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SYMBOLS

a lift-curve slope

A cross-section area of blade, m2

^i ~ ̂ ijk Galerkin integrals, equation (55)

b number of blades

c blade chord, m

c^ drag coefficient

D drag per unit length, N/m

e longitudinal strain

E Young's modulus, N/m2

rR
I blade inertia integral, / mx2 dx, kg-m2

o

area moment of inertia, I I z dA, m4

area moment of inertia, / / y' dA, m4

EA
K longitudinal stiffness parameter,

L lift per unit length, N/m

Lx, Ly, LZ components of generalized nonconservative forces per unit length, N/m

m blade mass per unit length,,kg/m

«!, «2, «3 unit vectors in x, y, z'>coordinate system
'^. ' ' '

A^ number of assumed beriepng modes
'•^ X

Q nonconservative force vector, N
YiV

r position vector of point on blade

111



R length of blade, m

Sjj, TJJ terms involving Galerkin integrals, equation (56)

t time, sec

*T kinetic energy, kg'm2 /sec2

u, v, w radial, lead-lag, and flap displacements of elastic axis, figure 1

Up fluid velocity component relative to blade cross section and perpendicular to plane of
rotation, figure 3, m/sec

U-p fluid velocity component relative to blade cross section and parallel to plane of rota-
tion, figure 3, m/sec

v inertial velocity of a point on blade

Vf induced velocity, m/sec

V Up
2 + U2 , m/sec

x, y, z rotor blade coordinate system, x coincident with elastic axis of undeformed blade,
figure 1

X, Y, Z rotating coordinate system, figure 1

y', z blade cross section principal axes, figure 2 ;

/?.• generalized flapping coordinate, equation (5 1 )

|3pC pre-cone angle, rad, figure 1

7 lock number, -

5 W virtual work of nonconservative forces

e longitudinal strain at the elastic axis, equation (2Id)

?y generalized lead-lag coordinate, equation (51)

6 blade pitch angle, rad

Aj dimensionless flapwise bending stiffness parameter,

iv



'EI2
A2 dimensionless chordwise bending stiffness parameter,

x
£ dimensionless radial coordinate, -

R

p blade density, kg/m3

p air density, kg/m3

be
o solidity, —

TrR

T dimensionless time, fif

V aerodynamic inflow angle, figure 3

coy, fj mode shape parameters, table 1

CJ^ first nonrotating flap frequency, coi2A1 ( rad/sec

cov first nonrotating lead-lag frequency, o^2 A2, rad/sec

cog, cov imaginary part of eigenvalue for first flap and lead-lag bending modes, rad/sec

fi rotor blade angular velocity, rad/sec

On, a> real part of eigenvalue for first flap and lead-lag bending modes

( )Q equilibrium quantity

A( ) perturbation quantity

d(
dr

( ) quantity made dimensionless by m$l2R for force per unit length, R for length, SIR
for velocity, and O for frequencies and eigenvalues



NONLINEAR EQUATIONS FOR BENDING OF ROTATING BEAMS WITH

APPLICATION TO LINEAR FLAP-LAG STABILITY OF

HINGELESS ROTORS

Dewey H. Hodges and Robert A. Ormiston

Ames Research Center
and

U. S. Army Air Mobility R & D Laboratory
Moffett Field, California 94035

SUMMARY

The nonlinear partial differential equations for the flapping and lead-lag degrees of freedom of
a torsionally rigid, rotating cantilevered beam are derived. These equations are linearized about an
equilibrium condition to study the flap-lag stability characteristics of hingeless helicopter rotor
blades with zero twist and uniform mass and stiffness in the hovering flight condition. The results
indicate that these configurations are stable because the effect of elastic coupling more than com-
pensates for the destabilizing flap-lag Coriolis and aerodynamic coupling. The effect of higher bend-
ing modes on the lead-lag damping was found to be small and the common, centrally hinged, spring
restrained, rigid blade approximation for elastic rotor blades was shown to be reasonably satisfactory
for determining flap-lag stability. The effect of pre-cone was generally stabilizing and the effects of
rotary inertia were negligible.

INTRODUCTION

Helicopter rotor blades that are cantilevered to the rotor hub can substantially improve
helicopter flying qualities by increasing rotor control power and angular damping. This type of rotor
is known as a hingeless rotor because it lacks the flapping and lead-lag hinges found on conventional
articulated rotors. The absence of such hinges requires the blades to bend elastically in two direc-
tions: perpendicular (flapping) and parallel (lead-lag) to the plane of the rotor for centrifugal relief
of aerodynamic forces. In general, the bending deflections are also accompanied by torsional
deformations of the blade.

Although experience with hingeless rotors is not extensive, previous research has indicated that
for certain configurations, the coupling between the flapping and lead-lag degrees of freedom may
result in unstable oscillations (refs. 1 and 2). This condition is known as flap-lag instability. It is a
restricted case of the general hingeless rotor blade stability problem because the torsion degree of
freedom is not included. This restricted problem is quite useful, however, because it gives consider-
able insight into the coupling mechanisms of flap-lag motion which can contribute to rotor blade
instabilities. These coupling mechanisms are primarily due to the combination of aerodynamic



and inertial coupling (Coriolis and centrifugal), which is essentially proportional to the mean flapping
or coning of the rotor blade. Since the coning increases with rotor thrust, flap-lag stability is of most
interest for moderate to high thrust conditions. The Coriolis and centrifugal inertial forces are basi-
cally nonlinear but can be linearized for small oscillations about the mean flapping and lead-lag
deflections.

The prominent feature of previous research (refs. 1 and 2) is a method of approximating the
continuous elastic bending deflections of a hingeless rotor blade with a centrally hinged, spring
restrained, rigid blade. Such an approximation reduces the problem from one of partial differential
equations to one involving only ordinary differential equations. The solutions then become simpler
to obtain and the results are somewhat easier to interpret in physical terms. Another important
reason for using the approximate rigid blade representation is that equations suitable for the elastic
bending of rotating beams including the nonlinear effects noted above have not been available,
whereas the nonlinear rigid blade equations are relatively easy to derive. The most general linear
treatment for the elastic rotating beam may be found in reference 3.

The purpose of the present report, therefore, is to derive a suitable system of nonlinear
equations for the flapping and lead-lag bending degrees of freedom of a torsionally rigid, rotating
cantilever beam. A general treatment of the nonlinear inertial forces requires an additional degree
of freedom for radial deflections of the blade and use of a nonlinear radial strain equation valid for
large bending deflections. The radial degree of freedom is ultimately expressed in terms of the two
bending deflections so that the final equations contain only the two primary degrees of freedom. A
procedure for linearizing the equations about a particular equilibrium condition is given and results
for the stability of various untwisted rotor blade configurations with uniform mass and stiffness are
presented in the hovering flight condition. In addition to revealing the stability characteristics of
elastic hingeless rotor blades, these results will also serve to establish the accuracy of the common
rigid blade representation of a hingeless rotor blade.

One result of reference 2 indicated that flap-lag instabilities were highly sensitive to the elastic
coupling between the flap and lead-lag degrees of freedom. For the rigid blade representation, this
coupling could be controlled by varying the orientation of the flap and lead-lag restraint springs at
the blade hinges. For the actual elastic blade, the analogous elastic coupling effect is dependent on
the orientation of the elastic principal axes of the rotor blade cross section and the radial distribution
of bending stiffness. The results of reference 2 showed that when the restraint springs of the rigid
blade model were configured to represent untwisted, uniform stiffness cantilever blades, the flap-lag
instability was suppressed. Since the present numerical results are restricted to uniform untwisted
blades, it is expected that unstable oscillations will not be encountered. However, in addition to
flap-lag stability, the damping of the lead-lag bending motion is of considerable practical importance
because the inherent aerodynamic and structural lead-lag damping of hingeless rotors is very small.
This leads to potentially high fatigue stresses and vibration, and increases the susceptibility of the
helicopter to coupled rotor-airframe instabilities. The results to be presented will compare lead-lag
damping of the rigid blade representation with the elastic blade and examine the sensitivity of the
elastic blade damping to the number of bending modes included.



EQUATIONS OF MOTION

The equations of motion for a rotating cantilevered beam, rigid in torsion, are derived using
Hamilton's variational principle. They include three nonlinear equations for radial, lead-lag, and flap-
ping displacements, u, v, and w, respectively. Aerodynamic forces are represented as a distributed
generalized loading and are derived from simple quasi-steady strip theory. The initial derivation is
valid for beams with variable mass and stiffness properties, pre-cone, and twist; however, for the pres-
ent purposes it is sufficient to consider only untwisted configurations with uniform mass and stiff-
ness. The resulting nonlinear equations can be linearized for small perturbations about a steady-state
operating condition. This enables the radial displacement u to be eliminated from the equations of
motion leaving only the primary flap and lead-lag displacements. The final perturbation equations
are linear variable coefficient integro-partial differential equations, which are solved by Galerkin's
method.

Variational Formulation

Coordinate systems— The X, Y, Z coordinate system, figure 1, rotates with constant angular
velocity about the Z axis and its origin is fixed in inertial space. The plane of rotation is defined by
the X, Y axes. The position of a beam S
is defined in a second x, y, z coordinate
system, with the x axis coincident with
the undeformed position of the beam and
rotated about the Y axis through an angle
|3C, the pre-cone angle.

The displacements of the beam
elastic axis u, v, w are defined along the
unit vectors «i, n2, n3, which are parallel
tox, y, z, respectively. The beam is canti-
levered at the origin and the elastic
axis, aerodynamic centers, and mass cen-
ters are coincident with the x axis in the
undeformed state. The beam pitch angle
9, which defines the orientation of the
cross section principal axes y' and z', is
shown in figure 2. For an arbitrary dis-
placement, the position vector of a point
on the beam will be

/• =
dv

(V (1)

Y,y,v

Beam, St shown undeformed

Figure 1.- Coordinate systems.

Figure 2.— Blade cross-section coordinate system.



This equation assumes that squares of bending slopes are negligible with respect to unity and
that plane sections remain plane. The radial elongation of the beam du/dx is assumed to be of order
(9v/9x)2 and (9w/9x)2 and thus can also be neglected with respect to unity. Similar reasoning applies
to terms of order (y/R)2 and (z/R)2.

Kinetic energy— The velocity of a point on the blade with respect to inertial space is

- t = — + n x ? (2)
o^

The first term is the velocity with respect to the rotating x, y, z coordinate system.

sr_ /9«
S t ~ \ d t ~ -

92v 92w\_, 9v _> 9w _>
Z )«1 + — «2 + «3 (3)

* 2 38 t \ d t d x d t d x 9 / / 9 / 9 ?

The second term due to the coordinate system rotation is

= -to cos j3 c(v +y)n1 + \ £1 cosr / 3v QW\fi cos ̂ hc + u -y — - z — J

«,- n sin / J c (w + z) | «2 + n sin 0DC0 + y)«3 (4)

The velocity is therefore

-, f9u 92
v= -

^ 9* 9? 9*

92w1->
-— • «!
9* 9f J

[9v / 9v 9w\ 1^
--fncos^ + u -y - - z —j-ns in^ c (w + z ) Jn 2

The kinetic energy is

T=- I I pwdxdydz (6)



and its first variation is

bT = J j f p v • S v d x d y d z (7)

where

925v 925w

95v 35w
— -z

(8)p

From the cross section geometry of figure 2

j> = y cos 0 - z' sin 0
(9)

z =y sin0 +z' cos0

Substituting equations (5), (8), and (9) into (7) yields the following expression for ST. All
quantities of order (9v/9x)2 are ignored with respect to one.

/

•** I f *\ \ *\ c i*\ \ ^ C| / 9 u \ ddu lav \o5v
m { \ nv cos &nr I +| — + iix cos /?„,, + i2w cos pnr - fiw sin j3n- J -—I I ^ + P(> I ^t \ %t rpc PL. pc I ^f\ \dt F / dt \dt f f / at

o

(9vv \ 95w r dv "1
— + fiv sin (3DC I + — + £l(x + «)cos &DC - fiw sin |3,jC fi cos pvcou
ot " i ot L J

+ "v sin sin " ~ v cos cos

[3 n
— + fi(;c + M)COS /5pc - ftw sin /3pc flM)COS /5c - ftw sin /3c fl sin /3 c 6w d^: (10)

where

y'dz' (11)



Note that due to symmetry properties of the cross section, the following integrals are equal to
zero

ffy' dy' dz', ffz' Ay' dz', ffy'z' dy' dz'

Because higher order terms were discarded, the kinetic energy expression does not include
contributions of rotary inertia. Although this is a very small effect for rotor blade configurations, the
rotary inertia terms were included for calculation of certain results to be discussed below.

Strain energy— Previous derivations of rotor blade equations restricted to the case of small
deflections have employed linear strain-displacement relations. Because the present derivation is
addressed to the flap-lag stability problem with moderately large displacements, the linear relations
are not valid. The following strain-displacement relation is used, which has been modified from
reference 3 by the inclusion of the underlined nonlinear terms:

du 1 /9v \/dw\2 , /92v 92w \ , /32v 92w \
= — + - ( — J +-U-J -y (rTcos9 + r-r sin0 +z In s in0-— cose9x 2\dx/ 2\9x/ \9x2 9x2 / \9x2 bx2 )

(12)

For long, slender beams, the strain energy is independent of the shear modulus and is simply

f C f Ee2

U = J J J — - dx dy dz (13)
S

The first variation is

6U= fffEede dx dy dz (14)

S

where

w 9v 95v 3w 96w /925v 925w 925v 925w
(15)

Substituting equations (12) and (15) into (14) and using equation (9), we obtain:

95w 9v 95v 3w 96w , /9 25v 925w \ /925v 925w \
= -- + — — + T- - -- y I -T-T c o s 0 + — - •=- sin0 ) + z ' (— — sin0--— ̂ -cosS

9x 9x 9x 9x 9x \ 9x2 dx2 f \ 9x2 9x2 /



-J8U= I \EA
du l /3v \
— + - [—
3x 23x

(d8u 3v 98v 9w 38w

I dx dx dx dx dx ,

32v 32w
cos e + sin

325v 325w
cos 0 + ~ sin

32w 325v 326w
cos 0 I -T—=• sm ^ —^^r cos

3jc2 (16)

Nonconservative forces— The virtual work SW of the nonconservative forces is usually expressed
as a time integral:

S W d t = f Q - S q dt (17)

where Q is the vector of applied distributed loads and 5^ is the vector of virtual displacements.
Hence,

«2 '2 •"•

I 8 W d t = I C (Lx8u + Ly8v + Lz8w)dx dt (18)

—f _.

where Lx, Ly, Lz, and 5u, 8v, 8w are the components of Q and 8q, respectively.

General equations— Hamilton's variational principle is stated as follows:
.'2

[ST-SU+ 5ff]d/ = 0 (19)

We now substitute equations (10), (16), and (18) into equation (19) and perform, by parts, all
integrations that are necessary to obtain an expression of the form

I I [( )5" + ( )5v + ( )5w] dx dt + boundary terms = 0 (20)



For arbitrary, admissible variations 5u, 8v, dw, the three expressions in parentheses must vanish
individually (as well as the boundary conditions). This entire series of operations yields the following
three nonlinear partial differential equations:

3 / 9v
— (EAe)-m 2fi —
ox \ at X (2 la)

9 / 9v \ 9
•— (EAe — ]+ —•

dx \ dx dx2 cos2 0 + £/j sin2 0) —^ + (£/2 _ £/j )sin 0 cos 0
32w

(21b)

9w 92v
(EI2 - £/! )cos 8 sin 0 — + (EI2 sin2 0 +

dx2 cos2 0)
92 w

dx2

/92w

laT"
(21c)

where

9
(2 Id)

Note that e is the strain at the elastic axis. In obtaining the equations, the small angle assumption
has been invoked for the pre-cone angle, sin ftvc = j3~c, ]3

 2 « 1. These equations are nonlinear,
partial differential equations of fourth order with variable coefficients in x, and of second order in t.

Linearization of the Equations

Before the equations are linearized, they are restricted to configurations with untwisted blades
and uniform mass and stiffness properties. The equations will also be made dimensionless by dividing
through by mSl2R. The dimensionless displacements, u, v, w are then based on the rotor blade radius
R, and the independent variables become £ = x/R and T = £lt. The radial aerodynamic force compo-
nent Lx is of second order for small 9 and w', and consistent with second-order structural terms, can
be discarded. The equations are:



de 9v
t_2 — =0? (22a)

_
+Al 2 (22b)

— 34w" 92w (22c.)

where

and

(22d)

A,2 = A!2 cos2 0 + A 2
2 sin2 0

A2
 2 = AI 2 sin2 Q + A2

 2 cos2 0

A! 2 = (A2
 2 - AI 2 )cos 6 sin 0

A 2 =

Ty=Ly/mSl2R

(22e)

The terms defined in equation (22e) are the dimensionless aerodynamic forces and elastic
section properties. Note that 9 is now the blade pitch angle, and is constant over the radius. The
parameter K is the ratio of longitudinal elastic forces to centrifugal forces, whereas A!2 and A2

2

are the ratios of the section bending stiffness to the centrifugal forces. Examination of the equa-
tions reveals that tensile forces are associated with K, while A^, A2

2 identify the elastic bending
terms. These equations differ from previous results (ref. 3) in two ways. First, the radial force equa-
tion includes the centrifugal term due to lead-lag velocity (-2(9v/9T)). This means that the tension
(or strain e) terms in the flap and lead-lag equations are nonlinear, because e is a function of lead-lag
displacement. Second, the retention of the radial displacement u in the lead-lag equation produces
the Coriolis forces that are responsible for the destabilizing effects on flap-lag oscillations. The radial
displacement u is related to the longitudinal strain e and the flap and lead-lag displacements by the
nonlinear strain-displacement relation.



The nonlinear equations may be linearized about a suitable equilibrium operating condition
without losing the essential features of the nonlinear flap-lag inertial coupling. The displacements are
assumed to consist of the sum of time-independent parts and the time-dependent parts. These are,
respectively, the steady-state equilibrium displacements and the perturbation displacements:

(23)

Also, it is assumed that

(24)

The equations that result after substituting equations (23) and (24) into equations (22), and
setting all perturbation quantities equal to zero, are called equilibrium equations. The equations that
result from making the full substitution of equations (23) and (24), subtracting the equilibrium equa-
tions and discarding higher order products of perturbation quantities, are called the perturbation
equations. The equilibrium equations are

de0

- (25a)

d4 —

+ A
W0

1 2 - V O = L'yo (25b)

4

(25c)

where

(25d)
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and the perturbation equations are

-K ̂  - 2 ̂  =0 (26a)

34Aw 32Av 3 Aw

3 /

»l (

9Aw _
— =My (26b)

dvvA 3 / 3Aw\ _ 34Av _ , 34Aw 32Aw 3Av _
Ae ^ + A" +A ' + + 2 - A £ <26c)

where

+ + _
9^ d£ 3? dg 3^

Except for the equilibrium nonlinear strain equation (25d), the radial displacement UQ does
not appear in either set of equations. Therefore, a solution for u0 is not required and equation (25d)
is superfluous. The radial force equilibrium equation may be integrated and used to eliminate e0 in
the remaining equations. Equation (25a) yields

(27)

Substituting this equation into equations (25b) and (25c) yields the following equations for flap
and lead-lag equilibrium :

(28a)

(28b)

11



The perturbation equations may also be reduced to two equations by making substitutions for
the terms e0, Ae, Aw, and dAu/dr. The perturbation strain is evaluated by integrating the perturba-
tion radial force equation (26a).

Combining this equation with equation (26d) gives an expression for the perturbation radial
displacement Au in terms of flap and lead-lag displacements

3Aw _ dv0 3Av dw0 9Aw 2 rl 3Av

~3"F ~ ~ dT "3! dT IF + ^ V a7~ d ^

The final term may be omitted because K is typically on the order of 1 02 . This approximation
is equivalent to the assumption that the beam is an inextensible member in terms of perturbation
deflections. Integrating equation (30) then yields the perturbation radial displacement:

and

dv 3 Av dw 3 Aw

/

5 / dv0 3Av dw0

VdF "aT +~dF

3Aw 3 r%(dv 0 3Av dw0 3Aw \
~T~ =~T I \~^ ~Z7 +~7T ~~Z7~ ]3r 3r J V d? 3£ d^ 3| /

o ^ /

Equations (27), (29), and (32) may be substituted into equations (26b) and (26c) to obtain the
final two perturbation equations in terms of the flap and lead-lag displacements Aw and Av.

_ „ 34Av _ 34Aw 32Av

(33.)

12



3 Aw l - £ 2 9 2 A w dw0 9Av d2w0 f ' 9Av 94Av
+ 2 " " ~ ~ d * + 1 2 * '

9AT7
(33b)

The singly underlined portions of equations (33) represent the linearized Coriolis and centrifugal
terms that result from retaining the nonlinearities noted above. They are necessary for a proper
description of rotor blade dynamics because, in combination with aerodynamic forces, they can
lead to flap-lag instability (refs. 1, 2). Other portions of the equations are doubly underlined; these
are the elastic coupling terms which can be strongly stabilizing for the flap-lag motion (ref. 2).

Aerodynamic Forces

The aerodynamic forces per unit length denoted by Ly and Lz are the components perpendicular
and parallel to the plane of rotation, and are related to the lift and drag forces of the rotor airfoil by
the following.

L = -L sin (p - D cos (

LZ = L cos (p-D sin

(34)

(35)

The angle (p defines the angle of the resultant instantaneous velocity vector V with respect to
the plane of rotation. These parameters are illustrated in figure 3. The angle (p is defined by the two
orthogonal components of V

</>=tan l — (36)

The equations for lift and drag based on quasi-
steady, strip theory aerodynamics are

L — - p
2 °

D = -

(37)

(38)
Figure 3.— Orientation of fluid velocity

components and aerodynamic forces.

13



where the local section angle of attack is equal to

<x= 6 - (39)

Note that the local blade pitch angle 6 is identical to the pitch angle imposed at the blade root
since torsional elastic deformations are not treated. However, small geometric rotations of the blade
section chord line due to combined flap and lead-lag bending are neglected. (Although these rotations
are very small, they can become significant when blade pre-cone is present.) Combining equations
(34) through (39) and using small angle approximations yields the following equations for the
aerodynamic forces:

U

(40)

Lz = ; i +M\UT)
U

6-
p cd U

__10
a

(41)

The components of V are given by

(42)

dv
— (43)

where v;- is the induced velocity of the rotor. A reasonably accurate equation for the induced velocity
of a hovering rotor can be obtained from blade-element momentum theory (ref. 4). Approximating
the induced velocity as constant over the entire area of the disc, equal to the value at £ = 3/4, we
obtain:

(44)

After noting that (Up/Uf)2 « 1 and c^ /a « 1, the dimensionless relations for the aerody-
namic forces become

3v 3w~l
-vI.) - -g —

' 9r 3r

(45)

(46)

14



The equilibrium and perturbation components of the aerodynamic forces to be used in equa-
tions (28) and (33) can be obtained from equations (45) and (46) and are

(47a)

(47b)

' ,• +
3A?

"37

3 Aw

~d7~

&LZ = - (v t-
3Av

~3r~ ]

(48a)

(48b)

Final Equations

Combining equations (28) and (47) yields the final equilibrium equations

dvp _/l

d| \
i -£ 2 \d 2 v 0 . _ , d4vn ^ d4w

+ A 1 2 (49a)

— / -> \

~<& ~ \ ~ 2 ~ j\ /
fii

(!
d4v0 - 2 d4vv012 ~ l e

The final perturbation equations obtained from equations (33) and (48) are

3Av /I - E 2 \ d 2 A v

~/~d?~

2dv
/

i _ _
3 A? _ 2 34Av 34

*\ ^ ^ *\ j-4 ^-2 -or CO:" f or at c

(49b)

3r2

3r

3Aw

3? a I 3r

_ 3Aw
»,) — = 0 (50a)

15



3Aw / l - £ 2 \ 3 2 A w 2dw0 3Av 2d2w0 f 3Av

~W "\"T"/~3F +~dT "^'"dl2

Aw 32 Aw

3r2

3Av 3Aw
3r

!=0 (50b)

Solution of Equations of Motion

The flap-lag equations that have been developed can be further simplified using Galerkin's
method. The nonhomogeneous equilibrium equations are linear, variable coefficient, ordinary
differential equations for v0(£) and w0(£). The homogeneous perturbation equations are linear,
variable coefficient integro-partial differential equations for AV(£,T) and AW(|,T). The coefficients
of the perturbation equations are also functions of the equilibrium displacements v0, w0 as a con-
sequence of the nonlinearity of the original equations of motion. For Galerkin's method we assume
an approximate series solution in terms of the elastic bending modes <A-(£)

N

N

Wn =

7=1

N

Av =

N
Aw =

These series expressions are substituted in equations (49) and (50), which are multiplied in turn
by each bending mode function v$(£) and integrated along the length of the beam from £ = 0 to 1 .

(51)

This procedure reduces the equilibrium equations to 2N linear algebraic equations for fo . and

16



/?„ , and the perturbation equations to 2N linear constant coefficient ordinary differential equations
/

for Af-(£) and Aj3.-(|). The integrals involving various combinations and derivatives of <^(?) are the
Galerkin integrals. The equation for the bending modes used to evaluate these integrals is

= cosh(co.-£) - cos(cd,-£) - (52)

This is the equation for the modes of a nonrotating uniform cantilever beam, and the constants
co- and /,- available in reference 5 are given in table 1. The Galerkin integrals are evaluated exactly,
where possible, according to the tabulated integrals of reference 6. Otherwise they are evaluated by
numerical integration.

TABLE 1 .- CONSTANTS FOR NONROTATING CANTILEVERED •

BEAM BENDING MODES

j

1
2
3
4
5

COj

1.875104068712
4.694091132974
7.854757438238

10.99554073488
14.13716839105

fj

0.7340955137589
1.018467318759
.9992244965174

1.000033553252
.9999985501087

The equilibrium and perturbation equations are then

N
= 2 (53a)

N

0 .( A, 2 A, (53b)

N

E
1=1/=

,<«//)

= 0 (54a)
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L
7=17=

- (~(
6 ''

= 0 (54b)

where the Galerkin integrals are

18
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-* <~jj
(pi d£ = —

w/
(55a)

r1 2
,= / ^-dt = —

y CO;
(55b)

z 7 z co,-3 (55c)

/

! ,.1

^/-/ (55d)

i,vy d| (55e)

(note /"\ /"%.vd?—— /"Vvv'di=
J J > CO; ^ '

Fkji
0 0



and where
TV

TV

F > * '(56b)

These equations are solved using standard methods. The equilibrium displacements are used to
determine the coefficients of the perturbation equations, which are then solved for eigenvalues and
thus the stability characteristics of interest.

RESULTS AND DISCUSSION

Uncoupled Natural Frequencies

When the aerodynamic terms in the rotor blade equations are eliminated, the resulting perturba-
tion solutions provide the rotating natural frequencies of the rotor blade motion. For untwisted
blades at zero pitch angle, the equations for the flap and lead-lag degrees of freedom are independent,
and the solutions yield the uncoupled natural frequencies.

The first two flap and first two lead-lag uncoupled rotating frequencies of typical hingeless
rotor blades are given in figure 4. Two examples are shown, one a soft inplane configuration and the
other stiff inplane. The terms soft or stiff inplane refer, respectively, to rotor blades with first rotat-
ing lead-lag frequencies less than or greater than the nominal rotational frequency of the rotor.
These results, using three bending modes for both the flap and lead-lag degrees of freedom, illustrate
typical variations of the rotating frequencies with the rotor angular velocity £2. The frequencies and
angular velocity are made dimensionless by a nominal angular velocity SIQ, which can be interpreted
as the normal rotational velocity of the rotor. The dimensionless bending stiffness of the rotor
blade is inversely proportional to the rotational speed, K = Ko/(£l/£l0)

2 where KQ = EA/m£to
2R2.

The convergence of the solution with the number of bending modes is shown in figure 5. Here,
the rotating frequencies are shown as a function of the nonrotating frequencies. They are both made
dimensionless by the rotor angular velocity. The use of this nondimensional parameter is a means of
distinguishing between different rotor blade configurations. For a given rotor speed, then, the non-
rotating frequency is a measure of the bending stiffness of the rotor blade. The first flap and lead-lag,
frequencies are of primary interest here and the results show that convergence is quite good for rotor
blades of high bending stiffness (or low angular velocity) but becomes poor for low stiffness (or high
angular velocity). To give proper perspective to these results, we must consider them in the light of
typical blade frequency values. For the lead-lag degree of freedom, a typical stiff inplane hingeless
rotor blade would have co>- ~ 1.5, and a single bending mode would accurately define the rotating
lead-lag frequency. For a soft inplane configuration, c3^-~ 0.7, two bending modes would be required.
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(a) First flap bending mode.
(b) First lead-lag bending mode.

Figure 5.— Effect of number of modes on the uncoupled rotating natural frequencies.
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For the flapping degree of freedom, a typical first bending mode frequency would be cog ~ 1.1,
which would require at least two bending modes. This is particularly important for hingeless rotors
because the flapping response characteristics can be sensitive to small changes in the first flap mode
frequency.

It should be noted that the convergence characteristics in figure 5 are directly related to the use
of the simple nonrotating uniform cantilever beam mode shapes and can be viewed as a measure of
the usefulness of approximate modes. However, for use in the stability analyses reported herein, the
use of nonrotating beam modes simplifies the parametric studies because different mode shapes are
not required for different rotor blade stiffness values.

Also shown for comparison in figure 5 are the rotating frequencies obtained using the approxi-
mate centrally hinged, spring restrained, rigid blade representation. The uncoupled flap and lead-lag
natural frequencies are given by the following relations (ref. 2):

(57a)

(57b)

In effect, these frequencies are a special result for the case of linear mode shapes for the flap and
lead-lag bending deflections. These modes might be expected to yield the correct first rotating fre-
quencies in the limiting case of vanishing blade bending stiffness because the mode shape approaches
a straight line. It must be noted, however, that because of the condition of zero slope at the root of
the cantilevered blade a linear mode shape is invalid at that point.

Stability Characteristics

The dynamic stability characteristics of the flap and lead-lag bending oscillations of elastic
hingeless rotor blades without pre-cone in a hovering flight condition is shown in figure 6. The results
are presented in locus of root form for both the first flap and lead-lag modes as the blade pitch angle
is increased from zero. Loci for several configurations having various lead-lag stiffnesses are presented.
As discussed above, only the soft and stiff inplane configurations are representative of actual hinge-
less rotors. The other parameters are chosen to be representative.

The flap mode is typically well damped. The lead-lag damping is substantially increased for
higher pitch angles with no indication of instability. This is consistent with earlier findings of refer-
ence 2 for the rigid blade model with the appropriate elastic coupling characteristics. In effect, the
elastic flap-lag coupling introduces the large flap mode damping into the lead-lag mode, thereby
augmenting the small inherent lead-lag damping and nullifying the destabilizing inertial and aerody-
namic flap-lag coupling effects.
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First lead-log mode
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Figure 6.- Locus of roots with increasing pitch angle, 7 = 5.0,
0 = 0.05,5^ =0.6, cd =0.01, N= 3.

A comparison between the results of the elastic blade and the rigid blade model will now be
made. A schematic picture of the approximate centrally hinged, spring restrained, rigid blade is given
in figure 7. The orientation of the flap and lead-lag restraint springs (parallel and perpendicular to
the blade chord line, respectively) simulates the elastic coupling characteristics of the actual elastic
blade. The spring stiffnesses are chosen so that the uncoupled rotating flap and lead-lag natural
frequencies match the corresponding first mode rotating natural frequencies of the elastic blade.
The roots for the rigid blade configuration are shown in figure 8, and they exhibit behavior nearly
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Lead-log

Figure 7.— Schematic of approximate centrally hinged, spring restrained, rigid blade
representation with springs oriented to match the elastic coupling of elastic
rotor blades.

identical to the elastic blade results discussed above. The differences are a reduction in flap mode
damping and a small reduction in the stiff inplane lead-lag damping for the rigid blade representa-
tion. The significance of the close agreement is that the mode shape does not play a large role in
the flap-lag stability characteristics, at least in the hover condition, and the simple rigid blade model
should be quite adequate for approximate stability analyses if the equivalent spring constants are
chosen as discussed above.

Although the results just presented confirm the relatively small effect of mode shape on stability,
it is of interest to examine the sensitivity of the elastic blade stability to the number of flap and lead-
lag bending modes included in the solution. The roots in figure 6 were computed using three bending
modes for each degree of freedom; we will now investigate the effect of using only one or two modes.
Since the first lead-lag mode damping is of most interest, we will consider only the real part of this
root. Beiore presenting the results it should be noted that there are two ways of making the compar-
isons. This depends on whether the rotating or nonrotating first mode bending frequency is consid-
ered to be the independent parameter defining the rotor blade configuration. If one uses the rotating
frequency as the independent parameter, as for the rigid blade comparison, the nonrotating fre-
quency, or blade stiffness parameter K, will depend on the number of bending modes used. The
particular variation can be obtained from figure 4. In this case the effect of the number of bending
modes on lead-lag damping will be primarily due to coupling between the various bending modes.
Alternatively, if the blade stiffness parameter K or the nonrotating frequency is chosen as the inde-
pendent parameter, variations in the number of bending modes will directly influence the rotating
first mode frequency. This would introduce an additional effect, since the lead-lag damping is influ-
enced by the proximity of the flap and lead-lag rotating frequencies.

The comparisons of first-lead lag mode damping are given in table 2 for a soft and a stiff inplane
rotor blade configuration operating at a pitch angle of 0.3 rad. The sensitivity of damping to the
number of modes is quite small but certain trends are discernible. As expected, holding the rotating
natural frequencies constant minimized the effect of modal interaction, in contrast to holding the
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TABLE 2.- EFFECT OF NUMBER OF FLAP AND LEAD-LAG BENDING MODES
ON THE FIRST LEAD-LAG MODE DAMPING AT 9 = 0.3, WR = 0.4.

Soft inplane configuration,
oV = 0.6*NR

N

3

2

1

Rigid

-a>/£2

0.01689

aV const
MSIR

0.01663

.01567

...

w> const

0.01694

.01714

.01713

Stiff inplane configuration,
«v = 1.4fNR

N

3

2

1

Rigid

-<jf/n
0.02342

co> const
>NR

0.02352

.02390

...

UK const

0.02344

.02363

.02253

First lead-log mode

First flop mode

J L I I
3=0 .1 .2 .3 .4 .5 rod

1.6

1.5

1.4

1.3

1.2

-.5 -.4 -.3 -.2

1.0

.9

.8

.7

Figure 8.— Locus of roots with increasing pitch angle for rigid
blade representation. Rotating natural frequencies are cho-
sen to match the corresponding results in figure 6.

nonrotating frequencies constant. Further-
more, the effect of number of modes was
more evident for the soft inplane configu-
ration, which is consistent with the earlier
results. This can be attributed to the increas-
ing disparity between nonrotating and rotat-
ing mode shapes as the stiffness is reduced.
For completeness, the table includes results
presented graphically in figure 8 for the
approximate rigid blade. It is interesting to
note that the rigid blade is as accurate as
the single mode solution for the soft inplane
configuration, but underestimates the damp-
ing for the stiff configuration. Results for
the rigid blade for the case of constant non-
rotating frequency are not presented because
of the unrealistic frequencies of this approxi-
mate representation.

These results indicate that the basic
character of flap-lag stability is little changed
by using the approximate rigid blade (with
the proper rotating natural frequencies) or
a single mode representation for the elastic
bending deflections. A small degradation in
the accuracy of the lead-lag damping can
result from the rigid blade approximation,
but a single bending mode gives quite
reasonable accuracy.

The nonlinear Coriolis and centrifugal
terms in the equations discussed above were
considered essential to properly describe
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the flap-lag stability characteristics of elastic blades. Although the above results indicate that the
destabilizing aerodynamic and inertial coupling is more than compensated for by the elastic coupling
of a rotating uniform beam, the destabilizing nonlinear terms are also of interest for their influence
on the lead-lag damping. This is shown in figure 9, again for two rotor blade configurations. The
nonlinear terms do act to destabilize the lead-lag degree of freedom and their effect is substantial.
For rotating beam configurations with radially nonuniform stiffness distributions, reference 2 implies
that the elastic coupling may not, in general, prevent flap-lag instability, and the nonlinear inertial
terms will then determine the rotor blade stability characteristics. This problem, however, is beyond
the scope of the present report.

-.03,-

-.02

.t -.01

Without ef fect of
nonlineor inertial *

terms

Complete
equations

.2 .3
Pitch angle, 8, rod

(a) Soft inplane configuration, cot. = 0.6.

Figure 9.— Effect of the nonlinear inertial terms on the lead-lag mode damping,
7-5.0, a = 0.05, wo =0.6,0,1 =0.01,N=3.u
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NR

Figure 9.— Concluded.
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Rotor blade pre-cone is an important design parameter for hingeless rotors and previous analyses
(refs. 1 and 2) with the approximate rigid blade representation indicate that it has a substantial effect
on flap-lag stability. Some representative results for the lead-lag damping of the elastic blade are
shown in figures 10(a) and 10(b) for the soft and stiff inplane configurations, respectively. In general,
either positive or negative pre-cone is stabilizing, except for small positive increments with the stiff
inplane configuration.

-.26 r

-.25
O
x
5

-.24

-.23

-.22
.01 .02 .03 .04 .05 .06 .07

Pre-cone angle, 1/3^, rod
.08 .09 .10

(a) Soft inplane configuration, cov =0.6.

Figure 10.- Effect of pre-cone on the lead-lag mode damping, 7 = 5.0,
a=0.05,ujfl =0.6,cd =0.01, N= 1,8 = 0.1.
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Figure 10.— Concluded.

The effects of rotary inertia terms in the rotating beam equations were determined to be of
nearly negligible magnitude. This was checked with the numerical results by computing the lead-lag
mode damping both with and without the rotary inertia terms. The results are given in table 3 and
confirm the negligible effect on flap-lag stability.

TABLE 3 .- EFFECT OF ROTARY INERTIA ON THE FIRST LEAD-LAG MODE DAMPING, o30

Wv = 1.5, 7=5.0, CH =0.01,a = 0.05,0 =0 .3 ,N=1

= 0.6,

-<yn

No rotary inertia

0.021199

With rotary inertia

0.021190
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CONCLUDING REMARKS

1. Conventional linear equations of motion cannot be used to determine the stability of coupled
flap and lead-lag degrees of freedom of cantilevered, torsionally rigid, elastic rotor blades. An addi-
tional equation for the radial degree of freedom and a nonlinear strain-displacement relation are
required. The basic nonlinear flap-lag equations can be linearized about a suitable equilibrium condi-
tion and still retain the effect of the important inertial flap-lag coupling terms.. The calculation of
lead-lag damping was shown to be very much a function of these terms.

2. Flap-lag oscillations in hover for untwisted blades of uniform mass and stiffness were found
to be stable over a wide range of parameters. It was determined that the effects of elastic flap-lag
coupling introduced sufficient flap mode aerodynamic damping into the weakly damped lead-lag
mode to overcome the destabilizing inertial coupling. Previous results (ref. 2) for an approximate,
centrally hinged, spring restrained, rigid blade representation, however, indicate that this effect can
be reduced for elastic blades with twist and/or nonuniform mass and stiffness.

3. The first mode frequency and damping for the elastic blade motions were found to be nearly
identical to results obtained with the rigid blade representation provided that the rotating natural
frequencies are equal. This finding enhances the validity of the simpler rigid blade model for investi-
gating the flap-lag stability characteristics of hingeless rotor blades in hover.

4. The effect of the number of elastic bending modes on the stability is generally small, espe-
cially where the rotor blade stiffness parameter is defined by the rotating natural frequency. Very
accurate results for the lead-lag damping can be obtained with two modes for both the flap and
lead-lag degrees of freedom.

5. For practical hingeless rotor blade configurations, the fundamental uncoupled flap and lead-
lag rotating natural frequencies can be determined with acceptable accuracy by retaining the first
two nonrotating bending modes for each degree of freedom.

6. Rotor blade pre-cone is generally stabilizing, although in some cases it is moderately
destabilizing.

7. Rotary inertia effects are negligible for practical rotor blade configurations.

Ames Research Center
National Aeronautics and Space Administration

and
U. S. Army Air Mobility R & D Laboratory

Moffett Field, Calif., 94035, Nov. 8, 1972
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