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ABSTRACT

The study defined under Contract NAS8-28358 consisted of four parallel

efforts: (1) Modal analyses of elastic continua for Liapunov stability analysis

of flexible spacecraft; (2) Development of general-purpose simulation equations

for arbitrary spacecraft; (3) Evaluation of alternative mathematical models

for elastic components of spacecraft; and (4) Examination of the influence of

vehicle flexibility on spacecraft attitude control system performance.

This report includes a complete record of achievements under tasks (1)

and (3) above, in the form of technical appendices, and a summary description

of progress to date under tasks two and four.

Task (1) has provided the basis for the Ph.D. dissertation of Andre Colin

(see Appendix 3, in Volume 2 of this report). This task in itself required two

phases of investigation: modal analysis and stability analysis. The modal

analysis is accomplished for a range of continuum models (strings, beams

and thin plates with various boundary conditions on spinning spacecraft) by

means of singular perturbation methods, and the stability analysis is accom-

plished by using Liapunov theorems with the momentum-constrained Hamiltonian

as the testing function.

Task (2) is the basis for the Ph.D. dissertation of Arthur S. Hopkins,

which is still in progress.

Task (3) is the subject of two technical papers by the Principal Investiga-

tor, included here as Appendices 1 and 2. In these papers the range of appli-

cability of various discrete and continuous models of nonrigid spacecraft is

examined. It is concluded that there is a domain of engineering applicability

for each of the models considered, but that finite elements models are

generally the most valuable for flexible spacecraft simulations.
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Task (4) is currently receiving primary attention by the Principal

Investigator and a postdoctoral scholar. Dr. Yoshiaki Ohkami. Results

will be described in forthcoming documents.
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NOMENCLATURE

w transverse displacement

P( ) external axial load

P harmonic function of the vibration

(•) derivative with respect to time

(') spatial derivative with respect to dimensionless variables

y,s,x,r dimensionless variables

h ( ) terms of the expansion of the modes away from the boundaries

g ( ) terms of the boundary layer expansions

f ( ) terms of the boundary layer expansions

*
y,y boundary layer coordinates

*
x,x boundary layer coordinates

*
r,r boundary layer coordinates

y ,x ,r fixed quantity introduced in the matching process

u radial displacement

h thickness of the disk

m coefficient of the argument in the circular dependence of
the modes

j.
, '£„ Legendre functions of the first and second kind, respectively.

Ai, Bi Airy integrals

T built-in tension

T-. minimum built-in tension

k defined by T = k2TQ

TST transcendentally small terms

El flexural stiffness of the beam
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NOMENCLATURE (Cont'd)

E modulus of elasticity in the modal analysis and identity
matrix in the stability analysis

e perturbation parameter

V.(E)»K.(E) asymptotic sequences

p (e),6 (e) asymptotic sequences

y linear density of the beam or mass per unit volume for the
membrane

£,P,C reference axis for the description of the transverse
displacement

p,6 polar coordinates of an element dm of the membrane

V Poisson modulus

4> mode shapes for the beam

<}) radial dependence of the membrane mode shapes

(JG eigenfrequency of the beam vibrations

OJ eigenfrequency of the membrane vibrations
Ut y III

fi nominal spin rate

X (e) eigenfrequency of the beam in the transformed equation

X. terms of the expansion of the eigenf requence

2 2 2 2
P0 defined by XQ = k yQ

X (e) eigenfrequency of the membrane in the transformed equation
uc y m - •

£„ £Q tangential and radial strains, respectively

a fl a tangential arid radial stresses, respectively
2 2

n T i • ^ .Vp Laplacian operator — ̂  + - ̂  + — -^
dp p -.. du

2 2
V2 T. i • <- <• ^ . - i d . l d mLinear differential operator — r + — -: --- ̂m y 2 r dr 2dr r
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NOMENCLATURE (Cont'd)

Y
2

. 2

defined by

defined by

defined by

Y = 1 + m

k2 3+V

1 l+2k2+v

k2 1+3v

2 l+2k2+V

2 2 2 2
k- defined by k« = k. k_ •

ri V
F(a,$,Y;x)hypergeometric function

CM center of mass

N location of system CM when steadily spinning

Body B portion of system identified as rigid (core)

Body A portion of system identified as flexible (appendages)

T kinetic energy of complete system

H Hamiltonian

H constrained Hamiltonianc

V potential energy

U, potential energy of deformation

K general spinning stiffness matrix

K spinning stiffness matrix for the planar model

4̂( mass of complete system

£ inertial generic position vector
ys /\ /̂  T

{b_} vector basis fixed in Body B identified as (b^ ,b__ ,b__)

{n} inertial vector basis

£ vector from CM to N

u_, u. deformation vector and its representation in {b_}
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NOMENCLATURE (Cont'd)

h, h,h angular momentum vector, its representation in fb_} and its
magnitude

Q_ body generic position vector

6 orthogonal transformation relating {b} to {n}

ei'82'63 Euler (attitude) angles

to, to. inertial angular velocity vector and its representation in
vector basis '{b}

£_, F. position vector of element dm subsequent to spin and its
representation in {b}

N
I inertia matrix about point N of the complete system at

steady state

inertia dyad
inertia matrix representation is {b_}

N N •
1^ , I inertia dyadic of complete system about point N and its

N N
I., I, inertia dyadic of appendage about point N and its inertia
— matrix representation in {b}

N N
I , I inertia dyadic of core about point N and its inertia matrix
— representation in {b}

N
A,B,C diagonal elements of I~

A inertia matrix about point N consisting of first order
appendage terms

U inertia matrix about point N consisting of second order
appendage terms

ojcc spin rate at steady state
OO

2ft diagonal matrix made of the squares of the modal frequencies

6 generalized coordinates of deformation

cf> mode shapes representation in the stability analysis

3 column matrix of the modal coordinates

<j> column matrix of the mode shapes
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NOMENCLATURE (Cont'd)

M symmetric: matrix defined by

m symmetrix matrix defined by
stability analysis

A2

f T 1I $$ dm

/<j> dm I (j> dm in the

A a column matrix defined by / F1<J> dm

a column matrix defined by I F9(j) dm
A

T
IL symmetrix matrix defined by A.. A..

!!„ symmetrix matrix defined by
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ABSTRACT OF THE DISSERTATION

Modal Analysis for Liapunov Stability

of Rotating Elastic Bodies

by

Andre Daniel Colin

Doctor of Philosophy in Engineering

University of California, Los Angeles, 1973

Professor Peter W. Likins, Chairman

The determination of the attitude stability of spinning

elastic bodies is considered here. A complete study of this problem

requires in general two parallel investigations. In the first part, a

modal analysis is accomplished for a class of special problems and

finally, a derivation for literal attitude stability criteria for

idealized spinning flexible spacecraft is performed.

The modal analysis is accomplished for a class of struc-

tures idealized by beams or disks pf .small flexural rigidity. In the

description of the flexible appendage, a continuous elastic model is

used, and the vibrations in the direction of the spin axis are analyzed

for a fully constrained base rotation. The study is specialized to

the cases where the high spin rate Is combined.to the small flexural

rigidity to produce a small parameter e. The method of matched asymp-

totic expansions represents the general framework used in obtaining

the solution for the several structures studied. The determination of
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the eigenfrequencies and free vibration mode shapes is obtained by the

concurrent use of the orthogonality of the mode shapes and the con-

ditions derived from the matching process.

Also, the stability of spinning flexible satellites in a force-

free environment is analyzed. The satellite is modeled as a rigid core

having attached to it a flexible appendage described by a continuous

elastic model, such as those mentioned earlier. A Liapunov stability

procedure is used where the Hamiltonian of the system, constrained

through the angular momentum integral so as to admit complete damping,

is used as a testing function. Closed form stability criteria are

generated for the first mode of a restricted appendage modal lying in

a plane containing the system center of mass and orthogonal to the

spin axis.
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CHAPTER 1

STATEMENT OF THE PROBLEM

The influence of flexibility on spinning structure has been the

subject of numerous technical investigations since the unexpected

behavior of Explorer I. It was, indeed, the deformation of flexible

antennas that caused the spacecraft to deviate from its prescribed

motion. The variety of tasks fulfilled by modern satellites implies

the presence of large appendages whose weights, for obvious reasons,

are kept as low as possible.. As the complexity and the number of

spacecraft orbiting in space increase, the previous concern becomes

more and more important.

In the development of dynamic models, describing the motion of

flexible spacecraft, many authors employ a system of hybrid coordinates

wherein discrete coordinates (for the translation and rotation of

rigid bodies or reference frames) are used together with distributed

or modal coordinates (for the deformations of elastic bodies). In the

modeling of the vehicle appendages, various types of idealizations

have been adopted: the elastic continuum model, the distributed-mass

finite element model, and the elastically interconnected nodal body

model. Common to all types of modeling, the modal analysis requires

the derivation of the linearized equations of small oscillations from

the constant state of deformation, induced by spin, and the transforma-

tion of these equations into a system of uncoupled equations of motion

in terms of "normal mode coordinates." They represent an infinite
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system for a continuous model, and a finite set for a discretized model,

but in either case consideration of only a reduced number of them is

a practical necessity.

It is mainly towards the first type of modeling — the elastic

continuum model — that this dissertation is oriented, and towards the

derivation of a stability analysis when such a model is used. The use

of the elastic continuum model presents with respect to the other types

of modeling a noticeable advantage when applied to some specific

structures. It is, on the other hand, more difficult to implement for

a general structure. Our concern in this work is to deal with some of

those applications where the continuum model prevails.

The use of elastic continuum model for a rotating structure has

generally been developed in the context of radial or axial beams. The

investigation of continuous models for rotating planar structures such

as membranes is more recent, and has generally been affected by mathe-

matical difficulties arising in the development of the modes.

In the development of modal analysis of a rotating radial beam,

we should mention the work done by R.T. Yntema. The author used in

his analysis of the modes of radial beams a Galerkin method, where he

expands the modes in terms of the nonrotating beam modes. Interested

2
in the same problem, J.E. Rakowski and M.L. Renard, and P.C. Hughes

3
and J.C. Fung, used similar procedures to obtain the eigenfrequencies

of a rotating radial beam. They used the linear property of the

equations of the deformations in order to generate a family of solu-

tions. The satisfaction of the boundary conditions of the problem gave

them a procedure to converge to the exact value of the eigenfrequencies.
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The generation of modes for circular membranes using a continuous

model has mainly been developed for membranes of zero stiffness. Most

probably, the earliest work was done by H. Lamb and R.V. Southwell,

in 1921, where the authors derived the modes for a spinning disk of no

flexural rigidity. They, also, used an approximate method to bound

the lowest frequency in the case where both bending and membrane

effects are important. Among the other authors, whose contributions

should be mentioned are J.G. Simmonds, and W. Eversman. Both of

them spent a great deal of effort to solve the problem of a spinning

membrane when it is clamped at its center. Finally, W. Eversman and

R.O. Dodson studied in 1969 the free vibrations of a centrally

clamped spinning circular disk where they introduce flexural rigidity

into their analysis. Here, again, the linear property of the problem

is used in deriving the general solution. All of the above references

dealing with beams or membranes of nonzero stiffness employ procedures

requiring extensive numerical computations.

In contrast to those past achievements, the problem of the elastic

continuum model has been approached here along directions guided by

future applications. It is clear that flexible spinning spacecraft

will continue to be designed and flown in the future. It is expected

that many of these satellites will exhibit large flexible appendages

such as antenna arrays or solar panels. Many of these applications

are conceived on the verge of instability, and it becomes more and

more important to develop proper stability criteria to cope with these

future applications. An important class includes flexible spacecraft

with high spin and low flexural rigidity. The partial differential
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equations describing the motion of flexible appendages for the previous

class of problems are characterized by a small parameter appearing in

the coefficient of the highest derivative. This common feature will

constitute the basis for our analytical approach to modal analysis.

The resulting modal coordinates will be used in the determination of

attitude stability criteria by means of Liapunov's direct method,

employing as testing function the Hamiltonian constrained by the angu-

lar momentum integral.

8
The method of matched asymptotic expansions represents the

general framework and the main mathematical tool used in obtaining

modal coordinates. Briefly, the method consists of separating the

region of interest into "boundary-layer" regions near the boundaries

where flexural rigidity effects are important and a central region in

which the terms expressing the centripetal acceleration dominate. The

solution is then developed in asymptotic expansions in terms of

the small parameter observed in the highest derivative term. The

approximation to -the solution is then obtained by truncating the

expansion to a finite number of terms, the error being small for

sufficiently small values of the parameter. The use of asymptotic

expansions for the description of the modes of rotating structures

is not new, and we should mention two references using the previous

techniques to study the transverse vibrations of rotating structures.

The first reference to survey is the work done by W.E. Boyce and

9G.H. Handelman in 1961, where they approached the problem of the

rotating beam with tip mass. This paper is mainly conceived as an

application of a previous paper published by J. Moser, wherein
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uniformly valid asymptotic expansions are derived for an equation of

the type treated there. In this last paper Moser derives a set of

linearly independent solutions for the problem and, then, uses the

linear property of the problem.to come up with a general solution.

The linearly independent solutions are taken in the form of

B(x,n)exp [ri h(x)] where ri is of the order of magnitude .of the small

perturbation parameter of the problem and B(x) and h(x) represent

functions to be determined. Applying this procedure to the rotating

beam with tip mass, Boyce and Handelman were mainly interested in what

is called the zero order solution— the first term of the expansion.

The solution to this last problem is then obtained through an energy

method after the observation that one ,of the boundary conditions in the

problem represents a natural boundary condition. What is meant by

natural boundary condition is that the minimization problem arising in

the Rayleigh-Ritz method gives us as transversality condition for the

tip mass, the boundary condition of the zero order problem. In

Reference 9, the authors do not proceed to the next term of their

asymptotic expansion.

Another relevant reference using the method of asymptotic expan-

sion for rotating structures is given by J.H. Abel and W.C. Kerr.

In their paper, they applied the technique of asymptotic expansion to

a rotating cable-counterweighted space station in orbit. The problem

12
without any flexural rigidity was already solved by V. Chobotov

in 1963, and represents in fact the zero order solution for their

problem. In contrast to the method used in Reference 9, it is by

matching the central and boundary layer solutions that they were able
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to come up with the sufficient number of conditions for the determin-

ation of all unknown constants introduced by the integration of the

several equations.

It is by using the conditions coming from the matching of the

solution valid in the boundary-layer and the solution valid in the

central region, and also by considering the orthogonality relationship

between the eigenfunctions, that we plan to obtain explicit expressions

for the eigenvalues and free vibration mode shapes for several

elementary structures. For all the structures studied, we concentrate

oh the "transverse vibrations," involving oscillatory motions which

are parallel to the nominal spin axis and transverse to a plane

established by the structure, since these vibrations are most critical

for the stability of a spinning structure. We also make throughout

the study the assumption that the motion of the rigid rotating base to

which the elastic appendage is attached is not affected by the trans-

verse vibrations of the flexible appendage. For a free spinning

spacecraft, the center of mass of the entire system remains at rest in

inertial space, but it does move within the core for some modes.

Similarly, the core body rotates for some of the system normal modes,

but our modal analysis is based on a fully constrained base rotation.

This represents in fact a convenient assumption — which is necessary

if our answers are to have value for hybrid coordinate analysis of

appendages on arbitrary spinning bodies — and permits the obtention

of uncoupled modes — conditions under which we can transform the

partial differential equations into a set of ordinary differential

equations.
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In Chapter 2, the derivation of the eigenmodes and eigenfrequencies

for two unidimensional types of flexible appendages is presented. At

first, we looked at the problem of the radial uniform classical beam.

The classical assumptions consisting of neglecting the shear deforma-
/

tions and the rotatory inertia were made. We also limited our study

to a radial beam clamped at its root on the spin axis. After the

completion of this first case — where the spinning motion acts as an

element stiffening the structure — we lo'oked at the case of a uniform

cable clamped at both extremities, and spinning about a central axis.

The spinning motion introduces in this structure a softening effect

and requires the introduction of a built-in tension. This configura-

tion seems to be of little direct application, but it has been examined

in order to familiarize ourselves with the next problem of wider

application, discussed in the following chapter.

In Chapter 3, the modal analysis of a rotating membrane is con-

sidered. Two cases are investigated. In the first one, the flexible

appendage consists of a circular membrane clamped along its edge, and

spinning about a central axis normal to its plane. Here, again, the

rotation introduces a decrease in the eigenfrequency of the nonrotating

structure and justifies the introduction of a built-in tension. This

last effect is generally referred as the effect of preload and is

known to be highly configuration-dependent. Here, again, the assump-

tion is made that the motion of the spinning rigid rim is uninfluenced

by membrane vibrations. Finally, .the freely spinning membrane is

analyzed and it is observed that for this last structure, the eigen-

frequencies of the rotating membrane are less affected by the flexural
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rigidity than in the case with outer rim constrained by a spinning

rigid ring.

Finally, in Chapter 4, a general derivation is given for the

stability analysis of rotating structures when the deformations of the

flexible parts are expressed in terms of the modes of the rotating

structure when determined from a continuous elastic model. Also, some

of the restrictions introduced in our derivation are justified. It is

shown, for instance, that for the class of problems considered in

Chapters 2 and 3, the wobbling (nutational) motion separates from the

spinning motion in the linearized equations. For any flexible

appendage lying in a plane perpendicular to the spin axis, and passing

through the system center of mass, the linearized equations of motion

separate into two groups. The wobbling motion consists of the motion

described by the nutation angles and the transverse vibrations, and

the spinning motion consists of the rotation along the spin axis and

what is often referred as the in-plane deformations. It is, in fact,

this last point that justifies the consideration of only the transverse

vibration in the previous study. For most of the aerospace applica-

tions, the attitude stability of the spacecraft is of main interest

and is only affected by the out-of-plane deformations. It is also

observed that the attitude stability is affected by the anti-symmetric

modes of symmetric spacecraft only, and through this, the assumption

made earlier to consider the translational motion of the central rigid

core of the system as being not affected by the deformations, is made

acceptable. The anti-symmetric modes are, indeed, those which keep
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the center of mass of the total system at rest with respect to the

rigid core.

The development of stability criteria for free spinning bodies

has been the basis of numerous technical papers. Rigid body analysis

prior to the flight of Explorer I predicts a stable free rotation in

inertial space if the angular velocity vector is directed parallel to

a principal axis of either maximum or minimum moment of inertia. The

analysis following Explorer I led to the general conclusion that for

a flexible spinning satellite to exhibit stable free motion its axis

of spin must be restricted to that of the principal axis of maximum

inertia; this proposition is sometimes referred to as "the greatest

moment of inertia" rule. However, one would expect that the last

criterion is not sufficient to assure stability and it is not sur-

. prising at all to find that spacecraft with very large flexible

appendages are less stable than quasi-rigid ones. It is in the

examination and development of stability criteria involving the modes

of vibration and the natural frequencies of the structures that most

of the recent papers are oriented.

It would be too lengthy to cover the numerous publications dealing

with this last task; Reference 13 provides a current bibliography on

this subject. We should, however, mention here that the problem is

generally approached through two different procedures. Some authors

examine the stability problem by using a Routh-Hurwitz analysis, and

some prefer to use a Liapunov analysis. In our study, we decided to

employ the latter approach, proceeding in parallel with the work done

13
by F.J. Barbera and P.W. Likins. In their work, the authors develop

2-27



general stability criteria for a flexible appendage described by a

collection of particles. They used Liapunov's second method as the

basic analytical tool and by specializing in the more restrictive case

wherein the appendage lies in a plane containing the center of mass

and orthogonal to the spin axis, they are able to come up with some

analytical criteria.

The stability analysis developed in Chapter 4 is based on a

similar approach. Liapunov stability theorems are employed with the

Hamiltonian of the system, constrained through the angular momentum

integral, used as a testing function — a method proposed by

14R. Pringle, in order to circumvent problems related to the negative

definiteness of the Hamiltonian time derivative. In our formulation,

the flexible appendage is described as a continuous elastic body, as

opposed to a collection of elastically interconnected particles. We

kept the derivation as general as possible. However, in order to

come up with specific criteria, our study has been restricted to more

particular cases. Finally, the analysis was brought down to a level

amenable to literal stability criteria by truncating the number of

normal coordinates to a single mode. The stability criteria emerging

from this study represents, due to the special form adopted for the

Hamiltonian, conditions for stability that are sufficient and (except

for a few recognizable singular cases) necessary as well.
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CHAPTER 2

DYNAMICS OF ROTATING ELASTIC BEAMS AND CABLES

2.1 Introduction

In the following chapter, we face the problem of a dynamical

study of two elementary structures characterized by a dominant effect

of the forces induced by spin over the flexural rigidity. In the first

part, a modal analysis is done for a rotating beam clamped normal to

the spin axis. The study is oriented towards the application in

rotation-stabilized space vehicles having a nondeformable frame to

which flexible rods are attached. In the second part, the modal

analysis of a taut cable clamped at its extremities is done.

In both studies, we will consider vibrations only in the

meridional-direction. We will also ignore deformations which are

present only because of the Poisson effect. We will assume, at the

outset, that the motion of the base to which the elastic structure is

attached is uninfluenced by the elastic vibrations of the appendage.

2.2 Dynamics of a Rotating Elastic Beam

We now specialize in the study of a deformable element which

consists of a long flexible beam undergoing transverse vibrations.

When an elastic beam is normal to the spin axis of its inertially

rotating base, it does sustain deformations in the steady state con-

figuration in which it remains straight and aligned with a radial line

emanating from its base. Therefore, as emphasized by P.W. Likins,

F.J. Barbera and V. Baddeley, one must consider nonlinear strain-

displacement equations if deformation variables are to be measured
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from the undeformed state. The requirement for the retention of

second degree terms comes from the fact that steady state deformations

induced by constant spin are not arbitrarily small, and cannot be

included with the arbitrarily small deviations from the steady state

deformations in the linearization process. This great difficulty of

nonlinear elasticity explains generally w,hy applications in the liter-

ature are restricted to beams. For those particular cases, the equa-

tions of motion are typically derived by means of procedures which

rely, from the outset, upon the availability of solutions for the

steady-state load distribution and deformation of the elastic

continuum.

In our analysis, we neglect rotation of the transverse cross

section of the thin circular rod or beam and consider the linear

density and the flexural stiffness El to be constant. The rods are

also considered as being much longer than the frame dimension. We

therefore assume the point at which the rods are attached coincides

with the axis of rotation of the frame, as in Figure 1.

n er

Figure 1. Rotating Uniform Elastic Beam.
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Under those assumptions, the transverse vibrations of the clas-

sical (Euler-Bernoulli) beam, subject to an external axial load P(n) is

given in general form by (see Reference 15)

where El is the flexural stiffness of the rod

y is the linear density

P(f|) is the external axial load .

The boundary conditions are given for a rotating rod under the assump

tions of one eantilevered end and one free end by

w(0) ••- 0 = (0) -2- <L) =^ 'CD '..'

For the rotating uniform radial beam, the influence of steady-state

centripetal accelerations can be represented by an "effective force"

or "centrifugal force" given by

L

P(n) = J v ft2 n1*!1 -\ ŷ 2(L2 - n
2)

n • . ' • • ' .

so that the previous equation takes the form

?£-!" /T 2 2N 9 w 0(L - n ) —o - 2n
an2

.,
= 0.

The artifice of the "effective axial load" permits this derivation of

the vibration equation to be accomplished without the reliance on non-

linear strain-displacement equations noted previously to be required

for general derivations of small-vibration equations for rotating

elastic continua.
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Two remarks should be made about this last equation. First of

all, this relation expresses the transverse motion of the beam free

of any external forces or deviations of base motion from simple spin,

coming, for instance, from the coupling between the transverse vibra-

tions and any nutational motion of the rigid core. Also, it should be

emphasized that in the previous relation, the deformations along the

n axis represent the result of two separate deformations: the steady-

state extensional deformation from the undeformed state and the devia-

tion from that steady-state. This last point could be overlooked in

the previous relation due to the artifice of the "effective axial

force," but is an unavoidable fact of the general continuous model. In

the derivations done in Chapter 3, this last remark will become more

apparent in the sense that the steady state deformation has to be

computed first and the equations of the motion are then represented by

the deviation from this steady-state.

We use, now, the method of separation of variables:

w(ri,t) = <j> (n) P (t) . . . . . . . .

Substituting into the previous equation, we have:

, P + co2 P = 0 •••• >•.'•a a a

£1 ~a\ "la*
».. **' 2

where (•) stands for derivative with respect to time

0) represents the eigenfrequency of the vibration

and the boundary conditions become
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2 3
d (j> d 4>

~ 3dn

_ H.With the introduction of the dimensionless variable, y = •— ,
lj

2
and division by fi , the previous relation becomes :

I V 1 9 ' ?
e *a 2 I(1~y Ha] ' Xa *a° ° (2<

where (') stands for derivative with respect to the dimensionless

variable y

El '

ufi2L4

A2- - • n • • -

n2

with the boundary conditions

<f>a(0) - o = 4>;(0) = «j>J[(D = 4>;

In the parameter e, the high spin rate and the low flexural

rigidity combine their effects to produce a small quantity. A typical

-3 -4
value for the parameter e is given by the range of values 10 ... 10

(see Reference 2). As a result, the previous equation is suitable for

the use of singular perturbation theory by the presence of a small

parameter in the highest derivative term.

Let us consider for the central portion of the beam, a solution

for which analytical dependence on the small parameter e is given by

(j)a(y,e) = hQ(y) + Vj_(e)

where v.. (e) is a small o(e), and the V.(e) constitutes an asymptotic

sequence of functions.
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By definition, <J>(p) = o CKy)) as y -»- y if, given any 6 > 0,

there exists a neighborhood Nr of y such that |<J>| _< £ > \ V \ for y in the

neighborhood; thus <|>(y) = oCi'(y)) if $/¥ -»• 0 as y -»• y . Also a
o

sequence <j) (y) , n=l,2,... is called an asymptotic sequence if

By definition, two functions §,V of y belong to the same equivalence

class in a neighborhood of y if

o

If this double inequality is satisfied, we adopt the notation

ord 4>(y) = ord

A partial ordering of equivalence classes is given by

ord <j>(y) < ord V(y) if lim •> 0

so that if <j)(y) = o *(y) then ord <J>(y) < ord

To shorten the writing, the subscript a, characteristic number

of the mode will be omitted momentarily and we will use this subscript

explicitly only when needed, in order to differentiate between differ-

ent modes .

2
Similarly the eigenvalue X of the problem will be written

2
simply as X and it will be expanded in terms of the small parameter

e in the following way:

X2(e) = A2 + K1(e)X.
2 + K.(e)X?. +...

O 11 / 2.

where. K.(E) constitutes an asymptotic sequence.
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The corresponding differential equations defining h_(y) and h (y)

are given by

x2h if"

,
if liin . N = 0
e - 0 V£)

where the different possibilities were limited to the case where

ord V1(e) > ord e, which will be verified later. We also neglect the

possibility that v.. (e) = olic. (e)i , because this would imply that

xj = o.

At this stage, one remark can already be made on the solution for

h_. There are no apparent boundary conditions to the equation defining

h_. But this equation is known as the Legendre equation, the solution

to which is well known in terms of the Legendre polynomials (see

Reference 17). Even though it might seem that there would be a com-

plete freedom in the values of X , we can see from here, already, that

2
the values of X_ are limited to a discrete spectrum based on the obser-

vation that the point y=l constitutes a singularity for the Legendre

" 2
polynomials, and only a discrete set of values of X^ will give the

value of the Legendre polynomials to be bounded at y=l.

In order to make those observations more specific, we have to

concentrate for a while on the boundary layers existing at both extrem-

ities, whose solutions will give us the.constants of integration we

need for the previous integration.
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Boundary Layer Near y = 0

In order to study the boundary layer near the origin, we have to

introduce a stretched coordinate

y = ? x assuming a(e) -»• 0 when e -»- 0

The corresponding asymptotic expansion valid near y = 0 is given by

<f»a(y,e) = y0(e)g0(y) + y]L(e)g1(y) + y2(e)g2(y) +...

where the y,(e) constitute an asymptotic sequence. Replacing the

previous asymptotic expansion into the differential equation of the

mode shape <f>(y) and considering that y = a(e) y and dy = a(e) dy, we

obtain:
rvy(e) dg0(y)

~Z ~ : IZ
0 (e) dy a-(e) dy

o o
l-az(£)r

2 -.
a (e) dy

7
a (e)

?
dy

+ a(e)y -a(e) dy dy

- XJ [y0(e)g0(y)-+y1(e)g1(y) +...]

- <.,_(€) Xj_[y0(e)g0(y) + y1(e)g1(y) +... ] = 0

A suitable boundary layer coordinate is chosen by the requirements that

the higher derivatives are of the same order of magnitude near the

origin or by considering the previous equation, in writing

ey0(e) yQ(e)

a4(e) a2(e)

or a"(e> = e and a(e)
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The boundary layer coordinate is thus given by:

The dominant boundary-layer equation is given by:

~4 2 ~/
dy dy

= 0

Both boundary conditions at y = 0 have to be satisfied by g~:

dgQ(y)

2
Defining g(T *,~. .

- 5 — = gn (y) , we have
i *• £• ' \J
dy

d'28o*<y>

Using the fact that the exponential growth (e ) cannot match as

y •*•°° and taking into account the boundary condition,, we obtain

successively

- ' • ' -^y_ c e
2

and

dy

g0(y) - 2 co -1 + e

which represents a solution with one arbitrary constant but doesn't

depend on the eigenvalue.
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We are now in a position where we can try to match this boundary

layer expansion and the solution we found previously for the central

portion of the beam.

An intermediate limit suitable for matching near y = 0 is given

by y fixed:

so that

n(e) and as

y -*• 0. and y = "— y

Matching near y = 0 takes the form:

lim
e ••*• 0
y fixedn

Expanding h_ and h- as Taylor series near the origin and using the

solution previously found for gn(y), we have:

lim
e -»• 0

hQ(o)

-2y0(e)Co yn -i + e +...1 =

From here, we can see that the matching is possible only if the follow-

ing equalities are satisfied:

hQ(o) = o ;

and

71
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Another point can be noticed from the previous equation. The

term 2 VU(e) C0 appearing in the expression of g can not be matched

except by a suitable value for h.. (0) and this requires that

v (e) = yn(e) = /e and h. (0) = -2 C
JL U i O

which satisfies our requirement that V, (e) -»• 0 when e -»• 0, and implies

ord V1 (e) > ofd e an inequality that we still had to prove.

We are now in a position where we can go back to the solution

valid in the central region of the beam.

The equation defining h_

is a Legendre equation.

Defining the Legendre functions of the first and second kind by:

, y) - 1 -<27) (2A2)y2 + (̂ y) (2\2Q)(2\
2
Q - 6)y

4 -...

, y) = y -() (2\2 - 2)y3 +...

2
we see directly that only the second expression SBA2\, y) satisfies

the requirement h_(0) = 0«. We thus have:

Vy) = kO ̂2(2X0» y) '

The
' • "»

set of discrete values A- which represents the zero order

of the asymptotic expansion of the eigenvalue are in fact those values

2
which truncate the Legendre polynomials. For all other value of Xfi,

the serie becomes infinite and unbounded for y = 1, which could not make

physical sense for our problem. This last point will be shown later.
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As a result the set of discrete values feasible for A is given

by

or in general

=1,6,15...

,2 n(n+l) ' • ,,
XQ =

 s / for n odd.

Now that an expression has been found for h '(y) , let us look at

the expression of h (y).

Before any computation for h-, we will need a property of the

mode of the previous problem, i.e. their orthogonality. In order to

prove the orthogonality of the modes, we have to consider the following

equations and boundary conditions:

7 i ?*«\ i l l . "\ ^ ± s\

TVV

4>a(0) - ̂

Multiplying the first equation by (j),, and integrating by parts from

0 to 1, we obtain:

0

2.

The boundary conditions and a new integration by parts gives us
1 1 1 1

+ e
0
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A similar expression can be obtained from the second equation and for

2 2
X ^ X_ we have from the difference of the two expressions

1

•jTve-dy-o •

The previous result has to be completed by the relation defining the a

norm of the modes and for orthonormal modes we also have

1

Expanding the modes through the asymptotic expansion we defined before,

and considering that the previous expression has to be true for every

small e, the last expression becomes, for instance:

1

dy = 1
0

1

/ h (y)h (y) dy = 0
Q

and similar expression for h9...

We have to be careful in the use of the previous relation because

we have to include under the integral sign the contribution coming

from the boundary- layer solution. For, our purpose, we already showed

that the boundary layer near the origin is of thickness /e and, as a

result does not contribute in the second integral. We will prove later

that the boundary layer near the free end does not contribute to the

previous integral too, and the two integrals we just wrote will, from

there, be useful. From
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f 2I hn dy = 1 , we conclude
•'o °

. y ) d y - i
and

W ss +ko -/i

.
r 2 2/ 5? (2X y)dy
'0

Considering now the differential equation defining h_ (y) we have

\ [U-y2)hJ]' + X 2
h l =

0 if -^ >- 6 as e -*• 0

2 VE)
~\\ if -^r-.l

The second possibility is now to be cancelled if we want to have any

chance to satisfy the integral

dy = 0 .

As a result, the function K- (e) is, well defined and we have

and

(2.2)

We also found before in the matching process near the cantilevered

end: , ,Q*

• orCo

kO ̂ 2 (2X0'

h1(0)

Co = -

,
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2
We will now determine the value of A through the use of the

differential equation (2) and its boundary conditions and also by

using the orthonormality condition on h_.

Multiplying Equation (2) by h_ and integrating by parts from

0 to 1, we have

f[(l-y2)h']h0
0 o o 0 o

Assuming h'(l) to be bounded, the use of the boundary condition of

and its normality gives us

i ho dy - Xo ohi dy = xl •

Integrating by parts once again, we have

I
2

1 1
1

o"2 -o
dy -

0
dy =

The differential equation defining h_

brings us the final expression:

or

\ hl(0)

or

.2 1 l*;
xi ' ;- i.
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2
Considering the definition of S£Al\ ', y) , we can see that

and

2 • ixl
?2 (2X0'y)dy

2
For the first mode, corresponding to X. = 1, the previous relation

becomes

X2 _
Xl '

J

1 3 3

2~ y y
2 dy yiy3

1 ^_

0

w 2.12

2
For the second mode or for X.= 6, we have:

/(y - f y3)

63 _ .
~ 11. lo

2
dy

We should emphasize at this stage that the previous expression

2
found for A. is simply based on the properties of the differential

equation and did not use any other relation. It is easy to prove that

2 2
the previous values found for AO and X are also those which satisfy

the orthogonality relationship between different modes. For the zero-

order terms of the expansion, the relation is simply given by the

orthogonality property of the Legendre polynomials in the interval from

o to 1. For the first order terms, the derivation is lengthy, but the

2
values of X1 are coming out from those relations. Now that an expres-

f\

sion has been found for X,, we can go back to Equation (2.2)

2)̂ ]' + X2 h± = -X
2 h0 ' . (2.2)
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The general solution of the previous equation is given by a particular

solution h- which satisfies the boundary condition

and the general solution of the homogeneous part of (2) multiplied by

a constant k1. This last solution is nothing else than h», the solu-

tion of the zero-order equation. So, in general,

ĥ y) = . h^Cy) + k^Cy) .

Out of the family of solutions, we have to choose the solution which

satisfies the orthogonality relationship between h- and h^ for one

mode or
1 1 1
r, f - r 2

0 = I h_h_ dy = I h_ h. dy + kn I h dy
VQ ° X JQ ° ! ! JQ °

or, finally i

in ^i dy

The knowledge of k.. specifies entirely the function h_ and as we will

see later, this last step will be needed when we will match the

central part expansion to the boundary-layer expansion near the free

end.

Boundary Layer Near the Free End •

We, now, have to look at the boundary layer needed at the free end

in order to satisfy the boundary condition and confirm what has been

said before about the value of h. at this extremity. In order to pro-

ceed, we have to introduce another suitable boundary layer coordinate

* 1—y
near y=l. Let, then y = 'TTT\ where (f>(e) ."*• .0 when e .-»• 0. We
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thus have <f>y - 1-y and dy = - (j)dy . The corresponding asymptotic

expansion valid near y = 1 is taken as

<J>a(y,e) = <SQ(e) f0(y*) + 61(e)f1(y*)+...

where the 6 . (e) constitute an asymptotic sequence.

Replacing the previous asymptotic expansion into the differential

equation of the mode, we obtain for the basic equation

e
6- (E) <

1— (1— (j)y
2

1 <J,y )

*V

dy*4

"v
<K

*x 4 *y ) 01 (e) d f (y )

*4W d/4 J

6n(e) d f (y ) 6 (e) d f 1 (y )0 0 1 1
2 *2 "*" 2 *2 ' * ' '

(j) (e) dy <}> (e) dy

e) d f0(y*) 6^8) d ^(y*)

dy dy

t60(e)f0(y) (2.3)

* 2 * 2 *2
Rewriting l-(l-<j>y ) as 2<j)y - (j) y in the previous equation, we

choose a suitable boundary layer coordinate by the requirements that

the higher derivative terms are of the same order of magnitude near the

free end. Thus by considering the previous equation, we have

or

<Ke)

= e and

1/3(e) = e. so the boundary layer coordinate is given by

y* - l-y/,1/3 .
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The dominant boundary layer equation is given by

Af , V ,2f , *. ,, f *d fn<y ) * d Vy > dfn(y
- y T= - I = 0 .*4 J *2

dy dy dy

Both boundary conditions at y = 1 have to be satisfied, by fn(y ) at

* ' - . ' • " '
y = 0

d2f0(y*) d3f (y*)
jj- - £3— =0 at y = 0

j *• j *̂dy dy

The previous equation can be written . '• *

•"d4f6(y*v d f * dfo
«A ' ife I <fe

dy dy L dy

A first integration gives us as a solution

d3f̂ (y*) ^ df.0
*3 y *dy " dy

where we already used one of the boundary conditions in removing the

constant of integration. Defining

df,"0 * *i = f0
(y )•

we have

•A _ * £**2 - y
 fo

dy

* * *
with the boundary condition df0/dy = 0 for y =0.

This last equation is known as the Airy equation, the solution

of which is given in terms of the Airy integrals. We, thus, have

* * *
f0 = AQ AL(y ) + BQBi(y )
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The asymptotic expansions of the Airy integrals can be found in the

literature (see Reference 18) and are given by

. ., , 1 rr-1/2 -1/4 -€_,,.! 5 1 ,.AiW^-jH z e 2F0(- , _ ; _ — )

and . . . ' ' • ' - . • . •'...••- - - •' . . , :

, ~ n-1/2 ;-"* .«A( i , i ;a , : .

and _F. stands for the generalized Hypergeometric series.

A direct observation of the expression for Bi(z) shows that it

is inappropriate for matching due to its exponential growth, and only

f*=AQAi(y*)

has the exponential decay property.

We also have to satisfy the boundary condition

*
df 0— y = 0 for y = 0
dy

and the power series expansion of Ai'(z) near z = 0 is given by the

following expression:

Ai'(z) '-̂ b.̂ C; | ; C2/4) + \ a z2 ̂ C; | ; ?2/4)

where E, has the same meaning as previously and the constants a and b

take respectively the values 0.355 and 0.258.

As a result, the satisfaction of the last boundary condition

requires that AO = 0 and we are left with

fo = V
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If we spent some time in the-development of the solution for f_,

it is due to the fact that the previous development will be found

helpful in the search for the solution of the other functions in the

b ound ary-1ayer.

To investigate a little further the boundary layer solution, we

have to try to match the solution valid in the central region of the

beam to the expansion valid near the free end. In order to accomplish

this last objective, we have to expand the solution found in the

central region near the free end. We have:

§ (y»s) = nr>(y). + ve h
Ot • U j.

Defining the variable y1 = 1-y, we have:

<}> (y ' ,e) = h (1-y1) + \/e 1

or

',e) = h0(l) - hj(l)y' + hjj(l)

For matching, an intermediate limit suitable for matching near y = 1

is given by y fixed:

y = —fT • where y' is always positive.

m

r)(e) •+ 0 and
e

4 11

so that y' = H y "*" 0 and y = —
n e
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Matching near y'=0 takes the form:

lim
e + 0 .
y_ fixed

2 2

h0(i) - hj hjj(i)

-ye) D0-
k= 0

From here, we can see that the matching suggests the use of the follow-

ing equalities:

o
60(e) •

61(e)

and h0(l) = DQ

-1/3 63(e) = e

64:(e)

2/3

,5/6

As a result, we can see that the determination of D_ seems to be free

and the conjecture made earlier about the value of hn(l) is perfectly

valid.

The boundedness of the value of h_(l) is the real boundary con-

dition that should be used at the free end, and the value of Dn is

thus known!

Now that the matching process has suggested an order of magnitude

1/3
of £ for 6. (e) in order to match the linear term in r\ y appearing

in the previous relation, let us compute the expression for f1(y ).

The differential equation that f1(y ) must satisfy is obtained

by picking the term of order of magnitude

in the general expression (3)
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A, , *s

dy *2 2 *2
dy dy

*x , *s)^ * d yy >
— * y -£—

dy

df

dy

with the boundary conditions

*2
dy

d3f1(y*)

dy
*3 0

for y = 0

Using the constant Dn for fn(y )', we are left with0 0

'\<y*> *
- y

dy*4

d fj ^i 2

dy*2 " dy* =A°D° '

In this last linear differential equation, the homogeneous part

is exactly the same as the one defining f^.

A particular solution is given by taking a linear relation for

f,, (y ) such as

flhly
2 *

The boundary conditions on f .. (y ) cancel once more the two Airy

Integrals, solutions of the homogeneous part and as a result

Going back to the expression computed for the matching near y'=0

we have to show that

=0.
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The differential equation defining h_ is given by

\ <l-y2)h» - y h' + \l h0 = 0,

evaluated at y=l, we have:

+ A h0(l) =0.

In the matching, valid near the free end, we observe that the

limit process suggests to introduce a term of order of magnitude

62(e) = }/e in order to take care of the presence of /2~ h1 (1) . We will

thus introduce here into the asymptotic expansion valid near the free

end the expression

f2(y*) =»!

where D is equal to h... (1) . There is, as expected, no new information

added to the problem, the value of h.. being already completely

specified.

Proceeding to the next term, the matching process of the quad-

22 2/3
ratic term in r\ y suggests for 6-(e) an order of magnitude of e

The equation defining f̂ (y ) is given by considering the terms of order

of magnitude ,

1/3"

in the expansion near y = 1 or

d4f3(V
dy 4

') * As +y ^o
dy

Z! *\
9 *9

dy.

df3 ,

dy

* d f l

dy *o ^
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with the boundary.conditions

*2 = 0
dy

d3f.

dy*3
= 0

' for y = 0

We already found that f.(y ) =
2 *

-X_ hn(l)y . So the previous expression

becomes:

dy
*4 7*f --T - -*o ho(1)y* + xo ̂o(1)y*dy dy

The solution of this equation is given by a particular solution and the

general solution of the homogeneous part. The particular solution is

taken as

D3y
*2

where

The general solution of the homogeneous part has to satisfy the

requirement on the third derivative due to the choice of the particular

solution and as a result, the general solution is given by
* ' . • ' ' : •

3h(y*) = AJ_ J D,

as can be seen from previous development, where the other Airy Integral

has been cancelled for its exponential growth.
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The final expression for f« is then

y- A
f3(y*) = A1 J Ai(C)d£ + -2- (A*-!)" h0(l)y-- - *2

The determination of A is given by the use of the second boundary

condition

=0 f or y = 0
dy

Ai'(y) + -2- (A - 1) h0(l) = 0 for y* = 0

°r ' 22
Vxo - « ho(1)~

"1 2 Ai'(o)

where the value of Ai'(o) can be found in tables. (Reference 18).

Going back to the matching procedure, we note that the term

nyj

presents the exponential decay which allows us to neglect its contri-

bution in the process , and we are left with
2 2 ,2

n y A 9 2 =o.

This last relation represents an identity as we now show.

Considering the expression defining h_ and expressing this rela-

tion in terms of the variable y', we obtain:

~ V 2
h" - (l-y')hl + \n hn = 0.2 O O 0 O
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Expanding h~, h' and h" in a Taylor series expansion valid near

y'=0, we have

h0(l-y«) = h0(l) - hj

••hjj(l-y').- hjj(l) - h{j'(l)y'+...

Introducing the last expansions into our previous equations, we obtain

the following identities:

.-h-(l) + X2Q h0(l) •- 0

'aijjci) + hjd) - A^ hj(i) = o .

This last expression can also be written:

•'2hg(l) = (A2 - 1) XQ h0(l) , .

which represents precisely the equality coming from the matching

process.

Pursuing the matching even further, the next term to consider is

f (y ) corresponding to <S,(e) = £ . The equation that f^Cy ) must

satisfy is represented by the terms of order of magnitude :

1/2

in the development (3) , or

I4f,(v*) , d2f,(v*) _ dV(y*1
*4 ~ *2 *2 *

dy dy dy dy

* o ^ y ' 9 * 9 *
+ y -̂ T-- ^ f2(y } - Al fO(y } =

dy
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Taking into account the fact that

f2(y*) = h1(l) and

f0(y*) = h0(i) ,

we have

* d2f df4(y*)

- y — - - —4— - *o hi(1) + Ai ho(1) •
dy dy dy

The use of the boundary condition for f, limits the solution for

f4(y*) to

f4(y*) = A
2 ĥ l) y* - Xj h0(l) y* .

In the matching process, we are left with

-hj(l) + \2Q ̂(1) + \l h0(l)

which is identically equal to zero if we consider the equation

defining h- evaluated at the point y=l or

-hj(l) + AQ hJL(l) = ̂ J hQ(l) .

To complete the study of the boundary-layer solution near the

free end, let us discuss briefly the term f of the development of the

boundary- layer solution. For this purpose, we have that <$,-(£) = e»

the equation defining f̂ (y ) is given by

4 * 2 * * 2 2 * *

dy*4 dy*2

* df,<y*>

2 *2 *
dy

. o
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with the Boundary Conditions;

d2f5(y*)
*2

dy

d3f5(y*>

dy*3
= 0

for y = 0

Only the asymptotic behavior as y •* °° is essential for matching and

this is easily found.

Writing for the expression already found for f~(y ) the following

expression .

X2

f3(y*) = -f- (A
2, - 1) h0(l) y*

2 + 1ST

where TST stands for transcendentally small terms , always neglected

for matching, the equation defining f c is given by

*dAf5(y*)
*4.

d2f (y*) df (y) A
f- cxj -Dh0(i)y

dy
*2

dy

SA;
(A2 -I)h0(l)y*

2+ TST.

*
The equation for f,-(y ) can be integrated once and gives us:

d3f5(y*) df 3A

*3 - y —;
dy dy

0 w? -4 0

*3

3"

TST.

The calculation for f_ is carried out simply from the differential

euqation, noting that

d3f5(y*) df

dy*3
«

dy
as y

2-57



The rationale beyond this last argument is exactly the reason why the

matching works, so that we have

df, (X? -1)

dy

It follows that

*2 D d3f (y*)
-3X̂ )h0(l) ̂ - - -i + ±; 5__ + TST .

y y dy

d2f
5 •> -D

dy*2
A

d f 5_
*4

and

d3ft

* D
_ 4-

d3f_

*2 ~ *2

dy*3

y dy

( A 0 - 1 } 4 2
-T~ (xo -3Vho(1)

c5

*3

Finally, we have:

df5

dy*

: <X0 ̂  4 2 *2
~ — -. — - f\ T\ \ IT ^ ^ ^ ^ T
- - ^2 ^AQ 0 0 y ~

, ^o-1)

- ' ;

(X0 -^ 4f ^ _ " /"\H _•:
£5 " 36 U0 -

+ D, + 0(
o

+ TST .

*3
D (A0 -3V

The constants of integration D- and D, are then found from the

matching. The other constants of integration for each solution are in

the transcendentally small terms and are found from the boundary con-

ditions at the origin.
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In the matching conditions, expanding the various terms and

neglecting transcendentally small terms, we have:

(*Q'-!) 4 2D5 = --̂ T- (Xo~3V ho(1)

We also have to show the identity:

ho'(1> 1 n2- 1 W ,4- , ,2 , , „'. n
o"! • '•T/T {"-r\ ""•'••' »^n ~-^n / nr>'-'-/ "" " •3! 36 0 0 U 0

All the other terms omitted vanish more rapidly than those matched.

By going back to the development we already used for the identity found

for f«, we also have:

3 hjj''(l) = (AQ -3) hjj(l)'

°r 2
' n ~ ' ii. 9

3 1.111/T\ — f\ i\*"\ v> f^ ̂
hO (1) ~ 2 (A0 ~3V hO(1) '

The last identity is thus proven.

Having now completed the modal analysis of the uniform classical

beam, we summarize the results by recording the final expression for

the eigenfrequencies, or

2 2 2 2 2 r- 2a) - A fr --n (x« + v^ A, +...)ex a 0 1

where \Q = for n odd,

',2_ 1
and ~

f

This section concludes with a comparison of previous work and

19
that of the author using the results presented by F.R. Vigneron. In
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Reference 19, the author presents the relation for the lowest loaded

natural frequency of a radial boom as

1'193 fi2'

where 01^ stands for the unloaded lowest frequency for a uniform beam.

2 2 2 4
The quantity ui, is recognized as 01^ = (3.515) EI/yL , so the expres-

sion of CO- becomes

to2 = (3.515)2 1.193
yL

The definition of e gives us

so this expression can be written

u)2 = f22(l.l93 + (3.515)2 e) .

2Comparing the above expression with our development of to or

u>2 = f22(l + 2.12 Se ),

we obtained the curves of Figure 2.

1.193
1

\
-V

CLASSICAL RESULT
PRESENT RESULT

»,
»Q-

I I

10'1 10'2 10'3 10'4

Figure 2. Correspondence With Classical Results
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In the interpretation of these results, we have to keep in mind

that the result presented by Vigneron represents a better approximation

for increasing values of e while our approximation becomes more precise

as £ decreases. The limiting behavior of a beam when e goes to zero is

2
given by the cable and the true value of the ratio (ok/fi) is given,

for that case, by 1 (as opposed to 1.193).

After having considered the case of the classical rotating beam,

we will now consider the case of a rotating cable of small flexural

rigidity when clamped at both ends.

2.3 Dynamics of a Taut. Rotating. Elastic Cable

In this derivation, the same assumptions as those made earlier,

i.e. to consider the motion of the spinning rigid ring to which the

cable is attached as not being affected by the transverse vibration of

the cable, and also to ignore the rotation of the transverse cross-

section, will be made. The total system is also considered as being

in rotation with an angular velocity ft around the axis of symmetry of

the ring ,to which the cable is clamped (see Figure 3).

For the special type of configuration under investigation, it

must be emphasized that the spin has essentially a destabilizing

effect. It is known that the influence of spin on flexible spacecraft

is characterized by the presence of three effects: preload, Coriolis

coupling and centripetal acceleration. The effect of preload is of

main concern for this structure, because of its dependence upon the

configuration (orientation of the flexible appendage with respect to

the rigid core). For this particular structure, the preload modifies

seriously the stiffness properties of the structure and justifies the
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introduction of a built-in tension that we will assume to be big

enough to ensure a tension everywhere within the cable.

EQUILIBRIUM STATE _/

Figure 3. Rotating Uniform Taut Cable.

In what follows we do intend to invest the cable with some small

flexural stiffness, so that the governing equations of motion are the

fourth order partial differential equations of the beam, rather than

the classical second order partial differential equations of the taut

string. Under the previous assumptions, the transverse vibrations of

the classical (Euler-Bernoulli) beam subjected to an external axial

load P(£) is given in general form by

9t
= 0

where EI is the flexural stiffness of the beam or cable

y is the linear density

is the external axial load.

We should notice here that the equilibrium position of the taut

cable is given when the total system is rotating at an angular velocity

£2, with the cable straight along the E, axis. No displacement can occur

either in the r| direction or the 5 direction. The position vector C,

appearing in the last relation is in fact the position vector at

equilibrium. If we stress this last point, it is due to the fact that
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the equilibrium state is not a zero-stress state but there exists a

steady state stretching into the cable, steady state stretching which

is already included into our position vector £. We assume that this

last fact doesn't alterate the constancy of the linear density or the

flexural rigidity.

The boundary conditions are given for this problem by:

w(±L) = 0 = || (±L)

where L stands for half of the total length of the cable.

For the rotating uniform taut cable, the steady state axial force

is given by the constant built-in tension T applied to the cable and

by a compression force R resulting from the integral of the "centri-

fugal forces" applied to the elementary masses. If we consider a

cross-section of the cable, located at a position vector £, the system

of stress applied to the whole section is given by

= T -
o

or

= T -W

One remark should be mentioned here. One of our assumptions,

when we introduce the built-in tension T, was to make sure that every

elementary element along the cable was in a state of tension. With

the definition of the axial load, it is the same constraint as assuming

that ' ,_. „ . ' _
P(£) >, 0 for every £ or

L 2 , , 2L2.

0
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Introducing the value just found for P(O into the previous

relation, we have:

.4
W - ar V1' - V*t -T I 37 + ̂

3t

\ 3w
) 35

2 £_ , , ̂  „ _

= -'The introduction of the dimensionless variable s = :?• transforms the

previous equation into

I4 17." 2 ^ >(k "s} 3«j+ y 17= 0>

2 2
where we introduce the definition T = k T . The constant k is a

o

known quantity which has to be greater than one.

The last relation can also be written:

£ —T" — "^— I ll — ^ I ~z I + ^ 7, x" — 0,
9s4 9s \\ k2 / 9sJ 2̂k2 ^-2

9w
9sJ

2 4 2
where e stands for 2EI/ŷ  L k

Once again, we observe that the low flexural stiffness is com-

bined with the high spin rate to produce the small parameter e.

Written in a slightly different way, the parameter e is also

and is a measure of the ratio of the flexural stiffness to the built-in

tension.

The boundary conditions for the problem are also

w(±l) = |j (±1) =0,

conditions which express the physical clamping of the cable at its

extremities.
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Now that the dynamic equation of the rotating cable has been

obtained through the use of the well-known relation of a classical

beam subjected to an external load, we could in a completely similar

way have derived the previous relation by solving first the steady

stretching of the cable, and then determine the transverse vibration as

being a perturbation with respect to that steady-state of deformations.

The last derivation would give in general a partial differential

equation with nonlinear coefficients, and the first approximation of

the coefficients would give exactly the same relation as the one we

derived before. This last feature was mentioned before as being a

recognizable fact of continuous modeling, and already included into the

general derivation of the transverse vibrations where the substitution

has been done into the derivation, where

u expresses the deformation along the cable axis

A expresses the cross-section area of the cable

E expresses the modulus of elasticity.

The procedure we just outlined was the approach used by Abel and

Kerr, when they derived the dynamic equation for the transverse

vibration.

We now solve the transverse vibration equation, by using the

separation of variables

w(s,t) = <J>a(s) Pa(t) .

Substituting into the. previous equation, we have
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P + 03 P =.0
a a a

" ,4 ds V-1- ,2/ d
ds LV k '

where (•) stands for time derivative, u) represents the eigenfrequency

of the vibration. The boundary conditions become at the same time:

<j> (±1) = •—• (±1) =0.ra ' ds

As announced in Chapter 1, the method of matched asymptotic

expansion will be used in this problem, but a suitable change of vari-

ables is recommended first, so we define

s = kx.

We then have

e .IV 1 m 2,. ' 2(V , n
~~r 4 - ~j l(l~x )4> J - n 2 ^ =
k lr O \f " •R. , all JS.

where (') stands for spatial derivative with respect to x, or

2 2 2
where A replaces 2 w /fl .

The boundary conditions become: <j> (±k ) =. <j> ' (±k ) = 0. The para-

meter k is always bigger than one and consequently k is <^ 1.

Let us consider for the central part of the beam, a solution for

which analytic dependence on the small parameter e is given by:

<)>a(x,e) = hQ(x) + v1(e)h1(x) + V
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Once again, the subscript a, characteristic number of the mode, will

2
be omitted when not needed. Similarly the eigenvalue X of the problem

can also be expanded in terms of the small parameter e in the following

way :

X2(e) = X2 + <1(e)xJ + K2(e)X
2 +. . .

where K.(e) constitute an asymptotic sequence.

The differential equation defining hQ(x) is then given by

[(l-X2)hJ]' + Xg hQ = 0 (2.5)

and is a Legendre .equation.

Defining the Legendre function of the first and second kind by:

(̂X2, x) = 1 - (^) X2 x2 + (^) X2(X2 - 6)x4+...

5?2(X
2, x) = x - (^) (X2 -2)x3+...,

we see directly that SB* corresponds to the even modes and SB~ corres-

ponds to the odd modes.

We will now, discuss briefly some of the characteristics that we

are able to deduce from the zero order expansion of the modes based

on the fact that we are expecting boundary conditions for the Legendre

polynomials of 'the form h_(±k ) = 0. This last point can be seen

physically in the sense that we are not expecting a jump for the modes

near the extremities and will be shown later by the process of matching

the asymptotic expansions.

Based on the boundary conditions h_(±k ) = 0, we see that the

eigenfrequencies are the solution of the transcendental equation:

(̂X2, k-1) =0 and 5?2(X
2, k'1) =0 .
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One remark should be made here. Because k can take on only positive

values less than one, we observe that the singularity of the Legendre

polynomials at x=l is avoided.

2 2 2
We first study the even modes. Defining the ratio Xn/k = y ,

2 2
we will try to plot the variation of y_ with respect to k . The

2 - 1
relation ^-(X-, k ) = 0 becomes

' _1 2 + _I 2r 2 J6 i _1 2/2 6 w"2 20
2! yO 4! *VyO ~ , 2 ' ~ 6! yOtyO , 2 MyO " 2 ' " "~-

k k k

Some discrete values for the plotting are easily found like:

2 6 yO 2 2
yn = —r gives us 1 r = 0 or y_ = 2 and k -3
U - ^ Z Z U

k

2 20» = —r- gives us similarly
k

I2 = 14.8 and k2 = 1.35

= 2.32 and k2 = 8.6

2
We remark easily here that the value k =8.6 corresponds to the third

2
mode and the value k =1.35 corresponds to the first mode. By first

mode, we mean that the corresponding solution has no point of zero

displacement except the extremities and by third mode, we mean that

along the span of the cable, there is two points with a zero transverse

displacement.

Some interest lies also in the limiting case given when the

2
parameter k goes to infinity or when it goes down to one. In the

2 2 -1
limiting case, when k ->• °°, the expression ^ (XQ, k ) = 0 becomes

2
the expansion of cosyQ, and as a result the corresponding value of \1Q,

valid for the first mode, is given by
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n

This last result Is reasonable, because the case k -»• °°, corresponds

to the ordinary vibrating string. The effect of this distributed forces

induced by rotation becomes indeed negligible.

2
The other limiting case k ->• 1 is more difficult to handle due

to the singularity at x = 1. In order to study this last limiting

case, it is indicated to look for the intersection of the curve we are

2 2
looking for with the hyperbola defined by y_ = £n/k where e_ is a

Small parameter.

The intersection of 2-1 2 e O
U, k ) =0 with un = —r is given by

6
2̂

0

/ ' • i i6!k \k

Q

k. • •

£6 _6\/fo 2oV
~ ~ •' * * ~-^ • i ^ / • i ^ ' X i ^ ' i / ' • i i 1 i i2!k 4!k \k k / 6!k \k k ' \ k

Neglecting the higher order terms in en, we have

_ .
,2 2 ..2 ,,4k L 4k 6k

which can be written as

1 + -5- log(l - - ) - 0 or 1 - - e

so ,2
k

~2/£

1-e

2 2
As a result, we thus see that when y ->• 0, we have that k differs

from one by a trans cendentally small quantity.

We finally have for the first mode the following graph (Figure 4)

2
The previous graph shows also the asymptote when k -> °°, which also

represents the value of the eigenfrequency of the nonrotating taut
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Figure 4. Eigen Frequencies Corresponding to First Mode.

string. The hashed part of the graph represents then the decrease in

the elgenfrequency due to the rotation, decrease in the eigenfrequency

which is often referred to as the destabilizing effect of rotation.

As expected by the previous remark, the destabilizing effect decreases

2
when k increases, which corresponds to the decrease of the effect of

the forces induced by spin. We could also show how the first even

2
mode varies as a function of the parameter k (Figure 5).

LIMIT CASE k2=1

0 1
Figure 5. Mode Shapes Corresponding to First Mode.

A similar development could be done for the odd modes.

The relation ^
2 -1 22 2
_, k ) = 0 becomes, after defining A_/k = y

0
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2 2
We could once again derive some discrete value of y and k . The

2
limiting case, when k •* °°, reproduces here again, the result we might

2
expect from the taut vibrating string. In the case, where k •*• 1, the

2
corresponding value of y_ is once again obtained by looking for the

2 2
intersection of the graph with the hyperbola yn = 2+e./k and as we

2
might expect, the resulting value of y« is 2. All the results are

summarized in the following graph (Figure 6), which represents the

2 2
variation of y~ with respect to k for the second mode.

• Figure 6. Eigen Frequencies Corresponding to the Second Mode.

The destabilizing effect introduced by the rotation is again

apparent on the previous graph. By second mode, we mean, that there

exists along the span of the cable one point which doesn't experience

any transverse vibration. We could also show how the second mode

2
varies, as a function of the parameter k (Figure 7). After this

discussion on the zero-order solution of the eigenvalue problem, we

will now turn our attention towards the next order of magnitude of the

solution. However, before any attempt could be done in this sense,

we will have to look at the solution valid near the extremities of the

Vcable where we still have to prove that hn(±k ) = 0.
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k2=1

0 1
Figure 7. Mode Shapes Corresponding to the Second Mode.

Boundary Layer Near x = k

We now plan to look at the boundary layer solution near x=k

It is obvious that the boundary layer near x=-k could be obtained in

a completely similar way and will thus be omitted.

In order to construct the boundary layer expansion, a suitable

boundary-layer coordinate has to be chosen, such that the higher order

derivative terms dominate the equation.

Let

where <)>(e) • •* 0 when e -> 0x

so

<Ke)

-~ — 1 ~<j)x = k - x and dx = -<j>dx

_i
The corresponding asymptotic expansion near x = k is chosen such that

<J>a(x,e) = 60<e) fQ(x)

where the 6.(e) form an asymptotic sequence. The basic equation

becomes with the previous substitutions:
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V£> £fc
^ ^<p dx

- [1 -

- 2(k -<j

T.
A ^~(j) dx

6Q(e)

2 ~2J. *• J *•<J> dx

61(e)

A(j) dx

*..-]dx

XJ[60(e)f0(x)

[60(e)f0(x)

Expanding the coefficient of the second derivative, we have

(2.6)

- k
~2

^ - <})2x2 .

We now have to specify some information about the order of magnitude

_2
of 1-k . We will assume throughout the rest of the study that

' 1 - -i - 0(1) .
k

By assuming this, we consider the built-in tension to be greater than

TO, by a "sensible" factor. The thickness of the boundary layer is

then obtained by considering the highest derivative terms or

60(e)

so 4> = and x

The dominant boundary layer equation is given by:

2 ~4
k dx

2 ~2
k dx
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The boundary conditions are:

f (x) =0 for x = 0

«• «
o o o

Defining d fn/dx = fj(x) and (k -1) = k*2 , we have0'

2 *

dx
- k2 f*(x) = 0

Cancelling, among the two independent solutions of the last equation,

the exponential growth which is unfitted for the matching process,

we are left with

.. £ , c
dx

A first integration and one boundary condition gives us:

df *_
-k xx

A second integration and the second boundary conditions gives us:

~
*••« * —If v

f x'v\ « /I -II *^- **\
0(x) = -5fj (k x - 1 + e )

k

The matching condition with the solution previously found for the

central portion of the cable enables us to define the constant C .

We now expand the outer solution, near x = k . We define the variable

x' = k - x. We have for the even modes

, k"1 - x') , k"1) - , k

and for the odd modes:
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, k"1 - x') = ̂ (A> k *) -

An intermediate limit suitable for the matching near x = k is

defined by

xn ~ with x fixed.

Taking into account x' = <K£) x = /e xf, we also have

x = —T-r where —J >• °° when e ->• 0 .

-1
The behavior near x = k takes the form:

lim
£ -> 0.
x fixed

hQ(k

= 0

Replacing h_ and f_ by the solution previously found, we have

lim
e + 0
x fixedn

- v1(e)

The matching is then accomplished by taking

^ (X2, k"1) = 0

V?

= 0
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which is the relation we used before but was still to be proven and

also

«0(e) - &

where 3!. stands for both Legendre polynomials.

2

Now that the linear terms have been matched, we can see that

V,(e) has to be of the same order of magnitude as 6Q(e) so

v (e)

and also

~

With the information obtained through matching, we are now able

to look at the next order of magnitude for the expansion in the central

area. Applying a; procedure similar to the one used for the rotating

cantilevered beam, we plan to consider the orthogonality property of

the modes .

Let us consider two different modes <J> and <f>R defined by the

following relations.

f =0
£ IV 2A r/ i \ /k
k2 a "' . ~X

e IV 2.

k k r * 3 *

' ] ' -x 2
Ct (X

' A2

and the boundary conditions

" ~ " ') = o.
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Multiplying the relation defining (f> by <J>R and integrating over the

whole span, we have
-1

e

~2
v1 v1/ *"*, d* - /
-k -k

dx -

-1

^o = 0

The second term can be written:

,-1

7
-k

1
IS .,

- /
~

DJdx.
-k -k

The use of the boundary conditions limits the previous expression to

the last term. Integration by parts and the use of the boundary con-

ditions transforms the first terms into the following sequences of

expression

, -1/.,

We thus have finally

,-1

i Ji Wk •'. — 1-k

i -1 i-lk k „

-1 J --k -k

i-l i-lk k..

_
-k -k

k'1

•.-k

[>'" d>' dx

dx .

,
-k

— 1

The symmetry of the left hand side suggest that it is also equal to
,-1

f M
J _! *<•'
-k

as may be confirmed by a parallel development. Combining those two
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expressions, we obtain the expected result i.e.

,-1

7 4> ,,4>g dx = 0 for a t 3 .

The orthogonality relationship between the modes has to be com-

pleted by the relation normalizing the modes. We are thus free to

choose the modes such that

v1
/

-
<}>2 dx = 1 .

Considering now the asymptotic expansions used for the modes

<j>a(x,e) = hQ(x) + 71 ĥ x) +...,

the previous relation becomes, for instance:

/
• '

ho d x = 1

'

-k

Now that the orthogonality has been proved between the different modes

and also between the different terms of the asymptotic expansion, we

can come back to the main problem.

Once more, it should be emphasized that in the expansion used

for the modes in the orthogonality relationship, a uniformly valid

expansion should be used, a uniformly valid expansion which takes into

account the contribution of the boundary layer into the mode. But

for the problem at hand, the contributions of the boundary layer do
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not affect the relations found before, because we limit ourselves to

the expansion up to ve .

The differential equation defining h.(x) is obtained by replacing

2
the asymptotic expansions valid for X (e) and <j> (x,e) into the differ-

ential equation of the modes. We thus have:

2 T-
— A h i f \f (c} — JcA- nrt n K.- \̂ *) ~ yt-J. u J.

0 if — - -> 0
71

The relation of orthogonality between hfi and h found before, limits

the possibility to the case where KI (e) = /£ . The equation we have

to look at is now given by

[U-x2)h[]' + A2, ̂  = -X^ hQ . (2.7)

From this equation, we notice that an even correction h.. corres-

ponds to an even function h_ and reciprocally an odd correction to an

odd function. With the remark noted, we can now use the relation

k?1 2
obtained with the orthogonality property. The relation / h... dx=l

-k
gives us

k'1 ' '

^ g2 (\2Qy x)dx = 1

2

k'1

/

-

or

.2
D0 ,-1

fa
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Now, considering the equation defining h., Equation (7), and multi-

plying this relation by h and integrating over the whole span we have

-1 -1 -1

/ [(l-X2)hJ]'hddX + Xg I h± h^X = - \l I

-k -k -k~

2 2
IQ dX=-X^

where the normalization relation has been used.

An integration by parts and the use of the relation

fJU-3h,h. dx = 0 gives us

-k" -k

The use of the boundary condition and a new integration by parts gives

U S - 1 - 1
k k*• /•

+ / h1[(l-x
2)ĥ )]'dx = - A

2 .

-k"1 -k'1

Considering now the differential equation defining h_, Equation

(5), and using the orthogonality between hn and h , we obtain

= (l-x2)hjh1

-1

-k-1

We mentioned before that to even modes corresponds even corrections

and vice-versa. As a result the expression h' h takes on different

—1 —1
signs when evaluated at the end points k and -k and we are thus

left with

2 = 2(l-k"2)ĥ (k~1)h1(k
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Gonsidering now the information we found in the matching near

x = k we have that

k

We thus have
-i2

The final expression for A is then

1 .2 '-Ik k.
;, x)dx

2 2
The values found for X,. and A are also those values which

guarantee the orthogonality between different modes. This derivation

is less straightforward and is presented in Appendix t, so to lighten

2
the presentation. Now that the value of A has been found, the

determination of h (x) is completely determined with the help of the

boundary conditions we obtained in the matching process.

To complete the study of the present problem, we will now look

at the next term of the asymptotic expansion used in the boundary

layer. The matching near x = k suggests as the order of magnitude

for 61(e) the value e. The differential equation defining f^ is given

by considering the terms of order of magnitude
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e6 (e).
1

in the boundary layer expansion, Equation (6) , or

— - - - ( 1-k2 ~4 v
. *- j ̂ "T

( k dx

-2 l -1- O
" - - - 2 k x - - -2k~2 ~2, *- j t.
dx dx

df
= 0

'

The expression previously found for f_ is

C *~
f f~\ 0 r, * - , , -k x , , •fQ(x) = -£2 [k x-l + e ]

k

where C_ is a known constant. We thus have:

'*<! 2 A
. . ... fir 1 '\ . i .

^4 ~ ^ •~1' ^.2
dx dx

ov r1
- 2k CQ

i ~ i -k x~ -k x , 1 ex e -\—r- - T—

It would be instructive to compute the complete solution valid

for f 1 . To reach this objective let us define

,~
dx

.
fl '

*2 2
We have, taking into account the definition of k = k -1,

2 *
d fi *9 *
— T~-> fi
dx

2kc
* ~
X

-k*x

The particular solution f-p is taken under the form

* ~ *„
* ~ —k x 2 —k x
flp = 2k CQ[a0+ a1 x e + &2 x e ] . -

V ' ' • *
Introducing this development into the equation defining f1, we obtain

the following three relations:

a_ = -
4k
* and ai

4k
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The total solution is now written as:

d2f- *~
f - -T - C.
1 dx

91r P I -I-

^fc L0 ~ *3 , *2L k 4k

~ -k x 1-2 -k*xx e - —r x e

The boundary condition for f , are given by:

df
(x) = f1(x) = 0 for x = 0.

Integration of the previous equations gives us:

df, C, . *~ 2k Cn k C0 . ̂
1 1 -k x 0 ~ . 0 -k x_ — e 5j- x + —jfi e

, k . k J 2k

f x 1
I * ~ *9
L-k k Z.

k Cn *~ ~2 0~Q -k x x _ 2x 2
* e * *? ~ *3

2k L-k k k J

The use of one boundary condition transforms this expression into

df ' *~ 2k C_ k Crt *~ k Cn 0 . *-_ 1 . _ -k x _ _ 0 ~ _ 0 ~. -k x . _ 0 ~2 -k x , _
-- = - C e - — - x + — - x e + — r x e + C
dx 2k 2k

Integrating once, more we have:

r * V p urV^o i •>* " - V . - V f\ I V V ^ r t ,"»s,,: 2 -k x 0 ^2 0 -k x
1 = ~ e ~ 5TT x *T e

k k 2k

xf x _ 1 1
* *2L-k k 2J

+ —*2*
2k Z

*- . ~.-k x x 2x
, *2

The boundary condition gives us

k_C0 kC k C

k*~2k*5 *5
= 0 or C2 = 3

0 *
- k C
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So we finally have

k Cn 9 i*~ 3k Cn i,*~ 1 *~ k Cn o, _ 0 ~2 -k x 0 ~ -k x _ -k x _ 0 ~2
f = - — £T- x e - - jfT x e - C e - -j-r- x
1 2k 3 2k 4 3 k 3

'3kC
0 *
- k C3 '

We can see that in the previous relation, only one constant is left

unknown, C~, and this last constant will now be determined through the

matching process!!

The matching near x = k is given by the following expression

lira
e ->• 0
x fixed '

x') + V1(e)h1(k"
1 - x'

(e)f

Some of the terms appearing in the previous expressions have already

been matched, so let us consider the remaining ones; we then have

' 22

lira
e -»• 0
x fixed

.. .Do
dx 2

*2

-e

-1 + e

*3 e

nx

2k*3 e

3k CQ^T,

*42k

- C3 e = 0 .
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The matching is obtained by the satisfaction of the following

equalities

dx

0
3

_ n- 0

- k

The last equality defines the value of

determined is thus given by

3k C^

and the last constant to be

<3=7
*4

The second equality was already found before and used. We are thus

left with the last equality or replacing Cn by its expression

1 • d
2D0~dx

v 2 , — 1N k ,*
0'k }-^3k

k
— &, (X2 k~]

2

This last relation can also be written

2
*2

.dx
—
dx = 0 ,

and this last relation represents an identity as we can see from the

differential equation defining h_ or

[; - 2X h^ + XQ hQ = 0 .
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Evaluated at x=k , the previous relation becomes

(l-k~2) h^Ck'1) - 2'k~1h^(k~:L) + A2 h^k'1) = 0.

We already know that h,,(k ) is zero so we have

9 H 2 9 1 H 9 1
(k -1) -Sj ^(Ag.k ) - 2k -^ SB ( X j j , k ) = 0

dx 2 2

which is the last identity.

With this, we have completed the study of the modal analysis for

the transverse vibration of a rotating cable of small flexural rigidity

clamped at both ends. This last problem has been introduced mainly to

become more familiar with those types of problems and gain more insight

into the physics of the problem. The experience is mainly to be used

in the next step of our study which will be dealing with a two dimen-

sional approach for similar problems.

We conclude this chapter by summarizing some of the results of

this last section. The final expression for the eigenfrequencies is

reported as

2 1 02 .2 1 02,,2 r .2 , .OJ = -~ U. A = y Si. (,A_ +•£ A. +...).

2 .
where A_ is the solution of the transcendental equations

(V (\*- l,"̂  — n anrl 5P (\ \f~ ) — f)=£ - ̂A«,K ) — u and ot-„^A,-. ,K. ) — u

and _ _ 2

X? = 2
k

_

-k
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The determination of the constant k2 is obtained by recalling the

9 ?
definition T = k2TQ, where TQ = y « L /2.
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. CHAPTER 3

DYNAMICS OF ROTATING THIN PLATES AND MEMBRANES

3.1 Introduction

In this chapter, we concentrate our attention on the problem of

a dynamical study of two elementary planar structures characterized by

a dominant effect of the forces induced by spin over the flexural

rigidity.
i

We fociis our attention mainly on two problems. In the first one,

a modal analysis is done for a rotating very thin circular plate or

membrane with some flexural rigidity, clamped along its edges. This

type of study is oriented towards the possible use of large spinning

membrane-like disks as optical and radar reflectors for space vehicles.

This last use of spinning membranes has led to a renewed interest in

the problem of calculating the transverse vibrations of an elastic disk

rotating at a constant speed — a problem which traditionally has been

studied in connection with gas and steam turbines. In the second part

of this chapter, the modal analysis of a free spinning membrane is

accomplished. In both of those studies, only vibrations usually

referred as "out-of-plane" are considered.

3.2 Dynamics of a Taut Rotating Membrane in a Circular Ring

The deformable element consists of a large flexible circular

membrane undergoing transverse vibrations, while rotating with an

angular velocity f2 with respect to the axis of symmetry, defined when

the structure is at equilibrium.
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The following equations of the motion are given in a reference

frame located at the center of mass of the total system and rotating

with the system at the constant angular velocity ft. The direction of

the £ axis will be chosen in such a way that there will be no need for

a phase angle in the equation of the motion. We are free to choose

such an axis due to the symmetry of the particular structure under

investigation. The physical characteristics of the membrane will be

assumed constant throughout the whole membrane.

It must be emphasized here that the effect of the spin on the

membrane is a destabilizing effect: the rotation not only introduces

a decrease in the stiffness but also instability can occur due to the

creation of a state of compression into the membrane. To take care of

this last problem, we introduce a built-in tension — a similar pro-

cedure was used for the rotating cable — such that the membrane, when

rotating, is everywhere under tension.

Figure 8. Rotating Taut Membrane.

In the study, we will disregard the stresses, which occur on

account of the mutual pressure of horizontal layers of the disk and,

consequently, the strains in the direction of its thickness; the
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problem is thus simplified and the generalized Hooke's laws give us the

following relations:

Ie

where E stands for the modulus of elasticity,

V stands for the Poisson modulus

£Q and e stand for the tangential and radial strainse p •
respectively

<Jfl and 0 stand for the tangential and radial stresses

respectively.

Also, because the thickness of the disk is small in comparison with its

radius, the variation of radial and tangential stresses over the thick-

ness can be neglected. Also, a hypothesis analogous to the hypothesis

of plane section in a rod will be used. A linear element within the

disk perpendicular to the middle plane remains straight and normal to

this plane after its deflection during bending. All those previous

assumptions are part of the approximate theory of thin plates.

In this study, the problem of the stretching of the thin disk is

solved first and the dynamical equations for the transverse vibrations

are then derived as deviations with respect to the steady state. This

last remark constitutes a characteristic of continuous modeling and

will be materialized in the following pages . We also assume that the

stretching of the disk does not alter the constancy of its physical

characteristics.
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The stress distribution in the membrane must satisfy the follow-

ing expression, as an equilibrium condition for the forces acting along

the radius. \.Jd

Figure 9. Distribution of Stresses.

Q + y f l 2
P

2 - 0 (3.1)

where y is the mass per unit volume of the material of the disk.

Because of the symmetry, there is no dependence in the angular variable.

This relationship and the following results from classical thin plate

theory can be found in Reference 20.

For a circular disk, the strain components, in the case of sym-

metry, are well known and given by

du . • ue = -jr and eh = —p dp 0 p

where u represents the radial displacement. The generalized Hooke's

laws and the expressions for the strain components give us:

°P=7^

E /u . , du \

T7\f *> '
Combining those expressions with the equilibrium condition (3.1), we

obtain the equation for the radial displacement of the disk u.:
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2 d2u , du 1-v2 n2 3
P ^2 + Pd?-"--— "° P

The general solution of this equation is

1 C
(l-v)Cp - (1+v)

P
l

where C and C.. are arbitrary constants. The corresponding stress com

ponents are now found from:

Because we are dealing with a complete disk, we must take C = 0 to

have u=0 at the center.

In the determination of the constant C, we have to be very

cautious. The reason is coming, from the interpretation of the boundary

condition for the problem

u = 0 when p = a.

This last boundary condition is, indeed, only valid after the membrane

has been stretched statically by the built-in tension T. As a result,

the constant C contains two parts, one coming from the built-in tension

and the other from the satisfaction of the previous boundary condition

for the radial displacement originated by the radial forces induced by
i

spin, only. The last reasoning is perfectly valid if we consider that

the generalized Hooke's laws represent a linear dependence between

stress and strain. We know that in a circular membrane under a
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constant tension T, the stress components are the same and equal to the

applied tension. We, thus, have

C = T + C' ,

where T is the constant built-in tension. The determination of the

constant C1 is now determined by using the previous boundary condition,

but by considering in the constant C appearing in the expression of

the radial displacement only the contribution of C'. The total dis-

placement is then obtained by the summation of the displacement

produced by the built-in tension and the displacement We just derived.

So
2

(l-v)C'a = ̂- V ft2 a3

and

o. 1+V '22C' = — y n a

The final expressions for the radial and tangential stresses are given

_ . 1+V 02 2 3+V 02 2 ,0 _,ap = T + — y n a - — y SI p (3.2)

m , 1+v n.2 2 l+3v 02 2 /0 ..aQ = T + -g- y n a - — — y (2 p . (3.3)

One comment should be added here. Namely, we assumed before that the

built-in tension must be such that a positive tension is present every-

where in the disk or

a = T + y tt - y ft2p2 > 0p o o —

for every p such that 0 <_ p <_ a, or
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which gives us
o2 2

For simplicity, we will write the tension T under the form

2 2 2
T •., k y flV

2
where the positive constant k is greater than one. With this last

remark, we have

1 + 2k2+ V '^2 2 3+v 02 2a = —:—g— y n a - -g— y ft p

1 + 2k2+ V n2 2 1+3V n2 2. aQ = g y fl a — —g— y (2 p

We thus have illustrated here the fact mentioned several times earlier

that the equation of the transverse vibration for a continuous model

represents in fact the perturbation of the system with respect to its

steady-state deformation.

Now, that the distribution of the radial and tangential stresses

is known, the dynamic equation for the transverse vibration of a cir-

cular plate subject to radial and tangential stresses is given in

general form by: (see Reference 20)

E h2 V4 w . . „ / „ \ an .2
e__ jl «

where h represents the thickness of the disk and

4
V is the Laplacian operator which expressed in polar

coordinates represents
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3 1 _3

p2 392 '

The boundary conditions for this problem are given by expressing the

clamping condition along the edges or

w = 0 ] when p = a

tr=° -.)
Let us now introduce the dimensionless quantity r, defined by the

relation:

p = ar.

The previous expression becomes then:

Eh2

12a4(l

n* j. * 9 L 3w~| .. a6 3w 3 w
— , V w + — 3r- [V 3r-J+ TT ~2 = y ~2-V ) a r L J a r 36 dt

,, /N
(3'4)

where

and

22

22

Dividing through by y 0 we obtain:

8r

[(1 + 2k2+ V)r - (3+v)r3]

[(l+2k2+v)-(l+3v)r2] 1- . - i-
39 3t

This last equation is appropriate for the use of separation of vari

ables, providing the initial conditions are also separable. Let us

then use for the solution an expression of the form:
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t + m8)
(k ( ") a'mW â.m '(

This last expression is completely general and there is no need for a

phase angle for the reason explained earlier.

The equation of main interest for our purpose is given by the

differential equation defining <f> (r) :

Eh2 4 . , (l+2k"+v) d | /, .- • 3+vV <p + ~
12(l-v2)aW m' <*>"> 8r dr l\ l+2k2+v / dr

(l+2k2+v) m2

8 2r
1__J±3^L_ r2], ..:!L.

l+2k2+V I a'm fi2

where a) represents the eigenfrequency of the vibrationot > tn.

2
V is the linear differential operator defined by

. 2 • 1 d m2_
m . 2 r dr 2dr r

We now define the following quantities

2 E "2

3(1-V2)

a'm

k2 =

k 2=

l+2k2+V

2 9
l+2k +v

The final expression for the differential equation for <}> (r) is thus
Utr y HI

given by
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i i O •

r>4 , i 1 d r ,, , 2 2,. a.m m . r, . 2 2, , .,2 , _-ev A + — -;— [r(l-k,r ) —r—* --- r- [l-k0r ]A +X 4 =0
t n Ta,m r d r l d r 2 2 JYa,m a,mra,m

r (3.5)

with the following boundary conditions:

, , v when r=ldm
-£=-« - o

Here, again, we notice that the small flexural rigidity of the

disk combined with the high spin rate produces the small parameter e.

2 2
We also notice that the parameters k.. and k~ represent positive quanti-

ties less than one.

The problem has now been formulated in such a way that we are in

a position where a procedure similar to the procedure used before can

be used.

Expansion Valid in the Central Region

When r ^ 0, the expansion valid in the central area takes the

form •

<t> (r,e) = h-.(r) + v.. (e)h.. (r) + v~(e)h0(r)+..:..cx,m U 1 1 2 L

A similar asymptotic expansion is also used for the eigenvalue or

i " ' i ' / \ ̂  *• • / \ \ *** i '

Once more, the subscript a,m will be momentarily dropped in order to

shorten the notation. It will be explicitly used later on when needed

to differentiate the modes.

2
Introducing the asymptotic expansion valid for <|> and Acx * in ' ex • in

into the differential equation (3.5), we obtain the following expression:
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- E

1 d f ,_ .2 2, dhol A , , 1 d (" n .2 2, dhll
7 17 |_r(1-kir > -d7j + vi(e) 7 Z7 [/d-V > -I7J

2 2
^ .[l-k2r2]h0- v^e) ^ [l-k^r2]!^ (X^Ce) A 2 +. . . )
r r

(hQ(r)

The differential equation defining h_(r) is then given by:

1 d I '. . 2
7 d7 [r(1-ki

, dh_ I 2A 0 I m r, , 2. 2-,, . , 2. . _
r ) -JT I - — [1 ~ k2r ]hO 0 0 = '

This last expression can be written, when we introduce the new variable

klr = rl

as

1 d [ '.. 2. dho] m2
 M , 2 2, . ^^0 , _ „

3 I r, ( jL~rn ) , - •• I ~ r, I J.~k0rn I n_ T 0 n_ — u
rl drl L1 1 drlJ r2 3 1 ° kj °

(3.6)
f. J J. \J , £. U

^ kl,2
2 2 l+3v

where k, stands for — = T7r~~ •

kl

Let us write down the solution of the previous equation under

the form •

ho *-'ri Ho •

By substituting the previous expression into the equation defining

h_(3.6) we can eliminate in the coefficient of H_ the terms in r ,

by taking for n the solution of

2 2 nn - m = 0 .
or

n = ± m .
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The solution n = -m is to be eliminated for the singularity that such

a solution introduces at the origin; we thus have

ho = ri Ho '

The differential equation defining Hn is then obtained

1 2 dH0 dH0 2m 2 dH0

or

dr' 1 1

/ 2 2 2 *0
-12m + m - m k- ^ J H = 0

\ kl

2 ^O 1 2 dH0 / 222 A0\
(1-rp —^ + f- [ (H-2m)-(3+2m)r̂ ] -r̂ - - hmfm^-m^ - -f JH = 0 .

drx 1 1 \ kj

(3.7)

To bring this last equation to a form more familiar, a new change of

variable is recommended and we define

2
r1 = x. ;

We should emphasize here that x can only take on positive values lying

2 2
in the interval between 0 and r.. max = k.. which is less than 1. With

this last change of variables, the previous equation can be written

under the form -.

7 / 7
dH /

x(l-x) —^ + [(mfl)-(m+2)x] -£ - 7- ( 2mfm/-mX - ̂ JHQ= 0. (3.8)

This last expression can be reduced to the hypergeometric equation

which is written under the general form

d2H dH
x(l-x) - j+ [ Y-(«+3+l)x] -^ - a3 HQ = 0

dx
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So we have to solve the following substitutions:

Y = 1 + m

d + 3 = 1 + m 2

a 1 /, ^ 2 2 , 2 X0
ap = T I 2m + m -m k_ - ——

\ kl

The range of. value for x lies within the range of convergence of the

hypergeometric function.

For the previous equation, we know that the roots of the indicial

equation at the regular singular point x=0, are given by 0 and (1-Y)•

As a result, one of the solutions of the previous equation can be com-

puted by considering

10 -r Vn=0

A direct substitution into the equation yields the identity

00 00 00

£ « —1 "^ ~^ _ » ' *\ T1—T

n(n-l)a x - / j n(n-l)a x + X, nj a x
_ n ••1 n ••-̂  n

n(a+g+l)a xn - a3 a xn = 0.
n

We then group the corresponding summations and find

xn = 0
n=0 n=0 n

Now this may be written
00 00

-1) a , = 0
n=0 n~
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From there, we find that the recursive relationship for all determin-

ation of the a 's aren

= (g+n-1) (B+n-1)
an (Y+n-1) • n an-l

for n > 1, with aQ arbitrary. At this stage, we must insist on the

fact that y has to be different from zero or any negative integer to

make sure that the previous recurrence is defined, but

Y = 1 + m which represents always a positive

quantity.

Finally, the solution of the previous equation is written with

the help of the hypergeometric function

6 Y-X) = 1 +,p,Y,x; 1+ , -t 21

a(oH-l) . . . (a+n-1) B(B+1) . . . (3+n-D
Y(Y+D...

under the form H Q = a_F(a,3,Y;x) .

The solution we just developed represents one solution of the

previous equation. This last solution is convergent for |x| < 1,

which is our case of interest.

In our particular case, it turns out that the difference between

the roots of the indicial equation at the point x = 0 is zero or a

positive integer. As a result, the second solution generally used for

the hypergeometric equation, more explicitly

x1~Y F(a-Y+l, 3-Y+l. 2-Y;x)

is not linearly independent of the solution previously derived. How-

ever , it can be proved that the second linearly independent solution
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is to be canceled. The derivation of the second solution is quite

lengthy and is presented in Appendix II in order to lighten the text,

The final expression for hn(r) is then

h0(r) = rm F(a,3, 1-hn; kjr2)

or

where

, , , , m „/ 0 n . 3+V. 21
h0(r) = b 0 r Fa ,3 , 1-hn; —-- r ,

l+2k +v

a+3 = 1+m

and

if we write

1 / 2 2 2 0^ I n i *• "• i *• *-'~r [ 2in + m -m . k» - — r

9

Boundary Layer Near r=l

We now have to study the boundary-layer near r=l in order to

pursue the problem.

The separation of variables being valid for the partial

differential equation for the problem, the boundary layer problem is

limited to radius dependence of the modes.

To study the boundary-layer expansion, another boundary layer

coordinate must be selected, so that the higher derivative terms

dominate the equations and are of the same order of magnitude. Let

1-r
<Ke)

where <f>(e) + 0 when e ->• 0.
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The corresponding asymptotic expansion valid near r=l is taken as

where the 6 (e) constitute an asymptotic sequence.

2
The linear differential operator V becomes nowm

2 2
C T 2 d ^ 1 d m

(j>dr

The basic differential equation (3.5) becomes with the previous substi

tutions:

m
24>dr (l-4>r)

m d>

-.2
<j>dr

d2*
g,m

2dr2

Tg.m

<j>dr

, d<|>2 Yg,n

4>dr

(1-
- =• [1-k2

2 2
= 0 (3.9)

or

- e ^g.m 2 d2<}> •a,m Tq,m 02m
j~dr

rg,m
+ -^-.) +

m 4m
d)df \ ,. ,~ S 3 ,, ,~S3 / a.m

- - '

n(l-()

- k. -<)>?) 2 )<f>/ a,
A2(j) = 0 (3.9')

m g,m
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The thickness of the boundary layer is determined by balancing the

2
higher derivative terms or, if we assume that 1-k, is not of an order

of magnitude of e, by considering:

or
.2 and ((>=/£

2The previous remark, about 1-k-, is considered now

. , .2 = , 3+v 2(k2-l) .
• L ~ K i J - 9 2

l+2k +v l+2k +v

The previous assumption is of the same nature as the assumption we

• ' ' 2
made while studying the taut rotating cable. We want the parameter k

2
to differ sufficiently enough from one, so that the difference 1-k..

differs from zero by an order of magnitude of e.

Replacing in the last development 4> (r,e) by its expression
. • Ot jIQ

defined previously, we obtain for the differential equations defining

fn, the dominant part in the development (3.9') or
4 2

d fO 2 d fO- -^ + d-kj) -rr = o .
1 *T JU j *•dr dr

The boundary conditions for the problem are

dr

Defining

d f,

d?

f0(r) = 0

dfo -(?) = o

when r = 0
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and considering the fact that 1-k, is a positive quantity, we obtain

*
as a solution for f,_

2
n0

,
fO ' Ci e

where the exponential growth has already been disregarded for its

problem in the matching process.

Integrating the previous expression twice, and taking into

account the boundary conditions for f-., we obtain finally:

r
°" J—2vi-k*1

-vi-k r i r
e -1 +vi-k^ r - 1

where the positive sign is always chosen in the previous square roots .

We are now in a position where we can try a matching between the expan-

sion valid in the central area and the boundary layer expansion. The

2
equation defining the eigenvalue X should come out of this matching.

We need to expand the solution valid in the central area near

r=l. We define the variable

1-r

and we have

where

and

(̂X̂ .l) -

•dh,

= b l+2k
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dh.
Fa,e,l-hn;

l+2k -fv

l+2k + v
x =

3+v

l+2k2+v

For matching, an intermediate liinit suitable for matching near r=l is

given by r fixed:

r =n n(e) where r' is always positive.

What we want in r •> °° when e •*• 0 and this is reached if

—2 >• oo when e •> 0

The behavior near r=l takes the form:

dh,
lim ,.
e + 0

r fixed

1-k,

The matching is accomplished if we take

2 —0-<- r-
l ̂

dh.
60(e) - ̂ and -

The first equation is nothing else than the equation defining the

2eigenvalue A' of the problem or
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F(a, 1+m - a, 1 + m; —^~—)= 0 .
\ l+2k +v /l+2k

The second equation gives us

' r - », 2(3+v) dF(a,B.l+m;x)
1 ° l+2k2+v dx

Coming from the matching, we also have that

v.

and

2
x = 3+v/l+2k +V

or

This information about h.. enables us to obtain the differential

equation defining h,. Considering the development of the basic

differential equation (3.5), we have:

Id i M ,2 2,
 dhl] m2 M ,2 2,^ ., ,2^ ,2^ ,. im

7 dr" T̂ -V > ~dr" ~ ~2 [1~V ]hl + Vl = ~AlhO ' (3>10)

This last expression implies also the choice of Jz. for K..(e). This

value has been considered for the same reason as in earlier development.

There exists an orthogonality relationship between the modes — shown

later — and this last constraint suggests as an order of magnitude of
r\

K.. (e) , the value VeT . We see, indeed, that for A, »Ve , the solution

for h.. would be the same as the one found for h_ and the orthogonality

would be violated.
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In the differential equation (3.10), the only freedom left, to

2
define the problem completely, lies in the determination of A, and this

constitutes our next task.

Orthogonality Relationship Between the Modes

The complete expression for the modes is given by

<j> (r) cosmQ . . .Ta,m '

Let us now prove that the orthogonality relationship between two

different modes is given by

1 2TT
/ fI I r <b (r)d>0 (r)cosm6 cosn8 drdB = 0
JL ./. a,m p,n

0 2

This last relationship is straightforward if we consider two modes for

which angular dependences are different. The direct integration with

respect to d9, for m ^ n gives us directly

27T

cosm9 cosn9 d9 = 0
0

As a result, the case of main interest is given for two modes having

the same angular dependence i.e. with m=n. Let us now prove that

1

/ r <f> (̂ Q̂ (r)dr = 0
•'o a'm

The differential equations defining (j) and <J>Q are respectively
a,m JD,m

A j. 1 d F /i , 2 2 N' d<t>a.m1 m2
 M ,<^ + — — r(l-k,r ) * -- r [l-m Ta,m r dr [_ 1 dr J 2

A j. /i , N . M , 2 2, . ^ ,2 ,-£ V <^ + — — r(l-k,r ) * -- r [l-k0r ]d> + X 4>T 2 Ta,m a,m a,m

7 It
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We now have to distinguish between the canes where m=0 and
V

Case A; m ̂  0

The boundary conditions are given by <j) =0
Ut y TQ

q.m
dr = 0

for r=l

and similar boundary conditions for <j>Qp,m

Developing the expression of V <j> , we obtain:
in ex y m

/ d4<t> o d34> 0 2., d2<}> - - 2 . . d(f>y^ A _ a,m J2 q,m _ 2m +1 q,m_ 2m +1 q,m
m Vm . 4 r , 3 ~ 2 , 2 3 drdr dr r dr r

4 - 2, m -4m ,H — : — -. - (p . • .
. r4 -yq,m

Taking the differential equation defining <j> and multiplying thisUt * in

relation by r c(>0 , an integration from 0 to 1 gives us
p,m

-L r V * d>- dr +
m rq,mT3,m

r -d r /i v2
70 a? Lr(lTki dr,m

.

The first term

1

J r 7m*a iA

1 2 1
/*SL_ [i_k2r2]d> <b dr + f A2 d> <

•/Q r ,m p,m ,/Q ,m ,m

can be developed as

1 4 1 3

/

d <p /• d <j) •q,m , , . / 0 q,m , ,
, H p.ro «/- , J p,mu dr ' 0 dr

/

2 d d) /• ^ 2 dd;2m +1 Tq,m , , I 2m +1 qtm ,
u .r dr2 3,m JQ r2 dr f

1 / o/• k . 2
, / m -4m . . ,

^ r\ - " ^* j HI M ) 111

Integrating by parts and using the boundary condition, the right hand

side can be written
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/
___ dr - , dr
dr3 dr •'O dr3 e'm

dr
,m

r/
I
* r

, , ,
<J> <J)0 drv

One remark should be added here. For the case where mj'O, the nature

of the solution is such that there will always exist for those modes,

a nodal diameter with a zero transverse displacement. But the exist-

ence of a nodal diameter of zero displacement implies, that the dis-

placement of the origin should be zero and we thus have for the case

where m^O

d> = 0 = <f>0 for r = 0 .Ta,m 3,m

An integration by parts performed on the three first terms, combined

with the use of the previous remark transforms the last expression into

1 7 O .

0 dr dr 0

<M>Q „q,m
dr dr

. , 4 , 2. /" 1 .+ (m -4m ) I —r <b q>0•'/-. ^ cx,m p ,i
dr .

A similar derivation could be done starting with the differential

equation defining <f>fi , and subtracting this similar expression fromp ,m

the expression we just found, we obtain
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-e [2m + 1]
a.m

r dr 3>m r dr Ya,m

+ ( X2 - X2 ) f r <Jr cf> ' = 0
y ot,m 3,m/yo

 Ya,mY$,m

Considering that (j) and <J>fi are analytic in the neighborhood of theot jin p 9 in

origin, we can expand <J> and d>0 in the following wayot,m p , m . ' = ' • '

.m dV

and

L m(
r) = $„ m(°)

 + A»•* (°) r + ~ 9ot,m oum dr , 2.' ' dr

d^o „ d <)>„

i— (o) yr +• • •

dr
dr

2 (1) "Tj" "*"• • •

where the first terms are zero by virtue of the remark done before.

We thus have

a Tg.m
r dr

dd>Ta.m"

dr

d<f>

I.m ( q,m ,m ., , r

"
This last expression evaluated at this origin gives us zero,

finally obtain the predicted orthogonality relationship

I.

(r) <|>Q _(r) dr = 0 .

We

1u
Case B; m = 0

,m 3,m

This case corresponds to radially symmetric vibrations, and as

a result the physics of the problem introduces as value for the first

derivative at the origin:
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d .o
dr dr = 0 when r = 0

A development similar to the one done before for m^O, where the last

remark has to be substituted gives us

d<frfiPi
dr . l r dr

~ r
1,0 dr I r dr

,2
na,0 <|»0 n dr = 0 .Y

0

Let us consider the expression

d_
dr

d2<j>

r dr <*»0 , 2' dr

.Q 1
r Ta,0 dr

in the neighborhood of the origin. Considering that ()>„ _ is analytic
d<^6 0*

in the neighborhood of the origin, we can expand —T*— in the follow-

ing way

2 3dfyr. n d <(>„ „ d <)>„ „ 2

dr
(o)r

m {dr * ~dr

Taking into account the remark done before about —T*" (o), we have

r *a,0 57 r dr
0

dr

d2<J>
3.0 (o)

dr

d\

dr'

Evaluated at the origin, the last expression becomes zero and we

finally proved also that

1
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Now that an orthogonality relationship has been established for the

modes, the substitution of the asymptotic expansions valid for each

of them brings us the following relation for the zero order terms .

r h (r)hft Q (r)cos m6 cos nQ drd9 = 0 .
0,a,m 0,f3, n

Again, our main interest will be oriented towards the case where

m=n. The case m^n is, as mentioned before, automatically satisfied

by performing the integration in 9 first. The differential equation

defining h~ and hn 0 are given by:U,(X U,p

I d_ f , 22. dh0.a"| _ m2. r 22. 2

and

A I o o "nr\ o I m^ 22 2

or for

r hO,a = °

and a similar expression for h_ ft. But these last expressions repre-U, p

sent particular cases of the more general eigenvalue problem of the

Sturm-Liouville type

, r dh

H-
If we now consider the boundary conditions of our problem or

hO,a = 0 when r = 1 ,

combined with

2-114



hfi =0 when r = 0 for the case m ̂  0

or

dhO a
—:—'— = 0 when r = 0 for the case m = 0,

our problem satisfies the requirements of the Sturm-Liouville problem.

We can then deduce that for our problem, there exists a countable

sequence of eigenvalues and a countable sequence of eigenfunctions

satisfying our problem. In addition to that, we have that

' . . - ' r . . ' '

j£r Va(r)hO,Bdr = °

and the orthogonality of the zero order is automatically satisfied.

The orthogonality relationship we derived before has to be

completed by the relationship normalizing the modes. We then define

1 2U

/
/ r <f>2 (r) cos2m6 d9 = 1 .jn a,m

"0

Integrating with respect to 6 , we finally obtain

Introducing in the last expression, the asymptotic expression used for

<j> , we have the following relations
UC • lu

/ V,W"-.i

jT'r hQ(r) h^r) dr = 0 .
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The first relationship will be used in order to define the con-

stant b.., still to be determined in the expression of h_, and the

second relationship will be used in order to determine the value of

X2. We had

hn(r) = b_r
m F(a,g.l+m; 3+V r2)

U U \ l+2k +v /

so we have

1

/
2m+l ,2 _2 / . . . 3+v 2\ ' 1

r b F la,3,l+m; 5 r I dr = TT
u ° \ l+2k2+v / Ul+2k +v

and

'on " T :
/ 2m+l_,2/ Q .. . 3+v 2\ ,
I r F la,g,l+m; r—r ) dr

• 0 * l+2k +v /

2
In order to determine X1, let us consider the differential equation

defining h (r) (3.10) or

— f (1-k2 2) —1- si ri-k2r2! h + r X2h = -X2r h
dr |_ ~ lr . dr J r 2r 1 01 lr 0

Multiplying this last relation by h-y, and integrating by parts the

first term, we have:

„ o dh. dh dhn
 lr 2

•t • _ - / - ! 1_*-__*-\ -*- ^

n o •'o . * "f "v "o
f n ,2 2,

 dl dhO , m n ,2 2.. . ,- I r(l-kir ) — — dr - J — (l-k2r )^Q drdr "0
u u u

,2
Al

~ "ff '
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2
Considering the fact that h.(A' .1) = 0, and integrating by parts once

more, we have

1 1

-[•«"!•'> T?'.]

-}. ,, ,- (l-k2r
.
dr . - - — .

The use of the differential equation (3.6) defining h_, gives us

or

but

dh
-L •> ̂

C 2 Xl
- L r xo ho hi d r = 'If

1 "0

dh

dh
and

- -C

1-k,

so

j ,dr 1
1-k! 1-k!

2(3+v) dF
9 —

l+2k +V dx

3+v

l+2k +V

Finally, we have

2(3+v) dF / -

_l+2k2+V dx I
1+ 3+V \1,l+i", 2

l+2k +v /J

/

2m+l 7.1 0 . , 3+V 2 . ,
r F la,B,l+m; 5— r | dr

u V l+2k +V

With the determination of A-, the obtention of h (r) becomes an easy

task and a well specified problem.
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In order to complete the derivation done for this membrane, we

should look at the problem that could arise at the origin. We know

that the origin r=0 represents a singularity for the linear operator

2
V and, as a result, the fact of neglecting the contribution of this

operator, close to the origin, might seem incorrect. When we looked

4
at the reduced problem, we overlooked the term -e V <j> appearing in

m uo y m

Equation (3.5). Close to the origin, this term could represent a main

contribution. In Appendix III, we address ourselves to the problem

near the origin and we find that the solution previously found for

r/0, is also valid through the origin. This result might be expected

in the sense that there are no boundary conditions imposed at the

origin and the solution found for r^O represents an expression that,

4
when introduced into -eV d> represents only a bounded function at

m ra,m r J

the origin. Also, the presence of the singularity at the origin is

simply originated by the choice of polar coordinates . For a rectang-

ular plate described by cartesian coordinates , the center of the plate

doesn't contain any singularity.

With this last remark, showing that the solution previously

found is valid in the complete interior of the membrane, we have solved

the proposed problem. To conclude this section, we summarize briefly

some of the main results. The eigenfrequencies of the taut membrane

with small f lexural rigidity has been taken under the form

2 2

0)
2 l+2k+V ^2 ,2 l+2k+v ^2 ,,2 , /- ,2.

A = - 5 - U (A,, + /£- - - ,, T . . .
a,m 8 a,m 8 0 1

where

2 E h2e =
3(l-v2)
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2The value of AQ is obtained by solving

2
F(a 1+m - a, 1-hn; kj) =0

and ,

1 / 2 2 2 0a(l-hn-a) = ~r I 2m + m -m k, - —r
\ k\ *l
2

The relation defining A., is also repeated here

2 kjvg (a, 1+m-a, 1-hn; kj)j

rr
2m+1

 F
2(a, 1-hn-a, 1-hn; k2r2)dr

0

In these relations, the following definitions have been used

k
2
 = 3+v and k2 = 1+3V
1 l+2k2+v 3 3+V

3.3 Dynamics of a Rotating, Free. Elastic. Circular Membrane

We now end the chapter, 3, by considering another type of

elementary structure. It represents the last analysis of modes Under-

taken in our research using continuous models. This time, the "object"

under investigation is a rotating disk of small flexural rigidity, free

along its edge. (Figure 10)

I

Figure 10. Rotating Free Membrane.



The basic physical assumptions made in this study are the same

as those made earlier for the taut rotating membrane. This disk is

assumed to rotate with constant angular velocity fi around its axis of

symmetry and the equations of the motion are given in a reference

frame located at the center of mass of the disk when at steady state

deformation and rotating with the system at the constant angular

velocity fi. In contrast with the previous example, the spin has a

stabilizing effect on the structure and loosely speaking, the

structural stiffness of the disk is increased by the sometimes called

geometric stiffness, induced by spin. The origin of our angular vari-

able is chosen such that no phase angle is needed in our equations.

The generality of our problem is not affected by this assumption but

the text is noticeably lightened. Even though the membrane will

undergo a steady state radial displacement, we assume the physical

characteristics of our system to remain constant throughout the whole

disk.

Other classical assumptions, such as the planar state of

stresses, are also adopted. There will be no variation in the radial

and tangential stresses over the thickness of the membrane due to the

assumption of small thickness. This last assumption merits one more

comment related to the boundary conditions valid at the free edge. We

have, indeed, to apply as boundary conditions at the free edge the

Kirchoff condition and the zero bending condition. Let us develop

those considerations for a while.
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For the free edge, no restrictions are imposed on the deflection;

however, there should be no bending moments, no twisting moments and

no shear forces. There is no reason to disregard any of those as

secondary effects. Kirchoff suggested the following way out of this

difficulty.

Calling the bending moment M, the twisting moment H and the

shear forces N, he considered the edge x = a of a plate as being acted

upon by distributed torsional couples, as in Figure 11. Their

WW«,
m

, ,
i

A K

i
^ LJ

+ 3H17ay dy

B

'Figure 11. Kirchoff Condition.

distribution was assumed to be nonuniform, in general, and the magni-r-

/ .
tude of the moment of these couples per unit of length of the face, at

a given point, is denoted by H-. The magnitude of the moment per

length dy of the face is obviously equal to H..dy. It is noted that

from the viewpoint of statics, the distributed torsional couples are

equivalent to a certain shearing force. Indeed, the couple with the

moment H,dy may be applied by means of two equal and opposite forces

H1 acting at the edges of an area of length dy. The couple

1 9^(H. + —TT— dy)dy on the adjacent area of length dy may also be applied
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as two opposite forces HI + —^— dy with the arm dy. Having done this

for all areas of the face concerned we see that the forces applied at

points m and n on the boundary of two areas reduce to a single force

V- dy per length dy. We observe, however, that there will remain two
dy

nonvanishing finite concentrated forces HI and HI at the edge A and B

of the face.

Hence, we conclude that the distributed torsional couples of

intensity H are statically equivalent to the distributed shearing

forces which has the intensity —g— and two concentrated shearing forces

HY and H.. at the corners of the plate; if the contour is smooth, and

without corners, these concentrated forces are absent. Proceeding

from this, Kirchoff proposed that the three boundary conditions at the

free edge be combined into two by equating to zero the bending moment

M and the shearing force N and by adding to the latter the term 3H/3y

which reflects the influence of the twisting moment H. We now arrive

at the following two conditions at the free edge:

M = 0

N + T- = 0 .

Written in polar coordinates, those previous boundary conditions

become:

2 / 2 \
3 w . 11 3w' .. 1 3 w i _
X + VI— 7T" + ~~T ol =0

3 f 32w
2
P

I 3w \1 _
P ae JJ - °

valid at the free edge of the disk, where V is the Poisson modulus.
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As stated previously we know that the dynamic equation for the

transverse vibrations of a circular plate, subjected to radial and

angular stresses is given in general form by

E h
-
12(l

2 .,4. . 1 a/ 3wV °9 32w 32w /0 „.5- V w + - 3- lap T- ) + -r — r = y — r (3.11)
-v2) ,P P 9 P \ P 9P/ p

2
 96

2 8t2

where 0 and 0fl represent respectively the radial and angular stresses

h stands for the thickness of the disk and

2
V is the Laplacian operator which expressed in polar coordinates

is

P ^2 p 9p 2 «02dp p 96

y is the disk mass per unit of volume.

For this case too, we found that the deformation equation repre-

sents a perturbation with respect to the steady state deformation, and

once more, the radial displacement has to be determined first — a

similar procedure was adopted in the previous case.

The equilibrium of the forces applied to an element of the disk

along the radius is given by

^ (P op) -oe + y nV - 0

where there is no dependence in the 6 variable due to the symmetry of

the problem. The use of the generalized Hooke's laws expressing the

relationship between stress and strain, give us as differential equa-

tion for the steady state radial displacement u:

2 d2u . du 1-v2 02 3PV + P* -"-; —"n." • •
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The general solution of this equation is

[ C 2 ~1
(l-v)Cp - (1+v) -± - ^- y .n2p3J

where C and CL are arbitrary constants.

For a disk without central hole, C.. has to be zero, to keep the

displacement bounded at the origin. The corresponding stress compo-

nents are now found from:

The constant C is determined from the condition existing at the

periphery (p=a) of the disk. If there is no force applied there, we

have

(a ) = 0
FT.p-a. .

°r „ 3+V n2 2c = — y n a ,

from which we have

3+V n2, 2 2,
op = — u Jl .(a - p )

2
aQ = ̂- [(3+v)a

2 - (l+3v)p2] .

Let us now introduce the dimensionless variable, p = ar, so that

Equation (3.11) takes the form:

Eh2 4 _,_ 1 3 . n 3w. • a6 32w _ 92w
w + -r- r- [r a -—] + ~

10 4/n 2 ' w ' 2 3r lt r 8rJ ' 2 2 ..2 ^ ,2
12a (1-v ) a r a r 96 9t
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where

0r = y fl
2 a2 (^) (1-r2)

2 2

°e = V "a a t(3+v) "

2
Dividing through by y fi , we obtain

Eh2 y4w + 3+v 1 _3 rr(1_r
2)9w

•"+ -̂  [(3+v)-(l+3v)r2] 2-j = _| i-| .
8r 96 ST 3t

This last equation is suitable for the use of separation of variables,

providing that the given initial condition of the problem is also

separable. We will then use an expression of the form

i(w t + m9)
, , -. a.m

w = <p (r)e
a,m

where w is the eigenfrequency of the vibration.

In this last expression, no phase angle has been introduced for

a reason explained earlier and this doesn't affect the generality of

our problem.

The equation of main interest is given by the differential

equation defining 4> (r). This last expression can be written

4- [r(l-r2) -££]
12(l-V2)aW

a,2

2
where V is the linear differential operator defined by the following

relation
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- -m , 2 r dr 2dr r

We now define the following quantities:

2
e = 2 E h'

8 uq,m
a,m

l+3v
3+V

The final expression for the differential equation for <j> (r) is then
ut } m

given by

- eV*m
, . 1 d f ,. 2. dVm"| m2 . 2 2,. .
> + — -7- lr(l-r ) , * r- [1-k r ]d> -(
a,m r dr [_ N ' dr J 2 l JTa,m

+ A cj> = 0.a,m a,m (3.12)

Applying the previous separation of variables to the boundary con-

ditions of our problem, we obtain the boundary conditions valid

for Vm(r) °r

d2<f>124> /, d<j> 2 \q,m /JL q.m m , \ _ n

,2 \r dr 2 a,m/ ~dr \ r ' /

d_
dr

,a.m JL a»m m
.dr

r dr 2 a,m'
- (i-v) r^ tr dr \ r

when r = 1.

Here, again, the small flexural rigidity of the disk is combined

to the high spin rate to produce the small parameter e. The problem
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is now formulated in a way where a procedure similar to the one used

before could be applied.

2
The operator V , defined earlier, contains a singularity at the

origin r=0 and in the use of a perturbation method, some attention is

required when considering the limit process. However, the solution

found in the central area remains valid in the neighborhood of the

origin. There are, indeed, no boundary conditions at the origin and

by a procedure similar to the one adopted in Appendix III, we can show

that no particular behavior occurs near the origin.

Expansion Valid in The Central Area

When r ̂  0, the expansion used for <f> (r) take the form:LX • m

*a m(r'e) = hO(r) + vi(£)hl(r) + V2(e)h2.(r)+...

The subscripts a, m will be momentarily dropped, and used explicitly

only when needed in order to differentiate between different modes.

Introducing for the eigenvalue the expansion:

A2 (e) = A2 + K.(e)A2 + K (e)A2 +...,ot,m u l l 2 /

the basic differential equation for the mode (3.12) becomes:

2 dho~L , i d r 2 dh

- ̂  U-k2r2]hn - v (e) -,
f. U J. tr r

-fx2 + K1(e)X
2+...Wh() + V1(e)h1 +...J =0 .
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The differential equation defining h..(r) is then given by:

7 i "i-'2) ̂f - 4 W-K2'X + *o »o " °

or

(1-r2) — ̂  + f d-3r2) -^ - -\ [m2 -(m2k2+ X*)r2]h - 0 .
dr r

The point r=0 is a regular singular point, for this last equation, and

adequate for a solution in power series around r=0. Instead ,of trans-

forming the previous equation to obtain a solution expressed in terms

of the hypergeometric series, it is indicated to expand the solution

directly under the form:

n+c. / vh0(r) -
n=0

where c is the index of the previous equation and aQ an arbitrary

constant,

Introducing the last expansion of h_(r) into the differential

equation, (3.13), the indicial equation gives us

2 2
m — c .

Only the positive root is feasible for the problem, for its boundedness

of the displacement at the origin, so c=m. Also, the recurrence

relationship between the a. 's is easily obtained and we report the

result

a (n+m)(n+m-2)-(k2m2 + A2)
n _ . | u

an-2 n2 + 2nm
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By direct observation, we can see that the denominator is always

different from zero and the solution h.(r) contains only odd or even

powers of r. In order to pursue our study, it is interesting at this

stage to look for a while at the boundary layer valid near the free

edge of the disk. We need then to define a suitable boundary layer

coordinate or

1-r
r =

<!>(£) *

The operator V becomes:

V

So the basic differential equation for <j) (r) (3.12) becomes in the
uc y in

new boundary layer coordinate:

-e " d2
1 d m 2

, 2 - 2 l-tj)f 4>dr n , ~ \ 2

d2cf>a m

^-2cp dr

dd) m (!)Ta,m ra,m

r [l-k2(l-4>r')2] <J) + A2
>m a' >

= 0 (3.1A)
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or

-e
Tg,m

dr4

d\

,~dr

d2<}>
g.m

7 7
>?) 4) d?

- (2m2+l) —-
d<t>

U-4>r)3
(m4-4m2)

2 2
(3<j> V -

,2,.

2)
dcj)q,m
dr

,2~3 0 A ~2, _~Nj) r -3 ((>r +2r)
dr

' ' '

The thickness of the boundary layer is then obtained by balancing

,1/3

If we define now the asymptotic expansion of d> valid near theot,m

free edge in the following way

then the differential equation defining

I d f^

is given by

d4f d2£0
«•dr dr

On the other hand, the boundary conditions become in the new boundary

layer coordinate

,2.a (p .

2 2 ^
(() dr

i d(f> 2
1 g,m m

(1— (br) <j)dr ^ ~N
d>2 rg,m = 0 (3.15)
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and

d3(j)g.m

m

Tg.m
4>dr

g,m
<j>dr

dcf) g,m
cj>dr

2m'

m d<f>

= o

when r = 0.

For the first term of the expansion they become:

d3f.

0

(r) = 0

when f = 0

g.m
<f>dr

(3.16)

The integration of the differential equation defining f and the use

of the boundary conditions just derived limit the solution for fn(r)

to a constant CQ. The determination of this last constant is

determined through the matching process near the free edge. For

matching, an intermediate limit suitable for matching near r = 1 is

given by

r = —r~T where r is fixedn n(e) n

and r|(e) •+ 0 when £ -»• 0. What we want is r -»• °° when e •*• 0, or

e ?
rn ~ n(e)

1/3which implies ->• 00
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The behavior near r=l takes the form

^ jymy + v
r fixed ( . xn I / n r \ )

• " )
but h_(r|r ) can be written

hO(T1V = hO(1) - Zr- hO(1)

and fn(?) = Cn. So we finally have:

e ^ o » h°(1)" ^ h°(1) nrri +"' -vi(£)hi(nrn)+-• --6o(e)co
r fixed

The matching is then giving us

+-- ° '
(3.17)

60(e) =

and

h0(D - c0 . • •

2
The determinations of hn(r) and X» are now possible. The con-

dition n0(l) = C_ — given through matching — appears, at first, to be

unsuf ficient. But the consideration of the recurrence relationship

2
between the a. 's shows that a sequence of value of AO truncates the

expansion for h»(r) , namely:

2 2 2
(n+m) (n+m-2) - k m = A,. .

2
Only the sequence of values we just generated for X_ truncates

the series and gives a bounded displacement near the edge. The value
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hn(l) is indeed given by / ., a . By comparing the ratio of two con-
U n=0 n

secutive terms of the last sequence to the ratio of two consecutive

terms of the diverging sequence defined by

1 . 1 , 1
p p+2 p+4 ''' '

it is easy to prove that the ratio generated for the a.'s is greater

than the ratio defined for the diverging sequence. The boundary con-

dition for n
0(r) is in fact

h_(l) = bounded

2
It is concluded that for every value of A_ different from those

truncating the series, the displacement along the edge is unbounded.

Having now completely defined the main contribution of the dis-

placement valid in the central area, let us go back to the boundary

layer expansion valid near the free edge. The consideration of the

expression developed earlier for the matching suggests as an order of

1/3magnitude for 6,(e) the value e . . .

Going back to the development of the differential equation

defining the modes expressed in the boundary layer coordinate (3.14)

we find that the differential equation defining f.. is given by

^i+2l!i+2?̂ !i- 2
d3f° .'cf df° rn:2 d2f°— , i f- ,~ T zr n ~ ~f- o T or . ~ T jr 0,~4 dr ,~2 ,~3 dr ,~2

dr dr dr dr

' , 2 . 2 2 , 2 , .
+ lm - k m ~^nl fn •

Taking into account the expression already found for fn or0

f0(r) =h0(l)
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We have

dr4

dfl d f

+ 2 -^ + 2r —-
dr

[m2- k2m2 - A2]h0(l). (3.18)

The expansion of the boundary conditions (3.15) and (3.16) expressed

in the boundary layer coordinates also give us

(?) = 0
dr

when r = 0 .

dr3

The integration of the previous linear differential equation and the

use of the boundary conditions defined for f.. , gives us as a solution

for f the following expression:
f 2 ,22 ,2.(m -km - A_)

fx(r) - -^ — h (1) r + C .

Introducing the last expression into the matching process, we have

lim
e -*• 0
r fixed

-d7ho(1)

- e
1/3 (m -k m - AQ)

—i-i— 4- r
.1/3 + Cl

The matching process should determine the value of C.. . We observe

directly that the expression
2 . 2 2 ,2

m - k m - A

is identically zero as seen by evaluating the differential equation

defining hfi(r) , Equation (3.13) , at the point r=l or
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o ^0 r 2 2,2 .2, u- 2 — - [m - m k - XQJ h0 = 0.

The determination of the constant GI seems to depend on the value of

Contrarily to our expectation, the value of V.. (e) is not of the

1/3order of magnitude of e . The boundedness of the displacement along

the rim of the disk and the orthogonality relationship — valid for

1/3this case too, as shown later — cancel the choice e for K, (e) and

V (e) in their respective asymptotic expansion. As a result, the only

feasible value for C. is

' \
GI - o .

In Appendix IV, it is briefly presented why the choice KI (e) =

1/3e in the asymptotic expansion of the eigenvalue has to be rejected.

We now prove the orthogonality relationship between the modes. This

last relationship is used in the determination of the next term of the

asymptotic expansion valid for the eigenvalue. The orthogonality

relationship between the modes will once more be given by

1 2D

/ / r cf> <J>0J,. Jf. Ya,m T3,n
cos m8 cos n6 drd6 = 0

It is obvious that, when m ^ n, the relationship previously written is

satisfied, as a direct integration with respect to 0 will give. The

case of major interest is in fact given for the case where m=n. For

that case, we thus have to prove that

. 1

r <b <j>.. dr = 0T T/ a,m
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The differential equation defining 4> is given by
Ut ^ Lit

-e
4 A j. l d /i 2\ ct.m m rn ,2 2,, ^,2 ,d> + — 3— |r(l-r ) — r1 — - — r- [1-k r ]d> 4- A d) =0
m Ya,m r dr I dr J 2 L Jya,m a.nTa.m

with the following boundary conditions:

d2<j> /i ^ 2 \M_ Y 1 J^rn _ m^ J =

2 \r dr 2 ra,m/

> i d(f) 2 1 2 . . / < ) >

P*•' -£"* - ̂  *«-J - (1-v) ̂  * (

dr

d_~~- d *•
dr

when r=l. Similar expressions could be written for <bn . Taking the
P»ni

differential equation defining <j> and multiplying both sides by
Ut )Ul

r$g and integrating, we have

-e /"r V4 <|> 4>fi dr +; / f- |r(l-r2) ^^L dr
JQ m Ya,mYB,m JQ dr |_ dr _TB,m

1

— [l-k2r2]<}) 4>0 dr
r JYa,mvB,m

/ A2 r <)> <f)0 dr = 0JL a,m Ta,mTB,m

Expanding the first term under the form
/

1 1

/
r V4 (h <|>0 dr = -e / r d>0 ^r [V2 <|) ] dr

m ya,in%m A Y3,m 2 m ya,m j

2

0 H>1" dr1

1

-e / 4>Q -j^- [V24> ] drJ T3,m dr m ra,m j

'0

1
. 2 C 1 . n2+em / ~ (j)R V q> dr .
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An integration by parts and the use of the boundary conditions trans-

form the previous expression into

-e(l-v) in dr \ r +e
x JQ 4̂  f- [̂  3 drdr dr mra,m

0
[V4, ] dr .r mya,mj

Integrating by parts once more, and considering the boundary conditions,

we obtain for the previous expression

-e(l-v)
2 dd) dd) 2

m A A _ ot,m 3 «m , m
2 â.m 6,m ~ dr dr r

dc}>,T

dr

m d<J)a.m
dr -e r[V2(j)T ]drJ

Introducing this last expression into the expression found previously,

we observe a perfect symmetry between d> and <ba As a result. a(X,m p,m

similar procedure applied to the differential equation defining <J>_

would give an expression that would differ only by the last term.

Substracting both expressions, we are left with
.1 '

(X2 - A2 ) f r (j) cj)Q dr = 0a,m S.m' Jn
 ra,mr3,m

which contains our required expression.

To complete the study of this problem, we will need the next

term of the asymptotic expansion valid near the free edge. The match-

ing process valid near the free edge suggests for <5«(e) the quantity

2/3
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Going back to the differential equation defining the modes,

expressed in the boundary layer coordinates, Equation (3.14), we find

that the differential equation for f_ is given by:

d4f df d2f d3f df d2f
- - + 2 —4+ 2r - = -2 - + 4r Z

,~ dr j~2 ,~3 dr ,~2
dr dr dr dr

2 2 9 2 2 fl 2I r ~ 1 ~ " ' \ ^ ' 1 f - 1 ***~ v i /•» ^•*vr-+ [m -k m -An]f1 - 3r —^r + 2 m r fn .U 1 dr (J

Taking into account the expressions already found for

- f0<r) - h0(l)

a n d 2 2 2 2
(m - k m - X )

the last expression becomes:

2 2
d f_ df d f2 2 2 2 2- ~f + 2 if + 2f — ! = 2(m - k m - v h

2 22 2 2 h_(l) „
+ (mZ - kV - XQ) -̂ 2— r + 2m r hQ(l) .

The expansion of the boundary conditions (3.15) and (3.16) expressed

in the boundary layer coordinate give as boundary conditions for f_,

the following expressions :

d2f df
- V - - m2v f - 0-

dr

2 dfO
+ (l-v)m —7^ = 0 when r = 0.

dr,~
dr
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Those last expressions can also be written:

2
d

£. ~
f

2 2 2. *• . £• £.

m - k m
— h0(l) + m V h0(l)

dr

when r = 0.

The equation defining f_ can also be written

2̂.dr

.2.22- (m -k m -

2 22 ?
-2(mZ - kV - Xj)h0(l)r

r.•+ 2r m2 hQ(l)

A particular solution is given by considering

where

0

f2p - D0

(m2-k2m
2-X2)h0(l)

2 2
-j|- (m

2-k2m2-A2) h0(l) +5L-

The solution to the homogeneous part is obtained, after a first

integration, and the use of the second boundary condition by solving

d3f2h

•'dr3
- 2

Defining df0,/dr = f_, , we havezh zh

2 *
d f

d?

~ *- 2? f = 0.
2h

* 1/3 ~
The change of variables r = 2 r transforms the last equation into
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d f2h * *
*T" ~ r ^9K ~ 0>, *i Z.n

dr

which general solution is expressed in terms of the Airy functions as

f^-^MCrVD^Kr*).

The asymptotic expansions of the two Airy Integrals are given in the

* ' : . .
literature and show that Bi(r ) is inadequate for matching because of

its exponential growth: we are thus left with

f*h=D1Ai(r*>

4=D1Ai(2
1/3?>.

The general solution for f« is:

~2 I
2 ~ D0r + 1 J.

The determination of Dn is done by looking at the first boundary con-

dition

,2C 2 . 2 2 , 2
d f „ m -k m - A
- = v __ - _ - _. hod) + mv hQ(1) when f » o

dr -
o r 2 , 2 2 , 2

.. m -k m - AQ o
2DQ + Dj.2

1^ Ai'(o) = V - ^ - h
0
(1) * m V hO(1)'

From this last expression, D is determined. The determination of D_

is then obtained through the matching process by ensuring that the

quantity

4-

(
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represents a trans cendentally small term away from the boundary. The

introduction of the expression found for f9(r) into the limit process,

considered in the matching, leaves us with the requirement:

\ - D

where

1 / 2 , 2 2 -i 2,
O

1 , 2 . 2 2

The differential equation defining hn, Equation (3-13), expressed in

the r ' variable becomes :

dh

(2r'-r
2

- '2
d h

dr

2
f (_2+6r'-3r'

2)

+ 2(m2k2 + A2)rf - (m2k2

2 2 2 2
^ *

0. (3.19)

2 2 ^
Expanding d h_/dr , dh_/dr and h_ in Taylor series in the neighborhood

of r1 = 0, we obtain the following identities:

d h 2 7 9 ?
- 2 -^ (1) - (n^-mV - A2) hQ(l) = 0

d h ' 229 2 d hO 2
4 - 1 (1) + (m2-m2k2 - X2 + 4) -£ (1) - 2m2 hQ(l) = 0.

dr

This last expression is also:

,2,d h

dr

2 2, 2 ,2
m -m k - X_

<«
, 2 2. 2 ^2 ,
(m -m k - An) dh

2 2or d hQ/dr (1) = 2 DQ which represents the predicted identity.
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Having previously concluded the orthogonality relationship

between the modes, we have to complete the specification of the mode

by writing down their normality or

• 1 211r r 2 2I I r <j> cos m9 drd6 = 1
JQ JQ Vm

A direct integration with respect to 6 gives us

1

/

.2 . 1
r <p dr = ̂ r .Ta,m n

This relation represents the relation needed for the determination of

an. Introducing the asymptotic expansion of <j) , the previous equal-
U CX k Tu

ity becomes indeed

1

or by writing the development of h_(r) under the form

we obtain finally

2ao =

•/' ̂

With the determination of hQ(r) completed, we are now able to

2
proceed and determine the value of AI. The orthogonality relationship

between the different terms of the asymptotic expansion of the modes

and the considerations introduced previously suggest for v.. (e) the
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order of magnitude of e. A suitable choice for KI (e) is also given by

= e.

The differential equation defining h is then given by:

r d 0 hl = VmhO ~ Xl hO ' (3'20)

Multiplying this equation by r h_(r) and integrating from 0 to 1, we

obtain the following expression:

p dh ;-,

_

dr

. ,
4 1r V h_h_ dr - -£m 0 0 II

where the normality relationship of h_ has been used. Integrating by

parts the first term, we have:

1 1 ^ ^

h0(r)r(l-rz) -±
..r(1-r

0 ^ 0

•m O 0

, , dr - / — (1-k r ).h.,h_ drdr dr JQ r 1 0

^o JQ * hoh

J.

idr = L
4 1r V hfth_ dr - ~ .
m 0 0 II

Integrating by parts once more, and taking into account the differen-

tial equation•defining- h., Equation (3.13), we have:

2 'dhO
1 1

. H

0

dr

r 2 9 7I m /-i 1,2 2., ,
- yo T - i o1

} 4 AI= jf r vm hohodr * ~n

+ X
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1
Xl = n jf r Vm Vo dr -

2
The previous determination of aQ and this last relationship com-

2
pletely define the value of A.. In this problem, the flexural rigidity

of the disk modifies the value of the eigenfrequencies only through

an order of magnitude e. In a procedure similar to the one used for

2
the rotating cantilevered beam problem, the determination of A., has

been accomplished without the need of the orthogonality relationship.

Here again, the general expression valid for h.. is given by an

expression of the form

hl = fil+klhO

where h is a particular solution which displacement at r=0 is zero

and h_ is the general solution of the homogeneous part. The determin-

ation of the constant k- is accomplished by considering the ortho-

normality "condition. However, we have to be careful when doing this

step. We already found that the boundary layer expansion contains a

transcendentally small term in f _, which order of magnitude is given x

2/3 • 1/3
by e . The boundary layer being of thickness e , we might conclude

that the contribution of the TST in the integral appearing in the nor-

mality relationship gives us a contribution of order of magnitude e. As

a result, the uniformly valid expansion has to be considered in the

normality relationship.
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The uniformly valid expansion for $ is given by
cx y in

D Ai(21/3€)d?

where D_ has been written D« = D..D'

represents a transcendentally small quantity away from the boundary.

The normality condition gives us then:

/ r 42 dr = 77 = / r h2. dr + 2e / r h_h.dr +'. ..Jo .V» • n JQ o yo 01

dr +...

Let us concentrate on the last term:

1 r

D /*r h_ / Ai(21/2Qd? + D»
1 Jo U VO J

dr .

The mixed appearance of r and r has been kept on purpose as the rest

of the development will show. We replace r by 1-r1 in the previous

expression or

1

dr' .

,1/3The expression Jn Ai(2"
1'/J )̂d̂  + D^ represents a transcendentally small

quantity away from the boundary, when considered in the r1 variable and

this remark suggests an expansion of hQ(l-r') in Taylor series is the

neighborhood of r1 = 0.
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Ai(21/3C)d5 + Dl dr1 -

+ Dl dr' -

1/3 ~ 1/3 ~Replacing now r' by e r and dr1 by e dr, the previous expression

becomes

hA(D Xel/Tf
JQ Jo

Dl dr

dr

+ D3

+ D df +...

The limit process applied to the normality conditions gives us then

i

/rhohidr + Diho(1)

r

/ Dl dr = 0 .

Defining the integral of the transcendentally small quantity appearing

in the last bracket as being D,, we have

dr hQ(l) = 0 .

This last expression can now be used to determine the value of k..

r hj dr + D1D4 h0(l) = 0
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or

0
r hofii + "A V"

With the determination of k.. , the expression for h^ is completely

specified and we will then conclude here the study of the modal

analysis of the last structure. Several properties that we mentioned

for the previous problem can also be observed in this case, but for

reason of shortening will not be developed here.

We conclude this chapter by recording briefly some results in

the determination of the eigenfrequencies of the free rotating, circu-

lar membrane. The expansion found for the eigenfrequencies has the

form

a,m 8

where

e =

3+V 2 ,2 3+v n2,,2
V™ = ~«~ n (Ana,m o U

2 E h

2
i1

3(l-v2)(3+v)a4y

The value of X_ is given by the sequence defined by

2 2 2(n+m)(n+m-2) -km = X_

where

and

2 1+3V
3+V '

1

r V h_h_ dr.m 0 0
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The obtention of h- results from

n=
a r
n

n-hn

where the truncated series is defined recursively by

(n-Hn) (n-hn-2)-(k2m2 + X)

an-2 2mn
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CHAPTER 4

LIAPUNOV STABILITY ANALYSIS

4.1 Introduction

Due to the particular orientation of this chapter, we should, at

the outset, investigate the concept of stability, and state precisely

what we mean by a stable motion for our problem. Ue will then in a

first part review briefly the different ideas pertaining to the stabil-

ity and cover to some extent a peculiarity appearing in the class of

problem under investigation. In this first part, the concept of stabil-

ity will be developed and the definition of nominal motion will become

more specific. ~In the second part, the Liapunov stability analysis will

be studied for flexible space craft when continuous models are used, and

finally analytic criteria for the class of problems studied in chapters

2 and 3 will be obtained.

4.2 Concept of Stability

We might introduce this section on concept of stability by

defining formally the notion of Liapunov stability.

If, for a given dynamical system, the equation of state

X = F(X, t)

admits the solution X = 0, and if for any e > 0, there exists some 6 > 0

such that if the norm JX(0)| < <5 then |x(t)| < e for all t > 0, then the

motion characterized by X = 0 is said to be Liapunov stable; and if in

addition

lira

t_ ro |x(t)| = 0
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then the solution X = 0 is asymptotically stable. If X = 0 is not

Liapunov stable, we will call it unstable.

One remark should be made about this definition: only local

stability properties are examined. In order to explore the kind of

instabilities occurring in the system, nonlinear simulations become

necessary. The reason is that the characterization of stability is

based on local properties of the motion, permitting no formal conclusions

beyond the neighborhood of the nominal motion.

If we, now, consider the consequences of a small perturbation

applied to a rigid body, initially rotating, about a principal axis

(major or minor) colinear with its inertial angular momentum vector, the

subsequent motion is characterized by a rotation of its spin axis about

the inertial direction defined by the new angular momentum vector — the

sum of the initial angular momentum vector and its perturbation. The

space craft is said to "wobble" and the angle between the spin axis and

the new angular momentum vector is called the nutation angle or "wobble

angle". Because the wobble angle resulting from a sufficiently small

perturbation remains within any preassigned value, the motion is said to

be Liapunov stable.

On the other hand, heuristic energy sink methods — based on the

assumed presence of a hypothetical non-moveable energy dissipator, and

applied to quasi rigid bodies — indicate a decrease in the wobble angle

if the spin axis.is the axis of maximum moment of inertia; we would like

to define our state variables in such a way that we can call this motion

asymptotically stable. Conversely, energy sink analysis shows that when

the spin axis is the axis of minimum moment of inertia, the wobble angle
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grows and the motion becomes unstable. These last observations are

generally referred as "the greatest moment of inertia rule". The fact

that in the perturbed motion of a stable quasi rigid body, the spin axis

converges to the new angular momentum vector brings out an interesting
/

point: the system is not "completely" damped when the motion is

described in terms of coordinates measuring the deviation from the iner-

tial orientation existing prior to perturbation.. We will focus our

attention on this last observation, by referring to a development by

13
Barbera and Likins.

In the application of asymptotic stability to our particular case,

special attention is required in the choice of elements in the state

variable X. If the state variables include, for instance, the devia-

tion of the component of the angular velocity along the body spin axis,

then the null solution will not be asymptotically stable for any vehicle

configuration, since after perturbation, the vehicle will not return

asymptotically to its nominal spin rate. For the same reason, we cannot

include in X any deformations which vanish only in the unperturbed

state, but we must define deformations relative to whatever deformed

state corresponds to steady rotation about the body spin axis at the

rate appropriate for the actual angular momentum, whether before or

after, perturbation. Similarly, we cannot use in the state variables any

set of inertial attitude angles which are zero only when the body spin

axis is colinear with the angular momentum vector prior to perturbation;

the perturbed angular momentum will have in general a different orienta-

tion, and we wish to characterize the motion as asymptotically stable if

the angular velocity vector of the central body approaches alignment
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with the body spin axis and with the perturbed angular momentum vector.

We must therefore choose attitude angles for the central body which

vanish whenever the body spin axis is aligned with the actual angular

momentum vector, whether before or after perturbation.

Our concept of stability is now well defined and the constraints

on our definition of the state variable made more precise. We are in a

position where two theorems, usually referred to as being elements of

Liapunov's direct or second method, can be mentioned.

Theorem 1; The null solution X(t) = 0 of the differential equation
o ' .

X = F(X) is asymptotically stable.if there exists a function L(X) in a

region around the origin both positive definite and strictly decreasing

for all solutions in that region except for X = 0;

Theorem 2: The null solution X(t) = 0 of the differential equation
o '

X = F(X) is unstable if there exists a function L(X) in a region around

the origin both negative semi-definite (or sign variable) and strictly

decreasing for all solutions in that region except for X = 0.

Although these theorems constitute usefuls tools for the

determination of the necessary and sufficient conditions for asymptotic

stability, they do not present procedures for the generation of a

testing function. However, in a wide class of applications, the

Hamiltonian is a convenient choice. More specifically, for "completely

damped", systems, the Hamiltonian is a suitable testing function when the

total energy of the system is free of explicit time dependence. For our

purpose, the concept of "complete damping" implies a dissipation of

energy for any possible motion, in the neighborhood of the origin of the

coordinate space adopted, except for the nominal motion. However, as
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mentioned in the preceding section, the damping of a freely spinning

body with internal energy dissipation is not complete in terms of atti-

tude angles measured with respect to the spin prior to perturbation,

since the vehicle cannot return to its original state. As a result, for

such systems, the Hamiltonian is not strictly decreasing in the neigh-

borhood of the null solution and asymptotic stability cannot be pro-

14
claimed. In 1969, Pringle provided a method to circumvent this prob-

lem. The procedure consists to constrain the attitude angles through

the angular momentum integral so that they measure the deviation of the

body spin axis from the instantaneous angular momentum vector* before or

after perturbation from its nominal inertial orientation. The attitude

angles are thus defined in such a way that complete damping is assured

and asymptotic stability can be predicted. The requirement of complete

damping also implies a judicious choice of deformation variables: they

must vanish whenever the vehicle adopts a steady state configuration and

rotates about the body spin axis (at whatever rate is appropriate with

the actual angular momentum).

4.3 Stability Analysis

We specified in the previous section our objective and the path to

follow in our stability study of flexible structures. In the following

derivation, the analysis is kept as general as possible. We will

restrict the class of problems covered by the study when needed and

finally, specialize in a class of systems, including the flexible struc-

tures studied before, when analytic criteria will be developed.

We assume, at the outset, that the freely spinning flexible

spacecraft under investigation is composed of two parts: a rigid part
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and a flexible part. Later on, the flexible part will be assumed to lie

in a plane perpendicular to the spin axis and passing through the center

of mass of the whole structure when at steady-state deformation.

The kinetic energy of the system, denoted by T, is derived from

the general expression:

2T / *•'A.B
p • p dm

where j> is a inertial generic position vector and the capital letters

A and B indicate that the integration is carried over the flexible

appendage A and the rigid body B.

Figure 12. Freely Spinning Spacecraft.

In our force-free case, the system mass center is inertially

fixed, and p_ can be written as the sum _cj + p where c^ is the, position

vector directed from the system center of mass CM to a point N fixed in

B, and jp is a generic position vector directed from N. The point N is

chosen to coincide with the CM when the structure is steadily spinning

at the rate consistent for the actual angular momentum and hence elasti-
i

cally deformed by forces induced by spin. Thus 2T becomes
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2T = (c_ 4- £)•(£ + £) dm/ <£ + £)
./A,B

= A ' / (c_ + £) dm + / £•(£ + £) dm

The first term vanishes by definition of mass center, i.e.,

/ (c + £)
7A,B

= / .£••(£;+£) dm = _c I £ dm + / (£ • £)
•'AjB •'At'B •'A.B

By definition of the center of mass, we also have:

^ ±4( + I £ dm = £ for every t,

where ^U represents the total mass of the system.

The kinetic energy takes, then, the form:

_ p) dm = £ for every t,
./A,B - - '

so

2T = I p • (c.+ p) dm = c I p dm + / (p • p). dm

2T = - (£ • c) /(£•£) dm + /(£•£) dm
A ^B

or

2T - - (_c • £) Ji + -a) • I • w + / (p • p) dm (4.1)/(P ' P)
A

where 0) is the inertial angular velocity vector of vector basis {]j}

Nfixed in B and IB is the inertia dyadic of body B about point N.
D

Expressing the right hand side of equation (1) in matrix notation

with respect to the vector basis {b} fixed in body B, we obtain for the

first term
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c) = Jt [ic + (u x c) . £ + (co x c) ]

= „// [£ . & _ • + 2 £ • (W X c) + (U) X c) .. (0) X c>]

= .At [cT • c - 2cT c w + coT cT cto]

where ( < > ) represents time differentiation with respect to the vector

basis {b} fixed in B and the tilde (~) operation is defined as

'o

0

c 0
x

The last two definitions can be extended to any vector used in the

sequel.

The second term becomes simply

to • I • a) = 0) I w,
— B — a

where I_ .is the inertia matrix in vector basis {b}, corresponding to the
B . —

dyadic !„ . •
_ B

To study the third term we express _p as the summation of T_ + u,

where T_ is the position vector from N fixed in B, to the element of mass

dm in the "steady state" position. The "deformation" 11 measures the

displacement relative to B of the element of mass dm from the location

that it would occupy if the vehicle was rotating about the body spin

axis at a steady state configuration at the rate appropriate for the

angular momentum. With these definitions, we have successively:
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/ p • p dm = /f + u-f + udm
A" ~ A- ~ ~ ~

= / [u + to x (r + u) . u + 0) x (F + uI _ _ _ _ _ _ _ u) ] dm

/
(_u • u_) dm + 2 /u • [w x (r^ + u) ] dm

•'A

/ [u x (r + u) • to x (r_ + _u;
A ~ ~~

= / uTu dm + 2 / uTto(F+u)dm + / [(F+u)to]T(r+u)
A *4 A

to dm

= /uTu dm - 2 luT(r+u)dm + </ I (T+ti)1 (f+u) dm L
/A. A LA J

The Hamiltonian can be written as

T T N 1 / . T ITl /*~T~ ~T~ T
H = ~ to l" 03 + ± I u u dm + -| to I T u dm + u F dm

•'A L./A -I

+ ~ toT 7uTu dm to - /uT(F+u) dm

co

T* T1 T T
- [c c - 2c c to + u c c u] + V + CQ (4.2)

where the system potential energy has been defined as V plus a constant.

We introduce the definition

- r * 1 L - > - r * ' i •T<'I>TI ^I_ = I + IT T dm

y ~rji~

where the term I F F dm represents the inertia of the undeformed
A N

appendage. The expression Ifi defines precisely the inertia of the com-

plete system about point N when undeformed. If the vector basis {b_} are

N
assumed parallel to the principal axis, I. is diagonal, i.e.
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A G O

I*=| 0 B 0

0 0 C

We are now in a position where we can compute the angular momentum

integral. By definition, we have:

h = / (c + £) x (£ + £) dm
A,B

= / (£ + £) X (| + £) dm + / (£ + £) X [CO X (£ + £]

•4,B A,B

f o o ° f C °
I (£ + £). dm - £ x I £ dm + I £ x £ dm

./A.B A.B •'A.B

p) ] dm

= c

+ c to x / (c + £) dm + / £ x (w x £
. A,B J A,B

p) dm

- ( w x c) x / £ dm .
A B

The first and fourth terms vanish by mass center definition. Defining

N
the inertia dyadic of the complete system about point N, I , we have

h = I .(D

.""'".

The last two terms may be written in the vector basis {b_} as

(c c + c c to)x x c x

/£ x £ dm =' / (T + _u) x _ u d m = {b>}T / (? u + u u
A A /A

which allows the matrix representation of li in {b};

i) dm

uh = IN ' , /".u + j(((T + u) u dm + \^(c c + c c to) .
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In order to constrain the llamiltonian through the angular momentum

integral, we now have to solve the angular velocity components in terms

of the attitude angles.

Let us define an inertial vector basis fn} and its transformation

with respect to Cb_} as 0, i.e.

{n}= 0 {b}

such that n ' is colinear with the angular momentum vector _h after per-

turbation from its nominal inertial orientation. As the system is

assumed torque free h must remain colinear with n,; thus, subsequent to

perturbation the following must prevail:

' h . n1 = 0 . .' ;

h • n2 = 0

h. • n_ = h

where h is the magnitude of the perturbed angular momentum vector. With

_h written in vector basis {b} as prescribed before, the above equations

become:

0 dm + ^ff (c c + c c co)[N to + /(? + u) u
./A •0

or

TK "I"1 f T / ° \ f' -
u = I + .Jf c c 01 ( 0 1 - / (F + u) u dm - «/# c c

L J I Ah' JA.

Let us, now, determine the transformation 0. We have

{b} = 0T {n>

We will use in the three rotations needed to define completely 0, the

T
sequence of rotations 1 - 2 - 3 . As a result the matrix 0 may be

21
written:
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where E is the 3*3 identity matrix

6 is a skew-symmetric matrix defined as

• o

63 0

e,

-ei

0 .

9 is the diagonal matrix defined as

0

0 63J

U is the skew-symmetric matrix defined as
• •

0 + 1 1

U = - 1 0 1

-1 -1 0

With the matrix 0 , now, well defined, the approximate expression for

T
w = (u) , to , u ) may be written as

x* y' z J

TT»* ^--l"1* |_I + ̂ ccj

- .[9 9 + 0T8,(o)-/uu

u dm

dm - (A. 3)

Terms of order higher than second have been disregarded since the

stability analysis is only valid locally and the sign character of the

Liapunov function can be determined in the neighborhood of the origin
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from its quadratic approximation, as long as all coordinates are

included.

The solution of (3) for the angular velocity components is then

substituted into the Hamiltonian and limited to terms of order no higher

than second.

The inertia matrix is defined for the flexible appendage with the

{b>} vector basis as

t~f<A JA
E - p PT) dm.

where E is the 3><3 unit matrix. Replacing p by its value given in

matrix form as

P = r + u

we have

TA = /(fT + uT) (F + u) E ~ (F + u) (rT + uT) dm

IT T / T T
= /(I1 TE - IT ) dm + /(u FE - uF ) dm

JA JA

I T T / T T
+ I (F u E - F u ) dm + I (u u E - u u ) dm

JA JA
N •

The inertia matrix I of the complete matrix, computed with respect to

the vector basis {b_}, consists of terms independent of deformation as

well as terms both linear and second order in the deformations.

IN = i*J + /(rTFE - ITT) dm + |(uTrE - UF
T) dm + /(rTuE - FuT)dm

B /. /A /»•'A •'A •'A

|T T
+ / (u u E - u u ) dm

•/A
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NThe sum of the first two terms has been defined earlier as I ,

prescribed to be principal and having as diagonal elements A,B and C.

We also define

I
/ (
A

T T / T T A
(u r E - u r ) dm + (r u E - T u ) dm = 2A

T T A
( u u E - u u ) d m =

where we notice that A represents a symmetric matrix, so that

I N = I » + 2 A + U .

The definition of the center of mass or

^U £ + / £ d m = 0
JA,B

may be written as

c + Ip dm + I p dm = 0U £ + /£ dm + /£
•/A J-&

c + IT dm + /u dm + / p dm = 0.
~ A" A~ ̂ B~-

By definition, the point ^J has been chosen as the center of mass of the

complete system when the structure is undeformed. This allows us to

consider

/£
•/A

dm + I £ dm = 0.
<B

The vector £ is then expressed with .respect to the deformation _u as

= - TT" I u dm.
•^ A~

so that
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The matrix [I c c] expands to:

u'+i[jf dm][/"dm];
The inversion of the previous matrix becomes easy if we consider the

N
fact that the matrix I_ is diagonal, and if we recognize the fact that

only terms up to the second order are needed for the purpose of our

derivation. We obtain the following expressions:

N

so that

'3 N ^ 1
E + 21™ A + I

IIN 4- .M ccj

E.+ 21,

-1
-1

Taking now, into account the fact that the matrix A contains only first

order terms in the assumed small variables, and similarly, the matrix U

contains only second order terms in the same variables, we have:

N

0 0

1 TN-1 f f~ , "If C-.' I TN-1 .. . TN-1ATN-1ATN-1— — I I I u dm II I u dm I I_ + 4 I_ AI.. AI .
•"* \-Ĵ  J Li/A J

Introducing this last expansion into the expression previously found for

the components of the angular velocity vector, and performing the indi-

cated multiplication, we obtain as final expression, where only terms up

to the second order have been kept
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N N-l N N N 3 N
AI - I UI - — I

0 0 0 U 0 .41 L0

1

(~ }I u dm
/A. j

u dm
,-1

0 -
T-l

- 2 I o AIo e o
\h

1"

dm -

r~ i N ' 1 — - - - / ° '
/ r u dm + -| I*? [66 4- 6 U 6] ( 0

JA. \h,

-1
c.

When the expressions derived before for the angular velocity components

are substituted into the Hamiltonian (4.2), a series of simplifications

and combination of terms reduces the previous expression to:

,-1. „-! \T-1
(OOh) \

,N N

0

/a dm
L A,

-1 -1
LQ [ee + eye] -e ijj e

dm
"A

~ N~ N

zo 1+ 4 xo IA zo

/" -1
J. U

T dm

/*'•fk
dm

T-i r~ 1 i /" T
/ r u d m + — l u u
^A L JL

dm

u dm + V + C, (4.4)

where H stands for the constrained Hamiltonian.c

In this last expression, the potential energy must include the

contribution of the steady state deflection of the flexible appendages

induced by spin at a rate concordant with the angular momentum. In the

following text, this spin rate will be identified as being co . This
bb

last observation expresses the fact that the expansion of the potential

energy of deformation, in terms of the deformation variables, is not
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accomplished with respect to the minimum energy of deformation state. As

a result, the expansion consists not only of terms quadratic in the

deformations, but also of terms linear in the deformation variables,

plus a constant term. We limit the approximation of the potential

energy of deformation to those terms because they represent a good

indicator for the local behavior of the system.

U, ~ Ln + I LT. • u dm +.-J- / uTK u
d 0 J 1 2 J. dm

'A •"•' ' "A

where U, represents the energy of deformation, and LI and K are made

of functions of position.

If we, now, consider our definition of u, the deformation with

respect to the steady-state deformation induced by spin, we have to con-

clude that the equilibrium position is defined when the deformation

variables are zero. But for a conservative system, the equilibrium

position is obtained when the dynamic potential, composed of the ener-

gies of position and deformation and also of T_- the part of the kinetic

energy not a function of the time derivatives of the state variables of

the system — is minimum with respect to the state variables, when eval-

uated at equilibrium. Only the deformation energy and the kinetic

energy are functions of the deformation variables, and equilibrium has

been defined when u and 6 are zero and when the spin rate is given by a) .

The kinetic energy has been determined earlier and the minimization of

TO - U with respect to the deformation variables, evaluated at equilib-

rium, is equivalent to the requirement that the linear terms in the

deformation variables u appearing in T - U, accommodate themselves when

the spin rate is wcc or
oo

u dm + u r dm co - IL . u dm = 0
oo . /. . J.
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The potential energy of deformation may then be written, after the

observation that the terms in brackets are nothing else than 2A, in the

following way

ud « Lo u dm .

If we recognize the fact that to is In I 0 j and notice that
\h/

(0 0 h)
,N °vo•)•- o ,

.h/

we obtain the following expression for H :

HC = | (o o h).N'1 N̂."1- ATN
 1
 TN~

1 ̂ N
o AIo AIo - ' UIo

• r 1 N-i N-i N-i^ -i r ___! N'1 /°\
lu dm I™ + 4lJJ A!Q 9 + IQ »9> 6 U 9 - 8 ij 9 ( 0 J

*̂ A. j . L . J \ h/

l[jffiTf dm] ̂ "'[jf » dm] + i f d dm - i^[(aT dm] .[/« dm]

1 fl+ — fu K u dm ...
^ «/A

(4.5)

This last expression contains only terms second order in the deformations

and attitude angles. In the expansion of equation (4), several constant

terms appear in addition to the arbitrary constant C previously identi-

fied. Since C is arbitrary, it has been chosen in such a way that the

summation of the constant contributions is zero, allowing the

Hamiltonian to vanish at the origin — a necessary requirement for a

Liapunov function. . ,. . .

As H in the presence of complete damping is strictly decreasing,

then by Theorem I the nominal motion is asymptotically stable for H
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positive.definite, and by Theorem II this motion is unstable for H
c

either negative semi-definite or sign variable. We assume that energy

is dissipated within the flexible appendage whenever time-varying defor-

mations occur, as in the case for any physical object. We have care-

fully chosen our variables so that energy is dissipated for any admis-

sible solution of the equations of the motion in the neighborhood of the

nominal motion, except for the nominal motion itself, so we are assured

of complete damping.

Since for asymptotic stability the complete function must be

positive definite, then it is clear that the following must be satisfied

for stability

1 . 2 fl2 C-A 1 2 fl2 C-B
• 2 h 9 2 A c " + I h 6 l B C ~ > 0 -

This result provides the familiar necessary stability criterion pre-

dicted by energy sink methods for spinning bodies having an internal

energy dissipator, i, e.

C > A and C > B.

Thus, by inspection of the Hamiltonian we can formally conclude that, in

the presence of damping, the spin axis must be the axis of maximum

moment of Inertia. However, our objective is to extract additional

stability criteria, and this requires the determination of conditions

for positive definite H .

Now, that the constrained Hamiltonian has been found in a

completely general way, we are forced to consider more specific problems

if we want to come up with analytic criteria. In order to introduce

those particular case, some useful relationships have been derived in

Appendix V. To obtain literal closed-form stability criteria we shall
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restrict our flexible appendage model to lie in a plane containing the

center of mass and normal to the spin axis.

FLEXIBLE APPENDAGE

RIGID CORE

Figure 13. Restricted Model.

Following the definition of our particular case, we have to

consider

Under this last assumption, the three scalar equations expressing the

rotational motion of the rigid core are given by considering equation

(1) in Appendix V for this particular case or:

0 - Afl - ̂  0) (B-0- 2 + 2A13 • d dm dm

(A-C) + 2A13

dm +

+ 2

J?A

dm

dm
'A.

where we used the fact that the matrix I has been chosen to be diagonal

and where the angular velocity vector at the "steady-state" deformation

has only one non-zero component, wcc, along the spin axis.
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Under the assumption of a flexible appendage lying in a plane

orthogonal to the spin axis and passing through the center of mass, the

kinetic energy may be written as:

T = Tl + T2'

where

1.2 1 „ 2 ̂  1 -A2 ,
Tl = 2 AW1 + 2 BW2 + 2 /U3 dm - WSS Wl 7/1 U3 "2 /1-2 U3 *"

- U

T2 = I dm

- w2 / (u2 + u2)
•4

dm

WSS 7.U'2U2+riul)dm- .u, dm +

/u
A

1 2

121J
[£

1
^

dm

J

2

dm

U2 -

dm to.SS

dm

If we, now, notice the fact that

2 A

2 A

13

23

2 A33 = 1 Ul

u, dm

dm
SS
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it becomes obvious by looking at the previous set of equations that the

equations describing the rotational motion of the central body separates.

The equations expressing the change in the angular velocity components

to., 0>2 are coupled with the transverse vibration of the flexible append-

age and form what is called the "wobbling" motion. Also the third com-

ponent u_ is coupled only to the components u, and u~ of the deformation

and constitutes the "spinning" motion.

If the same separation is being observed in the deformation

equations, we could conclude that the general motion is divided into two

different types of motion r, One, where we observe a coupling between

transverse vibration and the first two components of the angular veloc-

ity, and the other where we find a coupling between the in-plane vibra-

tion and the angular velocity component along the spin axis. But we

just observed that for our particular case (F_=0) the kinetic energy can

be expressed as the summation of T and T^ where in T^ appear only the

variables of the wobbling motion and in !„ appear only the variables of

the in-plane motion.

As a result the separation suggested before is effectively

accomplished for our particular case if the potential energy of deforma-

tion is such that U. can be written as the summation of U, and U0 whered 1 . 2

the aforementioned separation prevails.

We will now assume that the in-plane and out-of-plane stiffness

elements are uncoupled which is the same as expressing that the matrix

K of the energy of deformation is partitioned such that

K = V V
K21 K22

:Q 0

0

K33.
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Under this last assumption, the motion separates and the Hamiltonian

itself can be written under the form:

where H contains the variables appearing in the wobbling motion and H

those constituting the spinning motion.

ĥBC

dm dm

- (r d - - e2 h2 ̂ —^ - -
/ 2 U3 * 2 1 VBC / 2

62h2 dm

-k
-

' dm

1 h

\

\

dm

h
2C2

_

2C

dm

A

2U1 U2 K12 dm

dm

dm

We have proven that H = H + H2 where the variables appearing in

H are uncoupled to those appearing in H_ through the equations of the

motion. We conclude that if both H and H« are positive definite, we

are assured of asymptotic stability, and if either H or H2 is sign

variable or negative definite, the nominal motion is unstable.
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Experience suggests that stability criteria emanating from H~ are

of little practical importance; the variables in H« describe deformation

in the plane of the appendage, which is normal to the spin axis, and

generally those criteria express simply that the structure has to be

sufficiently stiff to avoid destruction by "centrifugal forces." We

will thus consider the case where the stiffness elements orthogonal to

the spin axis are assumed infinitely large (u = u_ = 0) so that the
J_ £*

structure is allowed to vibrate only in the u_ direction. The cited

assumptions allow stability criteria extracted from H- to establish

characteristics of the entire system. To formulate the restricted

Hamiltonian in a more useful form, we have to introduce some new notions.

The class of problems covered by all the previous assumptions

includes as particular cases all the problems and particular structures

we consider in chapters 2 and 3. We now consider that the deformations

are expressed in terms of modes of the structures; this last consider-

ation will enable us to be more specific about the stiffness K__ .

The deformation will be expressed in linear approximation as a

linear combination of modes

Mv • '

We will become more explicit later, concerning the exact definition and

choice of modes. Let us just, remark that we introduce in the last defi-

nition N-new independent generalized coordinates — the 3 's. The expres-

sion (j> is related to the shape of the "displacement" in the mode V and

is thus defined as being a function of position only, the real
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deformation for this mode being then equal to the product of <j) by the

harmonic function of time 3 .

Introducing the last definition into the energy of deformation, we

obtain:

U. « L + <4 A + \d U ob Jo z K33 y *y

For our particular case, A». = 0, so the previous expression may be

written:

ud * Lo + I 0T K3

where we define 3 as being the N x 1 vector

B £

.3.N J

and K as being the symmetric N x N matrix defined by

- A r.
= k K33 *udm .

Expanding the deformation u_ in terms of the previous N modes, the

equations of deformation 3 are readily obtained in their Lagrangian
V

form:

d_/3T
dt

3T
= 0

V

where T and U, are the kinetic and potential energies,
d

For this particular case (F = 0, u.. = 0, u_ = 0) the kinetic energy is

reduced to the following combination:
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/r u, A*
u>o Iv 2 3

T--5-1 < - - 12
dm\ -«• 2

. "3
'A *

+ CW3
 W

SS 2 J

-2 .

\ + \
)

o3
4>

the

13 dm =

Where the

V
*\

.^^s M and tnjtrices "

lc matrices
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i dm = M/*A
r /• if^f 1/* da ) W ito
L/A J LA -J

A
= m

and the N x l vectors AI and A by

/T
•

dm A

2 <(. dm = A2 .
A.

The kinetic energy then becomes:

T.- \**l+\ 80)2.+ I -

m

The deformation equations can, now, be written in a completely explicit

form:

"2 Al " &1 A2 - Sl WSS Al - W2 WSS A2

If we add to this set of equations the rotational equations of the

central rigid body under the assumptions T~ = 0, u. = 0, u_ = 0 we get

0 = Aft\ - u2 (.ss (B-C) + ogs- y*r2 U3 dm + /r U dm
A

0 .-B«2 + W]L 0)ss (A-C) r "S F u dm - t dm

or, introducing some of the previous definitions:

0 = Au. - u>0 woc (B-C) 4- <A 3T A0 + gT A0

0 = Bu 4- U w (A-C) - o)
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In order to study the stability of the previous system, we now

need to define how the modes have to be computed. In order to do so,

we have to keep in mind that we are interested in obtaining a system

which is suitable for a mathematical analysis. Similarly, for the

common procedure used in the "hybrid-coordinates" approach of flexible

22
space craft and developed to some extent by P.W. Likins, , we have to

use some practical simplifications in order to obtain the solution.

Even though, in the equations of the deformation, the forcing

terms, linear in the U)'s, are in fact coupled to the flexible appendage

deformation variables, 0 , through the central body motion, we define

our elgenmodes as being obtained only by the consideration of the homo-

geneous part of the equations in B's. Unfortunately, the modes are

still coupled, through the motion of the center of mass, motion result-

ing from the appendage .deformation. The center of mass motion is imbed-

ded in the matrix m of those equations. In order to decouple the equa-

tions, we must add the assumption that the eigenmodes are defined when

the system's center of mass is assumed fixed, but the structure deformed

by the deformations induced by the steady-state spin.

This last assumption could appear too restrictive but the coupling

between the rotational equations and the deformation equations is

obtained through the vectors A., and A . For a symmetric structure, with

homogeneous physical characteristics, only antisymmetric modes introduce

nonzero elements in the vectors A., and A«. So, we remark that the cou-

pling between the two sets of equations is obtained by means of anti-

i .
symmetric modes and those, precisely, do not affect the motion of the

center of mass.
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We could also, as several authors did, consider that the

rotational motion of the central body of a symmetric vehicle is only

affected by the anti-symmetric modes, and from there consider in the

deformation variables, only those corresponding to anti-symmetric modes.

1With this approach, the term -—̂ - m 3 would not be present in our equa-

tion.

In what follows, we focus attention on symmetric vehicles, in

order to take advantage of the possibility of separating eigenmodes into

symmetric and anti-symmetric classes.

With the modes completely specified, we know that if we let the

structure vibrate in one of its modes, the frequency of the vibration
*i

2would be given by w , the eigenfrequency corresponding to the aforemen-

tioned mode, and we will anticipate a periodic motion (no damping has

been introduced when deriving the eigenmodes and eigenfrequencies.) For

an orthonormal system of modes, the matrix M becomes the unity matrix E

and we thus obtained as equations for the deformation variables

E 3* + K 3* 0

where the variables 3 have been substituted for 3 in order to differ-

entiate them from the equations obtained with the forcing terms.

This last equation may also be written with the substitution

2

0
K = ft"

U)-,

2
V

0
'. 2
"N

where the K matrix becomes a diagonal matrix the elements of which are

composed of the squares of the modal frequencies. Those frequencies are
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the loaded natural frequencies of the appendage accounting for the fact

that the stiffness elements are modified by spin. That is, the tension

in the structure induced by spin alters.the appendage stiffness charac-

teristics.

With all the previous assumptions and new definitions, we are in a

position where stability criteria could be extracted from H and where

the stability characteristics of the entire system could be established.

Introducing the following definitions

"3 V

j
A T= 3T

where the matrices II and !!„ are the N x N symmetric matrices satisfying

A T -ni = A i A i ;
A T. n2 ^ A2 A2

T

the general expression for the Hamiltonian H becomes in a matrix nota-

tion

, _ 1 . 2 r,2 C-A 1 .2 fi2 C-B
*1 •' I h 62 AC" + I h 91 1C~

2 2
'* Q2 T, h 91 TA£• Q A A _i_ ±. Q A

"Tc~ p Ai + ~Sc~ 3 ;

1 T
+ I?ni + ^n2

At. JiL.

- i ^ -X-
We can now write the stability criteria as being given by the

positive definiteness of H.. or

H- > 0
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where it is to be understood that > 0 means positive for all values of

6 f 0 , B arid 8 in the neighborhood of the origin 8 = 9 = 6 = 3 =0,

except equal to zero at the origin itself.

If we, now, group the eigenmodes into two categories, the first

one including symmetric modes and the second one regrouping the antisym-

metric modes, it is straightforward to see that in the development of H ,

the symmetric modes contribute to H , only through

U*2 S

where the subscript "S" has been introduced to distinguish this part

from the rest of the development of H . This last observation is in

fact a consequence of the remark made earlier: only anti-symmetric

modes have nonzero contribution to the vectors A and A . It is evident

that the .first term is always strictly greater than zero. In order to

prove that the second term

is always strictly greater than zero, let us consider the following

expression

- -h {/U3S dm]

where u. stands for the symmetric part of the deformation u_. Applying

the Scharwz inequality.

,w)| < P(v,v).P(w,w)

to the term , we obtain
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/u dm < /u dm . /dm = m /u
LA 3S J A 3S A A A

Clm = m I u~ dmA A 3S

where m stands for the mass of the flexible appendage only.
A

As a result, we have

Rs * - hi [As *•] *>- (-1 - ̂ ) /U3S dm

but
m A ,

> 0

been written as the summation of m^, the mass of the flexi-

ble appendage, plus DL., the mass of the rigid core.

From the last observation, we conclude

* A ^ I / „ '2„ !IQ dm ~ ̂ T2/ \ lu™ dml
jf\

jfU3S dm - -hi [/U3S dm] > °

Expressing the deformation u,,c in terms of the symmetric mode, we have
Jo

The last inequality becomes:

Es - 3S > 0

We conclude from the last relationship that the matrix

Es ~ 23̂ ms

is positive definite and from these that
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So we just proved that the variables of deformation corresponding to

symmetric modes separate from the remaining terms and that their con-

tribution to the Hamiltonian HI is always strictly greater than zero.

The stability criterion becomes,finally

„ _ 1 .2 '2 /C-A\ 1 2 f l2 /C-B\Hi - 2h 9
2 v lev+ 2h ei (sr) ~

A

AC

h2e

or +
AC BC2 M 2

E - i IL - I IL B > 0
A "2 B 1

x

where only the contributions of anti-symmetric modes have to be taken

into account. We observe that in the last inequality the matrix m is

no more present.

In the last development of the Hamiltonian, the last term is

uncoupled from the remaining terms. We conclude directly from here a

requirement for the asymptotic stability of our system, i.e., the matrix

E-iV-ini
has to be positive definite. The author believes that due to physical

properties of realizable systems, the previous matrix is always positive

definite. He was however unable to prove this last statement for a

general case, but for a wide class of flexible spacecrafts, it is veri-

fied.

For the class of flexible spacecraft where the rigid core presents

an inertia symmetric with respect to the spin axis, or where the princi-

pal axis of the rigid core coincide with those of the. flexible append-

ages, the principal axis of the entire system are the same as the prin-

cipal axis of the flexible appendage alone. If, together with this last
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property, the flexible appendage presents a symmetry not only with

respect to the center of mass but also with respect to the principal

axis of inertia, then the previous statement is indeed true.

(2C DIRECTED OUT OF
THE PAPER)

Figure 14. Particular Case.

Let us consider the following example where all the previous

requirements are met. The figure represents the body when spinning at

steady state. From previous consideration, we know that only anti-

symmetric modes are of interest. We, now, consider in the flexible part

two elements of mass dm of coordinates (F , r_) and (~r,, F ) when at

steady-state deformation. Because of the assumed symmetry of the flex-

ible appendage, such a pair always exists.

We now decompose the anti-symmetric part of the deformation — our

main interest — into two parts:

r r '
1 2

where the deformations u-. and u_ are defined in the following way
jA. j A
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U 3 A ( r i > r2> + u 3 A ( - r i > V

and u3A (rr r2) - u3A (r,, r2) = u c^, F2)

We, also, have then

3A <-ri» r2> + U3A 2 <-ri» r2>

with u3A (-rlf r2) = u3A (rr r2)

and u3A
 2 (-F̂  T2) = - u3A

 2

We then have for the two elements of mass dm, of coordinate (F , ?„) and

vt-.»' cr.. * r«.) dm ~ r u (—r » r ) dm =. OA v i * 9 ^^ 1 *}A 1 * 9J" X Z. J. JA J. Z,

ri F2 Fl
i U3A (rr r

2
} + ri U3A (ri> r.2) - rx u3A (-rr r2)

r u ?2 r \ ^
/

and similarly

r u,A (r. rj dm + r. U,A (-r,, rj dm = 2r9 u_. -1 (r,, rj dm
Z jA JL ^ ^ jA X ^. ^ JA J. ^

From there, we may conclude

/ T-i u_. dm = I F, u_. dm
/ 1 3A A 1 3A

= J.T2 U3A 1
•'A

2 U3A .
'A •'A

Let us now consider the expression:
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fi
*

3A
(4.6)

We have

+ 2 U 3 A U 3A

/f J

wher.e we observed _. u_, " dm = 03A 3A

Introducing the equality previously found, the expression (4.6) is also

equal to

[#-
J

J?2d

ft* dm

m

mi(
\2 u3A

 1 dm'

•

'2
/

(P)A. ^

yr2 dm
* dm

IT u. 2 dm
JA

Applying the Scharwz inequality, we have simultaneously

2
dm

dm

dm

dm

dm

dm

Introducing those two inequalities into the development of the expres-

sion (4.6), we conclude that for the particular case into investigation,

we have for every anti-symmetric deformation u»A, the following inequal-JA

ity
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J<r r ? d m "
\ *•

-ft .n

J$
 d°~

[£•3/

[*
dm

I

L*"
2

> 0

~fi " /F2 "3A *'

With this last inequality, we are now able to conclude that for every

anti-symmetric deformation u,A, the following inequality is true•5A

AB /u^ dm - B /T. u_. dm - A /T. u" .
4 2 3A J [./A 1 3A

dm > 0 (4.7)

where A, and B are the inertia of the total system. By definition, we

have

1 /2
A = A + IT dm

A

B =. B
1 + A2

•̂ A •*•

dm

where A and B are the inertia of the rigid core.

Expanding the left hand side of the expression (4 .7) , we have

B1* B1 + /T? dm /T0 u,.
7. 1 / 2 3A

dm

?2
2 dm dm

The use of the Scharwz inequality and the consideration of the previous

inequality enables us to conclude the inequality (4 .7) , after the obser-

vation that for any physical realisable system we have

. dm > 0
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So we just proved that for the class of problems where the principal

axis of the flexible appendages and of the entire system coincide, we

have

/"3A d° - B f JJ2 "3A - A dm > 0

Expressing u in terms of the anti-symmetric modes, we have

'3A

or

AB B E3 -

Dividing through by AB, we obtain finally:

B > 0

We thus conclude that the matrix

is positive definite.

The requirements of positive definiteness of H are now reduced to the

consideration of

, _ 1 2 Q2 /C-A\ 12 fi2 /C-B\
Hi ' 2 h- • 2 VGA / 2 h ei VBC~/ ~ A

•n,2 1 2 2
AC BC

B > 0

In matrix notation, we have
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ti (C-B)
2BC °

h2(C-A)
° 2AC

A A
2BC "2 2AC "1

h A T

2BC 2

h2 Th A
2AC Al

/ 2 2
1 n i TT i

9 \ 91 2^ \ A r«^ Tjr»

>o

The N deformation variables can now be truncated to a single mode,

identified by index 1; thus the total number of coordinates is reduced

to three. Accordingly, the N xi vectors A and A2 reduce to scalars.

Similarly the N x N matrices IL and IT reduce to scalars.

Implementing the above truncation allows the stability condition to be

written as .

1 2 MlV -,-

> 0

li (C-B)
2 BC

0

]} A
2BC "2

0

h2 (C-A)
2 AC

— . - ... A
2AC Al

h A
2BC A

2AC

2 \W1

2

Ai

I 2

where Ai • A *i dm

dm
A

22 = to2

' , 2

n2 - A2 . I2dm I
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The sign character of the above quadratic function is determined by

testing the sign character of its corresponding symmetrix matrix.

Sylvester's Theorem assures that the necessary and sufficient con-

ditions for the previous matrix to be positive definite is that all

principal diagonal minors be simultaneously positive. If this test

fails, H^ is not positive definite and is either negative semidefinite

(or sign variable), implying instability, or positive semidefinite.

If we exclude this latter limiting case (as for an axisymmetric

vehicle, with C = B or C = A), necessary and sufficient conditions for

asymptotic stability of the restricted planar appendage model are given

by:

2

2

2

2

BC

2
h~ (C-A) .2

2 Al +

A2

BC
h4

4

2
ti

2BC2

A 2 '

BC

-i

4
A A2

-

(C.A)'
AC

h .1
4 A2^2

A C

> 0 .

The combination of the first two conditions, as predicted by energy

sink methods, requires that the spin axis be the axis of maximum

moment of inertia, i.e.

C > A and C > B .

The requirement of the third condition emerges and can be written

, h2A2 h2A2 I
£• ^ J- , ^

C2(C-A) C2(C-B)
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By replacing h by its zeroth order approximation C tt , where fi is the

nominal spin frequency, the above condition simplifies to the following

,2
t A,

C-A C-B - •

Thus a stability criterion arises which explicitly bounds the first

modal frequency of the structure.

To conclude this derivation and to demonstrate the interrelation-

ship between Chapter 4 and the preceding chapters, it might be useful

to work out a simple example. An elementary but meaningful example is

given by the beam pair configuration, as in Figure 15.

1

L̂s*

Figure 15. Simple Example.

For this particular structure, we have T = F = 0. The

stability criteria for asymptotic Stability of spin are given by C > A

and C > B arid also

n
A
C-A

A

C-B
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The consideration of F_ = 0 reduces the last criterion to

fryC-A
Let us concentrate on the first mode, as our single mode. From our

previous derivation, we conclude that only the anti-symmetric modes

are relevant to our study. From the derivation accomplished in

Chapter 2, we have the following results, when considering the first

mode.

/ u \
2

^1 - 1 + 2.12 71 ,

also

= hQ(x)

For the first mode, h_(x) represents a linear function k^x, so we

obtain for A., the following expressions

L.

where the anti-symmetry of the deformation has been used. For a uni-

form beam, we have dm = y dx, so the previous expression becomes

L L

An = 2y / x h_(x)dx + 2y /e / x h-(x)dx +...1 •'o ° ^o 1

For the first mode, the orthogonality relationship between hQ and h.. ,

cancels the second term and we are left with

L

Al = 2P JV2 dx = 3 y kO L3-
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The modes have been defined in such a way that

/
<fr? dm = 1

„ •

or

so

, 2 3 1

dx = 1

0 2 T3uL

The final expression for A., is then

.2 2 T3 2 T2
Al " 3 yL. = 3- V ,

where IIL = p L stands for the mass of one beam. The final expression

for the last criterion is thus

T2

If we observe that the inertia of a uniformly distributed beam about

1 2
the core is given by -r m^L , the last criterion is also

, . 2 12 jr- > (Inertia of the two beams)
C—A

This last result has to be compared with the stability criteria

developed by L. Meirovitch and R.A. Calico, Reference (23), where they

obtained stability criteria for a spacecraft characterized by a rigid

core having attached to it flexible booms. Their results, when applied

to radial rods only, become

JL J , (Inertia of the .rods)
£2 7 C-A

which shows a perfect analogy with the result of Chapter 4.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

t

In the work developed, two different problems have been

approached: A modal analysis, covered in Chapters 2 and 3, and an

attitude stability study, presented in Chapter 4. Each part represents

a different aspect to investigate for the preliminary design of flex-

ible appendages to be attached to a spinning spacecraft; they comple-

ment each other under the general question of stability.

In the first and more extended part, general inferences con-
s~

cerning the magnitude and character of the influence of spin on the

natural frequencies and mode shapes of some rotating structures are

done. One of the objectives of this part was also to address ourselves

to the level of sophistication that a derivation using a continuous

model for an elastic appendage attached to a rigid base which is

constrained to rotate with a constant angular speed fi about a body

axis, fixed in inertial space, could bring us.. We decided to try to

get away from more standard procedures — based on energy consideration

and transforming the eigenvalue problem to a minimization one — by

approaching them by a method unfamiliar to those particular appli-

cations. The method of matched asymptotic expansions has been proved

to present a very powerful tool for the particular problems we looked

at. Even though, we didn't attempt to consider all the meaningful

structures where a singular perturbation method could be appropriate,

we believe that we cover several problems where the usefulness of the

method has been found. In contrast with the classical Rayleigh-Ritz
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or Galerkin approaches, the accuracy of the perturbation method is

determined by the number of terms taken in the various expansions and

may be improved step by step by the investigator without the necessity

of repeating the analysis with an augmented number of terms in the

expansion of the solution.

The literal stability criteria developed in the last part of this

present work represent anticipated results in the search for closed

form conditions for attitude stability of spinning flexible spacecraft.

They are, in fact, a natural extension of those derived in a similar

study where another way of modeling the flexible part of the space-

craft was adopted. They represent (except for a few recognizable

singular cases) necessary and sufficient conditions for stability for

any spacecraft characterized by the planar appendage model, such as

a spacecraft containing solar panels and/or radial booms. More pre-

cisely, they are necessary and sufficient for that portion of the

system representative of the wobbling motion. In terms of the

composite motion, these conditions can only be classified as necessary.

Also this analysis does not reveal the system behavior at any time,

but only the quality of the motion in the neighborhood of the dynamic

equilibrium configuration consisting of the body spinning at a high

angular velocity about the spin axis.

Although the results of this study could be used in preliminary

design of flexible appendiages to be attached to spinning spacecraft,

we have to be very cautious in extending the previous work to more

general types of configuration. We mentioned earlier that a modal

analysis of an idealized elastic structure on a rotating base requires
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the derivation of the linearized equations of small vibrations of the

mathematical model from its steady state of deformation, induced by

spin, and the transformation of these equations into a system of

uncoupled equations of motion representing each normal modes. For a

continuum model, the number of normal modes could be infinite. For a

completely general structure, this step represents a major obstacle.

Even in the very elementary structure consisting of a spinning central

body with a cantilevered beam oriented in the direction of the spin

axis, the influence of the basis rotation is manifested in the form

of centripetal acceleration and Coriolis acceleration. The latter

term couples the equations, and provides an obstacle to modal analysis

except for the particular case where the linear density is constant

throughout the beam and both transverse inertias of the cross section

of the beam are the same constant. And, even in this last case, the

modes are given by a complex function.

It is to circumvent the last obstacles, that several authors

consider in their modal analysis an attractive alternative, employing

for the flexible appendage the coordinates which are normal mode

coordinates when the basis is inertially fixed. Although this last

shortcut may be acceptable when the motion is a small perturbation from

a rigid body displacement at a relatively slow spin, it is more diffi-

cult to justify for a general case. They also look, at the outset,

at the spinning stiffness matrix K as composed essentially of the
xv

summation of the nonspinning stiffness K and a matrix representing the

contribution of spin — sometimes referred to as the geometric stiff-

ness. But here again, they face another source of problems. In
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general, the eigenmodes of the nonrotating structure are not orthogonal

for the rotating structure; as a result, the spinning stiffness matrix

is no longer diagonal for this last choice of eigenmodes. As a result,

/\ - ;. ' >
the nonspinhihg stiffness K is well defined and made of the unloaded

natural eigerifrequencies along the diagonal, but there is no real
s*>

physical basis to determine the correction to add to the last K matrix

in order to obtain the complete stiffness matrix and this last effect,

configuration dependent, may or may not seriously modify the stiffness

property of the structure.

In view of those several difficulties, we might conclude that the

development of elastic continuum models could yield very useful results

when applied to a small class of special cases, but this approach

lacks the general utility and tractability of distributed-mass finite

element models, since in the latter case, the governing equations are

always linear, constant coefficient ordinary differential equations.

Finally, the generalization of the previous results can only be con-

sidered for that small class of problems of elastic models where the

steady state deformation can be solved first, and where the vibration

equations are obtained by a linearization procedure; and even in this

case implementation of the general theory may be very difficult.
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APPENDIX I

ORTHOGONALITY OF THE MODES

Our objective is to prove that the values previously found for

2 2- and A.. , also satisfy:

k- 1

/ cf>a<
"1

<}>B dx = 0 f or a * B .

-k

The asymptotic expansions for the modes are given by:

/e

The problem becomes equivalent to:

k'1

,~

k'1

h03hla)dx.
-k

where hQ and h.. satisfy

and similar expressions for hQg and h..g.

The first equality is easy to show. Multiplying the differential

equation defining h_ by hQR and integrating over the whole span, we

have :
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v1 v1
/ [ ( l -x 2 )h i a ] 'h 0 3dx+x2 a J .

X -1

hoahoe dx '
-k -k

After an integration by parts, the use of the transcendental equation

2 2
defining Xn and XAO, gives us:UCx Up

W^edx •
-k

2
By symmetry the previous equation is also equal to XnR / hnfvhnR dx,

from where the first equality results.

The equality

kT1

/Vie + hop-hia)dx = °
-k

is more difficult to prove. The differential equation defining h..

is first multiplied by h_0 and integrated over the whole span. The
Up

orthogonality of h» and hnft is then used and we have:

. -1 , -1
f r
J - x la 03 X Oa J la 03
-k -k

Integrating the first term by parts and using the boundary conditions

on hno, we haveUp

k- k-

-J (l-x2)hiAdx -h X
2
Qa f

k
JL -i •!•-k

hlah03dx=°-
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Integrating by parts once more, and after the use of the differential

equation defining h_R, we have:

-1 -1

-k-1
,hlah03dx = ° '

A similar expression can be obtained starting from the differential

equation defining h,D orIP

L~x )hOah!3

-1

-k
-1

-1

LVoa dx
-k

Adding up those two relations, we have
-1 -1

-1

-k

(h!3hOa+ hlah03)dx

The two first terms can be written:

and by direct substitution, this parenthesis comes out to be

identically zero. We then conclude

-1

/

-

dx= °'
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APPENDIX II

SOLUTION TO THE REDUCED EQUATION OF THE TAUT MEMBRANE

In the consideration of the second linearly independent solution

of the previous equation, two cases have to be considered.

CASE A; Both roots of the indicial equation are the same and

equal to zero or

1 - Y = 0 or Y = 1.

This case corresponds physically to m=0 or to radially symmetric vibra-

tions of our clamped disk; To obtain the second linearly independent

solution, we shall assume that
00 '

TT c . N^ , n+cH = x + / i b xc *—* nn=l

where c is retained as a parameter. The last expression does not

satisfy the differential equation defining Hn, but if we write the

differential equation defining H_ or

d\ dH0 1 X*
x(l-x) r + (l-2x) —— + -T,2 dx 4dx

under the form

where £ „ represents the linear differential operator

A2

~
we have

= *-> 72 -x dx-
0 dx k..
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xC +.-| xc -cxc + bl(c+l)x
c

0 kl

-1) (n+c-2)-fb (n+c)
n=2 n

x2 i
-2 b (n+c-1) +-^b x1*0-1 .

n-1 4k n"1J
1

We are now able to make all but the first term of the right hand mem-

ber of the above equation vanish without selecting c. To do this, we

must take
X2 ''

-c2 + b (c+l)c + '•-— - c + b. (c+1) =0
4k L

and

bn(n-Hc)
2 - bn_1(n+c-l)(n+c) + b _1 -2_.

4kl .

So far, we have found an expression

Hc = *- + Z. bn x
n+C

n=l

that reduces the previous expression to

2 C-l

H x

"o c
OP Tf3 1H = c x

no matter what value c takes on. But this last expression not only

shows that the case c=0 is solution of the equation defining H , but

also (dHc/dc) evaluated at c=0. The solution, found before, corres-

ponds to the case where c=0 so our interest lies mainly in finding

dH
c-0.
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or

dHc 2— = x log x+ n+c.
logx

n+c

n=l n=l

We finally obtain the second linearly independent solution

n=l c=0

nx
c=0

or

,3,Y»X) l°g x
3b

n-1

n

c=0

The complete solution is then given by:

00

E ob

87Tn=l

n

c=0

Due to the singularity at the origin, we have. to take b_ = 0, and the

solution reduces to:

HQ F(a,3,y;x) ..

Case B; In this case, the roots of the indicial equation are

different and from there, m is different from zero. In order to

determine the other solution, two different cases are to be considered

depending on the values of a and 3.

a) a or 3 is an integer between 1 and m. Let us try a particu-

lar solution starting with the index -m, or

OO

' V* n-m
HQ2 - 2-r V '

n=0

By substituting the last expression into the differential equation

defining H , we obtain as a coefficient for a_, the indicial equation
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which is satisfied because the particular solution starts with the

index -m. The other part gives us the recurrence relationship between

the a's or more explicitly

(n-a)(n-B) ' '
Q. = / \ Si i •
n (n-m)n n-1

By looking at this particular solution, and knowing that m is different

from zero, but taking on positive integer value, the only way such a

solution could exist is if the numerator of a is also equal to zero,

but

(m-a)(m-B) (m-a-1)(m-B-1)
m ~ (n-m)m (m-l-m) (m-1) "^O

The last particular solution is then possible only if a or 3 satisfy

one of the following equality:

a is an integer between 1 and m

3 is an integer between 1 and m.

If a or B is an integer between 1 and m, one of the a's, in the pre-

vious recurrence relationship becomes zero and the particular solution

is represented by a truncated serie. This particular solution com-

bined with the result found earlier represents the general solution of

the equation. Unfortunately, this last solution H has to be dis-

regarded for.its singularity at the origin.

b) If a and B are not integers lying between 1 and m, then the

second linearly independent solution for H can be taken under the

form

HQ2 = HQ1 log x + HQc .
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Introducing this last expression into the differential equation defin-

ing H_, we are left with

d2H dH dH
x(l-x) — ^+ [Y-

dx

(i—x) Hm
] -- = 0 .

We now consider for H. a solution of the formOc
00

HQc=Z dnx
n+C where d 0*0 .

Introducing for H_.. , the solution we found before, we have for the

equation defining d ', two choices:

1) c(c-l)d0 + Y c dQ - aQ + y aQ = 0 and c=0

where the terms in d_ compensate for the term in an or

2) c(c-l)dQ + Y c dQ = 0 and c < 1

where the terms in dn balance themselves. The first case is impossible

as can be seen directly and we are thus left with

c - 1 + Y = 0

or
c = -m . ' •

Knowing that c = -m, we could now compute the recurrence relationship

between the d's. But/ once more, the solution Hn_ is to be disregarded

for its singularity at the origin, and from there, the solution found

before in Chapter 3, represents the general solution of our equation.
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APPENDIX III

BEHAVIOR NEAR THE ORIGIN

In order to shorten the text, the behavior of the solution near

r=0 has been introduced as an Appendix. It is indeed deduced that

the solution previously found is valid throughout the neighborhood of

the origin and doesn't present any singularity. As explained earlier,

the reason to consider the neighborhood of the origin is justified for

2 '
the singularity of the operator V at the origin.

Boundary Layer Expansion Valid Near r=0

Close to r=0, let us define a suitable boundary layer variable

or

* r
r = where a(e) -»• 0 when e •*• 0 .

The corresponding asymptotic expansion valid near r=0 is taken as

*a>m(r,e) = yQ(e) g0(r*) + y1(e) gl(r*)+...

2In the new variables, the operator V becomes:

7 7 7 7 2
\72 = -41 _,_ I _i _ S_ - d 1 d _ in JL *

m 2 +
 r dr 2 ~ 2, *2 2 * . * 2*2 2mdr r O dr a r dr a r a

*2
where V stands form

2 " • 2d I d m
. *2 * . * ~ *2
dr r dr r

The complete equation for the deformation becomes, with the use of the

previous definition:
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-e

i d
2 * *

a r dr

2

—2~*2~ 'a r

,,2 . /-

2 O * O J /
. , **• A Q I *L-k a r ) -y ly

dr x
(e)g0(r ' (r*)+ }

The thickness of the boundary layer is obtained by considering:

e ~
or a

/- ' * r
= /£ and r = -

The dominant boundary layer equation is then obtained by considering

the terms of order yQ(e)/£ in the previous development or

*2 n*2 , * . 1 d
m Vm g0(

r ) +—-
r dr

^Li -2 r*. n*f- - -*2~ S0<
r > = °

This expression can be written shortly:

Writing this last expression in .terms of the operator V , we have

*2 *2 • *
V<V - 1)go(r } - °

or

*2 *2
0 •

*2 *2
We observe a permutativity between the. two operators (V - 1) and V

. m m

As a result, we know from the theory of linear differential equation,

that the obtention of the four linearly independent solutions of the
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previous equation can be done by solving the two systems

2 - « 8<r*> - 0 '

The general solution of the complete equation is then obtained by

taking a linear combination of the four solutions generated. The

determination of the constants appearing in the general solution are

then determined through the matching process near the origin. Let us

look first at the solutions of

(V*2 - Dg0(r*) = 0 or

2
.Id / *\ m / *\ , *\ n

0
+~* dr"gO(r } --*2-80

(r > ' gO(r } = ° Vdr

This equation is a Bessel equation which solution is given in terms of

the modified Bessel functions I and K . But both of these solutions
n n .

have to be canceled, one for its exponential growth and the other for

introducing an unbounded displacement at the origin. The other inde-

pendent solutions are determined in solving

This equation can easily be integrated by the use of the substitution
• • j,| .

g (r ) = r leading to the characteristic equation, with two roots or

. 2 2 . ,
k = m or k = ± m .

The solution k =-m ; introduces a singularity at the origin and will

therefore be neglected and we are left with

, *^ „ *m
g0(r ) = CQr .
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This expression represents precisely what the solution found in the

central area becomes in the neighborhood of the origin and the

determination of the constant GO is obtained directly.

Due to the fact that there is no boundary condition at the

2 *
origin and that both solutions found for (V - l)gri(r ) = 0 have to bem U

canceled for being improper for matching, we deduce that the solution

found earlier is valid in the neighborhood of the origin, and that,

for this problem, there is no need for a boundary layer at the center

of the membrane.

For the particular case where m=0, the previous solution has to

*2 *
be revised. The equation V g_(r ) = 0 becomes

*2 ' * *
dr r dr

or

*
80 = C0 £n r + Cl '

*
Again, the solution in Hn r has to be rejected for its singularity at

the origin, and we are left with

g0(r*)=Cr

which represents the displacement of the membrane at the origin. The

determination of CL is again obtained by matching with the solution

found previously. Once more, there is no need for a boundary layer in

the neighborhood of the origin. We conclude then, by saying that the

solution found earlier is valid in all the central area of our problem.
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APPENDIX IV

DETERMINATION OF THE CONSTANT C

In the matching process valid near r=l, it seems natural to con-

sider as an order of magnitude for V-(e) the value

Going back to the expansion done for the differential equation defining

1/3<j> , an indicated choice for <- (e) is given by K (e) = e ' . Theot ,m J. j.

differential equation defining h- (r.) is then given by the following

expression

H2, „
n 2. ° nl I n 2. a"l _1 r 2 22 >2W2 _ ,2V.-L—r /• 5" T — \J-~Jr ) r ~ —^ lm — (.m K T A_.^r jn- —A-n_.

dr r r r

We can see from a straightforward observation that the homogeneous part

of the previous equation is the same as the differential equation

defining hQ, and that hQ appears as a forcing terms. As a result, the

2eigenfrequency A- of the previous equation, can be obtained once more

by considering only finite displacement at the rim of the disk. Let us

express:
oo

n+m
ll = S 'n1

r
n=0

The index of the last equation is obviously the same as the one found

for h_. We then have if we replace h_, by its development

ho = ̂ Vn=0

where all a.'s are known.
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[(n+m)(n+m-l)b - (n-hn-2) (n+m-3)b .+ (n-hn)b
n=2 n n~2 n

- 3(n-hn-2)b ,-m2b + (kV + X2)b Jrn+m~2
n—z n 0 n—/

_ ,4. » n+m—2

n=2 V2r

or

(n-hn-2) (n+m) - (k2m2 + X2) xj
bn = 2 ~ I b n - 2 ~ ~2~~ an-2 '

n + 2mn n +2mn

The recurrence relationship contains two terms, one has the same ratio

as the one found for the a.'s and the second term is coming from the

2
forcing terms. But if XQ is such that the serie defined for h_ is

truncated starting at a ,, we have that a ,,„ ,... =0. But in the

expansion of h1, the term

a
'nt Xn'Wm) "«'~2

represents a nonzero contribution.

As a result, we conclude that the rest of the expansion for h

represents a diverging expression for r=l, as it was proven for h_.

We, then have to conclude that K.. (e) is not of an order of magnitude of

e , and by the orthogonality relationship between the terms of the

1/3asymptotic expansion valid for the mode, that V.. (e) is not e . This

result justifies the choice

c - o. •
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APPENDIX V

EQUATIONS FOR THE ROTATIONAL MOTION

In this appendix, we will rederive some basic equations whose

consideration are necessary for the mentioned particular case. First

of all, let us derive the equations of motion for the attitude angles

of the central body, for a completely general problem.

In the derivation done in Chapter 4, we obtained the following

expression for the angular momentum vector with respect to the center

of mass.

N • • ' / - • • 'h = I • to +*4tc x c + / p x p d m .

The equation defining the angular velocity vector for a freely spinning

flexible spacecraft is then obtained by expressing the nullity of the

' - • • .-.•.'••'. . •' • "I • '•
applied torque acting about the center of mass or

h = .0 = if1-' W + to x _i . w + _IN' a> + u x / £ X £ d m + p x p dm/

where we limited our derivation to the linearized equation of the

motion. Written in matrix form, the previous equation becomes

0 = IN oo + w INoo + IN co + oo /p p dm + / pp dm .

The two last terms can be expanded in the fpllowing way:

/ , -. [ - • • • • • • /*-I p p* dm = I F u dm + / u u dm
•4 -4 'A.

/
p p dm = / r u dm + I u u dm .

J h. Jt,.'A "A
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Expanding similarly the matrix of inertia of the complete system into

IN = Ig + 2A + U

where 2A represents the first order terms of the matrix of inertia and

similarly, -U represents the second order terms.

The linearized equation of the rotational motion are given by

0 = I. u + Gln o> + 2 S A o>__ + 2 A cocc + uic_ / T u dm
\J \J OO OO OO OO

+ I r u dm (V.I)
JK

where a) has been introduced to express the angular velocity vector

when the system is spinning at equilibrium at a rate compatible with

the angular momentum.
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