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ABSTRACT

The study defmed under Contract NAS8-28358 cons1sted of four parallel
efforts: (1) Modal analyses of elastic continua for Liapunov stability analysis
cf flexible spacecraft; (2) Development of general-purpose simulation equations
for arbitrary spacecraft; (3) Evaluation of alternative mathematical models
for elaetic components of spacecraft; and (4) Examination of the influence of |
vehicle flexibility on spacecraft attitude control system performance.

This report includes a complete record of achievements under tasks (1)
and (3) above, in the form of technical appendices, and a summary description
of progress to date under tasks two and four.

Task (1) has provided the basis for the Ph.D. dissertation of ,Andre Colin
(see Appendix 3, in Volume 2 of this report). This task in itself required two
phases of investigation: vmodal analysis and stability analysis. The modal
‘analysxs 1s accomphshed for a range of contmuum models’ (strmgs, beams
and thin plates w1th various boundary cond1t10ns on spmmng spacecraft) by |
means of smgular perturbatmn methods, and the stablhty analysis is accom-~
phshed by usmg L1apunov theorems with the mom_entum-constramed Hamﬂtoman
as the testing funct1on. v

Task (2) 1s the basis for the Ph.D. dlssertatmn of Arthur S. Hopkins,
which is still in progress. » | | _

Task (3) is the ‘s,ubjectvcf tv.vc»te_ch_nical papers by the Principal Investiga-
tor, inclu_ded her__e as A-ppendices 1 ana 2. In these papers the rarxge of appli-
cability of Various discrete al:ld continuous models of nonrigid spacecraft is
examined; It is concluded that there is a domain of engineering a'pplicabili’c_y
f_or each cf the models cons_idered, :biit,that_ finite elements models are |

generally the most valuable for flexible spacecraft sirnulations.
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Task (4) is currently receiving primary attention by the Principal
Investigator and a postdoctoral scholar, Dr. Yoshiaki Ohkami. ' Results

will be described in forthcoming documents.
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TST

EI

~ the modes

NOMENCLATURE

transverse disﬁlacemen;

external éxiai lqéd

harmonic functibﬁ of the vibration

derivative:with“respect to time -

spatial derivative with respect to dimensionless variables
dimensionless variables

férms of t;é:éﬁp;nsi;;”§f‘the modes away from the boundaries
terms of the boundary layer expansions

‘terms of the bounda;y léyér éxpansions

vBoundary layer coordinates

boundary layer coo;dinates

boundary layer coordinates

fixed quantity introduced in the matching process

radial displacement
thicknesé of the disk

coefficient of the argument in the circular dependence of

Legendre functions of the first and second kind, respectively.-

Airy integrals

built-in tension
minimum built-in tension
defined by T = szO

transcendentally small terms

flexural stiffness of the beam -
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NOMENCLATURE (Cont'd)

modulus of elasticity in the modal analysis and identity
matrix in the stability analysis

perturbation parameter

vi(e)’Ki(e)- asymptotic sequences

.ui(s),éi(e) asymptotic sequences

~H

£,4,C

p,0

linear'denéity‘éf the beam or mass per unit volume for the
membrane < :

reference axis for the description of the transverse
displacement

polar coordinates of an element_dm of the membrane
Poisson modulus»
mode shapes for the beam

radial dependence of the membrane mode shapes
eigenfrequency of the beam vibrations

eigenfrequency_of the membrane vibrations

nominal spin rate

eigénfrequency of the beam in the transformed equation
terms of the expansion of the eigenfrequence

defined by kz = kzuz

. i A I 0

eigenfrequency of the membrane in the transformed equation

tangential and radial strains, respectively

tangential and radial stresses, respectively

2 : 2
Laplacian operator __@_5 + 1 -a—a- + ——;— -a—é-
S op” P PP 5 90
' 2 14 o
L}near differential operator ) +_;--E; -

dr T
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NOMENCLATURE (Cont'd)

defined by Yy =1+ m
defined by ki = —*étg——
1+2k™+V
defined by kg = _;iig__
’ 1+2k ™+
defined by=~k§ = ki k§
 k1F

F(a,B,Y;k)hyPergeometric‘funcﬁion

cM
N
 Body B

Body A

center of mass

L

location of system CM when steadily spinning

portion of system'identified as rigid (core)

portion of system identified as flexible (appendages)

kinetic energy of complete system

.Hamiltonién

constrained Hamiltonian

potential energy

_potential energy of deformation

general spinning stiffness matrix

spinning stiffness matrix for the planar model

mass of complete system

inertial generic position vector

_vector basis fixed in Body B 1dent1f1ed as (bl, 2,b )

inertial vector basis

vector from CM to N

deformation vector and its representation in {b}
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NOMENCLATURE (Cont'd)

h, h,h angular momentum vector, its representation in {b} and its
’ magnitude

p body generic position vector

0 | orthogonal transformation relating {b} to {n}

61,62,63 ~Euler (attitude) angles

QJwi' inertial angular velocity vector and its representat1on in
vector basis {b}

I, Pi ‘position vector of element dm subsequent to spin and its

- representation in {b} :
Ig . inertia matrix about’ polnt N of the complete system at
_ steady state '

;F; IN inertia dyadic of complete system about ooint.N'and its
inertia matrix representation is {b}

IN, IN inertia ‘dyadic of appendage about point N and its inertia

A’ TA

— matrix representation in {p}

Ig, Ig inertia dyadic of core about point N and its 1nert1a matrix

- representation in {b}

) N

A,B,C diagonal elements of I0

A inertia matrix about point N consisting of first order
appendage terms

1) inertia matrix about'point N consisting of second order
appendage ‘terms

Wog spin rate at steady state

92 . diagonal natrix made of the sQueres of the modal frequencies

Bv generalized coordinates of deformation

‘¢V mode shapes representation in the stability analysis

B column matrix‘of the modal coordinates

¢ column matrix of the mode: shapes
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NOMENCLATURE (Cont'd)
symmétri¢ matrix defined by [J/~¢¢ dm ]» _
A X

symmetrix matrix defined by ,:./¢ dm] [/ q)Tdm:l in the
stability analysis ’ A ' A
a column matrix defined by. /Tl¢ dm
o _ A
a column matrix defined by / 1"2¢ dm

' A

symmetrix matrix defined by AlAri

_symmetrix matrix defined by AZA’;
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'ABSTRACT OF THE DISSERTATION

Modal Analysis for Liapunov Stability
_of_Rotating Elastic Bodies
by V
' André Daniel Colin
Déctor of Philosophy in Engineering'
University of California, Los Angeies, 1973'

Professor Peter W. Likins, Chairman

The determination of the attitude stability of spinning
elastic Bodies is considered here. A complete study of this broblem
reéuiresrin.general two parallel.investigatigns. In the fi:st part, a
modal éﬁalysis is accomplished forra class of‘special problems and.
finally, a derivationlfor li;eral_attitu&e sfability criteria for
idealized sbinnihg flexible épacecraft is performed.

The modal analyéisAis accompiished for a class of struc-
tufes idealized by EeémsAor,diéks_pf_émali fléxﬁral rigidity; In the
description of thebflexiblé appendagé;fa cbntinuoﬁs elastic model is
used, and the Vibratiéné in the directioh‘of the spin axis are analyzed
for a fully:constraihed base rotation. The study is:speciaiized to
the_casés where the high spin raté is combiﬁedxto the small flexural
rigidity»ﬁo érbdﬁcé a small.parameterve;.'The methqd of matched asymp-
totic éXpansions represenfs the geﬁeral;framework used_in.obtaining

the solution for the several structures studied. The determination of
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the eigenfreduencies and free vibration mode shapes'is dbtaihed‘by the
conéurrenﬁ_use of the orthogonality of the mode sﬁapes and thevcon—
ditions derived from the matching process.

Also,'tﬁé stability of spinning flexible satellites in a force-
" free environment is apalyzed. The satellite isvmodéléd_as a.figid'core
»haviqg‘attacheq té it a flexible appéndage‘described by a continuous
élastié.modéi;‘such as thésé mentionedleafiiér;‘ AvLiépunov-stabilify
procedufe is“used wheré~the.Ham;ltoﬁian of thg.éystéﬁ, ¢6nétrained
through;the anguiat momentum integfﬁl so as to. admit cdmplete'damping,
is used as a testing function. Closed form stability_criteﬁiavare |
generated for the fifst mode of a réstrigted appendage quél'iying iq
' a‘blane containing the system center df_mass_and orthogonal to the.

spin axis.

2-18



CHAPTER 1

STATEMENT OF THE PROBLEM

The influence of flexibility'on spinning.structuré has been the

subject of ﬁumerous téchnicai investigations'singe thé unexpécted
~behavior of Explorer I. It was, indeed, the deformation of flexiﬁle
antennas thatvcaused the spacecraft tp deviate from its prescribed’
motion. The variety of tasks fulfilled by modern satellites implies
_the'presence of large appéndages whose weights,'fbf obvious reaéons,
are kept as 10@ as possible., As the complexity and_the number of
spacecraft orbiting in space inérease, the previpﬁs concern becomes
more and more important. | |

| In the develo@ment of dynamic models, descriﬁingrthé motion of
flexible spaéécraft, many authors employ a system of‘hybfid coordinates
_ wherein disgrete coordinates (for the translation and rotation of
rigid bodies of'refereﬁce_frames) are used togeﬁhéi wi;h distributed
or ﬁodal coordinates (for the deformations of elastic bodies);-.In tﬁe
ﬁodeling of the vehicle appendage;; Varioﬁs typeg of idealizations
have been adoptedﬁ the eiastic continuﬁm modél,:the distributed—mass
finite element model, and the elastically interconneétgd nodal‘bbdy
model. Common to all types of modeling, the modal analysis»requires
the derivation of the_linearized equations of small oscillations from
the constant state of deiormation,.induced by spin,Aénd the transforma-
tion of thesé equations into a system of uncoupled equations of mbtién

in terms of "normal mode coordinates.' They represent an infinite
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system for a continuous model, and a finite set for a discretized'model,
but in-either'casevconsideration of only a reduced number of them is
a practical necessity.

. it‘is'mainly towards the first type of modeling — the elastic
continuum model —-that this dissertation is oriented, and towards the
derivation of a stability analysivahen‘such a model is use&. The use
of the elastic continuum ‘model presents with respect to the other types
of modeling a noticeable advantage when applied to some spec1f1c
structures. It is, on the other hand more dlfflCult to 1mp1ement for
a generalvstructureg Our eoncern in this work is to deal with some. of -
those‘applications where the_continuUm'model_prevaiie.

The use of elastic continuum model for a rotating structure has
generally_been deveioped in the»contextrof radial or axial beams. The
investigation of continuous models for rotating planar structures such
ae membranes is more recent, and has generally'beenAaffeeted by»mathe—
maticalbdifficulties arising in the.development of the modes.

in'tﬁe aeyelonment of modai analysis of a rotating radial beam,
we should mention the work done by R.T. Yntema.lf The anthor used in‘
his analyeis of.the modesvof radial beams a.Galerkin metnod, where he
expands theenbdes in terms of the ndnrotating bean modes. Interested -
in the same problem, J.E. Rakoneki and M.L. Renard-,2 andyP.C; Hughes
and J.C. Fung,3‘uaed eimilar procedures to obtain the eigenfrequencies
of a rotating radial beam; They used the linear property of the
equations of the deformatlons in order to generate a family of solu-
tions. The satisfaction:of the boundary conditions of the problem gave

them a procedure to converge to the exact value of the eigenfrequencies.
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The generation of modes for circular membrades using a continuous
model has‘mainly'béen dé§eloped'for ﬁembranes of zero stiffness. Most
probably, the eérliest work was done by H. Lamb. and R.V. So_l;xthweil,4
in-l921, where the authors‘dérived the modes for a spinﬁing.disk of ﬁo‘
flexural rigidity.‘ Ihéy,_also, usedban épproxiﬁate methbd to bound
the lowest frequency in the case where both bending and membrane
.effects are important. Among the othef authors, whose conéributions
- should bg'mentionea are J.G. Simﬁonds,s and W. Eversman,6 Both of
theﬁ:spenﬁ a grea#'déél'bf effort to solve the problem of'a spinning
>'membréﬁe_when.it is glaméed at its center.i.FInally; ﬁ;»EVersméﬁ_énd
.'R.O.'DOdéop7lstudiéd iﬁ 1969 the free vibrations of a centféliy
' clampéd spinning'ciréplar disk where they introduce fléxural'tigidiﬁy‘
into their analysis. . Here,‘agaiﬂ, the iinear property bf the problem.
is used in’détiVing the,genera} solution. -All of'thg above references
dealing ﬁith'béaﬁé or membrapes of nonzero~stiffness eﬁpioj pfocedures
reqﬁiring eitenéive numerical computations..‘ |

In con;rast'ﬁq those paét achieveﬁents,'the problem of the elastic
continuum.ﬁbdel has been approached here along directions guided By
future applica;ioﬁs. It is clear’that'flexible §p£nninéispacgcraft_
will cbntinué to be désigﬁed_énd flown in the fdture.,:It'is_éxpected
| that many'of theée satellites.will.exhibit large flexible appendages
such.as'antenna arréys or soiar panels. Many of these.applications
are éonceived on,the.verge ofAinstability,.and it becomes‘more an&A
more important td.devélop proper stability criterié to cope_With these
future applications; An.important class includes flexible spacecraft

with high spin and low flexural rigidity. The partial differential
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equations describing the motion of flexibie_appendages for the previous
class of problems.are characterized by a éméll parameter appeéring in
- the coeffiéient of the‘highest derivative. This comﬁon featﬁre will
coqsti&ute the basis for our analytical approach to'modal anéiysis;
Thevresulting modal coordinates &ill be used in the.defermiﬁatioh:of‘ -
actitudé stabilify.cfiteria by means of Liapunov's direéfvﬁethod;
employing aé'ﬁesting function the Haﬁiltoniaq éonstréined by the angu-
lar momentum integral.i

The Qethod of métched asymptotic expanéion58~répresents the
general ffaméwork_and'thé main mathematical tool usedbin.obtaining
modal cdordipatés. 'Briefly, the method consists of Separating the
fegipn of interest into "boundary-layer" regions néép'therboundaries
where‘flexural rigidity effects are importan;_and a éentrai region in
which the termébéx?réésing the centripetal accélerétibﬁ dominate; \The
soiution is then devgloped in asymptotic expansiohs in terﬁs Qf
the small paraﬁeter70bserved in the‘highest_defiyafivé'térm. The
apprqximation to the solution is then obtained by truncating tﬂe'b
expanéionvtb a finite‘number ofvterms, the error beingAsmall for
sufficiently éﬁall.values of the parametef. The‘use:of.aéymptdtic
expansionsﬂfof the-dgscfipti;n of thé modes df:rotatiﬁg struptures
is pbt new, and we sﬁoﬁld_méntion two references uSing theipfevious
techniques to sﬁudy_the transvérse vibrationé of rotating structures.

"The first reference to survey is the work done by W.E; Boyée‘and
G.H. Handelman in 1961,9 whére they‘approached the problem of the
rotatingvbéam with tip mass. This paper is mainly concei?ed as an

application of a previous paper published by J. Moser,le wherein
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uniformly valid asymptotic expansions are derived fér an equation of
the type treated tﬁere. In this last paper Moser derives a set- of
1inearly independent solutions for the problem and, then, uses the
linear property of the problem.to come ﬁp with a general solution.
The linearly independent solutions afe‘fakén in the form of
B(X,n)exp[n—lh(x)] where n is of the order of magnitude of ﬁhé small
berturbation parameter of the proBlem andnB(k) énd h(x).represent
functions -to be détermined. 'Applying this'procedure to the rotating
beam with tib mass, Bo&ce_and Handelman were mainly inte;eSted.in what
is called the_zeroth ofder solu;idnff thé first term of fhe expénsion.
The solution to this last‘prqblem is then obtained through aﬁ enefgy
method after the bbservatibn that one of the boundary_cénditions in the
problem répresents é natu;gl bouﬁdary condition. What is meant.by
ﬁatural bounda?y éondition is that the minimization.problem érising in
fhe Rayleigh—Ritz method gives us - as fransversality condition fof'the
'tibvﬁééé;.the'boﬁndary condition of the zeroth'order.broblem. In
Reference—9, the authors do not proceed to thé next term of their
asymiptotic eipansion.

-Another releQant reférence ﬁéing’the methdd of asymptotic expan-
sion for rotating structures is given by J.H. Abel and W.C. Kerr.11
In their paper, they applied the technlque of asymptotic expan31on to
a rotating“cablg-counterweighted space station ig orbit. The problem
without any flexural rigidity waé already>splved by V. Chobotov12
in 1963, and:repfesenté in fact fhe zeroth order.solution for theirv
bproblem; In contrast to the metﬁodvused in Referehce 9, it is by

matching the central and boundary layer solutions that they were able
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to come up with'the sufficient number of conditions fdr the determin-
atién of all-unkéown constants introduced by the integrat;én-pf the.
several equations. | |

It is'by using_fhe_cbnditions coming ffom the matching of the
solution valid in thé bbﬁndary—layer and tﬁe_solution'valid in the .
cenffal region, aﬁd ﬁlso by considering the 6rthpg6na1ity relationship
betwéen'the eigenfunctions, that wé plan to obfaiﬁ exﬁliciﬁ expressions
for the eigenvaiues and free_vibration_modé Shapes‘for several
ele@entary st#uétpres.v‘For éll-thg struCtﬁrés studiéd,.ﬁe“conéentrate

on the "transverse vibrations,"

'invplving:qscillatbry mbtioné whiéh:
~are parallel to fhe'hominal spin_éxis and tfanéVerse'tb évpiane
es;aﬁlished‘By'the structure, since fhese vibrations are most critical
for tﬁe stability of a spipning‘strﬁéture.. We also makelthroughdut
thé étudy'thé'aésumptiOﬁ'that fhe'motipn of the rigid foté#iﬁg base to’
ﬁhich-the‘élaétic a.'_P‘.P'er.xdage is attaghed‘is ndt»affecfea By:the tféns;
vgrée.vibratiéhs of'the f;exible appendage, For a free sbinning'Ah
spécecfaff; fhe center 6f mass of the entire systém reméiﬁs at rest in
inertiaivspace, but it does mbve ﬁithin the_cofe for some modes.
Similarly, tﬁe ¢bre'B;dy rotatés for some of the system normal ques,
but our modal ana1ysi§ is basedVOh avfully constrained.baée eration.
This represents in fact a conveﬁieﬁt assﬁmptipn —nwhiéh.is necessary
if our answers are to haQe value for‘bybrid coordinate anélysis of
appendages_éﬁ arbitrary spinﬂing bodies — and permits the.obtention

of uncoupled modes —-COn&itions under which we caqrtransformvthe
.partial'diffe:ential equafions into a set of ordinary differential

equations,
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In Chapter 2, the derivation of thé eigenmodes and eigenfrequencies
for two unidimensional types of flexible appendages is presénted. “At
first, we looked at fhe problem_of the radial uniform classical beanm.
Thelcl;ssical assumptions cohsissing of neglecting the shéar déforma— ‘
tions and the rotatory inertia wére made. We also limited our study
to a radial beam C1émped-at its root on the'spiﬁ axis; After the
completion of thisAfifst case — where the spinning motibn acts és an
‘element stiffening.ﬁhe structure — we lobke& at the case ;f é uniform
cable clamﬁgd a;_both'extrémities, and spinning.about a~ceﬁtra1 axis.

- The spinnihg motion introducgs.in this structurg a SOf;eﬁinguéffeét

4and.réquife5'the in#roduction.qf a Built—in tension. Tﬁis céﬁfigura—
tion seems to be’éf little directAapplication, buﬁ it hés beenvexamined
in érder to faﬁiligrize_ourselves with the next éroblem of Qi&er
application, diééﬁssed in the following chapter.

In Chaptef 3, thg modgl analysis 6f a rotating ﬁembfane ié'con—
sidered. Two caées are invéstiga;ed. In the fifst one, the fle#ible
appendage consi;ts of a circu;ar membrane clamped along ité edge, and
spinhing aBout a centra; gxis normal to its plane. Heré,'again, the
rota;ion'intro&uces a aecrease in the eigenfrequency of the nonrotating

~ structure and juétifiesﬂthe introauctioﬁ of a built-in tension. This
llast‘effect is generally)referred as fhé éffect<§f prelbad and is
knoﬁnAto be ﬁighly configuration—dependeht. Here, again, the assump—
tion is made that the motion of the séinning rigid rim is uninfluenced
by membrane vibrations. Finally, .the freely spinning membrane is

"analyzed and i£ is ob;erved that for this last struéture, the eigen-

frequencies of the rotating membrane are less affected by the flexural
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rigidity than in the case with outer rim gonstféined by a spinning ‘
, rigid ring.v.
| Finally, in Chapter 4, a'geﬁéral derivation is given for the
 stability aﬁalfsis of rotating structures when the deformations ofithe
flexible parts areiexpressed.invtefms of the ﬁodes-of the rotating»'f
structu%e'wheﬁ determined from a'continuous elastic model. Also, some
of thé'restrictions intr6duced in‘ouf derivatioﬁ.are juﬁtified;. it is
shown, for ihéfance,fthatbfor the ciass of-préblems cohsidefed iﬁ
Chap;ers Z’aﬁd 3,‘the Qébbling (nutationai) notion sepérétes from thé
spinning mgtion ip_the lineéfizgd equations; For_any_flexiblé 
appendage lying in a plane.pefpendicular to the spin axis, and passing
through ;hé‘system7cehter_of mass; the_linear@zed“équétibns of motion
separate into twéugrqups. The wobbling motion consisf§ ofvthe motion
deécribedrby:phé hutation angles and the transverse Qibrétidﬁé;‘éﬁd
the épiﬁning‘ﬁotiénléonsistsLof the rotation-aloﬁg the spin axis and
What is often reférred as the in—élanev&eformations. It is, in fact,
this last point that justifies the cdnsideratiqn of.only'the transverse
vibration in the previoﬁs study. For most éf thé aerospaée applica—"
tioﬁs,,the aftitude stability of the spacecraf; is of main interest
andjis only affected'by thé ou;—of—plaqe deformatiohsf  It is also
observed.that the gttitude étability is affécted by the anti—symmetrié
modes of symmétric gpaceéfaft only, and thréﬁgh this, the'aséumption
made earlier to cqnsider the tranélational ﬁotibn of the éentral”rigid
core of_the”system_as being not éffected by.the deformations, is méde

acceptable. The anti-symmetric modes are, indeed; those which keep
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the center of mass of the total system dt rest with respéct to the
rigid core.

The'development of stébility criterié for free spinnihg'bodies
has.bgen the basis of numerous technical papers. Rigid body analysis
priof:to.thé fiigﬁt.of Explorér I predicﬁs a stabie‘free rotatiﬁn in

'inertial space if the-éngular velocity vector isAdirgctéd parallel to
a principal‘axisiof eitﬁer maximuﬁ or minimum moment of ineftié. The
analysis fbllowing Explofer I led to the genéral qonclusion that for
a flexible spinning satellite to exhibit stable free motion its axiéﬁ
of spin must be restricted to thaglof the princiﬁal axis of méximgm
inertia; this‘propositioﬁ is'sdﬁetimes referre& to aév"thévgreatést
moment of inérti§" rule. »waéver, one would expect‘thatmthé'last
cfiterion ié nbt.sufficient to assure stability and it is not sur-

_prising ét‘allffqifind that épacecraft‘wiﬁh ve;y'large flexible

Vappendageé‘éxe iesé stable than quasi—rigid ones. It isAiﬁ the.
examinatibn>andldevelopment of stability criterié involving fhe modes
of vibration and the natural frequencies of_the strucﬁﬁrés that most
"of ﬁhe recent papers are o:ientédf: |

| iﬁfwould be téo lengthy to cover the numerous pubiicationsAdealing
with this lést’taék; Reference 13 providés a current bibliography on
this subject.- We should, howe?er, mention hérevfhéglthe problem is
generally approached‘through two differgnt ﬁroée&ures; Some. authors
examine the stability‘pr051em by using a Routh-Hurwitz analy;is, and
some prefer ﬁq use a Liapunov analysis. In ourvstudy, we decided to
employ the 1§tﬁer appfoéch, proceeding in parallel with thé.work done

~

by F.J. Barbera and P.W. Lik’ins.13 In their work, the authors develop
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general Stabiliﬁy cri;e;ia for a;flexible appendage described by a
collection of particles.' They used Liapunov's second method as the
basic analytical-tool.and byvspecializing in the»more'restfictive case
wherein the appendage_lies'in a plane_containing the center of mass
and orthogonal'tqlthe.spin axis, they.are>abie tb‘come up with some
analyticai criteria.

-_Tﬁebétaﬁility énalyéis aevelopedfin Cﬁaﬁﬁer 4_ié based on a'
similar approéch. Liapunov stability theoreﬁs ape:eﬁpldyed with fhe
Hamiltonian of the'SYSteﬁ, éohstrained-ﬁhrough the anguiar momehtﬁm
intégral, uséd as a testiﬁg.function —a method prqposed by
R. f’riﬁgle,l4 in_ordér to circumvent éfobiems rélated.t6 the negaﬁive
definiteﬁess of the Hamiltonian-time derivative. In our formulé;ion,
the-flexible éppéﬁdage is described as a continuo@é elaétic body; as
Qpposed‘to a collection_af elastically_interconnected pafticleS. ‘We

kept the deri§ation_as general és poséible. However; in order to
come uplwith'sﬁec1f1¢vcriteria, our study hés been restricfed to moré
particular cases. finally, the analysis was brought down fo a level
amenable to literal stability criteria by truncating ﬁhe‘numbér of
normal éoofdiﬁates:to a single mode. The s;gbiliﬁy'critefia emerging
ffom this_stﬁdy represénts, aue to the spgcial form_édopted for the
Hamilténian, conditions for stability tﬁat are suffitient'andl(except

for a few recognizable singular cases) necessary as well,
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CHAPTER 2
. DYNAMICS OF ROTATING ELASTIC BEAMS AND CABLES

2.1 Intrpduction

Iﬂ:the‘foilowing chapter, we face'the problém of a dynamical
study of»two:elementary structures characteriéed by a dominant efféct
of the forces induced by spin 6vei thie flexural rigidity._ In the first
part, a modal ahalySis is doﬁé for é rotating beém Ciamped normal to
the: spin axis. The'sfudy.isborientéd.towards the épplication in
rotation;stabilized space vehicles havipg a nondefofmabie frame to
which flexible rods aré-attached, In the second part, the modal
analysis of a taut cable clamped at its extremigiés is done.

--ihvbo;h studiés, we will conmsider vibrations only in the
‘meridiéﬂai«éirection.‘ We:will also ignofe deformations wﬁicﬁ are
ﬁrésént‘only bécause of the ?oisson effect. We.will éésume, at‘theA
.outéet, that.the motion of the base to which the elasfic sﬁructure is

attached is uninfluenced by the elastic vibrations of the appendage.

2.2 Dynamiés_of a Rbtating Elastic Beam

We now specialize in the study bf a deformable elemént which
consists 6f é long fléxible beam undergoihg transverse vibratidﬁs.
whén an elas;ic beam is normal to the spin:éxis éf its inertially
rotating base, it does sustain deformatibné in the steady state con-
figuration in which it remains straight and aligned with a radial line
eﬁana;ing,from its 5ase. Therefore, asieﬁphasized by E.W. Likins,
F.J. Barbera #nd V. Baddeley?15 one must consider nonlinear strain-

displacement equations if deformation variables are to be measured

2-29



from the undeformed state. The requirement fdr the retention of

second degree termscomes from the fact that steady state deformations

induced by constant spin are nét.arbitrarily.small, and cannot be
included with'the arbitrarily émall deviations from the steady state
deformations in the linearizatioﬁ process.: Thié great difficulty of
nonlinear elasticity explains genefaily why applicatiéns in the liter-
afﬁre aré’restrictéd-to seams. For'thdsé'partic;laf’casés, the équa—
tions of motion are typically derived by means of procedures whiéh
. rely, fromvthe outset, upon tﬁe“availability of sblutioné for the
steadyfstate load distribution and deformation of the elastic
continuum. |

In our énalysis, we negiect fotation éf the.tranSV¢rée_chss
section-of the thin circular rod or beaﬁ and consider ;hé 1inear.
density‘and the fléxﬁrél_stiffﬁess El to be coﬁsténf. Thé rods are
aiso considered.asAbeingrmﬁcb lpnger than the fraﬁé dimension. We
theiefo:e assume ;he~pqint.at which the rods -are attéched:coincides

with the axis of rotation of the frame, as in Figure 1.

Figure 1. Rotating Uniform Elastic Beam.
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Under those assumptions, the transverse vibrations of the clas-
sical (Euler-Bernoulli) beam, subject to an external'axiél load P(n) is

given in general form by (see Reference 15)

SR | 0 : 9
EL <7 - = [P(0) -§‘i]+ui—‘§ =0
S M ot
where  g‘EI _ié the'flexural stiffness of tﬁé rod

’

| 'y is the linear density

P(n) . 1 the external axial load .
Ihe'boundar§’conditions are given for a rotating fodfunder the assump-
tions bf'bne'cantilevefed'énd and ‘one free end by

: G éw : 3% 33w '
w(0) =0 = 3 (0) = -3 @ = —3 (L) .
. n n

For tﬁeirdtéting uniform radial beam, the influence of steady-state
centripetal accelerations can be represented by an "effective force"

or "centrifugal force" given by

L .
[ o2 1.1 _1 2.2 2
'P(n)=/uﬂ nTdnT = 5 et @ - n)
so that the previous equation takes the form
6 2 | 2
g1 &Y " ‘,';‘“ Q? [(Lz- nh ¥ 5 = zn'gﬂ]+u L 5 = 0.
.9 ' ' on L I T

Thé artifige 6f‘the-ﬁéffectivé axial load" permits this derivatidn of
the Vibrétioﬁ'eduation td be accomplished without the feliance on non-
linéér sﬁréiﬁ-digplaéémeﬁt equations noted prévidusly to be reQuired
for general deriVations‘ofrsmall-ﬁibrétion equations for rotating

elastic continua.
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Two remarks should be made about this last equation. First of
all, thisArelation:expfesses the transversevmotion.of the beam free‘
- of any e#ternal forces or deviétions of base motion'from simplé épin,
coming, fpr insténce, from the coupling between the transverse vibra-
tions and any nutationél motion of .the rigid core. AlSd, it should be
'emphasiZed that in the ére&ious reiation, the deformations along the
n axis répfesent £he‘fésﬁ1t'of tﬁo'sépatéte deformations:' thé steady?
state extensional deformation from the undeformed state'and.ﬁhe devia--
tion from thafrsteady-étate. This last pointﬁcbﬁi& be overlboked'ih
the previohs-réiatioh dué to the artificewofzthe feffectiye ékial
férce,"'buﬁlié aﬁ unavbidable'fact of the general’édnﬁinuoué“quél; In
the dérivatiqﬁs done;in Chapter 3, thié last re@ark will becoﬁe mqre
. apﬁa;ent in the'sense that the steady;state deformation hésbfd be
'éémputed firét;and tﬁe équations of the motion.aré then‘reffeéenteq By
the déﬁiatioﬁfffom this steady-state. |

We use, now, the method of separation of'vafiaﬁlgs§
cwin,e) = ¢ () B () ..

Substituting into the previous equation, we have:

2

Pa-+ wa Pa = 0‘ |
4 . 2
g ¢ ¢0c,_ 102 '[(1"2_ 12 4%, - d¢oc]_ w o =0
u _dnl‘v 2 dnz dn a o

where (*) stands for derivative with respect to time

wa represents the eigenfrequency of the vibration

and the boundary.conditions become -
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d¢ a4 a3

0@ =0=2 (0 = —2 @ =—2 W
¢ an - an? “dn’
With the introduction of the dimensionless variable, y = %‘,
and division by 92, the previous relation beéomes:
CIV L e 20 eq' a2 .
£ b -7 LAvD - Ajem0 (2.1)

where (') stands for derivative with respect to the dimensionless

variable y

e = —EL .
ettt S | -
2 o
A = 5
a Q

with the boﬁndary conditions -
18,000 =0 =010 = 5(D = ¢4 (D)

‘In the parémeter €, the high spin rate and the low flexural
rigidity édmbinéxtheir‘effects_to prdduce a small-qﬁéhtity.- A tybical
value for the parametef € is given by the range of values 10—3..;10_4
(see Refereﬁce 2);1 As a result, the previous equation is suitable for
the use of singﬁiar'perturbation theory by the presence of a small
paréméterlih the highest derivative term.

Let us consider for the central portion of the beam, a solution

for which analytical dependence on the small pérameter € is given by

¢a(y’€) =,h0(y) + vl(e) hi(y) + vz(e) hz(y)+...
where vl(e) is a small o(g), and the vi(e) constitutes an asymptotic’

sequence of functions.
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By definition, ¢(1) = o (¥(W)) as u > uo if, given any § > 0,
there exists a neighborhood Ng of W such that lo| < 8|¥| fofvu in the

neighborhood; thus ¢(u) = o(¥(u)) if ¢/¥ ~ 0 as u +Auo.‘ Also a

sequence ¢n(u), h=1,2,.,. is called an asymptotic sequence if -

b1 () = 08,0 as u >

By definition,:two functions ¢,Y of | belong to the same equivalénce
class in a neighborhood of Ho if

0 < 1im . < oo,

)
U'*Po s
If this doublé.ihequaiity is satisfigd; we.aéopt ﬁhé.nqtatidﬁ
| ord (u) = ord ¥(m) . | | R

A partial ordering of equivalence classes is given by

ord ¢(1) < ord Y(u) if lim % >0
: ' ' MU '

so that if ¢(u) = 0 (T(u)) then ord $(u) < ord W(u)

: Io shorten the writing, the subscripﬁ 0, characteristic number
of the mode will be_omitted ﬁomentarily and we wili use this subscript
exﬁlicitly‘only when néeded, in order to differentiéte bet&een differ-
ent modeé. ‘

| Similarl&ithé.eigeﬁvalue ki of tﬁe pfoblem wili be written
simply as Az_énd it will be expanded in terms of the small parameter

€ in the following way:
2, .2 2 2
A (e) = Ao + Kl(s)kl-+ Kz(e))\2 +oue

wherehKi(e) constitutes an asymptotic sequence.
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The corresponding differential equations defining ho(y) and hl(y)

are giﬁen by

7 [amyhng)’ +3) f, = 0 |
a4 ‘ ' K, (€)
and- " - {-22%n i o1
1 2 . 2 10 Vl(s)
5 [A=yORI] + A5 by = -
: ' o Kl(e)
0 if L Siy = 0
e >0 V1'¢

where the different possibilities were limited to the case where
ord v (E) > ord €, which ‘'will be verifled later.” We also neglect the

possibility»that;vl(e)“_ (K (6)), because this.would impiy'that?

Al = 0.. | |

At this stage, one remark can already be made on the solution for
ho. There are no apparent boundary conditions to the equation defining
ho. But this equation is known as the Legendre equation, the solution

to which is well known in terms of the Legendre polfnomiais (see
Reference‘l7). Even though it might seem that there would be a com-
piete freedon in the values of Ag, we can see fromvbere, already, that
the values of_kg are limited to a discrete spectrum based on the obser-
vation that the point y=1 constitutes a singularity for the Legendre
polynomials, and only’a discrete set of values of A will give the
value of the Legendre polynomlals to be bounded at y=1

In order to make those observations more specific, we have .to
concentrate for a while on the boundary layers existing at both extrem-
1ties, whose solutlons Wlll give us. the. constants of integratlon we

need for the previous integration.
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Boundanz;ﬁajer Near v = 0

In order to study the boundary layer near the origin, we have to

introduce a stretched coordinate

~

y = assuming 0(e) - 0 when € + 0

o(e)

The corresponding_asymptotic expansion valid near y = 0 is given by

$,(7,8) = Uy()gy () + 1 (), () + 1, ()5, () +...

where the ui(e) constitute an asymptotic sequence. Replacing the
previous asymptdtic ekpansiqn into the differential equation of the

mode shape ¢(y) and cbnsidering»that y = 0(€) ¥ and dy = o(g) dy, we

obtain: 7 . : .
CE dfgo<§> L d'e, & .
A N T EHO N
o L2 e 2 ey
__1_02(8);2,,lu0(€) d go(y) .\ ul(e) d gl(y) N
S O LA O S
1 L {Hee) dgy ) wyle) dg ()
+ oy [ @ & T e & T

R g @y + (8 G) +...]

= @A Tu (@8, + u (g F) +...1 =0

A suitable boundary layer coordinate is chosen by the requirements that
the higher derivatives are of the same order of magnitude near the
origin or by conSidering the previous equation,‘ih writing

eng(e)  uy(e)

cé(e)' 0?(8)

or o 62(6) =g and - a(e) = Ve
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The boundary layer coordinate is thus given by:

-

PSRV X 2N

The dominan;.boundafy—layer equation is given by:

b 2 -
dgy(y) 1 d7gy(y) o
~4 2 ~2 :

dy dy
Both boundary conditibns‘at § = 0 have to be satisfied by,gozv
EEQEZi = =
T dy &0

PR
Defining d go(y) * o~
T =g (y) , we have

a5
2
i_g_o_(y__)_ - 1 *(“') =0

. dy

Using the fact that the exponential growth (ey/JE ) cannot match as

y + « and .taking into account the boundary condition,. we obtain

successively
2 o ©
. dy . ,
and . : . _ i -
G =2c¢c |+ -1+e V2
Eo\Y o
12

which represents a solution with one arbitrary constant but doesn't

depend on the eigenvalue.
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. We are.now'in a pbsitioﬁ where we can try to match this boun&ary
layer expansion and the éolutioh wevfound previously for the central
portion of the beam.

Anvintérmédiate_limit suitable for matching near y = 0 is given

by yn fixed:

yn=fﬁ}('-g)— n(e) =+ 0 and MEL,'*‘*’ as €~ 0

so that . .
y=ny +0 . and y= —y o
- n LT = n
Matching near y = 0 takes the form:
o 1lim. | h(ny)~+'v(€)-h (ny ) +...
e+ 0 0*"n 1 1 n”
fixed
¥, fixe

- uo(e)go(VE yn>-\ul(6)gl(/€- yn)*"ﬂ = 0.

Expanding h0 and hl-as Taylor series near the origin and using the

solution previously found for go(§), we have:.

. ’ ' . o | s :
Yn fixed - > - :;3:— Y 1_
' ' o -ZUO(E)CO —n yn -1+ e v2ve +...,=0.

From here, we éan see that the matching is possible only if the follow-

ing equalities‘are'satisfied:

~ hy(0) = 0
i) = V2 C i
énd
uo(e).='/g
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Another point can be noticed from the pre?ious eqﬁation.,'The
term 2 uO(E) C, appearing in the expression of g, can not be matched

except by a suitable value for hl(O) and this requires that
v, (e) =uy(e) = Y& and h(0) = -2 €,
whichvsatisfies our requirement that vl(e) + 0 when € +'d, and implies
ord vi(e) > ord € an inequality that we still had to prove.
We are now in a position where we can go'Back to the solution
valid in the Central'régiqn of the beam.
: Thevgquationvdéfining hoA. ‘
1 20 09t L 22,
3 [A-yDhgl + A5 hy =0
is a.Legehdre equation.

Defining the Legendre functions of the first and second kind by:

1]

. gl(z)\g,y) » l_(_z_]!-) (2)\5)},24. (ﬁ) (2)\(2)) (2}\(2)'_ 6)},4 .-‘..-

2 - .1 .2 3 ~
£,(20, ¥) =y —(3—!) (A, = 2y~ +.o..
we see directly that only the second expression l?é(Zkg, y) satisfies
the requirement ho((D = 0. We thus have:
ho(y) = k, Z (22, y)
oYY 0 2% ¥/ -

The set of disérete values Ag which represents the zeroth order
‘of the asymptotic ekpahsion of the eigehvalue éfé in fact those values
which trunpate the Legendre polynomials. VFor ali other value of Ag,
the serié becomes infinite and unbounded for y = 1, which could not make

physical sense for our problem. This last point will be shown later.
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As a result the set of discrete values feasible for Ag is given

by
A~ =1,6,15...

or in general.

,kér— Bﬁﬁgll for n odd.

Now that an expression.has-been found for ﬁo(y), let us look at:
the e#pression of:h (y) |

Before amy computation for. hl’ we will: need a éroperty of the ,
mode'of the previous p;oblem, i.ef their orthogonali;y.h In order to
prove theAqfthogonaiity of tﬁé mddeé; we have to consider fﬁe»fbllowing
equations and boundar& conditions: | |

v

e o -3 [a-yD821" =25 ¢, = 0
e o5 = 2 1ayDogl - A2 o = 0
00 = 83(0) = (D) = 0D = 0
85(0) = 83(0) = $5(1) = 43" (D) = 0

Multiplying the first'equation by ¢B and‘intégrating_by parts from

0 to 1, we obtain:-

€ 04 '0g

11 o
‘__ Trge .__]_- AR
e_/(;cba 0 o - 3 LAy, |

0
| 1
P! 20 4. ) L
+3 f (1~y )_<!>0L<t>B dy - A, f¢a¢6 dy = 0
0 0 .

The boundary condltlons and a new 1ntegrat10n by parts’ glves us

1
+€f¢"¢'8'dy+—f(l—y)¢¢8dy—>\ f¢¢8dy

€¢I|¢B 0
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‘A similar expression can be obtained from the second equation and for

'Ai # Xé_ we have from thevdifferencé of the two expressions
1 .
dy =0 .
./0‘¢a¢8 y

The previous_result has to be completed by the relation defining the _

‘norm of the modes and for orthonormal modes we also have

X |
2 _ -
'4'%dy—x .

,‘Expanding‘the modes through the asymptotic expansion we defined before,
Tand;cohéidering;tﬁat the ﬁrévious'eXPreSSipﬁ has to be’frue for every

small €, the last expreséion becomes, for instance:

2, '
ho(y) dy = 1

S~ S~

hy ()b (y) dy = 0

and similar expression for hz...
We have to be'Caref;l in the use of the previous relation because
we have to iﬁclude_undér the integral sign the cohtribution coming.
from the boundéry—layer.solution. Fox‘our purpose, we already showed
that the boundary layer near the ofigin'is of thicknéss Ve and, as a
result does not gontribute in the second integral. We will prove later
thaﬁ the boundaf§ layer near the ffee end does not contribute to the.

previous integral too, and the two integrals we just wrote will, from

there, be usefulf From
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l/
-fh
0

.2 2 \2 ~
j;ko 25 (g, ydy = 1

"dy = 1, we conclude

and

Considering now the differential equation defining hl(y) we have

Ty ) . AZ -Kl(g)
Lorio?yper w02 w o | A5 if -1
7 [A-yOR) +2g 1 1o 1T o
‘ " ' ' : ki€
0 if >0 ase~>0 .
e ,

The second stsibility 1s now to be cancelled if we want to have any
chance to satisfy the integral

;dérho(y) h,(y) dy = 0 .

As a result, the function Kl(e) is well defined and we have
K, (g) = Ve
1
and
: ' )

1o 20 L2 _ o :
3 [(1-yDhi] +Ag by = -7 by . L (2.2)

We also found befdreAin the matching process near the cantilevered
end: '
h, (0)
V2
2
kg £5 (245, 0) = V2 Co = - h,(0)/ V2

'hb(O)'= Y2 Co = - or

- B 2
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We will now determine the value of Xi,through the use of the
differential eduétion (2) and its boundary conditions and also by
using the orthonormality condition on hd. 7

- Multiplying Equation (2) by h, and integrating by parts from

0
0 to 1, we have o _ _
| | 1L 1 - 1
-1 i __.2. ' -}_f _ 20 ey 2/ _ 'Zf 2
- 3 [A-yDhydh, 0 2 [A-yDhylhg dy + A5 A hihgdy =-A; [, o dy

Assuming hi(l)‘to be bounded, the use of the boundaryvconditiOn’of.ho

and‘its~normalityﬂgives us
2 Z(l Y_)Ahl hy dy - A, Ohohl_qy =A .

Integrating by parts once again, we have

v T 1 ‘ 1 |
L i 2y _ 1 “/n o2 ' _ \2 J(. - 2
Az ‘1 y )hohl- . 7 A [(A-y )hO] hl dy AO A hoh1 dy Xl .

: .Thegdifferential equation defininglho-

1 20 ' L2
-5 [y nil =+ Ag Ry

brings us the final expression:

- l__ 1 ; = 2
= B0 1 (0) =)

or L
2 1 2 o
A5 = —=— ni(0) - :
Y ) 1
or
L z@l o1
2 1 2 7702
Al =

2 f 2 2
o f Q‘z»v(Z)\O,y)dy
0 B
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Considering the definition of S?Z(ZAg; y), we can see that

£y 22,0 =1 ana

. A2'=v . 1 v
v 1 7 2 2 v
o 2 ,‘5?2.(2A0,y)dy
- | , 0 .
For the first~mode, oorresponding to Aé = 1, the previous relation

becomes

,‘Az = — - S A_Bo:'v’ -2 x~2.12 .
1 ‘ 2. st vz
' V2 y dy V2 y
0 0
For the secord mode or for Ag = 6, we have:
2w — 1 - 83 ~1.8

| 2 4/2
ﬁi(y-'g'y3) dy - g
) . |

We should emphasize at this stage that the provioos expression
fouod for Ai is oimply Based on the'properties of the differéntial
equation and did not use ény other relation. It is easy to prove that
the previous.values found fo; Aé and Ai ore'also thoSé'whioh satisfy
the orthogonaiity relationship between different modes. For the zero-
order tefms of fﬁooexpansioh; the relation is simply given by the
orthogonality property of the Legendre polynoﬁiais’in the interval from
‘o to 1. Forbthe.firstoorder terms, the derivation is lengthy, Eut'the
values of Ai are coming oﬁt froo those relations. Now that an expres- )
sion has boon‘foundffor Ai, we can go back to Equation (2.2)

l._' 23" 2 _’_ 2 «-. ’ 22
7 [A-yDh] + A5 hy = =2 hy . . (2.2)
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The general solution of the previous equation is givenvby'a,particular

solution h .which satisfies the boundary condition

1

,‘ N
hy (0) = -ky £ (215,0) /E

and the general solution of the homogeneous part of (2) multiplied by

a constan:'kl. ‘This last solution is nothing else  than hO’ the solu~
tion of the zero—drder equation. So, in general,

) = R )+ ko)
Out of the family'of sblutions, we havevtO’choose"the solufion which

sétisfigs_thé'orthogonality xelationship beﬁween h0 and hl'fOrjpné

mode or

1 1 ' 1 :
B . = ' 2
0= f hOhl dy = f hO‘hl dy + kl fho dy
or, finally 1
kl = - '/O'ho hl dy

The knowledge_of'kl specifies entirely the function h1 and as we will
see later, this last step will be needed when we will match the
central part expénsion to the boundary-layer ekpanSion near the free

end;

Boundary lLayer Near the Free End -
We, now,'héve to look at the boUndafy 1ayef needed at_the free end
in order to satisfy the boundary condition and confirm what has been

said before about the value of h. at this extremity. In order to pro-

0

ceed, we have to introduce another suitable boundary layer coordinate

near y=1. Let, then y*’='%%§) where ¢(€) +~ 0 when 5.4_0. We
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* ' * ,
thus have ¢y = 1l-y and dy = f.¢dy . The corresponding asymptotic

expansion valid near y = 1 is taken as

 94058) = 8p(e) G + 8 E G

where the 6i(€) constitute an asymptotic sequence.
Replacing the previoﬁs asymptotic expansion into the differential
equation of the mode, we obtain for the basic equation

[85@ a'e,0" 5@  d' oM

S g — + - TR
'¢4(€). 'dy*4 ¢4(€) dy*4 -
. 2, % 2. ko
Craeh? [H© LoD se dheh
, — L e
z 02e)  dy 2 0! dy" 2
S , .
| . I *
Sn(e) d £.(y) §.(e) df,(y)
- (l"¢y*) ‘ 2(8) ..0 * + i(e) 1* REERE
_ T dy dy }
ERCHCINORENCEN VRN
ke @A [8()£(y") + 8 ()E (5] = 0 , (2.3)

T x2 * 2 %2 :
Rewriting 1-(1-¢y") as 2¢y - ¢"y ” in the previous equation, we
choose a suitable boundary layer coordinate by the requirements that
the higher derivative‘terms are of the same order of magnitude hea; the

free end. Thus by considering the previous equation, we have

eéo(e) ‘; Go(e)

b, .
¢ (e) . ¢(e)
or 3
$”(e) = € and
' 1/3 . , ;
¢ (e) = ¢ so the boundary layer coordinate is given by

*
y = l—y/&:_l/3 .
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The dominant boundary layer equation is given by

4 * 2 k. *
d’f,(y ) x 47E,0) df (v ) )
A -y *2 - * =0
dy dy dy.

R . ' . *
‘Both boundary conditions at y = 1 have to be satisfied, by fo(y ) at

* -
y =0

*

- % *
deO(Y”) , d3f0(y ) .
0 aty =20

* E *
ay"? SV

The previous equation can be written

N |
4G ) ,"d"[%* 4fo] .

= = ——

4 k * *
dy dy dy

A first integration gives'ué as a solution-

_ 5 . .
- dEy(y) x df
C *x3 - 7 *

dy - dy

where we already used one of the boundary conditions in removing the
constant of integration. Defining:

df

'—‘% = fg(y*),
dy o
we have
| -dzfo % f*
ay2 R A

with the boundary condition dfg/dy* =v0 for y*’= 0.

This last eqﬁatiﬁn is known as the Airy equation, the solution
of which is given in terms of the Airy integrals. We, thus, have
* _

0~ %o

% *
£ Ai(y ) + ByBi(y )

2-47



[

The asymptotic expansioné of the Airy integrals canﬂbe found in the

literature (see Reference 18) and are given by

) 1 -1/2 -1/4 - 1 5 1
Ai(z) ~ 2 Il z e. 230(:6 T )
and ' S
Bi(a) ~ 12 70 p g, 255
ﬁhere : )
i g =207

' and',éFo stands for the generalized Hypergeometric series.
A direct observatiQn of the expression for Bi(z) shows that it

is ihappropriate for matching due ﬁo its'expdnéntial growth, and only

f*
70

A *
has the exponential decay property.
We also have to satisfy the boundary'condition '

. % 4
dfO_A, , *
—% =0 for y = 0

dy '

and the power series.expanéion of Ai'(z) near z = 0 is given by the
 following expression:
| 12, 1 2 5 .2
. ' = - . 2. . = . 2 .. ;
where E'has the same meaning as previously and the constants a and b
take respectively the values 0.355 and 0.258.
As a fesﬁit, the satisfaction of the last boundary condition

requires that A, = 0 and we are left with

x % :

£a(y ) =0
or f.=D,.

0 0
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If we spent some time in the .development of the solution for fO’
>it is due to the fact that the previous development will Be found
helpful in the seérch for the‘solution of the other functions in the

: \
boundary-layer.

To invégtigate a little further the boundary 1ayer_solutiqn, we
~ have to try to match the solution valid in the central regipn_of the
‘beam to the expansion vdlid near the free end. in order ‘to aécomplish

this last_objective, we have to expand the solution found in the
central region near the free end. - We have:
¢,(7,€) = hy(y) + /e by (+...
Defining the variable y' = l-y, we have:
' 1 . ") 1)
| 9,(y'€) = hy(l-y") + Ve hy (1~y")+...
or

. 2 .
- R N 1] L'__
hy(1) = hi(Dy"' + hy(1) 7 +...

v ¢a(}" ,E)

+ /e h (1) - Ve hi(l')y'+.‘..
For matéhing, an-incermediate limit suitable for matching near'y = 1
is. given by n fixed:

¥y, = H%ET where y' is. always positive.

n(€)+0 and —-]%-/—5 > o

' . * ¥
so that y' =ny_ -+ 0 and y ‘= N > ©
_ ' n 61/3
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Matching near y'=0 takes the form:
2 2

' , ny
. . _ " __ﬂ .
| E:l—j;mO ho(l) h(')(l)n Y + ho(l) T Tt Ve hl(l)

yn'fixed —./E hi(l)ﬂ yn+..‘

S ny, ny, :
-~60(€)D -4 (E) f ( l/3> 52(€)f2(~;i73)—,.. =0

From here, we can see that the matching suggests the ﬁse‘of,the follow-

ing equalities:

8p(€) = €°  ‘and h (1) =D,
Gl(e) = 51/3 . Gs(g) = 82/3
.62(5) = /2 : 64(é) = 65/6..f

As a résult,vﬁe ;an,see ;Hat tﬁevdetefmination of DO seems to be free
and thé'éonje¢ture made earlier about the value of_ho(l) is pérfectly
valid. | | N
The boundedness of Fhe value of ho(l) is the real boundéry con-~
dition that-shbﬁld be'uéed at the frée end, and the valﬁe of D0 is
thus known!
Now that the matching process has suggested an order of magnitude

1/3

of € for 61(8) in order to match the linear term in N y_ appearing

n
: ‘ g *
- in the previous relation, let us compute the expression for fl(y').
' * : . ’
The differential equation that fl(y ) must satisfy is obtained
by picking the term of order of magnitude
£ 61(8)
b
¢ (e)

in the general expression (3)
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4 * 2 % x9- 2 * o *
d fl(yA) x 5@ ) v 20 d7f,(y ) * dfo(y )

- + +
* y * * y .k
dy 4 . dy 2 2 A dy 2 dy
af, (5 |
y
1 2 *
- = - A fr) = 0
dy

with the béundary'conditions

*
. dzfl(y- ) ,
—— =0
*2
dy .
> * _ ¢
3 % fory =0
AR G) ' o
—Sg— =0
dy ~.
: S : . x L S
Using the constant D0 for fo(y ), we are left with
4, . % 2 '
AR T U 2
%4 YT % - ® 00
dy dy dy

"In this last linear differential equation, the homogeneous part
is exactly the same as the one defining £y
A particular solution is given by ‘taking a linear relation for

*
'flh(y ) such‘as
* ) *
En ) = Ag Dy -

. ‘ * A
The boundary conditions on f,(y ) cancel once more the two Airy
Integrals, solutions qf the homogeneous'part‘and as a result
| N S |
fISy:) = -tho(l)y .
Going back to the expression'computed for the matching near y'=0

we have to show that

4 ' 2 _._
-hy(1) + tho(l)»f 0.
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The differential equation defining h-0 is given by

=0, .

0

1 7 o2\ _ ' 2
5 (1-y)hg =y hy + Ag by

evaluated at y=1, we have:
() + A2 (D) = 0
0 00 *
- In the mé;ching, vaiid'near the free end, we observe that the
limit process suggests to introduce a term of order of magnitude
62(6) = /E in order to'take éare of the presence of /E_hl(l); We will
thus introduce here into the ésymptotic expansion valid near the free
end the expression
£.(y) = D
(v ) =Dy

where Dl

added to the problem; the value of hl being already completely

is equal to hl(l)' There is, as expected, no new information

specified.
Proceeding to the next term, the matching process of the quad-
ratic term in nzyﬁ suggests for 63(8) an order of magnitude of 82/3._

*
The equation defining f3(y ) is given by considering the terms of order

of magnitude

€ 63(6) _ €€2/3 _ e1/3
4/3

¢4(¢}-'_ €

in the expansibn_neér y=1 or

4. k. 2 . 2 . g
a'E(y) x 4t .3 2. d%, af, L df | 2o oo
x4 7 *x2 T2 k2 T x Y T T g RV E
dy - dy : dy- dy dy .
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‘with the boundary conditions

N
d2f .
3.
dy’k2 -0
%
f for y =0
a3
3 _ 0
*
dy 3 J

‘ * *
We already found that fl(y )_=_—Agvh0(l)y . So the previous expression

becomeé:
4 * L2 L .
e AL e W B ST SR T RApO
: YA Yy *9 % 00 y. 0 "o y
dy - dy T dy

The solution of this equation is given by a particular solution and the
general solution of the homogeneous part. The particular solution is

taken as’

£ * %2

~where

) :
(Aor— 1) ho(l).

>

The general solution of the homogeneous part has to satisfy the
requirement on the third derivative due to the choice of the particular

solution and as a result, the general solution is given by
. . . ‘ .

£, = A /O'A;(aida +D,

as can be seen from previous development, where the other Airy Integral

has been cancelled for its exponential growth.
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The final expression for f3 is then

*
2 .

. y A
* . 0 2 x2 _
2307 = &) ./0' AL(D)AE + —— (02D nyWy P 4D,

The determination of A, is given by the use of the second boundary

1
condition A
d2f3 , .
' *2 =0 ~fory =0
dy < |
or 22 _
A Ai'('*)+—‘)——(xz'—1) h (1) =0 for vy =0
1 YT Yo o~ ey =
or ’ _ _ _
A2 - 1) ho(1)
h o= 000 0
1 T2 A1' (o)

where the value of Ai'(o) can be found in tables. (Reference 18).

Going back fé the métching procedure, we note that the term

1/3
nyn/e

: Alw | Ai(E)dE + D4
0
presents the exponential decay>which allows us to neglect its contri-

bution in the process, and we are left with

22 2
ny A

wey 00 _ 20 2 2.2 _
This last relation represents an identity as we now show.
Considefing the expression defining h0 and expressing this rela-

tion in terms of the variable y', we obtain:
|2

2y' = y'"" e —v"h! 2 =
3 h0 (1 3’4 )h0 + AO h0 0.
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Expanding h h'.and.ha in a Taylor series expansion valid near

0> 0
y'=0, we have
_ 'hg(l) )
ho(l—yf) = ho(l) - hé(l)y' + = y' o+,
h"l

hi(l-y') = h'(1l) - h"(L)y"' + _9_££l 12,

oY o't} T Rotty 21 yo T
) 1) = n _ RN . :
hO(l v'). _hO(l) h0 Ly'+...

Introducing the last expansions into our previous equations, we obtain

the following identities:
hi(1) + A2 n (1)'% 0
-0 ) 00 o
S S
" ' _ ' =
ZhO(l) + ho(l) AO ho(l) 0 .

This last expression can also be written:

() = {Ag -1 Ag.ho(l) ,
which repreéénts preciseiy the equality coming from the mﬁtching
prqéegs. |
‘Pﬁféuing the matching even furthei,'the next term to consider is

5/6.

* ‘ *
f4(y ) corresponding to 64(8) =€ The equation that f4(y ) must

satisfy is representg& by the terms of order ofvmagnitude:

8,8 S5y
43~ F

4 :
¢ (e) €
in the development (3), or

4 - % 2 * . 2 * *
d’f,(y) S a’f, (v ) . 42 d™f,(y ) ) df, (y )

% * * ‘ *
dy b dy 2 : dY'z dy
%
df (y )
* 2 2 * 2 *
+y .——:;j;—— - AO f2(y ) - Al fo(y ) = 0.
: v
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Taking into account the fact that

fz(y*}

£,) = hy(D)

hl(l) and

we have
* v ok
a*t, 0, %, a6 2 | :
— -y O T R AO hl(l) + Al ho(l) .

dy - dy . dy

The use of the boundary édhdition for £, limits the solution for

4
£ (y) to
ALERS

*IA_ 2 * 2 *
In the matching procéss, we are left with
@ + 22 b + 22 ho(1)
1 01 10

which is identically equal to zero if we consider the equation

defining h evaluated at the point y=1 or .

1

' o, 2 S
-hl(l) + AO hl(l) —_—Al hO(l)_ .

_Tb complete the study of the boundary—layer solution near the

free end, let us discuss briefly the term f_ of the development of the

5

boundary-layer sclution. For this purpose, we have that 55(6) = g, and

*
the equation defining fs(y ) is given by

% ) * . 2 * o
') . CEGH O m d%E 0 aEG)
T Y 2t T3 x2 T %

dy dy = . . dy dy
af Gy
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with the Boundéry Conditions:-
2, , % a .
57" o
- *2
dy %
3 for y=0
3. ko '
L dTE(y)

™
dY‘3 , J -

. % ‘ :
Only the asymptotic behavior as y -+ « is essential for matching and
this is eaéily'foﬁnd.
_ . k.
Writing for the expression already found for'f3(y ) the following

expression .

2 %2
(A5 = 1) h(1) y ° + TST

. [T
=[S

%'
f30y) =
where TST stands for tfanscendentally small terms, always neglected

for matching, the equation defining fs is given by

* 2 * *
d*e (v x i (y) df (y) Ay Vo2 *
S5V 2~ 5 " .0 2 Lhyh (1)y 2
ok Y *2 * 4 o TV
dy . dy dy
_ . 2 : .
o (2 ~Dh (D)3 % TsT
4 o oY :

o x : .
The equation for fs(y ) can be integrated onte and gives us:

df (y ) df A 3\ %3
— 5 7 5192 270 42 y
3 y * { 4_(30 1) hy(D) 7 (g ;)ho(l) 3
y dy _
+ Dy + TST.

The calculation for f_. is carried out simply from the differential

5
eugation, noting that

3. ., %
d f5(y ) * df5 %
%3 <<y—-—;Aasy > o
dy y
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The rationale beyond this last argument is exactly the reason why the
1 .

matching works, so that we have

2

df (A, -1) %2 D 35 (5%
5~ __0 b .2 y 5,1 5 .
dy : y vy dy
It follows that-
2 a2 ‘ 4 3
*2 2 0 00" 3 *2 *2 *3
dy 4 oy vyt gy
L1 4fs
_+__; *4 + $ST9
y dy
and
e N V. )
4y3 = - e (4 “3APhy(1) + 0(5P+...
Y y
Finally, we have:
2 ' 2
S~ _0 7 4 .2 *2_ 0 b .2 R
% - ” 12 (AO BXO) ho(l)y D5+ 6 (Ao 3A0)h0(1) -
dy . 2 | y
1 .
+ 0( —57) + IST ,
Yy
2 2
(A' —l) . (A _l)
~_ o0 7 4 52 *3_ 0 b 02 .
fslf _36 (Xo 3k0?h0(1)y DS + ~—€f——~(XO '3A0)h0(1) an y
+ D, + 0( =5 + TST

y

The constants of integration D5 and D6-are then found from the
matching. The other constants of integration for each solution are in
the transcendentally small terms and are found from the boundary con-

ditions at the origin.
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In the matching conditions, expanding the various terms and

neglecting transcendentally small - terms, we have:’

00D 4,
'_Ds = - v-—-T;—- (g = 32y ho (1)
' D6_= hé(l).

We also have to show the_identity:.
hl|| (1)

- b 2
— 3, . 4 ——-(x 1)(x0 =335 ) hy() =0

All the other termsVomitted vanish'more rapidly than those matched.

' By going back to the development we already used for the identity found

for f3, we also have:

"y ' ; 2 " .
385" = G - hy (1)
or
e (Xg -y, 2
3 hg' (1) = — (g =3rp) hy(L) .

" The last identity is thus proven.

Having nOW>completed the modal analysis of the uniform classical
beam, we summarize the results by recording the final expression for
the eigenfrequenéies, or

22,2 52,2 2,
wl = A Q gQQO+E AL e

[s ]

where . Ag =,ES%EEL for n odd,
2 . 1

and Al =

L
i [ 22 @lyay
o - .

This section concludes with a comparison of previous work and

that of the author using the results presented by F.R. Vigneron.19 In

P .
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Reference 19, the author presents the relation for the lowest loaded
natural frequency of a radial boom as

22 L 2
wl _vaR + 1.193 @7,

where m;R stands for the unloaded lowest frequency for a uniform beam..
2, : 2 2 4 '
The qqantitvaNR is rgcognlzed as Wep = (3.515)" EI/uL ", so the expres-

. 2.
sion of w, becomes

l N
w2 = (3.515)% EL 4 1,193 @?
1 Sy

The definition of.s gives us
WL
so this expression can be written

we = %(1.193 + (3.515)% &)

‘Comparing the above expression with our development of wi or
1

we obtained the curves of Figure 2.

- %1 + 2.12 /& ),

(0 /92) — — = CLASSICAL RESULT
' PRESENT RESULT

L . S 1 Y
101 102 103 104 €

~ Figure 2. Correspondence With Classical Results
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In thevinte;pretatiqn 6f these results, we have to keep in mind
that the result preseﬁted by Vigneron'representg a better approximation
for increasing values.of,e whilé our approximation becomes more precise
as € decre#ses. The limitiné behavior of aAbéam when € goés to zero is
givep by the cable and Fhe true_value of the ;atio (@1/Q)2_is given,

for that_casé, byvl (as opposed.to-1.1§3).

Aftef.haviné.conSidered the case of the classical rotating beam,
we will now consider the case of a»rotatingicable of small flexural

rigidity when c¢lamped at both ends.

2.3 Dynamics of a Taut, RotétingL,Elastic Cable
|  In tﬁié deriva&iqn, the same assumptions.as those made earlier,
i.e. to consider the motion of the spinning rigid ring -to whicﬁ the _‘.
cable is atfaqhéd as not being affected by ‘the transverse vibration of
the cable, and also to ignore' the rotation of the transverse cross-
. section, wili be made;A The total syétem is alsé considered as being
"iﬂ rotation with_an angular velocity { around the axis of symmetry of
the ;ing;té which the cable iSyclamped (see Figure 3).
For fhe spéc;al type of configuration under investigation, it

must be emphasized that the spin has eséentially a destabilizing
effect. " It is knoﬁn that thé influence pf.spin:on flexible spacecraft
is characteri?ed by the presence of th?éevéffecté: preload, Coriolis
coupliﬁg and centripetal acceleration. The effectvof preload is of
main concern for this‘strucfure, becauée:of its:dependence upon the
configuration (orientation of the flexiﬁle appendage wiﬁh respect to

the rigid core). For this particular structure, the preload modifies

seriously the stiffness properties of the structure and justifies the
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introduction of a built-in tension that we will assume to be big

enough to ensure a tension everywhere within the cable.

:E?;{.

EQUILIBRIUM STATE] '

: Figl;ure' 3. Retatihg Uniform Taut Cable.

In whatAfollows we do intend to invest the cable with some small
flexural stiffness, so that the governlng equatlons of motion are the
fourth order partial d1fferent1al equatlons of the beam, rather than
the classiéal second order partial:differential equations of thevtaut
string. Under the previous eSSnmptions,-the transverse vibrations of
the classical’(Eulet?Bernoulli)-beam subjected to an extetnal axial

load P(&) is giVen'in general. form by

o Bw [P(E) ]+ v e 0
864' BE & at2
where EI is the flexural stiffness of-the‘beam or cable

U is the linear density

P(E) is the_externalAaxial-load.

We.should-notice here thet the equilibtium position of the taut
‘cable is given when the total system is rotating at an angular velocity
{3, with the cable stralght along the 13 ax1s.‘ No displacement can occur
either in the n direction or the 7 direction. The position vector (
appearing in the last relation is in fact the position vector at

equilibrium. If we stress this last point, it is due to the fact that
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the equilibrium state is not a zero-stress state.but there exists a
steady state stretching inﬁo the cable, steady state stretching which
is already included into our position vector &. We assumé that this
last fact doesn't alterate the constancy of the linear density or the
flexural rigidity.

| The boundary cbﬁditions are given fbr fhis problem by:

w(tL) = 0 = g—‘g—_(ﬂ)

where L stands for half of the total length of the cable.

For tﬁg rotgting ﬁniform faut’c#ble,_the steady state axial force
is given By_éhe‘constant built-in ténsidn_T appiied to thé cable and
by a compression force R>teéulting from the integral of the '"centri-
fugal'forceé" gpﬁlied to thé elementary masses. If we consider a
»cfoss—séction’pf the cable, located at a'pbsition vector &, the system

of stress applied to the whole section is given by

e .
p@ -1- [ a? grag
or , | 0 .
| , o2
P(g) =T - ]J‘Q 2 .

. One remafk shéuld Be mentioned he:é. Oné of odr_éssumptions,
when we, introduce the bUiitain ténsidn.T,.was to make sufe that every
elgmentary elemént‘aiong the cable was in a state of tension. With
the definition'pf the axiél load, it is the same constraint as assuming

that

PE) >0 for every § or
ST > fpgzg'dg';ugzé_=-r .
- 0 , o2 o .



Introducing the value just found for P(£) into the previous

relation, we have:

4 _ 22 2

.E'IE—%—E%[(E—USZZ%> -g—‘g'] +'u—a—%=vo.

9§ : : | ot
The introduction of the diménsiqnleSs variable s = %“ transforms the
previoué equation into
4 2

_u’ 3 [ 22 3w 2w _ o
2 3s [}k. s7) | +u =0,

g

L4 os

B

where we introduce the definition T = szo. The constant k2 is a
known_quantiﬁyiwhich‘has to.be éreétef than one.

‘The last relation can also be written:
s (2 Yow|, 2 3% |
"3 V" 2/ 8|t 22 o2 =%
-k 7k ot

where € standsvfor-.ZEI/uQZLl‘k2 .

.84
ds

€

€

o

Once again, we observe that the low flexural stiffness is com-
bined with the high spin rate. to produce the smail_parameter €.
Written in a slightly different way, the parameter € is also

" EI

£ =

L2T
and is a measure of thé ratio of the flexural stiffness to the built-in

tension.

The boundary conditioné;fdr the problem are also
w(tl) = — (£1) = 0,

conditions which express the physical clamping of the cable at its

extremities.
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Now that the dynam}c equation of the rotating cable has been
‘obtained through the use of the well—knbwn relation of a classical
"beam subjected to an external lbad, we could in a completely similar
~way have derived the previous relation.by solving first the steady
stretching of the cable, and then determiné the transverse yibration as
being a perfurbation with fespect to that steady-state of deformations.
. The last derivation would give in general a partial differential
equation with nonlinear coefficients, and thé first approximation of
the coefficients would give e#actly the same relation as the one we
derived before. This last fea;ure was meptioned before as being a
recognizable fact of cpntinuous~ﬁodeling,_and already included into the

general derivation of the transverse vibrations where the substitution

B(E) _ g du
A 9

has beenid§ne into the derivation, where
_Q eipresses the deformation along the cable axis
Af_ expresses the cross-section aréa of the cable
E exbrgsses the modulus of elasticity.

The procedure we just outlined was the approach used by Abel and

11

Kerr, ™ when they derived the dynamic equation for the transverse

vibration.
We now solve the transverse vibration equation, by using the

separation 6f variables
w(s,t) = ¢a(s) Pd(t) .

Substituting into the previous equation, we have
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4 - 2
8d_¢a _i[(l_ﬁ)&]_zt*)aq):o
A ds4 ds k2 ds 522k2 o

where (-)-sFands fqrvtime.derivative, w, represents the eigenfrequency
of the vibrat;on. The boundary conditions‘become at the séme,time:
o (1) = & a1y = .
o ds 7 ot
As annbunced in Chapter'l, the method‘of matched asymptotic |
expansion will,Be ﬁééd in this problem, but a suifable change of vari-
ables is recommended first; so we define

s = kx.

We then have

v 2
. 20
e ,IV 1 2 ! o
— ¢ - —= [(1-xT)¢ '] - é =0
4 o k2 . ,.oc ' Q2k2 oc_ .

k
where (') stands for spatial derivative with respect to x, or

€ IV 2y, 14" 2 . . '
2 % = [A=xD "] - A, 6, =0 o (2.4)

where XZ replaces 2-w2/92 .
: o - a
-1, _ R
The boundary conditions become: ¢a(ik ) _'¢a (fk 7) = 0. The para-
‘meter k is always bigger than one and consequently k_l is < 1.

Let us consider for the central part of the beam, a solution for

which analytic dependence on the small parameter € is given by:

¢,(x,€) = hy(x) + V) (e)h; (x) + vz(e)hz(x)g..
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Once again, the subscript a, characteris;ic numbef‘of the mode, will

be pmitted when not needed. Similarly the éigenvalue Xi of\the problem
can also be expanded iﬁ terms of the sméll parameter € in the following
way: |

2, . 2 2. 2,
A (e) ‘_Ao + K O]+ k() EE

where Ki(e) constitute an asymptotic sequence.

The differential equation defining ho(x)'is then given by
[A-xHh'] + A2 h. =0 o (2.5)
o’ -~ 00 ‘ .

and is a,Legehdre.equation.
Defining the tegendfe function of the first and second kind by:

1, ,2 .2, 1 2.2 . &4
1- (2!) XO x~ + (4!)_XO(AO 6)x +...

Z 02
"el(>‘0 ’ X)

.2 ' 1, .2 3
QE(AO,IX) = x —.(379 (AO “2)x"+...,

we see direcfl& that 5?1 correspondsvto the even modes and (QE corres-
ponds té the odd ‘modes.

We will now discuss briefly some of - the céaracteristics that we
are able to deduce from the zefoth,ofder expansion of the modes based
on the fact that we are expeéting boundary conditions for thé Legendre
polyﬁomials-oflthe form ho(tk—l) = 0. This lastlpoint'can be seen
phyéicall& in,thejsense that we are not expecting a jump for the modes
near the extremities and will be shown later by the p}ocess of matching
the asymptotic expansions.

Based on the bOupdary conditions ho(tk-l) = 0, we see that the
eigenfreQﬁencies_are the solution of the transcendental‘equation:

2 -1, _ 2 -1, _
Ql(AO’ k ) _'_.0 and, gz()\os k ) =0
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One remark should be made here. Bec.ba_use'k_1 can take on only positive
values less than one, we observe that the singulaiity of the Legendre

polynomials at x=1 is ‘avoided.

2

We first study the even modes. Defining the ratio Ag/kz = Hgs

we will try-to plot the variation of ug with respect to kz. ‘The

relation Zl()\g,' k-]_‘)v = 0 becomes

L.l 2.1 2.2 63 _ 122 6,2 20, _
L= Mot gt Pl ~ 20 ~8r Holo ~ 20 Mg -3 )eem 0
k. kT k '
Somevd13créte‘va1ues for the ploﬁting-afe easily found like:
: . , .
pz=—jl gives us 1——2?0:or u2=2_and k2=3_
0= 2 B -T2 0° _
.uz = 20 ‘gives us similarly uz = 14.8 .and kz = 1,35
07 2 u - o = T
-ug =2.32  and k% =8.6 .

We remark easily here fhat the value-k2 = 8.6 corresponds fo the‘third
ﬁode and the valgérkz = 1.35 cofresponds to the first m6dé.' By first
ﬁode,bwe mean‘that ;he.cOrrésponding éolution has no point of zero |
displacement excépt the extremities and by third mode, we mean ﬁhat
along the span of the éable, therevis two éoints with a zero transverse
displacemént. | |

Some interesf‘liés also in the limiting.case givep when the
parameter k2 goes.to infinity or when it goes down to one. In the
limiting case; when k2 + o,  .the expression '$?l(kg, k—l)vf~0 becomes
the expansionlof'gosuo, gnd as a result the corresponding value of ué,

valid for the first mode, is given by
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2_1m
o= g

This last result‘is reasonable, because the case kz +-m, corresponds
to thg-or&inary vibrating string. The effect of. the diétriﬁuted forces
induced by rotation becomes indeed negligible.

: The_other limi;ing case-k2 - 1.is more difficult fo handle dﬁe
to the singularity qé x=1. In drder_to study this last limiting
~case, it is indicated to 1ook:for the intérsecfion of the curve we are
looking fof_with tﬁe hyperbq1§ defined‘by ué ; Eo/kz' where'go is a
small parametér. : ' |
| ‘The intersection of S?l(Ag, kfl).= 0 with ug == is given by

é | .

1'_ - 0 + EO <i@.-..§>_ 'SOF <_€£__fl EQ_&Q> =0
. 212 a4\t K% en® 2\ P

' Neglecting the higher order terms in €9» we have

€. : . .
0. 11 1 . _
1 = kz [2 f 2 + A +_ 3 +... ]:— 0

which can be written as

€ - F S ~2/e
1+ —% log(l - —% ) =0 or 1- —% = e 0
: -2/¢
so . 2 i . 0 -
k™ = ————:3725 =1+ e o= 1 .

As a resﬁlt,»ﬁe tﬁus see that when ug + 0, we havelthat k2 differs
from one Byla transcendentally'small quantity.

We_finally have for the first mode the following graph (Figure 4).
The prévious graph'shdws also the asymp;ote when k2 + o, which also

represents the value of the eigenfrequency of the nonrotating taut
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1

]
3 k2 00

Flgure4 i EAi‘gé-n‘ﬁéqué;I_é‘iés Corresponding t§ First Mode.

string. The hashed part of the graph represents then the decrease in
the eigenfrequency due to the rotation, decrease in the eigenfrequency
which is often referred to as the destabilizing'effect of rotation.
As expected by the previous reﬁark, the destabilizing effect decreases
when k2 increases, which éorresponds to the decrease of the effect of
the forces induced by‘spin. We could also show how the first even
mode varies as a function of the parameter.k2 (Figure 5).

h A LIMIT CASE k2=1

[+]

Kk2=oo

0 . S 1
Figufeus. " Mode Shapes Cdrresponding to First Mode.
A similar development .could bé done for the odd modes.

1 2

The relation 5?2(X§, k ) = O becomes, after defining Ag/k2=‘u0

1(2 2).’ 1(2 '2)(2 _12)
l-57\M - 3)ts7\M -~ )=0.
3t ("o 7 12) 751\ 7 2V T2 )7
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We could once again derive some discrete value of ug and kz. The

limiting case, when.k2 + o, reproduces here again, the result we might
expect from the taut vibrating string. In the casé, where k2 > 1, the

cor;esponding value of ug'is once again obtained by looking for the

2 _
0

might expect, the resulting value of ug is 2. All the results are

intersection of the graph with thé hyperbsla u 2+€0/k2'and as we

summarized in'the'foliowing graﬁh‘(Figufe 6), ﬁhich.represents the

variation of‘ug with respect to k2 for the 'second mode.

iQ2.
1(2_

////FIII‘IrrI y S v s ———

o
: Figﬁe 6. Eigen Frequenclie:s Correspbnding_to the Sepond Mode.

"The deStabiliziné effect introduced by the rotation is again
apparent on the'previous gréph. By secoﬁd mode, we mean, that there
exists aloﬁg fhe span.of‘the.cable.oﬁe:ﬁoiqt which doesn't experience
ahy transversé’vibration; We‘could also show how the second mode
varieé, as a funcfion §f the paramétet k2 (Figuré 7). After this
aiscussion oh:the zero-order solution of the eigenvalue problem, we
will‘now turn?our attention towards the next order of magnitude of the
solution; However, béfore ény attempt could be done in this sense,
we will have to look at the solution valid near the extremities. of the

cable where we still havevtoAprove that ho(ik_l) = 0.
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0 ) 1
Figure 7. Mode Shapeé Co'rrespont.:ling to the Second Mode.

Boundary Layer Near x ='k—l‘

We now plan to look at the.boundary'léyer solution near x=k .
It is obvious that.the boundary layer near x=4k;l could be obtained in
a completely éimilér way and will thus be omitted.
| .'In order to construct the boﬁndéry layer expansion, a_suitable
boundary-layer coordinate haS'to.be chosen, 'such that the higher order

derivative terms dominate the equation.

Let
. k;l —x .
X -—jga;- where ¢(g) > 0 when € ~ 0
R .
S0 px =k T - x and dx = -¢dx

' The dorresponding asymptotic expansion near X =.k—l is chosen such that
¢a(x,€) = éo(e)xfo(x) +61(§)fl(x)f.;.

where the.éi(e)'form an asymptotic sequence. The basic equation -

becomes with the previous substitutions:
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s 4 -
e 60(3) d fO Gl(s) d fl
——2- A 4 + - A ~4~'_+...
k™ ¢ dx o] dx
i 2 2
_ ~ 16.(e) d°f §,(e) d°f
- - @t A —E e
¢°  dx° . ¢° %

60(8) df0 Gi(e) dfl

20743 [ — Bt = +]

Aé[éo(e)fo(i) + sl(e)fl(i)+;..]

-k @ [8() £, () + 8 (), GI+...] = 0 (2.6)

Expanding the coefficiént of the second derivative; we'have
- 002 = 1 - k% 4 2067 1R - 9%R2
We now have to specify some information about the order of maénitude

of l—k_z._ We will assume throughout the rest of the study that

1 - L= 0

ol

k
By assuming this, we consider the built-in tension to be greater than
TO’ by a "sensible" factor. The thickness of the boundary layer is

then obtained by considering the highest derivative terms or

e8y(e)  8y(e)

4 2
¢ ¢
. - k—l_
so ¢ = Ye = and X = X
/e
The dominant boundary layer equation is given by:
4 2
1 d fo Ca- 1 , d f0 o
2 ~4 2 ~2

k dx k dx
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The boundéry conditions are:

£, =0 for % = 0
af

0 (.

 (0)=0

" Defining dzfold;{2 =Af3(§) and (k2—1) = k*2 , we have

a%er
*
— 0 23 =0
0 0
dx C

Cancelling, among the two independent solutions of the last equation,
the exponential growth which is unfitted for the matching process,

we are left with-
S )
: *.
d"f, k.o kR
= e -

Qdiz 0 L

A first integration and one boundary condition gives us:

(@]

.
df0 _ _©o -k x
x -x L-e D)

o~

A second integration and the second boundary conditions gives us:

~ C * . K%
£ = (kK R-1+etF
0 *2
-k
The mathhing condition with the solution previously found for the
central portion of the cable enables us to define the constant Co'
-1

We now expand the outer solution, near x = k ~. We define the variable

x' =k - X. We have for the even modes
2 -1 2 -1, __d 2 -1,
.Qa(ko, k x') —-.Q&(AO, k ) I ‘QE(AO, k )x'+...

" and for the odd modes:
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2 -1 2 -
QZ(AO: k - x') =Qz()\0’ k

1 d 2

; -1
) - ax «QE(XO, k Dx"+...

An intermediate limit suitable for the matching near x = k—; is

defined by

]

X
X =

- =G with_ xn fixed.-

Taking into account x' = ¢(€) X =_/E x', we also have

X = Ve X - where A e ‘when € > 0 .
n n(e) e » o

The behavior near x = khlAtakes the form:

~1im | B GThx) + v @by TR+
e+ 0 ’ '
xn fixed : ' nx nx
| - ao(e)fo(——ﬂ> - 8,(e)E, (—ﬂ) L]=0
Ve \e
Replacing h0 and fO by.the solution previously found, wé have
. 2. -1 4 @ 2 1

lim ; DOS?l (AO, k) D0 = 1 (KO, k )nxn +...

xn fixed -

-1 o d -1
+ vl(e)hl(k. ) - vl(e) Ix hl(k )nxn+...

x X

| |
c nx Ve
- 65(8) gz K -1+ :
K e
|
- 61(€)f1( - ) oo =10

The matching is then accomplished by taking

e
2, 05
2

1 =0
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which is ﬁhe relation we used before but was still to. be proven and

also

§.(e) = Ve

0

i} 4 2 -1
Co =k Dygx ¥ Qo kD)
2
where ﬁ?l stands for both Legendre polynomiels.
2

Now that the 1inear terms have been matched, we can see that

121 (e) has to be of the same order of magnitude as 6 (E) 50

vl(e) = Ve

and also

Cy

*
K 2

-1 _
hl(k ) = -

With the information obtained through matching, we are now able
to look at the next erdef of magﬁitude for the expansion in the central
area. Applying a procedure similar to_;he one used for the rotating
centilevered'beam, we plan to consider the orthogonality property of
the modee. | o |

Let us considef two different modes:¢d and ¢B'defined by the

following relations.

&4y - 1a-x" 3011 -

o

e IV 2, 4" 52 -

and the boundary cdﬁditions

o Y = o (ah

o

]
I

0 = o2k =
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Multiplying the relation defining ¢d by ¢B and integrating over the

whole span, we have o o :
-1 -1 -1

e k. - k k
IV 2, 44! 2
= f ¢, bg dx - / [A-xD93195 dx - A] / 0,95 =0
ogt A , Kt
JThe second term can be written: ’
! . o oot
gt 20 0" - 2,01 . 20 1
»J,:l [(1-x )¢a] ¢B dx = [(1-x )¢a]¢8 _1- J[:l[(l-x )¢G¢B dx.

“k S kT Tk

The use of the boundary conditions limits the previous expression to
the last term. Integration'by parts and the use of the boundary con-

ditions transforms the first terms into the following sequences of

expression
Kl okt e
v ’ ¢IV¢ dx = ¢nv- ¢ - ¢ll| ¢| dx =
) V -1 a B o B -1 '_l ¢4 B
“k . |-x ~k |
_ oattar b 1Pl
,¢a¢8 | f ondg dx
. _ ,‘ k
We thus have finally
KL o KL
) " " — 2
f / %)) ¢B dx = A -/-1 b Pgdx
-k -k ‘ -k *

The symmetry of the left hand side suggest that.it is also equal to

J{i ¢ ¢,dx
_k"l

as may be confirmed by a parallel development. Combining those two
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expressions, we obtain the expected result i.,e. -

k—l

J/.. ¢G¢B dx = 0 for o #B . C ' '
_k'l

‘The orthogonality relatioriship between the modes has to be com-

pleted by the relation normalizing.the modes. We are thus free to

choose the modes such that

.Considering now the asymptotic expansions used.for the modes
¢, (x,€) = hy(x) + Ve By () 4.,

the previous relation becomes, for instance:

’-‘ .

g0

Now tﬁat'the orthogonality has been proved between the different modes
and also between the different terms.of the asjmptotic expansion, we
can come_back to the maio problem.

Onoevmore, it should be emphasized that in the expansion used
for the modes in the orthogonality relationship, a uniformly valid
expansion should be»used, a uniformiy valid expansion which takes into
account the contribution of the boundary layer into the mode. But

for the problem at hand, the contributions of the boundary layer do
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not affect tﬁe relations found.before, bécause we limit ogrselves to
the expansion up to /e .

The differential equation defining hi(x) is obtained by replacing
_the asymptotic expansions valid for A§(€)~and ¢a(x,€) into the differ-

ential equaﬁion of the modes. We thus have:

2,02 | .2 ) _ A
[A-xDhj] + 25 by == by if K (e) = /&
Kk, (€)
0 if 2+ 5 0
| /e

0 1
the possibility to the case where Ki(e)'='/z'.' The equation we have

The relation of orthogonality between h, and h, found before, limits

to look at is now given by

I » . |
| 20yt a a2 o2 -
[(1-x )hl] + AO hl = Al h0 . (2.7)

. From this equation, we notice that an even correction hl corres-

ponds to an even function h, and reciprocally an odd correction to an

0
odd function. With the remark noted, we can now use the relation
-1
obtained with the orthogonality property. The relation K -1 hg dx=1
S N
gives us
ol
02 @2 02, wax =1
-k
or
2 1
Dg = =)
k& 2 .2
£ (AL,x)dx
1 140
k- 2
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Now, consideringvthe equation defining hl’ Equaﬁionr(7), and multi-
plying this relation by h0 and integrating over the whole span we have

oo KL kL

v )
f [(l—-xz)hi] hbdx + Ké / h, h.dx = - h dx——>\
-1 -1 10" .
K Tk Wt

where the normalization relation has been used.

- An intégration by parts'and the use of thé relation
7 hlhO dx = 0 gives us
k™ .
2

g 2 '. | o 2y v = )
CESLITLN S f_ (yng by = Y

us - | -1

‘v.2"| _ 2
—(l-x )h0 1 f J/: hl[(l—x_)ho];dx = —‘Xl

Considering now the differential equation deflning ho, Equation

(5), an using the orthogonality between an , we obtain
), and he orthogonality b hy and by, we ob

2 K

17 (1‘x gy L
| K

A

We mentioned before that to even modes corresponds even corrections

and vice-versa. As a result the express1on ho hl takes on different
' -1

signs when evaluated at the end points k and -k -1 and we are thus

left with

; ’;2 y =1 -1
= 2(1-k Dhy(k Dh,(k 7)
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Considering now the information we found in the matching near
x = k-l we have that

2 -1,
L g K

|
=)
I

' -1,
hy(k ™) =

hl(k ) dx °gl (A

~*‘4I
]

We thus=have

2 | (kz 1) I’.o [d ) 2 1]2 | o
Azs = o 2= — L (A5, k) .
1 L2 : dx 170°

Y/ k2_1 ’ 2 _

The final expression for Xi is then
42 02« )].
—— ldx
A2=2 kz—l ‘_[ .
L 2 -1

N

2
(g x)dx

(a9

e

The vangs found for{kg and Ai are also those values which :
guaran£ee thé'orthogonélity between different modes.  This -derivation
is less séraightforward‘and is presented iﬁ Appendix I,_so to lighten
the ﬁresentatiqn. Now thaf thé.value of ki has been found, the
detetminafién'of'hi(x) is cdmbletely determined:with the help of the
boundary conditions we obtaineﬁzin the mafchingﬁproéess.

To complete the study,ofAtﬁe present problem, we will now look
at the next terﬁ of the asymptotié‘expaﬁsion used in the boundary
layer. The matchiﬁg near x = k = suggests as the order of magnitude

fbr Gl(e) the value €. The differential equation defining fl is given

by considering the terms of order of magnitude

i
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eél(e), e2 o

" = =
¢4 E2
in the boundary 1ayer'expénsion, Equation (6), or
| 4 2 2 -
3 d f1 -2 d'fl- —1~ d f0 -1 df0
> T " (1-k ) 5 T 2k "x - 2 k i 0
1 k- dx ©odx dx o
The ex?:ession previously found for fo is -
Cy 4 e
' e . ¥ -1 KX 4
'fo(x) ="%3 [k x-1+e 7]
where C0 is a known constant. We ‘thus have:
4 2 ' ko
d°f, ) d°f *, -k X
L_ o) —L-okclzek*s L o
~4 N a2 0 * *
dx dx k k

It would be instructive to compute the complete solution valid

for fl' To reach this objective let us define

2,
T
ax? 1
| | e x2 2
We have, taking into account the definition of k = = k-1,
a%e) * K%
%) & -k % KX
; -k 2 £, = 2k Colx © kox + —% - & *
dx k k
v . '
The particular solution flP is taken under the form
. : , e 5 k*~
_ , ~ =k x - ~2 -k x
flP = 2k Co[a0+ a xe + a, X' e ]
\\( . . .
*

Introducing this development into the equation defining fl’ we obtain

the following three relations:

a, = 1 a, = 1 'and a, = 1
-7 * ’ -7 - *
0 3 2 4k 1 Ak 2
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The total solution is now written as:

2 ) A
*. *. *_
* d fl _ -k x 1 l -~ -kx 1 .2 -k x
f1 =5 = C1 e + 2k C0 - —;§'+ %; X e -5 Xe .
'k 4k . 4k

dx
The boundary condition for fl,'are given by:

ag,
= E;—f(x) = fl‘x) =0 . - for x = 0(

Integration of the previous equations gives us:

. ‘ %
i 0 4G 2% EC afy[ s
d§ - % & *3 X %2 © o = k*z

Lok Lk 2k

Ko | ~ ~
5% x[:xz 2% 2 ] v e
* * %2 T %
Xk Kk 2 K 3 2

The use of one boundary condition transforms this expression into

x. . %
afy afx ECG . kG %% kG %
- =- 02 e - %3 X + %3 X e + % X e + C2
a5 K 2k | 2k

‘Integrating once more we have:

x_ » %
I T S I B | I S
* : * . * * *
o k k 3 2k 3 - k 2
k C 2
0 -k XX 2% 2 ~
-+ - e - +C,x+ C
* 17 =% * *
2k 2 | [—k K 2 Kk 3] 2 3
The boundary condition gives us
o k C k C "'k G
2 0 0 : 0 *
-~ - - +C,,=0 or C, =3 -k C
* * * *
o K 3 2 K 3
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So we finally have

k C *. 3k C C ke *. kC

£ - - 0 22 e;'k X _ 0 ;{ e—k X _ C e_k X 0 ;{2
1 2Kk 3 2K 4’ 3 k*3
e, L\

We can see that in the previous relation, only one constant is left
unknown, C3, and this last constant will now be determined through the
matching process!!

The matching ﬁear x = k = is given by the following expression

lim ,ho‘(k‘lf x') + \>l(t»:)hl(k-l - x"+...
€e~+>0 S . . ‘
xn fixed ‘ nx _ 'nx
- Go(e)fo —A) - (e)f S T
. . Je 1 1 Je .

Some of the terms appearing in the previous expressions have already

been matched, so let us consider.the'remaining ones; we then have

: 2.2
- 2 nx _

lim ...ny = sal(xé,k Ly e—ED-+...+sl/2[hl K hy- %;-hl(k Yynx
€ >0 dx 2 : n
x_ fixed- * nxg

n i . =k /_

R N
. k
oy 22 .
N k CO n *D, 3k C0 * nx.
e *3 & + Y k CO -—H-+ C3
: k- k Ve
ni nx
| 2 —k*—-j' —k*——rl
k CO XN . /E _ 3k COAX n . Je
* *
a3 € ax’ B
nx
—k* -0
- C3 e e +.. =0
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The matching is obtained by the satisfaction of the following

equalities
: kC,
' 2 -1 0
8 __ g4 =
7 L0k )+ 5y =0
2 k
. CO
h,(k.7) + vy 0
X 2

The last equélity defines the value of C3 and the last constant to be

determined is thus given by

3k C

_ 1l d -1 90
Cy= %@ mE D)+ 3

k k

d

The second equality was already found before and used. We are thus

left with the last equality or replacing C

0 by its expression
1, & g 02l - Kk p 4 g2 L
2°0 2 1707 *3 0 dx 10
This last relation can also be written
K2 & 200 a2 2ol h -0
‘ d 2 710 dx 170 ?

and this last relation represents an identity as we can see from the

differential equation defining h, or

't e A% h =0

- " _
1-x )ho 2x h0 o %
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Evaluated at x=k—1, the previous relation becomes
S KU TR E: [T S I
Ak mpah - 2%k ) + Ag By = 0.

We already know that ho(k_l) is zero so we have

2

Lzl h - o
2 1%

dx 2

x%-1) L2 (xg,kfl) =0
which is the last'identity.

With this, we have completed the studf of the modal analysis for
the transverse vibration of a rotating céblerf small fle#ural rigidity
clamped at Both'éhdé. Ihis last ptoblemshas‘beeh infroduced mainly to
become‘more'familiar_with those types of problems and gain moré insight
into the physics of the problem. The experience is mainly to be used
in the next step‘of our study which will be‘dealing with a two dimen-
sional approach for‘similar problems.

We conclude this chapter by summarizing some of the results of
thisAlast.séctibn. .The_final expfession for the eigenfrequenciés is
reportéd.as a
| 2 .2

o

-1 =1q202 2
wo =507 A =5 070g + /e Al ),

wherevkg is the solution of the transcendental equations

L (k™) =0 and Z,(Ag,k ) =0

and k 2
' d 2 -1
- — 2. A5,k )]
l s
2 _ Vit [d?‘ g, O
>‘1 =2 2 -1
k K
- / 2% 02,%)dx
_ 1 Yo
n —k_l ) )
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The determination of the constant k2 is obtained by recalling the

definition T = szo, where To = Y 92L2/2.
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. CHAPTER 3

. DYNAMICS OF ROTATING THIN PLATES AND MEMBRANES

3.1 Introduction

In this cﬁapter, we concentraﬁe our attention on the problem of
a dynémical stddy'of two elementary plahar structures charactetized by
a dominant effect of tﬁe forces induéed by spin over the flexural
rigidity.

‘ﬁe,focué bﬁr attention mainly on‘two problems. In the first one,
a hpdal Analyéis 1s done for a rotating &ery thin circular élate or
membrane with some flexural rigiditf;'élampéd along ité_ques. This
type of study is oriented towards the pbssible'usévof large spinning
membrane-like diské as optical and fadar reflectors for space vehicles.
This last use of spinning memb#anes has led to_é renewed interest in
the proble@ of calculating the transverse vibrations of an eiastic disk
roﬁatiﬁg étva consfant_speed — a problem which traditionaiiy has beeﬁ
sfﬁdied in coﬁnegtion with gaé and steam turbines. In the second part
of this chapter, thé modal analysis of a free spinning membrane is

accomplished. In both of those studies, only vibrations usually

referred as "out-of-plane" are considered.

3.2 Dynami;s‘of a Taut Rotating Membrane in a Circular Ring

,Tbe deformab;e eiement.qonsists of a large flexible circular
membrane-undérgoing transverse vibrations, while rotating with an
angular‘velocitylﬂ with reépecﬁ to the axis of symmetry, defined when

the structure is at equilibrium.
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The follpwing equations of the motion ére given in a reference
frame located at the center of mass of the total system and rotating
with the system at the constant angular velocity 2. The direction‘of
thé & axis wili be chosen in such a way tﬁat theré will be no need for
a phase angle in the equation of tﬁe motion. We are free to'cﬁoose
‘such an axis due to the-éymmetry of the particuléf structure under
investigation. The physical charaCteriSﬁics of the membrane will be |
assumed constant thtoﬁghout the whole membrane.

It must be émphasized here that the effect of the spin on the
membrane is a destabilizing effect: the rotation not only introdﬁces
a decrease in the étiffness bﬁt alsé insfébilitftcan'occur.due to the
création.of a state of compressiénbinto the membrane. To take care of
this lastnprdbleﬁ, &é introduce a Built;in tension‘—-a similar pro-
cedure was used fbr ?he rOtatiné cabléAf“such that the membrane, when

rotating, is everywhere under tension.

‘Figure 8. Rotating Taut Membrane.

In the study, we will disregard the stresses, which occur on
account of the mutual pressure of horizontal layers of the disk and,

consequently, the strains in the direction of its thickness; the
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problem is thus simplified and the generalized Hooke's laws give us the
following relations:

E

o =—-7 [e_+ ve,]
PP 0
E
Oy = ———= [e, + ve ]
where E stands for the modulus 6f'elasticity;

v stands for thé Poisson modulus

€é and;ep'sfgnd'for the tangential and radial st;ains
respectively

Oe_aﬁd Op'stgnd for the ﬁangeﬁtial and radiél stresses

respectively.

Also, because the thickness of the disk ié small in\comparison with its
radius, the variation of radial and tangenfial stresses over the thick-
ness can be:neglected. Also, a hypothesis analogous to the hypothesis
of plane section in a rod will be used. A linear element within the
disk ﬁerpendicular to the middle plane remains straight and normal‘to
this plaﬁe after ité deflection during bending. All those previous
assumptioné are part of the approximate theory of thih plateé.

In this study, the problem of'thg Stretching-ofithe thin disk is'
solved first and the dynamical equations for the transverse vibrations
are.then derived as deviations with respect to,tﬁe steady state. Thisi
last remark constitutes a characteristic of continuous modelihg and
will be materialized in the following pages. We also assume that the
stretching of the{disk does not alter the coﬁstancy’of its physical

characteristics.
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The stress distribution in the membrane must satisfy the follow-

ing expression, as an equilibrium condition for the forces acting along

the radius.

Figure 9. Distribution of Stresses.

-a%l_'-(po‘?) oy +u@p=0 G
wﬁéré u is tﬁe mass per unit voiume of.the material of fhe diék.
Because of the symmetry, there is no dependence in the angular variable.
This relatiqnship and the following }esults_from classical thin plate
theory can be found in Reference 20. |

For a circular diSk;‘the strain coﬁponénts, in the case of sym-

metry, are well known andvgiVen by

- du

€ =
pdp

and €, = =
p

where u represents the radial displacement. The generalized Hooke's

laws and the expressions for the strain components give us:

' E (du oy )
g =5\ -+Vv~>
Py - V2 dp P

u du g
S
6 1 _y2\p dp :

Combining those expressions with the equilibrium condition (3.1), we

tr

obtain the equation for the radial displacement of the disk u:
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2 ’ : 2

2 du du 1-v
p-—t+tpsT-u=-"—
de | dp E

u Qz p3 .

The general solution of this equation is

: c 2 :
D N P _ 1 1~y 2 3.
u=g [(1 v)Cp (1+v) 5 g H 27 p ]

where C and C are arbitrary constants. The corresponding stress com-

1

ponents are now found from:

- ' 1 3+

0=C+-—————.u§22p2
. p 8
p .
0% 13w 22
Oe = C > -5 Q .
p
" Because we are dealing with a complete disk, we must take C., = 0 to

1

have u=0 at the center.

| In the determination of the constant C, we have to be very
cautious. " The reason is coming from the iq;erpretafioﬁ of the boundéry
¢6ndition for the pfoblem

u=0  when p = a.

This last boundary condition is, indeed, only valid after the membrane
has been stretched statically‘by the built-in tension T. As a result,
the conStanﬁ C contains two parts, one qoming from the built-in tension
and the other from the satisfaction of the previous boundary condition
fqr the radial diéplacement originated by the radial ferces induced b&
spin, only. The last reasoning is perfectly valid if we consider that

the generalized Hooke's laws represent a linear dependence between

stress and strain. We know that in a circular membrane under a
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constant tension T, the stress components are the same and equal to the

applied tension. We, thus, have
c=T+cC',

where T is thevconstant buiit—in tension. Thevdetermination of the
constant C' is now détermined by using the previous_boundary'condition,
but by considering in the constant C appeéring in the expression of
the radial displacement'ohly tﬁe contribution of C'. The total dié—
placement is then obfaihed by the summafion of the displacemeﬁt

produced by the built-in tension and the displacement we just derived.

So
1-vZ 2 3
(1-v)C'a = g ME& a
and
c' = ;%2- u 92 a2 .

The final expressions for the radial and tangential stresses are given

by
o =T+ Y 22 3y, 220 (3.2)
P . 8 °* » v 8
0y = T + Sy %a? - EVy 9%2 (3.3)

: C
One comment should be added here. Namely, we assumed before that the

built-in tension must be such that a pbsitive tension is present every-

where in the disk or

op=T+—l;g-\iu92'az—i§2-u§22p23_0

for every p such that 0 < p < a, or
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1+v 2.2 3tV 2 2

T+ u 7a” - == y 7a” > 0,
.which gives us
2 2
> B a
-_— 4 . M

T = kzg Qzaz
A

— 5
where the positive constant k= is greater than one. With this last

remark, we have

2 .
1V 22 3y 22
teak v 22 1esv . .22
Og =% M Q%a” = =5 M Q°p .

We‘thusAhave illustrated here the fact mentioned several times earlier
that. the equation of the transverse vibration for a continuous model
represeﬂts.in faét the pertufbation of the system with respect to its
-steady—state déformation. |
Nbﬁ, that the dis#ribﬁtion of‘thé.radiél and.tangentiél stresses
is knbwn; the dynamic equation for the transverse vibration of a cir-
cglar plate.subject to radial and tangéﬁtial %tresseé is given in
general form by: (see Reference 20)
_____L_Ehzv4w+l _3(0 8_w)+geazw 3%
120vhH P 9P |

where ° h represents the thickness of the disk and

V4

p"is the Léplacian operator which expressed in polar

coordinates represents
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2

2 9 1 3 1 3
Vi =t = — == ——
p apz p dp p2 362

The boundary conditions for this problem are given by expressing the

clamping condition along the edges or

w=0 | when p =
LI

Let us now introduce thg'dimensionless quéntity'r,ldefined by the

relation:

The previous éxpression'Becomes then:

2 . o 2 2 :
12a (1-v ) - ar a“r” 96 ot

where

o .]'!QZaz 2 . 24

o.= 5 [(l + 2k" + v)-(3+v)r]
and v

e%a® 2 2
0y = Eo5 [+ 2k° +v)-(143v)r"]

. Dividing through by u Qz we obtain:

2.
- E254 S 2 V4 '§l“§§ [[(l + 2k2+ vr - (3+v) Efl}
12uR7a " (1~-v7)
_ | ‘ s
+ L2 [(1+2k24) - (1+30) £ 2] 3—“’2- - _.12. By
8r” ' . Y 02 5.2

This last equation is appropriate for the use of separation of vari-
ables, providiné the initial conditions-are also separable. Let us

then use for the solution an expression of the form:
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i(w Tt 4 mo)
w=¢_ (e XU
f' o,m 1

This 1ast-éXpression is éompletely general and there is no need for a
phase angle for the reason explained earlier.
'Tﬁe equation of main interest for our>purpbse ié given by the

differential equation defining ¢a m(r):
. : . 'y

Eh2 4 . QEv) d o3y 2\ %
V. ¢ + 8r — ||l - r

12(1-V2)34HQZ 'm->a,m E dr 1+2k2+v dr
: 2 2 o Wl
(A+2k™+V) m 1+3v 2 . Q,m
e Tt [ Y T o2 Yaun
- S 1+2k“+v ’ Q ?

where Wy m represents the eigenfrequency of the vibration
s :

: Vi is the linear differential operator defined by
2.4, 14 _n
m 2 r dr 2
- dr: : . o

We now define the following.quantities

c = 2 E n?

: 3(1-\')2)'(1+2k2+v)a‘*usz-2
8 w .

A2 = 0,m

m ok 2 02

2 3V

kS =
1 1+2k2+v
2 1+3v .
ky = 2
142k 4V

The final expression for the differential equation for ¢a m(r) is thus
. b

given by
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L dé 2
b 1d; .22 Pam nd 2
Vo bo,m T T oar P T) 2 [1-kyr

2 2

1o +2° ¢ =0

O,m O,m O,m
(3.5)

with the following boundary conditions:

¢a’m (r) =0
d¢a m: : when r=1
I =

dr (r) 0

Here, agaiﬁ,.we notice'that the small flexural rigidity of the
disk combined with the High spin rate produces the smail parameter €.
We also notice that the parameters ki and kg represent positivelquanti—
ties less than one. o

The problem has now beén formulated in such a way that we are in

a position where a procedure similar to the procedure used before can

be used.

Expansion Valid in the Central Region

When r # 0, the expansion valid in the central area takes the
form

¢a,m(r’€) = ho(r) + vl(e)hl(r) + vz(e)hz(r)+.;ff

A similar asymptotic expansién is also used for the eigenvalue or
2 . 2. .2 2,
= +...
Aa,m(e) AO + Kl<€)kl +VK2(€)A2.

Once more, the subscript 0,m will be momentarily dropped in order to
shorten the notation. It will be explicitly used later on when needed
to differentiate the modes.

Introducing the asymptotic expansion. valid for ¢a1m and Aé o
: b

1

into the differential equation (3.5), we obtain the following expression:
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4.
f [ Vm(ho+ vl(e)h1+...)

T dh . dh,)
1 af ;. 22 9 1 .d 22 ~1]
t T dr.[r(l k) dr]'+ vi® T3 [r(l kir) 5o

. 2 B 2 .
m 2.2 n 2.2 2 2
- % [1-i5r Thg- v, (o) % [1-K5T Th+ g+ () AT+, ..

 11 .(hq(r)'+ vy (@bt =0 .

The differential equation defining ho(r) is then given by:

dr 2 2F 0
r .

M=

T . dh 2
d 22 ol w2 . 22 2
£ [%(l—klr ) J B 01 - ke MRy + A By = 0

This last expression car be written, when we introduce the new variable

klr = rl
as
T dh 2 A2
.1 -d 20 0 o m 2.2 0 _
pl [%l(l—rl P 5 [1 k3rl] hO + > h0 =0 (3.6)
1 1 A 1 r, . k
1 1
S 2 kg' 1+3v
whgre k3 stands for 2 = 31y .
k .
1 .
Let us write down the solution of the previous equation under
the form

By substituting the previous expression into the equation defining

h0(3.6),we can eliminate in the coefficient of HO the terms in r;_z,

by taking for n the solution of

or
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The solution n = -m is to be eliminated for the singularity that such

a solution introduces at the origin; we thus have

_ b
By = 71 Hy
The differential equation defining HO is then obtained
2 -
: d"H, dH dH dH
Aorp) —2+ 52 Qe G- 2y o+ g Qo g
dr1 1 : 1 1 1 1
_ : ' ) AZ '
2 .2 0 _
-12m + m m k3 - k2 H0 =0
: 1
or
2 2
. d"H. . _ dH 5 A
(1-rd —2 + L[ drom) - (+2m r2] =2 - | 2mnn’kl - 2 Ju = 0 .
1 2 T , 1’ dr 3 2170
drl 1 ‘ 1 k
1
3.7

To bring this last equaﬁion to a form more familiar, a new change of

variable is. recommended and we define

r2 =x :
1- % | (

We should emphasize here that x can only takévOn positive values lying
in the interval between O_and-ri max = ki which is less than 1. With

this last change of variables, the previous equation can be written

under the form ' . ) oL
d2Ho N ! 2 22 ’Ag
x(1-x) + [(mrl)-(m2)x] — - 5 | 2mm"-m"k, - — JH = 0. (3.8)
2 dx 4. . 3 2 0 e
dx _ “kl

This last expression can be reduced to the hypergeometric equation
which is written under the general form

a’H, aH,
dx2 + [ y-(o+B+1D)x] ax —_aﬁ HO =0

x(1-x)
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So we have to solve the' following substitutions:

Y=1+4+m
a+fB=1+m '
a8=l‘- 2m+m2—m2k2—_—- .
4 . 3 2
) kl

The range df value for x lies within the range of convergence of the
-hypergeometric fuﬂction. ~

For the previous(equation, we know that the roots of the indicial
eguation at the regular singular point x=0, are given by 0 and (1-v).
As a result, Ane of the solutiqnsof the previous equation can be com-
puted by consider;ng

) ©
‘ Hlo = Z énxn .

n=0

A direct substitution into the equation yields the identity

Z' n(n—l):anxn'_l - Z n{n-1) a'nxn + Z ny anxn_l
n=0 - n=0 i - n=0 :
foe) . [e0]
n n
- E n(a+8+l)anx - Z aB a x =. 0.

‘=0_ n=0

We then group the corresponding summations and find

=0 .
n=0 n

o0 - [o ¢]
2 nlyn-Da "t - D (0% n(o8)+ aBla
n=0 v

Now this may be written

(o] [oe]
E n(y+n-1) anxn_l - Z (a+n-1) (B+n-1) anglxn—l =0 .
n=1 A n=0
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From there, we find that the recursive relationship for all determin-

ation of the an's'are

_ {o4n-1) (B+n-1)
2 T "(y#n-1) -+ n 4h-1

for n > 1, with a, arbitrary. At this stage, we must inéisﬁ on the
fact that 'y has to be different from zero or any negative integer'to

make sure that the previous recurrence is defined, but

Yy=1+m which represents always a positive
quantity.
Finally, thevsbiution of the.previous equation is written with

‘the help of the hypergeometric function

o 2
e} = _ﬁ. X , a(o+l)B(R+1) x©
F(0,8,75%) = 1 + Tt Ty T
a@HD.“(MmJJM&H)“.@ﬂPD £,
y(y+1) ... (yin-1) ny < °°
under the form __‘ Hld = aOF(a,B,Y;X) .

The solution we just developed represents oné.solution of the
previoﬁs equation. This last solutién is convergent for [xf.< 1,
WHich is our case of interest.

In our particuléf case,vit.tufné out that the.difference'between
the foots of the indiciai equation at the péint X = O.is zero or a
positive intégef;, As a result, the second solution generally used for
the hypergeometric equation, more expiicitly '

7Y Fla—y+l, 3-941, 2—y§x)
is not llnearly 1ndependent of the solutlon previously derived. How-

ever, it can be proved that the second llnearly 1ndependent solution
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is to be canceled. The derivation of ‘the second solution is quite
lengthy and is presented in Appendix II in order to lighten the text.

The final expression for ho(r) is then

- _ m _m 2.2
hO(r)_— aokl r _F(u,B, }+m, klr )
or : ~ . '
- o ho(r) = borm F(a,B, 14m; ——éi%—— r%)
| A . C 142k v
where : ] o+B = l4m
o . : : 2
-1 : 2 2.2 >\0
af = {2m+ m -m~. k, - —
4 : 3 2
i k
o _ , 1
and 2 o 12
- _ Ao 8 AO

if we write

W = ar?

_ V2, ' 2
o, 0.t Kl(e)kl t Kk (EIX +. .

Boundéfy Layer Near r=1

We now have to study the boundéry—léyer near r=1 in order to
pursue the problem.

The separation of variables being:valid for the partial
differential equation for the problem, the'bdundary_layer problem is
limited to radius dependeﬁce of the modes. |

| To study the boundafy—léyer expansipn, another boundary layer
coordinate must be selected, sa that the higher derivative terms

dominate the equations and are of the same order of magnitude. Let

where ¢(g) =~ 0 when € > 0.
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The corresponding asymptotic expansion valid near r=1 is taken as

, ¢a

’m(é,e)‘= S () o (®) + 8, (O, () +...

where the 61(5) constitute an asymptotic sequence.

The linear differential operator Vi becomes now

2 a® 1 d 2
WS I T o TLT T
S ¢7drT . (1-¢r) - ¢dr  (1-¢T)

 The basic differential equation (3.5) becomes with the previous substi-

tutions:

2

&> 1 4

m

.2
2 Q,m 1

Oyl

2.2

ofi?  (gb) eaE

1

-

)
0] dr2
r

o9 - -49)

d

a5 | a-oD)

‘2

- B (1-ky 4D "1,

(1 -¢T)

or .

3
d.¢a,m

- (1 ¢r)[l—k (1- ¢r)]
¢dr

a6

bdr

2 49,

_a,m(

¢dT

¢3df3
( )

1 ~ 2, .2
YI:$§3$  (1—¢r)(lfkl(lf¢r) )

d¢a,m

dr

(1-¢1)
1 5 + 2m2
(1e¢£) (1-¢1)

+

2 .

m

(1-¢r)

2kf(1~¢£) 2

+

2. .2 f
5 (i - k2(1—¢r) )¢a,m+ A

1
.
(1-6%) 2

m4 4m2

(1-@%)

o,m
2

¢2dE

2

(1-05)"

)

a%
O,m
¢dfz
2
¢
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r

(1-¢r)

o,m .

. vd¢
} (1—ki(l—¢f)2)

dt

0

o,m

(3.9)
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The thickness of the boundary layer is determined by balancing the
higher derivative terms or, if we assume that l?ki is not of an order
of magnitude of €, by éonsidering:

~ L

- —€~
c2
¢4

k=4

or

€ = ¢2 cand ¢ = Ve .

.The previous rémark, about 1—ki, is considered now

My __2(k’-1)

142k 24y 142k %y

aoiden-
‘The pféQious aséumptibn is of the saﬁé hature as the assumption we
made whiié studying the taut rotating cable; We want thé parameter k
to differ éhfficiently eﬁough frém one, so that the differgnce l—ki
differs from zero by an order of magnitude of €.

Replaging ;n.;hellast development ¢a,ﬁ(;’€) by its expression

defined.previouély, we obtain for the differential equations defining

the dominant part in the development (3.9') or

o 4, 2
dfy , d47f,
-t k) =0

dr dr

The boundary conditions for the problem are

fO(F)f= 0
whenv; =0

df '

0 ~

i (1 =0

Defining

2

d fo B f*
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and considering the fact that l—ki is a positive quantity, we obtain

*
as a solution for fo

where the exponential growth has already been disregarded for its
problem in the matching process.
v Integfating the previous expression twice, and takiﬁg into

account the boundary conditions for fO’ we obtain finally:

C, '—Vl—kz.i"l .
fl=—d | _1'+V1-kif—1

where the positive sign is always chosen in the previous square roots.

We are now in a position where we can try a matching between the expan-

sion Valid‘iﬁ-the central -area and the boundary layer expansion. The

equatibn defihing the eigenvalue Aé should come out of this matching.
We need tb expand the solution valid in the central aréa near

r=1l. We define thebvariable

and we have

. : : ‘dh
v 12 ') = 12 _ _0 ' 2 '
_hO(A' y1-r') = hO(A ,1) dr A7, )r'+...
where .
hy (A2, 1) = by Fa,B, Lim; i‘;—)
: 1+2k"+v
and
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dh0

-d_r ()\'2’1) = bom F<Q,B’l+m; 3+\2) >
1+2k™+v

+ b0 ——21%121—— dE (0,8, 1+4m; x) ﬁ = _éiﬁif_
H+2k™+ v 142k +v

For matching, an intermediate limit suitable for matching near r=1 is

given by rn’fixed:

r' '
rn-= ——ETET where r

' is always positive.

What we want in r > ® when € > 0 and this is reached if

—D—-? S when .€ >0 .

Ve
The behavior near r=1>takes the form:
o, any
lim . HO(A' , 1) - ~ar ! ,l) nr +.
e~+0 h ) ﬂrn
-r_ fixed ‘ C. 1- ki Je vf"“'?fﬂ
n - 1 € _ 2
+ v-l(e)hl(l)+...—§0(e) —_— : +V1 kl Je
2
\ l_kl

. | ;
-1) - 6. (e)F -——’1)+
)t 1(/5 }

The matching is accomplished if we take

12 4y =
h0(>\ ’1) - 0
60(8) = /E}., and - —= (A5, = ¢,

The first equation is nothing else than the equation defining the

eigenVélue Aaz of the problem or
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F(%; I4+m - d, 1+ m; “—;ib%i‘f)== 0.
1+2k 4V

~The second equation gives us

a 2(3+v) dF(a,B,1+m;x)
C, = -hy > s _ 9
o 142k “+v X X = 3HV/1+2kHy

Coming from the matéhiﬁg, we also have that

v, (g) = Ve
it
and -
c, .
hl'(l) + —l—- =0
- L2
1 kl
or
: : b0 2(3+v) dF | 3+v
h (1) = o o (a,s',1+m; -——2—-)
N l-kz 1+2k ™+ | 1+_2k +v

1

1
equatioﬁ definihg hl. -ansidering the development of the basic

This information about h, enables us to obtain the differential

differential equation (3.5), we have:

dh; 2 '
1d - 2.2 1 m 2.2 2,2
T dr [%(l-klr ) .drzl— rz [1—k2r ]hl+-)\ohl = —Alho . (3.10)
This last expression implies also the choice of Ve for Kl(e). This
value has been considered for the same reason as in earlier development.
There exists 'an orthogonality relationship between the modes — shown
later — and this last constraint suggests as an order.of magnitude of

- e Je S 2 Je .
Kl(e), the value ve . We see, 1pdeed, that for Al >> ve , the solution
for h, would be the same_asvﬁhe one found for h0 and the orthogonality

1
would be violated.

2-108



In the differential equation (3.10), the only freedom léft, to.
define the problem completely, lies in the determination of Ai and this

. constitutes our next task.

Orthqgohality Relationship Between the Modes

The complete expression for the modes is given by

,‘¢a’m(r) cosmf .

Let us now prove that the orthogonality relationship between two

different modes is givén by

1 27 | N |
{ lr ‘bd;m(f)d)s’ﬁ(?)cosme cosnd drd6 =0

This last relationship is straightforward if we consider two modes for
which angular dependencesare different. The ditrect integration with
respect to d6, for m # n gives us directly

2m

f cosmB cosnd 40 = 0 .,
0

Aé a result, the éase of mgin interest is given for two modes havihg
the same angular deﬁendence i.e. with m=n. Let us now prove that

'i : ‘ | '
‘/o'_r ¢a,m(r)¢8,1§(r)dr =0 .

Thebdifferentiél equations defining-¢a o and ¢B o are'respectively
. H) X ]

dé 2
4 1 d 2.2 a,m| m 2.2 2 -
s”vm'¢oc,m + r dr [r(l kl’r ) dr ] r2 (1 k2r 1¢a,ﬁ+ >\oc,m¢oc,m
dé 2
4 1 d 2.2 B,m:l_m 22 2 _
V% et T o [r(l'klr ) ~dr 2 [1-kor™1ég o+ Ag 198 m>0
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We now have to distinguish between the cases where m=0 and m#0.

.

Case A: m# 0

The boundary conditions are given by ¢a n o 0
’ do . for r=1
a,m _ g4
dr
and similar boundary conditions for ¢B -
s
Developing the.expfession of V; ¢a o Ve obtain:
gk 3, 2,
vy 49,m . 2%9%.n 20%1 9 %.m | 2021 Yom
w®%,mn= "4 Tr .3 2 2 YT 3 ar
? dr o dr T dr : r
_ . . 5
—4m
+ 4 ¢a,m
r .

Taking the differential equation defining ¢a o and multiplying this
. 3 .

relation by r ¢B p» an integration from 0 to 1 gives us
, - . _

A .
4 _d 22 a,m
-€ f rka, ¢a,m¢6,mdr +_/(-) dr [r(l,k ) dr ]d)B m

1 2 1 .
o 2 2 : 2 _
,(; r 2r N>oc,m<b8,mdr +‘/0. xa,mq)a,md)B,mdr—O

The first term can be developed as

1 : 1 1 d‘3

d ¢ ¢ -
O,m o,m
frVd) ¢ dr=/r————’——-¢ dr+f2-—-——’—¢ dr
0 m OL mB m 0 dr4 B, 0 dr3 B’m
1 1 o
2m +l d ¢@1E, - 2m2+l d¢a,m
- r 2 ¢B mdr + 2 dr ¢B mdr
0 > 0 r >
im4—4m2
fofREm g o dr
0 ,r4 o,m' B,m

Integrating by parts and using the boundary condition, the right hand

‘side can be written
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1 3 1 .3
’ d ¢a,m d¢B,m d ¢a m
- Y 3 ar dr + -———j;— ¢B dr
Y0 ’ T 0 dr »T0
' 1

do
_ 2, . d {1 To,m
- (2u“+1) 4—-dr (r — ) ¢8,mdrk

| m4;4m2 o
+ f 4 (ba,mqu,m dr

" One remark-should be added here. Tor the casé where m#O,'the'ﬁature

of the‘so1ﬁtion is such that there will élways exist for those modes,
a nodal diaﬁeﬁer with # zero tranéverse.displécement. But the exist-
ence of a ﬂﬁdal‘&iameter of.zefo displacement iﬁpiies,lthat the dis-
plécemént.OE the ofigin‘should be zero ana we thus havé for the case
Qhe;gum#o _

¢a,m =0 = ¢B,m . for r = 0 .

An integration by parts performed on the three first terms, combined

with the use of the previous remark transforms the last expression into

L .2 2, . '
- d% a‘e , dé
/r aft : Bgm dr +'(2m2+l’)<%—-%-;-@- Vg m
0 - dr” - dr B R
2 ;_d¢a,m d¢§,m dr
r .

A similaf derivation could be done sﬁarting with the differential
equétibn'defining ¢3 o’ and sﬁbtracting this similar expression from
3

the expression we just found, we ‘obtain
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N d¢
_ 2 1l "oa,m _1_"B.m
- —€ [+ 1] r dr ¢B,m r dr ¢a,m 0

- Considering that ¢ m and ¢B n are analytic in the neighborhood of the
. ’ - ’

origin, we can expand ¢a o and ¢B o in the fbllowing-way
. s - 3 : '

N n %, 2
¢0L,m(r) = ¢0L, (o) + ?’— (o) r + 'Ti-r—z’ln- (o) +...‘
énd ' )
‘ oo . dd, . d ¢ o 2
b n (D) = 85 o(0) + BB (o) ¢+ —BB (1) T+
m- T TR,me R dr !

where the first terms are zero by virtue of the remark done before.

We thus have .v

oy 0 ag, . [dog
T i q’s m T ¢ dr < ar % (o) + T2 (°)

d¢ d¢ ' d¢ \
B,m O,m O ,m
T Tar <dr <°>+—;z“"<> * >

This last expresSion'évaluated at this origin gives us zero. We
finally obtain the predicted orthogonality relationship

1

_/o.r 9,n'T) 9g,p(r) dr =0

Case B: m= 0
This case corresponds to radially symmetric vibrations, and as

~ a result the physics of the problem introduces as value for the first

derivative at the origin:
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dd, o d¢ _
— = = S=
~ar ir 0 _ when r = 0

A development similar to the one done before for m#0, where the last

remark has to be substituted gives us
- € r ¢ ol —-‘B-’—‘ r ¢ d J‘_ -—-%.9.
. ,a;O_'dr.‘r dr 8 0dr |¥ dr

2 2 ’ | _
+ O\a,o— AB,O.) 4 r ¢0L,0¢)B,0 dr = 0 .

Let us consider the expression

2 r ¢a,0 Cdr

dr

4 a%e R P .
r¢, __.é.a._ =9 —b0 1 —B8.0
Ol 0 dr |r dr a,0

in the neighborhood of the orlgln. Con31der1ng.th3t ¢B 0 is énalytlc
in the neighborhood of the origin, we can expand —Eﬁ*— in the follow-
ing way

2

do, '
—£:0 () - —9’- (o) + ——QL- @ + ——@’— © =
dr; dr

"’s

Taking into account the remark done before about-———L- (o), we have

2
d d
ce dl_&_ ss %0, ___“’ﬁ,g(o)
a, 0 dr , dr | 0,0 dr2 o, 0 dr2
: d3¢ -0 ' | -
+ ———J?;— ©) 5 +...
. .dr o

Evaluated at the origin, the last expression becomes zero and we

finally proved also that
1

J} = 00,008, ax = 0
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Now that an orthogonality relationship has been established for the
modes, the substitution of the asymptotic expansions valid for each

of them brings us the following relation for the zeroth order terms.

72H
A .érr hO,a,m(r)hO,B,n(r)cos md cos nb drd8 = 0 .

‘Again,'éuf main interest will be oriented towards the casé where
m=n. The case m#n is, aé mentioned.before; automatically satisfied
by performing the integration in 6 first. The differential equation

are given by:

- defining ho’a‘and hO,B
r dh, 1 2 -
1d | .22 Dol ot 22 .2 _
r oar [P Tar | ) [1-k5r™] hy o+ A ofo,0 = O
and T S
14 -;(1-k2r2);E394§- _n (i-kzrz] h .+ h =0
r dr [ D dr r2 2 0,B 0,8.0,8
or for r#0
' dh 2. |
d 2 2. Mo g e L, 2.2, 2 .
dr [?(1'k1r ) —ar ] '-rz,[l'kz? Ihg ot 20,0 ¥ Po,a =0

and a similar expression for h0 B; But these last expressions repre-
. . Py . )
sent particular cases of the more general eigenvalue problem of the

- Sturm-Liouville type

_ ~ dh, ' ,
. d 0,0 | _ 2 , _
dr [p(r) dr ] g(r)ho,a + AO,a r hO,a = 0.
If we now consider the boundary conditions of our problem or

| hO,a = Q when r =1 ,

combined with

2-114



h =0 when r = 0 - for the casem # 0
0,0 _
or
dh0 o
—E;f—'= 0 whenr =0 for the case m = 0,

our problem satisfies the requirements of the Sfurm—Liouville problem.
We can then deduce that for our problem, there ekists a countable
sequence of eigeﬁvalues aﬁd a countable séquence_of eigenfupctions
éatisfyiﬁg ;ur probleﬁ. Invaddition to that, we have thét

R

: ‘/o-r hO,a(r)hO,B d;‘ =»0
~and the orthogonality of the zero order is aﬁtbmaticélly satisfied.
The:orthogonality relatioﬁship we derived before has to be

completed by the relationship normalizing the modes. We then define

-1, 21 - ‘ :
' f f_r ¢§ m(1:)_ coszme- de =1 .
0 0 ’ .
‘Integrating with respect to 0, we finaliy obtain
1
_ .2 1
../Oir ¢a’m(r) dr = 7 .

Introducing in the last expression, the asymptotic expression used for

¢, we have the following relations

o,m
L -
fr hé(r)'dr=
0 o
1

./O‘r ho(r) hl(r). dr = 0

=
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The first relationship will be used in order to define the con-

stant b,, still to be determined in the expression of ho, and the

0
second relationship will be used in order to determine the value of
2 .
)\1. We had

2

ho(r) = borm F(é,8,1+mj——it2——— frz)
: 142k “+v

so we have
1

feri-l b(z) F2 (oc,B,l—i-m; ——31\21— r2> dr =-]]f
0 1+2k"+v
and
2 1 1
bo=1 * ,
1 2 ) o
.0 C 142k Ty

‘In order to determine )\i, let us consider the differential equation

defining hl'(r) (3.10) or

0 °

dh 2 :
d 2.2 1 m 2.2 2 .2
iz [r(l -kt ) dr] -7 [l—kzr ] htr Aghy = “Mr b

Multiplying this last relation by ho.', and integrating by parts the

first term, we have:

: 1 1 . 1
dh._. dh, dh 2
2.2, %My 22 %1% fim
r(l.—klr ) <= h 0— ‘/(; r(l- k1 ) ,d_r dr_d? ./0‘ = (1- 12 of )hlhO dr

>
=l
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Considering the fact that ho(k'z,l) = 0, and integrating by parts once

more, we have
1

dh ' dh :
2 2 0 o d 22 0
—[r(l-klr ) I hl]‘ . + h1 i [r(l—klr ) dr] dr

2

m 22
= (l-kzr )hlh0 dr = -

>
S Ege

c§‘~5&= c}“sw

The use of the-differential equation (3.6) defining ho, gives us

2 d.hO i 2. ) Xi :
-(l-kl) T hl - r )\0 h0 hl dr = - I
1 0
'or-_
g dh
2 2, %o
Ay = TA-k) 0 by
: 1
: but
C “dh
1 0 1y _ _
hl(l) - . and dr ¢h) C1
1-k
1
so
B 2 2 . 2
dhg 1. G 5o 2(3+v) dF . 34y
M| = - = 7 dx \&Bs1tm 2.
1 ,/l_ki ‘/1-_k]2_ 1+2k+v 1+2k +y
Finally, we have
2
2(3+v dF 3+v
- [ 2, dx (0"3’1“‘; ——7—)]
32 ovVi?  Liraxtey 1k
1 1 1
/r2m+1 Fz(a,B,l-I-m;-—-Bi)z— r2 ) dr
1+2k ™ +v

0
With the determination of ki, the obtention ofAhl(r) becomes an easy

task and a well specified problem.
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In order to complete the derivation done fof this membrane, we
should look at the problem that could .arise at the origin. We know
that the origin r=0 repfesents a singularity for the linear operator
Vi and, as a result, thé fact of neglecting the contribution of this
operator, close to the origin, might seem incorrect. When we looked
.at the reduced problem, we overlooked the term —e_Vi ¢a,m appearing in
Equétion (3.5). 'Cloée ?Q the origin, this térm‘coﬁld repreéent a main
cont;ibution. In Appendix III, we addfess oursélVes to the problem
near the origin and we find that the solution previously f0una-for
r#0, is also valid thfohgh thg origip. Ihié résultimight bé expected
in the sense that there:a;e no boundary condifions imposed at the
‘origin and the solution féuqd for r#O.represents.an expression that,
when introduced into -€Vi ¢a,m represents only a bounded function at
the Origin. Alsb, the presence of the singularity at the origin is
simply originétedvby the choice‘of polar»coordinates. For a rectang-
ular plate deééribed by cartesian coordingtes, thetéenter of the plate
dpesn't contain any singularity. |

With this last remark,'showing that the solution previously
found is_valid in the complete ipterior of the membrane, ﬁe have solved
the prbposed probiem. To conclude thiS'sectiong Websummérize briefly
some~bf the main'results; The eigenﬁrequenéies bf the taut membrane

with small flexural rigidity has been taken under the form

2 o 2 ‘ : .
2 _ 142k T+ 2,2 _ 2k +v 2.2 2
wa,m = ———7;————FQ_ Aa,m' s Q,(Ao + Ve Xl+...)
where
2 E h2
£ = .

3(1-v2) (1+2K2+v) a*p0?
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‘The value of Ag is obtained by solving

2y _
F(Ol.l 1+m - o, 1l4m; kl) =0

and -

2

1 'AO

a(1+m-a) =% 2m + m —m k3 —
k

1

The relation defining Ai is also repeated here

92
[2 K2 dF (o, Hm-a, l4m; k {} -

A2 = V12

1 1

_J/t 2m+1 Fz(a, 1+m—a, 1+m; k r )dr
0 .

In these relations, the following definitions have béen used

3y 2 1#3v

2
k = m——— and k =
L oy 3 3y

3.3 Dynamics of a Rotating, Free, Elastic, Circular Membrane

We now end the chaptér, 3, by considering another type of
élementarf étrﬁcture.‘ It reﬁresenté the last analysis of modes under-.
taken in our research using coﬁtinuous models. This time, the "object"

under investigatioh is a fotating disk of small flexural rigidity, free

along its edge. (Figure 10)

Figure 10.—.Rotatiﬁg Free Meml;ra'n'e.
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The basic physical assﬁmptions made in this study'are the séme
as thosé:made earlier for the taut rotating membrane. This disk is
assumed to rotate with constant angulér velocity Q around its axis. of
symmetry and the equations of the motion are given in a reference
frame located at the center of mass of the disk when at steady state
deformation and rotating with.the system at the constant angular
veloéitva. In contrést with the previous ekample, fhe spin has a
stabilizing effect on the structure and loosely spgaking, the
s;ructural stiffness of the disk is increased by the sometimes called
geometfic stiffness,Ainduced by spin, ‘The qfigin‘of 6ur angular vari-
able is chbSen such that no éhase angie is neéded iﬁ our equations.‘
The generality of our problem is not affected‘bf this assumption but
the text is,notiéeably lightened,. Eveﬁ though the membfane will
undergé a steady state rgdiai.displacement, we assume the physical
characteristics of‘our system to remain constant throqghoﬁt the Qhole
disk.

Othér.classical éssumptiqns, such as the plénar state of
stresses, are also adopted. ‘There will be no variation in the radial
and'tangential Stfesses over thé thickness‘of the memBrane due to the
‘éSSumption Of:small thickness. This last a55umétion merité one more
comment related to the bgundary conditions_valid at the ffee edge.  We
.have; indéed; tovapply as‘bOuhdary-coﬁditionsbat the free edgé the
Kirchoff condition and thé zero bending condition. Let us develop

those considerations for a while.
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For the free edge, no restrictions are imposed on the deflection;
however, there should be no bending moments, no twisting moments and
no shear forces. There is no reason to disregard any of those as
secondary effects. Kirch&ff suggested the following way out of this
difficulty.

Calling the bending moment M, the twisting moment H and the
shear forces N, he consideredrthe‘edge.x =a of a piate as being acted

»-upqn by distributed torsional couples, as in Figure 11. Their

m .
' A H, 18!

pw
/l I !
H, + 3H,/dy dy

N - M
VH1|Al » In

H,+0H, /oy dy 4

“F’?Aig-u‘re 11. Kirchoff Condition.

_distribution was assumed to be nonuniform, in géneral, and the magni-
[ 4

‘tude of the moment of these couples per unit of length of the face, at

a given point, is denoted by Hl.“The'magnitude of the moment per

‘length dy of the face is obviously equal to H.dy. It is noted that

1
from thg‘viewpoint of staticé, the distfibuted torsional couples are

equivalent to a certain shearing forcef Indeed, the couple with the

lmoment Hldy may be applied by ﬁeaﬁs of two equal and opposite forces

Hl actiné at the edges of an area of length Ay. The couple

oH

(Hl +'—5%-dy)dy on the -adjacent area of length dy may also be applied
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oH_

as two opposite forces Hl + —si-dy with the arm dy. Having done this

for all areas of the face concerned we see that the forces applied at

points m and n on the boundary of two areas reduce to a single force

oH _
—S; dy per length dy. We observe, however, that there will remain two

nonvanishing finite concentrated forces Hﬁ and H? at the edge A and B

of.the face.
Hence, we conclude that the distributed torsional coupies of

intensity H. are statically equivalent to the distributed shearing

1 oH
forces which has the intensity'—gyland two concentrated shearing forces
H? and Hg at the corners of the plate; if the contour is smooth, and

without corners, these coﬁcentrated forces are absent.f Proceeding
from this, Kirchoff proposed that the three boﬁndary conditions at the
free edge be combined into two by equating to zero the bending moment
M and the shearing force N and by adding to the latter the term oH/dy
—which reflects the influence of the twistihg moment H. We now a;rive

at the following two conditions at the free edge:

M=0
OH
N+ oo=0.

Written in polar coordinates, those previous boundary conditions

become:
' 2 . 2
§—-‘f21+vl-'°)-"1+—%-a—wz-) =0
9p PoP p% 90"/
3 [azw' 1 5w ‘1‘32w] 5 [ 5 /1 0w
- | =+ +5— +(1—-‘v)———-[——(———'>]=0
_ap apz p 9p p2 862 Pab | 9p \p 96

valid at the free edge of the disk, where v is the Poisson modulus.
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As stated previously we know that the dynamic equation for the
transverse vibrations of a circular plate, subjected to radial and

angular stresses is given in generallform by

2 _ o 2 2
--Eh 5 ng+-l— a—a-(cp%%>+—% Lv%:u?_; (3.11)
12(1-v5) A N p” 38 ot

where_op and Oe représent respectively the radial and angular stresses
h  stands for the thickness of the disk and
v is the Laplacian operator which expressed in polar coordinates

p
is

N T G U P G
07 G2 TR T o2
H is the disk mass per unit'qf volume.

For this case too, we found that‘the deformation equation repre-
sents a perturbation wiéh respect to the éteady state deformation, and
" once more, the radial displacément has to be determined- first — a
similar pr&cedure was adopted in the previous case.

The equilibrium éf the forces applied to an elemenf of the disk

along the radius is given by
| d 2.2 _
dp-(p cp) - Og +uQRp =0
where there is no dependence in the 6 variable due to the symmetry of
the problem. The use of the generalized Hooke's laws expressing the

relationship between stress and strain, give us as differential equa-

tion for the steady state radial displacement u:

2 L2

2 d d 1 23

p° S5 +to -u=- TRV
de dp A E .
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The general solution of this equation is

C 2
N _ 1 1-v 23
u=g [(1 v)Cp - (1+v) o g Mo }

where C and Cl-are arbitrary constants.

For a disk without central hole, Cl has to be zero, to keep the

displacement bounded at the origin. The corresponding stress compo-

nents are now found from:

_ 3+v
op =C -Tg M Q

_ 1+3v 2 2
"e“f""‘;s H QD "

The constant C is determined from the condition existing at the
periphery (p=a) of the disk. If there is no force applied there, we
have

o =0
( p)p=a.
or 34y 2 2

C=-v—9—-ruQa»,

from which we'have

op-—%un(a—m
oy = E%—._[(3;+v>a2 —(1+30) 0% .

Let us now introduce the dimensionless variable, p = ar, so that

Equation (3.11) takes the form:

E h 4 1 9 6 3 W ow
-—Vw+—=— — [ro ] 4 —_— = —
12a4(1—v2) _ 2_ or r Br a2r2 ae2 atz
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where

. =u92a2 Hv

& -

92 a2 2
oq = H——g——— [(3+v) - (1+3v)r°]

Dividing through by u Qz, we obtain

2.

__Eh
2

4 Hv 1 9
120022 (1-v9) 8 r

3 20w
V w+ ar [r(l_r )ar ]

- 2.
+ - (@G- £ - 13

1 32w
81 382 02 3t?

This last equation is suitable fér the use of separation of variables,
providing that the given initial condition of the problem is also

. separable. We will then use an expression of the form

i(wa mt ; mb)
w= ¢a,m(r)e ’

where wa,m ié the eigenffequency of the viﬁfation.

Ih_this last éxpression, no phase angle has been introduced for
a reason explained earlier and thié doesn't affect.the generality of
our problem.

The equation of main interest is given by the differential

equation defining ¢d‘m(r).' Ihisvlast expréésion can be written
b ) .

b2 o a¢
E h V4 ® 3V d 2 o,m
) ' + == o7 [r(1-r) ]
12(1—\)2) 34u92 m O,m 8r. dr _ _dr
' ' 2
m2 2 (L)u o
- ;;5 [(3+V)—Fl+3v)r ]¢a’m=_ _55_ ¢a’m

where'Vi is the linear differential operator defined by the following

relation
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s

2. .14 o
2 r 2 °

m

e

. dr r

We now define the following quantities:

2 E h?
€= 2 4 2
3(1-v7) (3+v)a'p.
2 8 w2
Ay g = T2
@ (3+v)0°
(2. L3y

3H+v

The final ekpreésion for the differential equation for ¢a m(r) is then

given by
a7 2
4 14 | 2 o,m m o, 22
eVm ¢oc,_m + r dr [r(l r) dr ] r2 [1-k"r ]¢a,m+
#2326 =0 L (3.12)
o,ma,m - '

Applying the previous separation of variables to the boundary con-

ditions of our problem, we obtain the boundary conditions valid

for ¢a’m(r) or

5 _
d ¢a,m {1 d¢a»m 'm2 -
+ V== - == =0
2 r dr 2 "a,m
dr , r
2 :
d - d 2 2
Q_._?ﬁ:ﬂ_,.l __(.’i(ilg_gl_ ¢ _(l_v)m_.d__<.¢_a'.)ln.>=0
dr dr2 r dr r2 O,m ) r .dr r

when r = 1,
Here, again, the small flexural rigidity of the disk is combined

to the high'Spin rate to produce the small parameter €. The problem
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is now fbrmulated in a way where a procedure similar to thé one used
before could be applied.

The opefator Vi, defined earlier, contains a singularity at the
.origin r=0 and in the use of a perturbation method, some attention is
fequifed‘when considering the limit process. Hoﬁever, the solution

found in the central area remains valid in the neighborhood of the
origin.v There are, indeed, no:boundary conditions at the origin and
by a procedure similar to the one adoptea in Appendix III, we can show -

that no particular behavior occurs near the origin.

Expansion Valid in The Central Area.

When r # 0, the expansion used for ¢a m(r) take the form:
.. . H
d)a’m(r,(—:) = ho(r) + vlge)hl(r) + vz(e)hz_(r)+...

The‘subscripts a;ﬁ'will be momentarily dropped, and hsed‘explicitiy
only when needed in order to differentiate between different modes.

, Introducing for the eigenvalue the expansion:

(e) )\ + Ky (e))\ +K (e))\ Fo0uy
the basic differential equation for the mode (3.12) becomes:

»
-€ Vm(h0 + vl(e)hl+. .e) .

dh : dh
1.d 0 1d | 2
+;__—4 i [ (1—r ) ]+ v, () = ar [r(l r) —dr]+'”
2 2 '
m 2 2 2 2
-5 [1-k“r“Ing - v (e) 5 [1-k“r“Ih,

22 | N\ L
-f-()to + Kl(a))\l+...) (ho + \)l(e)hl +) =0
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The differential equation definihg ho(r) is then given by:

dh 2 . '
14 |. 2 0 m .22 2 N ‘
r dr [;(l—r.) —:ﬁf] ;E-(l k™ r )h0 + AO h0 = 0 (3.13)
orb
- an dh,.
2, 0,1 2 0_ 1.2 ,22 .2 2 B
(1r)dr_2 +r.(1-3r)—-——dr —rz [m (mk+)\0)r ]hO—O.

The.point r=0 is.a reguiar singular point, for this last equation, and
adequate for a solution in power series around r=07 Instead of trans-
formingfthe p;eVious eduation to obtain-a solution expressed in terms
of»the hypergeometric serieé, it is'indiééted to expand the solution

directly under the form:

o4

ntc
ho(r) - Z an r

n=0

vwhere c is thevipdeg‘of the pfevious equation and a, an arbitrary
constant, | |

Introducing the-last expansion of ho(r) into‘the differential
equation, (3.13), the 1ndicial equation.gives us

m” = c? .

Only the pOSitiQe root is feasible for the problem; for its boundedness
of the displacement;at the origin,rso ¢=m. .Aléo,'thé-recurreﬁcé
relationship between the ai's ig easily obtained and we report the
result

a,  (wm) (nr-2)=(c'n” + A0

an—2' n2 + 2nm
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By direct observation, we can see that the denominator is always
different .from zero and the solution ho(r) contéins only odd or even
- powers 6f r. In ordef to pursue our study, it is interesting at this
stage to 106k.for a while at the bqundary layer vaiid near the free
'gdge'of the disk. We ﬁeed then to define a suitable boundary layer
coordinate or

IR

LY N

The operétor‘ Vi.beComes:

2 ' . -2

I I N | d ___m
‘km | ¢2dE2‘ ’l—¢r, ¢odr (1_¢;)2

So the basicvdifferential'equation for ¢d m(r) (3.12) becomes in the

new boundary layer coordinate:

: 2 : . 2
R G S B % m_ 1 Yn "%m
¢2dfz 1-¢r ¢dr (l—¢f)2 ¢2d§2 1-¢r ¢dr (1—¢§)2
1 -~ d . ~ 2 o.,m
+ 0% $dF [(l-¢r).[l -— (l-¢lf) ] —"'—(pd; ] |
_a? [1-k2(1=D)%1 6 +2% ¢ =0 3 14)
B (1_¢;)2 - r O.,m a,m "0,m - :
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or

4 3. 2

% d% - a%e
e _%_ aZm ~ (IE¢E) 3 aém _ (2m2+1) 1 - > aim
1o ¥ 0 dF - (1-¢) ¢ ¢°dE
_ dé _ v
- (2n+1) —— ot N
(1-¢1) (1-¢1)
. do
v % (36%%2 - 6% + 2) 2B
(1-¢1) ‘
2
a‘e
+ (0283 -3 grleor) —m
dr
- ot [-1-k2(1—¢”>21¢ +2% ¢ =0
(14¢f)2 r a,m a,m¢u,m o

The thickness of the boundary layer is then obtained by balancing

_E =
o

If we define'now the asymptotic expansion of ¢a n valid near the
. . ’

'l_ -> =
% b =€

free edge in‘the following way
¢a’m(r,s) = éo(e)fo(r) + dl(e)fl(r) +.00,

then the differential equation defining fo(f) is_given by

d4f0(f)- d £, dzfo
- 4 + 2 FER 2¢ 5 = 0.
dF az%

On the other hand, the boundary conditions become in the new boundary

layer coordinate

2
d ¢a m | 1 d¢a,m m2 :
3 -V — -2 + ¢ = 0 ) (3.15)
¢2 dfz (1-¢1) A¢dr (l-¢f)2 o,m
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~and

3, ~ 5
d ¢OL,m + 1 d¢a:m _ 1 _ d¢azm + 2m2
¢3d§3 (l—¢f)2 ¢dr (l—¢r)- ¢dr (1-¢§)3 o,m
son’ Lo (1;v) w1 Lo
(1_¢¥)2 ¢dr. » . (1-9r) | (1-¢1r)  ddr
+ __;___E o, | =0 (3.16)
(1-¢1) >

"when T = 0.

For the first term of the expansion they become:

. d2f0
dr ’
3 when ¥ = 0
d f0
5 () =0
dr

The integfation of the differential eqhation defining fO

and the use

of the boundary conditions just derived limit the solution for fo(f)

to a constant C

The determination of this last constant is

0"
determined through the matching process near the free edge. For
matching, anAintermediafe limit suitable‘for matching near r = 1 is
given by | |
fn = ;E;) where r is fixed
and n(e) > 0 - .when € + 0., What we want ié r >+ ® yhen € > 0, or
r = el/3 z
n n(e)

/3

> o©

which implies n/e1
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. between the a

The behavior near r=1 takes the form:

nr
I _ _n
el_J;mo ‘ho(nrn) + vl(e)hl(nrn)+... Go(e)fo( 1/3)
_ el
r fixed l
n | nr |
—Gl(e)fl—ﬂl/B +$ =0
€
but ho(nrh) can be written
h.(nr.) = h.(1) _od (1) ne. +
0" ' n 0 dr 0 n "
and fO(E) =1CO' So we finaily have:
U § 4 B
Eliéo ho(l)—--dr' ho(l) nrh +... —Vl(e)hl(nrn)+...-50(€)C0
r .fixed. nr )
n - ;= )
Gl(e)fl(—j_el/3)+"$ 0.

(3.17)

The matching is then giving us

0
e .

60(8)

and

ho(;) _CO .

The determinations of hd(r) and Xg are now possible. The con-

dition ho(l) = C, — given through matching — appears, at first, to be

0
unsufficient. = But the consideration of the recurfence relationship
i's shows that a sequence of value of Ag truncates the
expansion for ho(r), namely:

(wtm) (whm-2) - km? = AD .
Only the sequence of values we just generated for Ag truncates

the series and gives a bounded displacement near the edge. The value
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o0
ho(l) is indeed given by :E: a_. By comparing the ratio of two con-

n
n=0 :
secutive terms of the last sequence to the ratio of two consecutive

terms of the diverging sequence defined by

1

1,1
D + o+2 + oth
it is easy to prove that the ratio generated for the ai's is greater

than the ratio:defined for the diverging sequence. The boundary con-

dition for ho(r) is in fact
ho(l) = bounded

It is concluded that for every Value'of'kg different from';hose

truncaﬁing'the éeries, the displacement along the edge is unbounded.
Having now éompletely defined the main contribution of the dis-
plaéement valid in the cenfral area, let us go back to the boundary
- layer expansion valid near the free edge. The consideration of the
' expressioh developed earlier for the matching suggests as an order of
: o 1/3
magnitude for 61(8) the value /7,
Going back to the development of the differential equation

'defining the modes expressed in the boundary layer coordinate (3.14)

we find that the differential equation defining f1 is given by

d4fl'< af, dzfl d3f0 L ag, , d2fo
—';;:er—di.j+2r_ ~2=—2 ~31'6r—c1-r.:+'3r -

dr dr - dar
2 22 ,2

+ [m"- k"m —AO] fo .

Taking into accounﬁ'the expression already found for.fo-or

f0<f)'=‘ho(1) .
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We have )
4 2

d'f. df d°f ) .
-—L o Lo —L o m? k&? - A% (). (3.18)
4 dr ~2 00
dr dr .

The expansion of the boﬁndary conditions (3.15) anhd (3.16) expressed

“in the boundary layer coordinates also-give us

d2fl
2 (¥) =0
dr” -
when ¥ = 0 .
d3f :
1 .
3 =0
dr™ -

The integration of the previous linear differential equation and the
use of the boundary conditions defined for fl’ gives us as a solution

for £, the following expression:
1 2 2 2 2
- (@™ -k m - >‘0).
fl(r) == 2 ho(l) T+ C1

"Introducing the last expression into the matching process, we have

d
lim - =—h,(1) nr_ +...+v, (e)h (nr.)
e > 0 dr 0 n , 1 1 n
r, fixed : 2.22 .2
n (m™-k™m - 1)) nr
1/3 0 n_ - =
£ ) .ho(l) 51/3 + Cl +..;=0

The matching process should determine the value of c,. We observe

directly that the expression

2,22 2
-2, - :
dr 0 : 2

h, (1)

is identicélly zero as seen by evaluating the differential equation

defining ho(r), Equation (3.13), at the point r=1 or
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2

-2 2 2 )
-2 - " - m"k" - AO] h0 ='0.

1

The determination of the constant C. seems to depend on the value of

1
vl(e) .

Contrarily to our expectation, the value of vl(e) is not of the
e 173

order of magnitude of € . The boundedness of the displacement along

the rim of the disk and the orthogonality relationship — valid for
1/3

this case too,.as‘shdwn later — cancel the choice € “for Kl(s) and
vl(e) in their respective asymptotic expansion. As a result, the only

feasible value for C1 is

In Appendix IV, it is briefly presented why the choice'Kl(e) =
81/3 in the asymptotic expansion of the eigenvélue has to be rejected.
We now pfb&e the orthogonality relationship between the modes( Thié
last relatiomnship is used in the determination of the next term of the

asymptotic expansion valid for the eigen?alue. ‘The orthogonality

relationship between the modes will once more be given by

l '7 - ' I ) .
j r ¢a’m ¢B,n cos mb cqs nd drd6 = 0 .

It is obvious that, when m # n, the relétionship previously written is
satisfied, as a direct integration with respect to 6 will give. The
case of majof interest is in fact given for the case where m=n. For

that case, we'thus have to prove that
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The differential equation defining d>Ot m is given by
3

dp 2
4 1 4 2 O,,m m_ 2.2 2 _
€ Vi ¢a,m tT ar [r(l—r ) Tar ] - 2 [1-k7r ]¢a,m+ xa,mq)a,m—

with the following boundary conditions:

2 : .
d ¢a m (1 ' d¢a m m2 )
—— W\ —— - — =0
42 r dr 2 "o,m
dr r
d _"d.2¢a m , 1l dd)& m m2 - ‘ m2 d <¢(x m)
—— [R5 e c—— o——e e - _ — ——— } e =
dr 2 T r dr 2 ¢0I,,m (1-v) r dr\r 0

when r=1. 'Similar expressions could be written for.ch o Taking the
differehtial'equati'on defining. q;a o and multiplying both sides by

r:cpB o and integrating, ‘we have
. _ o _

1 1 :
. d¢
-€ fr V-4¢ ¢ dr+'f 4 r(l-—rz)——a-’-n—lq) dr
. o ¢ om'B,m Jp dr dr  1"8,m
1
: 2
m 2 2
- _/ = [1-kr7]¢ e &
0 - _
1
+'/ )\2 ¢ ¢ dr = 0
0 o ,m o,m B,m r=
Expanding the first term.under the form
1 ' 1 2
f 4 ' f d 2 q
€ 0 r Vm ¢0L,m B,m -€ A r ¢B, dr2 [Vm q)a,m] r
1
d 2
—€ ./O'q)B,m dr [Vmcbon,m] dr
1
1 2
+em ‘/0' - ¢B’m de)a’m dr



An integration by parts and the use of the boundary conditions trans-
form the previous expression into

1

. " | a6 .
1wy 2 d (Ta,m]). Bg.m d_ .2 :
el-v) m dr ( r )¢B,m 1 te ,/(; r dr dr [Vm(boc,m] dr
1 ® _
+& m® f—ﬁ—'ﬂ v% 1 dr .
0 T m'o,m

Integrating by parts once more, and cohsidering the boundary conditions,

we obtain for the previous expression

- , A
e (1-v) -l‘ﬁ¢ bo - Po.n d%-m+£-¢ R
‘ : £2 o,m B,m " dr’ dr .r "a,m dr

1

m2' d¢d m 2 2
— — - g
+ r ¢B,m ~dr 1 _8 ./g r[vm¢a,m][vm¢8,m]dr :
Introducing this last expression into the expression found previously,
we observe a perfect symmetry between ¢ and ¢ + As a result, a
o,m B,m .

similar procedure applied to the differential equation defining ¢B o
would giﬁe‘an expression that would differ only by the last term."

Substracting both expressions, we are left with '
2

.42 _
(Aa,m— AB,m)J/g r ¢d,m¢8,m dr = Q

which contains our required expression.

s

To complete the stﬁdy of this problem, we will need the next
term of the asymptotic expansion valid near the free edge. The match-
ing ﬁrocess valid near the free edge suggests for 62(8) the quantity

82/3.
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Going back to the differential equation defining the modes,
expressed in the boundary layer coordinates, Equation (3.14), we find

that the differential equation for f2 is given by:
b ' 2. 3 ' 2

a*s df. - d°f a3s df a’s.

- Z,+ 2 d% + 2% g =2 ———%-+-4§ "E%'+ 332 %

dF aF ai aE
df .

+ [m2—k2m2—Ag]fl - 3?2 9402 mzf £ .

dr 0
Taking:into~account the expressions already found for
Eo(® = Ry

andv - - o 2 2

(@ - il - %)
fl(r) _=' 2 ho(l)r s
the last expression becomes:
2. ' 2.
d°f _ daf . . dTE, :
242 of—2 2 om® - k%% -2 hoD)E
~4 dr ~2 : 0 0
dr dr
_ 2. h (1) - :
+ (m2 - k.2m2 - Ag) —95—— T+ 2m2f ho(l).

The expansion of the boundary conditions (3.15) and (3.16) expressed
in the boundary layer coordinate give as boundary conditions for f2’

the following expressions:

2

d7°f. df
2 1 2 _
2"V g Vi =0
dr
d3f2, , 4f,
- + (1-V)m" —= =0 when T = 0
df3 dr
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Those last expressions can also be written:

c
dzf2 ' 'mz - kzm2 - AS 2
2.y 5 hy(1) + m*v h (1)
) dr
‘ 3¢ ) when £ = 0.
2 0
~3
r
.
The equation defining f, can also be written
df df
2 al. %2 2 .22 .2 .
% 2| F a7 e - km - Aphg(DE
dr :
N ' 2 h (1)
- (m2—k2m2 Ag)‘ . 02 r + 2¢ m2 h (1)

A particular solution is given by considering

where

» 2 2
D (mz-kzmz-xz)h (1) + % 16 (w2 AZ) hy (1) + 22 b (1)

The solution to the homogeneous part is obtained, after a first

integration, and the use of the second boundary condition by solving

3 : :
d”f df
2h ~ --2h _
—_— -24{r——] =0 .
a3 dr

dr

Defining 4df2h/dr = f2h , we héve

de*
Zh _ 5z % =
d;Z - 2h
- . 1/3 . .
The change of variables r = 2 r transforms the last equation into
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)

d f2h x *

%y ~ T £f., =0,
r

d

which general solution is expressed in terms of the Airy functions as

* %
f = Dl Ai(r ) + D

Bi(r
2h 1(? ).

2

A

The asymptotic expansionsof the two Airy Integrals are given in the
: . N _ :
literature and show that Bi(r ) is inadequate for matching because of °

its exponential growth: we are thus left with

* Lk
th.= D1 Al(r‘)

or S RVEIN
f2h = Dl Ai(2 r) .

The géneral solution for f2,is:

~

2 1/3
£, = D,E” + Dy ](;Ai(Z £)dE + D, .

The &étermination-of_D .is done by looking at the first boundary con-

, 1
dition
» dzf2 : mz—kzm.2 - Ag é :
=V h.(1) + m“v h,(1) when ¥ = 0
~2 2 0 0

dr : . :
or '

2D0 +.D12 “ Ai' (o) Vv ho(l) + mv ho(l).

2
From this last expression, D1 is determined. The determination of D3

is then obtained through the matching process by ensuring that the

quantity
T o
‘ cooll3py ax
Dl f Ai(2 g)qg + D3
0
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represents a transcendentally small term-away from the boundary. The
introduction of the expression found for fz(f) into the limit.prbcess,

considered in the matching, leaves us with the requiremént:

2 o
1 d -
= S5 h (1) - D, =0
2‘ er 0 0
where
| 1.2 2 2 - V 2 2 x:
0 4(m -k m 0)h (1) + (m ~k“m” - A ) h (l) + h (l).

The differen;ial equation defining ho, Equation (3.13), expressed in

the r' variable becomes{

o oahm, . an | AP
(2x'-x" ) ———%-+-—L—,( 2+6r' 3:'2) dg - 1 2.'[mz—mzk2 - Ag
dr | (1-r")
+2@%% + ahrt - @2+ A = 0. (3.19)

Expanding dzhO/drz, dhO/dr and h,

of r' = 0, we obtain the following identities:

_ dn
—2 -—11 ) - (@>-n?k? - xé) hy(1) = 0

2‘ .
d"h, dh
0 222 .2 B0 o2 _
5 (1) + @-nK" - A+ 4) =~ (D) - 2n” hy(1) = 0.

" dr

This last expression is also:

‘ | , 2
d2hO : mz—mzk2 - kg '(mz—mzk? - Aé)l dh0
2 W= 2 B + — 3 ar
dr . : ‘
m2
+ 2 ho(l) .

or thO/dr2 (L .= 2_D0 which represents the predicted identity.
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Having previously concluded the orthogonality relationship
between the modes, we have to complete the specification of the mode
by writing down their normality or

1 20

f f r ¢2» cos’m® drd® =1 .
0o %,m

A direct integration with respect to 9 gives us

1
2 = X
.4:r ¢a,m dr = .'

This relation répreéenps the relation needed for the determination of

a Introducing the asyﬁptofio expansion‘of'¢a ﬁ, the previous. equal-
’ .

0"
ity becomes indeed

1T '
./ﬁr hg dr =
o

or by writing. the development of ho(r) undér the form

y _ntm - '
2;% ar ag hy(r),

=11

ho(r) = a,

we obtain finally

8 = 1 »
Hfr h'z(r)dr-
0 0

With the determination of ho(r) completed, we are now able to
proceed and determine the value of Ki.' The orthogonality felationship
between the different terms of the asymptotic expanéion of the modes

and the considerations introduced previouély.suggest for vl(s)-the
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order of magnitude of €. A suitable choice for Ki(s) is also given by

kl(e)i=

\

The differential equation defining h, is then givenvby:‘

1

=

dh 2
d 1 m 2 2 2 _oh 2 . »
ac [r(l—r ) ] - rz [1-k"r lhl + }O hl = tho - A7 h, . (3.20)
. Mu'lti'ply'ing‘this' equation by r ho(r) and integrating from 0 to 1, we

obtain the folloWing expression:
1 ‘

| dn L,
o d 1 o 22 2 S
fho(:) ar [r(l—r ) r]dr - f = (1-k"r )hlhO dr + >\0 fr hDhldr
0 v 0 : 0.
’/0.

where the normality relationéhip of holhas been used. Integrating by

parts the first term, we have:

2, 98y Yy g, dby dhy / n? 2 2
h (r)r(l—r ) e - r(1-r°) ~r ar dr - f—;— (1-k )hlh0 dr
. 0- Yo : 0
1 1 22
+A§ frhohdrs‘frv hohy dr - —%
0 0

Integrating by parts once more, and taking into account the differen-

Equation (3.13), we have: . '

tial equation defining hO’
' . 1 1 : _
dh 2
2 0 m_ 2.2, 2
-r(l-r .). el . + ~/0‘hl [ - (1-k“r)h,- r )\Oho]dr_
1 | 1
n?
f - )hlhodr + A fr hh, dr
0 . 0 _
‘/ﬁ r v hohodr - =
o I
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or - : 1
2

A1=H£r V::llhoho dr .

The previousvdefermination of ag and this last relatidnship com-
pletely define the valué’of Ai. In this problem, the flexural rigidity
of the disk modifies the value of the eigenfrequéncies onlyvthrough
an order of magnitude_e.'AIn a procedure similar to’thg one uséd_for__
the rotating-c;ntileverea beém ﬁroblem, the déterminétion of Aivhas
been accomplished without the need of the orthogonality relgtidnshiﬁ.

Here again, the general expression valid for hl is given by an

expression of the form

hy =By + kb

where Hl is a particﬁlar solution'whidh displacement at r=0 is zero

and h, is the genéral solution of the homogeneous part. The determin-

0]
_atioﬁ.of theicbnétant ki is accomplished by coﬁéidéring the ortho-
nbrmality bon&ition. However, we have to be careful when doingvthis
step. We already found fhat the boﬁndéry'iayer éxpansion contains a
transcendentélly small term in fz; which order of magnitude is given |

by 82/3. The boundary layér being of thickness 81/3

, we might conclude
that the confribution of the TST in the integral appearing in the nor-
'mality relationship'giveé us ‘a contribution of order of magnitude €. As

a result, the uniformly valid ekpansion has to be considered in the

normality relationship.
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The uniformly valid expansion for ¢a o is given by
] .

_ T 2/3 f 1/3 .

by,m = Bp(®) teh (D).t e D1[ A Ai(»2 £)dg + 0yl
e '- R B . - ' .

where D3<has been written D3 D1D3

%
. /Ai(21/3g)dg + D}
Jo .

represents a transcendentélly small quantity away from the boundaty.‘

The normality condition gives us then:

1 ]. 1
2 1 2 - - -
r¢. dr === rh dr+2€/rhhdrv+.v,..
‘l Yo,m .II Jy 0 o ) 071
1 iy

+252/3/fh D fAi(Zl/BE)d€+D' dr +...
‘ o 01| " 3

Let us concentrate on the last term:
1 s

: . o .1/2 .
Dl"lrho,lAi(z :S)di€_-,+D3 dr .

The mixed appearance of r and r has been kept on purpose as the rest

"of the devélopment will show. We replace r by l-r' in the previous

expression. or

~

’ 1 . . r ,
| VR (Topt 1/3 N
- Dy A(l—_r Jhy(1-r .)[‘/O'Ai(z 7g)dg + D3] dr' -

The expression jz Ai(21/3€)d£ + Dé represents a ﬁranscendentally small
qhantity away from the bouﬁdary, when considered in the r' variable and
this remark suggests an expansion of ho(l—r')'in Taylor series is the

neighborhood of r' = 0.
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1 ' C , T :
Ca1/3.0 A, . .. 1/3
D, Aho(l) -/(;Alcz £)dE + Dydr' - D, ]O.r ho (1) AAl(z £)dg

L 3

La

+ D!|dr' -D . £1--‘h W)r’ Ai(21/3£)d£ + D! [ de'+. ..
31 1 dr 0 -3
_ . 0 70
Replacing now ! by 51/3 ¥ and dr' by €1/3d§, the previous expression
becomes : '
1 61/3 T )
/3 b In ) ] a1 3eyae + o | az
11 By A 0 31

ST £ .
-el‘/3ho(1) / 3 /Ai(21/3g)dg + by |4z |
0 ~/0 J

dh, 1 7 ]
-el/3 (1) ] /Ai(21/3g)dg + D} |aE +...
o |Jo -

b -

The limit process applied to the normality conditions gives us then

~

-1 S T '
X . . | . 1/3 . . .
._/{.r hoh,dr + D, hO(l) f fAl(Z £)dg + Dy |df = 0 .

Defining the integral of the transcendentally small quantity appearing

in the last bracket as being _D4‘ » we have

1, .
fr hyhy dr + 1)1134 ho(l) .
This last expression can now be used to determlne the value of kl

1

1
e 2 _
./0_-r hOhl + kllr ho dr + D1D4 (1) =0
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or

Sk, = - I}

1 r hghy + DD 4 B

01

S~

With the determination of kis the expression for hlAis completely
‘specified and we will then cenclude here the study of the modal
analysisvof the last structure. Several properties that we menfioned
for.;he ﬁfévious proﬁlém can also be observed in this  case, but fpr
reason of shortenihg will-nof Be developed heref.

We conclude this chéptef by recording briefly some results in
the dete%mination of the eigenfrequencies of the free-rotatiné, circu-

lar membrane. The ekpansionlfound-for.the eigenfrequencies has the

form
2 3y 2.2 3+v 2,.2
wa’m =3 Q Aa,m 9 (A + A £ +..0) -
where ‘ N
.2
2Eh
€ =

3(12v2) (3rvyaty 02

The value of Ag.is givén by the sequence defined by

() (a4m-2) - kZm” = A2 S
where_.< »
' k2 _ 143v
H+v
and-

2 4 |
Al._H./O-r Vm hOhO dr.
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The obtention of h, results from

0

. Q
' ntm
ho(r). = Ig ar

where the truncated series is defined recursively by

a, (mrtm) (nm=2) — (122 + )

-2 8% + 2mn

2-148



CHAPTER 4
LIAPUNOV STABILITY ANALYSIS

4.1 Introduction

Due ‘to the particular orientation of this chapter, we shbuld, at
the outset, invesgigate the concept of staBility, and state precisely
lWhét we‘mean.by a stable motion forvour problem. Ve will ‘then in a
first part review Briefly thefdifferentlideas pertaining to the s;abil—
ity and cover tb ssmé.extent a peculiériﬁy'appeating in the class of
froblem under:investigation. In this first part, the concept of stabil;
ity will be'developed"éﬁa'thé_definipion of nominal motion wili become
more épecific. In the:seéqnd part; thé Liapunov stability analysis will
be studied for fiexible space'craft when continuous models afe used, and
finélly analytic criteria for the class of prqblems studied in chapters

2 and 3 will be obtained.

4.2 Concept of Stability

We might introduce thié section on concept of stability by
defining formally the notion of Liapunov -stability.

If, fér a given dynamical system, the equatidn of state

)O( = F(X, t)
admits the_solutioﬁ'x = 0, and if'fof any € > 0, there exists some 6 > 0

such that if the norm |X(0)| = 6 then |X(t)| < € for all t = 0, then the

motion‘characterized by X = 0 is said to be Liapunov stable; and if in
addition

iim
|x(t)] = 0

t> o
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then the solution X = 0 is asymptotically stable. If X = O is not
Liapunov stable, we will call it unstable.

One remark should be made about this definition: only locai
stability properties are examined. In order to explofe the kind of
instabilitiés occurring in the system, nonlinear simulations become .
nepéssaryf ’The reéson is that the characterization 6f stability is
based‘on ioca1-pr6perties'of the mdtién, pefmitting no formal conclusions
beybnd the neighﬁérhood'of thé‘hominél mofioﬁ.

1f we, now, cbnsider the‘consequences of a sméli perturbation
applied to a rigid body, initially rotating:ébout a principal axis
(major or'minor) colinéa; with itsiinertial anéular momentum véctor, the
subsequent motion is characterized by a rotation of its sbin akis about
the»inerfial,direction defined by the new angular momentumtﬁectdr - the
sum‘of the'iniﬁial angﬁlar mémentum'vector.and its‘pertufbation. The
sPacevéraft is said to "wobble" and the angle between the spin axis and
the new angﬁlgr mbmgn;um vector is called the nutation angle or "wobble
angle". Because the-wobble anglérresultingjfrom a sufficiently small
‘perturbation remains within any préassigned &alue, the mofion is ééid to
bé Liapunov stablé. | | . |

:Oﬁ the other ﬁahd, heuristic energy sink methods — based on the
aésumed presénce 6f a hypothetical non;moveaﬁle energy dissipator, and
applied to quasi’rigid bodies‘—-indicaterabdecrease in the wobble angle
if thé’spin axis,is the a#ié of maximum moment of inertia; we would like
to define our state v;riébles in such a way.fhat we can cali this motion
asymptotically stagle. Conversely, energy sink anélysis shows fhat when

the spin axis is the axis of minimum moment of inertia, the wobble angle
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grows and the motioq‘becomes.unstable. These last observations are
generally'refétred as '"the greatest moment of inertia rﬁle". The fact
that in the perturbed motion of a stable quési rigid body, the spin axis
converges to the B%ﬁ angular.momentuﬁ vectpr brings out an interesting
ppint:. thé systeﬁ is nqt»"completély" damped when the motion is
descfibe& inAﬁérmS’of coordinates measuriﬁg the deviation from the iner-
tial.oriéﬁtafibn eﬁis#ing priorvto perturbatidn.;AWe will focﬁs our
attention on'this.iastAobéervatién; by referring to a development by
Barbera aﬁd Likin's.]f3 |

In the:appiicatibn Of_asymptotiC'stability ﬁo'our pérticular case,
special attention is required in fhe choicé of eléménts.in the statel
variable X. If the state variableS'include, for instance, the_deviaf
tion of ‘the componeﬁt of tﬁevangplar veiqgity along the body spin axis,
then the null solution will pqt be:asymptoticaliy stabie for any vehicle
configuration, since_after perturbation,'the vehicle will not returﬁ
asymptotically to’itsvnqminallspin rate. For the same reason, we‘cahnot
‘include in X aﬁy'deformatiops which vanish only in the unperturbed
state, but we must define deformations relative to whatever deformed
state éorrésponds.to’steady rotation abbut the body spin axis at the
rate agpropfiate for the actual angular momentum, whether before or
affer_éerturbéti@n._ Similarly, we éannot use.in the:state variables any
set of inertial attitude anglés which are zero dnly when the Body spin
axis ié célinear with the gngular momenpumvyector pfior.to perturbation;
the perfurbed angular momentum will have in éenerél a different orienta-
tion, and we wish’fo characterize the motiog as asymptotically staBle if

the angular velocity vector of the central body approaches alignment
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with the body spin axis and with the perturbed angular momentum vector.
We ﬁust therefore choose attitude angleé for the central body which
vanish ﬁhenever the body spin axis is aligned with.the actual angular
momentum vector, whether before or after perturbation.

Our coqcépt of Stabilify is now well defined and the coﬁstraints
on our definition of the state variable'made more precise. We are in a
position’wheré two theorems, usually referred to aé being elements of

Liapunov's direct or second method, can be mentioned.

Theorem 1: The null solution X(t) = O of the differential equation

o) : N . . . .

X = F(X) is asymptotically stable if there exists a function L(X) in a
fegion arbund the origin both positive 'definite and strictly decreasing

0.

for all solutions in that region except for X

Theorem‘Z: The null solution X(t) = 0 of the differential equation

; = F(X) is‘unstable if  there exists a function L(X) in a region around
the origin Both negative semi-definite (or sign variable) and strictly
decreésing for all solutions in that region except for X = 0.

Although these theorems constitute usefuls tools for the
determination of the necessary and sﬁfficieht conditions'for asymptotic
stability, they do not present procedures for the generation of a
testing function. ﬁowever, in a wide class of applications, the
Hamilténian'is a conveniént choice. MoreAspecifically, for "completely
damped":systems, the Hamiltonian is a suitable testing function when the
total energy of the system is free ofvexplicit timevdependence. For our
purpose, the concept ofl"complete damping" implies a dissipation of
energy for an&,possible motion;.in the neighborhood of the origin of the

coordinate spaée adopted, except for the nominal motion, However, as
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mentioned in the preceding sgction, the damping of a freely spinning
body with internal energy dissipation is not complete in terms of atti-
tude angles measured with respect to the spin prior to perturbation,
since the vehicle cannot réturn to its original state. As a result; for
such syStéms; the Hamiltonian is not strictly decreasiﬁg in the neigh-
BorhéOd of the null solution and ésymptotic'stabiliﬁy cannot be pro-
claimed. ih 1969, Pfingle14 provided a method to circumVent this prob-
lem. The procedure consists to constfain the attitude angles through
the angular momen tum integral so that they measure the &eviation of the
body spin axis from the inétanténééﬁs'angular momentum vgctor,vbéfore or
éftér‘ﬁeftgtbatioﬁ from‘its ﬂominai'iﬁertial 6rientation. The attitude
angles_are‘thus definéd in such a way.that cpmplete damping is assured
and asympfotié étability can be predicted. The reqﬁirement of complete
damping also implies a judicious choice of deformation variables: they
must vanish Whenever the vehicle adopts a steady stéte‘ponfiguration and
rotateé about the body spin axisr(at whatever rate is appropriate with

the actual angular momentum).

4.3 Stability Analysis
|  we séecified in the previous section our objective and the path to
follow in our stability study of flexible structures. 1In thé féllowing
derivétion, fhe analysis is kepf as general as pbssible. .We will
restrict the class of'problems‘covered by the study when needed and
finally, speciaiize in a class of systems, including the flexible struc-
tures studied before, when analytig.griteria will be.developed.'.

>We assume; at the outset, that the freely spinning flexible

spacecraft under investigation is composed of two parts: a rigid part
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and a flexible bart. Later on, the flexible part will be assumed to lie
in a plane peréendicular to the spin axis and passing through fhe center
of mass of the whole structure when at'steady—state défofmatiqn;

Thé kinetic enefgy.of the system, denoted by T, is derived from
the general expgeSSion:

2T =. /j’)_-,_f)_.dm
A8

where p is a inertial generic positioﬁ vector and the capital letters
A and B indicate that the integration is carried over the flexible

appendage A and the rigid body B.

"Fivgure 12 F;eéiy Spinniﬁgnsbécecraft. _
In our/force~free case,_thé system mass center is:inertiélly
~fixed, and P can be written as the sum ¢+ p where ¢ is the position
vector directed frém the systém centervof masé CM to a point N fixed ‘in
B, and p is a generic position vector directéd from N.  The point N is
éhosen to coincide with the éM when éhe éfructufe is.steadily spinning
at thg rate consistent for the actual %ngular.moﬁentum and hence elasti-

cally deformed by forces induced by spin. Thus 2T becomes
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The first term vanishes by definition of mass center, i.e., .

- / (c+ p) dm = 0 for every t,
A, B

2T = ‘/\_é":(f:_;+é)dm=é‘/. 6 dm +'/ B - p) dm .
AB ' A,B~ - JAB _

? ’

SO

By definitioﬁbf; the center of mass, we also have:

o M+ fl'gdmégfor every t,
- JA,B o

where .# represents the total mass of the system.

The kinetic energy takes, t'hen,‘ the form:
2T = - (& ) M+ /cg-_@ dm +/<é-é> dm
A B
2T = = (& - &) M + -Q.?Ig-g#- /(é-é_) dm (4.1)

where w is the inertial angular velocity vector of vector basis {b}

or

fixed in B and Ig is the inertia dyadic of body B about point N.

Expressing the right hand side of eqhation (1) in matrix notation
with respect. to the vector basis {b} fixed in body B, we obtain for the

first term
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ME ) = MEF (@x) - S+ (WX )]

MIE . BH+28 - (@xe) + @X) - @X Q)]

= M ['éT ce-2T S+ &F cw]

where (°) represents time differentiation with respect to the vector

basis {b} fixed in B and the tilde (*) operation is defined as

0 -c c
z y
c Al ¢ 0 -c
= z X
-c c 0
y X

The last two definitions can be extended to any vector used in the
sequel.’

The second term becomes simply

w-I

N TN

where I_ is the inertia matrix in vector basis {b}, corresponding to the

N
B
I

N
B

dya&ic
To study the third term we expréss p as the summation of '+ u,
where ' is ‘the position vector from N fixed in B, to the element of mass
dm in the "stéady state' poéition. The "deformation" u measures the
displacement relative to B of the element of mass dm frbm the 16cation
that it would'dccupy.if the vehicle was rotating about the body spin
axis at a steady State!configuration at the‘rate appropriate for the

angular moméntum. With these definitions, we have successively:
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[ﬁ+wx(r+u) i+ wx (T+w] dn

(ﬁ-u) dm+2ﬁ. [.‘Ex(£+-‘l)] dm
A

+/[B'x(£+2> rwx (L4 w] dn
A . :
/.T. ' /.T~ R f e s
Uadm + 2 G w(l+u)dm + [(TH+uw)w] (T+u)w dm
A A A
f To dm - Al (TFu)dm + @' [ / (r%)T(ﬁL)dm]m
A Ja A |

‘The Hamlltonian can be written as

H = ;-wT IN w + i T dm + l-wT F 4 dm + u F dm|w
2 0 .2 2
e A A
+ % wT[ iy dm]w - [/ﬁT(I‘+E) dm]w
i A A

’/%{[éTé - 2T v+ Wt W] 4V +C

]

(4.2)

0
where the system potential energy has been defined as V plus a constant.,

We introduce the definition

N A N ~T7 :
;0 B ,/} I' dm |

where the term J(.F I' dm represents ‘the 1nert1a of the undeformed

appendage. The expression I defines precisely the inertia of the com-

0

plete system about point N when undeformed. If the vector basis {b} are

assumed parallel to the principal axis, IN is diagonal, i.e.

0

2-157




We are now in a position where we can compute the angular momentum

integral., By definition, we have:

f (c+p) x (&+9) dm
A,B -

h

/ (c +p) *X[wx (c+p)] dm
A, B

=c X (c+p)dm—c></ dm+/gx_cédm
A,B A,B A,B

] i ’

+_c_><[£><f(s+_e> dm}+/g><<9xe> dm
- L. JA,B A,B ,

,-(QXE)'X/_p_dm.
' A, B

L}
N
o .

—~
f
+
lv
X
—~
i@
+
oo
~
+

The first and fourth terms vanish by mass center definition. Defining

. . _N
the inertia dyadic of the complete system about point N, I, we have

h:IN..£+,//{_c'iX£-l.-/pXBdm
it - A

The last two terms may be written in the vector basis {b} as

By #@Ec+EEw

{b}* /(f &+ §G) dm
A

\

MExc= Mc+ (wxc)xc]

Jerpam-fcrvxia
A A

which allows the matrix representation of h in {b};

bpoa IV w+](f'+ W) ddm+ ME c+ET W,
YN |
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In order to constrain the Hamiltonian through the angular momentum
integral, we now have to solve the angular velocity components in terms

of the attitude angles.

Let us define an.inertial vecﬁor basié {E} and its transformation
with respect to {b} as 0, i.e.
{n}=-06 {b}

such that A, is colinear with the angular momentum vector h after per-

3

turbation from its nominal inertial orientation. As the system is

assumed torque free h must remain colinear with 63; thus, subsequent to

perturbation the following must prevail:

h. 8 =0
ho. 8, =0
h-fy=h

where h is the magnitude of the perturbed angular momentum vector. With
~h written in vector basis {b} as prescribed before, the above equations

become:

7

~ - 0
O[INw+/(F+u)1’1’dm+./ll(<':c+EEw):|=(O>
_ A " ‘h

.. . _1 T 0 . . .
w= + ¢ ¢ e 0}- ('+d) ddm -~ #4¢ c
o \h A

Let us, now, determine the transformation ©. We have

or

{p} = o' {a} -
We will use in the three rotations needed to define cbmpletely ©, the

sequence of rotations I - 2 - 3. As a result the matrix OT may be

written:21
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where

T-p-d+166+1577

N
N

E is the 3%X3 identity matrix-

~

B is a skew-symmetric matrix defined as

0 —93 62
9 = 63 0 -61
—62 61 0

91' 0 0
0 = 0 92 0
0 0 63

U is the skew-symmetric matrix defined as
0 +1 1
U=|-1 0 1

-1 -1 o

With the matrix OT,Anow well defined, the approximate expression for

T
w = (wx, wy, wz) may be written as

Terms

e R VI 3
w= |IT + Mcc (0)—90-—-1"ﬁdm
L - | h n/ Ja
1 ~~ —__ {0 T S
+—§4[69+Gﬁ jto —fuﬁ-dm-aﬂéc (4.3)

of order higher than second have been disregarded since the

stability analysis is only valid locally and the sign character of the

Liapunov function can be determined in the neighborhood of the origin
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from its quadra;ic approximation, as long as all coordinates are
includéd.

The solution of (3) for the aﬁgular velocity components is then
5ubstituﬁed into the Hamiltonian and limited to terms of order no higher
than Secdnd.

The_inertia matrix is defined for the flexible appendage with tﬁe

{b} vector basis as
N T T,
IA='f(p'oE_—pp)dm-
where E is the 3X3 unit matrix. Replécing.p by its value given in

matrix form as

p=T+u
we have:
. e /
I.IZ = [T+ TFWE- (T +uw T+ ud) dn
s “JA . )
= / (r rE - ITY) dm + ﬁuTrE - oY) dm
A A | ,

+ (I‘T‘uE—PuT)‘dm+‘/‘(uTuE—uuT)dm
’ A

>

. " . N - ; , .
The inertia matrix I of the complete matrix, computed with respect to
the vector basis‘{p}, consists of terms independent of deformation as

. ‘ . l{ .
well as terms both linear and second order in the deformations.

= I§+ ﬁPTPE - Ir7) dm + ﬁuTFE - oYy dm + ﬁFTuE - T'u")dm
: A /N A

o + J/;uT ufE-u uT) dm
A o
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The sum of the first two terms has been defined earlier as Ig,
prescribed to be principal and having as diagonal elements A,B and C.

We also define

ﬁuTPE-uPT)dm+ﬁPTuE-FuT)dm
A 7A
/(uTuE-uuT) dméU

A .

where we notice that A represents a symmetric matrix, so that

24

N =15+ 2 8+ U,

The definition of the center of mass or

cﬂ?_g-+./r pdm =0
JA,B

may be written as

oJZ;E_*f./{é.dm +.¢/22 dm = 0
A B~

M+ _I‘_dm+-/jt_1_dm'+ p dm =0,
A A - “B

By definition, - the pointlﬂ has been chosen as the center of mass of the
complete system when the structure is undeformed. This allows us to

consider

‘/E:dm-+’J/;_dm = 0.
A . B

The vector ¢ is then expressed with respect to the deformation u as '

1 /
c = - = u dm,
M A

so that
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The matrix [IN +w47£1€] expands to:

) T -
I + 20 +.U +'/7‘[.-/p:u dm:l[-éx dm:l..

The inversion of the previous matrix becomes. easy if we consider the

. - N
fact that the matrix IO

only terms up to the second order are needed for the purpose of our

is diagonal, and if we recognize the fact that

derivation. We obtain the following expressions:

;. _1 -.l * _ - .
IN+./tt‘EE_=1N E+’21N A+IN U+11N 4 dm 4 dm
ot o |t To ¢ 0 M 0 . A A

so that_

: 1-1 : -
[.N‘4-941 E%] = L
o ' . : o -1 .
~1 -1 ~1 -1
N - N. 1 N ~ ~ i N
|E+ 21, A + I U+ [‘/A; dm][‘é; dm] ‘IO .

Faking now, into ‘account the fact that the matrix A contains only first
order terms in the assumed small variables, and similarly, the matrix U

contains only second order terms in the same variables, we have:

: -1 : o
N ~~ ~ N-1 N-1 ,_N-1 N-1" _N-1
[I + uﬂ'cc] . IO -2 IO AIO - I0 U10 

1 _N-1 ~ ~ N-1 . N-1,._N-1,_N-1
- % IO [’4; dm][[u dm]Io + 4 IO AIO AIO>.

Introducing this last expansioh into the expression previously fourd for
the components'df the angular velocity vector; and pérforming the indi-
cated multiplication, we obtain as final expression, where only terms up

to the second order have been kept
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-1 -1 -1 e -1 _ /o
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' =1 -1
-1 fadam -1V el e,
0 0.
A
When the éxpressions derived before for the angular velocity components

are substituted into the Hamiltonian (4.2), a series of simplifications

and combination of terms reduces the previous éxpréssipn to:

' 1 -1 -1 -1 -1 -1 -1 -1
1, NN, N N N N N
H =5 (000115 -2, ATy -2I, 6+41I, AL; ATj
-1 S -1 -1 -1 -
N N 1 N [~ . ~ N N
-Iy ULy -3¢ 1 {ﬁdm][/udm]lo +41, ATy 8
| A La
S ~ =1 -|/0\ -
¥ Ig [66 + BT8] -6 12 6 <o>
, - \n
1 T = N1 |1 T
+—f fu T dm I0 I‘udm‘+-2- Q4 dm
A A A
- faTdm fﬁ dnm |+ V + ¢ (4.8
2 WA | A 0 |

where Hé stands for_the coﬁstrained Hamiltonian.

'Ip this 1as£ éxpréssion, fhe potential energf'must'include the
contribution of the steédy sﬁate deflection of the fiexible'appendages
induced by spin at a rate concordanﬁtwith the angﬁlar momentum. In the
followiné text, this_spin:;ate.will be identified as being We g This
last observation expresses the fact that the expansion of the potential

energy of deformation, in terms of the deformation variables, is not
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accomplished with respect to the minimum energy of deformation state. As
a resnlt, the expansion consists not only of terms quadratic in the
deformations, but also of terms linear in.the deformation vatiables,
plus a constant term. We limit the approximation of the potential
energy of deformatlon to those terms because they represent a good

indicator for the local behaviOr of the system.

U. =L, + LT-udm+.l fuTKudm
- d 0 A 1- 2 . A .

where Ud represents the energy of deformetion, and Ll and K are made
of functions of positlon. |

| If we, now, con81der our definltlon.of u, the defornatlon with
reenect to the steady~-state deformation induced by spin, we have to con-
‘clnde that the equilibrium position is defined when the defcrmation
variaﬁles ere zero. But for a conservative system, the ecuilibrium
position is obtained'when the dynanic potential, composed of the ener-
gies ofvposition and deformation and also of-TO— the part of the kinetic
energy not a function of the time derivatives of the state variables of
the system — is minimum with respect to the.state variables, when eval-
ueted at equilibtium. Onl& the deformation energy and the kinetic
energy ate-functions of the deformation variabies, and equilibrium has
been defined when Q and 8 are zero and when the spin rate is given by wSS'
The klnetic energy has been determined earller ‘and the minimization of
T0 - Ud-With respect to tne deformation.variables, eveluated at equilib-
rium,(is equivaient to‘the requirement that the linear terms in the
deformetion variables n appearing in TO - Ud accommodate themselves when

the spin rate is Wgg OF

1 w T FT u dm + GTF dm | w - LT cudm=0 .
2 Ss R SS | A.l
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. The potential energy of deformation may then be written, after the
observation that the terms in bfackets are nothing else than 2A, in the

following way

N T 1 [T :
Ud~L0+,wSS AwSS+2.{UK_Ud,m'

SS 0 h

‘ —1 o\ .
0o h),I‘; i <o->-=_.o ,
_ : h/- :

-1/0
If we recognize the fact that w_._. is IN <O> and notice that

we obtain the following expression for Hc: ,

o RIS B R =0 ;;[
c 0 s

H =% 0 0 h) {41N AT

+% uT-K-.u,dm__,. ‘ " ' ' (4.5)

This last expressioh cqntainsvonly terms second order in the deformations
and attitude angles. vin ;he expansiqn of equation (4), several constaﬂt
terms appear in a&ditionlto the arbitrary constant Co ﬁreVioﬁsly'identi—
fied. Since Co-is‘arbitrary, it has been chosen in such a way that the
summation.of thé'cbnétant contributions is zefo, allowing the
. Hamiltonian to vanish at the origin — a necessary requirement fo;_a
Liapunov function.:

As Hcvin the presence of cpmplete daﬁping is strictly decreaéing,

then by Theorem I the nominal motion is asymﬁtotically stable for Hc
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positive.definite, and By'Theorem II this mption is unstable for Hc
elther negative semi-defipite or sign variable. We assume that energy
is dissipated witﬁih the flexible appendage whenever time-varying defor-
mations occur, as in the-case for any physical object. We have care-
fully chosen our variables so that energy is dissibated fot any admis-
sible solution of ﬁhé equétions,of tﬂe motion in.the neighborhood of the
nominal motion, except for the nominal motion itself, so Qe aré assured
of compiete damping.

Since for asympto;ic stability the complete function must be
positive definite, then it is 91ear thgt the fo}lowing muét be satisfied

for stability

'1.2.2 C-A ,1.2.2 C-B
208 ac v 8 g >0

‘This fesulg.brovides the familiaf ﬁecesséry stability cfiterion pre-
dictea B}-eﬂergy'sink mefhéds_fér spinning bodies having an ihtern;l
energy dissipator, i;'é: | | | |

C>A and C > B,

Thus, by inspection of the Hamiltonian we can formallyvéonclude that, in
the preéencé of damping, the spin axis must be the axis-of maximum
moment of inertia. Howe&er, our objeétive is to extract additional
stability .criteria, and this»reduires ﬁhg determination of conditions
for positive definite Hc;

Now,lthat the constraingd Hamiltonian has been found in a
completely general way, we are forced to consider more specific problems
if ﬁé want to come up with analytic ;fiéeria; In ofder.to introduce
those particular case,:some-useful relationships have been.derived in

Appendix V. To obtain literal closed-form stability criteria we shall
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restrict our flexible appendage model to lie in a plane containing the

center of mass and normal to the spin axis.

FLEXIBLE APPENDAGE

i

| \-RIG’iDC_ORE o

Figure 13. Restricted Mbdel.
Following the definition of our particular case, we have to

consider

Under this last assumption, the three scalar equations expressing the
rotational motion of the rigid core are given by considering equation
(1) in Appendix V for this particular case or:

0= Awl - WygW, (B—C)— 2 A23 Weg + 2[\1-3 Wy g A}‘Iu3 dm +[F2u3 dm

=]
-

. \ 2 'I l‘ . . b
By + ugg Wy (A-C) + 215 ugg * 2 By3 ugg + g _/;qusdm '4}1“3 dm

o
[}

Cw3, + 2A2_3 Wgg = ﬁZul dm +. leuz dm
A YA T

N

0

and where the angular velocity vector at the '"steady-state" deformation

where we used the fact that the matrix I, has been.chosen:to be diagonal

has only one non-zero component, wSS’ along the spin axis.
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Under the assumption of a flexible appendage lying in a plane

orthogonal to the spin axis and passing through the center of mass, the

kinetic energy may be written as:

T=T1+T2,

where

+

1 2 2 2
5 Wog _4‘(“1 + u2) dm + Wgg

N
===
=
N
[ oy
N
+
Lo |
'—J
c
'—I
S
[a N
=]

3 Weg f(F2 u2+I’1 ul)dm— (w +wSS) fFu dm +
(w+ Yy JT d. 3 | 1 [ 3 2
3 ‘*’ss 1“2 m = Ugg _4(“1 “2‘ 2 up) dm - =% [“1 dm =+
. dm + — u dm /-u dm w ﬁ dm u, dmiw
[Az ] M [ 1 } Az | Jy 2 _Al Sg
2 2
1 9 /' }
- w u, dm + u dm
sl fel]

If we, now, notice the fact that

2 A ——fr u, dm
.13 A 1 73

2 A =—ﬁudm
723 A23

2 Ay, = f(rl uy + r u,) dm,
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it becomes obvious by looking at the previous set of equations that the
equations describing the rotational motion of the central body'separates.
The equations expressing the change in the angulér vélocity éomponents

Wy » w2 are coupled with the ;ransverse vibration of the flexible append-
age and form what is called the "wobbling" motion. Also the third. com-

ponent w, is coupled only to the components u, and u, of the deformation

3 1 2

and_constitutes the_"spinning" motion.

If ;he same separatién is being observed in the deformation
equations, we could conclude fhat the general.mopion is divided into two
différent.types of motion ; Oﬁg, where we'obseryeza céubling between
trénsverse vibration and the fi%st_two components of the angular veloc-
ity, and the othér where we find a coupling.between the in—plane vibra-
tion and the angular-veIOQity'chponenf along the spin axis. But we
just observed thaf for our particular case (F3#0) the kinetic energy can
be exprgSsed as_the sumﬁation of T1 and T2 where in Tl appear only the
'vafiables of the wobBling_motion and in T2 appear only the variables of
the in-plane motion. .

As a‘fesult the sepa;ation suggested before ié effgcti?ely
accomplished for our particular case if the potengial energy of deforma-
tion is such Fhat_Ud can be written as the summatién Of'Ui and U2 where
the aforementidhed separation prevails.

We will nbwlaséume that the in-piane—and out-of-plane stiffness
elements are uncouﬁled thch is the same as expressihg'that_the matrix

K of the energy of deformation is partitioned such that

Kjz Ko O
K= 1Ky Ky O
00 Ky
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Under this last assumption, the motion separates and the Hamiltonian
itself can be written under the form:

HC = Hl + H2

where chontains the variables appearing in thelwobbling motion and H2

those constituting the splnnlng motion.

2. 2 6., 2
H o= +h 11 + 1 - 2h
Hl_v2'2 A»[.{Flu:;dmjl Bl:-/i‘ u de AC .4}'1 u, dm

| 1 1.2,2(c) 1.2 2(ac
+3c Jlpugdm-568;h (BC ) 2 62 h (AC )

A A33
2 r | 2] 2
2h° | 1 ] h 2
H, = —/4§ = (u, I'. +u, T.) dm - (Ui + ul) dm
2 C2 A 11 2 2 2c2 A 1 2

" |
u K 1t 2uy u2 K12 2 Kyp) dm

We have provén that H = H1 + H2 where the variables appearinglinA

H. are uncoupled to those appearing in H, through the equatioﬁs of the

1 2

motion; We conclude that if both H, and H

1 2 are positive definite, we

are assured of asymptotic stability, and if either H1 or H2 is sign

variable or negative definite, the nominal motion is unstable.
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Experience éuggests that stébility criteria emanating from H2 are
of little practical importance; the variables'in H, describe deformation
in the plane of the appendage, which is norﬁal to the spin axis, and

‘generally those criteria express simply tha; the structure has to be
sufficiéntly stiff to avoid destruction by '"centrifugal forces." We
will thus consider‘the case where the stiffness elements orthogonal to
the spin axis are assﬁmgd-infini;ely large (ul =u, = Q) so that the
structure is élibwad to.vibrate only in the ug direction, The cited
assumptions allow stability criteria extracted from Hi,to establish
characteristics o£‘the entire system. To_fqrmulatg the restricted
Hamiltonian in a mqre-usefﬁl form, weihave to intréduceAsome new notioné.

The class of problems covered by all the previous assumptions
includes as particular céses all the problems and particular structures
we cohsi&er iﬁ'chapters'z and 3., We now consider that the defbrmationé
are expregséd in'tefms‘qf modes of the-s;ructures; this last consider-
ation will eﬁable us to be more specific about the stiffness K33 .

The deformation will be expressed in linear approximation as a

linear combination of modes ,
u, = ﬁ : B. ¢. .
. . vV 'V
3 v=1
We will become more explicit later, concerning the exact definition and
choice of modes. ‘Let us just remark that we introduce in the last defi-
nition N'new independent generalized coordinates — the Bv's. The expres-

sion ¢V is' related to the shape of the '"displacement' in the mode Vv and

is thus defined as being a function of position only, the real
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deformation for this mode Being then equal to the product of ¢v by the-
harmonic function of time Bv'
Introducing the last definition into the energy of deformation, we

obtain: } ' _
| .2 .
Ug = Lo + ugg Agq + fZ B, ¢, K33 2“:8“ ¢, dm .

For our particular case, A = 0, so the previous expression may be

33
written:

1T
UdzL0+26-

KB
where we define B as being the N X 1 vector

1

ne>

V-

e *®

N

and K as being'the symmetric N X N matrix defined by

¢ dm .
'[;v 33

Expanding the deformation u

lll>
IID

K
in terms of the previous N modes, the

3

equations of deformation Bv are readily obtained in their Lagrangian

form: _ _
_4_(@;_)_ a e :
dt aév ' BBv an A

where T and Ud are the kinetic andfpotential energies.

For this particular case (F3 =0, u, = 0, u, = 0) the kinetic energy is

1 2

reduced to‘the following combination:
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/¢¢TdméM

A |

o W, ] a

K, d”?‘[~ ¢ dﬁ} = m
o] ] 2=

and the N x 1 vectors Al and A2 by

A
P, ¢dm = A
_4‘1 |
A
J/} ¢ dm = A
A_2' 2

The kinetic energy then becomes:

1 2 1 2 1 T T T
T 2Awl+2Bw2+28 MB—wSSwlB Al—wSSwZB A2
T T 1 T . 2 1 2
+wé 2-w28 Al-MB mB+ZCwSS+Cm3wSS+§Cw3.

The deformation equations can, now, be written in a completely explicit
form:

. 1 b — ° ' ]
MB'Z‘/{"“‘B+KB=‘*’2A1_“5’1A2“" Wgg Ay - wy wgg Ay

If we add to this set of equations the rotational equations of the

=0, u, =0, u

1 = 0 we get

central rigid body under the assumptions F3

_ Y : 2 .
O-Aoul-oo2 wSS (B~ C)+wSS £P2 u3 dm-{—lf‘z u, dm

2

o
H

BO o+ W g (A=C) ~ wg fI‘l 5 @ ﬁ’ u dm

0= Cw
- cb,

or, introducing some of the previous definitions:

e ' T e
of'Awl-ZSS(BC)'Fw BA2+B AZ/
0=Bw+ww (A-C) - w2 g¥ A '-ETAI'

2 1 7ss SS B 1
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In order to study the stability of. the previous system, we now
need to define how the modes have to be computed; In order to do so,
we have to‘keep‘in mind that we are interested in obtaining a system
which 1s suitable for a mathematical analysis. Similarly, for the
common procedufe used in the "hybrid-coordinates'" appreoach of flexible
space craft and developed:to some extent by P.W. Likins,zz, we have to
use somelpractigal:simplifiéations in order to obtain the solution.

Even though, in‘the equatiéﬁs of tﬁe deformétion, the fbrcing
terms, linear in the w‘s, are in fact coupled to the flexible appendage
deformation va;iableg, Bv, thfoughlthe cenfral body motion, we define
our eigenmodes as being-obtaingd only by the consideration of the homo-
geneous part of the equat;onslin B's. Unfortunately, the modes are
still coupled, through the motion of the center of mass, motion result-
ing from the'appendagéAdeformation._ The center of mass motipn is imbed-
ded in the matrix m of those equations. In prder to decouple the equa-
tions, we must add the asSumptioﬁ that the eigenmodes arébdgfiﬁed when
the system's center'bf.mass is assumed fi#ed, but the structuré_deforméd
by the deformations induced by ;he steady-state spin.

This last'assumption'cﬁuld appear too restrictive BQt the éoupling
between the rotational equations and ﬁhe deformétion equations is
obtained through ;he vecto?s'Alkand AZ' For a symmétric structure, with
homogeneous physical characteristics, gnly antisymmeﬁric'modes introduce

bnonzero elements in the vectérs Al and A2. So, we remark that the cou-
pling betweeﬁ the two sets of equations is obtained by meéné of anti-
symmetric modes énd thosé;.precisely, do not affect the.ﬁotiqn of the

center of mass.
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- We could also, as several authors did, consider that the
rotational motion of the central body of a symmetric vehicle is only
affected by the anti-symmetric modes, and from there consider in the
deformation variables, only those corresponding to énti-symmetric modes.
With this apprqach, the term;;%— m é would not be present in our equd-
tion..

'Iﬁ what follows, we focus attention on symmetric vehicles, in
order to ;éke advantége'of the possibility of separating eigenmodes into
symmetric and_anti?symmetric classes.

_With th¢ modes completely specified, we know that if we let the
strgcture vibrafe in one of its modes,lthe frequépcy of the vibration
Would be given by‘wi, the'eigenfrgquency cqfresponding to the éforem;n—
tioned mode, and we will anticipate a periodic motion (no damping has
been introduced when deriving the eigenmodes and_eigeﬁfrequencies.) For
an orthonormal system qf modes, the matrix M becomes the unity matfix E
and we thus obtained as equations for the deformation variables

EB*+KB*=0
whgre the variables Bi have been substituted for Bv in order to differ-

entiate them from the equations obtained with the forcing terms.

This last equation may also be written with the substitution

w.z
gl
" 0
K=0%= '.mi
0 .
.. 2
uﬁ .

where the K matrix becomes a diagonal matrix the elements of which are

composed of the squares of the modal frequencies. Those frequencies are
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the loaded natural frequencies of the appendagé accounting for the fact
that the stiffness elements are modified by spin. That is, the tension
in the structure induced by spin alters the appendage stiffness charac-
teristics.

With all the previous assumptions and new definitions, we are in a
position where stability criteria could be extracted from Hl and where
the stabiiity charaéteristics of the entire system could be established.

Introducing the following definitions

[ 2 . 72
‘ T : T
Jrrvs| - ] E s

e

-

[ | 2" 72
- T T _
I', u, dm| = [B~ A g™ M,B
/A‘z 3 L 2 ¥ _2

n>

4

where the matrices II, and H2 are the N X N symmetric matrices satisfying

1

T =hh

' HZ 272

the general expression for the Hamiltonian Hl becomes in a matrix nota-

tion
. 2 2
h% h%
_1.2.2 ¢cA ,1.2.2 cB DY r 1.7
By =5h 0, 55 +30° 0 3¢ ~ac BA 0 BT
| 2 2
+%E’TQZ’“thlJ’h2“28
AC BC
17| 1 1 1
te P E- L s A B

We can now write the stability criteria as being given by the
positive definiteness of H1 or

>
Hl 0
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A

where it is to be understood that > 0 means positive for all values of

91, 62, B and B in the neighborhood of the or%gln 91 = 62 = Bv = Bv =0,

except equal to zero at the origin itself.
- 1f we, now, group the eigenmodes into two categories, the first
© one including symmetric modes and the second one regrouping the antisym-

metric modes, it is straightforward to see that in the development of Hl;

the symmetric modes contribute to Hl’ only through

._—.. _L . |
s [Bs*3 B [Es 24" | Bs.

1.7 2
EBSHQ

where the subscript‘"S“-hasvbeen introduced to distinguish'this part
f§omAthe‘rest of the'aevelép@ént of ﬁl' This 135& observation is in
fact a coﬁsequence:of the femark‘made earlier: only anfi—symmetric
modes have noﬁzero contfibgtion'to_the vectors Al and A2. It is evident

that the first term is always strictly greater than zero. In order to

prove thét the second term
1 2T :l .
2 Bs [Es - fz./llms]»ss
is always strictly greatef,phan zero, let us consider the following

expression

el

where Usg stands for the symmetric part of the deformétion»u3. Applying

the Scharwz inequality.

lP(v,w’)l2 < P(v,v) .P(w,w)

2 .
to the term J/; dm| , we obtain
_ " 3s
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[ J2 2 | | ) e
| u,., dm| < fu dm . fdm =m fu dm : :
_/A- 3s ), 38 A a )38 |

where m, stands for the mass of the flexible appendage only’.

7 ..
As a result, we have

. 2 m, °
2 1 [/' ] ( A)fZ
u dm - —— u dm| > {1 - 5+ u dm
,4‘38 | 2.M A3_S . 2.4 A3S

but : - ‘
mA . ; o - WA__mAfsz .

Y-S T T T

where.#has been written as the summation of'mA, the mass of the :flexi_
ble appendage, plhs mB".,'_ the mass ‘of the’ rigid core.

From the last obsei‘vation, we conclude

f2 -5 [f J
u dm - =— | Ju dm >0
ABS 2./1( A3S‘

Expressing the deformation QBS'.in ‘terms of the symmetric mode, we have

Uag = i Bvs q"\)S’

N
\)S=0
The last inequélity Eecomes:
T 1
- >
Bg {Es zullms] Bg >0
We conclude froﬁl the last relationship -that the matrix
1
By - 2.4 ™s

is positive definite and from these that

« T 1 [
B {Es 'ﬂms}'ss > 0

o
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So we just proved that the variables of deformation corresponding to
symmetric modes separate from the remaining terms and that their éon—
tribution to the Hamiltonian H1 is always strictly g?eater:than zero.
Th; stability crigerion'becomes‘finally‘

| 2 2
'H=%h262(C—A)+_l_h262<C—B)_ 2 gty 41T

11 2 \'aC 2 1 \BC AC BC 2
._ | 2 2
+—;‘BT"JQZ+—2'H1+h—2'H2 B
AC BC
1.7 1 1 :
*o B E-gT, gl E>0

wheré only the contributions of anti-symmetric modes. have to be taken
into account. Wé observe that in the last inequality the matrix m is
no more present,

' in the last development of the Hamiltonian, the last term is
uncoupled from the remaiping terms. 'We-conqlude'&irectly from here a
requirement for the asympfotié stabilify of our system, i.e., the matrix
1. '

3 Hl

E _% I, -
has to be positiye definite.. The author beliéves that due to physical
properties of realizable Sysﬁems, the previous matrix is always positive
ldefinite. He waé however unable to prove thiS'lasf statement_for a
general casé, but for a wide class of flexible spacecrafts, it is veri-
fied.

For the class of flexible spacecraft where the rigid core presents
an inertia symmetric with.respect to the spin axis, or where the princi-
pal axis of the rigid core coincide wigh those.of the flexible append-

ages, the principal axis of the entire system are the same as the prin-

cipal axis of the flexible appendage alone. if, together with this last
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property, the flexible appendage presents a symmetry not only with
respect to the center of mass but also with respect to the principal
axis of inertia, then the previous statement is indeed true.

(2, DIRECTED OUT OF
THE PAPER)

. Figure 14. Particular Case.

Let us consider the following example where all the previous
requirements are mé;. The figure reﬁresents the body when spinning at
steady state., From previous consideration, we know'that only anti-
symmetric modes are of iﬁtergst; We, now, consider in the flexible part

two elements of mass dm of coordinates (T F2) and (—Fl, Fz) when at

l’

steady-state deformation. Because of the assumed symmetry of the flex-
ible appendage, such a pair always exists.

We now decompose the anti-symmetric part of the deformation — our

main interest — into two parts:

= u. 2 (1 r,)

(r,, T A

ugy (g5 T)) 1°

and u 2 are defined in the following way

where the_deformatlons u3A 3A
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(-T T)) = 2u

uga (Fys Ty +ugy (T4, T, s Ty Ty
, . Pl Té v
cand ug, (T, Ty) = ug, i(rl’ [ =y, = (T Ty)
We, also, have then
: ry r,
ugy (=Tys Tp) = ugy = (-Ty, Tp) +ugy = (=T, T))
. rl’ S  » Fl
with Ugy (—Tl, Fz) = ug, (Fl, F2)
r, - o,
and u3A (—Ti, Fz) = - u3A (+Plf Fz)

We then have for the tWo elements of mass dm, of coordinate (Fi’ Fz) and

(-r., )

2

Ty ugy (Tga Tp) dm =Ty ugy 21y, Ty) dnm =

T I', u r

. i ' ~
- Pl ?3A (-T 1° r )) = 2F1 Uapy (r 1° I ) dm

and similarly

Ty

r ) dm = 2F Usn

‘T, u A (Fl Fz) dm + P2 u

2 Y3 (T3, Tp) dm

3A T 1°

" From there, we may conclude

FZ
Fl Ugs dm Pl Ugs dm

I
/rz ugy dn = J Ty uy " am

Let us now consider the expression:
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2 2 2 2
ﬁ'dm ﬁ'dm fu dm—ﬁ‘dmﬁ'u dm
Al A2 >:A3A [Al A2 3A

L

ﬁ dm fI‘l 3A , ' ‘(476)

We have , : : o '
' Al T2 rn2 T, T -
2 RS} e o O
ﬁ3A dm = f<<“3A > * (‘13A > tZuy o Uy >dm
A A | o -

T2 T,\2
1\ 2
= ffu dm+f<u >dm
flu) @ fba?)

where we observed Juqy  Ugp dm = .0
Introducing the equality previously found, the expression (4.6) is also

equal to

. -

1"12..', P2.2
' dm ﬁ dm f(u ) dm + /(J ) dm
f 2 T A /) ARL
. T 2 2
2. ’ 1 17, 2
- ﬁ»dm fI‘ u dm| = ﬁ dm ﬁ ‘
. A1- A2 3A A2 1 3A

Applying the Scharwz inequality, we have simultaneously

I‘ u dm
A 3A

f 1“2 2
I'l Ugy dm |

Introducing those two inequalities into the development of the expres-

o 1T 7

s T\2
-/-I'g dm f(UBA l) dm
A T A\

L - L .
3 B

ﬁﬁi idm [(uBA_rz)z dm

- L -4

[\

v

L

sion (4.6), we conclude that for the particular case into investigation,
we have for every anti-symmetric deformation Ugps the following inequal-

ity
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2 2 2 2 i }
' dm - I'. dm u dm | - “/} dm “/} u dm -
A 1 A 2 A 3A A 1 A 2 3A

«>. 2 ' |2
- ;4}2 dm | - J,}l LETN dm{ = 0 .

With this last inequality, we are now able to conclude that for every

anti~symmetric deformation Ugps the following inequality is true

ro.. 72
AB.{‘;:;A l;/i"z 3A —Al:éi"l Usp dm >OM o 4.7)

where A, and B are the inertia of the total system. By definition, we

have

>
N

A1'+ ~/;§ dm
. A .
‘Bl + ./}i dm
_ AT

Wwhere Al_and Bl are the inertia of the rigid core.

=
Il

Expanding the left.hand side of the expression (4.7), we have
1 2 1. [2 (2 1. fi2 2
B-+ Jr dn|[A” + JT) dm u3Adm-B+/rldm ﬁ2u3Adm
A ' A A ’ A A
12
e f
- 1A+ JT, dm I'. u,, dm
A 2 A 1 3A
The use of the Schérwz inequality and the consideration of the previous
inequality enables us to conclude the inequality (4.7), after the obser-

vation that for.ény physical realisable system we have

1 ~/:§A dm > 0
A
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So we just proved that for the class of problems where the priﬁcipal
axis of the flexible appendages and of the entire system coincide, we

have
2 : 2

AB J/L dm - B J(} u,, dm{ - A d/} u dn]|] >0
AES AT 1 "3

Expressing u,, in terms of the anti-symmetric modes, we have

3A

or
aB BT EB - BBTH28 - ABTH16 >0
Dividing through by AB, we obtain finally:

T 1 1.
8_ [E_KHZ_EHIJB>O

We thus conclude that the matrix

is positive definite.

The requirements of positive definiteness of H, are now reduced to the

I

consideration of

. : 2 2
| - w2, . h’8
o 1.2 2 fc-aYy, 1.2 2fcB) PP 1 1T
=209 (CA->_+ 7 b8y (BC ) a B Mtgc B4,
2 2

2 7 7 LB >0

_+'l-BT[S22+LI[ +
b aAct BC

In matrix notation, we have
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T 2
(Gl 62 )/ h”(C-B)

The N deformation variables can now be truncated to a single mode,

'2BC

identifiéd‘by index 1; thus the tptal number of coordinates is reduced

to three. Accordingly, the N X1 vectors Ai‘and 1\.2 reduce to scalars,

'Similérly the N X N matrices Hl'and H2 redﬁce to scalars.’

Implementing the above truncation allows the stébility conditian'tOvbe

written as

©®, 6, B))

where

h” (C-B) 0
2  BC
o h (C-A)
2 AC
2 2
h_ Y
2BC " 2 2AC "1
A= ;/} ¢, dm -
1 A; 1
A,= JT, ¢, dm
2 J2"N
2.2
Q7= Wy,
o T 12
mo=Ap=| [Ty ¢, dn
| JA .
2 [ 12
I, = A, = J{}Z ¢; dm
LYA .
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The sign character of the above quadratic function is determined by
testing ;he sign character of its corresponding syﬁmetrix matrix.
Sylvester's Theorem assures that the necessary and sufficient con-
ditions for the previous matrix to be positive definite is that all
principal diagonal minors be'simultaneously positive., 1If this test

_fails, Hi is not stitive definite and is either negative‘semidefinite
(6r sign Variablé); iﬁplying instability, or.positive semidefinité.

If we exclﬁde this latter limiting case (as for an axisymmetric

vehicle, with C = B or C = A), necessary and sufficient conditions for

asymptotic stability of the restricted pianar appendage model are given

by:
2
B’ o(eB) Lo
2 BC '
2
“h_ (€A
2 AC
: T2 ‘ - 2
2 , 2 2 4 AT
%LC‘"—L Lﬁl—i‘f_h'z"‘*-h—zf\ -4 S5
: 2AC 2BC AC
_h_z..j_\_z.. .lll: £2_ __l(C—A >0
2 BC )

4 BC AC

The combination of the first two conditions, as predicted by energy
sink methods, requires that the spin axis be the axis of maximum

moment of inertia, i.e.
C>A and C > B .

The requirement of the third condition emerges and can be written
h2 A2 h2A2 |
1 2 :
> 72 T2 ‘
c™(C-4) c~(c-B)

w2
1
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By replacing h by its zeroth order approximation C Q » where ﬁ is' the
nominal spin frequency,-the above condition simplifies to the following

w, 2 A2 A2 .
1), o, 22
C-B -

Thus a stability criterion arises which explicitly bounds thé first
modal frequency of the structure.

To ‘conclude this derivation and'fo demonstrate the igterrelation—
ship bet&éen Chapter 4 and the precéding chapters, it might be useful
to work ouf a simple example.‘ An elementaxy but meaningful example is

given by the beam pair configuration, as iﬁ.Figure'15.

z

Figure 15. Simple Example.

For this -particular structure, we have I'3 = I'z = 0. The
stability criteria for asymptotic stability of spin are given by C > A

and C > B and also

W, \2 A2 22
(_; s S I
Q- C-A Cc-B



The consideration of Fz = 0 reduces the last criterion to

Leﬁ us concentrate on the first mode, as our single mode.  From our
previous derivation, we conclucie that only the anti-symmetric modes
are relevant to our_study. From the derivation aécomplished in
Chapter 2, we have tﬁe foliowing results, when consideriﬁg the first

mode.
2
(Q—) =1+ 2.12 /& ,

also

9y = hy() + e hi(x) +...

For thg first mode, ho(x) represents a linear function kox; SO0 we
obtain for Al the following expressions’
L, .

Al = ‘{I‘lqbl dm = 2 ./0.F1¢1 dm
where the anti-symmetry of the deformation has been used. For a uni-
form beam, we have dm = p dx, so the previous expression becomes

.Al = 2u fx ho(x)dx + 2u Ve fx hl(x)dx +...
0. 0

For the first mode, the orthogonality relationship between hO and hl,

cancels the second term and we are left with

L

' -2 _ 2 3
Al—ZLl-é'kOx dx—3u kOL.
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The modes have been defined in such a way that

or
2 ]kzxzu-dx—l
0
0
SO
L2 3.1
k == .
072 3

The final éxPression for Al is then

2 2 3 2 .2
Ay =30l =3 ml

where my = u:L stands for the mass of one beam. The final expression

for the last criterion is f@ps

i ' mRLZ
2
1+ 2.12 /e >3 ox

If we observe that the inertia of a uniformly distributed beam about

the core is given by %-mRLZ, the last criterion is also

(Inertia of the two beams)
C-A

1+ 2.12 /& >

This last result has to be compared with the stability criteria
developed_by.L. Meirovitch and R.A. Calico, Reference (23), where they
.obtained stébility critéria for a spacecréft characterized by a rigid
core having attached to it flexible booms. Their results, whenbapplied _

to radial rods only, become -

2 _
(Sj; 5 (Inertia of the .rods)
Q C-A :

which shows a perfect analogy with the result of Chapter 4.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

( . .
In the work developed, two different problems have been

approached: A modal analysis, covered in Chapters 2 and 3, and an
attitude stability sfudy, presentedvin Chaptef 4. Each part repreéents
a different aspeét to investigate for the preliminary désign of flex-
ibie appendages to be attached to a spinning spacecraft; they comple-
ment each other under the generalIQuestion of stability.

In the first and more extended part, general inferences con—
cerning the ;agnitqde'and character of the_influencé of spin on the
natural frequencies'aﬁd mode shabes of édmé_fotating structures aré
done. One of the objectiveé of this part was also to address ourselves
to the level of sophistication that a derivatién usingva éontihuous
model for an.elastic appendagg attached to a rigid base which is
constrained to rotate with a constant angular speed {2 about a body
axié; fixed ih inertial space!'cpuld bring us.. We decided to try to
get away fFoﬁ more stéﬁdgrd procedures — based Qn-energy consideration
and transforming the eigenvalueAproblem to a minimization one — by
approéching them‘by a me;hod unfamiliar éo those partiéuiar éppli—
cations.’ TheAméthod of matched asympfotic expansions has been prb?ed
to present a very.powerful toél for the particular préblems we looked
at. Even though, we didn't attempt to gonsider all the meaningfui
sfrugtures where a:singular perturbation method could be apbropriate,
we believe that Qe‘COver'severai ﬁroblems where the uséfulness‘of the

method has been found. In contrast with the classical Rayleigh-Ritz
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or Galerkin approaches,. the accuracy of the perturbation method is
determined by the number of terms taken in the various expansions and
may be improved step by step by the investigator without the necessity
of repeating the analysis with an augmented number of -terms in the

" expansion of the solution. |

The literal stability criteria developed'iﬁ theAlasf part of this
present work represent anticiﬁated résulfs in the-searéﬁ for cldséd
fofm conditiqpé'for éttitude stability of Spipning'flexible spacecraft.
They are, in féct, a natural extension of those derived in a similar |
" study where anbﬁher way of modeling the flexible part of che space- .
craft wasvadopted.  They reﬁresent (exéept for a few recognizable
sihgular cases) necessary. and sufficient conditions for stability for
any spacecraft characterized-by'the plan#; appepdage model, such as
- a épacecraft contéining'solar panels and/or radial booms. More pre-
cisely,.they-are necessary and sufficiént for thét portion of the'
éystem représentétive of the wobbling motion. In terms §f the
, coﬁpositg'motion, these_condi&ions can only be classified askneceséary.
Also this anaiysis does not reveal fhe system behavior at any time,
but only the quality of the motion'iﬁ tﬁg neighborhood of‘the dyngmic
equilibfiumvgonfiguration-consiéting of ;ﬁe body spinniﬁg at a high
angular velocity abéut the spin axis.

Although tHe.reéults of-this study‘c0uld be uséd in‘preliminary
design of flexible appendiages to be attached to spinniﬁg séacecraft,
we have to be very cautious.in éxtendiné thg'previous work to more
general ﬁypes of‘configuration. We mentioned earlier that a modal

analysis of an idealized elastic structure on a rotating base requires
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the derivation éf the linearized equations of small vibrations of ther
mathematical model from its steady state of deformation, induced'by
. spin, and the transformation of these equations into a system of
uncoupléd equations of motion repfesenting éach normal modes. For a
continuum mb&el, the number of normal modes could be infinite. For a
completely géneral structure, this step represents almajor obstacle.
Evén-in the Qery elementary étructure consisting of a spinning central
body with a cantilevered beam oriented in the direction of the spin
axis, the influence of tﬁe basis rotation is manifested in the form
of centripetal acceleration and Cbriolistgcceleration. The latter
term couples the equations, and proyides an obstacle to modal analysis
_except for the particular case where the linear dgnsity is constant
throughout'the'beam and both transverse inertias of the cross section
of the beam are the same constant, And; even in this last'case, the»
modes are given by a complex fugction. |

It is to circumven; the last obstgcles, that_several authors
consider in their modal analysis an attractive alternative, employing
for the flexible appendage the_coordinates which are normélAmode
coordinates when the basis is inertially fixed._ Although this last
shortcut may be(acceptéble when the motion is a.small pertutBation from
a'rigid body-displécement at a relatively‘slow spin,'it is more diffi-
cult td justify for a éeneral case. .They also 1odk; at the outset,
at the spinning.stiffness matrix K as composed essentially of the
Summétion Qf the nonspinning stiffness ﬁ and a matrix representihg the
contribution of spin — sometimes referred to as the geométric stiff-

ness. But here again, they face another source of problems. In-
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general, the eigenmodes of the nonrotating structure are not orthogonal
for theﬂrotating structure; as a result, the spinning stiffness matrix
is no longer diagonal for this last choice of‘eigenmodeé. As a result,
‘the nonspihnihg stiffness K is well defined and made of the unloaded
natural eigenfrequencies along the diagonal,:but there is no real |
physical basis to determine the correction to add to the last ﬁ matrix
in order to obtain.the complete stiffness matrix and thié last effect,
configuratiﬁn dependent, may or may not seriously mddify the stiffness
property of the structure.

In view of those several difficulties; ﬁe might conclude that the
developmept pf elastic continuum models could yield very useful results
when applied to a small clasé of épecial cases, but this approach.
lacks the general utility and tractability of distributed-mass fiﬁite
element models, éiﬁce”in the latter case, the governing equationsrare
always lihear, constant-coeffigienf ordinary differential equatiqps.
Finaiiy, thé generalization of tﬁe é;evious results can bﬁly be con-
sidered for that small ciass of problems of elastic models where the
steady staﬁe'deformation can be sblved first, and where the vibration
equations are obtained by a linearization procedure; and even in'this

case implementation of the general‘theory may be very difficult.
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APPENDIX I

ORTHOGONALITY OF THE MODES

Our objective is to prove that the values previously found for

Aé and Ai,'also satisfy:
k-
__/_1¢0L¢8 dx = 0 lfor a‘ #8 .
"~k R -
The asymptotic expansions for the modes are given by:
¢, (x,€) = hy () + /e hy (x) +...
¢B(x,€) = hOB(x) +,/b. hlﬁ(g) f...

The problem becomes equivalent to:

k-l
1(h oal1g * - Boghy )dx
-k -
where hOa and hla satisfy
2 1
! =
[(1-x )hou] + an hy, =0
[a-xdn! 1" + 22 h =22 1
1o 0o la lo 0o *

and simiiar expressions for hOB and h 18°
The first equality is easy to show. Multiplying the differential

equatlon defining h 08 and integrating over the whole span, we

Oa

have:

AI-1



k

k—l
[(l—xz)h' ]' dx + A h h =0
1 Mool Pog Oo. OB )
-k k
After an integration by parts, the use of the transcendental equation

42 2 X
defining AOa and-AOB, gives us:

-1 -1

k k
(1-xH)h! h'.dx = A2 | Pogh
-1 0 OB 7 0ad O OB
-k —k '
: : . =1
§y symmetry the previous eqqation is also equal to ASB .7’—1 Oa OB X,

from where the first equality results.

.The equali£y

ahls t+h OB 1o

x\w

)dx =0

- is more- difficult to prove. The differential equation defining hla

is first multiplied by h,, and integréted over the whole span. The

08
orthogonality of h, and hog 1is then used and we have:
b | K
[(l—xz)h' ]' h,., dx'+ Xz h, h., dx = 0.
la”° 0B - 0o, 1o 08
-1 . -1 .
-k ~k
Integrating the first term by parts and using the boundary comnditions
hOB’ we.have

L | K}

.-‘/1(1 ~x“)hj hlodx + A -./-1 hy hog -dx = 0.

-k N
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Integrating by parts once more, and after the use of the differential

equation defining hOB’ we have:

| k—l . k—l

L2 42
os 1] _* Qoo™ Pog’ _/r 1h1uhosdx =

-k -k

1
(=]

-(1-x )h

A similar expression can be obtained starting from the differential"

equation defining hlB or

k’l k
(1-x%)n? + 02 -2%) | n.on ax=o0
Oa 18 -1 Oa 0B -1 18 Oq *
~k -k :
Adding ué those two relations, we have. L
. k-l : k—l
(1—x )h0a lB -1 (l -X )h08 1o 1
-k -k =
. Wt
+ (AZ - A2 ) (hygho 0y By )dx =0.
Oa 0B 18 0o la
_k'l '

The two first terms can be written:

k5 hy T 1)-— by (<K Dhy g (K Y-ny NS Yn, (k‘l)

lB

- héB(—k )h ( k )]s

and by direct substitution, this parenthesis comes' out to be
identically zero. We then conclude

k—l

J/tl(hlshOQ + by hog) dx = O
%1
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APPENDIX II

SOLUTION TO THE REDUCED EQUATION OF THE TAUT MEMBRANE

In the consideratioh of the second linearly independent solution

of the previous equation, two cases have to be considered.

CASE A: Both roots of the indicial equation are the same and
equal to zero or

1-vy=20 or y=1,

This case corresponds physically to m=0 or to radially symmetric vibra-
tions of our clamped disk. To obtain the second linearly independent

solution, we shall assume that
1 =x%+ Z b xn.’-C
c n
n=1 :

where ¢ is retained aé a parameter. The last expression does not
satisfy the differential equation defining HO, but if we write the

differential equation defining H, or

ca%m, e, g A
x(1-x) ——‘i'-i' (1-2%) ax + 7 2 HO =0
dx ) kl
under the form
<z, ;1 =0
0 .
where LZII fépresents the linear differential operator
o - 2
£ =x(1-x Y=+ (12 S+ -2,
H 2 dx 4 .2
0 dx k
1
we have
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2

' A
Qﬁl[ﬂc] = czxc_l— c2x2 +bl(c+l)cxc + —g-xc —cx" + bl(c+1)xC

2
0 kl

+ E [bn(MQ) (ntc-1) -bn_l(n+c—1) (n+c-2)+bn(n+c)

n=2
2 b (o+ 1)+->—\?)—b nte-1
n-1'\0¢" 2 Ppn-1 | % .
bk

We are now .able to make all but the first term of the right hand mem-

ber of the above equation vanish without selecting c. To do this, we

must take
"+ b, (ctl)c + = - c+ b, (ctl) = 0
1 2 1
4kl
and
2
2 AO o
bn(n+c) - bn_l(n+c—l)(p+c) + bn—l —5 = 0.
. 4k1

So far, we have found an expression
’ ) . .
"H =x" + :E: b xn+c
c n
- n=]

that reduces the previous expression to
‘ o
L ] =0,
! c
0
no matter what value c takes on. But this last expression not only
shows that the case c=0 is solution of the equation defining HO’ but

also (dHc/dc) evaluated at c=0. The solution, found before, corres-

ponds to the case where c=0 so our interest lies mainly in finding

dH
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or

(o]

oo
~dH - - ab
c 2 - n+c n ntc
—_— = + —
de x .1<og X §=:1 ‘bnx log x + n§=1: 3o X K

We finally obtain the second linearly independent solution

o0 o
' db
n n
H20=(1+Z bn x‘)logx+z-aT-
v n=1 n=1

X
c=0 c=0
or ® BB'
H20:= F(a,B,Y:x) log x +-:Z: 5EEE X .
: : n=1 : c=0
The complete solution is-then given by:
- —~ db
H. = a F(GQB’Y’X) + b F(a,B,Y;x)log x+b L =2 xn *
0 0 .0 , 0 n=1.8c =0

Due to the singularity at the origin, we‘have_to take bo = 0, and the
solution reduces tb;

Hy = 8y F(a,8,7;%) ..

Case B: In this case, the roots of.the indicial equation are
different and from there, m is different from zero. In order to
determine the other'solution, two different éases are to be considered
depending on the values of a énd-B.

a) o'or B is an integer between l’and'm.' Let ué'try a particu-

lar solution starting with the index -m, or

By substituting the last expression into the differential equation

defining.H » we.obtain as a coefficient for ao; the indicial equation

0
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which is satisfiéd because the particular solution starts with the
index -m. The other part gives us the recurrence relationship between

the a&s or more explicitly

!n—az !n—ﬁ}
a

n é (n-m)n L

By looking at this particular solution, and knowing that m is different
from zero, but taking on positive integer value, the only way such a
solution could exist is if the numerator of a is also equal to zero,

but o .
_ (m-0) m-B) , (w-a-1) (m-B-1)

- . (n~m)m (m-1-m) (m-1) 20 :

The last particular solution is then possible only if o or B satisfy

one of the following equality:

o is an integer between 1 and m

B is an integer between 1 and m.

If o or B is an integer between 1 and m, one of the ais, in the pre-

vious recurrence relationship becomes zero and the particular solution
is represented by a truncated serie. This particular solution com-

bined with the result found earlier'rep:esents the general solution of

|

the equation. Unfortunately, this last solution H02 has to be dis-

regarded for.its singularity at the origin.

b) If o and B are not integers lying between 1 and m, then the
'second linearly independent. solution for HO can be taken under the
“form

Oc- °

Hog = Hy

1 log.x + H
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Introducing this last expression into the differential equation defin-

ingiHo, we are left with

2
da%n dH dn
x(1-x) =%+ [Y= (+D)x] —2% - aB Hy + 2(1-x) —2t
dx
. . H
o 1-x _ 01 _
o) Hop + [y=(e8Dx] == = 0.

We now cbnsider.for H. a solution of the form

Oc

oo

Hy = :E: dhxn+¢ &hexe d, #0 .
- n=0 g

Introducing for HOl,-the éolution.we found before,”wg have for the

‘equation défining do;»t&o choices:
1) c(c—l)@0 + yec d0 - a, +y ao =0 aﬁd ~c=0

compensate for the term in a

where the terms in d o0 °F

0

2) c(c—l)d0 +vec d0 =0 and ¢ < 1

where the terms in d0 balance themselves. The first case is impossible
as can be seen directiy and we are thus left with

c-14+y=0

or

Knowing that ¢ = ;m, we could now'cqmpute the recurrence relationship
between the dis. But/ once more, the solution HO2 is to be disregarded
for its singularity at the origin, and from there, the solution found

before in Chapter 3, iepéesents the general solution of our equation.
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APPENDIX III

BEHAVIOR NEAR THE ORIGIN

In -order to shorten the text, the behavio% of thé splution near
r=0 has been introduced as an Appendix. It is indeed deduced that
the SOlutiOﬁ previously found is valid throughout ﬁhe neighborhood of
the origin aqd_doésn't present any singularity. _As.explaiﬁed earlier,
the feason to consider the neighborhood of the origin is justified for

the singularity of the operator Vi at the o%igin.

' Boundary Layer Expansion Valid Near r=0

Close to r=0, lef us define a suitable boundary léyer'variable

or

* r

o(g) 3

where o(e) >0 when é >0 .
The corresponding asymptoticvexpansion'valid near r=0 1is taken as
| ( * + | *y+
¢a,m(r,€):__— Hg(e) go(r ) + 1y (e) gy (r )+...

In the new variables, the operator Vi becomes :

2ot 1a wf_d* 1 4 P _ 1
- = * ) * *
n dr2 rdr r2 o dr 2 02r dr Gzr 2 02 n
*2
where Vm " stands for
d2 +i'-d__£
* % * * ¢
dr 2. r dr r 2

The complete equation for the deformation becomes, with the use of the

previous definition:
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-€ {—% v V:Z (uo(e)go(r*) + ul(s)gl(r*)+,,,>]'

1 d | = 22%2 d . * *
+ ;E'f;—j; r (1-kjo°r ) ——;.(uo(e)go(r ) +u,(e)g, (r )+---)
r dr __dr .
2 ety @ + RIS
—‘-czr*z [1-k507r “1lug(e) gy (x Wy (e)g; (r )+...

+ (g + /E'Ai+...)(u0(e)go(r*) + ul(é)g'l(r*)+...) =0

The thickness of the boundary layer is obtained by considering:

. % 'r

—%f:‘-—% or O=+Ve and T =—
s .

The dominant boundary layer equation is then obtained by considering.

the terms of order >u0(€)/8 in the previous development or

' 2 *

' ' d7g () 2

. %D %) * 1 d * ol n

Vo Vo &)t Twgr) g *2
r dr dr r

'go(r*) =0

This expression can be written shortly: .

%) %
2 v 2
m m .

ok *2 %
-V go(r ) + Vm go(r ) = Q .
v *2
" Writing this last expression in terms of the operator Vm , we have

k2, %2 LN
»Vm (Vm - l)go(r )y =20

or

XY %2 x
(Vm - 1) Vm go(r ).— 0

. * *
We observe a permutativity between the.two operators (sz— 1) and sz.
As a result, we know from the theory of linear differential equation,

that the obtention of the four linearly independent solutions of the
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previous equation can be done by solving the two systems

%9 *
J@,7F - D gt =0

f
o .

2 gy
The general solution of the complete equation is then obtained by
taking a linear combination of the four solutions generated. The
determination of the constants appearing in the general solution are
then determined through the matching process near the origin. Let us
look first at the solutions of |
(V.2 - Dgg) = 0 or

2 : ' 2 ‘
d 1d % _ _m * x
r . r r A

Thisdequation is a Bessel equation which solution is given in terms of
the modified Bessel functions I and Kn' But both of these solutions
have to be canceled one forvits exponentlal growth and the other for
1ntroducing an unbounded displacement at the origin. The other inde-

pendent solutions are determlned in solving

*2

*
m go(r ). =0

This equation can'easily be integrated by the use of the substitution

* TRk : '
go(r ) =r k leading to the characteristic equation, with two roots or
The solution k =-m introduces a singularity'atvthe origin and will
therefore be neglected and we.are left with

_ * *
go(r ) = Cor i
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This expression represénts precisely what the solution found in the
central area becqmes in the neighborhood of the origin and the
determination Qflfhe constant C0 is obtained directly.
 Due to the fact that there is no boundary condition at the

-origin and that both solutiops found for (Vﬁ —‘l)go(r*) ='0khave to be
canceled for being improper for matching, we deduce that the sdlﬁtion
found earlier is valid in the neighborhood of the‘origin, énd that,
for this problem, there is no neea for a boundary layer at the center
of thé membrane. N |

For the pa;tiéglar case thre'm=0, the.previous sbiution'ﬁas to

i K % .
be revised. The equation sz go(r ) = 0 becomes

2 A
d’gg - 1 dg, _ o
*2 % "% <
dr r dr.
or -
. C.fnr +C
.‘goA—.Onr.l l.

Again, the sélutionvin &n r*:has to be réjedtéd for its singularipy at
the origin, and we are left with

go(r*) = Ci,
which represents the displaéement.of tﬁe membrane aﬁ the origin. The

determination of C, is again obtained by matching.with the solution

1
found previously. Once more, there is no need for a boundary layer in
the neighborhood of the origin., We conclude then, by saying that the

solution found earlier is valid in'all the central area of our problem.
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APPENDIX IV

_DETERMINATION OF THE CONSTANT Cl'

In the matching process valid near r=1, it seems natural tb con-

sider as an order of magnitude for vl(e) the value

Vlf?) é gl/3

Going back to the expansion done for the differential equation defining

¢, an indicated choice for Ki(e) is given by Kl(E) = 81/3; The

o,m
differential equation defining hl(r) is then given by the following

expression
a%n . - '
2 1 1 2 1 1 2,22 2, 2., _ ,2
(1-r7) 5+ - (1-3r%) e rz [m -(m"k" + Ao)r ]hlv_ tho.

dr
We can see from a straightforward observation that the homogeneous part
of the previous equation is the same as the differential equation

~defining ho, and 'that h, appears as a fprcing terms. As a result, the -

0
éigenfrequency Xi of the previous equation, can be obtained once more -
by considering only finite'displacementlat-the rim of the disk. Let us

express:

-The index of the laétleqﬁation ié obviously the same as tﬁé one found
for hb. We then have if we feplace hO’ by its develOpmént:
L . ,
h0 . nEO an#'n-hn ?
_whefé alila 's are known.

i
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oo

}E: [(n+m)(n+m—-l)bn - (n+m—2)(n+m—3)bn_2+ (n+m)bn

n=2
' 2 2 2 2 n+m-2
- 3(n+m-2)bn_2—m bn + (k'm” + Ao)bn_z]r
- .
2 n+m-2
= - )\l Z a _of
_ n=2
C (me2) (bm) - (kK 2m + xg) | Ai
bn = 2 bn—2 - 2 4h-2

n + 2mn . n“+2mn

The recurrence'relationship contains two terms, one has the same ratio
as the.one:found_for the ai's and the second term is coming from the

forcing terms. But if AS is such that the serie defined for h0 is

truncated starting at'a_,, we have that an';Z so.. = 0, But in the
expansion of hl, the term
N
byt =73 Ao
(n'"+2n'm)

represents a honzero cont?ibution.

As a result, we conélude that the rest of the‘expansion for h1
represents a diverging expression for r=1, as it was proven for ho.
wé; then have'to conclude that Kl(e) is not of an order of magnitude of
el/B,Aand by.the orthogonality relationship between the terms of the

asymptotic expansion valid for the mode, that vl(e) is not el/3. - This

result justifies the choice
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APPENDIX V

EQUATIONS FOR THE ROTATIONAL MOTION

In this appendix; we Will rederive some basic equations whose
consideration are necessary for_the'nentioned perticular case. First
of all, let us derive the equetions sf motion for tne attitude.angles
of the central body; for a eompletely genefal'problem. |

In the derivation dOne in Chapter 4, we ebtained Fhe following
expression for thevangular momentnn vector with respect to the center
of mass. , _ ‘
h=:_[_ e _ul+./ﬂ_(;‘__x£+/9_x _édm .

' ‘ A
Theeequation defining the angular velocity vector for a freely spinning
flex1b1e spacecraft is then obtained by expressing the nullity of the

N
applied torque acting about the center of mass or

le-

: - o - ’ r o
h=0=1 +_QXLN'_@.+LN't_ﬂ_+£x/2x£.’.'dm+/9.x§_dm

where we limited our derivation to the linearized equation of the

motion. Written in matrix form, the previous equation becomes
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Expanding similarly the matrix of inertia of the complete system into

IN=II§+2A+U

where 2A represents the first order terms of the matrix cof inertia and
similarly, -U represents the second order terms.

The linearized equation of the rotational motion are given by

[+]
N . ~_N - - ~ .,
O—Iow+w10w+2wssAwss+2AwSS+wsslI‘udm
+[1"d dm (V.1)
A

where wSS has been introduced to express the angular velocity vector
when the system is spinning at equilibrium at a rate compatible with

the angular momentum.
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