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PREFACE

The work described in this report was performed
by the Guidance and Control Division of the Jet Propulsion
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ABSTRACT

This report provides a brief description of a canonical set
of equations which governs the behavior of an n-body spacecraft.
General results are given for the case in which the spacecraft is
modeled in terms of n rigid bodies connected by dissipative elas-
tic joints, The final equations are free from constraint torques
and involve only r variables (r is the number of degrees of free-
dom of the system). An advantage which accompanies the elimina-
tion of the constraint torques is a decrease in the computer run

time (especially when n is large).

Linearized models are obtained and are recast in the

familiar form

x(t) = F x(t) + G(x, t)ult)

where x is the state vector, u is the control vector, F is a con-
stant matrix, and the matrix G depends on x and t. This form for
the equations is particularly useful when modern control theory
is used to arrive at a stochastic controller for a multi-hinged

rigid-body spacecraft,

The models provided in this report will be used in analyzing
the cruise, the thrust vector control (TVC), and the articulation
control (ARTC) modes associated with the Mariner Jupiter Mars
(MJS'77) spacecraft. Due to their generality, the models can
also be conveniently used for analyzing a spacecraft appropriate

for missions subsequent to the MJS'77 mission.
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1. INTRODUCTION

This report provides a brief description of a particularly elegant
formulation characterizing the rotational motion of a spacecraft idealized as
a set of multi-hinged rigid bodies. Assumptions made in this development

include the following:

(1) The spacecraft (S/C) can be adequately modeled as n hinged-rigid

bodies connected by dissipative elastic joints.
(2) Chains of connected bodies do not form closed loops.
(3) Only rotational motion is allowed at a joint.

(4) There is a vector constraint torque orthogonal to the axis of
rotation at a joint whenever the rotational motion has only one

or two degrees of freedom.

Considerable effort has been focused on the problem of obtaining the
dynamical equations for an n-hinged rigid body spacecraft (e.g., see Refs.
[1] thru [5]). The approach used in this analysis is based primarily on
Refs., [1] and [2]. Likins (see Refs [4] and [5]) recently extended the method

discussed in Ref. [2] to appropriately account for flexible appendages.

In this analysis, the appendages are considered rigid but viscoelastic
joints are allowed; Effectively, the interaction torque existing at a joint
connecting a purely rigid body and a flexible appendage is modeled as a spring-
damper torque (that is, it is specified in terms of torsional stiffness and
damping coefficients). This model is especially useful inthe preliminary design

and analysis of the spacecraft.
The main objectives of this work are:

(1) To obtain a linearized dynamical model of the n-hinged rigid-body

spacecraft.

(2) To provide a brief description of some of the dynamical

principles involved in the development of the S/C model,

JPL Technical Memorandum 33-613 1



The linearized dynamical model of the multi-hinged rigid-body

spacecraft can be:

(1) Used in a simulation to study the effects of interactions of the
hinged members on thrust vector control (TVC) and articulation

control (ARTC) performance,

(2) Used in the development of a general stochastic controller

(see Refs. [7] and [8]) for a multi-hinged rigid-body spacecraft.

1.1 Compendium of Report Contents

In this section, a compendium of the section by section contents of the

report are given.

Section 2 gives the general nonlinear dynamical equations for an n-hinged
rigid body spacecraft with r degrees-of-freedom. The main result of this

section is given by the vector-matrix equation
Ag = L (1-1)

where o consists of the angular acceleration of the base body wg and the relative

angular acceleration components w,, and the vector L consists of the forcing

R

functions for the base body (Lo) and for the n - 1 remaining bodies (LR).
Section 3 provides a set of linearized dynamical equations for the

n-hinged rigid-body spacecraft. An intermediate result of this section is

given by the partitioned vector-matrix equation

A la ® Gy, t)
e O s A B e N el M\ A oY, [o]. _
[Au :Azz] [@R] - |G mt)}Fo [K]Y [B] Y (1-2)

where the matrices A, B, K are constants, 0 is an appropriately dimensioned

null matrix, and the matrices GO and GR depend on y (the relative angles) and

t. The primary result of this section is the recasting of Eq. (1-2) in the form

x(t) = F x(t) + G(x, t) u(t) (1-3)

2 JPL Technical Memorandum 33-613



where the state vector x consists of the attitude and angular velocity of the
base body (6 and wo) and the relative angles (y) and angular velocities (wR)
associated with the remaining n - 1 bodies. The control vector u(t) is related

to the force F(y applied to the base body.

Section 4 provides a linearized dynamical model for a specific topological
arrangement of 5-hinged rigid bodies. Expressions for the matrices G and F

involved in the equation
x = Fx+G(x, t)u

are obtained.

Section 5 provides a linearized dynamical model for a 3-hinged rigid-
body spacecraft. This result is a special case of that given in Section 4.
Expressions for the linearized elements of the matrix A and the vector L

appearing in the equation
Ay =L

are given. In addition, the expressions for the matrices ¥, G appearing in
x = Fx+G(x, t)u

are given.

Section 6 provides a simple linearized model for a single rigid body. A
comparison of this result with the model for the n-hinged rigid-body spacecraft

is made.

Appendix A provides a discussion of the development of the dynamical
equations for a multi-hinged rigid-body spacecraft (in terms of the constraint
torques). The development as presented here is based on Ref. [1]. Inter-
mediate results are tabulated to allow the reader to be cognizant of the origin

of the various terms that are introduced.

JPL, Technical Memorandum 33-613 3



Appendix B provides a discussion of the development of a set of dynamical
equations (free from constraint torques) for a multi-hinged rigid-body space-

craft (see Ref. [2]). Intermediate results are tabulated for future reference.

Appendix C provides a detailed description of an application of the
general results of Appendix B. The explicit dynamical equations are obtained
for a specific topological arrangement of 5-hinged rigid bodies. In Appendix C,
the coordinate systems involved in the evaluation of the various terms are
discussed. In addition, expressions for the elements of the matrix A and the

vector L appearing in the equation

Ao=1L

are tabulated.

JPL Technical Memorandum 33-613



2. DYNAMICAL EQUATIONS FOR AN n-HINGED RIGID-BODY
SPACECRAFT
In this section, the dynamical equations for an n-hinged rigid-body
spacecraft are provided. Emphasis is placed on the procedure used to obtain

the results rather than on a detailed and lengthy derivation of the results.

Consider an n-hinged rigid-body spacecraft having r degrees of freedom.
The number of scalar constraint torques for such a system is n_ = 3n - r, In
Ref. [1], Hooker and Margulies showed how to eliminate the constraint torque
components so that 3n differential equations for the angular velocity components
could be integrated (with the constraints being satisfied). In that technique,
the calculation of the right hand sides (RHS) of these differential equations (DE)
required solving a system of 3n + n_ = én - r linear algebraic equations for

the 3n angular velocity rates and the n_ constraint torques. "

In the present analysis, a set of r dynamical equations in which the
constraint torques do not appear is given. The pivotal steps involved in obtaining

this canonical set of equations involves (see Ref. [2]):

(1) Recognizing that if the vector dynamical equations of all the bodies

are summed, then the constraint torques cancel in pairs.

(2) Noting that a vector constraint torque at a typical joint j can be
isolated by summing the vector dynamical equations over all
bodies that lie to one side of joint j (the constraint torques on

this set of bodies all cancel in pairs, except for the one at joint j).

(3) Observing that the constraint torque (isolated in step 2) at joint j

is orthogonal to the gimbal axis at joint j.

Effectively, 3 scalar equations result from the projection of the vector
equations summed over all the bodies on to a suitable reference frame. More-
over, r - 3 additional scalar equations result from the dot products of the r - 3
gimbal axes and the constraint torques associated with these axes. The salient
advantage associated with the elimination of the constraint torques is the
accompanying reduction of the computer time required for integrating the

equations (this is especially true for large n)!

>SIn Ref. [3], Fleischer describes a general computer simulation based on
this technique.

JPL Technical Memorandum 33-613 5



Although more than a modicum of labor and more than a soupgon of effort
were involved in the verification of the treatment given very succinctly by
Hooker in Ref. [2], nevertheless, it is appropriate to keep the present dis-
cussion brief. This brief treatment will allow attention to be focused on the
underlying assumptions, on the interpretation of the results rather than on

the detailed derivations of the multitude of lengthy equations!

The procedure used to arrive at the r scalar equations entails the

following steps>< (see Table A-1):
(1) Writing Newton's and Euler's equations for each body \.

(2) Eliminating the unknown interaction force F)\ .

J
(3) Evaluating the term

Z C, =Ty

jeg, ]

which represents the sum of the moments about the center of mass

of body N due to interaction forces F, existing at joints j.

N

(4) Interpreting Euler's equations for body \ (after using the results
of step (3) ) as the equations for the augmented body \ relative

to its barycenter B

X
(5) Expressing the interaction moment M, . acting at joint j on body \
. C . .d .
as a sum of a constraint torque M)\ and a spring-damper torque
MSD
X‘ ’ 2
J
_ C SD
My, = My My
J J J

"The terms and symbols are defined in Table A-1 as they are needed in the
development.

6 JPL Technical Memorandum 33-613



(6) Recognizing that if the vector dynamical equations for the augmented
bodies N are summed over all A\, then the constraint torques cancel

in pairs and consequently disappear, i.e.,

DD

\e S jeJ)\ j

(7) Recognizing that the constraint torque at joint j acting on body X\ can

be isolated by summing over all bodies.to one side of joint j.

(8) Recognizing that the gimbal axis g. is orthogonal to the constraint
c .. : .
torque M)\. at joint j.
J
Steps (1) thru (5) are discussed in turn in Appendix A; steps (6) thru (8)

are discussed in Appendix B,

2.1 Compact Form for Dynamical Equations for an n-Hinged Rigid-Body
Spacecraft

In this section, the set of dynamical equations derived in Appendix B
for an n-hinged rigid-body spacecraft are presented, In vector-matrix

notation, the equations are:

A I A o L
0 0
A1 1 P22 J\“r Lr
or
Ao =L

In scalar form the equations are (see Table 2-1 for definitions of terms):

r-3 n-1
agg " cbo + g Y T Lo = E E)\ (2-2)
k=1 A=0

JPL Technical Memorandum 33-613 7



where

00

Ok

i0

>
I
o

<
I
o

Z ke B T Bk
v

VEN
TONER, Tyt Z ™\,
jeJ)\ J
r-3
Ey - § , A ‘) * Bk Vi
K k=1

JPL Technical Memorandum 33-613



A comparison of Eqs. (2-1) and (2-2) reveals that:

(1) A11 is the 3 x 3 matrix representation of the operator agq. + (where

ago is a dyadic, and - represents the dot product).

(2) A12 is the 3 x r - 3 matrix representation of the vectors a

Ok*
(3) AZZ is the r - 3 x r - 3 matrix representation of the scalars a,

ik
(withi, k=1, 2, ... r - 3)

Moreover, in Eqs. (2-1) and (2-2), Coo represents the angular acceleration

of the base body, w,, represents the relative angular accelerations (Vi) of the

R
remaining n - 1 bodies, L0 is a 3 x 1 matrix; and LR isar -3 x1 matrix.

JPL Technical Memorandum 33-613 9



Table 2-1. Definitions of Terms

Item Definitions and Equations

n The number of rigid bodies involved in spacecraft model.

r The number of degrees-of-freedom of the system.

D)\j The vector from the barycenter of body \ to the joint j
of body \.

D)\p D)\}.L = D)\j for all_bod1es K belonging to SM. (the set of
bodies-connected to body \ via joint j).

D)\ Vector from barycenter of body X\ to c.m. of body \.

D)\ Inertia matrix relative to c.m. of body \.

my Mass of body N

R\ Augmented inertia matrix for body N\ relative to barycenter
B)\;
o) :U+m(D2U-DD)+ E m(DzU-D D

AN N AT AN TR N T} A TN
B #N

where U is unit dyadic

B Bp =™ [DML C P - DMDW]

gy Gimbal axes, k=1, 2, ... r - 3; g1 is a unit vector

€ Ky ki = 1 if gimbal axis g1 is between body p and body o,
otherw1se.: Ekp = 0; ekp specifies bodies p which sense the
rotation Y18yt

F)\ Vector representing external force applied to body \.

M)\ Vector representing external moment applied to body \.

X . . . . .

CH Direction cosine matrix transforming coordinates of body L

to coordinates of body \.
_ 5D . . . .
T)\j = M)\‘ Vector representing spring-damper interaction torque on
] body \ at joint j.
J)\ Set of labels for joints j belonging to body \.
10 JPL Technical Memorandum 33-613




3. LINEARIZED SET OF r DYNAMICAL EQUATIONS FOR AN n-HINGED
RIGID-BODY SPACECRAFT
In this section, a linearized set of r dynamical equations for an n-hinged
rigid-body spacecraft is provided. Linearization is accomplished by retaining

only terms of first order in wgy and their derivatives in the solution (i.e.,

Yk
products of wq and Yy with k=1, 2, ... r-3 and their derivatives are neglected).
In addition, it is assumed that Vi (withk=1, 2, ... r-3) and ei (withi=1, 2, 3)
are small angles -- hence the direction cosine matrices take a particularly

simple form.

3.1 Direction Cosine Matrices

Typical direction cosine matrices for the linearized case become (see,

e.g., Fig. 4-1)

2 -
C1 7 E-v8

:E'Y4g4 (3'1)
0= E-v, 8

Ch=ClCy=[E-v,E1[E-v, &l =E-v, & -V,¢

0 1 ©o 2 &2 1 81 1 81 2 &2

3 -

0o = [E-v;38;5]

4 4 3 - Yy - -
Co=CyCh=1[E-v, g J[E-v38] TE-v38;-Y,8,

0 i i
0 _ 19 18 2
Cy=E-8=E-| 8 o, | =|-8, 1 X
-9, ;3 0 6, -6 1

“Products such as “:’OY and yy are neglected in the linearization in this report;
such terms can be retained and included in the forcing function L if it is
desirable!

JPL Technical Memorandum 33-613 11



where the vector 6 consists of ordered rotations 93, 92, 91, Eisa3x3
identity matrix, and ~ over a vector represents the matrix representation of

the cross-product operation,

3.2 Relationship Between Attitude and Angular Velocity of Base Body 0

The relationship between the attitude rate and the angular velocity of

the base body 0 becomes (for the linearized case)

91 1 0 92 Wy w,
92 = 0 1 —91 W, = W, (3-2)
63 0 91 1 Wy W,

when the small angle assumption is used and in addition products of ei and ws

are neglected,

3.3 Evaluation of Elements apm for Linear Case

In this section the elements ap., are evaluated for the linear case,
Recognizing that products of Yy and Vk and Yy and cbo can be frequently neglected
(fork=1, 2, ... r-3), it is clear that only those portions of 2pm that are not
functions of Y, are to be retained. Recall from Eqs. (2-1) and (2-2) that the
afm's are the multipliers of ‘:’0 and_d)R. Effectively, this implies that the
direction cosine matrices Ck (withk=1, 2, ... r-3) appearing in the expressions
for the afm's can be approximated by identity matrices. The matrix A which

is composed of the elements ap . then becomes a constant.

3.4 Evaluation of Forcing Function L for Linearized Case

In this section, the terms involved in the evaluation of the forcing
function L are provided for the linearized case. Recall that L is defined

according to (see Eq. (2-1))

Ab = L (3-3)

3

and L_,

where o consists of wq and R and L consists of LO R

12 JPL Technical Memorandum 33-613



Recall, too, that LO and L the components of L, are given by

R!

A
(3-4)
S E : ‘i Ex \
X
g Z 2n B
LR = A
8r3 E : ro3,\ By
\ x
The linearized versions of E)\ and E)\ reduce to
E, =M, +D, x F, + Dxch+ET
AT TN T A TR \j
TIEDN jedy
E)\ = E)\ (3-5)
and consequently, the linearized versions of Lyand LR reduce to
L~EM+DxF+ED ctF o+
0~ NN TR T ™\ (3-6)
A p#EN jedy

JPIL. Technical Memorandum 33-613 13



2: N
gy ° ‘N M)\+D)\xF)\+ZDMLxCHFH+ZT)\j
X

VDN jeJ)\
. € M, + D xF,  + D xC)\F +
g2 E:zx Nt WY §: AL ) §:ij-
N VDN _]EJ)\
Lp=

A
83" Z‘r-sx My +DyxFy\ * Z D 6 Fu t Z ™\

N VIEDN jedy

Note that the term

ZZTM

A JEJ)\
is identically zero in the equation for Lo (interaction moments cancel in pairs).

3.4,1 Evaluation of L. for the Specialized Case in Which External Forces
and Moments are Applied Only to Base Body

For the specialized case in which external forces and moments are applied

solely to the base body, the equations for L and LR reduce to

=]
]
—

LO:MO+DOXFO+ D . xC_ F (3-7)

7
It
—

14 JPL Technical Memorandum 33-613




A
n-1
g 2\ onCF+g2 szz
=1 _]€J
Lp =
n-1
Er-3,>\D>\0XC Fo T8, Z €ro3,\ E : N
A=1 jeJ

N

3.5 Compact Form the for Linearized Set of r Dynamical Equations

In this section, the linearized set of r dynamical equations for an

n-hinged rigid-body spacecraft are expressed in compact form.

First, the term

yj 1)\ T : (3-8)

JeJ

is examined. As pointed out in Appendix B, summing the dynamical equations
over bodies \,which are connected beyond gimbal axis g; relative to the base

body, isolates the interaction moment at joint i on body \. This implies that

§ : €N § : "y T & [' K - BiYi] & (3-9)

JeJ

JPIL Technical Memorandum 33-613 15




where

TyoT - Kyves - Bivie

In Eq. (3-9), K, and Bi are the stiffness and damping coefficients associated

with joint i, Substitution of Eq. (3-9) into Eq. (3-7) yields

n-1

§ : X
LO:MO+DOXFO+ D)\OXCO FO (3-10)
A=1

x -
/ g - Z “InPao*Cp Fp - (Kyvy + Byyy)
x

N .
g, Z €ax Pro X Co Fo = (Kyv, + B,Y,)
N

)\ .
Br_3 § , ¢r-3,x Dno X Cp Fo - Ky 3, 3+ B 3Y,  3)
N

Equation (3-10) can be written as

P LE =\
Lo =| £+ Dg+ E Dy Co | Fg = Golv,t) Fy (3-11)

16 JPL Technical Memorandum 33-613



where
Go(y,t) is a 3 x 3 matrix
GR(y,t) is a r-3 x 3 matrix
K, Barer - 3 x r - 3 diagonal matrices

~ over a term represents the skew symmetric matrix representation

~

of the cross product (e.g., D)\0 X = D)\O)

Y, Y are r - 3 x 1 matrices consisting of elements Yy \.(k

fork=1, 2, «e. r -3

Equation (3-11) can thus be written as

<_i.%> [;&]FOJF[-_%]w[-_Qﬁ]& (3-12)

-
[

or

=
|

= GF, +[:0‘1€] Y+[:9fs]<f

where 0 is an appropriately dimensioned null matrix.

Collecting the results of Sections 3-3, 3-4 and the results of Eq. (3-12),
it follows that a set of r linearized dynamical equations for an n-hinged rigid-

body spacecraft is given by

fl_l_:_A_la] <_‘"_0_> _ [_G_O_]F . [0] - [_Q_]Y-
Ay 1 AL g Gg |0 K -B

or
. 0 0 .
Ao = G(y,t) Fg + ['_-K-]Y+['_-P‘)'] Y (3-13)

where A, K, B are constant matrices and G depends on y and t.

JPL Technical Memorandum 33-613 17



3.6 Linear Dynamical Model for n-Hinged Rigid-Body
Spacecraft (State Equations)

In this section, the linear model developed in Section 3.5 is cast in a form
suitable for use in modern control theory. Essentially, the state equations

are sought. As seen in Section 3.2,

and
Y = ‘*)R

where the vectors 6 and wq are the attitude and angular velocity of the base
body relative to an inertial frame and the vectors y and wR represent the relative
attitude and angular velocities Yo \'(k fork=1, 2, ... r - 3. The state can

thus be defined as the 2r x 1 vector

0

The differential equations for 6 and y are given above and those for

w g and w, can be obtained from Eq. (3-13).

R
Manipulation of Eq. (3-13) yields

Ao +A o, = G (v,t) F

11 %0 12 R 0 (3-14)

0

Aa1 90t Ayp 0 = Grlv,t) Fy - Ky - By

18 JPL Technical Memorandum 33-613



As discussed in Appendix C, Eq. (3-14) can be written as

-1
: -1
G, = [Au - A, AL AZI] G, (v,t) Fy (3-15)

-1
-1 -1 y
-[All RV A21] Ay,85, Gy, ) Fy -Ky - BY)

S | - .
wR = A22 ‘GR(y,t) FO - Ky - By -Aleol

Redefining the bracketed matrix as a, it follows that

| -1 -1 .

w, = @ Go(y,t) FO -a A12 AZZ lGR(y,t) Fo - Ky - By }

S :

wR = A22 {GR(y,t) FO - Ky - By‘ - A21 wg (3-16)

In vector-matrix rotation, the state equations become

1 | N
ERER 0 | 0 6
| I_ _ _ |

I iy I T —
I - - i - -
0 : 0 ! a A LA K : a9 Aphy, B “0
e el i -—=
o ; 0| 0 i E Y
S, e e e e —_—— -
f | 1 1 1 ' 1 1 1
N L ST TP
! 0 : AL(E+ A @ A A K | AL(E+ A, @ A LA )B wg
— [ ]
. (3-17)
B 0
-1 -1 -1
a Gp-@a AL,AGy
+ |V ———_— Y ——— —— o —_— — F
0
0
A'I(E+A la A l)G -allaalg
22 21 12922 R 22921 0

JPL Technical Memorandum 33-613 19



where E is a 3 x 3 identity matrix and 0 is an appropriately dimensioned

null matrix. Note that Eq. (3-17) has the same form as
x = Fx+G(x, t)u (3-18)
where x is the state and u is the control variables. It is important to note that

F is a constant and G depends on x and t! Equation (3-17) represents the

primary result of this report.

It is immediately recognized that the solution to Eq. (3-18) can be

written as
t
-1

x(t) = ¢(t,0) x(0) + o(t) ¢ (1) G(x, T) u(7) dr (3-19)
where x(0) is the initial state and ¢(t, T) is the transition matrix. The transition
matrix can be computed from the matrix differential equation

b= F o (3-20)
with

$(0) = 1

or it can be computed analytically if n is small.
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4. LINEARIZED DYNAMICAL MODEL FOR A 5-HINGED

RIGID-BODY SPACECRAFT

In this section, the general linearized dynamical model developed in
Section 3 is used to obtain expressions for the elements of the constant matrix A
and the vector L for the case in which n = 5 (see Fig. 4=1). The expressions
for the elements of the matrix A are summarized in Table 4-1 and those for the
elements of the vector L are summarized in Table 4-2. Note that in Table 4-1
the subscripts appearing to the right of a term in parentheses refer to the coor-

dinate systems in which the terms are computed or expressed.

The 7 x 7 matrix A is given by

oo %01 %2 P03 o4
\\
N %12 %13 f1g
A = ~ ; (4-1
N
222 %23 %24
\\
symmetric \233 azy
~
~N
| } 44
The partitioned matrix A (involving the 3 x 3 matrix All’ the 3 x 4 matrix AIZ’
the 4 x 3 matrix AZl’ and the 4 x 4 matrix AZZ) is given by
[ a | a a a a., |
00 | 01 02 03 04
a . a a a
10 | 211 12 13 14
I
a | a a a a
A | A 20 l 21 22 23 24
11 1 ""12 | _
______ = | ; (4-2)
AZl ! AZZ a
! 230 : 31 %32 2?33 %34
a I a a a
40 | %41 42 43 244
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The 3 x 3 time-varying matrix G is given by

0 0 0 0 ~
Gy = I+ D 4—(CIZD11+-CZZD224-C3 D334-C4JD44> ; (4-3)

The 4 x 3 time-varying matrix GR is given by

g, D
4 744 0 ]

The constant diagonal matrices K and B are given by

Kl Bl
KZ BZ
K = ; B = ’
K3 B3
K B
| gl | 4
(4-5)
and the constant 3 x 3 matrix a@is given by

a=|a,.-a_ala (4-6)

- 11 12 7722 721 )
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Hence, all matrices involved in the generic form [see Eqs. (3-17) and (3-18)]
X = Fx+G(x,t)u

have been defined! Note that the symbol ~ appearing as

indicates that the tilde is to be applied to the resultant expression within the

parentheses.

Figure 4-1. Pictorial Sketch of a 5-Hinged Rigid-Body Spacecraft
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Table 4-1. Expressions for Linearized Elements CY
(£, m=20,1,...4) for a 5-Hinged
Rigid-Body Spacecraft

Item Equations
200 [200 + 201 + 02 + 03 + Boalo
t oo+ @+ 0, T @5+ 0],
L2+ @yt 2yt B3+ 2],
t L2yt By + @5y + Byt By, ] 4
t [+ By + By T Byt Oyl
201 [[¢01+¢02]0+ (o)) + 2,1, + [2,, + 2,1,
tlay) t eyl [y, eI’42]4] - (gy)y
202 - [20p]0 + (2,1 + [8,51, + [o5,]5 + [o,], 10 (8y),
203 [205 + Bpa 1ot (23 + 240 + [2,5+ 2],
t gyt @uls+ [ay 4 ¢’44]4} © (g3)3
204 [204dg * [214 ]y + [0 + [25,)5 4 [‘1’44]41 " g4y
211 (g)y =} [y + @]y + L@y + 3,150 - (g));
212 @)y ) [op ]+ (2,0, 1 (g5);
213 (g)y " [+ @0 + [2y5 4 ‘1’24]2) * (g3)3
24
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Table 4-1. Expressions for Linearized Elements a)m
(,m=0,1,...4) for a 5-Hinged
Rigid-Body Spacecraft (contd)

Item Equations

214 (8)y "y [214]) +[254]5 17 (B4)y

222 (g5)5 * (2212 (&2);

223 ()5 [ B3 + 25415 - (g3)3

224 (), " [ 2415+ (84)4

233 (83)3 * { [@33 #2305 + [245 + ‘1’44]4} * (g3)3
234 (83)3 « 1 [234]3 + [244)41 - (4)y

244 (By)y * [244]4 " (24)4

20 (aék)T, k=1, 2, ... 4

2y (a7 L k=1,2 ...4 itk

JPIL Technical Memorandum 33-613
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Table 4-2. Linearized Forcing Function L for a 5-Hinged
Rigid-Body Spacecraft (External Forces and Moments

Applied Only to Base Body)

Item Equations

+(c®p  +c%p._+cPp. +c%p F

1711 2722 3 733 4 -44)* %0

L .(p..+clp clr -k B. 3
1 g1 11 27222) *Cofo-B1 Y -B1 Yy
L (p..xc%F K B_ v
2 g2 22 0f0) " B2Y¥2" "2 Y,
L . (D» +¢3p ) cCr. -K B, ¥
3 g3 33 4744 ) X %0 0 ~ B3 Y3 - P3 Y3
L (D, xc*F K B 3
4 84 44 070)  TaYqe ™ PaVyg

26
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5. LINEARIZED DYNAMICAL MODEL FOR A 3-HINGED RIGID-BODY
SPACECRAFT

In this section, the linearized dynamical model for a 3-hinged rigid-body
spacecraft is given.T This result is a special case of that given in Section 4 and

is obtained by defining the new base body to include bodies 0, 3, 4 of Fig. 4-1.
Figure 5-1 shows a pictorial sketch of the resulting 3-body system.

The expressions for the elements of the 5 x 5 constant matrix A and the

vector L, are given in Tables 5-1 and 5-2, respectively,

The 5 x 5 constant matrix A is given by

[ ]

The partitioned matrix A (involving the 3 x 3 matrix A“, the 3 x 2 matrix AlZ’

the 2 x 3 matrix A_, and the 2 x 2 matrix A is given by

21 22)

- l -
200 l %01 202
P11l g = la Ve (5-2)
A1 A 10 ; 11 12
220 | 221 222
The 3 x 3 time-varying matrix Gg is given by
Gy=dno+Dy+ (D, +c%D ) (5-3)
0 07 0o 111 2 22 ’ )

TThis model was used to obtain the results given in Ref (6).
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The 2 x 3 time-varying matrix (GR is given by

1 u 1
gl (D11+C2 D22> CO i
- -4
Gr ) , ( )
g, D,, Co

r .
K1
K =
L KZ .
(5-5)
r- -
Bl
B = ,
I P2
and the constant 3 x 3 matrix @ is given by
_ -1
a= [A11 " A2 A2 A21] (5-6)

Hence, all the terms needed in the generic form of the state equations

given in Eq. (3-17) and (3-18) have been specified.
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Table 5-1. Expressions for Linearized Elements a0m (,m=20,1,2) for
a 3-Hinged Rigid-Body Spacecraft
Item Equations
200 (%00 * o1 + @02l 0t [210 + 21 + &5 ]

+[®

20+<I’

21t %21,

{[‘1’01 tolo t [2y + @]t [0 + 9], , (g3,

01
202 {[‘I’oz]o el [@22]2}' (85)2
21 (gl)l'{ [@, + @], + [‘1’21+‘1’22]2]' (810
212 (gy) { (2,1, + [ q’zz]z} " (82)
222 (g3), [ [ 2,1, ] (82)2
210 (a01)T
220 (aoz)T
221 (aIZ)T
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Table 5-2. Linearized Forcing Function L. for a 3-Hinged Rigid-Body
Spacecraft (External Forces and Moments Applied Only to Base Body)

Item Equations

L M. +D. xF. + (c%D. . +c%p._ JxF

0 0 0 0 1711 2722 1%%0

L (b, +clp _ )xclF -k, vy, -B, vy
1 €1 11 2 722 0°0 1 Y1 1 Y1
L +{D xCZF -K, vy, -B,y

2 g2 22 0“0 2 Y2 2 Y2

BASE BODY 0

BODY 2

Figure 5-1, Pictorial Sketch of a 3-Hinged Rigid-Body Spacecraft
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6. LINEARIZED SINGLE RIGID-BODY SPACECRAFT MODEL

In this section, the linearized model for a single rigid-body model of a
S/C is given. In this case, the generalized results for a n-hinged rigid body
are not directly applicable., Instead, the linearized version of Euler's equa-

tions for a rigid body are used. That is, the state equations are
) I
LA S (Y QLI R N S 61
' 010 o i
“0 0

where
E is a 3 x 3 identity matrix
Mg is the external moment applied to the S/C
Iis the 3 x 3 inertia matrix of the S/C

0 is a 3 x 3 null matrix

It is interesting to note that the linearized form for an n-hinged rigid-body

spacecraft can still be used for a single rigid body model of the S/C. This is

achieved by eliminating the vectors y and wR from the state and appropriately

interpreting the results. Comparing Eqgs. (3-17) and (6-1), it follows that for

the single rigid body model

a = I (the inertia matrix)

and v, WR» GR’ K, B do not appear (they are deleted from the general result).

JPI1, Technical Memorandum 33-613
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APPENDIX A
DYNAMICAL EQUATIONS (IN TERMS OF CONSTRAINT TORQUES)
FOR A SPACECRAFT IDEALIZED AS n-HINGED RIGID BODIES

The primary result of this appendix is a compact version of the dynamical
equations for a spacecraft idealized as n-hinged rigid bodies; the equations are
written in terms of the constraint torques. The pivotal steps involved in the

derivation are briefly described and the intermediate results are recorded>:<
(see Table A-1).

The steps involved in obtaining the desired result include:

(1) Writing Newton's and Euler's equations for each body A.

(2) Eliminating the unknown interaction force F)\.

(3) Evaluating the term !

E C)\.xF)\j
jeJ)\ J

(The sum of the moments about the center of mass of body \ due

to interaction forces F)‘j existing at joints j).

(4) Interpreting the results as the equations describing the motion of

the augmented body N relative to its barycenter.

A-1 Newton's and Euler's Equations

The development of the equations of motion for an n-hinged rigid-body
spacecraft begins with Newton's and Euler's equations written for each body A.

That is, for all Xe S:

“The intermediate results are important since they indicate the origin of
various terms that appear in the final result.

JPL Technical Memorandum 33-613 ' 33



D):tb)\+w)\xD)\-w)\:M +Z Z

JeJ JeJ

where

34

D)\ is the inertia dyadic for body \ relative to its center of mass

m, is the mass of body \

A

F)\ is the external force applied to body \

N d))\ are the angular velocity and angular acceleration of body \

relative to an inertial frame

F)\ is the interaction force acting on body \ at joint j
J
R is the position vector from the origin of an inertial reference frame to
the point ''0" ("0'" is the origin of the S/C coordinate system in

the undeformed state)

Py is the position vector from the point "0'" to the center of mass of
body \

RC is the position vector from the origin of the inertial reference
N

frame to the center of mass of body \

RC is the position vector from the origin of the inertial reference frame

to the composite mass center of the system

M)\ is the external moment applied to body \ relative to its center

of mass

M, . is the interaction moment acting on body X at joint j
Cy = d)\ is the position vector from the center of mass of body \

] J
to joint j
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S is the set of all labels for bodies X\ (that is, S = {O, 1,...n- 1})

J)\ is the set of labels for all joints associated with body A\

A-2 Elimination of the Interaction Forces

In order to obtain a solution for Wy from Eq. (A-1) the interaction forces

F)\j are first eliminated. This is accomplished by recognizing that

Z Z . 7 (A-2)

peS)\ jedy ] J

where S)\j is the set of those bodies connected to body \ at joint j.

That is, by summing the interaction forces acting on body \ over all
bodies p belonging to the chain of bodies connected to \ at joint j, the inter-

action force Fy  can be isolated. Using Eq. (A-1), it follows that
J

F = E (F -m R ) (A-3)
\. u [T
J H'es)\j ]

The form of F) . given by Eq. (A-3) is next substituted into Eq. (A-1) to

eliminate F) , from the equations, that is
J

D)\'d))\+w)\x[])\‘w = M +Z Z Z -m ﬁc)

JeJ _]eJ pGS

J
(A-4)

A-3 Evaluation of the term E C)\ x F)\ .
jeJ)\ J )

In this section, attention is focused on the term

_]'EJ)\ J J jﬁJ)\ J M
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It can be easily shown that

jer, J B #N N b
(A-5)
where
- -1
D)\ = - E mH m C)\H
TN
D)\H = D)\ + C)\

If the point masses my (the mass of all bodies attached to \ via joint j) located
at joints j are augment']ed to the mass of body A\, the augmented body \ results.
The barycenter B)\ is defined as the new center of mass of the augmented body
X. Physically, D)\ \
A to the original center of mass of body N\, D) is the vector from B

Note that J

is the vector from the barycenter B, of the augmented body

X to joint j.

o
n

. D')‘P« for all p eS)\‘

] ]
C\. = Cy,

Next the term

TSN b

is examined. Using the facts that

RCH—RC:DH+ E Dvp'

VL
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- F - F = - AN . w -
E m, C)\p. X (RC RC) Xy by -wy X X)\ X (A-6)

TEIN
where
X = m. DU - DD+E m (p? U-D D
e e i Wiat Nuo ") A AL AR

U is an identity dyadic

D)\D)\ and D)\HD)\H are dyadics.

Note that X)\ physically represents the inertia dyadic which must be added to
\ to yield the inertia dyadic of the augmented body N\ relative to its barycenter

B)\.

The term

" Z Pai * P

DN

can be expanded to yield
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T = : D D A-
m E b, xD,, = m E Dy, X [‘*’p xD ) +u, X, x p.)\)] (A-7)
TIEON VDN

since DH)\ is assumed fixed in body p (the rigid body assumption). Collecting

the results of Eqs. (A-5) thru (A-7), it follows that

E C)\.XF)\.:DKXF)\-I- E D)\p,XFp.-X)\.w)\_w)\XX)\.w)\
TEN ) A\

+ m E D,, X[GJH xD ) o, (o, xDM)] (A-8)
B #N

If Eq. (A-8) is substituted in Eq. (A-1), an elegant result is obtained -- the
equations governing the behavior of the augmented body \ realtive to its bary-
center B)\!

A-4 Compact Form for the Rotational Equations Characterizing Body \
Written Relative to its Barycenter

Use of the results of Eqs (A-1) and (A-8) allows an interesting interpre-
tation of the equations of motion for body \ to be made. Substitition of Eq. (A-8)
into Eq. (A-1) yields

Dx'“’“”xxnx'“’.\. = M, + § : M,

jeJ)\ )

+DXXFK+Z Dy, xF, =% + &
V2N

-w)\xX)\-w)\+mE D)\HX(MHXDH)\)
TN

+ m 2 D)\IJ- xl:quL X (w|~L XDH)\)] (A-9)

b #N
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Manipulation of Eq. (A-9) yields

cb)\)\-w)\+w)\x¢>)\)\-w)\: M)\+D)\XF)\+ E D)\HXFH

VEDN

B #N

P (a1

jeJ)\ j

where R 3 is the inertia dyadic of the augmented body relative to the barycenter
B, -

Equation (A-10) is the main result given in Ref [1]. Briefly, Eq. (A-10)
implies that the rotational motion of body N\ of an n-body system can be

obtained by

(1) First forming the augmented body \ by adjoining the masses my

occurring at joints j belonging to J, to the mass of body A\ (m ).J
J ging N y \

(2) Determining the inertia dyadic of the augmented body \ according

to

_ 2 E : 2
@)\)\ = U)\ + my D)\ U - 0y D)\D)\ + mH [DMLU - D)\HD)\H]
RN

(3) Considering the terms M)\ + D)\ x F)\ + E D)\|~L X Fp as the
b #N

external moment applied to the augmented body \ relative to its
barycenter.

(4) Considering the terms
m E D, (&, xD )+ m E Dy, * [w, * (s, x DM)]

VRN UEDN

to be due to "inertial'' forces.
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Consequently, a particularly elegant and appealing result is obtained! In fact,
the form of Eq. (A-10) is reminiscent of that appropriate for a purely rigid

body relative to an arbitrary point P, viz.,
gp-dwwxsp-w:M -md_ xR (A-11)

where
@P is the inertia dyadic relative to the point P
RP is the vector from the inertial frame to the point P
dpc is the vector originating at P and terminating at the center of

mass C

w, & are the angular velocity and angular acceleration relative to an

inertial frame.

A compact form for Eq. (A-10) can be obtained by manipulating its terms.

First, the term

m E DML x(ooI~L XDH)\)
B #EN

is examined. It is clear that

DM.L X (wI-L x DH)\) = - D)\}.L X (DH)\ xwu) (A-12)
and that
D . _ . ) .
ay X Dy %6 [DM D,,U-D,, D, ] o,

where U is the unit dyadic and D)\H DH)\ is a dyadic (note that the vectors D)\p
and DIJ«)\ are not fixed in the same bodies).
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Substitution of Eq. (A-12) into Eq. (A-10) yields

@xx'w)\+¢)\p'w =E+E M

jedy
or
E <I>ML . <b = E + E M (A-13)
nesS JeJ
where
B 'm[DM Ap 12N ML] b AN
@x)\-[l+m)\ -DU DD)\) P-(D)\H.D UD DH)

=1
>
It
g
?/
+
ol
W
H
+
-;:
b
B
=
W
v}
=
rd
—

u#‘x n#
- x@x)\' Wy + E M
jedy
_ c SD
M)\ = M)\ + M)\

In Eq. (A-13), note that the interaction moment M,  is as sumed to
J
consist of a constraint moment and a spring-damper moment. Recall that
modeling the interaction moment in terms of a spring-damper is a consequence

of the assumption that the joint is dissipative and elastic.
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Table A-1. Rotational Equations for an n-Hinged Rigid-Body Spacecraft (In Terms
of Constraint Torques)

€19-€¢ WNPUBIOWSA [BDITUYIDT, T [

Item Equations Remarks
Newton's and F, + E F, = m)\(f{ + 'P.)\) = my iic my is mass of body \
Euler's equations ‘ j N : tor f f bodv \ to ioint i:
for body A JeJ)\ c). is vector from c.m. of body o joint j;
Jy is set of labels for joints on body X;
D x oo Py x[l)\ Ty = M)\ + E M)\' + E c\ X F)\‘ S)\j is set of these bodies connected to body \ at joint j;
jeJ)\ J jeJ)\ J J S is set of labels of the ensemble of bodies;
Jy is set of labels for joints on body X;
Fy is external force on body X\;
F) . is the interaction force on body N\ due to joint j;
J
M, is external torque on body X\
M,y  is interaction torque on body X\ due to joint j;
J
I])\ is the inertia dyadic for body \
Elimination of F)\ = E (F - m 'R;C ) Summing the interaction forces F) over all bodies
unknown inter- j B » T ; . .
action forces T Sx' belonging to Sy isolates Fy
F J J J
N,
J
Evaluation of E c\ X F)\ = D)\ x FX + E D>\H x FH RC is vector from origin of Newtonian frame to composite
c. xF jedy J J W #N mass center;
z i M. X.
TEN ) J barycenter of body A is the new center of mass B)
- E mp. c)\“ x (.R;C - iic) obtained by augmenting the point masses
ms
A my  (the mass of all bodies attached to \ via joint j)
J
where located at joints j to the mass of body \;
) D, is the vector from barycenter By to c.m. (c)) of body A;
D)\ = - E m, m ¢,
wIn B Dy  is vector from B, to joint j;
J
Dy =D for all peS
=D, +c j A \j
NTS \ A
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Table A-1.

Rotational Equations for an n-Hinged Rigid-Body Spacecraft (In Terms)

of Constraint Torques) (contd)

Item Equations Remarks
Evaluation (contd)
Examination - E m_ c x (R -R ) = U is the identity dyadic;
BN
of term b A e
D)\DX and DM.LD)\H arc dyadics;
- E m, <,
AN BOAM X)\ is the inertia dyadic which when added to U\ results
R . - X)\ Wy -wy X Xx Wy tm E D)\H X DH\ in the inertia dyadic relative to B)\ of the augmented
x (R -R )
€y c w#N body X

where

. 4 E : 2
X)\ = my D\U - mexD)\ + mH (D)\HU - D)\p DML)

TN
\ ; ; 5 _- PN L : .
Exammination Y wp X DM)\ + w“ X (w X Dp.)\) DH)\ is fixed in body p (rigid body assumption);
of term
m E D)\HXDH)\ m E D)\H XDH)\ =
TEIN K#N
m E D)\“ x[waDH)\i*wa(w XDp.)\)]
TSN
Expression for - E mp C)\}.L X (RC)\ - RC) = - X)\ Wy -wy X X,\ Wy
(TN
'Z T S\ 2
s + m D)\H x[wH XDH)‘ +wp. * {w xD“)\)]
(SN
x R, - R
N

Expression for

2 X,

j(J')\ J J
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Table A-1. Rotational Equations for an n-Hinged Rigid-Body Spacecraft (In Terms)
of Constraint Torques) (contd)
Item Equations Remarks
Resu}ting D)\ . u'))\ +wy X D)\ Twy = M)\ + M)\A + D)\ x F)\ Obtained by substituting expression for E ¢, X F)\'
rotational equa- : j : J J
JeJ)\ ) J)\

tions for body \
after evaluating

E c)\.xe.

; 3 J
jeJx

+ E DxHxFH-X)\'w)\-w)\xX)\'w)\

FE2N
+m D)\HX[L\)NXDH)\ +up~x(u XDH)\)]
TN
or
(0, +%0 -6, +o, x (0 +x) 0

x [FM + m(mp. xDp)\ +uH x (w}-'- xDPx))]

into Euler's equation for body \; the term M>\ + D)\ X F)\
is the moment relative to the barycenter B, due to
external force F)\; the term [])\ + X)\ is the inertia
dyadic of the augmented body X\ relative to the bary-

center Bx

Compact form

-ZQXH":’M = E

HeS

where

E, = M)\+D)\xF)\+E D)\HAx[FH-mex(waDu)\)]

TONERN

C
X *Z ij

jed,

RN

SD
DI

jeJ)\

AR MAT N

2 2
I])\ + I:m)\(D)\U -D,D,) + 2 : m,, (D, U

D, U-D .D ]foru#)\

2N

ij is considered the sum of an unknown constraint torque
and a spring-damper torque (M, = \/1,(\:' + MéD ); note that
the vectors used in defining (I\"L Jare nJot fixei]i in the

same bodies; the following relationship involving a cross
product and the dot product of a dyadic and a vector is

used in obtaining @\H

Ax(BxC)=A.CB-A:-BC=-[A-BU-BA] - C




APPENDIX B

A SET OF r DYNAMICAL EQUATIONS (FREE FROM CONSTRAINT
TORQUES) FOR A SPACECRAFT IDEALIZED AS
n-HINGED RIGID BODIES

In this Appendix, a set of r dynamical equations free from constraint
torques is given (see Table B-1). As noted in Section 1, the procedure for

eliminating the constraint torque involves:

(1) Recognizing that the sum of the vector dynamical equations for
each N\ over all bodies contains no constraint torques (they cancel

in pairs according to Newton's Third Law).

(2) Recognizing that a vector constraint torque at a typical joint j
can be isolated by summing the vector dynamical equations over all
bodies that lie to one side of joint j (the constraint torques on this

set of bodies all cancel in pairs, except for the one at joint j).

(3) Recognizing that the constraint torque at joint j is normal to the
gimbal axis (axis of rotation) at joint j (this follows from the

definition of a constraint).

B-1 Summing the Dynamical Equations for Body A Over All Bodies

In this section, the equation obtained by summing the dynamical equations
for body \ over all the bodies of the system is examined. This result is given

by (using Eq. (A-13))

Z}\Z q’m""’uzszx*ZZMij (B-1)
v

N _]GJ)\

As noted previously, however, the constraint torques vanish when they are

summed over all jeJ)\ and all \eS, i.e.,

Z Z My =0 (B-2)
N ' J

jeJx
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Furthermore, if there is a chain of bodies connecting a particular body p to

the so-called base body designated by 0, then

r-3
wu = wy ekH Yy &1 (B-3)
k=1
where
wq is the angular velocity of the base body
g1 is the unit vector representing the gimbal axis at joint k (there
are r-3 gimbal axes in all)
Qk is the relative angular rotation of the two bodies connected at joint k
ekp is 1 if body . senses the relative rate \.(k 8y and is 0 if body p does
not sense it.
It is clear that if joint k lies between body 0 and body p then ekp. =1,
otherwise ekH = 0. Using the result of Eq. (B-3) it follows that
r-3 r-3
wH = wg Z ekI~L Yy & + ekH Y 8 (B-4)
k=1 k=1
Substitution of Eq. (B-4) into Eq. (B-1), yields
r-3
E:E :“I’w"”o+§ :E : SN E:ékpgkyk
) S NR k=1
r-3
= E E, - E é)\H . ‘10 Vi Bk (B-5)
X v k=1
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Manipulation of Eq. (B-5) yields

r-3
E,E:%H'G’OJFE,E,z,q’xpekp'gk Vi
m m

A k=1 N
r-3

:ZEx' E N E : ‘i Yk Bk (B-6)
X V) k=1

In compact form Eq. (B-6) can be written as

r-3
200 w0+ E a5 Vi ° E E)\ {(B-7)
k=1 N

where

a00:§|§,¢’)\p
L

qok " z,z,q’xp RV -¥
NP

r-3 r-3

Ex:Ex'E,‘I’xp' “pp Bk Y T OEn - E:ekpq))\p.gk Yy
o k=1 k=1 \ p

In Eq. (B-7), 200 0k is a vector, and E)\ and E)\ are vectors.

Note too that the term ekp. picks out those particular bodies j that sense the

is a dyadic, a

rotation \'/k gy It should also be observed that the right hand side of Eq. (B-7)

can be written as
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r-3

2m = 2| B 2 2 e e )
A N M

=1
r-3
:ELEx' JEASJQ)X}.Lekp.'gk Vi (B-8)
X =1 \' % g

In particular, the operator (dyadic)
€
ZJ Z Bk
A M

occurring in the RHS of Eq. (B-8) is the same as that used in defining the

term 3 28 expected.

B-2 Obtaining r-3 Additional Scalar Equations from the Orthogonality of
the Gimbal Axis and Constraint Moment at Each Joint

In this section, r-3 additional scalar equations are obtained by using the

facts ‘that:

(1) A vector constraint torque at a typical joint can be isolated by
summing the vector dynamical equations over all bodies that lie to

one side of joint j

(2) The constraint torque at joint j is orthogonal to the gimbal axis
at joint j (i. e., the dot product of the gimbal axis and the

constraint torque at joint j vanishes).

That is, for each gimbal axis i, if the equation

. _ C
E Q)\H'wp;—E)\‘l'z M)\

- ]
B jedy
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is summed over all bodies thatlie to one side of joint i (that is, beyond gimbal

axis gi relative to body 0), then

§ : } : . E : } : c )
Gi)\ é)\l-l- . wp, = Ei)\ E)\ + ei)\ Z M)\j (B-9)

N v X N jeJ)\
where
€T 1 for all those bodies that lie to one side of joint i and is O,
otherwise.

Note that the term

c _ .,.C
E,ei)\ E, ij‘ij

A JGJX

since the constraint torques cancel in pairs except at the joint j (when the

constraint torques at joint j are summed over all bodies lying to one side of

the joint relative to body 0).

Using the fact that the constraint torque at the joint j is orthogonal to the

gimbal axis at that joint, it follows that

gi‘ E €in E Q)\I-“.wI-L-E)\ =0 i=1,2,...r-3 (B-10)
i

A

Manipulation of Eq. (B-10) yields

r-3
gi'E:Eix E,‘I’xp' wo * “rp Bk Yk
N m k=1
(B-11)
r-3
:gi'E,‘ix Ex'E,q’xp'E:‘kpgkYk :gi'E‘,ei)\Ex
N m k=1 N
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In compact form, Eq. (B-11) can be written as

2]
i
w

0" wo 2 Y T B E : e (B-12)
~

=
I
—

where

Z “in By

1)

E : ‘N ‘ke Bt Bk
0

In Eq. (B-12), a, is a scalar and a,,is a vector,

Q [\Y
= =
= (o]
| i
qu "‘O'Q
rM -]

B-3 Set of r Dynamical Equations (Free From Constraint Torques)

In this section, the set of r dynamical equations obtained in Section B-1
and B-2 is given. Collecting the results of Eq. (B-7) and (B-12), it follows
that

r-3
ago " Yot a5 Yi E E)\ , 3 scalar equations
k=1 N
r-3
a5 " Yo + A Yy Togt E € E)\ , r-3 equations with (B-13)
k=l » i=1,2,...r-3

50 JPL Technical Memorandum 33-613



where

agg = E E (b)\p.’ a dyadic
L

ag = E E <1>>\}.L ekp T g 2 vector
N

r-3 r-3
Ex:Ex‘Z B “ap Bk Vi T B\ - E:Z‘kp@xp'gk Vi
T8 k=1 k=1 K

aiO = 8; E E €i)\ Q)\H.’ a vector
Ao

ay T 8¢ E E € ek|J~ ¢7\I-L " g 2 scalar
N

ekp identifies those bodies p which sense the relative rate {(k g1

€ identifies the bodies N\ over which the dynamical equations are
summed to isolate the constraint torque at joint i

In matrix notation, Eq. (B-13) can be written as

200 291 302ttt 20,r-3 wg E: EX
N
210 a1]  eeeeees . al,r_3 Yl g8, E)\ el)\E)\

ar—3,0 a-r_3,1 ® 02 000 00 ar-3’r_3 \‘Y‘r_3} \ gr_3 .Z Er—3§\:"/
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It is understood that the dyadics and vectors appearing in Eqs. (B-7)
and (B-12) are replaced by matrices of their components in Eq. (B-14). It
is also noted from the definitions of 240’ a5 aiO’ 2 that the matrix
involving these elements in Eq. (B-14) is symmetric. The dimensions of the
--1x3,

matrix elements are as follows: a --3x3, a --3x1, a

00
is a scalar fori, k=1, 2, ... r-3,

ok kO

and as
Equation (B-14) represents the desired set of r dynamical equations

governing the motion of an n-hinged rigid-body spacecraft,
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€S

Table B-1. Set of r Dynamical Equations for an n-Hinged Rigid-Body Spacecraft
(Free from Constraint Torques)
Iitem Equations Remarks
Starting point for Set of equations for n-hinged rigid-body spacecraft
obtaining set of E ‘I)M‘ . ‘LH = E)\ + E M; (involving constraint moments) that were derived in
n dynamical " jeJy J Appendix A; Mi, is constraint moment at joint j on
equations (free body \; all otherJ terms are defined in Table A-1.
. where
from constraints)
E)\=M)\+D>\XF)\+E D)\“xF +_E \p
TR BAN
, E : SD
x [mm}‘L x(u}1 XDp)\)] -u)\xé)\)\-u)\r M)\‘
jed )
1N
2
ay = Dyexg- O [mx(DxU - DDy )
+ m DZ Uu-D D
Z [ ( AR A Ml)
[TE2N
&, = [DM “ DU - DMD\H] REVON
Elimination of Summing the constraint moments on body X\ over all
constraint E E d))\}l (LH = E E\ joints jeJx and over all bodies removes the constraint
moments I [ 1N torques since they cancel in pairs (Newton s third
since law)
§ : c
=0
M>\J
A ey
Simplification r-3 r-3 B is the unit vector representing the gimbal axis at
of result . .. L R . .
obtained by E E @\}J oy + (kH Vi 8 * €kp Yy 8y joint k3 EkH specifies the bodies p which sense the
summing X 1 k=1 k=1 rotation y, g,; € is 1 if the gimbal axis is between
k Pk’ Tku
over all bod d body 0, otherwise ¢ = 0;
bodies y i and body 0, otherwise ¢, = 0;
DI
N
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Table B-1. Set of r Dynamical Equations for an n-Hinged Rigid- Body Spacecraft
(Free from Constraint Torques) (contd)
Item Equations Remarks
Elimination of where
constraint r-3
moments {contd.) w, =@y + e \'{k 8,
Simplification k=1
of result Rearrangin
obtained by Eing.
summarizing r-3
over all . v
bodies X ZZ B et (§ : E PELNTRL gk) Y
N [ k=1 N s
r-3
=§,Ex'§ LW ke " %k Y :E:Ex
N m k=1 N
Compact r-3 agg is a dyadic;
form a oo+ a . E B B
00 wO Ok Yk by a0k E., E are vectors; result represents 3 scalar equations,
=1 ~ oA
where
r-3
Ey = B E q’xp'; “rp B Yk
N

Determination of
additional r-3
scalar equations

Isolating con-
straint moment
at joint j

r-3
E , Gin E VTR I ‘e Yk Bk
X m k=1
r-3
+ E eku Yy Bx = ->: Sin Ex + E €
k=1 W B
where
for j =i
c = MS J
2o 2y My My
X jeJ

Summing the vector dynamical equations over all bodies that

lie to one side of joint i isolates the constraint torque M;iﬁ
J

€ identifies the bodies X\ involved in sum
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Table B-1, Set of r Dynamical Equations for an n-Hinged Rigid-Body Spacecraft
(Free from Constraint Torques) (contd)
Item Equations Results

Determination of
additional r-3
scalar equations

Orthogonality
of gimbal axis i
and constraint
moment at
joint i

By definition of a constraint moment, it is orthogonal to

the gimbal axis g;

Compact form
for orthogonal-
ity conditions

N " k=1
r-3
+ E ;B ke i BT By 0
" k=1
& " E : fin B T Yo
N
r-3
tey (E Z‘ix‘kp ‘I’xp'ﬂk)‘fk
k=1 N [
=B E e By
~
r-3
i w0t 2k Y T BT § , Sin B
k=1 N
where
io © B E:E:‘ixq’xp
)

4k T 8 E,E:(i)\ekp@)\p'gk
AR

a.. is a vector, a., is a scalar; withi=1, 2, ... r-3, it
10 ik

follows that r-3 scalar equations result
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Table B-1. Set of r Dynamical Equations for an n-Hinged Rigid-Body Spacecraft
(Free from Constraint Torques) (contd)
Item Equations Results

€19-¢¢ WNPUBIOWSN TedIuUYd3 ], TJ [

Set of r dynamical
equations for
n-hinged rigid-
body spacecraft
(free from con-

straint moments)

a

00

10 2

r-3,0

o1 """

TR

- Z Matrix components cf dyadics and vectors are used
a " EY
0.r-3 wQ A . . A . . .
, T = in this equation; agg is 3x 3, agy is 3Ix 1, aiO is
1 x3, a.. is a scalar fori, k=1, 2, .., r-3;
3y -3 Y1 g 'E‘ixE;l i Tvi i i
s ] - Y matrix involving agg, a4, 3,4, 3, is symmetric.
ar-3, r-3 Yeo3 Eyr.3 'Zer—3];\:
- A




APPENDIX C

DETERMINATION OF EXPLICIT FORM FOR DYNAMICAL EQUATIONS
FOR A SPECIFIC TOPOLOGICAL ARRANGEMENT OF
5-HINGED RIGID BODIES

In this section, the general results described in Appendix B are applied.
to a specific topological arrangement of 5 hinged bodies., In particular, results
are obtained in this section for the arrangement of bodies shown in Fig. 5-1.
Hence, the explicit form of the dynamical equations for the case in which

n = 5 or less is obtained.

C-1 3 Scalar Equations Obtained by Summing Dynamical Equations Over All
5 Bodies

Three scalar equations are obtained by summing the dynamical results

for each body N\ over all 5 bodies. This result is written as

4

Z Z @NH-&M - Z E)\+Z M)f (C-1)

4 4
A=0 L p=0 =0 jedy J

Since the constraint torques ¢ancel in pairs, the term

4
DT
; J

=0 JfJ)\

It can be seen from Fig. 5-1 that the ahgular velocities of the bodies are
wy T W,
0] = ©g t V] g
Wy TegtV g Y, 8 (C-3)
w3 = gt V3 83

wy T wgt Y3 831V, 8y
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or, in general,

4
ooH = wg t E €k|.L Yy 8 (C-4)
k=1

where ekp identifies which angular rates {(k g, are involved in the angular

velocity of body p. Effectively, ekp. = 1 if the gimbal axis 81 lies between

body p and body 0 and is 0 otherwise. Using Eq. (C-4) in Eq. (C-1), it
follows that

4 4 4 4 4
E E Q?\p. + wgt E E q))\H . ekH 8 Y1
=0 =0 =0 =0 k=1
4 4 4
= § B VT ‘xp Bk Yk (C-3)
A=0 =0 k=1
Equation (C-5) can be rewritten as
4 4 4 4 4
E;Z‘I’xp'“’o*S, s 2 fxp B/ B Yk
A=0 p=0 k=1 \ A=0 p=0
4 4 . 4 4
- Z E)\ N d d j 4 ek}.l. Q)\p., ) gk Yk (C_é)
\=0 k= A=0 n=0
In compact form, Eq. (C-6) becomes
4 4
aoo'w0+§:(b0k'gk)\(k: E:Ex' Dok * Bk Yk
k=1 A=0 k=1
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where

4 4
259 = E E ¢)\I~L = b00 (C-7)

A=0 pn=0
4 4

box = §: §:€kp©)\p
A=0 =0

a b

The dyadics bOk for k=1, 2, 3, 4 can be evaluated by inspection of Fig. 5-1 if

the meaning of e is kept in mind (recall that e identifies those bodies u

ky
which sense the angular rate {(k gk).

kp

It follows that

4 2 (since only bodies 1 and 2
b01 = E CI’ML sense Y, gl)
A=0 =1
4
bOZ = E q’)\Z (since only body 2 senses Y, gz)
A=0

(C-8)

4 4
b03 = E E (I:MJ. (since bodies 3 and 4 sense ?3 g3)

A=0 n=3
4
b04 = E d 4 (since only body 4 senses Yy g4)
A=0
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C-2 Equations Resulting from Orthogonality of Constraint Moments
and Gimbal Axes

In this section, the additional four equations resulting from the
orthogonality of the constraint moment and the gimbal axis for each of the
four joints are .obtained. First, it is seen from Fig. 4-1 that the constraint
moment at joint 1 is isolated by summing over bodies N\ = 1, 2; that the con-
straint moment at joint 2 is isolated by considering body 2 only; that the con-
straint moment at joint 3 is isolated by summing over bodies 3, 4; and that
the constraint moment at joint 4 is isolated by considering body 4 only. From
the orthogonality of the constraint moment and the gimbal axis at each joint,

it follows that

C —_—

g M; = 0
1

c
g, M, =0
2 2,

c (C-9)
g3 M3 = 0

3

c
g, M = 0
4 44

-where a typical constraint moment M; = MC1 forn=1, j=1.
j 1
For a fixed 1, it follows that
c § : E : c I .
M)\j = €in M)\j with j = i
N JE\]—R
(C-10)

c

g ° M)\ =0

where € identifies those bodies N\ over which the sum is taken. It has already
been observed that for i = 1 the sum is taken over \ = 1, 2; for i = 2, only
N = 2 is involved; for i = 3, the sum is taken over \ = 3, 4; and for i = 4, only

N =4 is involved. Using Eq. (C-10), it follows that
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(C-11)

4 4
Ozgi'Z‘n E,@xp"”oJ’E,‘I’xp'E,‘kpgkyk
N

-
I
o

=

1
(@]
~

It
—

4 4
+ § , B § : “p Bk Vi T B (C-12)

=0 k=1 \ A =0
(C-13)
4 4
=& E:eﬂxE)\_gi'E,E:‘i)\E “rp A B Yk
N k=1 \ \ -
=0
In compact form, Eq. (C-13) can be written as
4
g “ big 9ot g Z (by = &) Yy
k=1
4 (C-14)
=8 Z‘ix Ey -8 § : (bye * &) Yy
N k=1
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where

4
bio = 5 i 2y Bw
N p=0
4
b = Z “in Z “kp Bp
N p=0
In the notation of Appendix B, Eq. (C-14) can be written as
4 4
250 " @o * E : 2k Vi T & ° § : ‘o B (8" Pyt &) Yy (C-15)
k=1 A k=1
where
250 = & " Pig
(C-16)
ik T & Pyt g

The dyadics biO can be written as (see Table C-1)

2 4
b10 = E ' E <1>)\H (since X = 1, 2 are involved in sum over N
A=1 pn=0
4
~b20 = E ¢2};L (since only N = 2 is involved in sum over \)
M=0
4 4
b30 = E E @)\Pv (since N = 3, 4 are involved in sum over \)
A=3 n=0
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b40 = E ¢4P- (since only X\ = 4 is involved in sum over \)

=0 (C-17)

Note that the bodies p involved in the sum

4

Z “kp. Bp

=0

for k=1, 2, 3, 4 have already been identified (¢ identifies the bodies p

k.
which sense the rotation ?k gk). Now the bodies N\ which are picked out by

the sum

Z fin

)N

have also been identified for each i, Consequently,the bodies p, \ involved

in the sum

b = E :ei)\

€
A p=0

4

k. @)\p

can be written down by inspection. Written in terms of an array, elements

bOO’ bOk (derived in Section C-1), and ka’ bik become
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4 4 4 2 4 4 4 4
;)é@xp g;q’xp ;‘I’xz :L:‘);‘I’xp ;‘I’M
4 2 2 2 2 4 2
ML D IEVED DD DD ME VD PV

N1 -l a1 N1 p=3 "=1
2
2.

dagl
Hi
- —

-

1)

(e}

4
®on 22 Z ®u @4

T
I
o
T
I
o
T
i

w

A

M-
M-
M-
M-~

™M
2
M»
M-

™
2z

~
1l
w
-
I
o
~
I
w
-
I
s

]~
7’9'

-
M-
h&e«

=

'pne«

(8}
-
4;9'

-

4;'94

S

p =0 =1 p=3 |
rboo o1 o2 b3 LI )
P1g P11 P12 b3 b1y
= | P20 P21 D22 P23 P4 (C-18)
P30 b3y P32 b33 b3y
| P40 b4 b2 by3 Py |

Note that Eq. (C-18) could have been written immediately by inspection of
Fig. 5-1! In row 1 of the array, the summation over \ is from N\ = 0 to X = 4;
in row 2 (corresponding to the dot product of gy and the constraint moment at
joint 1) the summation over N\ is from N\ = 1 to 2; in row 3 (corresponding

to the dot product of g, and the constraint moment at joint 2), only X = 2 is
involved; in row 4 (corresponding to the dot product of g3 and the constraint
moment at joint 3), the summation over \ is from X = 3 to N\ = 4; in row 5
(corresponding to the dot product of g4 and the constraint vector at joint 4),
only A = 4 is involved. Similarly, in column 1, the summation over p is from

0 to 4 (all bodies sense wo); in column 2, the summation over p is from
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1 to 2 (only bodies 1 and 2 sense \'(1 gl); in column 3, the summation over u
involves only p = 2 (only body 2 senses \'(Z g, -- it is the end of a chain!); in
column 4, the summation over p is from 3 to 4 (only bodies 3 and 4 sense
\'(3 g3); in column 5, the summation over p involves only body 4 -- it, too, is

the end of a chain!).

C-3 Setof r (r = 7) Dynamical Equations for a 5-Hinged Rigid-Body
Spacecraft

In the section, the set of 7 dynamical equations governing the behavior of

the 5-hinged rigid-body spacecraft shown in Fig. 5-1 are given. These equa-
tions are obtained by collecting the results generated in Sections C-1 and

C-2.

In the following equation, it is understood that the matrix components of
operations involving dyadics and vectors are used (recall, that the dyadics bﬂm
with £, m = 0, 1, ..4 are defined in Eq. (C-18))

F P00 bo1 " 8y bo2 " 82 boz * 83 by 8y ] )
By TPy By by g gt byyte, gt by oy 8y " Py oy ¥
82 P Byt byt By 8y by tEy gyt byytog By " Pay” By 7 =
€37 B3 837 byt g gy by g, Byt byytey gyt by, v g, B
B4 bao  Bg byt B Byt by, e, gyt byytoes Bg " byg By | Vs

(C-19)

4
83" E,Ex' § 83 " byt B Yy

8y " By - § : B4 * gy " B Y
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It is worth repeating the fact that the dimensions of the elements are as
follows:
bgg --3x3, b --1x1

--3x1, b,  --1x3,g.b

ok = Bk €k * ko i Pik " 8k

fori, k=1, ... 4.

As mentioned previously,the square matrix on the LHS of Eq. (3-19) is sym-

metric so only

NSRS,

s :%(a+'f): 5+ 1) = 15

of the 25 elements must be evaluated (note, however, that b00 is a symmetric

matrix, too!), Typical elements of this array are the 3 x 3 matrix b the

00’

3 x 1 vector b01 gy and the scalar g, ° b Note, too, that the elements

12 " 8¢
of this array were previously,defined as (see Eq. B-13 and Eq. B-14).

200 = P00
aOk:bOk'gk’ k=12, ... 4
(C-20)
akO = g ka’ k=1, 2, 4
2 T B3 " Pyt g Lk=1,2,...4
In compact form, Eq. (C-19) can be written as
Ag = L (C-21)

where A is a 7 x 7 matrix, « is a 7 x 1 vector (consisting of d)o and the relative

angular accelerations '\('k), and L is a 7 x 1 vector (which can be considering the

forcing function of the matrix differential equations).
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C-3.1 Transformation of Elements into Appropriate Coordinate System

In this section, the vector basis in which the elements must be expressed
in order for the operations to be performed is selected. A logical basis is that
associated with body 0 (the base body). For the attitude control problem, it is
usually necessary to control only the attitude of the base body (the attitude being

kinematically related to the angular velocity vector w Hence, the transfor-

)e
0
mations from bodies 1, 2, 3, 4 to body 0 are required.

C-3.1.1 Coordinate Transformations

The transformations required in performing the operations depicted in

Eq. (C-19) are (note these are not restricted to small angles)

_ T ~

C —cosy1E+(1 cosyl)glg1 —S\(lg1

C7 = cos E+ (1 - co ) T S g

1 - Y2 TCOSYR BBy TRV B
(C-22)

- T ~
Co —cosy?’E+(1—cosy3)g3g3 -S\(3g3

T ~
= COSY4E+(1—COSY3)g4g4 -SY4g4

where

E is the 3 x 3 identity matrix

g1 gg is an outer product, k=1, 2, ... 4

gk is a 3 x 3 skew symmetric matrix representing the cross product
operator 8y % k=1, 2, ... 4
Ck

k-1
that for body k

is the transformation from the coordinate frame of body k-1 to
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The results given in Eq. (C-22) were obtained in this analysis by
manipulation of the relationship between two coordinate systems in terms of
Euler's parameters (for a different approach see Ref. [5]). Consequently,
the transformations relating bodies 1, 2, 3, 4 to body 0 can be expressed as
(see Fig. 4-1)

1 A1
Cy = €
2 2.1
C, = C] C,
(C-23)
3 3
C, = C
4 4.3
C, = €3 Cy

Note that in Eq. (C-22), it is assumed that the components of g, are known in the
coordinates of body 0, the components of g, are known in the coordinates of
body 1, the components of gy are known in the coordinates of body 2; and the

components of gy are known in the coordinates of body 3,

Moreover, the direction cosine matrix relating the coordinate system for

body 0 and the coordinate system of the interial frame N for a 3-2-1 sequence of

rotations is

[ T
C1C2 slcz - S2
0
CN = - SIC3 + CISZS3 ClC3 + SISZS3 CZS3 (C-24)
CISZC3 + SIS3 SISZC3 - C153 C2C3
L i

where S, = sin0,, C, = cos 6, (withi=1, 2, 3)
i i i i
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The attitude angles 91, 62, 63 of body 0 are related to the angular

velocity wy according to

6 1 Sls?_ CISZ ©
1 C2 C2 1
i _ ) e
ez 0 C1 Sl w5, (C-25)
C
6 0 51 _1 “
3 C2 C2 3

C-3.2 Evaluation of Elements bfm and 20

The following conventions are used in evaluating the dyadics bfm and apg

f, m=0,1, ... 4:

(1)

A typical element (I’ML N, 0 =0, 1, ... 4; N\ #u) is evaluated by
expressing all vectors involved in the coordinate system of body A

(i. e., the basis of the first subscript of %\H ); e.g.,

¢, =-m[D, D, -D,,D, ]

where D12 is computed in the coordinates of body 1 (the first

subscript of D)\H) and then transformed to the coordinates of body 2
by
2

C; (D

(Do) = ¢

12)1

and D21 is already known in the coordinates of body 2; consequently

[2,)], = -m [(Ci D12>' Doy - (C? D12> D21]

A typical element bOk’ k=0,1, ... 4is evaluated by transforming
all QML' s from the coordinate system to body N\ to that of body O

according to

(8,1, = Sy (5,1, Cp, withMi, L =0, 1, ... 4,
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e.g.,

) 0 1 0 2
boy = [8g) + 8,15+ Cp [8+2,],Cu+C, [2,, +9,,], C/
0 3 0 4
+C3 [y v 2,10, +C [, +2,], C

(3) A typical element bik (i, k=1, 2, ... 4) is evaluated by transforming
all ¢>\|J. 's involved to the coordinate system of body i, e.g.

_ ] 2
[by3], = [@3+ 2,1, +C; [25+9,], C
[by,] s = [8,, + 8, ] +C3[<I> + &, ] C4

3313 33 T B33 PO L83t B ]y 5

Similarly, the operations bOk =S and g; bik &1 involved in the ap.,'s

are evaluated according to
L] — ° O
(1) by " gy = [Py (Ck gk)
- - L] i
(2) gyt byt gy = (gt [y 1y (Ck gk)

These results are summarized in Tables C-1 and C-2.

C-3.3 Evaluation of Forcing Function L

In this section, the terms involved in the evaluation of the 7 x 1 forcing
function L (the RHS of Eq. C-19) are given (see Table C-3). The column

matrix L can be partioned as

()

where L0 is a 3 x 1 vector and is associated with body 0 and LR isad4xl

vector associated with bodies 1 thru 4.

70 JPL Technical Memorandum 33-613



For notational convenience, the terms M)%D are redefined as T)\j and

represent the spring-damper moment acting on body N\ at joint j.

C-3.3.1 Viscoelastic Moments and Joints

In this section, the assumed form of the spring-damper interaction
moments acting on body N at joint j is given. Equations representing the

interaction moments are given by

T2z = K ¥z - By Yy
12 T 7 T2z
17 cKpY - By
(C-26)
Tor T T 1
Taa T T Kyve By
T34 T 7 T4q
T33 = - K3¥3 - By yg
To3 T 7 "33

Equation (C-26) implies that the total interaction spring-damper torques

acting on bodies 0 thru 4 are

K 3 Y3

03 1 Y1 +B

+ 7

To1 TByY TE3 v,

Tt T2 T oK Yy - By + Ky, + By,
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T2 = T Ky Y, B Y,
Tag + T34 = - Ky vz - By vs + K v, + B,y vy
T4a T " Bg Ve ByVy (c-21)

C-4 Explicit Equation for w, (The Angular Velocity of the Base Body 0)

In this section, the explicit form for the equation governing wg is given.

This can be obtained by partitioning the equation
Ao =L

and eliminating the relative angular velocities from the equation. In partitioned

form, Eq. (C-21) becomes

S RRY: ©9\ [ Lo
Vet ke B o e B e (C-28)
21 1 P22 R L

, 110 B12r Borr Bopr @or Ope Lo 2rd Ly
3x4, 4x3, 4x4, 3x1, 4x1, 3x1, 4x 1, respectively., Manipulation of
Eq. (C-28) yields

where the dimensions of A are 3 x 3,

All wg * AlZ wop = LO (C-29a)

H

A21 wg + A22 WR LR (C-29b)

Solving Eq. (C-29b) for (;)R and substituting the result into Eq. (C-29a), it
follows that

. 1 -1 -1 1 1

0g = [Ayg - Ay Ay Ayl T Ly - [A - A Ay A ] TA LA Ly

. -1 -1 . (C-30)
wp = By Lp - Ay Ay e
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0 could first be

can be used in evaluating the RHS of the

Equation (C-30) suggests that the RHS of the equation for

0

evaluated; next, the expresion for %)
and w, can be obtaining by integrating (:.)O and @

R then, 0 .
The fact that wp 0

when one is interested in arriving at a suboptimal Kalman filter in which the

equation for w w

R ?
is significant

R

respectively. can be expressed in terms of w

dimension of the state to be estimated is kept as low as possible.

Table C-1. Expression for Dyadics bﬂm’ f, m=0,1, ... 4
Jtem Equations
4 4
Poo Z Z B, = (8o + 0o + B, + 83+ Bl
A=0 p=0
+c%[e, +o 40, ,+0,.+a,], C.
1 [20F &+ &t B3+ 81 Co
+Cc% e, +o . +a0_+0.+0 ], c
2 L0 18 + 0 v 053 + 840, Co
+CO [0, +@,. +8,, +®,,+3,,], C
3 (P30 + @3y + 83, + 835 + 83,13 Cp
+c [o,.+®, +0, +0,,+,], c
4 (@t 0y + 0, + 83+ 20, C
4 4
: _ 0 1
Po1 2: E : 8, = (8o * 8l +C) [2, +8,], G,
A=0 p=1
0 2.0 3
+C, [2y) +8,,1,Co+Cy [ + 85,1, C
0 0 4
+Cy [oy vl C
4
_ 0 1. .0 2
%02 E: B, = ¥, tCy [2,], CH+C; [2,,]1, C
*=0
0 3.0 4
+C3 [95,]3C, +C, [2,], Cp
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Table C-1. Expression for Dyadics bfm’ £, m=0,1, ... 4 (contd)
Item Equations
4 4
. 0 1
P03 § : § : 8, = [23t 8,15 +Cy [o5+2,], Cf
A=0 p=3
0 2 0 3
tC, [2y3 49,41, Co+C;3 [B3+ 0,15 C
0 4
tCy [+ 2441, Gy
4
) 0 1 0 2
P4 § : By = [, )y +C (2,1, Co+C; [25,,], Cf
*=0
0 30 4
TC3 [B34]13 Co+Cy [24]4 Co
2 2
b = [®, +® 1clira, +o c?
11 B T (2172211 T C2 (% Y %] ©
A=1 p=1
2
b - T rcl s c?
12 B2 [22]17C, [%5;]12 &
=1
2 4
) 1 2
b3 Z Z B = (237240, +C; [83+ 2,1, Cf
p=1l p=3
2
b &, [®,,] + cl (&, ,] c?
14 E: N4 1211 7 C 1%yl &

74
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Table C-1. Expression for Dyadics by , {, m

=0,1, ... 4 (contd)

Item Equations
22 [e,, 1,
4
P23 § , Bp = [83 r 0,0,
p=3
b4 [2,,];
4 4
b & =[® +q>]+c3[q> +<1>]c4
33 E:xp 33 3413 4 1543 7 F44i4 73
A=3 n=3
4
b ®, :[<1>]+C3[q>] ct
34 E: A4 3413 4 %4414 ~3
=3
Pyyq [24ly
b (b )Tﬁ m=90, 1 4; /4 m
[m mﬂ P) » ’ y e ’
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Table C-2. 'Expressions for Elements ap £, m=0,1, ... 4)

Item Equations

a00:b00 [, + &

+ &

+ &

41 T By T Byg t

42 T 843 T 841, C

0 1 0
01 [[<1901+<1502]0+C1 [q>ll+<1512]lco+c [®,, + &

2
21 ZZ]ZCO

0 30 4 0
03[9y +33,]53C,+C, [, + @42]4(;0] C) (eih

| 0 1. .0 2 0 3
202 [[@02]0+c1 [®,1,Co+C; [2,,1,C5+C5 [2;,]5 C

4],00

0 -
+Cy [24,14C 2 (855

2

0 1 0
a3 [[¢>03 + @04]0 +c1 [@13 + @14]1 CO +c_2 [@23 + <‘1>24]2 CO

0 30 4 0
tC3 [By5+ 85,13 CH+C, [345+2,,],C —I Cs (g3)3

3

0 1 .0 2 .0
204 [[‘1’04]0+C1 [2141) Co +C; [2,4], C5+C3 [25,]5 C

0 4 0
+Cy [oyy],C ] Cylgyly

JPL Technical Memorandum 33-613



Table C-2. Expressions for Elements ay #/,m=0,1, ... 4) (contd)
Item Equations

a (g4) [[@ 121 +clle +a] CZ]-<g)

11 1’1 ° 17 72 L8 TRl Oy 1’1

2 ) [[o,1,+C500,,1,¢% |- ¢},

12 11 1241 1 2242 ™1 2 ‘8272

1 2 1

213 (gy)y [ [®3+ @141, +C; [25 1 2,,], C) ] © C3 (g3);
a (), | [8,],+C} [8,,1,c2 ] cligy

14 g1y " 2412 4 ‘844

252 (85), « [2,15 (g5),

a (€.), * [2,.+a, ],  C(g)

23 8272 23 " %4l 3 \83/3

2
2,4 (g5)y = [2415 - Cy(y)y
233 83); [[‘1’33 tagylyrCy lay 414 C3 ] " (g3)y
o4 3
334 (83)3 [ [®3,]15+ 4 [244]14C ] SYREF
244 (ga)y ® [2gq]y " (8y)y
T B i
akO (aOk) , k=1, 2, . 4
T .
afm (amf) 5 1, k=1 2, 4:, 1 # k
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Table C-3, Evaluation of Forcing Function L
(Appearing in A @ = L)

Item

Equations

E: 0
MO+DOxFO+ ; DOp.xcp [FH+mex(wHXDI~LO)]
B #EN

+B3y3

-wox <I>00'wO+Kly1+Blyl+K3y3

2
M2+DZXF2+ E DZHXCH[FH+rnw x(w xD )]
TE2N

o N
€
=)
+
O
— N
<
[
oQ
p—t
+
<.
(\S]
o
o~
L1

2 2. .
- [C0“0+C1Y1g1+\(zg2] x [25,], [C

K, ¥, - B, v,

3
Mj + Dy x Fy 4 D3HXCH[F

REN

3 i 3 )
- [C0“0+Y3g3 x [ ®53]5 [Co‘”0+“3 g3]

" + Mo, X (wp X DIJ~3)]

TRV T B, - Ky v - By,
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Table C-3. Evaluation of Forcing Function L
(Appearing in A w = L) (contd)

Item Equations

E : 4
M4+D4XF4+ D4l~'~xcl~1« [FH+meX(w|~LXDP~4)]
E4 VIE2N

4 40 . 4 4
- [co wog tC3 Y3831V, g4]x (2,14 [Co‘”o T C3v3 83

g Co “p * 8

) 2 2

g2 (Co w T C1 Yy g1) B -p)

g3 Co “o* 83

. 4 4

g4 (Co wo t C3 Y3 g3) X 8y
4 4

L E b., +g)y, =E +¢%e +c%x +clg

0 T ok = &k’ Yk T Fo 1™ 2“2 3 %3
=0 k=1

0

0. \ .
- (boy * Cygy) ¥y

0. \ . 0. . Sy
+CyE, - (oo, * C) &) Yy - (s * C3 85)¥, - (bgs Cg g3) V3
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Table C-3. Evaluation of Forcing Function L
(Appearing in A @ = L) (contd)

Item Equations

| By (E1+Cé Ez)

LT TR S LT - PRALITR - TR - PR Y

L, g8, " By - gy t[byy t gy ¥t byt 8y Yy v Dy3 g3 Y,

Ty, 8y Vy ]

41 81 Y] thypt 8y Y, T hys 83 Y
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