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THREE-DIMENSIONAL ELASTIC STRESS AND DISPLACEMENT ANALYSIS

OF FINITE CIRCULAR GEOMETRY SOLIDS CONTAINING CRACKS

by John P. Gyekenyesi, Alexander Mendelson, and Jon Kring

Lewis Research Center

SUMMARY

Displacement and stress distributions are calculated in finite circular bars, each
containing a penny-shaped crack and loaded normal to the crack surface. Similar re-
sults are presented for an annular plate containing internal, traction-free surface
cracks. The Navier-Cauchy equations of elastic equilibrium are reduced to three sets
of coupled, simultaneous, ordinary differential equations whose solutions are obtained
along sets of lines in a discretized region. Since decoupling of these equations and their
boundary conditions is not possible, a successive approximation procedure is applied to
obtain their analytical solution. These analytical solutions are compared with known so-
lutions, and the results of the circular bar are used to examine the rate of convergence
and the accuracy of this method. The results obtained show that the method of lines
presents a systematic approach to the solution of some three-dimensional elasticity
problems with arbitrary boundary conditions. The advantage of this method over other
numerical solutions is that good results are obtained even from the use of a relatively
coarse grid.

INTRODUCTION

The object of a problem in elasticity is usually to calculate the displacement and
stress distributions in an elastic body which is subject to given body forces or surface
conditions. These distributions are the solutions of the applicable field equations which
mathematically model the behavior of engineering materials. The solution of this gen-
eral system of equations is, however, usually too difficult to evaluate. At present, few
analytical solutions of three-dimensional problems exist (ref. 1), and even these solu-
tions frequently require symmetry conditions to simplify the governing equations. Re- '
cently, with the introduction of large digital computers, the use of a number of approx-



imate methods was attempted, but these methods yielded only partial results for these
problems. Among these methods are the finite difference (ref. 2), the direct potential
(ref. 3), the finite element (ref. 4), the eigenfunction expansion (ref. 5), and the line
method of analysis (ref. 6). Of all these solution techniques, the line method of analysis
is probably the least known and least used method in three-dimensional elasticity. Al-
though the concept of this method for solving partial differential equations is not new

'(ref. 7), its useful application in the past has been limited to simple examples (ref. 8).
The line method lies midway between completely analytical and discrete methods.

• The basis of this solution technique is the substitution of finite differences for the deriva-
tives with respect to all the independent variables except one, with respect to which the
derivatives are retained. This approach replaces a given partial differential equation
with a system of simultaneous ordinary differential equations whose solutions can then
be obtained in closed form. These solutions describe the dependent variable along lines
which are parallel to the coordinate in whose direction the derivatives were retained.
Because of their practical importance and inherent singularities, the work in this report
is concentrated on the elastic analysis of three-dimensional, finite geometry solids
which contain traction-free flaws or cracks. If we assume that the method of lines can
be successfully applied to these solids with inherently large stress and strain gradients,
its use for less complicated elasticity problems should present little difficulty.

Early three-dimensional solutions of crack problems usually described the stresses
near circular or ellipsoidal cavities enclosed in infinitely large solids. In reference 9,
Sneddon applied Hankel transform methods to Love's biharmonic strain function and re-
duced the mixed boundary value problem of the axisymmetric half space to a set of dual
integral equations. Only limited work has been done on three-dimensional solutions of
crack problems in finite geometry solids. After making certain assumptions on the
nature of the thickness variation of the stresses, Hartranft and Sih were successful in
obtaining partial results for cracks in finite thickness bodies using variational methods
(ref. 10) and eigenfunction expansions (ref. 5). In 1970, Cruse and VanBuren (ref. 11)
used the direct potential method to analyze the stresses and displacements in a fracture
specimen with a single edge crack.

This report presents a simple and systematic approach to the elastic analysis of
three-dimensional finite and circular geometry solids which contain traction-free cracks.
A discussion of the elastic solutions, obtained by the same method of lines, of similar
rectangular geometry solids can be found in references 6 and 12. The advantage of this
method over other numerical techniques is that good results are obtained by using rela-

.tively coarse grids. This use of a coarse grid is permissible because parts of the solu-
tions are obtained in terms of continuous functions. Additional accuracy in normal
stress distributions is derived from the fact that they are expressed as first-order deri-
vatives of the displacements and these derivatives can be analytically evaluated. Inner-



herently inaccurate numerical differentiation is required only for the evaluation of the
shear stresses, but this presents no important loss of accuracy since they are an order
of magnitude smaller than the normal stresses. For problems with geometric singular-
ities, additional accuracy is derived from using a displacement formulation since the
resulting deformations are not singular.

SYMBOLS

A(K , p) coefficient matrix of first-order differential equations, p = r, 9, z
ADA.. partitioned submatrices of e , i = j =1 ,2 and p = 6,z

a crack radius

B. particular integrals of first-order differential equations, i = 1,2, . . ., 6

b outside radius

c surface crack length emanating from internal hole

d depth of surface crack along internal hole surface

E Young's modulus of elasticity

e dilatation or natural logarithm base

F- initial value vectors for the first-order radial differential equations,
i = 1,2

G shear modulus of elasticity

h , hfl, h increments along cylindrical coordinate axesr y z
I identity matrix

Kj stress intensity factor for opening mode

K,,Kf l,K coefficient matrices of second-order differential equations
A U Z

L half-length of cylinder

I number of lines in radial direction

m number of lines in circumferential direction

NR, N0, NZ number of lines in given plane

n number of lines in axial direction

R distance from crack edge

r0 internal hole radius



r, 0, z cylindrical coordinates

r(r) coupling vector for radial second-order differential equations

s(0) coupling vector for circumferential second-order differential equations

t half-plate thickness

t(z) coupling vector for axial second-order differential equations

u radial displacement

v' circumferential displacement

w axial displacement

TJ variable of integration

0Q circumferential length of annular plate cutout

X Lame's constant

v Poisson's ratio

ar>°8>az }
r components of the stress tensor in cylindrical coordinates

CTr0' CTrz'CT0zJ

OQ(A) matrizant of A(Kr,r)

n.. partitioned submatrices of the matrizant of A(Kr, r)

V Laplacian

The symbols used in the appendixes are defined when they are introduced.

REDUCTION OF NAVIER-CAUCHY EQUATIONS TO SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS

The fifteen individual field equations of linearized elasticity may be combined to
form the three Navier-Cauchy equations of elastic equilibrium which in cylindrical coor-
dinates are written as

^ + (1 - 2v)
2 36

= 0 (1)



r 39
= 0

-^ + (1 - 2z,)V2w = 0
dz

(2)

(3)

where the body forces are assumed to be zero and the dilatation is

e - du j 1 3v H u + 3w
3r r 30 r 3z

(4)

The stress-displacement relations, obtained by substituting the strain-displacement
relations into Hooke's law, can be expressed in the following form:

a =
3r

(5)

(6)

<r =
z 3z

(7)

r 30 3r
(8)

rz \3r
(9)

, /3v _1 3w
\3z r 30

(10)

For a finite geometry body with circular boundaries, we construct three sets of
parallel lines in the direction of the coordinates as shown in figure 1. Approximate
solutions of equations (1) to (3) can then be obtained by developing solutions of ordinary '
differential equations along the radial, circumferential, and axial lines, respectively.
For equation (1), we define the displacements along the radial lines as UpUg, . . . ,u,.
The derivatives of the circumferential displacements on these lines with respect to 0



l = N6xNZ

m =NZxNR

n = NRxN6

M;ircumferential
lines

Radial lines

Figure 1. - Sets of lines in direction of cylindrical coordinates.

are defined as v| 2, • v| , and the derivatives of the axial displacements with
respect to z are defined as w ,, wL. These displacements and deriva-
tives can then be regarded as functions of the radius only, since they are variables on
radial lines. K these definitions are used, the ordinary differential equation along a
generic, radial line ij (a double subscript is used here for simplicity of writing) of fig-
ure 1 may be written as

Ai + l^ii.!ii
dr r dr

(1 - 2v)
2(1 - v)

u.. +
r h.

2(1 - ,;)
= 0 (U)



where

r dr
+ dw

„ dr
(12)

and

v = d

w = dw
dz

Similar differential equations are obtained along the other radial lines. Since each equa-
tion has the terms of the displacements on the surrounding lines, these equations consti-
tute a system of ordinary differential equations for the displacements u^vug,. . . ,u^.

Noting that a second-order differential equation can satisfy only a total of two
boundary conditions and since three-dimensional elasticity problems have three boundary
conditions at every point of the bounding surface, some of the boundary data must be in-
corporated into the surface line differential equations. Hence, conditions of normal
stress and displacement are enforced through the constants of the homogeneous solutions
while shear stress boundary data must be incorporated into the differential equations of
the surface lines. It is the application of the specified shear conditions that permits the
use of central difference approximations when surface line differential equations are
constructed. For the first radial line of figure 1, the use of zero shear stress boundary
conditions in the radial direction on the r, z and r,0 coordinate planes gives, respec-
tively, the following imaginary radial line displacements:

U10e = U 2 V - 2Vli
(13)

Equations (13) must then be used in the application of central difference approximations
when the ordinary differential equation for the first radial line is generated. Additional
details on the construction of these equations can be found in reference 6. It is conven-
ient to nondimensionalize these equations with respect to some characteristic dimension.
Hence, we introduce the following variables:



r= h =
a a a

/v/ TT
v =- h =

~ w ~ Z ~ Zw = - ^ z=- h = —
a a a

(14)

^^r-— u = K ( r ) u + r ( r )

where a is the crack radius. If matrix notation is used, the differential equations along
the radial lines can be expressed as

(15)

where the coefficient matrix K r(r) is a function of the radius, the coordinate incre-
ments h- and hz, and Poisson's ratio.

In a similar manner, for the solution of equations (2) and (3) ordinary differential
equations are constructed along the circumferential and axial lines, respectively.
These equations, however, are different in form from equation (15) and may be written
as

v s (0 ) (16)

m x l m x m m x l m x l

= Kz w + t ( z )
dz2 Z

n x l n x n n x l n x l

(17)

These two sets of equations are linear, second-order differential equations with con-
stant coefficients. The coupling terms in each set of differential equations are grouped
into the vectors r(i-), s(??), and t('z), which are the nonhomogeneous terms in the pre-
vious equations. Since the sum of the elements in any given row of the K(r ) and K
coefficient matrices is zero, they are both singular. In addition, we find that Kg is
also singular, although this is not as evident from its elements as in the case of the other



coefficient matrices. A detailed listing of equations (15) to (17) may be found in refer-
ence 6.

SOLUTION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

The details of a solution technique for the type of simultaneous ordinary differential
equations given by equations (15) are discussed in appendix A. For the case r * 0, the
solution vector for the radial displacement is

u ( r ) =4- n n ( r ) [FJ + B^r )]+i O12(r) [k + B2(r)] (18)
r r

Z x 1 Z x Z Z x 1 ix1 ix l lx1 lx 1

where

= r u
r-rinitial

-~ J
r/~ „

r =r initial

and J71^('r ) and f212(^') are infinite matrix integral series whose definitions and evalu-
ation are discussed in appendix A. Vectors B- , ( r )and B2(r) represent particular
solutions of equations (15), and they are given by

t

l(^) = - J~
rinitial

i*

(n22 " n2lnlln
r initial

while vectors Fj and F2 are initial value vectors whose evaluation from given bound-
ary conditions is discussed in appendix C. Differentiating equation (18) with respect to
r yields



u ( r ) =

Z x 1 z x Z
r2

fx. I Z x 1 Z x 1

f (r) L O (r\Ct\t\ \ l . ) — —— &£ 4 n \ I ^

^^ ~2r
Z X Z Z X Z Z x l Z x l

[F2 + B 2 ( r ) ]

(21)

where O2l (r) and O22 ) are ma*rix integral series similar to O i j C ) and fii
For differential equations of the type given by equations (16) and (17), a detailed and

analogous solution procedure is discussed in appendix B. As a result of this develop-
ment, the circumferential displacement vector may be written as

(22)

where and are matrix functions:

A n(0) = (23)

(24)

4/2 i,The matrix K/ is defined as a matrix whose square is equal to K0. Vectors v(0)
and v (0) are initial value vectors whose evaluation from given boundary conditions is
discussed in appendix C. Vectors Bg(^) and BAH) represent particular solutions of
equations (16) and are given by

SX

/ drj (25)

B4(0) = / AII(TJ)S(TJ) (26)

Differentiating equation (22) with respect to !) gives

v ( 0 ) =K0A1 2(0)[v(0)+ B3(7f)] + Au (27)

A solution vector similar to equation (22) may be constructed for equations (17) which
defines the axial displacements. Since r(rj) in equations (19) and (20) is unknown, we

10



start the solution of the problem by assuming values of v, dv/dr , dw/dr, v, dv/dr,
and dw/di- along the radial lines. The initial values of these required quantities were
taken to be zero in this report. Then equations (18) and (21) will give the first estimate
for the vectors u ( i - ) ^ 'and u("rr • It is assumed, of course, that vectors F^ and
FO are known or can be found from given boundary conditions. Using these calculated
values of u (r )' ' and u (i- )^ ' we can evaluate the vector ^ (9 r where we must use
similarly assumed values of dw/d'e and dw/d7> along the circumferential lines.
Equations (22) and (27) give the first values of v^ r1' and v (6> )' '. First values of
~ /~ \(1) ~ /~ (1}w ( z )v ' and w ( z )v ' can then be calculated by using the first estimates of the radial and
circumferential displacements and their derivatives in the coupling vector t(z )^ '. At
this point we return to equations (18) and (21) and calculate the second values of u(i- r
and u ( i- r based on the first values of the circumferential and axial solutions.

K the values of u( r )^ , u(r)^ , v(1?)H vd?)^, w(z )H and w(z )^ 1 ^ converge
with the repetition of this procedure, an approximate solution of a given problem will be
determined. In general, the convergence rate for these successive calculations is de-
pendent on the accuracy to which the matrix functions A. . and the matrix integral ser-
ies J2, • can be evaluated. Sufficiently large errors in these matrix variables will lead
to divergence in the successive approximation calculations.

Since the coupling vectors r(r'), s(1?), and t ( z ) involve displacements and their
derivatives defined only at the nodes, finite difference calculus must be used in evaluat-
ing their elements. Hence, all the particular integrals are calculated by a suitable
numerical integration technique.

Once the displacement field in the bar has been calculated and the successive ap-
proximation procedure has converged, the normal stress distributions along the three
sets of parallel lines can be obtained from

(28)
lines Along radial

lines

+ X ( u + w ) A 1 . rv 'Along circumfer-
Along circumfer- .. , ,.& ential lines
ential lines

(X + 2G)(w )Along ax.al + X + + (30)

Unes /Along axial
lines

11



Note that these equations involve only derivatives that can be analytically evaluated. The
shear stresses at each node can be calculated from equations (8) to (10), but finite dif-
ference approximations must be used for the required displacement gradients.

NUMERICAL RESULTS

Solid Cylindrical Bar with Penny-Shaped Crack

Figure 2 shows a cylindrical bar containing a penny-shaped crack and loaded by a
uniform normal stress distribution. For problems with axisymmetric geometry, the
circumferential displacement is inherently zero at every point and all the remaining
variables are independent of the circumferential coordinate 0. The two sets of parallel

^-Penny-shaped crack:
radius = a; v = 1/3 ^

Figure 2. - Solid cylindrical bar with penny-shaped crack.

12



lines needed for the solution of this problem are also shown in this figure. Note that the
crack edge is assumed to be midway between adjacent nodes, specifying normal stress
and displacement boundary conditions, respectively.

The solution of this problem was obtained by using two different sets of lines along
the coordinate axes so that the convergence of the finite difference approximations could
be checked. The successive approximation procedure required for decoupling the two
sets of ordinary differential equations was terminated when the difference between sue-

f*

cessively calculated displacements at every point was less than a preset value (10~ ).
Selected results from these calculations are shown in tables I to V and figures 3 to 7. -
For easy comparison of data, some of these figures include Sneddon's results for an

TABLE I. - NONDIMENSIONALIZED RADIAL DISPLACEMENTS Eu/cQa

FOR SOLID CYLINDRICAL BAR WITH PENNY-SHAPED CRACK

UNDER UNIFORM NORMAL TENSION

[a = 1. 0, b = 1. 77, L = 1. 68 (16 axial and 13 radial lines)]

z

0.00
.28
.56

.84
1.12
1.40
1.68

7

0.000

0.000

\

0.235

-0.168
-.080
-.045
-.038
-.039
-.034
-.006

0.471

-0.333
-.153
-.091
-.083
-.085
-.074
-.023

0.706

-0.488
-.217
-.149
-.142
-.142
-.124
-.058

0.941

-0.579
-.297
-.239
-.223
-.214
-.188
-.114

1.06

-0.609
-.371
-.300
-.273
-.255
-.224
-.150

1.294

-0.653
-.529
-.433
-.379
-.344
-.303
-.233

1.530

-0.705
-.639
-.549
-.482
-.435
-.388
-.325

1.770

-0.773
-.725
-.646
-.580
-.530
-.483
-.425

infinite solid (ref. 9). The data of figure 3 clearly show the advantage of the line method
over other numerical solutions. A relatively coarse grid of nine axial and nine radial
lines gave almost identical results to those obtained by using a 16 by 13 grid. Since the
bar is of finite size, the crack opening displacement is expected to be higher than
Sneddon's solution. Consistency of the results with this conclusion is obvious from
figure 6. It is noteworthy that the results correspond to elliptical crack profiles in all
cases. The maximum dimensionless crack opening is plotted for several crack to cyl-
inder radius ratios in figure 7. The data from figure 6 match the results of Sneddon
and Welch (ref. 13) very closely, and, as expected, the maximum crack opening is
slightly higher for finite length cylinders.

Figure 5 shows the stress distribution normal to the crack plane as a function of the
distance from the crack edge. As shown by Sneddon for an infinite solid, this stress

13



TABLE II. - NONDIMENSIONALIZED AXIAL DISPLACEMENTS

Ew/aQa FOR SOLID CYLINDRICAL BAR WITH

PENNY-SHAPED CRACK UNDER

UNIFORM NORMAL TENSION

[a = 1.0, b = 1. 77, L = 1. 68 (16 axial and 13 radial lines)]

r

0.000
.235
.471
.706
.941

1.060
1.294
1.530
1.770

r>*>

z

0.000

1.394
1.351
1.219

.973

.515

.000

1

I

0.280

1.544
1.495
1.359
1.113

.746

.542

.384

.334

.291

0.560

1.646
1.595
1.472
1.273
1.029

.913

.758

.673

.610

0.840

1.766
1.722
1.622
1.473
1.302
1.221
1.090

.999

.935

1.120

1.928
1.892
1.812
1.696
1.565
1.502
1.390
1.304
1.245

1.400

2.126
2.097
2.029
1.933
1.823
1.768
1.670
1.592
1.535

1.680

2.329
2.306
2.250
2.167
2.072
2.024
1.937
1.866
1.812

TABLE m. - NONDIMENSIONALIZED RADIAL STRESS ar/vQ FOR

SOLID CYLINDRICAL BAR WITH PENNY-SHAPED CRACK

UNDER UNIFORM NORMAL TENSION

[a = 1. 0, b = 1. 77, L = 1. 68 (16 axial and 13 radial lines)]

f**J
z

0.00
.28
.56
.84

1.12
1.40
1.68

r

0.000

-1.060
-.479
-.148

.0211

.127

.246

.470

0.235

-1.043
-.451
-.141

.0144

.116

.230

.429

0.471

-1.017
-.375
-.123

.002

.093

.193

.352

0.706

-0.883
-.270
-.124
-.0251

.058

.142

.247

0.941

-0.522
-.262
-.155
-.058

.023

.088

.136

1.060

1.134
-.138
-.150
-.065

.009

.064

.085

1.244

0.376
-.095
-.113
-.056
-.004

.028

.008

1.530

0.116
-.017
-.044
-.026
-.003

.012
-.021

1.770

0.000

14



TABLE IV. - NONDIMENSIONALIZED CIRCUMFERENTIAL STRESS

FOR SOLID CYLINDRICAL BAR WITH PENNY-SHAPED CRACK

UNDER UNIFORM NORMAL TENSION

[a = 1.0, b = 1. 77, L = 1. 68 (16 axial and 13 radial lines)]

z

0.00
.28
.56
.84

1.12
1.40
1.68

r

0.000

-1.060
-.479
-.148

.021

.127

.246

.470

0.235

-1.061
-.461
-.138

.023

.124

.23

.45

0.471

-1.047
-.401
-.106

.032

.120

.218

.401

0.706

-0.986
-.291
-.055

.047

.113

.191

.333

0.941

-0.790
-.112

.011

.062

.104

.160

.257

1.060

0.909
.108
.049
.067
.099
.144
.220

1.294

0.125
.015
.037
.062
.086
.116
.154

1.530

-0.020
-.023

.022

.055

.075

.096

.112

1.770

-0.108
-.051

.024

.057

.064

.072

.089

TABLE V. - NONDIMENSIONALIZED AXIAL STRESS <JZ/VQ FOR

SOLID CYLINDRICAL BAR WITH PENNY-SHAPED CRACK

UNDER UNIFORM NORMAL TENSION

[a = 1. 0, b = 1. 77, L = 1. 68 (16 axial and 13 radial lines)]

rv

z

0.00
.28
.56
.84

1.12
1.40
1.68

r^j
r

0.000

0.000
.095
.277
.515
.736
.900
.999

0.235

0.000
.093
.295
.542
.759
.915
.998

0.471

0.000
. 146
.386
.624
.808
.933
.999

0.706

0.000
.319
.592
.770
.885
.960
.999

0.941

0.000
.874
.950
.957
.972
.990

1.000

1.060

3.320
1.513
1.150
1.041
1.010
1.003
.999

1.294

1.512
1.365
1.23Q
1.122
1.059
1.022

.995

1.530

1.206
1.201
1.186
1.136
1.082
1.036
.993

1.770

0.989
1.082
1.172
1.159
1.092
1.037

.990

15



2.5

2.0

1.5

1.0

.50

0'

hr = 0.1176

hz = 0.140

I

2.5

2.0

1.5

1.0

.50

0

(a) Dimensionless axial displacement distribution (16 by 13
grid).

v = ] / 3

hr = 0.222

hz = 0.210

.4 1.2 1.6 1.8

(b) Dimensionless axial displacement distribution <9 by 9 grid).

Figure 3. - Dimensionless axial displacement distribution
for solid cylindrical bar with penny-shaped crack.

distribution should approach infinity near the crack edge as the inverse square root of
the distance from the crack edge. Establishment of this type of singularity is, however,
difficult when numerical methods are used because values of the normal stress are
needed within a distance of 0.05 a or less from the crack tip. For the range of i-
shown in figure 5, this inverse square root singularity is not defined. However, for the
range shown, the obtained stress curve closely resembles Sneddon's solution (ref. 15).
As expected, the absolute value of this stress is greater for a finite size bar than for
Sneddon's infinite solid. Tables I to V show selected results from the computer listings.
The accuracy of the normal stress and displacement boundary conditions can easily be
noted from the numerical data listed.
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Figure 4. - Dimensionless radial displacement distribution
for solid cylindrical bar with penny-shaped crack.
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Figure 5. - Dimensionless axial stress distribution (16 by 13 grid)
for solid cylindrical bar with penny-shaped crack at 7= 0.
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Figure 6. - Dimensionless crack opening displacements for
solid cylindrical bars with penny-shaped cracks of various
lengths and radii.

1.4

Data from figure 6

Sneddon and Welch,
v - 1/3, L - oo

Figure 7. - Dimensionless maximum crack opening as
function of crack to cylinder radius ratio.

Annular Plate with Internal Surface Cracks

As a first attempt at the solution of a general three-dimensional problem in cylin-
drical coordinates, the problem of figure 8 was investigated. In order to minimize the
numerical computations, we have assumed four symmetrically located internal surface
cracks. Because of the symmetric geometry and loading, only one-sixteenth of the
original plate has to be discretized. Figure 9 shows this region of interest and the as-
sumed crack geometry. Note that nondimensionalization with respect to the outside
radius is more convenient in this case since the crack has two characteristic dimensions.

Displacement and normal stress distributions were calculated along the lines of
figure 9 using a grid of 16 lines in all directions. Because of the relatively coarse grid
involved, the results appear only in tabular form (tables VI to XI). It must be noted,
however, that because of the unknown nature of the resulting solutions, the use of a
coarse grid is always recommended in generating the first set of displacements. Since
the construction of a general computer program for this problem requires a great
amount of effort, the results in tables VI to XI were calculated by using only one set of
lines with NR = N6> = NZ = 4.

Tables VI to Vm contain the dimensionless displacement distributions. These re-
sults show that below the crack plane the circumferential displacements are essentially
zero while the maximum crack opening is at "e = z =0 and r^ 0. 25. Although both
radial and circumferential displacement fields are extensional, the axial displacements
are negative, which indicates a contraction in that direction. The calculated normal

18



\-Four equally spaced
internal surface cracks

Figure 8. - Annular plate with internal surface cracks under uniform external tension.

t> = 1.0

70-0.25

0 = 0.625

d = 0.15

Figure 9. - Part of annular plate with internal surface cracks.

19



TABLE VI. - DDHENSIONLESS RADIAL DISPLACEMENTS

Eu/aQb FOR ANNULAR PLATE WITH INTERNAL

SURFACE CRACKS UNDER UNIFORM RADIAL

TENSION ON OUTSIDE SURFACE

«,
deg

r

0.25 0.50 0.75 1.00

z = 0. 00

0
15

30
45

0.435
.940
.168

1.240

0.671
.890
.992

1.026

0.786
.896
.968
.994

0.930
.998

1.058
1.081

z = 0. 10

0
15

30
45

0.506
.907

1.092
1.152

0.680
.860
.953
.986

0.789
.886
.957
.984

0.930
.994

1.055
1.076

"z = 0 . 2 0
0

15

30
45

0.724
.795
.898
.942

0.656
.761
.856
.892

0.779
.856
.932
.961

0.927
.965

1.048
1.073

z = 0 . 3 0

0
15

30
45

0.716
.752
.815
.845

0.659
.727
.809
.843

0.769
.845
.926
.957

0.915
.978

1.049
1.077
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TABLE VII. - DIMENSIONLESS CIRCUMFERENTIAL

DISPLACEMENTS Ev/aQb FOR ANNULAR PLATE

WITH INTERNAL SURFACE CRACKS UNDER

UNIFORM RADIAL TENSION ON

OUTSIDE SURFACE

z ~d, deg

0 15 30 45

r =0.25

0.00
.10
.20
.30

0.718
.592
.000
.000

0.566
.450
.073
.009

0.302
.238
.063
.012

0.000

1

T

7 =0 .50

0.00
.10
.20
.30

0.425
.350
.000
.000

0.285
.232
.075
.023

0.138
.115
.057
.026

0.000

1
T

r =0 .75

0.00
. 10
.20
.30

0.000

V

0.037
.033
.023
.014

0.029
.026
.020
.014

0,000

1

r =1.00

0.00
. 10
.20
.30

0.000

1
T

0.006
.007
.009
.010

0.004
.005
.007
.007

0.000

r
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TABLE VHI. - DIMENSIONLESS AXIAL DISPLACEMENTS

Ew/aQb FOR ANNULAR PLATE WITH INTERNAL

SURFACE CRACKS UNDER UNIFORM RADIAL

TENSION ON OUTSIDE SURFACE

fv

T "z

0.00 0.10 0.20 0.30

0=0°

0.25
.50
.75
1.00

0.000

1
1

-0.218
-.108
-.089
-.076

-0.342
-.217
-.175
-.152

-0.416
-.322
-.256
-.226

"e =15°

0.25
.50
.75
1.00

0.000

1
T

-0.098
-.049
-.075
-.074

-0.216
-.131
-.154
-.149

-0.336
-.232
-.237
-.226

"e =30°

0.25
.50
.75
1.00

0.000

1
t

-0.068
-.040
-.067
-.075

-0.167
-.106
-.141
-.152

-0.281
-.195
-.222
-.231

6 =45°

0.25
.50
.75
1.00

0.000

1
f

-0.061
-.039
-.065
-.075

-0. 153
-.101
-.137
-.153

-0.262
-.186
-.218
-.233
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TABLE DC. - DEMENSIONLESS RADIAL STRESS

DISTRIBUTION <JT/VQ FOR ANNULAR

PLATE WITH INTERNAL SURFACE

CRACKS UNDER UNIFORM

RADIAL TENSION ON

OUTSIDE SURFACE

0,
deg

r

,0.25 0.50 0.75 1.00

Is =0.00

0
15
30
45

0.000

1

T

0.020

.346

.293

.282

1.062
.837
.748
.726

1.000

1

I

'z =0.20

0
15
30
45

0.000

1
t

0.027

.405

.424

.424

1.048
.872

.801

.783

1.000

1

If
z =0.10

0
15
30
45

0.000

1
\

1.305

.968

.840

.801

1.026
.980
.932
.915

1.000

1

"z = 0.30

0
15
30
45

0.000

1
T

0.872

.950

.966

.956

1.005
1.004
.986
.975

1.000

1
T
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TABLE X. - DIMENSIONLESS CIRCUMFERENTIAL

STRESS afl/a FOR ANNULAR PLATE WITH
u O

INTERNAL SURFACE CRACKS UNDER

UNIFORM RADIAL TENSION ON

OUTSIDE SURFACE

e,
deg

"r

0.25 0.50 0.75 1.00

z = 0. 00

0

15

30

45

0.000
.308
.209
.240

0.000
.803

1.043
1.145

1.702
1.542
1.460
1.441

1.251
1.339
1.416
1.443

z = 0. 10

0

15

30

45

0.000
.703
.803
.863

0.000
.957

1.196
1.270

1.659
1.534
1.472
1.456

1.246
1.331
1.410
1.439

z =0 .20

0
15

30
45

4.569
3.609
2.971
2.748

2.821
2.011
1.706
1.629

1.506
1.526
1.506
1.498

1.236
1.313
1.400
1.432

z = 0 . 3 0

0
15
30
45

3.050
3.110
3.171
3.167

1.858
1.879
1.825
1.775

1.442
1.500
1.523
1.524

1.220
1.301
1.397
1.432
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TABLE XI. - DIMENSIONLESS AXIAL STRESS az/aQ

FOR ANNULAR PLATE WITH INTERNAL SURFACE

CRACKS UNDER UNIFORM RADIAL TENSION

ON OUTSIDE SURFACE

r^i

e,
deg

r

0.25 0.50 0.75 1.00

z =0 .00

0
15

30
45

-1.974
-.939
-.631
-.544

-1.049
-.126

.041

.082

0.030
.043
.064
.070

-0.014
.040
.060
.062

z =0.10

0

15

30
45

-1.59T
-.867
-.579
-.487

-1.073
-.210

.006

.055

0.028
.032
.053
.059

-0.010
.031
.046
.048

z = 0 . 2 0

0

15

30
45

0.500
-3.135
-.077
-.097

0.313
-1.996

.070

.073

0.002
-1.504

.039

.042

-0.004
-1.310

.019

.020

z =0 .30

0
15

30
45

0.000

1
1
1

0.000

1
1
t

0.000

I '

0.000

1
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stresses are summarized in tables IX to XI. It is expected that the circumferential
stress be the maximum tensile stress in the body since the crack plane is normal to this
coordinate. The interaction between the hole and crack stress fields should also be most
pronounced at the inside radius; from this we conclude that the stress should be maxi-
mum at that point. The results of table X seem to confirm these observations, although
we must also remember that the nodes are closer to the crack boundary below the crack
surface than along the radius.

Because of the use of a coarse grid, the numerical results for this example are
somewhat inaccurate in magnitude but they do indicate some previously unknown varia-
tions in the stress field for this problem. This conclusion is possible in that the line
method does not usually require a fine grid for good results as was shown in the previ-
ous section. These results also demonstrate that the method of lines permits the com-
putation of the displacement and stress fields for a general three-dimensional problem.

STRESS INTENSITY FACTOR

It is customary in fracture mechanics to describe the plane elasticity crack opening
displacement as a superposition of three basic deformation modes (ref. 14). In terms
of the stress intensity factor for the opening mode Kj, the plane elasticity crack dis-
placements near the crack tip are given by (ref. 14)

= 2(* " ") KT t/— Plane strain (31)
-° G I f 2?r

_ plane stress (32)
2ir

Since three-dimensional problems are neither in a state of plane strain nor plane stress,
the definition of a stress intensity factor for these problems must be first established.
The problem we consider in detail is Sneddon's penny-shaped crack solution. Refer-
ence 15 gives the crack opening displacement as

. 4crn(l - v2) J~<> o
w z - 0 = — ~ Va 2 - r 2 (33)

Z~U 7TE

which for small values of R, where R = a - r, becomes
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4or0(l - l/) ,
w| 0 = — V2aR (34)

TrE

Note that adjustment of coordinates must be made between the equations quoted from
references 14 and 15. Paris and Sih (ref. 14) list the stress intensity factor for this
problem as

O I—

(35)

In terms of this stress intensity factor, the crack opening displacement (eq. (34))
becomes

w|z_0 = ̂ *SLL£J™**!±J*^J* (36)
z~° l E M n G 1 T 2 7 T

Rearranging this equation in terms of the known dimensionless displacements
(E/a0)(w/a) gives

z=0

_E_ w

E
ao

(37)

where

Cj = ̂  " v > (38)
E V27ra

Then a plot of equation (37) as \R/a — 0 gives the desired value of (E/<TQ)CjKj from
which an equivalent stress intensity factor for finite geometry cylinders can be calcu-
lated. Note from equation (36) that the definition of Ky given in equation (35) implies
the plane strain crack opening displacement of equation (31).

For problems in which the crack opening displacement varies in the thickness direc-
tion, such as the annular plate with internal surface cracks, the stress intensity factor
obtained previously will be a function of the thickness variable. However, if we were to
account for the nonplane strain conditions near the surface by using equation (32) or a
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corrected equation (31) for the definition of K,, the stress intensity factor would become
a constant across the thickness by definition. It should be noted that this description of
Kj is completely arbitrary and its significance in three-dimensional elasticity theory is
of doubtful value. However, values of Kj are still presented so that a comparison will
be possible between the calculated results and the published plane strain solutions
(ref. 14).

Figure 10 contains the calculation of K, according to equation (37) for the penny-
shaped crack problems. The value of K calculated from Sneddon's solution agrees

2

a = 1.0

b=1.77

1=1.68

v-1 /3

Intercept = 2. 1

hr - 0. 1176
h • 0. 140

---- Extrapolated

4(1 - v2)~

[ntercept -1.6

1.13o0Va

0 .2 .4
R/a

.6 1.0

Figure 10. -Calculation of the stress intensity factor Kj fora
solid cylindrical bar with a penny shaped crack (16 by 13 grid).

with equation (35), while for the finite size bar we obtain a value of Kj equal to 1. 485
(TQ-^a. Hence, the finite bar discussed in figure 10 has an approximately 31 percent
higher stress intensity factor than the infinite solid.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, February 22, 1973,
501-21.
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APPENDIX A

SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

WITH VARIABLE COEFFICIENTS

Noting that the differential operator of equations (15) can be written as d/di-[l/i- x
d/d'r ("ru)], the following variables are introduced in order to obtain a system of first-
order differential equations:

r dr

U« = r u., U9 = r u9, . . . , U, = r u

LA.
r dr

In terms of these variables, equations (15) can be written as

!_d_

"r d i-

(Al)

where

= A( r ) U r ( r )
dr

21 x 1 21x21 21 x 1 21 x 1

A ( r ) =
21 x 21

0
I x

rl
I x i

0

I x ZJ

(A2)

(A3)

r ( r ) =
21 x 1

I x 1

r ( r )
I x 1

(A4)

Following the Peano-Baker form of integration (ref. 16), the solution of equation (A2) is
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r1

U ( r ) = n n ( A ) u(°) + fin (A) / lnn(A) ^(TJ) drj (A5)

2 l x l 21*2121*1 2 1 X 2 1 2 1 X 2 1 2 l x l

where vector U(0) consists of the boundary values of (r u) and [l/r'd/d'r (r u)3 at the
initial value of r" which is taken as zero in this case. The matrizant of A(r*) is an
infinite matrix integral series given by

(A) = I + Afaj) dTjj + A(TJ2) drj2

dTJ2 A(»?I) * » ! + • • • (A6)

Substituting matrix A(r ) into equation (A6) leads to the following four matrix integral
series in terms of the coefficient matrix K(i-):

n ( r ) = I + I Tj I d77 I J _ K ( T j ) d 7 ] + . . . (A7)

/

r

11

o
lx I ix l ix l ix I

•r

n 1 9 ( r ) = i'12

x l lx I
I'JQ

"r /*Tj3 rn
I TJ3d7J3 / -1 Kr(T?2)dT72 I

«/o 7?2 «A)
(A8)
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A
I x Z Z x Z

rr
• I -
Jo "3

P2!

I *

+ . . . (A9)

Z x Z Z x Z Z x Z

pi rI — K (7]2) dr)2 I
/ 77o /

»/0 «/0

(A10)

Z x Z Z x Z Z x Z Z x Z

An inspection of these equations shows that the following relations exist among these
four matrix integral series:

~r dr

dr
= n n ( r )K r ( r )

(All)

*r dr

dr

(A12)

From the definitions of these matrix series we can easily conclude that their initial
values are
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(A13)

= 1

Since the matrix series (A7) to (A10) are usually difficult to evaluate by performing the
indicated integrations, the previous simultaneous matrix differential equations may be
solved by a suitable numerical technique instead. The necessary initial conditions for
these numerical solutions are given by equations (A13). For the examples presented in
this report, the single step Runge-Kutta integration method was used to solve equa-
tions (All) and (A12).

The particular integral of equation (A5) is written as

I x 1

B2(r)

I x 1

(A14)

In evaluating the inverse of fi by partitioning, the partitioned integrals (A 14) are given
by

/*T*

B1(r ) = - J nnn12( *? (A15)

B2(r ) =

r*j•r 1

rfa) (A16)

If it is assumed that r(r/) is known, the previous particular integrals can easily be eval-
uated. When the partitioned form of the matrices is used, equation (A5) may be written
as
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r u

r dr

» =

f^f t^>

p21(r) «22(r_)

/

\

r u

r dr

r r~7l\

B 2 ( r ) j l
(A17)

r=0

from which the solution vectors (18) and (21) can be directly constructed.
It may be noted that for axisymmetric problems the following identities can be used

to evaluate the particular integrals:

-1

-1
(A18)

These identities are obtained from noting that the inverse of the matrizant OQ (A) is
given by

(A19)

when the coefficient matrix is of the form (A3) and the matrix K_ has constants for its
elements.
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APPENDIX B

SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

WITH CONSTANT COEFFICIENTS

For the solution of equations (16) we introduce the following new variables:

V l = v l ' V2 = V2' • • • '

dv, dv2
W ' ' '

dvm
(Bl)

In terms of these variables, equations (16) can be written as a set of first-order differ-
ential equations. Hence, we have

where

dV
r*j

d0
V + s ( 0 )

2m x 1 2m x 2m 2m x 1 2m x 1

2m x 2m

0 I
m x m m x m

Kg 0
_m x m m x m.

2m x l
mx 1

(B2)

(B3)

(B4)
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The solution of equation (B2) is well known and can be written as (ref. 16)

V(0) + eA° / e-™> s(r/) dr?

2m x 1 2m x 2m 2m x 1 2m x 2m 2m x 2m 2m x 1

(B5)

where V(0) is an initial value vector whose evaluation from given boundary conditions is
A Sdiscussed in appendix C and e is a matrix series given by

1! 2!
(B6)

In terms of the coefficient matrix K0, equation (B6) yields

i=0

00

y
/^
i=0

(2i + i): B

i=0 i=0

(B7)

2m x 2m

* */x/ /"" \A n (0 ) A1 2(e)
m x m m x m

>21(0) A 22^ 6 ^

_m x m m x m.

<B8)

From equations (B7) and (B8) we note that

(B9)

(BIO)
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(Bll)

1/2where K/ is a matrix whose square is equal to Kg. Noting that A..., and Aon are
even functions of ?) while A12 and A«^ are odd functions of 1) , the inverse of

becomes

.-A0
-A12(0)

A22C0)

(B12)

A

Substituting equations (B8) and (B12) into the identity of e e • e = I yields

A2
n(~e)- (B13)

m x m m x m m x m

Matrix functions (B9) and (BIO) may be evaluated for each value of the independent vari-
able from the series definitions given in equation (B7). The truncation point in each
series is determined by the required accuracy for the convergence of the successive
approximation calculations. Equation (B13) may be used as a measure of this required
accuracy. However, for increasing values of 7) serious convergence difficulties may
arise and an impractically large number of terms must be calculated. In order to avoid
these computational difficulties, additive formulas for these matrix functions may be
obtained from using the identity of

= e
A^+'Sg)

(B14)

In terms of the submatrices A(6 ), this identity yields the following equations:

A21< (B15)

A12(e1 (B16)

The advantage of using equations (B7), (B15), and (B16) is that the solution of an eigen-
value problem is not required. Alternate methods for the evaluation of these matrix
functions using the solution of the determinantal equation are discussed in reference 6.

The particular integrals of equations (16) are constructed in a similar manner to
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those listed in equations (A15) and (A16). The analogous particular integrals are

m x l

s(rj)

m x m m x 1

(B17)

r*s

/

Q
A n (0) 8(77) (B18)

m x 1 m x m m x 1

Assuming that 3(77) is known, these integrals can easily be evaluated. When the parti-
tioned form of the matrices is used, solution vector (B5) for the circumferential differ-
ential equations may be written as

A n(0) A12(0)i

A21(0) A2 2(0)

which when expanded yields equations (22) and (27).

(B19)
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APPENDIX C

DEVELOPMENT OF INITIAL VALUE VECTORS

Since the problems discussed in this report are two point boundary value problems,
the initial values of both the displacements and their derivatives are usually not avail-
able. As an example of how to obtain these initial values from given boundary conditions,
consider the problem of figure 2 in more detail.

From the definition of vector F* and the symmetry of the problem, we can imme-
diately conclude that

I x 1

The zero normal stress boundary condition on the surface r = b will be used in con-
junction with equation (Cl) to evaluate the vector F2 for this problem. Using equa-
tion (5) gives

/~ . \
(C2)

+ 2G\b

Equation (18), taken at r = b, can be used to eliminate the vector u | ~ _y in equa-
tion (C2). The resulting equation for the vector u ~_r can then be substituted into
equation (21), which is also evaluated at r =b, to find the vector Fg. The results of
these manipulations are

F« =—-— nr w |~r - nr n_B. , (b) - B9(b) (cs)
* X + 2G ° ° ° a i

where

(X + 2G)b2

(X + 2G)b2

(C4)

(C5)

Note that by using L'Hospital's rule as r - 0 the solution vectors (18) and (21) for the
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problem in figure 2 become

u (0) = 0

(C6)

Since for axisymmetric problems the circumferential displacements are inherently
zero, the initial value vectors of the axial solutions will be considered next. An analo-
gous solution to equations (22) and (27) along the z-directional lines can be written as

A ( z ) A ( z )n 12

(C7)

If the number of axial lines falling over the crack surface is denoted as NIC and those
falling outside as NOC, the zero normal stress condition over the crack face and the
symmetry condition in the crack plane result in the following equations:

w(0) = -

NICx 1
X + 2 G \ r / ~ = Q

inside crack

(C8)

NOC x 1 outside crack

(C9)

Assuming that on the face z = L we have a uniform tensile stress of
figure 2, the normal stress boundary condition on this plane gives

as shown in

w (L ) = •
X + 2G X + 2G

nx 1

(CIO)

This vector can be suitably partitioned into vectors w a (L) and w«(L) . For conven-
NIC x 1 NOC x 1

ience of matrix manipulations, we construct the vectors as follows:
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w(0)
nx 1

w(0)
nx 1

NICx 1

'5/3
NOCx 1

NICx 1

6/3
NOCx 1

(Cll)

Values of Fga and Fgg are given by equations (C8) and (C9), respectively. From
equation (C7) we can express w (L) in a partitioned form consistent with equation (Cll)
as

I, -, r > \
w«

NICx 1

W o

NOCx 1 z=L

A A
01x1 *^'

NIC x NIC NIC x NOC

A21/31 A21j32
NOC x NIC NOC x NOQ z=L

NICX 1

NOCx 1

NICx 1

NOCx 1

NIC x NIC NIC x NOC

22/31
NOC x NIC NOC x NOC z=L

NICx 1

r-w ^

z=L

NICx 1

£TOCx

(C12)

Equation (C12) leads to two matrix equations involving the two unknown vectors Fg
and F. A solution of these equations yields
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/>*/

u

X + 2G

NOCx 1
z=L

NOC x NOC NOC x 1 NOC x NOC NOG x 1 NOC x 1

X + 2G Si A21/31 A21al CTOar

NOC x NOC NOC x NIC NIC x NIC NIC x 1
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where

(C13)
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NOC x NOC NOC x NOC NOC x NIC NIC x NIC NIC x NOC

•( A2lal A22al =L
NOC x NIC NOC x NIC NOC x NIC NIC x NIC NIC x NIC

(CIS)

(C16)

Note that the particular integrals, the applied stress vector, and the radial displace-
ments and their derivatives are also partitioned according to their location with respect
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to the crack.
The crack opening displacement is given by

A + 2G

NICx 1

- X A
u

u« +
a

z=L
NIC x NIC NIC x 1 NIC x NIC NIC x 1 NIC x 1

- B L - l
A21al A22a221a2 5

NIC x 1 NIC x NIC NIC x NOC NOC x 1 NIC x NIC NIC x NIC NIC x 1

X + 2G
A2lQil A22al | ua +

u
Q!

z=0
NIC x NIC NIC x NIC NIC x 1 NIC x 1

_1 -i

NIC x NIC NIC x NOC NOC x 1 NIC x NIC NIC x NOC NOC x 1

B6/3(L) (C17)

where Fgg is given by equation (C13). Although the matrix A2j(L) is singular, the
partitioned matrices are not. In calculating the previous equations the indeterminate
terms at r = 0 must be carefully considered.
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