees of freedom.

Considerable effort has been focused on the problem of obtaining the

dynamical equations for an n-hinged rigid body spacecraft (e.g., see Refs.

[1] thru [5]). The approach used in this analysis is based primarily on

Refs. [1] and [2]. Likins (see Refs [4] and [5]) recently extended the method

discussed in Ref. [2] to appropriately account for flexible appendages.

In this analysis, the appendages are considered rigid but viscoelastic

joints are allowed. Effectively, the interaction torque existing at a joint

connecting a purely rigid body and a flexible appendage is modeled as a spring-

damper torque (that is, it is specified in terms of torsional stiffness and

damping coefficients). This model is especially useful inthe preliminary design

and analysis of the spacecraft.

The main objectives of this work are:

(1) To obtain a linearized dynamical model of the n-hinged rigid-body

spacecraft.

(2) To provide a brief description of some of the dynamical

principles involved in the development of the S/C model.

JPL Technical Memorandum 33-613 1



The linearized dynamical model of the multi-hinged rigid-body

spacecraft can be:

(1) Used in a simulation to study the effects of interactions of the

hinged members on thrust vector control (TVC) and articulation

control (ARTC) performance.

(2) Used in the development of a general stochastic controller

(see Refs. [7] and [8]) for a multi-hinged rigid-body spacecraft.

1. 1 Compendium of Report Contents

In this section, a compendium of the section by section contents of the

report are given.

Section 2 gives the general nonlinear dynamical equations for an n-hinged

rigid body spacecraft with r degrees-of-freedom. The main result of this

section is given by the vector-matrix equation

A = L (1-1)

where X consists of the angular acceleration of the base body c0Z and the relative

angular acceleration components 0R and the vector L consists of the forcing

functions for the base body (L 0 ) and for the n - 1 remaining bodies (LR).

Section 3 provides a set of linearized dynamical equations for the

n-hinged rigid-body spacecraft. An intermediate result of this section is

given by the partitioned vector-matrix equation

1 - G12 -(y,t) -F [- [ (1-2)

l 21 22 L R

where the matrices A, B, K are constants, 0 is an appropriately dimensioned

null matrix, and the matrices G o and GR depend on y (the relative angles) and

t. The primary result of this section is the recasting of Eq. (1-2) in the form

x(t) = F x(t) + G(x, t) u(t) (1-3)

JPL Technical Memorandum 33-6132



where the state vector x consists of the attitude and angular velocity of the

base body (6 and w0 ) and the relative angles (y) and angular velocities (wR)

associated with the remaining n - 1 bodies. The control vector u(t) is related

to the force Fo applied to the base body.

Section 4 provides a linearized dynamical model for a specific topological

arrangement of 5-hinged rigid bodies. Expressions for the matrices G and F

involved in the equation

x = F x + G(x, t) u

are obtained.

Section 5 provides a linearized dynamical model for a 3-hinged rigid-

body spacecraft. This result is a special case of that given in Section 4.

Expressions for the linearized elements of the matrix A and the vector L

appearing in the equation

Au = L

are given. In addition, the expressions for the matrices F, G appearing in

x = F x + G(x, t) u

are given.

Section 6 provides a simple linearized model for a single rigid body. A

comparison of this result with the model for the n-hinged rigid-body spacecraft

is made.

Appendix A provides a discussion of the development of the dynamical

equations for a multi-hinged rigid-body spacecraft (in terms of the constraint

torques). The development as presented here is based on Ref. [1]. Inter-

mediate results are tabulated to allow the reader to be cognizant of the origin

of the various terms that are introduced.

JPL Technical Memorandum 33-613 3



Appendix B provides a discussion of the development of a set of dynamical

equations (free from constraint torques) for a multi-hinged rigid-body space-

craft (see Ref. [2] ). Intermediate results are tabulated for future reference.

Appendix C provides a detailed description of an application of the

general results of Appendix B. The explicit dynamical equations are obtained

for a specific topological arrangement of 5-hinged rigid bodies. In Appendix C,

the coordinate systems involved in the evaluation of the various terms are

discussed. In addition, expressions for the elements of the matrix A and the

vector L appearing in the equation

are tabu= L

are tabulated.
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2. DYNAMICAL EQUATIONS FOR AN n-HINGED RIGID-BODY
SPACECRAFT

In this section, the dynamical equations for an n-hinged rigid-body

spacecraft are provided. Emphasis is placed on the procedure used to obtain

the results rather than on a detailed and lengthy derivation of the results.

Consider an n-hinged rigid-body spacecraft having r degrees of freedom.

The number of scalar constraint torques for such a system is n = 3 n - r. In

Ref. [1], Hooker and Margulies showed how to eliminate the constraint torque

components so that 3n differential equations for the angular velocity components

could be integrated (with the constraints being satisfied). In that technique,

the calculation of the right hand sides (RHS) of these differential equations (DE)

required solving a system of 3 n + n = 6n - r linear algebraic equations for

the 3 n angular velocity rates and the nc constraint torques.

In the present analysis, a set of r dynamical equations in which the

constraint torques do not appear is given. The pivotal steps involved in obtaining

this canonical set of equations involves (see Ref. [2]):

(1) Recognizing that if the vector dynamical equations of all the bodies

are summed, then the constraint torques cancel in pairs.

(2) Noting that a vector constraint torque at a typical joint j can be

isolated by summing the vector dynamical equations over all

bodies that lie to one side of joint j (the constraint torques on

this set of bodies all cancel in pairs, except for the one at joint j).

(3) Observing that the constraint torque (isolated in step 2) at joint j

is orthogonal to the gimbal axis at joint j.

Effectively, 3 scalar equations result from the projection of the vector

equations summed over all the bodies on to a suitable reference frame. More-

over, r - 3 additional scalar equations result from the dot products of the r - 3

gimbal axes and the constraint torques associated with these axes. The salient

advantage associated with the elimination of the constraint torques is the

accompanying reduction of the computer time required for integrating the

equations (this is especially true for large n)!

In Ref. [3], Fleischer describes a general computer simulation based on
this technique.

JPL Technical Memorandum 33-613 5



Although more than a modicum of labor and more than a soupron of effort

were involved in the verification of the treatment given very succinctly by

Hooker in Ref. [2], nevertheless, it is appropriate to keep the present dis-

cussion brief. This brief treatment will allow attention to be focused on the

underlying assumptions, on the interpretation of the results rather than on

the detailed derivations of the multitude of lengthy equations !

The procedure used to arrive at the r scalar equations entails the

following steps (see Table A-1):

(1) Writing Newton's and Eulerls equations for each body X.

(2) Eliminating the unknown interaction force Fk.

J
(3) Evaluating the term

Z C> xF

j J J
jEJX

which represents the sum of the moments about the center of mass

of body X due to interaction forces Fij existing at joints j.

(4) Interpreting Euler's equations for body X (after using the results

of step (3) ) as the equations for the augmented body X relative

to its barycenter BX.

(5) Expressing the interaction moment MX. acting at joint j on body X

as a sum of a constraint torque M C and a spring-damper torque
SD

MX , i.e.,

j

C SD
X. X. x.

J J J

The terms and symbols are defined in Table A-1 as they are needed in the
development.
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(6) Recognizing that if the vector dynamical equations for the augmented

bodies X are summed over all X, then the constraint torques cancel

in pairs and consequently disappear, i. e.,

XES jEJX

(7) Recognizing that the constraint torque at joint j acting on body X can

be isolated by summing over all bodies .to one side of joint j.

(8) Recognizing that the gimbal axis gj is orthogonal to the constraint

torque MX at joint j.

Steps (1) thru (5) are discussed in turn in Appendix A; steps (6) thru (8)

are discussed in Appendix B.

2.1 Compact Form for Dynamical Equations for an n-Hinged Rigid-Body
Spacec raft

In this section, the set of dynamical equations derived in Appendix B

for an n-hinged rigid-body spacecraft are presented. In vector-matrix

notation, the equations are:

[2 R- )(2-1)

or

A = L

In scalar form the equations are (see Table 2-1 for definitions of terms):

r-3 n-l

ao00 * O+ aOkY k Lo= E (2-2)
k=l X=0

JPL Technical Memorandum 33-613 7



r-3 n-l

a Y L i = g E i = 1,2,. r-3
*iow0  L aik'k 1 L .,

k=l X=O

whe re

n-l n-l

X=0 L=0

aOk = gk
X 1k

ajiO = gi E E iX 4 L

K 1

aik =gi' E EiX qk gk

Ex = M + Dx xF + , D x CF mw x (w x D )]

- co x .x '* Wx +

Ex = E x - E +
K K

Z Tx.
jeJXJ

r-3

k kL * gk Yk
k='l
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A comparison of Eqs. (2-1) and (2-2) reveals that:

(1) A 1 1 is the 3 x 3 matrix representation of the operator a 0 0 . * (where

a00 is a dyadic, and · represents the dot product).

(2) A 1 2 is the 3 x r - 3 matrix representation of the vectors aOk.

(3) A 2 2 is the r - 3 x r - 3 matrix representation of the scalars aik

(with i, k = 1, 2, .. . r - 3)

Moreover, in Eqs. (2-1) and (2-2), w0 represents the angular acceleration

of the base body, coR represents the relative angular accelerations ('k) of the

remaining n - 1 bodies, L 0 is a 3 x 1 matrix; and LR is a r - 3 x 1 matrix.

JPL Technical Memorandum 33-613 9



Table 2-1. Definitions of Terms

Item

n

r

Dxj

Dk.

DX

mX

gk

E k.

FX

MX

CX

T= MSD
Xj Xj

JX

Definitions and Equations
I

JPL Technical Memorandum 33-61310

The number of rigid bodies involved in spacecraft model.

The number of degrees-of-freedom of the system.

The vector from the barycenter of body k to the joint j

of body X.

DX[ = D j for all bodies A belonging to SXj (the set of

bodies-connected to body k via joint j).

Vector from barycenter of body k to c.m. of body X.

Inertia matrix relative to c. m. of body X.

Mass of body k

Augmented inertia matrix for body k relative to barycenter

B;

=( 0± + [m (D2U - DKDK) + E m (D2 U - D ) D )

where U is unit dyadic

4'J =. - m [D * D - D D

Gimbal axes, k = 1, 2, ... r - 3; gk is a unit vector

Ek4 = 1 if gimbal axis gk is between body BL and body o,

otherwise Ek~ = 0; Ek~ specifies bodies B. which sense the

rotation Ykg k.

Vector representing external force applied to body X.

Vector representing external moment applied to body X.

Direction cosine matrix transforming coordinates of body p.

to coordinates of body k.

Vector representing spring-damper interaction torque on

body X at joint j.

Set of labels for joints j belonging to body X.



3. LINEARIZED SET OF r DYNAMICAL EQUATIONS FOR AN n-HINGED
RIGID-BODY SPACECRAFT

In this section, a linearized set of r dynamical equations for an n-hinged

rigid-body spacecraft is provided. Linearization is accomplished by retaining

only terms of first order in w0 , Yk and their derivatives in the solution (i. e.,

products of w0 and yk with k = 1, 2, . .. r-3 and their derivatives are neglected).

In addition, it is assumed that ¥k (withk =1, 2, . . . r-3) and 0i (with i = 1, 2, 3)

are small angles -- hence the direction cosine matrices take a particularly

simple form.

3. 1 Direction Cosine Matrices

Typical direction

e.g., Fig. 4-1)

2
C 1

4
C33

cosine matrices for the linearized case become (see,

=E - 2 g2

= E - y 4 g4 (3-1)

C0 = E - Y 1 gl

2 2 I1 - E
C 0 = C 1 C0 [E - y2 gg [E - .1 gl] E - y 1 gl - Y2 g 2

3
CO [E - y3 g 3 ]

4 43 g3] -
C = C 3 C 0= [E - _y g4 ][E - Y3 g3 ] ? E - Y'3 i 3 - Y4 g 4

0
CN = E-0 = E -

0

01

-02

-0 1

0

03

02

-03

0
= -1

02

01

1

-03

-02

03
1 ]

*Products such as (oy and by are neglected in the linearization in this report;
such terms can be retained and included in the forcing function L if it is
desirable!

JPL Technical Memorandum 33-613 11



where the vector 8 consists of ordered rotations 8 3 , 82 , e1 , E is a 3 x 3

identity matrix, and - over a vector represents the matrix representation of

the cross-product operation.

3. 2 Relationship Between Attitude and Angular Velocity of Base Body 0

The relationship between the attitude rate and the angular velocity of

the base body 0 becomes (for the linearized case)

Z  1 1 -o (3-2)

63 0 01 1 w3 3

when the small angle assumption is used and in addition products of 0. and Wo
1 1

are neglected.

3.3 Evaluation of Elements aim for Linear Case

In this section the elements apm are evaluated for the linear case.

Recognizing that products of ¥k and Yk and Yk and o0 can be frequently neglected

(for k =1, 2, . . . r-3), it is clear that only those portions of a2 that are not

functions of Yk are to be retained. Recall from Eqs. (2-1) and (2-2) that the

aQm's are the multipliers of C0 and WR. Effectively, this implies that the

direction cosine matrices Ck (with k = 1, 2, ... r-3) appearing in the expressions

for the a m's can be approximated by identity matrices. The matrix A which

is composed of the elements aim then becomes a constant.

3.4 Evaluation of Forcing Function L for Linearized Case

In this section, the terms involved in the evaluation of the forcing

function L are provided for the linearized case. Recall that L is defined

according to (see Eq. (2-1))

A = L (3-3)

where o consists of jo0 and "oR and L consists of L0 and L R .
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Recall, too, that L 0 and LR, the components of L, are given by

(3 -4)

Igl' Y

g2 Z

x

k

E1 E k

E2K Ek

gr-3 E r- 3 , X
k

The linearized versions of E k and EX reduce toK K

Ex = MX + DX x FX + z57, f

D xC F +
KFL VL FL

and consequently, the linearized versions of L o and L R reduce to

MX + Dk x Fx + E D xC F +
XFL FL F

JPL Technical Memorandum 33-613

L R =R

j EJ

T

Lo = Z

x

(3-5)

E
T j} (3-6)

L 0 .= E E

E X

13



EiJMX + D? x FX +
4 Dk

E2( MX + DX x FX +

-3kX MX + DX x F k

E: DA.L

+ Ho D

ZD ,
i" Ah

+ZD
~L A

x CX F + T.

jE JX

x C) F +

j EJk

xC F
XVL. 4 L

Note that the term

ZX j
jEJ k

Txj

is identically zero in the equation for Lo (interaction moments cancel in pairs).

3.4. 1 Evaluation of L for the Specialized Case in Which External Forces
and Moments are Applied Only to Base Body

For the specialized case in which external forces and moments are applied

solely to the base body, the equations for L o and LR reduce to

n-1

L 0 = M 0 + D 0 x F 0 + E DX 0x C O F

X=l

(3-7)

JPL Technical Memorandum 33-613
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LR=
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* Z

TXj
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j EJK /

92, E
X
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/
n-1

1 E 5 1 DXO x C O FO + gl ' . ElX E

X=1 X jEJ>X

n-i

g 2  Z E2E DkO x CO Fo + g 2  Z E
X=l X

n-1

gr-3 '
X=l

T X
J

E Tk.

X'J

Er_3,X D O  F0 x + g+ 3 r-3 E E
X j EJX

TXj

3.5 Compact Form the for Linearized Set of r Dynamical Equations

In this section, the linearized set of r dynamical equations for an

n-hinged rigid-body spacecraft are expressed in compact form.

First, the term

(3-8)gi 'E jik E Tk.

X jEJ J

is examined. As pointed out in Appendix B, summing the dynamical equations

over bodies X,which are connected beyond gimbal axis gi relative to the base

body, isolates the interaction moment at joint i on body X. This implies that

gi 'EEiX
ki

Z - gi ' T.. gi\jJX 1

jEJX 3

(3-9)

JPL Technical Memorandum 33-613
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- Kiy igi - Biigi1i 1 1 1 1 1

In Eq. (3-9), Ki and Bi are the stiffness and damping coefficients associated

with joint i. Substitution of Eq. (3-9) into Eq. (3-7) yields

n-1

Do x Fo + Dx 0 x CO F0

X=l

LR

X
g 1 E X D x0 C0 Fo - (K 1Y 1

x

(3-10)

+ BiY1)

g . 2k D0 x C0 Fo - (KzY2 + B2'2)
k

Er-3, DX 0 x C O F 0 - (Kr-3 Yr-3 + B3Y 3)
r-3 r-3 /

Equation (3-10) can be written as

QO + Do +ZE 5X CO
kG

FO = Go(y,t) Fo (3-11)

LR = GR(y,t) F 0 - K y - B y GR(y,t) F - K y - B y

JPL Technical Memorandum 33-613
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where

G 0 (y,t) is a 3 x 3 matrix

GR (y,t) is a r-3 x 3 matrix

K, B are r - 3 x r - 3 diagonal matrices

- over a term represents the skew symmetric matrix representation

of the cross product (e.g., DX0 x = Do0)

y, y are r - 3 x 1 matrices consisting of elements Yk' Yk

for k = 1, 2, ... r - 3

Equation (3-11) can thus be written as

L = L = GR ]F0 + [ -K ] Y+ (3-12)

or

L G [ F0 ]¥ [ -[o -1 019
where 0 is an appropriately dimensioned null matrix.

Collecting the results of Sections 3-3, 3-4 and the results of Eq. (3-12),

it follows that a set of r linearized dynamical equations for an n-hinged rigid-

body spacecraft is given by

A22  -K - B

or

A Ce G(y, t) Fr + a - ]G + [:d Y (3-13)

where A, K, B are constant matrices and G depends on y and t.

JPL Technical Memorandum 33-613 17



3.6 Linear Dynamical Model for n-Hinged Rigid-Body
Spacecraft (State Equations)

In this section, the linear model developed in Section 3. 5 is cast in a form

suitable for use in modern control theory. Essentially, the state equations

are sought. As seen in Section 3. 2,

0 WO

and

Y = ''JR

where the vectors 8 and oo are the attitude and angular velocity of the base

body relative to an inertial frame and the vectors y and wR represent the relative

attitude and angular velocities yk' yk for k = 1, 2, ... r - 3. The state can

thus be defined as the 2r x 1 vector

1)W

oR

The differential equations for 8 and y are given above and those for

W0 and wR can be obtained from Eq. (3-13).

Manipulation of Eq. (3-13) yields

A11 0 + A12 R = G 0 (Y,t) F0 (3-14)

A21 0 + A22 R GR(yt) F 0 - Ky - By

JPL Technical Memorandum 33-61318



As discussed in Appendix C, Eq. (3-14) can be written as

O A 1 1  A12 A22 A21i G 0 (y,t) F0  (3-15)

-jAl1 - A12 A' A,21] A1 A (A- R(y t) F - Ky - By )

-1
= A 2 2 GR(,t) F 0 - Ky - By - A 2 1 o0}

Redefining the bracketed matrix as a, it follows that

-l -l -1
0  = a- Go(y,t) FO - a A1 A22 1GR(t F Ky

- A12 {GR(y,t) F 0 - Ky - By} - A2 1 W0  (3-16)

In vector-matrix rotation, the state equations become

0 e\ O i O /e0 E 0

I I

--- \ --I----------------------------------------- --

0 0 i a A1 2 A K aA 1 2 A 2 2 B

I---,-= -- -- ------ ------------------------
Y O 0 I E Y

------ -I------ ---------- -

0 0 -A( E + A + a-A - lAE +A A )B coR 22 21 12A22 -A22122

(3-17)
o

-1 -1 -1
a G 0 - a A1ZA22G R

+-1 -1
A + A ,2 A2 2 ) ------------------ A

(+A a- 1 -1 -G-2 22 21 0
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where E is a 3 x 3 identity matrix and 0 is an appropriately dimensioned

null matrix. Note that Eq. (3-17) has the same form as

x = F x + G(x, t) u (3-18)

where x is the state and u is the control variables. It is important to note that

F is a constant and G depends on x and t! Equation (3-17) represents the

primary result of this report.

It is immediately recognized that the solution to Eq. (3-18) can be

written as

t

x(t) = 0(t, 0) x(O) + {(t)

where x(O) is the initial state and

matrix can be computed from the

= F cp

-1(T) G(X, T) U(T) dT (3-19)

4(t, T) is the transition matrix. The transition

matrix differential equation

(3-20)

with

¢\(o) = I

or it can be computed analytically if n is small.
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4. LINEARIZED DYNAMICAL MODEL FOR A 5-HINGED
RIGID-BODY SPACECRAFT

In this section, the general linearized dynamical model developed in

Section 3 is used to obtain expressions for the elements of the constant matrix A

and the vector L for the case in which n = 5 (see Fig. 4-1). The expressions

for the elements of the matrix A are summarized in Table 4-1 and those for the

elements of the vector L are summarized in Table 4-2. Note that in Table 4-1

the subscripts appearing to the right of a term in parentheses refer to the coor-

dinate systems in which the terms are computed or expressed.

The 7 x 7 matrix A is given by

a a
Xa00 a01

01l

a 2 2

symmetric

a02 a03 a04

a12 a13 a14

a23 a24

IN
N a 3 3 a 3 4

N ,44

The partitioned matrix A (involving the 3 x 3 matrix A 1'

the 4 x 3 matrix A 2 1 , and the 4 x 4 matrix A 2 2 ) is given

the 3

by

x 4 matrix A 1 2 ,

A ' A
All I A12

L[21--1 A22]

a00 I a 01

a10 1 all

a20 1

a30 I

a 4 0 l

a 2 1

a 3 1

a 4 1

a 0 2

a 1 2
al2

a22

a 3 2

a4 2

a03 a04

a13 a14

a23 a24

a33 a34

a43 a44
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The 3 x 3 time-varying matrix Go is given by

Go = o + D + (CD 11 + C D + C

The 4 x 3 time-varying matrix GR is given by

G RR

gT (Dllg
1 1+C D2 2 C

0

T f 2
g2 22 0

3 3 4
4T (D3 3 + C4 D4 4 ) C

T- 4
g4 D4 4 C 0

D33 + C D 4 4 )

The constant diagonal matrices K and B are given by

K 1

K2

K3

K4

B 1

B 2

B3

B4

(4-5)

and the constant 3 x 3 matrix a is given by

-1 2
- A12 A22 21
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Hence, all matrices involved in the generic form [see Eqs. (3-17) and (3-18)]

x = Fx + G(x,t) u

have been defined! Note that the symbol - appearing as

indicates that the tilde is to be applied to the resultant expression within the

parentheses.

93

BODY 3

z

x g9

BODY 2

Figure 4-1. Pictorial Sketch of a 5-Hinged Rigid-Body Spacecraft
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Table 4-1. Expressions for Linearized Elements a3m
(, m = 0, 1,... .4) for a 5-Hinged

Rigid-Body Spacecraft

Equation s

['D00 + P01 + ('02 + (03 + l04 ] 0

+ [ + 10 + 11

+ [(20 + 21

+ 12 + (13 + D14] 1

+ D22 + 23 + ''24]2

+ [ 30 + t31 + ~32 + 733 + ~34]3

+ [40 + 41 + 42 + 43 + "441]4

a0 1  L[ ~ 0l ] + o020 [~11+ CD121 + [21 + ]2212

+ [%31 + 3Z]3 + [%41 + %42]4] (gl)l

a0 2 . {[D02]0 + [12]1 + r[22]2 + ['32]3 + [i42]4 (g2 )2

a0 3  [03 + 04]0+ [I13 + ~14]1 + [2Z3 + ?24]2

+ ['P33 + h34]3 + [E)43 + 44]41 (g3)3

a 0 4  ( ] + [14 11 + [24]2 + [34]3 + [4]414 (g4)4

al (gl)l |[l + l1211 + [ (I21 + ¢'222 ' (gl) 1

a1 2  (gl)l1  [ 1211 + [¢I22] 2 ' (g 2 )2

1 3 )l 13 + 141 + r[23 + e'241]2 (g3)3
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Table 4-1. Expressions for Linearized Elements agm
(, m = 0, 1,...4) for a 5-Hinged
Rigid-Body Spacecraft (contd)

Item Equations

a14 (gl)l · [I14]1 + plz24Z (94)4

a22 (g2)2 ' [ 221] ' (g2)2

a2 3  (g 2 )2 ' [(23 + c'241 2 (g3)3

a24 (g2) 2 ' [24 ] 2 (4)4

a33 (g 3 )3  '3 [ '33 34]3 + ['43 + " 44]4 (g3)3

a34 (g3)3 ' [34 ] 3 + [()44 ]4  (g4)4

a44 (g 4 )4 ' [444]4 (g 4 )4

akO (aOk) , k = 1, 2, ... 4

m (a m)T, i, k = 1, 2, ... 4, i / k
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Table 4-2. Linearized Forcing Function L for a 5-Hinged
Rigid-Body Spacecraft (External Forces and Moments

Applied Only to Base Body)
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5. LINEARIZED DYNAMICAL MODEL FOR A 3-HINGED RIGID-BODY
SPACECRAFT

In this section, the linearized dynamical model for a 3-hinged rigid-body

spacecraft is given.t This result is a special case of that given in Section 4 and

is obtained by defining the new base body to include bodies 0, 3, 4 of Fig. 4-1.

Figure 5-1 shows a pictorial sketch of the resulting 3-body system.

The expressions for the elements of the 5 x 5 constant matrix A and the

vector L are given in Tables 5-1 and 5-2, respectively.

The 5 x 5 constant matrix A is given by

A =

a00 a01

a10 al1

a20 a21

a 0 2

al 2

a 2 2

(5-1)

The partitioned matrix A

the 2 x 3 matrix A2 1 and

11 I Al2

[ 1 z

(involving the 3 x 3 matrix All, the 3 x 2 matrix A1 2 ,

the 2 x 2 matrix A 2 Z) is given by

a 0 0

a 1 0

a2 0

I a0 1

I - -

I all

I a21

a 0 2

a1 2

a 2 2

The 3 x 3 time-varying matrix G O is given by

G0 = 0 + D0 + (C D + C0 D2 2)
hs model was used to obtan the results gven n Ref (6).

tThis model was used to obtain the results given in Ref (6).
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The 2 x 3 time-varying matrix (GR is given by

gT (Dll +

GR =
gT - 2

[g D2 Co

C2 D 2 2 ) C 1
0

The constant 2 x 2 diagonal matrices K and B are given by

K K

K =-

B1

B [

K2 ]

B2 ]

and the constant 3 x 3 matrix a is given by

a = [All 12 A2 21]

Hence, all the terms needed in the generic form of the state equations

given in Eq. (3-17) and (3-18) have been specified.
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Table 5-1. Expressions for Linearized Elements ajm (f, m = 0, 1, 2) for
a 3-Hinged Rigid-Body Spacecraft
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Table 5-2.
Spacecraft

Linearized Forcing Function L for a 3-Hinged Rigid-Body
(External Forces and Moments Applied Only to Base Body)

BASE BODY 0

1 BODY

BODY I

BODY 2

Figure 5-1. Pictorial Sketch of a 3-Hinged Rigid-Body Spacecraft

JPL Technical Memorandum 33-613

Item Equations

L M0+D x F0 + 0 D1+C 0 D F0 0 0 0+ ( 1 1 Z ) 0

L g 1 ( 1 + C1 D2 2 ) x C F 0 - K 1 Y1 - B 1 y1

L2 g 2 (D 22 xC0 F0) - K2 Y - B2 Y2
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6. LINEARIZED SINGLE RIGID-BODY SPACECRAFT MODEL

In this section, the linearized model for a single rigid-body model of a

S/C is given. In this case, the generalized results for a n-hinged rigid body

are not directly applicable. Instead, the linearized version of Euler's equa-

tions for a rigid body are used. That is, the state equations are

(6) = [ -jE] (X) + [ °] Mo (6-1): O__I-- 0 (-1 )

where

E is a 3 x 3 identity matrix

M 0 is the external moment applied to the S/C

I is the 3 x 3 inertia matrix of the S/C

0 is a 3 x 3 null matrix

It is interesting to note that the linearized form for an n-hinged rigid-body

spacecraft can still be used for a single rigid body model of the S/C. This is

achieved by eliminating the vectors y and oR from the state and appropriately

interpreting the results. Comparing Eqs. (3-17) and (6-1), it follows that for

the single rigid body model

a - I (the inertia matrix)

GO = ,0

and y, oR, GR, K, B do not appear (they are deleted from the general result).
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APPENDIX A

DYNAMICAL EQUATIONS (IN TERMS OF CONSTRAINT TORQUES)
FOR A SPACECRAFT IDEALIZED AS n-HINGED RIGID BODIES

The primary result of this appendix is a compact version of the dynamical

equations for a spacecraft idealized as n-hinged rigid bodies; the equations are

written in terms of the constraint torques. The pivotal-1 steps involved in the

derivation are briefly described and the intermediate results are recorded

(see Table A-1).

The steps involved in obtaining the desired result include:

(1) Writing Newton's and Euler's equations for each body K.

(2) Eliminating the unknown interaction force F.

(3) Evaluating the term

E C x F
j. Ej

(The sum of the moments about the center of mass of body X due

to interaction forces FXj existing at joints j).

(4) Interpreting the results as the equations describing the motion of

the augmented body X relative to its barycenter.

A-1 Newton's and Euler's Equations

The development of the equations of motion for an n-hinged rigid-body

spacecraft begins with Newton's and Euler's equations written for each body X.

That is, for all XE S:

The intermediate results are important since they indicate the origin of
various terms that appear in the final result.
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Fl + E F = mx (R+ ) m R

j J

(A-l)

[-1 + WX X * = Mx + Z MX. + E CX xFk.
jEJ k  J j EJk  J J

where

0 is the inertia dyadic for body k relative to its center of mass

m X is the mass of body X

FX is the external force applied to body X

WX, oX are the angular velocity and angular acceleration of body X
relative to an inertial frame

FX is the interaction force acting on body X at joint j
J

R is the position vector from the origin of an inertial reference frame to

the point "O" ("O" is the origin of the S/C coordinate system in

the undeformed state)

pX is the position vector from the point "O" to the center of mass of
body X

R is the position vector from the origin of the inertial reference
cX

frame to the center of mass of body X

R is the position vector from the origin of the inertial reference frame

to the composite mass center of the system

MX is the external moment applied to body X relative to its center

of mass

MX. is the interaction moment acting on body X at joint j
J

c. = dX. is the position vector from the center of mass of body X
J J

to joint j
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S is the set of all labels for bodies X (that is, S = 0, 1, .. n- 1)

JX is the set of labels for all joints associated with body X

A-2 Elimination of the Interaction Forces

In order to obtain a solution for wX from Eq. (A-l) the interaction forces

FXj are first eliminated. This is accomplished by recognizing that

SL ES

J

FX. = FX.
J J

(A-2)

where Skj is the set of those bodies connected to body k at joint j.

That is, by summing the interaction forces acting on body X over all

bodies B belonging to the chain of bodies connected to k at joint j, the inter-

action force Fxj can be isolated. Using Eq. (A-1), it follows that

FX.
J

(A-3)(F -m )
FL FL c= E

E Sx.

The form of FXj given by Eq. (A-3) is next substituted into Eq. (A-l) to

eliminate FXj from the equations, that is

k * +w X 1k w = MK +E M. +E

jEJX J jEJk

Cx.
J
xE

B1 E Sx.
J

(F -m R )
(A-4)

(A-4)

A-3 Evaluation of the termE C X FX j

EJ section, attention is focused on the term

In this section, attention is focused on the term

CK. x FX.
j EJX J J

= C x Z(F - m R )
jE j
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It can be easily shown that

Z C x F. = D x F. + Z D x F - Z m C x (R

jEJ J J ix

where

DX= - ED~
-1

m m CK

DX4 = Dk + CX1

If the point masses mX (the mass of all bodies attached to k via joint j) located
j

at joints j are augmented to the mass of body k, the augmented body X results.

The barycenter B. is defined as the new center of mass of the augmented body

K. Physically, DX is the vector from the barycenter BX of the augmented body

K to the original center of mass of body X, DX. is the vector from BX to joint j.

Note that

D D
K.

for all 1 ESX.

J

CX = CXk

Next the term

m C x (R - c )

is examined. Using the facts that

R -R = D +
c c 4 Z Dv[

vfr-

JPL Technical Memorandum 33-613
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(A-5)

-E
4JX f
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D = D
IJ· I

mX DX + E
~ A

-C
NLV

m D XL = 0

it can be shown that

F -L )X4L
x (Rc

FL

- R ) = - X> · XX -w * x XX · W X

+ m E
D x D4k

X - mX D U - n DDX m D 2(
mI ( ~ U - DX D)

U is an identity dyadic

XDXD and DX DkB are dyadics.

Note that XX physically represents the inertia dyadic which must be added to

0o to yield the inertia dyadic of the augmented body X relative to its barycenter

BX'

The term

F A.

can be expanded to yield
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m DXD xb = m D. x [& x D + w x(wa x D )] (A-7)

since D is assumed fixed in body B- (the rigid body assumption). Collecting

the results of Eqs. (A-5) thru (A-7), it follows that

Z C x F = D D x F - X -W XX
j E J

+ m Dk x[~L x D.+X + w x ( x D(A-8)

1 fx

If Eq. (A-8) is substituted in Eq. (A-l), an elegant result is obtained -- the

equations governing the behavior of the augmented body X realtive to its bary-

center B !

A-4 Compact Form for the Rotational Equations Characterizing Body X
Written Relative to its Barycenter

Use of the results of Eqs (A-l) and (A-8) allows an interesting interpre-

tation of the equations of motion for body X to be made. Substitition of Eq. (A-8)

into Eq. (A-l) yields

k * + + WX *w= M + M

j'J . J

+DxF D x F + D x F - X · k

- W x X X * + mE D x4( x D[x X)

+ m E D x [ x (w xD)] (A-9)

p. AX
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Manipulation of Eq. (A-9) yields

Ct< 'X rk + )w xXk ' *Dk = M+ F + D x F + D x F

+ m E D>x [D x x D X + w x (W x D )]

+ E MX (A-10)

jEJX J

where qkk is the inertia dyadic of the augmented body relative to the barycenter

BX.

Equation (A-10) is the main result given in Ref [1]. Briefly, Eq. (A-10)

implies that the rotational motion of body k of an n-body system can be

obtained by

(1) First forming the augmented body X by adjoining the masses mX

occurring at joints j belonging to Jk to the mass of body X (min).

(2) Determining the inertia dyadic of the augmented body X according

to

4+m = D 2 U +  mr DxDX m [DU - Dx DD]
fx

(3) Considering the terms MX + DX x FX + Z DXK x F as the

external moment applied to the augmented body X relative to its

barycenter.

(4) Considering the terms

m Z Dx( x D(o xD I) + m D [w x [ (w x ( D )]

to x be due to inertial

to be due to "inertial" forces.
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Consequently, a particularly elegant and appealing result is obtained! In fact,

the form of Eq. (A-10) is reminiscent of that appropriate for a purely rigid

body relative to an arbitrary point P, viz.,

· + w x = M - m dpc x (A-1)

where

t)P is the inertia dyadic relative to the point P

Rp is the vector from the inertial frame to the point P

d is the vector originating at P and terminating at the center of
pc

mass c

¢, (C are the angular velocity and angular acceleration relative to an

inertial frame.

A compact form for Eq. (A-10) can be obtained by manipulating its terms.

First, the term

mZ Dkxc x D )

is examined. It is clear that

DX x (xoD x- D) =  x (D i x ) (A- 1)

and that

Dxr x (D x ) = t - [D) = ' DX U - D DD 1

where U is the unit dyadic and DXk DX is a dyadic (note that the vectors DX

and DLX are not fixed in the same bodies).
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Substitution of Eq. (A-12) into Eq. (A-10) yields

9k ' ~ + .K ' = E + Mc

or

Z '. ' ' = + E + M (A-13)
4IES jEJ

where

qNr = - m[ D U- D DKU] ' i y k

q = o0x + mX (DX D\ U -D DX) +Z m (DxF D. U - DKU DD )

1X

c SD

- WX x x *, WX+ Mx.

M =Mc + MSD
X. X. X.

In Eq. (A-13), note that the interaction moment MX. is assumed to
3

consist of a constraint moment and a spring-damper moment. Recall that

modeling the interaction moment in terms of a spring-damper is a consequence

of the assumption that the joint is dissipative and elastic.
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Table A-1. Rotational Equations for an n-Hinged Rigid-Body Spacecraft (In Terms
of Constraint Torques)

Item Equations Remarks

Newton's and
Euler' s equations
for body x

Elimination of
unknown inter-
action forces

FX.

Evaluation of

E cx. x FX.
jEJX J J

FX + E FX. = mX(RX) m + = mR

JEJX J

O X ' wX +c X X O 'x Mx +Z
JEJX

Mx. + cx. x FX.
jEJX J J

FX = (FL -m R c )

cx xFx DX X Fx + D. x F

- E m cx x (Re  Rc)

where

D = -E m m
1 

cX

Do. = DX + cX

mx is mass of body X

cj is vector from c. m. of body X to joint j;

J¾ is set of labels for joints on body X;

SXj is set of these bodies connected to body X at joint j;

S is set of labels of the ensemble of bodies;

JX is set of labels for joints on body X;

FX is external force on body X;

FX. is the interaction force on body X due to joint j;

MX is external torque on body x

MX. is interaction torque on body x due to joint j;

1x is the inertia dyadic for body X

Summing the interaction forces FX over all bodies

belonging to SX. isolates Fx.
J j

R is vector from origin of Newtonian frame to composite

mass center;

barycenter of body X is the new center of mass Bx

obtained by augmenting the point masses

mX. (the mass of all bodies attached to x via joint j)

located at joints j to the mass of body X;

DX is the vector from barycenter BX to c. m. (cX) of body X:

Dx is vector from BX to joint j:

DX D x for all (LESx,
j J

(-

0

0o

r

I

0a

r·s
nL

W\



C)-

g-..

(D

o

FI

0

oN

I)

LA.

Table A-1. Rotational Equations for an n-Hinged Rigid-Body Spacecraft (In Terms)
of Constraint Torques) (contd)

Item Equations Remarks

Evaluation (contd)

Examination E c x X (R c - R c) = U is the identity dyadic;
of term -B

oftr DXDX and DkB DkB are dyadics;

e C XX is the inertia dyadic which when added to Uk results

- XX  X - x x XX X + 1 D x D in the inertia dyadic relative to Bx of the augmented
-x (Rc body X

w-here

XX m a.k D
2

U .L.XDXDD +E (mB (D2
U -  

Dkx)

Bix

Examination D x
of teram ila x D[ += t, x (w x Dl X) D is fixed in body Bi (rigid body assumption};

om f Dx k m E Dtr xm = x

mI Di x x Dx + D x (w x D X

Expression for mcxx (Rc RC) = - X - xX

FJ.x

mexK + m Dx[ x D,+ x (w. x Dk)]

x (Rc RCi)

Expression for x DX X F + D F X

E cx x F JEJ J J

jEJx J 1

X X XX -m Dx I X Dm D x.i.D w x(wL xDfl)]iJ. f]



Table A-1. Rotational Equations for an n-Hinged Rigid-Body Spacecraft (In Terms)
of Constraint Torques) (contd)

Item Equations Remarks

Resulting DX 'cX + w x x0x = M + E MX + DX x F k  Obtained by substituting expression for E  c. x FX
rotational equa- J j 3
tions for body J xX
after evaluating

into Euler's equation for body X; the term Mx + DX x FX

is the moment relative to the barycenter BX due to
X X X, x, X x external force F; the term [, + X is the inertia

jEJx, 1±i dyadic of the augmented body X relative to the bary-

center BX

+ mE D x [ x [ x D X + x (o, x D))]

or

( +x) . + x X + )

= M + D x Fx + E  Mx, + Dxk

jXJ)j { J/),

x [F + m(p x Dp, +op x (wP xDpX))]

Compact form Mxj is considered the sum of an unknown constraint torque

' Ex + MX and a spring-damper torque (M\ = Mc. + MSD ); note that

E S j J the vectors used in defining QI, are not fixed in the

where same bodies; the following relationship involving a cross

E X M + D, X F. +x Dw xs i [n obaii (wn x DD [)] product and the dot product of a dyadic and a vector is

u A) used in obtaining ¢'\

x MSD Ax (B x C) = A C B - A B C = -[A . BU - B A] C
cX q, X c, + MX:

jCJX J

~ 
= - m [D4), ·D), U - D 1XD .] for pi X

x = 0,+ xX = , + [m,(D U - DxD) +E m (DX2 U

- D), D>) )1

X X XX X t1
X,,L X V]

r_q

t

(D

0'



APPENDIX B

A SET OF r DYNAMICAL EQUATIONS (FREE FROM CONSTRAINT
TORQUES) FOR A SPACECRAFT IDEALIZED AS

n-HINGED RIGID BODIES

In this Appendix, a set of r dynamical equations free from constraint

torques is given (see Table B-1). As noted in Section 1, the procedure for

eliminating the constraint torque involves:

(1) Recognizing that the sum of the vector dynamical equations for

each X over all bodies contains no constraint torques (they cancel

in pairs according to Newton's Third Law).

(2) Recognizing that a vector constraint torque at a typical joint j

can be isolated by summing the vector dynamical equations over all

bodies that lie to one side of joint j (the constraint torques on this

set of bodies all cancel in pairs, except for the one at joint j).

(3) Recognizing that the constraint torque at joint j is normal to the

gimbal axis (axis of rotation) at joint j (this follows from the

definition of a constraint).

B-1 Summing the Dynamical Equations for Body k Over All Bodies

In this section, the equation obtained by summing the dynamical equations

for body k over all the bodies of the system is examined. This result is given

by (using Eq. (A-13))

Z Z (B-l)Z Z O' *"' = E Ek +E Mc .
Xk X X jEJ k  J

As noted previously, however, the constraint torques vanish when they are

summed over all jEJX and all XES, i.e.,

Z Z M O (B-2)

k j EJ k J
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Furthermore, if there is a chain of bodies connecting a particular body ji to

the so-called base body designated by 0, then

(B-3)

r-3

[I 0° + 5d 'kkL Yk gk
k=l

where

o0

gk

'k

EkB

is the angular velocity of the base body

is the unit vector representing the gimbal axis at joint k (there

are r-3 gimbal axes in all)

is the relative angular rotation of the two bodies connected at joint k

is 1 if body i senses the relative rate yk gk and is 0 if body p. does

not sense it.

It is clear that if joint k lies between body 0 and body p. then Ek

otherwise Ek~ = 0. Using the result of Eq. (B-3) it follows that

r-3 r-3

°0 + Ek~ Yk gk + Ek Yk gk
k=l k=l

(B-4)

Substitution of Eq. (B-4) into

Z > 1 +~ kX p. X

E [EK-z E l
X 4J

Eq.

r-3

k= I

(B-l), yields

r-3

X 'P. Z Ek gk qk
k=l

Ek.i 'k k]
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Manipulation of Eq. (B-5) yields

x F k=i l XkL

Ekll Yk gk

r-3

k=l

In compact form Eq. (B-6) can be written as

a 00 +

r-3

Z aOk

k=l

where

a00 =
X

aOk =

ZXFTLl

"f L kB ' gk

EX = E< -

r-3

Z EkL gk k = EX
k=l

In Eq. (B-7), a 0 0 is a dyadic, a0k is a vector, and Ek and EX are vectors.

Note too that the term Ek L picks out those particular bodies FL that sense the

rotation 'k gk' It should also be observed that the right hand side of Eq. (B-7)

can be written as

JPL Technical Memorandum 33-613

(4I Ekl ' gk Yk

I (B-6)

(B-7)Yk = 2X
EX

'DX 1
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Ex E=57 X= [
r-3

EX (E E kJ ki k)
k=l 11

r-3

k=l } J
=E EX

X
¢) .~ E kp

In particular, the operator (dyadic)

zZ E bX, .Ekp

occurring in the RHS of Eq. (B-8) is the same as that used in defining the

term a0k, as expected.

B-2 Obtaining r-3 Additional Scalar Equations from the Orthogonality of
the Gimbal Axis and Constraint Moment at Each Joint

In this section, r-3 additional scalar equations are obtained by using the

facts -that:

(1) A. vector constraint torque at a typical joint can be isolated by

summing the vector dynamical equations over all bodies that lie to

one side of joint j

(2) The constraint torque at joint j is orthogonal to the gimbal axis

at joint j (i. e., the dot product of the gimbal axis and the

constraint torque at joint j vanishes).

That is, for each gimbal axis i, if the equation

Mic
MX.

J
· = Ex + E

j E JX

JPL Technical Memorandum 33-613
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is summed over all bodies that lie to one side of joint i (that is, beyond gimbal

axis gi relative to body 0), then

X Ad
·AL = Ee.i E E+ E i.

k X

Efi = 1 for all those bodies that lie to one side of joint i and is 0,

othe rwis e.

Note that the term

ZXZJX
MC3f

= M.

since the constraint torques cancel in pairs except at the joint j (when the

constraint torques at joint j are summed over all bodies lying to one side of

the joint relative to body 0).

Using the fact that the constraint torque at the joint j is orthogonal to the

gimbal axis at that joint, it follows that

L . - Ex)]
=0 i = 1, 2, . ..r-3

Manipulation of Eq. (B-10) yields

gi ' Ei E iX (.0+
xt1

gi ' Eix
x

(E k

EkL gk Yk)

r-3

k= 1

(B- 1)

r-3

k.kp gk kk = gi ' iX EX
k=l X
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J
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(B - 1 0)
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In compact form, Eq. (B-ll) can be written as

aiO ' (0 +

r-3

k=l

aiO = gi ' z
k

aik = gi ' zx

aikk k = gi' E ix E

k

z Eix krB

z
IJL

In Eq. (B-12), aik is a scalar and at 0 is a vector.

B-3 Set of r Dynamical Equations (Free From Constraint Torques)

In this section, the set of r dynamical equations obtained in Section B-1

and B-2 is given. Collecting the results of Eq. (B-7) and (B-12), it follows

th at

a00 ' W0 +

ai 0 ' c0 +

r-3

Y' aOk Yk = E Ex, 3 scalar equations

k=l k

r-3

E a.ikk = gie' i E Ex, r-3 equations with

k=l k
i = 1, 2, . ... r-3
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whe re

(B-12)

(B-13)

EiX'kkL 1) X4 ' gk
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where

aOO = E L qp, a dyadic

X F

a0Ok =E Z Z Y EkBL gk, a vector
X 3)

r-3 r-3/

E, = EX - *kg Ek- - E kll 4Il Yk

k=l k=l

EXEZ Ei ZX, a vector

iL

E L g. Z Z Ek gk , a scalar
X F

identifies those bodies F which sense the relative rate Yk gk

identifies the bodies X over which the dynamical equations are

summed to isolate the constraint torque at joint i

matrix notation, Eq. (B-13) can be written as

a01 02 ' * O,r-3

al 1 ........ al,r-3 1 gl 1

ar-3,0 r-3, 1 ar-3, r-3 I

X

gr-3 'E r-E*
X.

~ EEr- 3 E
·

JPL Technical Memorandum 33-613

aiO = gi I

aik

E kF

EiX

In

a 0 0

a 10 I XI

Yr-3
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It is understood that the dyadics and vectors appearing in Eqs. (B-7)

and (B-12) are replaced by matrices of their components in Eq. (B-14). It

is also noted from the definitions of a 0 0 , aOk, at 0 , aik that the matrix

involving these elements in Eq. (B-14) is symmetric. The dimensions of the

matrix elements are as follows: a00 -- 3 x 3, aOk -- 3 x 1, akO -- 1 x 3,

and aik is a scalar for i, k = 1, 2, . .. r-3.

Equation (B-14) represents the desired set of r dynamical equations

governing the motion of an n-hinged rigid-body spacecraft.
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Table B-1. Set of r Dynamical Equations for an n-Hinged Rigid-Body Spacecraft
(Free from Constraint Torques)

Item Equations Remarks

Starting point for Set of equations for n-hinged rigid-body spacecraft

obtaining set of ' M(involving constraint moments) that were derived in

n dynamical p jEJ Appendix A; M. is constraint moment at joint j on

equations (free body \; all other terms are defined in Table A-i.

from constraints) where

EX = MX + Di x FX +E D>,Z x F, +E Dip

x [m w x (ta D x Dx) - x ' 
+  MkX

4x 0\ + XX - 0 4 [",,(D U - DDx)

+ E n1,, (D 2 U - DX D )j]

[ \ = al[D D ]U - D ,\] E-

Elimination of Summing the constraint moments on body x over all

constraint E . l , EK joints jEJ and over all bodies removes the constraint

moments x a X torques since they cancel in pairs (Newton s third

since law)

Mc.E E xi

Simplification r-3 r-3 gk is the unit vector representing the gimbal axis at

of result E0 [ E k gk + L E. ik kj joint k; k[ specifies the bodies i which sense the
obtained by k~ ~°0 57 Eg Yk gk 

+ · k¥
summing X P k=l k=l rotation Yk gk; Ekt is 1 if the gimbal axis is between

over all body p and body 0, otherwise Ek1 = 0;
bodies kp

LEX
x

U-
W



Table B-1. Set of r Dynamical Equations for an n-Hinged Rigid-Body Spacecraft
(Free from Constraint Torques) (contd)

Item Equations Remarks

Elimination of

constraint

moments (contd. )

Simplification
of result
obtained by
summarizing
over all
bodies X

Compact
form

Determination of

additional r-3

scalar equations

Isolating con-
straint moment
at joint j

where

r-3

= wO + E Ek Yk gk
k=l

Rearranging,

X k

r-3

a00 ' 0 + , 
a

O
k 

Yk
k=l

r-3

k=l X F
gk) 'k

E E

where

i-3

a k = E E k ' 4 k
x B

aOk E E "L k gl 9k
X J

r-3

+ E 'kV Ykgk ,

whe re

X ji J MX jx jEJ

r-3

WO + Z 'ke YLk gk
k=l

EM Efor j i

Mc for j = i

a00 is a dyadic;

a0k, EK, E: are vectors: result represents 3 scalar equations.

Summing the vector dynamical equations over all bodies that

lie to one side of joint i isolates the constraint torque M.;

EiX identifies the bodies X involved in sum

rq

t3

O

o

0

0

I

0

% X k= I



Table B-1. Set of r Dynamical Equations for an n-Hinged Rigid-Body Spacecraft
(Free from Constraint Torques) (contd)

Item Equations ResultsrD

0

PI

Io
0

-a

I-

(J-

gi Mi
=

gi leixE'Z .I 1 +

r-3

·+ E , k l %, 1 Yk 1
k1<I=1

r-3

E

ki, VR gk ]

0

Determination of

additional r-3

scalar equations

Orthogonality
of gimbal axis i
and constraint
moment at
joint i

Compact form
for orthogonal-
ity conditions

r-3

aio0' 0 
+ 

E aik Yk
k=l

1i 57 x \

where

aiO gi E 'i .,
a i

aik gi E
X

By definition of a constraint moment, it is orthogonal to

the gimbal axis gi

ai 0 is a vector, aik is a scalar; with i = 1, 2, ... r-3, it

follows that r-
3

scalar equations result

i ' i 1* 0

k=
r-

= gi E 'jik EX
g k

O1

'iX ( ky ' gk



UI
oN Table B-1. Set of r Dynamical Equations for an n-Hinged Rigid-Body Spacecraft

(Free from Constraint Torques) (contd)

Item Equations I Results

Set of r dynamical

equations for

n-hinged rigid-

body spacecraft

(free from con-

straint moments)

00 a01 .. a.r-3 Z 1
X

a10 all '.a,3 Y gl E1 iXE"

ar 3 ,0 ... a r-3, r-3 r-3 gr-3 'E r-3E

Matrix components of dyadics and vectors are used

in this equation; a00 is 3 x 3, aOk is 3 x 1, ai0 is

I x 3, aik is a scalar for i, k = 1, ... r - 3;

matrix involving a 0 0 , a0k, aiO, aik is symmetric.

H

r
0

0

L

I
0'
U-



APPENDIX C

DETERMINATION OF EXPLICIT FORM FOR DYNAMICAL EQUATIONS
FOR A SPECIFIC TOPOLOGICAL ARRANGEMENT OF

5-HINGED RIGID BODIES

In this section, the general results described in Appendix B are applied

to a specific topological arrangement of 5 hinged bodies. In particular, results

are obtained in this section for the arrangement of bodies shown in Fig. 5-1.

Hence, the explicit form of the dynamical equations for the case in which

n = 5 or less is obtained.

C-1 3 Scalar Equations Obtained by Summing Dynamical Equations Over All
5 Bodies

Three scalar equations are obtained by summing the dynamical results

for each body X over all 5 bodies. This result is written as

[X

EjX +

j EJ

(C-l)A MkC
j

Since the constraint torques cancel in pairs, the term

Mc = 0
K.

4

(C -2)

It can be seen from Fig. 5-1 that the angular velocities of the bodies are

W0 = W0

W1 = WO + Y1 gl1

WZ =  goo + Yl g2

c3 = OO + Y3 g3

c4 = o + Y3 yg 3
+ Y4 g4
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or, in general,

4

w0 = ° + Z EY k
, · L kL Yk gk

k=l

where E identifies which angular rates Yk gk are involved in the angular

velocity of body 4 . Effectively, Eki = 1 if the gimbal axis gk lies between

body p. and body 0 and is 0 otherwise. Using Eq. (C-4) in Eq. (C-l), it

follows that

(C-4)

4 4

X=0 ~=0

4

= E E X-
X=O

4 4

.0+ o z X
X=0 L=0

4

Z =O
k k=lYk)

k= 1

Equation (C-5) can be rewritten as

4 4 4 4 4 4
E Z ° ( E E E k t ,, gk Yk
X=O L=0 k=l X=O L=O

= 5 Ek -k k ) gk Yk

X=O k=l X=O =O

In compact form, Eq. (C-6) becomes

4

a00 . o)0+ Z (bOk gk)Yk =

k=l

4 4

E EK - Z bok gk Yk
X=O k=l

JPL Technical Memorandum 33-613
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k=l
Ek4 gk Yk
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4 4

a00 = 5 E p = bo00
X=O -L=0

4 4

bOk = E Eki %X
X=0 R1=0

a0Ok =bk gk

The dyadics

the meaning

which sense

b0k for k = 1, 2, 3, 4 can be evaluated by inspection of Fig. 5-1 if

of Ek~ is kept in mind (recall that Ek~ identifies those bodies ¢

the angular rate "k gk)'

It follows that

4

b01 =
X=0

4

b02 =E
X=0

bo3 =E
X=0

4

b 0 4 =
X=0

(since only bodies 1 and 2
sense Y1 g l)

2

A =1

(since only body 2 senses Y2 g2 )X2

4

~ =3
ffL

(since bodies 3 and 4 sense Y3 g3 )

(since only body 4 senses y 4 g4),X4
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C-2 Equations Resulting from Orthogonality of Constraint Moments
and Gimbal Axes

In this section, the additional four equations resulting from the

orthogonality of the constraint moment and the gimbal axis for each of the

four joints are -obtained. First, it is seen from Fig. 4-1 that the constraint

moment at joint 1 is isolated by summing over bodies X = 1, 2; that the con-

straint moment at joint 2 is isolated by considering body 2 only; that the con-

straint moment at joint 3 is isolated by summing over bodies 3, 4; and that

the constraint moment at joint 4 is isolated by considering body 4 only. From

the orthogonality of the constraint moment and the gimbal axis at each joint,

it follows that

gl 1 1

2 M2 = 0
2

Mc (C-9)
g3 33 0

·. M c = 0
9 4 44

c = Mcwhere a typical constraint moment M M for X 1, j 1.
=j 1

For a fixed i, it follows that

Mc. = i cM. with j = i

jEJ J

(C-10)

gi Mj. 0
J

where EiX identifies those bodies k over which the sum is taken. It has already

been observed that for i = 1 the sum is taken over k 1, 2; for i = 2, only

k = 2 is involved; for i = 3, the sum is taken over X = 3, 4; and for i = 4, only

k = 4 is involved. Using Eq. (C-10), it follows that
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i M4

EjX M = E iX 3 E
XJ k E =0

Mc = 0gi k.
3

4

= gi ' E Eix k
X tL=0

. E )

Expansion of Eq. (C-ll) yields

0 = gi. E

k

4 4 4

i( E * 0 + >3 .- E >k,> gk Yk
=0 BL =0 k=l

4 \

Z kL k Yk EX
k= I

4

=O

Simplification of Eq. (C-12) yields

4

gi ' E Eix ) ),
X F =0

0 1g k=l
" >O + gi . (7EAfi

k=l X

4

Ek=
B=0

(C-13)
4 4

= gi E Xk EK - gi E E iX
k k=l X =0

In compact form, Eq. (C-13) can be written as

4

gi. bi 0  0 + gi E (bik ' gk) Yk
k= 1

4

= gi Ei EK gi E (bik' gk) Yk
X k=l

JPL Technical Memorandum 33-613
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biO = Z

bik =
k

4

i E

FL =0

4

L =0
EkL XkL

In the notation of Appendix B, Eq. (C-14) can be written as

4

aio0  (0 + E
k=l

aik Yk = gi
X

ix X

4

k=l-k=1
(gi ' bik gk ) Yk

where

aio = gi bio

aik = gi . bik' gk

The dyadics bio can be written as (see Table C-l)iO

2

X=l

4

b20 =
FL =0

4

b30 =
X=3

4

X =0

Z

~ =0

(since X = 1, 2 are involved in sum over X)

(since only X = 2 is involved in sum over X)

(since k = 3, 4 are involved in sum over X)
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4

b 4 0 = E (4 (since

t =0

Note that the bodies - involved in the sum

4

fL =0

only X = 4 is involved in sum over X)

(C-17)

for k = 1, 2, 3, 4 have already been identified (Ek~ identifies the bodies 1

which sense the rotation 'k gk )' Now the bodies X which are picked out by

the sum

have also been identified for each i. Consequently,the bodies A, k involved

in the sum

4

bik E Eki Et1
X=0

can be written down by inspection. Written in terms of an array, elements

b00, bOk (derived in Section C-1), and bk0, bik become
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4 4 4 2 4 4 4 4

X=O p0 X=O k =1 X=O X=O k=3 X=OX=l0 = 0  X=l o=1 = 0 0=3 X=l

2 4 2 2 2 2

4 2 4

Z=0 4p=1 .L=3

ZE ZZ~ ~k TE 22x ZY EX k4

=l3 =0 X=3 j=1l X=3 X=3 L=3 X=3

4 2 4

4 =0 =1 =3

00 b01 b02 b 03  b04

b10 bZ b12 b13 b (14

b20 b21 b22 b23 b2418)

b3O b31 b32 b 3 b34

b40 b41 b42 b43 b44

Note that Eq. (C-18) could have been written immediately by inspection of

Fig. 5-1! In row 1 of the array, the summation over X is from k = 0 to X = 4;

in row 2 (corresponding to the dot product of gl and the constraint moment at

joint 1) the summation over X is from X = 1 to 2; in row 3 (corresponding

to the dot product of g2 and the constraint moment at joint 2), only X = 2 is

involved; in row 4 (corresponding to the dot product of g3 and the constraint

moment at joint 3), the summation over X is from X = 3 to X = 4; in row 5

(corresponding to the dot product of g 4 and the constraint vector at joint 4),

only X = 4 is involved. Similarly, in column 1, the summation over p. is from

0 to 4 (all bodies sense wC); in column 2, the summation over [p is from
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1 to 2 (only bodies 1 and 2 sense i1 gl); in column 3, the summation over [t

involves only p. = 2 (only body 2 senses Y2 g2 -- it is the end of a chain!); in

column 4, the summation over p. is from 3 to 4 (only bodies 3 and 4 sense

' 3 g3 ); in column 5, the summation over Ip involves only body 4 -- it, too, is

the end of a chain!).

C-3 Set of r (r = 7) Dynamical Equations for a 5-Hinged Rigid-Body
Spacecraft

In the section, the set of 7 dynamical equations governing the behavior of

the 5-hinged rigid-body spacecraft shown in Fig. 5-1 are given. These equa-

tions are obtained by collecting the results generated in Sections C-1 and

C-2.

In the following equation, it is understood that the matrix components of

operations involving dyadics and vectors are used (recall, that the dyadics bem

with f, m = 0, 1, .. 4 are defined in Eq. (C-18))

bO b01 ' gl b02 . g b 0 3 ' g3 b 0 4  g4

gl' b 10  gl bll 'g gl bl g2 1 b 13 'g3 gl b 14 g

g2 b2 0  g2 b21 'gl g2 22 g 2  b g2  b23 ' g 3  g2 b 2 4  g4

g3 ' b3 0 g3 ' b3 1 'gl g3 b3 2 'g g b 3 b 33 3 3 g4

g4' 144' g42g 4 b4 0 g4 b4 1 gl g4 b4 2 ' 2 g4 b4 3 g3

V 1

Y2

Y3

Y4

(C -19)

4

I =

4

Ex - , 0oi k' 1 kl i'
1= 1

2

Y=1
91g

4

Ek-
k-l

1gl I' .-k' Y1 I

4

g2 ' E2-

. -
g2 ' b21i ' k 1 Y

4

g3 *
k=3

g3 ' b 31 < ' glk Yl
k=l

4

g4 E4- Z

k=l
g4' b 4 k gk Yk
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It is worth repeating the fact that the dimensions of the elements are as

follows:

bOO -- 3 x 3, b0k · gk -- 3 x 1, gk ' bkO -- 1 x 3, gi ' bik ' gk -- x

for i, k = 1, ... 4.

As mentioned previously, the square matrix on the LHS of Eq. (3-19) is sym-

metric so only

s = 2 (a + I) : (5 + 1) = 15

of the 25 elements must be evaluated (note, however, that b 0 0 is a symmetric

matrix, too! ). Typical elements of this array are the 3 x 3 matrix b 0 0 , the

3 x 1 vector b 0 1 gl and the scalar gl ' bl2 ' g 2 . Note, too, that the elements

of this array were previously, defined as (see Eq. B-13 and Eq. B-14).

aoo00 = boo

a0k = b0k' gk'

akO = gk' bkO'

aik = gi ' bik ' gk'

k = 1, 2, ... 4

k = 1, 2, ... 4

i, k = 1, 2, ... 4

In compact form, Eq. (C-19) can be written as

A = L

(C-20)

(C-21)

where A is a 7 x 7 matrix, Uo is a 7 x 1 vector (consisting of a0 and the relative

angular accelerations yk), and L is a 7 x 1 vector (which can be considering the

forcing function of the matrix differential equations).
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C-3. 1 Transformation of Elements into Appropriate Coordinate System

In this section, the vector basis in which the elements must be expressed

in order for the operations to be performed is selected. A logical basis is that

associated with body 0 (the base body). For the attitude control problem, it is

usually necessary to control only the attitude of the base body (the attitude being

kinematically related to the angular velocity vector w0). Hence, the transfor-

mations from bodies 1, 2, 3, 4 to body 0 are required.

C-3. 1. 1 Coordinate Transformations

The transformations required in performing the operations depicted in

Eq. (C-19) are (note these are not restricted to small angles)

= cos Y1 E + (1
T

- cos ¥Y1 ) gl gl S Y1 gl

cos Y2 E + (1 - cos y 2 )
T

g2 g2 - S Y2 g2

(C-22)

= cos y3 E + (1 - cos y3) g3 g3 - S y g

Tcos '4 E + (1 - cos y 3) g4 g 4 - S ¥4 g4

E is the 3 x 3 identity matrix

T
gk gk is an outer product, k = 1, 2, . . . 4

gk is a 3 x 3 skew symmetric matrix representing the cross product
operator gk x, k = 1, 2, . .. 4

k C1 is the transformation from the coordinate frame of body k-l to

that for body k
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The results given in Eq. (C-22) were obtained in this analysis by

manipulation of the relationship between two coordinate systems in terms of

Euler's parameters (for a different approach see Ref. [5]). Consequently,

the transformations relating bodies 1, 2, 3, 4 to body 0 can be expressed as

(see Fig. 4-1)

1 -CO C
0 0

2 2 1
C CC

(C-23)
3 3

C30 = C

4 4 3
C 4 CO = 3 0

Note that in Eq. (C-22), it is assumed that the components of gl are known in the

coordinates of body 0, the components of g 2 are known in the coordinates of

body 1, the components of g 3 are known in the coordinates of body 2; and the

components of g4 are known in the coordinates of body 3.

Mbreover, the direction cosine matrix relating the coordinate system for

body 0 and the coordinate system of the interial frame N for a 3-2-1 sequence of

rotations is

C1C2

CN - S1C3 + C1SS3

ClS2C3 + S1S 3

where S. = sin 0i, C = cos 0.

S1C 2SC
1 2

C1C 3 + S1S2S 3

S1S2C3 - C1S3

(with i = 1, 2, 3)
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The attitude angles 01, 02, 03 of body 0 are related to the angular

velocity w0 according to

02

S IS1S2
C 2

1

0

0

C1

S1

C 2

C1S 2

C2

-S 1

C
1

2

(C-25)

1

W2

W3

C-3. 2 Evaluation of Elements bfm and aI

The following conventions are used in evaluating

Q, m = 0, 1, ... 4:

the dyadics bom and aim,

(1) A typical element Dk, (X, B1 = 0, 1, ... 4; x i>k ) is evaluated by

expressing all vectors involved in the coordinate system of body k

(i. e., the basis of the first subscript of 'DX); e. g.,

21 = - m [ D12 · D21 - D12D21]

where D12 is computed in the coordinates of body 1 (the first

subscript of Dip ) and then transformed to the coordinates of body 2

by

2
(D12)2 = C 1 (D 1 2 ) 1

and D21 is already known in the coordinates of body 2; consequently

[2zl ] - m [( D 1 2 ) . D2  1 1  ( 1 2 ) D2 1 ]

(2) A typical element bok, k = 0, 1, ... 4 is evaluated by transforming

all qN~l s from the coordinate system to body X to that of body 0

according to

[ ] 0 = C with , ,. , . 4,

JPL Technical Memorandum 33-613 69



e. g. ,

0 1 0 [®Zl +  ] c2
bo = [~01 + 0O2] + C1 [11 + 12]1 CO +  2 [ 21 22 2 0

0 3 + 4
+ 3 4 041 1++ 3 [31 + 32]3 C o + C 4 2 ]2 Co

(3) A typical element bik (i, k = 1, 2, ... 4) is evaluated by transforming

all N4 's involved to the coordinate system of body i, e.g.

rb1 2
[b13 1 = [ 13 + 14 ] 1 + C2 "[23 + 24] C2 1

3 4
[b 3 3 ] 3 = ['33 +  +34]3 + C4 [43 + )44]4 C3

Similarly, the operations bok · gk and gi * bik * gk involved in the a mis

are evaluated according to

(1) bok gk = [b0k]0 (CO gk)

(2) gi bi k (gi)i [bik]i' (k gk)

These results are summarized in Tables C-1 and C-2.

C-3.3 Evaluation of Forcing Function L

In this section, the terms involved in the evaluation of the 7 x 1 forcing

function L (the RHS of Eq. C-19) are given (see Table C-3). The column

matrix L can be partioned as

where L 0 is a 3 x 1 vector and is associated with body 0 and LR is a 4 x 1

vector associated with bodies 1 thru 4.
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For notational convenience, the terms M Sj are redefined as T and

represent the spring-damper moment acting on body X at joint j.

C-3.3. 1 Viscoelastic Moments and Joints

In this section, the assumed form of the spring-damper interaction

moments acting on body X at joint j is given. Equations representing the

interaction moments are given by

T22 - KZ Y2 - B2 Y2

T12 = - T22

T
11 - K 1 '1 - B 1Y 1

(C-26)

T44 =

T34 =

- K 4 y4 - B 4 y 4

- T44

- K3 Y3 - B3 Y3

- T33

Equation (C-26) implies that

acting on bodies 0 thru 4 are

the total interaction spring-damper torques

T01 + T03 = K1 Y1 + B 1 Y1 + K3 Y3 
+ B3 Y3

T11 + T12 = - K1 Y1 - B 1 Y1 + K 2 Y2 
+ B 2 Y2
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T22 = K2 Yz - B2 Y2

T 3 3 + T3 4 = - K3 Y3 - B 3 Y3 + K 4 Y4 + B 4 Y4

44 -K B(C-27)
T44 = - K4 Y4 - B y4 (C-274

C-4 Explicit Equation for w 0 (The Angular Velocity of the Base Body 0)

In this section, the explicit form for the equation governing w0 is given.

This can be obtained by partitioning the equation

A o = L

and eliminating the relative angular velocities from the equation. In partitioned

form, Eq. (C-21) becomes

[AZ1 A ZZ ] 2 R ) LR) (C-Z8)

where the dimensions of All, AZ AZ AZ L and L R are 3 x 3,

3 x 4, 4 x 3, 4 x 4, 3 x 1, 4 x 1, 3 x 1, 4 x 1, respectively. Manipulation of

Eq. (C-28) yields

All 0 + A1 R = L (C-29a)

A21 ~0 + 22 AR = R (C-29b)

Solving Eq. (C-29b) for &R and substituting the result into Eq. (C-29a), it

follows that

o [A01 1  A 1 2 A= A 1 L - [All - AIZ A- A -1 AzA LR

(C-30)
-1 R -1

C A2 2 LR =- AZ1 o0
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4 4

=O F N=0X=O 11=O

Equation (C-30) suggests that the RHS of the equation for w0 could first be
evaluated; next, the expresion for c 0 can be used in evaluating the RHS of the

equation for wR; then, w0 and wR can be obtaining by integrating w0 and [ R ,
respectively. The fact that UR can be expressed in terms of co is significant

when one is interested in arriving at a suboptimal Kalman filter in which the

dimension of the state to be estimated is kept as low as possible.

Table C-1. Expression for Dyadics b m, Q, m = 0, 1, .. . 4

EquationsItem

= [oo0 + "01 + O02 + 03 + 04 ] 0

+ C0 [. 10 + 1C [10 + 11 + 1 + 1 + 141 C

+ c2 [20 + z21 + 2z + 2 + 3 z4]z Co

,0 3
+ 03 [30 + 31 + '32 + 333+ + 3 3 4 13 CO

+ C +4
+c4 40 + + I42 + P43 + (44]4 CO

4 4

b01bo E 'E = [01 + "02]0 +C1 ['11 + II]I CO
X=0 ~=1

2 +0 3
+ C [k2 1 + 22 C + Co +31 + z32]3 Co

00 0 4
+C 4 [4 1 + 042 ]4 CO

4

bo02 O02j + CO1=1 1 CO [ +12 1 C C
X=O

0 30 4
+C 3 [ ] 32]3CO +C 4 [ 42]4 C O0
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Table C-1. Expression for Dyadics bm , Q, m = 0, 1, ... 4 (contd)

Equations
+

4 4

X=0 BL=3

0 1
tK [m03+ m04] 0 + C 1 [C 1 3 + m14 ] 1 CO

0 2 0 3
+C2 [~)23 + "Z24]2 C0 + C3 [~)33 + 34343 CO

+0 4
4 [IP43 + D44 C O

4

b04 E 4 =  [0410 + 'C1 [141]1 CO + C2 [(I'24]2 CO
X=0

0 C 3  0 4
+C03 [3413 00+C4 [4>44]4 C0

2 2

bll E [1 + Z12] + 2 C[Z1 + z22]2 C1

2

12 5 N2 [2] 0 + C2 [,z22]? C2

b3 E [ 13+ 14±1 +C2 [23 + @24]2 C1
1=1 j=3

22X=1

b14 [l14KZ = C1 ['I]241 C[ 1
X=l
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Table C-1. Expression for Dyadics bem, f, m = 0, 1, ... 4 (contd)

Item Equations

4

b22 22 2

b23 5 2 = [ )23 + ~24] 2
11=3

b24[ '242 ]

4 4

b33 B = [c)33 + ±34] C 3C 3
b33 + C 4 [43 + 44]4 C3
X=3 B=3

4

b 3C
34 E 4 = [ (3413 + C4 [444 C 3

X=3

b44 [ ~44 ] 4

bfm (bmTm = 0, 1, ... 4; f m
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Expressions for Elements apm (f, m = 0, 1, ... 4)

Equations

[O 00 + I01

0+Cl

0

+C 2

0

+C 3

0
+ C4

+ (~02 + m03 + 04 ]0

[T10 + (11

[r20 + 21

[ 30 + 431

['40 + (41

+ ~12 + )13 + 0(14 ]1

+ ~22 + )23 + '24]2

+ %32 ?+ '33

1
G0

2
Co

+ 34]3 C3+ ")3 4 0

+ (42 + r43 + (I44]4
4

CO

a01  [[01 + (D0210 + C10 [c1ll + (12]1 C 0 + C 2 [ 21 + (2212 0

+C 3 [ '31 + @32 3 GO +G 4 [ '41 + (42 4 1 (gl
F 3 1 3 0 2 0 1)

a0 2  [[ 0 2 ] 0 +C 1 [121O 2 2 2O +  [C 32]3 C0+ C0 3 32 - 4

4 [42 ] 4 C] C2 (g2 )2

a03 [[03 @+ 0410 + C1 [I(13 + i '14]1 C0 + Cz [ )23 + "2412 C

a 0L0 3 3 +1 0 4 0+
+G 3 [II33 + ~3413 C0 + C4 [443 "+ 4414 Co0 ' 3 (g3)3

a 0 4  [ [04b0 + C [141 CO +C2 [24]12 C O +C3 [~34]3 C0

4 [cD44]4 0 ' 4 (g4)4
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Table C-2. Expressions for Elements apm (f, m = 0, 1, ... 4) (contd)

Item Equations

all (l)l [ [g11 + I ] 1 + C 1 22 2 C1 ' ](g )I

a12 1p~ 1 [[ 212]1 + C2 [22]2  C ]* C22 (g2 )2

14 (gl)l [ I ] 141 + CZ [ 24] 2 C1 4] C4 (g4 )4

a22 (g2 ) 2 ' L 22]2 (g2 )2

2
a23 (g2)l ' [Z23 + 124] 2 ' C3 (g3 )3

[24 (g2)2 * [ 24]42 * C4 (g4 )4

33 +(g3)3.3 + C [4]3 + 4 C3 33
a1C3 C4 c3 1

34 (g3)3 [ []341] + C4 [ 2441]4 C 4 (g4 )4

a44 (g4 )4 ' [1 44 ] 4 (g4)4

akO (aOk) k = 1, 2, ... 4

m ( i, k , 2,... 4, i(g) ' a[33) , i, k =41, 2, 44, i 3 k
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Table C-3. Evaluation of Forcing Function L
(Appearing in A di = L)

Item Equations

E 0  M + D x F + Do, x C O IF( + mc x ( x D 0 )]

- c X *00 WO + K 1 Y1 B 1 Y1 + K3 3 3

E 1  M 1 + I D1 ,, x FF1  F +m u x( D x x D 1 )]

-[(C 0o+l + g) X [l I1 (Co Wo0 + 1gl)

+ K2 Yz + Bz z - K 1 y1 - B 1 l - 1

E M DxF+ DD 2 C[F+ m x (w, x D )1 ]

- [Cw 0 +Cy 1 g1 +2g2] X []22]2* [c 0 +cllgl+g 2 g 2 ]

- K 2 Y 2 - B 2 Y2

3 M3 +3 x F3 + D x C [L + m x ( x D 3)]
4fx

- [ 33]3 [C 3 g3 g3]

+ K 4 y 4 + B 4 y4 - K3 Y3 - B 3 '3
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Table C-3. Evaluation of Forcing Function L
(Appearing in A (c = L) (contd)

Item Equations

M 4 + D4 x F 4 + D41 x C [F + mw x (w x D 4)]

E4  11 fk

-[C w 0 +C3 3 g3 + '4 g4] x [' 44 ] 4  [C 0  C3 3 g3

4 g4 ] 4 Y4 - 4 Y4

1O °O x gl1

(c W 1 gl) X g2

3
93 30 x g3

g4 (C w0 +C 3 y 3 g3 ) xg 4

4 4
0 0 0

EE - E (bO gk) k = E +0C1 E 1 + C2 E2 +C3 E3
K=O k=l

+ C - (b 0 1  C1 gl) Y1 (b02 C g2) (b 0 3  C3 3) 3

- (b 0 4 C4 g4) Y4
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Table C-3. Evaluation of Forcing Function L
(Appearing in A i = L) (contd)

JPL Technical Memorandum 33-613
NASA -- JPL - Coml., L.A., Calif.

80


