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CHAPTER 1
INTRODUCTION

Before the invention of the'digital computer, elaborate and com-
plicated numerical techniques fqr solving problems in scignce, mathe-
matics, and engineering were only given secondary consideration., As
the refinement of the digital computer progressed, its comprehensibe
usefulness became more apparenﬁ. Today, tﬁe employment of the digital
computer is found'in élmost every discipline of science énd engineer-

ing.

Mathematical Programming

One area in which the digital computer has been of tremendous aid
is in the solution of mathematical programming problems. The general

mathematical programming problem may be stated as:

T -
determine the n component vector x = (%;, X,, ...,X,) 8o that

the maximum (or minimum) of f(xT)
éubject to ' g (XT){<"= v} e
1F NS = 20 ey
i = 1,2, ¢c0o, m (1-1)

is obtained. Each relation in (1-1) is assumed to be élgebraic in
nature. The relation, f(xT), is called the cost function, whose
extremal with respect to the m constraints of the second relation is
desired. If all the functions in (1-1) are linear and if the variables

are not required to be integral valued, then the above optimization



problem is said to be a continuous linear programming problem (LP),
The solution of the continuous linear programming problem may be:
accomplished with the aid of the simplex algorithm first introduced
by George Dantzig.! Today the solution of .continuous linear pro-
gramming problems is treated extensively in many text books. 2237425
Op the other hand, if any of the algebraic functions in (1-1) are
nonlinear, then the problem is called a nonlinear programming problem
(NLP). Up to now there has been no one algorithm developed that will
solve all nonlinear programming problems. ' Generally the existence
and uniqueness of a solution cannot even be assured without the cost
function and the consfraints possessing certain convexity and con-
cavity properties. By placing various restrictions on the functions
in (1-1), there have been‘several algorithms developed for obtaining
solutions.® 1In general, NLP algorithms are classed as- either simplex

: *
in nature or as gradient in nature.

Simplex Algorithms - Probably the first NLP algorithms developed

were the separable programming algorithms. Problems for which théy

~are applicable are of the follbwing form:

n
T e - =
L gl.,,(X,){_‘_-, T i}cw
=1 i3 73 i
xj =0 j=1,"..., 1
- I} ’ e
maximize (or minimize) z = ) £, (x,) . (1-2)
=1 jd ) o

* .
Here dynamic programming is not considered as a NLP algorithm
but is considered as another branch of mathematical programming.



In order to apply separable programming both the constraints and the
cost functions must be separable into functions of single variables.
The mono-variable functions are then approximated over some finite
interval by sequences of straight lines. Then a simplex algorithm is
used to solve the approximate problem.- The separable programming
algorithms differ in the way the approximations are made and in the
type of simplex algorithm necessary to solve the“probleme6

Another simplex NLP algorithm is the quadratic programming of

Wolfe.!! 1t was especially developed to solve problems of the form:

Ax = b
x>0
maximize (minimize) 2z = cx + xTDx (1-3)

where A isan mx n matrix, ¢ isan nx 1 matrix, and' D isan n x n-
negative semidefinite matrix. In this case the constraints are linear
and the cost function is quadratic and concave. The development of

the algorithm for solving (1-3) depends heavily upon the Kuhn-Tucker

conditions,2:7»17

Still another simplex type algorithm is the Hocking-Hartley con~
vex programming technique}2 It is used to solve general NLP programming
problems with certain convexity and concavity conditions: This method
is derived by approximating the cost function and tﬁe'constraiﬁts by
an infinite number of supporting hyperplanes. Of course this produces
a LP with an infinite number of rows. Then by using the duality prin-
ciple of LP the problem is transformed into an infinite column problem

which is amenable to solution by the simplex method. The convergence




properties of this algorithm are very"feﬁiniécént of the Newton-Raphson
method for finding the roots'ofla polynomiail i. e., whenever the
algorithm converges, it usualiy cénverges very'rapidly.12

Of course, there are maqy‘other simplex type NLP algor}thms; in
fact; there.are several versions of those given above. However, for
brevity only the more publicized algorithms and the basic thoughts

behind‘them havé been mentioned here.

Gradient Algorithms -- In contrast to the simplex type algorithms

the;e exist the gradient algorithms. The premier algorithms of this
type are the gradient projection'méthodl3’1“5 the generaiized redﬁced
gradient method (GRG)!8, and the sequentially unconstrainedrminiﬁi-
zation technique (SUMT)15:16,17 -
The basic idea of the gfadieht”projection method is to staft with

Ia feasible solution and m§ve in the direction of the gra&ient of the
cost function (for maximization problems) until the solutio;:is found
or until the v%olatioﬁ of a constraint is attempted.* If the viola-
tion éf a constraint is éttempted, a direction is determined so that
an increase in the‘cost functibn results and no violation of the
constraints occurs. If no direction can be determined then the
solution has been found.

‘In the case of linear constraints this simply requires projecting
the gradient into the space defined by the intersection of all con-

stfaints which are equalities at the point under consideration. This

is done by determining

r = Pd (1-4)

*A feasible solution is any point where no constraint is violated.

4



where r is the directional vector which points in the direction to
move, d is the gradient of the cost function, and P is a projection

matrix. The projection matrix is determined as
: T (<1.T
P= I-0QQQ7Q (1-5)

where Q is a matrig whose columns are fhe gradients ef the constraints
which are strict equalities at the pq%nt of question. Of course if
Q becomes square then P = 0. This does not indicate a solution but
simbly‘ihdicates that the feasiblé solution is 1ocafed at a corner of
the sélﬁtion space; (For determiﬁiﬁg the projeéted gradient for this
case; éee-Hadley (6], p. 167). | | “
Anbther s&-called gradient NLP method is the GRG méthod mentioned
previously. This technique is a natural extension of the reduced

gradient method of Wolfe to include nonlinear constraints. The

reduced gradient method was developed to determine relative extremals

of
maximize f(x)
subject to Ax < b - (1-6)
xi >0 i=1,2,...,n

It is assumed that any n-row submatrix of A has rank n. Next, A is
partitioned into an nx n submatrix C ar? a submatrix D, and b is

-similarly partitioned into ¢ and d. Then slack variables y and z are

added so that the constraints in (1-6) become

"
0

Cx +y (1-7)

Dx + 2

1
[= N

(1-8)




All the constraints which are equalities are included in the C matrix.
The variables of z are considered as dependent and those of ¥ as

independent. From (1-6), (1-7), and (1-8) it is easily seén that

bx = =--Clay (1-9)
Az = DpC7! Ay (1-10)
VEG) = - VE (x)C"1 (1-11)

where Ax and Az represent the changes in the x's and y's. Vyf(x)
is’qalle& the reduced gradieﬁt and VE(x) 1is the gradient of the cost
function. From (1-9), (1-10), and (1-11) a set of rules has been
deviéed for détermining the correct changes in thg x's and y's so that
“an increase in f(x) is registered (For additional informatién see-
[30D).
Somewhat different from the gradient projection and GRG methods

is the SUMT. The problems amenable to this technique are those which

can be cast into the following form:

minimize f(xT)
T “
subject to gi(x ) >0, i = 1,2, ..., q
T .
h (x ) = 0 s j = l’ 2 9 oceoy p . (1-12)

3

In applying SUMT the above constrained minimization problem 1s trans-
formed and solved as a sequence of unconstrained minimization problems
which in the limit converges to a solution. This 1s done by forming

from the above cost function and constraints a penalty function of

the following form:




P(xT,R) f(xT) + R % '%i E (1-13)

1=1 g, " ) j=1

‘where R is a weighting constant greater than 0. For some initial
value of R the unconstrained penalty fanction, (1-13), is minimized
by some unconstrained minimization technique. Then R is decreased by
dividing it by some number.greater than 1 and the process is repeated.
As R *.Q the unconstrained solutionlapproaches a constrained solution.
The phygical effec;s of the two laqter terms in (1f13) is to penalize
a tria% solution for getting too close to the boundary.of-the feasible
region.

There has been no attempt here to be all inclusive with respect
to gra&iéﬁt algorithms. There are several other gradient algorithms
that have been developed. However, the ones mentioned above are con-

_sidered by many as the most prominent and useful methods today.

Mathematical Programming in the Design of Control Systems

Over the past ten years there has been a great thrust to use
mathematical programming in the design of control systems. The major
effort has been in the solution of optimal control problems, and the
results in this area have been very fruitful--not only in the appli-
cation of mathematical programming but also in theoretical develop-
ments. In fact, it has been shown that the Kuhn-=Tucker necessary
conditions of mathematical programming and the maximum principle of
optimal control can be derived from the same set of general optimiza-

19,20,21,22

tion theorems As can be seen from the lengthy reference




list by Tabak?3, much of the work has been directed toward the appli-
SUMT ‘and the GRG algorithms 'in the solution of optimal control
problems have been made.?2%525526

On the other hand, the use Qfjmathematicalﬁprogrammip%,in the
classical design of control systems has been meager=-particularly in
the desigp'ofvcompensators\fggm a frequency domain point of view.
This-is very.gqfqrtunate because most practical system'de§}gns even
today'are still by classical frequency domain approaches. . Furcher-
more, - these -approaches are more artful than analytical. The. few
trol oriented:or strictly clgssical-control'oriented. This'classifi-
cation results. from the choices of the performance indices. Those
methods in which system specifications are submerged in'a cost
functional are labeled as modern control approaches; while those

‘methods which represent the system performance by classical standards

et

such as gain margins, phaSg:mgrgins; bandwidth, "etc:, are termed as
classical approaches.

One of the first sucgesggul computerized compensator algorithms
was developed byﬂCoffey;27 In his paper consideration is g;yeq to
a system similar to that shown in Figure 1. In this figure j parame-
ters of the system are sensed; each parameter is operated on by some
compensation device; the results of these are summed and fed back.
Figure 1 is considered typical of large aircraft or space vehicles.

Each compensator is assumed in the following form:
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e e
o G (s) = E.aéisi'l,]/[l + =Z beisi'l] (1-14)

i=1 i=2

~ LI

Vo . B 0 i s . KR

where s is a complex yariablg and_Me = 1 and Ne Tﬁ%q}are the nume-
rato;tgpd the denominatq;_orders; respectively, anghg_eth compensator.
The goal is to select the compensator‘coefficients so that the com-
pensated open loop frequency response'iS'a*weighteq“}east squares fit

. to a desired open loop frequency response (of course, the'opgn loop
frequency response is obtained by calcu}ating;C(jw)[B(jw) when the

feedback loop is broken at a).

The weighted leést;équares fit is oBtained by minimizing the

following cost function:

;o= ot - T wle - ) @)
' Where‘§ is a vector of 'the desired frequency response points, y is a
vector of frequency response points, W is a diagonal weighting matrix,
tﬁe asterisk (*) denotes ‘conjugate, and the super T denotes transpose.
For minimizing the cost function, J, with respect to the compensétor
" coefficients a gradient search algorithm is chosen; and; then, the
necessary gra&ient vector is calculated.

Next, geometrical properties of the cost function are considered.
It is demonstrated that even for relatively simple systems the cost
function is geometricaily complicated. From this it is seen that:the
cost functions can have_relatiye éxtremals and unbounded solutions.
Furthermére, the design of unstable compensators is possible. Even

with the possibility of these difficulties, it is demonstrated that

10



this procedure can be utilized to design practical compensators. This
is done by applying the technique tc a sixth order ballistic missile
éxample. For this system two compensators are designed—-a pure gain
and a fourth order over a sixth order. Thé“pure gain compensator
approximated the desired frequency response for low frequencies but
was completely unsatisfactory for higher frequencies. In fact, for
this compensatof the closed loop system is unstable. On the other
hand the higher order compensator exhibited very good properties.when
compared to the desired frequency'responéef%

Coffey indicates that in some instances a judicious choile of

the elements of the weighting matrix, W, is required before an

acceptable design can be achieved. Thus, a computer program of this
algorithm might require several runs--while juggling these elements
between runs--before the proper values are conceived. Even with this
disadvantage the algorithm is definitely superior to classical means.

Another technique for computerized design of compensators. for
control systems has been presented by Page and Stear, 28,29 The thesis
of this procedure is to vary the compensator coefficients until

certain chosen frequency response specifications are satisfied.. The

procedure for attempting to do this is

N
minimize  F TR, (- s3/s,9)2 (1-16)
1 i i'i _ :

i=

where N is the number of specifications considered, S a is the speci-

i

fication as a function of the compensator coefficients, Sid is the

k1
i is a weighting constant. The constant
Ki is chosen as positive, in general one, for Sia §_Sid and as zero

desired specification, and K

11



for. ‘s-i:ta > 8 id

neglected;' The goal is:to drive F to zero. The reason for the choice

This results in a satisfied specification being

of the above criterion function (1-16) is to try to place the most
emphasis on the specificaticns which have the greatest violations.
In-order to illustrate the given brocedure'Stear and Page pre-
sent an example of the design of an autopilot.for an aircraft. In.
accomplishing this design four unconstrained optimization procedures
are used. Three are local search procedures, and:'one is a global
search technique. As in the case of Coffey's cost-function it is
discovered that even for simple compensators the specification
‘function (1-16) has relative extremals. From this it is deduced that
the global search procedure is more applicable than the local search
techniques if the starting compensator is strictly arbitrary. However,
if a priori knowledge is used in picking the initial compensator this

deduction is not necessarily true.

Pitfalls of Previous Works on Computerized Compensator Design

Procedures

The two previously mentioned works on computerized compensator
design procedures suffer from several drawbacks. First the procedure
presented by Coffey is basically a frequency response shaping technique.
In the design of compensators for most control systems, this is too
rigorous; i. e., this-requires the compensator to satisfy more con-
straints than are necessary. Thus, the probability of all system
specific#tions being satisfied is less. Another interesting fact is

that in many instances the frequency responses of control systems

12




are not required. to match-a desired frequency response-~-frequency ;to
frequency--but'vare desired to have some general shape which can be
translated with respect to frequency. Even more conceivable is the
desirability to-have several bands of the frequency response .to be
various distances from the -1'+ jO point of the GH(jw)-plane and to
have other bands of the frequency response constrained to be greater
‘than or less than limitations with.respect to the origin of -the
GH(jw)-plane. Constraints such as these are not-as strenuous as those
requiring the frequency response to fit closely to some desired fre-
quency response.

A pitfall which is common to both the“Coffey method and -the
Stear and Page method is the necessity of choosing some constants--in
particular, the elements of the diagonal matrix, W, and the Ki's. It
is obvious that in many situations a judicious choice of these must
be made before any useful results will emerge. It was suggested by
these authors that computer programs:containing the algorithms may
require several runsiwith vafious values ofvthese constants befofe an
acceptable deéign is achieved. However, this involves trial and
error which was one of the justifications for going to a computerized
procedure.

Another drawback of the two algorithms presented is that some
specifications may become worse while others become better. This
immediately poses some serious questions, such as, what is a reason-
able trade-off and where does it exist? If minimum standards of
system performance have been set, it is very probable that nothing

short of these are acceptable. In this case there is no trade-off.

13-




On the other hand, it may be viewed that in practical designs it is
not unusual to accept performances'a little less than that desired.
In instances such as this, performance tolerances must be set.

Another shortcoming of the two methods is their failure to
include inherent devices for maintaining compensator stability. If
_the des1gned compensator is unstable, then the stability criterion of
the system changes completely; The result might be system instability
which removes the compensator from the realm of a practical design.
What is needed is an algorithm which tends to impro;e.system speC1fi—
cations at every 1teration. of course this might require the allowance
of only incremental changes in the compensator coefficients. |

Another pitfall of the two previously mentioned works is the lack
of any theoretical inclusions on compensator limitations. That is,
none of the authors presented any theoretical developments.showiné
what could be expected from their algorithms for a certain compensator
order in a particular system, Thus, initially there is no ‘way to know
what minimum amount of compensation is necessary. In addition, these
works presented no theory which indicates that the'algorithms willl
produce a final compensator that is any better‘than.the initial“con-
pensator, | | $

In essence, the techniques of Coffey and Stear and Page are -
"firsts'" in the use of the computer for compensator designs, but they
are somewhat limited. They do not present'universallsolutions in

regard to computerized—compensation. It is the purpose of this dis-

sertation to present the theory and a method of computer-aided

compensator design that does not have the drawbacks of the previously

presented techniques and is thus more universal.

14




CHAPTER II

-'FREQUENCY. RESPONSE CONSIDERATIONS IN THE

DESIGN OF A CONTROL SYSTEM

Before the design of a system can be accomplished, the limitations
or cdnétraints‘;hd the desired performance of the system must be
estébiished. Théimeasurement of the.perfgémance oflthe syéféﬁ is
determined by cémparing that obtained to tﬁgi'desired.' Because of the
limitations, in many instances, tﬁe'desired'performance cannot be
Aachieved; In designing compensators for pfaétical control systems -
there are, in geﬁefal, two types of performance indices-~time domain
indices and frequéncyA&omain'in&icés; Althoﬁgh it is quite obvious
that these are related, no analytical meané, up to now, have been
devised for defining this relation except fof the simplest control
systems--less than tﬁird order. In practical designs the main limi-
tations are sysﬁem stabiiity, nonlinearity,“time vafiahce, and

sensitivity. Today many systeﬁs are designed by using linearized

frozen time models and applying frequency domain concepts.

Concept of Relative Stability

in‘most practicai systems stability is a major constraint. In
fact, in mést system designs a specified degree(of étability is
required. A specific degree of relative stability is required because
of inaccuracies in the model of the system or in order to deter insta-

bility if future parameter variations in the system plant result.
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Sometimes a certain amount of relative stability is desired to keep
the system from resonating unnecessarily.

In the past the degree of relative stability has been denoted
by the classical gain (GM) and phase margins (FM),‘ However, in some
instanéesthese.can be very misleading. For'example;’consider the
hypothetical s-plane frequency response shown in Figure 2 which
possesses acceptable classical stability margins (GM > 2.0, PM > 30°)
but which comes within some small distance of the -1 + jO point. Such
a conditipn could represent a system which was very close to insta-

bility. A better measurement pf relative stability is defined as
‘follows:
| A stability margin is defined as the magnitude of the 1 + GH(jw)
frequency response at one of its minima relative to the origin
of the 1 + GH(jw) plane. '
| It is deemed by this author that by measuring stability in this
fashion, a measure of the true relative stability of a system is
achieved., Next, a system is said to be relative stable if the fre-
quency response does not cross a designated closed contour located
around the -1 + jO point. This closed contour around the -1 + jO
point 1is called the margin of stability 1imit.’ The shape and the
size of this contour depend upon system specifications. Furthermcre,
there is nothing wrong with making the size and shape of the contour
frequency dependent. (In doing this the designer would be indicating

that the frequency response is to be shaped to some extent.)

Relative Attenuation Concept

Although relative stability plans a major role in compensator

determination, there are several other factors which are considered.
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Figure 2. A ﬁYpothetical GH(jw) Frequency Response
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One of these is the attenuation of certain frequency°bands. The reason /
for fréQﬁency'baﬁd attenuation is to discourage théﬁégntrbl system

from reséhating at some néfﬁfallfrequen¢y of the system. Of course if

" the s&éfem is linear and time-invariant this is not’Hécessary.” Un-

foftunately, many praéticai systems do not fit into” the linear, time-

invariant category.

"Fréquency band attéﬁﬁatiohAmay be treated by requiring that all
frequeﬁcy points that ére ﬁé be’éftenuated fall within a chosen con-
téﬁr afbhnd the originrih the GH(jwj'piahe° This contour is called
" the margin of attemuation limit. It then folloﬁsithat: -
An ;ttenuétion'margin is the magnitude of the GH(jw)

. frequency response at one of itg 'maxima with respect to
the origin of the GH(jw) plane.’ *

Other Frequency Response Concepts

'ReiétiQQ stabiliﬁy and éttenuation are considered as the most
impo%taﬁt‘ffequéﬁcy respoﬁse:désign criteria.  However, they do not
yield acéebtablé désighé iA-al1 instanceso'(Sometimes it 1s necessary
to employ proper phasiﬁg*gf certain fréquencies. This is usually
employédxwheh'it becomes difficult to determine a“coﬁpeﬁSAtdr‘to
attenuate certain natural frequencies of the system and in addition
to satisf&’other sygtem fequiremén_f.so The general idea is to
deter&iﬁe a‘comb;nsator so that these'frequencies are phased toward
the right half of the Gﬁ(j&) plane. This réshltS'in these frequencies
!

being attenuated in the closed loop’ system;

In some cases it is even necessary to place special. emphasis on

certain points of the frequency response. In most instances these




points are,glgsg}y'related to dynamical re;ponseS‘of the qgnt;o}
system. Examp}eg of dynamical responses considered for-a spaéé cfaft
are wind response. and "epginehoun” response. In order that these
responses possess acceptable characteristics it is usually necessary
to require_cgr;a}p frequency response points to be placed in certain |
regions of the GH(jw) plane.

Still another frequency response design concept is.baﬁdwidth.
However, this_can be handled by either the stability margin or the
attenuation margins..,For'examples the maximum open loop bandwidth
can be achieved.by requiring a certain frequency and all frequencies

above it to have a certain margin of attenuation limit. Similarly,

closed ioop'béhdwidtﬁ could be coﬁtrolled'by a combination of these.

Problem Formulation

_. Assuming that the desired frequency response characteristics have
been degermined so that if they are achieved the performance of the
. system will4be acceptable, it must be decided how to determine a
compensator for’achieving thesee‘ The classical means of doipg this
isipy‘triaL and’erro;; howeve;; a more efficient pethod would be an
iterative method that mgkes-impfovementS‘upon ;hF system's freqqency
responge,from iteratiQQ to‘iteration or indica;es that né.further
pmprovement"cquld be made. In fact, if.a total»of'n critical frequency
points have beeq chosen, then the prqblem may be formulateq as the

following nonlinear programming problem:

: Determine a vector xT such that P

¢
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T
g, (x7, “’1) <b

x, (<, =, 2} d

\. i = 1, o eoy n‘ (2_l>

In (2—1) xT is a vector:of the compensator coefficients; gi is a
function of the ith,frequency; W, s and the compensator coefficients.
The .functions, 84> i=1, ..., n, are chosen so as to represent the
frequency response limitations and constraints which have been imposed.
For example, gy could be representative of a stability margin or an
attenuation margin. The second relation in (2-1) takes into account
any constraints that might be placed on the compensator' coefficients.
It may be necessary to constrain some of the coefficients if it is
desired to keep; the d. c.. gain,‘G(jO); of the system constant or above
or below a certain level. Also, it may be necessary to comstrain
certain compensator coefficients to insure the stability of the
compensator or to take into account realizability conditions.

The above formulated nonlinear progremming problem differs from
the classical nonlinear programmlng problem in the respect that it is
strictly a constraint problem.s. There is no cost'fonction to maximize
or minimize. However, this does not simplify matterso In fact, the
above problem can be thought of as a normal nonlineer‘progremming
problem in which it is desired to find a solution which obtains a -
‘>certein objective function value. In this case the objective function
just,becomee_a constraint.; If the objective function is a&ded to the
constraint. list, then the result is a strict constraint%problem as
given above. The desired solution to this problem is a feasible

solution which may or may not exist.
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CHAPTER III
COMPENSATOR LIMITATIONS

At any iteration in solving' the problem mentioned in Chapter II,
there will result conditions of the form of (2-1) to be improyed.
(The number n can change from one iteration to another since the
frequency response changes with respect to-the compensator.) The
general idea is to change the compensator coefficients so that each

constraint comes closer to being satisfied. - The question then is,

.- ‘how many compensator coefficients are required to insure that some

improvement on each constraint at a certain iteration can be made?
This question is answered by the following definitions and theorems.
Definition 1

An 6ptimal‘direction in the GH(jw) plane is any chosen

direction in which it is desired to perturb a point on
the frequency response.

Optimal directions are illustrated in Figure 3 at points A, B, and
C. The number of compensator coefficients gufficient to perturb n
polar frequency response points in n optimal directions is given by

the following theorem:

Theorem 1

A sufficient condition to perturb n points on a polar frequency
response curve .1n n optimal directions with‘a‘realizable.compensator
is that there be at least 2n independent compensator coéfficiénts

which are available to be varied.
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* GH(Jeo)-PLANE

Figure 3. A GH(jw) Frequency Response for Illustrating
Optimal and Sub-optimal Directions
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L oeens

Proof: Let the open loop frequency response be denoted by
Go(jw, xT) where xT'iS‘an m dimensional vector of the functionally

independent compensator coefficients. Also, let the optimal

*

direction at a frequency w, be denoted by dk . éuppose there are n

k
points on the frequency response which are to be moved in the n
chosen directions, respectively. The change of the open loop transfer
function at the kth frequency with respect to the ith compensator
coefficient is of the form
T
aGO.(jwka X )

.
T84

=y (3-1)
ox

i

where Crq and e, 4 are real constants. There are, for a particular

frequency, m such partials as (3-1) and, if they were included as the

‘components of a single'vectof, the result would be the complex

gradiené. It is weli known tﬁat this points in the diréction of the
most .rapid change. However, this is nof the desired direction of
movement. Essentially what is needed is a directional vector [w] in
complex.m-space whose dot product with the m dimensional gradient
vector Lck + jek] will yield the desired directional derivative dk*’

or in equation form (See [32])

dk* = [ck +'jek]T[w] . (3-2)

It should be obvious that the components of [w] are proportional to

the amount that each compensator coefficient must be varied in order
- . ’

that movement in the dk direction can be accomplished. Thus if the

compensator is to be realizable, [w] must be a real vector.
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Letting

‘ *
d = a +3b .(3—3)
then (3-2) can be written by the following two real .equations:
* T : -
a, = [ck] [w] (3-4a)
and
b = T o 3-4b
L= ledt vl (3-4b)
Hence, for n points on the frequency response to be moved in n
optimal directions there result 2n equations or
* T
a, = [c;1° [w]
* T
b, = lc,1° [w]
* T
a = [e 1" [v]
* 4T
b, = [e]]” [w]
* T
b, = [e,]" [v]
* T ' B ) _
bn = [en] [w] . (3-5)
In matrix notation (3-5) becomes
* T
a c
...;.. = ceeees [w) (3-6)
b el

* T
where the dimensions of [-?--] s [.?i.] » and [w] are
b

respectively 2n x 1, 2n x m, and m x 1. If 2n > m there will result
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more equations than unknowns and possibly an incompatibility.3T’ Hence
* there may not exist a vector [w] such that all equations can be satis-
fied. This says there are ﬁot enough compéﬁsator coefficients avaii-
able. On the “otHer hand if 2n < m, there either results less equations
than unknowns or the same equations as unknowns. For the first case
there will exist an infinite number of vector [w]'s and an infinite
pumber of soiutions to”the‘equations._ This indicates an excessive
number of compensator coefficients. In the second case there will be
a.unique [w] and, thereby, a unique solution for the equations. This
means that the exact number of compensator coefficients necessary is
being employed.8

The preceding proof has shown the sufficiency condition for mov-

ing the frequency response in n optimal directions. Suppose, however,
that it is desirable to use a compensator with a fewer number of
coefficients than those needed to move in the optimal directions.

Consider the following definition:
Definition 2

A sub-optimal direction is any direction within =/2
radians of an optimal direction.

An optimal direction is just a two-space vector; then, a sub-optimal
direction is any two-space vector wﬁich'has ;‘positive ddt product
with an optimal d;rection. Thus, a sub-optimal direction is any
vector which falls within a certain open half space, e.g., a sub-
optimal direction to B in Figure 3 is any vector which points to the

left of the line passing through B.

If the optimal and sub-optimal directions for Wy

are respectively
represented in 2-space by the following vectors:

25




* . * *
&7 = @, b ) (3-7)

and

oy
il

k - (?kr, bk) ’ o . . (3-8)
then the sub—optlmal dlrection would be any direction such that the

¢ * R . Lo

dot product

—5 ' .5 % L LA : . .
k- % >0 - G-9
or
o % x . _
akak +_bkbk >0 . . (3-10)

Then the question is, how many compensator coefficients are necessary
"in order to assure that movement in some sub-optimal direction can be
achieved? The answer to this is stated and proved in the supervening

theorem. - R S - N
Theorem 2

In order to be assured of perturbing n points of an open loop
frequency response in n sub -optimal dlrectlons, by varylng the compen-
sator coeff1c1ents, it 1is necessary that there be n 1ndependent

compensator coeff1c1ents available for'varlance.

Proof The components of the k sub-optimal vector direction in
terms of the real and imaginary- parts’ of the partials at the k

frequency are given by
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L oev
O A

o
]

(3-12)

where i and e’ respectively, are the real and imaginary parts

(evaluated at wk) of the partial of the open loop transfer function

with respect to the ith compensator coefficient, and wy is the ith

unknown constant which is to be determined so that'(ak,

a sub-optimal direction. Substituting (3-11) and (3-12) into (3-10)

b,) points in

results in

] )
c w, a +
g1 KL kg

*
i w‘i bk >0 (3-13)

or

* *

I (epqa +e b )w >0 . . . (3-14)
i=1

Remembering that there are n' frequency points, n inequalities

like (3-14) will result. Hence the following matrix inequality can

be obtained:

(eTa® + ™) w1 >0 . (3-15)
The dimension of‘[cTa* + eTb*] isnxm In ordér to ge aésu;ed that
all n inequalities can be satisfied; it is necessary that there be at
least the same number of unknownslas,inequalities. Hence, this says
there must be at least n independent'compensatof coefficiéﬁfs in order
to be assured that-h frequency‘points éan be-pertufbed in the sub-
optimal directions.®

The above two theorems place limitations on the overall compen-

sator order. Thus for any algorithm to be assured of being able to.
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make the changes given in the theorems, the theorem must be sat-

isfied,
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| CHAPTER IV

'CONSTRAINT IMPROVEMENT ALGORITHM

It is very desirable to have an algorithm which starts with
some initial compensator and, then, in an iterative fashion produces
an improved frequency response. This statement immediately suggests
the question--what is an improved frequency response? This is

answered by the following two definitions.

Definition 3

A total improved frequency response (TIFR) in an iterative
scheme is one whose unsatisfied constraint values at a
certain iteration are better than they were at the last
iteration.

Definition 4

A sum improved frequency response (SIFR) in an iterative
scheme is one whose sum of the differences in the unsatis-
fied constraint values and their desired values is a positive
value from one iteration to the next.*

| It is obvious that an algorithm which is capable of producing a TIFR
is also capable of producing a SIFR; however, this statement is not
reversible. A TIFR algorithm requires every constraint which is
unsatisfied to be improved or bettered- at every iteration, while a

SIFR algorithm only necessitates a sum improvement, i. e., the sum

*It is assumed, here, that all constraints in (2-1) have been
represented in the < form by multiplying > constraints by -1 and
changing = constraints to two inequality constraints (See Hadley
[6]1). No generality is lost by doing this.
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increase must be better than the sum decrease. The goal is then to
derive an algorithm which is compatible to both TIFR and SIFR.
Thus, an algorithm is needed for solving a nonlinear program-

ming problem of the following form:

Determine the vector xT such that
() > b i o= 1 (4-1)
gi = i - [ -ao‘ . m . ) - h

Again this is strictly a constraint problem. If,;his problem has a
solution, then it is a point in a solution space (Theoretically the
solution sface could be a single point). The functions in. (4-1). are

. not assumed either concave or convex. What is desired is an iterative
algorithm which, when started at some initial guess at the solution,
will at each iteration produce an improved solution from the solution
at the last iteration or will indicate that no funthef'improvement

can be made. An “mproved sglution is defined as one which brings the

constraints closer to being satisfied.

Constraint Improvement Algorithm Derivation

Suppose that some initial starting point, ka, has been chosen,
Of the m constraints, let n be'the number not satisfied by this, point.
The constraints not satisfied are defined as the_aqﬁiue_cons?raints,
and those satisfied are called the inactive constraints. Let J.
contain the index numbers of the actiye constraints, i. e.,
J = {ky, ko, «uey kn}. Essentiélly what is éesired is a diréctional
vector, D, by which the vector X'can‘be_chanéed; and_ituwill'be}possi-
ble to get an improved solution. This vector can be calculated as

3 v Oy
1 ' 4

D = a.Ve, + a,Vg, + ... + a Ve, . 4=2
a Vg + 2,78y, a8k (4-2)
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In (4-2) =T . . - " . et

APSA S

ngi denotes the gradient of the constraint, corresponding to the ky
index evaluated at ka, and{ak}is a set of constants that are to be
determined. An improved solution can be assured if the a's are

determined so that

" 'p - Vgy > 0 i = 1,...,n . T (4=3)

In other words the maximum rate of increase of gkiat kais in the
.direction of ngi,.but an increase in gkican'be registered by traveling
in the direction.of any vector which has a positive component in the
direction of the gradient. In fact, suppose that a value for each of

the dot products in (4-3) is chosen. ' Then (4-3) becomes

\

Dt_‘ . ngl = cl
DV = c
8k2 . 2
. - -
JID. vgkn cn ' ] ‘ )

- cn) contains the chosen dot

- s T
where the vector c = (cl, Cpsoves

prbduct resultants. Substituting (4-2) into (4-4) results in the
following set of linear equations,
(ngl f ngl)al + (ngl . ng2)32 + ... + (ngl' ngn)an = C

v Y a; + (Vv ..V a + ... + (Vv + v a, = ¢
( 8k2 . gkl) 1 (_gkz t.gkz) 2 +( gkz 8kn)_n 2

(ngn . ngl)al + (Vgy, ° ngz)az + ...+ (ngn- ngn)an cp « (4-5)
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" Using matrix notation (4-5) becomes

ver | VGla = ¢ , o (4-6)

in which a = [al'a2 ce an]T and VG 1s a matrix whose columns.
are.composed of the gradients of the active constraints (The_matrix

[vet

VG] is the Gramian matrix of the gradient vectors under con-
sideration--see Hildebrand [31].).

If the gradient vectors are linearly independent then

- T -1 . .
a = [VG vG] c . . . (4=7)

- Hence, this will yield a's for.a desired dot product between the: " -
directional vector D and each gradient of the active constraints.®
By moving in the direction of D then it is possible to improve the

present solution.*

Algorithm Summation

Using the derivation and the preceding terminology, the con-

straint improvement algorithm may be summarized as follows:

T T

X 4 = %, +h[V6]a

b2

in which xi+l and xi are the solution points at the (k + l)th and kB

*In the above derivation the gradients were used. However,-
vectors in the directions of the gradients will suffice. In fact, it
has been found in practice that unit vectors in the directions of the
gradients are more suitable when the gradient magnitudes become
disproportioned. The main advantage is a greater convergence
rate.
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iterations respectively, [VG] is a matrix whose columns are composed

of the gradients of the active constraints evaluated at xi R

-1
a = [VGT

- re

where'c is a column matrix of positive constants, and h is a positive
constant.

The choice of h (the step size constant) determines how much or
whether any improvement in the constraints is made. In a compensator
. design program h also determines whether the program is a TIFR or SIFR
algorithm. As a general rule small positive values of h produce a
TIFR and larger values of h produce a SIFR., Of course there is-a max-
imum 1imit on h for producing a SIFR, i. e., values of h above the
maximum do not produce either a TIFR or a SIFR. On the other hand,
negative values of h are out of the question since they tend to
decrease the constraints--making them even worse.

In addition to choosing h, a choice of the components of the ¢

vector must be made. As has been pointed out previously, the com-
ponents of ¢ are the dot products of the directional vector, D, and

the gradients of the active constraints. Thus by properly choosing the
¢'s the amount of increase in some of the constraints can be, to some
extent, controlled. In other words by judicious choice of the c's some
constraints can be weighted more heavily than others. However, the
actual amount of change in a constraint is related to h and thé con-
straints' partial derivatives. In practice it has been found that
when using unit vectors in the directions of the gradients of the con-
straints a good choice of the elements of the ¢ vector is 1's. This

choice gives the best convergence rate.
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~~.~On the other hand, there is nothing wrong with, making the q's
dependent upon the constraint values, e. g., by letting a c decrease

as its;cons;raint comes c;oser to being satisfied. ; However, as a c
approaches. zero the algoritﬁm_would tend to determine. a dirgqtion that
was parallel to the boundary of the feasible region. ' Hence, the proba-
bility of the constraint corresponding to this c becoming inactive
decreases. Nevertheless, it has been discovered that in many instances
that by holding the c's at respectable positive levels many of the
constraints are driven to inactivity and they do not return to activity
again. In this case the order of the matrix whose inverse is required
can be reduced, whéreas, if all constraints always linger in aétivity
the order can increase if other constraints become active on higher

iterations.

Algorithm Limitations and Termination

Next, attention is focused on algorithm termination. There are
three conditions in which the algorithm will terminate. These are

1. All constraints are inactive.

2. One of the gradients of one of the constraints becomes zero.

3. The gradients of the active constraints become linearly

dependent.

The first of these simply indicates that a solution has been obtained.
The second and third represent relative extremal solutions. In fact,
the second one shows that the solution point is a relative extremal of
one of the constraints. On the contrary, the third termination con-

dition indicates that at least one of the constraint gradients is a
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linear combinatidn of the'OtherS"gradients or there are more ‘'active
constraints than-there are variables (This could represent an incom-
patibility coﬁdi&ion;). Whenever 2 or 3 occurs either the solution -
“‘obtained will haVe to be accepted or a new starting point will have

to be chosen and the algorithm reinitiated.
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CHAPTER V

GENERALIZED PARTIAL CALCULATIONS

*'’In essence, the goal of the designer is to pull and push various
points' on the frequency response until system specifications have been
met or until no further improvements can be accomplished'by the present
compensator. In general, this can be accomplished by pushing and
~pﬁlling the various poihts with respect to other points in the complex
GH(jw) plane. For example, relative stability can be obtained by push-
ing thé-points of the stability margins away from the -1 + jO point.
éﬁlﬁﬁé‘otﬁérlhand, the‘aftenuatioﬁ'mérgins canvﬁe improved>by pﬁiling
these points toward the origin. Similarly; proper:phasing coﬁld be
achieved by attempting to pull or push these points with respect to
'réal axis points. Of codrse,'in some specialized cases it may even be
advantageous to pull or push a point with respect to morg'than one
point. Regardless of wﬁether a point  is' to be pushed or pulled it is
necessary to know hOW'tﬁese points change with respect to other points
in the GH(jw) plane. This is.especially true if the algorithm in
Chapter IV is to be‘used'in’perturbing these points.

A point can be pushed or pulled with respect to another point,
- K, iﬁ ghe complex GH(jw) plane by varying the distance squafed,
‘d(w), between the point and = K. In order to determine how this dis-
-.tance changes with respect to:the compensator coefficients, con-

sideration is given to ﬁhe general feedback'control'systemjshown in
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Figure 1. The open loop frequency response of this gystem is deter-

mined by breaking the feedback loop at a and then calculating

P

GH(jw) = C(jw)/R(jw) .. | - (5-1)

Furthermore, to.generalize even further in Figure 1 each channel's
compensator is assumed to be made up of a product of sub-compensators,

i.e., the kth channel's compensator is given as .

n L o )
6 (s) = N 6 _(s) , (5-2
k oy KL Y

*
where n is the number of sub-compensators in the kth channel. The

«

uncompensated open loop state frequency response of the kth'channel

with all channels opened is defined as

0
T o) = a W + bW (5-3)

where a, is the real péft and'bk is the imaginary part.

From the above equations and statements it then follows that

Oy

]
dw) = |[K+ ] {[a () + b, @I T G, G} . (5-4)
k=1 _ i=1

By assuming each sub-compensator to be a general rational function of

the following form

(5-5)

= . .
This is called the factored form of a compensator.
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it becomes necessary to.derive only how di{(w) changes-wi:h respect to

the coefficients of this general compensator, because the change in d(w)
with respect to any compensators' coefficients will assume the same
general form, only differing by the orders, n and m, and the numerical
values of the x's and y's. Since.qu(jw) is completely independent of
all thg other compensators, then it may be isolated from the others in

(5-4). This is easily done by letting

¥ [

i : ‘n, ' .
A+3B=K+ ) {{a (@) + jb, I T G, (ju)l} (5-6)
o k=1 K Ty K .
k#q
and n
c+3jd = [aq(é) + jbq(w)] 151 qu(jw) . - (5=7)
‘ i#p

"~ Using (5-6) and (5-7), (5-4) is fewriﬁten as

y ’ ‘
d(w) = |A+ JB+ (c+ jd)GqP(jw)  . (5-8)

* Substituting (5-5) into (5~8) and carrying out the necessary manip-

ulations (5-8) evolves as

n k p : 2
(iZO Cix; +4 jZO Ea§Y23 szo Epje1 Vo410t
n p k 2
(1Zo Dyxy + A jzo Eyg+1 Vo341 ¥ BjZOEZjYZj)
d(w) = . ;@ — .§5-9)
(jZO Eai¥23) * (jZO Ey3+172341) |
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° -~

vhere dn. (5-9) #»% k = m/2 - and - piEW/2 - L o T wapanmn
{f - ¢ - okiiom is even - v v
orr - CwmE ik = (mil)/Z“Vénd-~»p==m(m;1)/2 S ety
SRR § R S wcom-is oddy o - CLwegeres s Lo ST IRy

‘the C's;"D's, and"E's are defined by the following sets's i zn'w"

B

{Cg, C, Cy, C3, Cy, C5, ...} = {c, —dw, -cw?, dw3, cg“!.-dms, ceol

{pg, D, Dp, D3, Dy, Ds, ...} = {d, cuw, -dwz, -cw3, do*, cwd, ...}

’
/

Z{Eo, E;, Eé,'§3;UEq, Es, .j,} = {1, B, ;w%,,-wg, w“, ws; R
(5-10a,b,c)

Next, letting

N
i

FN1 . — B (5-11)

]
~1
(@]
o
»
[ N
+
o>
o~
tx1
N
[
«
N
o

P
Z E,. Yo

+
3=0 2j+1 “2j+1
n p k

P2 = ] Dxg+A J OBy Yaj+1 ¥ ﬁ\jéo "2172

(5-12)

k
FD1 = “Z E2j.y2j e A R P sans o (5=13)

P
2 = Z Eri+1 Y2341 (5-14)

g

(FD1)" + (¥FD2) / (5-15)

FN

o2 2 I :
C(EN1) + (FN2) . T o (5-16)

then

ad (w) 2[FD(A - FN1 + B - FN2) - FN + FD1]Eq

(5-17)
%, (FD)?
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where in (5-9) ==+ k = m/2 and PpiE.m/2 =1 T oapennn

if - - 7 ewio.m is even SR S
or - e [T k= (m-1)/2 and  p =(m-1)/2 T urretosow
. 4f - .+ a- mis odd; et 8 e

the C's,;"D's, .and E's are defined by the following sets: ". =

B

{Co,.Cl, Cy, C3, Cy, Cg, ...} = {c, -dw, -cw?, dw3, cw“,.-dws, ceol

‘O. -

.
et
]

{d, cw, —dmz, ~cw3, dw", cwd, ...}

¢

{DO’ D, D, D3, Dy, Ds,

{1, w, —w?, -3, o*, w5, ...}.

{E09 El, EZ’ E3‘:. Ey, ES: ":‘_}

vyl
0

(5-10a,b,c)
Next, letting
i ; i
FN1 = C,x, +A ) E,.y,. - B E Voo (5-11)
1=0 ii =0 237 2] 3=0 2j+1 “72j+1
i ; i
FN2 = D.,x, + A E Vo + B E,.y (5-12)
sho T4 TR Ly ok Y2gn S ' j20 A 2
k
j=0
p
m2 = ] Eyj+1 Y2341 (5-14)
j=0 . y
2 2 RS L
FD = (FDl1l) + (FD2) (5-15)
2 2 :
FN = (FN1) + (FN2) ~ (5-16)
then
sd(w) _ 2(FD(A + FNL + B - FN2) - FN * FD1]Eq (517
3% (FD)?

q
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for q even or

ad (w) 2[FD(-B « FN1 + A .« FN2) - FN.-XFDZ]EQ ,
X (FD)?2
q
for q odd and
dd(w) . 2[FN1 - C, + FN2 - D_] ‘
= . = (5-19)
ayq FD

" for q even or odd.

" By programmin§5éﬁﬁations (5—4),'(5—6);~(S-IOa,b,c), and (5-11) -
(5-19) on the digital computer the pé:tials of d(w) with respect.to
ithe coefficients qu(s)»can be obtained.?’!0 |

The above derivation provides the key for determining how any
sub-compensator affects d(w) in a first order sense. With a complete
comprehension of this derivation it becomes clearly apparent how to
 proceed either from channel to channel or from sub-compensator to sub-
compensator in order to determine the necessary partial derivatives
for a particular frequency point. Of course, this process must be
completely repeated for each individual frequency point. Once the
gradient vectors of each chosen frequency point are determined, then
the calculation of the directional vector is accomplished as described

in Chapter IV.
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'CHAPTER VI
COMPENSATOR IMPROVEMENT PROGRAM

The preceding ideas were programmed in a digital computer program
called CIP (Compensator Improvement Program). A complete fortran
version of this program is contained in the Appendix. The general
iterating procedure employed by CIP is as follows:

1. Using the compensator at hand, the program calculates the
critical points, 1. e., stability margins, attenuation margins
and other points of interest.”

2., If this is the firét iteration a preselected step size is
chosen. Otherwise, a step size is selected according to one
of two criteria.

3. Next the active constraints are separated from the inactive
constraints.

4, After this, unit vectors in the direction of the gradients
with respect to the variable compensator coefficients are
obtained (The numerator partials are listed first).

5. Then using a chosen dot product vector the directional vector
is determined (For the normalized gradient vectors calculated
in 4, a suitable dot product  vector has been found to be a

vector whose components are 1l's).

= .

The other points of interest are frequency response points on
‘which special attention is to be placed, for example, points to be
properly phased, certain gain or phase margins, etc.

41



.6. Finally, the directional vector is normalized with:respect
to its magnitude; the compénsator coefficients are changed
according to the normalized directional vector and-the step
size; then, the complete process is repeated. e

In order to initiate the program, an.input of discrete open loop
frequency responses in the form of frequency and real and imaginary
‘parts are required. Allowances are made for five channels of such
'information with a maximum' of 999 points for each channel. This means
that in Step 1 the actual critical points of the frequency response
are not located--only approximate values are found. However, exper-
ience»has shown that the approximate values suffice.

In order to determine better approximations to the critical
points the input would require: open loop transfer functions (Equation
5-3) for each channel. The more accurate approximations of the
critical points could be found by finding the real roots of equations
of degree 2n, where n is the total number of the open loop system (See
5-1).*% For systems above tenth order this is completely impractical
due to the amount of computation time necessary to perform this task.
Furthermore, in many practical situations an experimental discrete
frequency response is the best informafion available for describing
the system. In other words an experimental frequency response is
obtained, and using this data a transfer function of the system is
approximated.

Also, some initial compensator for each allowable channel is

required. The amount of initial compensation must be enough to

*In this discussion it is assummed that due to round-off error
a computer is not capable of getting exact solutions of non-integer
problems. : . . :
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stabilize the system.* If the system is open loop stable then each
initial compensator can be chosen as an equivalent 1 compensator, i.e.,
the numerator and denominator factors are chosen to be the same. The
compensators may be either in a factored or unfactored form (It is
apparent that the unfactored form is just a special case of the
factored form).

‘In Step 2 the proper step size is chosen. In the CIP one of two

procedures for selecting the step size is employed. These are

a. Require the betterment of all active constraints from the
last iteration.

b. Require the sum of the differenées of all active constraint
values and their desired values to increase from the last
iteration (For this sum all active constraints of the <
form have been changed to the > form by multiplying by -1).

Procedure a indicates the program is to be used in the TIFR phase,
while procedure b designates the program as SIFR. "The choice of the
criteria used is left to the designer. If the one chosen is satisfied,
the present step size is doubled, provided that the doubling process
does not exceed some preselected maximum step size value.** Otherwise,
the maximum step size value is utilized. Regardless of which of these
occurs the program continues to the next iteration. On the other

hand, if the continuance criterion is not satisfied then the step size

is halved and the present iteration is repeated if the step size is

= :
If the system is not stable then relative stability has no
- meaning--although relative instability might.

* . . .
**The main reason for limiting the step size is to keep the com--
pensator from becoming unstable on a single iteration.
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greater than some chosen minimum_stépgsize. When the step size

*
becomes less than the minimum value the program is terminated.

Steps 3, 4, and 5 are simply'operationS'necessary for employ-
ment of the constraint improvemeqt aigorithm of Chapter V;‘wﬁereas,
in»Scep_6,Athe compensatof coeffiéients are actuaily cha;ge&.l fn
Step 5 the reason for reducing the directional vectér to a unit‘
vector is so that the step size actualiy'designates the overall change
in the compensator coefficients. Jchefwise this wou1d not bé.the
case, | | | |

The oﬁtput.of the CIP can be controlled to occur at every
iteration or at set increments, i. e., a set number of iterationms
can be skippgd between outputs. At any iteration at which an output
occurs the following infdrmation is printed by the CIP:

1. Iteration number

2. Constraint values

3. Frequencies where constraints occur

4, Desired constraint values |

5. Type of constraints

6. Directional vector at the last iteration

7. Compensators at the present iteration
In 5 the type of constraints denotes whether it is a phase margin, a
gain margin, a stability margin, or an attenuation margin, and the
symbols used to denote these are respectively P, G, S, and A.

In the program stability margins are the main vehicles for

determining the relative stabiiity'of the system. The concepts of

%
The program, also, has a maximum iteration termination conditioen.
Since this has no effect on convergence, it was not included.
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claséfcél phase and gain margins have been included in the program
because in some special cases these can be used to control proper
phasiné and various dynamicﬁl respdﬁses of the system. Furthermore,
itvshouid bé.pointed out thég ghé ﬁeasufement of these‘concepts is
'carried out exactly as stabiiiﬁy margins, 1i. e:, disténces ffom the
-1+ jo point. 0f course there is a one-to-one correspdndence
betweeﬁ this measuring method.and the normal methods of,ﬁeasdring

S : - . T

bhése and gain margins;
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CHAPTER VII
LARGE SYSTEM 'EXAMPLES

In order to illustrate the practical usefulness of CIP, the
improvements_of the compensators for large systems are presented.
. This is done by way of two examples; the first example is a single
‘channel system, while the second example is a dua1 channe1 system.

The two systems are not the same, although they are very similar.

Single Channel Example

Iﬁ this example the system under consideration is similar tbl
that shown in Figure 1, but only one channel is fed back. The
system's dynamics, 0,(s)/R(s), are described by the gain vs frequency
and the.phase vs frequency‘plotS'shown'in'FigureS‘4 and 5. This sys-
tem is a model of the Saturn V/S1-C Dry Work Shop at a flight time of
80 seconds. By an inspection of'these'frequency response plots it
is revealed that this system has several poles near the jw-axis.

This deduction is based on the spike shaped gain response and. the
almost discontinuous changes in the phase response. These poles near
the jw-axis are due to various sloshing and bending modes of the
vehicle.

This vehicle is inherently open loop unstable. Thus, it is
necessary to use a control scheme, such as depicted by Figure 1, to
stabilize it. Also, unity feedback with a pure gain compensator is

not sufficient to stabilize the system. A compensator with unity
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feedback which is capable of stabilizing the system is

1.0 + 11.79440s +-28.59200s2 100.0 + 6.05720s + 7.56640s2
1.0 +°21.56500s + 6.05650s2 100.0 + 10.06500s + 6.32880s2

Gc(s) = 0.9

1000.0.+ 19.08700s + 3.73500s2
1000.0 +°330.35200s + 19.02000s2

(E1-1)

The GH(jw) compensated frequency response is shown in Figure 6. In-
" cluding the compensator, this frequency response represents a 29th
-over a 35th order system,

In the design of the preceding compensator several physical
limitations and constraints were conéidered——othér'than*just stability
of the system (In fact, stabilization of the system can be easily
accomplished by a simple lead network with a reduced d. c. gain).

Some of these are

1. From past history it is known that compemsators with very
sméll d. c. gains produce poor wind responses. An acceptable
value of d. c¢. gain is 0.9.

2. On the GH(jw) frequency response the first negative real axis
crossing with respect to increasing frequency is called the
aerodynamical gain margin. Experimentation has shown that
the major effect of an "engine-out" is a reduction of this
margin. A safe crossing point is considered as -2 or less
(or a frequency-response magnitude greater than 2).

3. For a small band of frequencies around 1.199 Hz the frequency
response is dominated by the first bending mode. It is

desirable to attenuate this band of frequencies. However,

to even approach other system requirements and perform this
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attenuation has been praetically impossible. It has been
found that the same effect results if this band of frequen-
cies is phased in the right half of the GH(jw) plane. Due
to the fact that the frequency of this mode is not known
exactly, it is necessary te require larger phase margins for
this mode.than normally required. Acceptable margins are a
léad phage margin of about 55° and a lag phase margin of
about 90° (The reason for the difference is that in most
physical systems phase lag 1is more probable to occur than

phase lead).

.. For frequencies greater than 2.1 Hz the GH(jw) frequency

response is dominated by the higher order bending modes. The
éohtrol‘system can be deterred from resonating at any of
these higher modes by attenuating to a- certain degree all
frequencies above 2.1 Hz;‘ These frequencies- are considered
satisfactorily'attenﬁated'if‘the‘magnituhe of the GH(jw)

frequency response is less thah 0.25 for £ > 2.1 Hz.

Besides theAabove'freguency'response requirements, it 1is

"desirable for all"stability‘margins to be 0.5 or greater

i(Notide that in‘termS“bf'classical'stability margins this is

approximateLy_equivalent“to;having'phase margins of 30° and

gain margins of 2 or better).

By an observation of Figure 6 it becomes evident that all of the above
specifications are not met. This becomes even more obvious after an
inspection of Table 1. In this table the first margin is the aero-

dynamical gain margin and the next two margins are the lead and lag
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phase margins of the lst bending mode, respectively.* The remaining
marging listed under attenuated frequency information are stability
marginé';s definéd in this ﬁaber, and of course the attenuated infor-
maiion;is representative of the attenuation margins above f = 2.1 Hz.
In the CIP program the following specifications were made:
1. Detérmine the aerocdynamical gain margin and improve it if
it is léss than 2. 1In.order to improve any point it is
nécéssary t0'specif§fwhat'éaint‘or points iﬁ‘the d&mplex
GH(jw) plane this point is to be pulled or pushed with

, .. respect to. For this example it is chosen to push this

b‘point with fespect to the -1 + jO point..i

2, ‘Determine the lead and.lag phase.margins oflfhe first bend-
ing mode ané'imprq§e either or both if they fail below 0.9
and 1.3, respectively. To improve theSe it is chosen to
push them from the %l'}ijp poinf.

3.. Deteéf all stability margins énd'increase tﬁose_iess than
0.505. Again the -1 + jO point is chosen as a pushing point.

4. Detect all attenuation margins fo; f > 2.1 Hz. and decrease

all pffthose greater than 0.25. For these margins the origin of

the GH(jw) plane is chosen as a pulling point.

*The measurements of these stability margins are made in the
same manner as stability margins defined in Chapter II, i.e., the
distance from the -1 + j0 point. Measuring gain margins in this way
is quite natural. However, measuring phase margins in this way is not
as straight forward, even though there is a one to one correspondence.
The equations relating the two are: d = 2 sin 6/2 and 6 = 2 arcsin d/2,
where d is the distance from the -1 + jO point and 6 is the phase
margin, Of course d is limited to the closed interval [0,2].
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The continuance criterion chosen was b of Chapter VI. With these
insertions and the necessary frequency response information in CIP,
the following compensator was obtained after 2000 iterations (or
approximately 30 minutes on a UNIVAC 1106):

0 + 74.40524s"+ 107.13383s2 100.0 + 7.29719s + 8.68710s?
0 + 124.68711s + 16.85849s2 100.0 +-11.98668s + 9.15484s2

C 1.

1000.0 + 12.10541ls + 3.11162s2
1000.0 + 219.54201s + 20.42297s>

(E1-2)

FA tableau of the pertinent information at iteration 2000 is shown in
Table 2. From this tableau it is seen that most margins are, for
practical purposes, satisfied. The reason that several of the margins
hgve values that are_only‘approximately equal to the desired values is
'fhaﬁ, in most instances, after a margin becomes inactive it has a
tendency to oscillate between activity and inactivity on higher itera-
tions. However, by establishing an upper limit on the step size from
itération to iteration these constraints are coerced to remain in a
vicinity of their desired values (For this example the maximum step
size was chosen as 0.1 for the first 1000 iterations; then, to speed
‘up convergence it was changed to 0.2 for the next 1000 iterations).

| The three smallest stability margins do not belong in the same
category as those mentioned above because at no time were they inactive.
Since program termination was maximum iteratiens, additional improve-
‘ments in these constraints is duite conceivable. Nevertheless, the
conyergehce curve shown in Figure 7 indicates many more iterations will

be required before any appreciable change in the smallest of these

54




0006¢"
000s2°
000sc”
000sC*
000s¢”
000s¢*-

0050S*
00505 *
00505 *
00505 *
00505
0050
00505 *
00505 *
005065 "
00505
00505 *
00505 *
00505 *
00506 *
00505
00505 *
00505 *
00505 *
-0000€ T
00006
00000° T

Il

]

il

]

1]

]

1]

1

1]

]

]

]

il

]

[}

000Z UOT3IEI2IT I8 oTdwexy Touueyy oTBUTS JO nEd{qEl ‘g

NIV

NIDIVH,

NIDIVH
NIDEVR
NIJEVH
NIDEVR

NIDIVH
NIDIVI
NIDIVIK
NIDUVH
NIV
NIOEVH
NIDIVH
NIOUVR
NIDIVH
NIDEVIH

NIOEVIH,

NIDIVR
NIDYVI
NIDYVR
NIDUVH
NIDEVH
NIDVI
NIOUVH
NIDUVI
NIDIVI

© NIDEVH

q3daIsada
aId1s3d
qIdISHA

qa91s3d

dI41S3a
TIYISaa

qa¥Isaa
aaaIsada
qI¥1s3d
aayrsiaa
aayIsaa
qadIsaIa
@dIsId
qg¥y1s3d
agdIsIa
aa41s3d
qadIsaa
@@¥Isdada
@@9Isada
aa¥Isada
@@¥1s3Ea
a@IISEa
aIyIsada
qayrsada
qaaISaa
qad1sHAa
agIISaA

ZH
ZH
ZH
ZH
ZH
ZH

NOI LVWMOINT AONZNOAYI QHIVANAILY

ZH
ZH
ZH
ZH

ZH
ZH
ZH
ZH

ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH

NOILVAYO4INI ALITIEVLIS HAILVTIHY

LETBS"8
TLyveE9
8€69S°Y
99L19°¢
G7919°¢
9€765 "¢

LEBTS 8
Y6TLS"Y

y19€C°¢

71885 T
TLS88° T
YTTYT T
6SY6L"
20089 °
919€9°
S9TSS "
6£0%S "

9%9¢G "

6TTES "’
oovtE”
0009¢"
0000¢ " .
000LT"
000TT".
006TE"T
099%0°1
YA [V

XONINDIYA
AONINOIYA
AONZNOAYL
XONINOTUL
XONZNOIUL

- XONANOTYA

- XONINDIIL

KONANDTIL

XONENDIYS

XONINOFTII
AONANOAAL
AONZNOTEL
XONINOTUL
XONINOIYA
XONINOTIA
AONANDIYA
XONANOFYL
XONFNOTIA
XONINDITIA
XONZNOTIL
AONANOTIA
XONINOTIA
AONFINOIIYL
XONINOTIA
XONE N0
XONINOAIL
AONINOTYL

8006¢"

£€1000°

-C89YT”

T0000°

00000 ".
AT A

0€SsT6”
906¢58°
90666 °
9€69L°
VARYA
¢L06S°T
¢T%0G”
TLYES”
L5906 "
£€Ce0s”
96C0s*
L¥S0S”
0%099°
89¢T1S”
TELLY®
€1S9%’
GcoLy®
w1edes”
6TYSY° T
¢80£0°T
%2666°

a1qeL

LI | | N ([ e [ I

il

X4
97
S¢
%¢
£C

O = ANMNITWN OO OHO A
HrA A A=A ANN

— NN O 0 0

*ON
*ON
*ON
*ON
°ON
*ON

‘ON

*ON

*ON
*ON
"ON
*ON
*ON
*ON
*ON
*ON
*ON
*ON

*ON
*ON

*ON
‘ON
*ON
*ON
*ON,

Al oz
"ON’

SNIavd
SNIavy

SAIavy’
‘SAIavVd

SNIavya
SNIavy

SNIavy
SNIAVY
SNIAvVY
SNIAvy
SNIAvY
SNI AV
SNIQvy
SNIAvY
SNIavy
SNIavy
SNIavy
SNIavy
SNIavy
SNIavy
SNIavy
SNIavy
SNIavy
sNIavy
SNIAVY
SNIAVY
SNIAVY

NIDIVH
NIOEVH
NIDIVH
NIDIV
NIDIVI
NIDEVH

NIDIVH
NIDIVI
NIJEVH
NIDIVK
NIDIVH
NIDYVH
NIJEVH
NIDIVIK
NIDIVH
NIDIVH

NIDEVR

NIDEVI
NIOIVIH

-NIDIVKH

NIDIVH
NIDIVH
NIOYVIH
NIDJUVH
NIDIVH
NIO¥VH
NIOYVI

55



2000

I N N

05

Figure 7.

<
o

NIDYVWN  AlLITIgVLS  1S3TVWS

03

Convergence Curve for Single Channel Example

56

1500

1000

500

ITERATIONS

OF

NUMBER




margins is recorded. With-an-occurrence such as this the designer is
léft with threé alternatives:
1. Accept the present design.
2. Pay the toll of additional computer time and attempt
additional iterations.
3. Change some of the desired constraints and continue the
program,
From experience it has been found that small changes in the desired
margins can result in marked effects.* As for the case under dis-
cussion the GH(jw) frequency response in Figure 8 reveals that for

practical purposes the compensator for iteration 2000 is satisfactory.!?

Dual Channel Example

Again reference is made to Figure 1; except in this case it is
assumed that j = 2, i. e., two channels are fed back. The uncompen-
sated open loop system is described by the gain and phase frequency
responses shown in Figures 9, 10, 11, and 12. Figures 9 and 10
represent the gain and phase plots of 8;(s)/R(s), while Figures 11
and 12 are the gain and phase plots of 65(s)/R(s). This system is

typical of the Saturn V/S1-C Sky Lab at a flight time of 105 seconds.

'*It should be noted that at the end of iteration 2000 the CIP was
slightly modified so that a better calculation of the first negative
real axis crossing frequency was obtained. After this, additional
iterations were attempted and in less than 50 iterations the smallest
stability margin was increased from 0.46513 to 0:48177. In another
instance the compensator whose-smallest stability margin 'was 0.48177
was used as the starting compensator in another run in which the rela-
tive stability requirements were lowered to:0.49 while the other
system'requirements were the same as previously stated. In less than
50 iterations all system requirements were completely satisfied.
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Compensators which have been- designed for this system are

G.(s) = 1.26 1000.0 +6.54732s + 4:57328% 100.0 + 6.04029s
1 """ 100.0 + 1.43424s 100.0 + 6.17455s

+10.0 + 3.69000s 0.1 + 1:04000s 1.0
10.0 + 2.32980s 0.1 + 2.33536s 10.0 + 1.05603s

-100.0
100.0 + 4.13275s

(E2-1)

G =. 0.38

1000.0 + 2.91040s + 4.50787s2 100.0 + 4.71096s
100.0 + 3,52502s 100.0 + 4.61899s

10.0 - 10.0
100.0 + 5.49396s° 10.0 + 1.21426s

SR 0.0 . | 9 |
. - 10.0 # 2.85080s Lo (E2-2)

With'theselcompenéators inserted in the system the compenéated open
 1oop:GH(jm) frequenc§ response, C(jw)/R(jw), with the loop broken at
.qA.is'ﬁhat.ghowp in Figure 13.

| It is d?sifed to m;ke several improvements in this frequency
-;eéﬁqnsé; These conditional improvements  are
', 1.. Keep the:aerodynémical gain'marginjat 4,37 or greater.

2., Increase all stability margins of 0.49 or less.

3. Maintaip the lead and lag phase margins of the first
bending mode at 55° and 90° or better.

4. Decrease all attenuation margins occurring at frequencies

above 2.0 hz when 0.2 or greater.
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In order to make these improvements the following specifications are
made in CIP:

1. Whenever the aerodynamical gain mgrgin is 4.8 or less it is
pulled with respect to the -7 =j3 point and pushed with
respect to the =1 + jO‘point}

2. All stability margin points less tham 0.49 are pushed with
respect to the -1 + jO.

3. The lead and lag phase mérgins'are pulled witﬁ reséect to
the 1 + jO point when less than 0.9 and 1.3 respectively.
Also, the attenuation'margins occurring at frequencies
betweeﬂ these two are decreased by pulling with respect to
the origin of the GH(jw) plane if they are greater than 9.0.

4. The attenuation margins above 2.0 hz are decreased by pulling
them with respect to the origin.

With thése specifications, 357 frequency responsé‘points for each

channel, and the initial compensators, (E2-l) ané’(EZ*Z), in the CIP,
the following compensators were obtained after 200 iterations or about

10 minutes on a Univac 1106:

1000.0 + 7.07293s + 7:025838% 100.0

1.26 -
100.0 + 1.21230s ' 100.0 + 10.48567s

Gz(s)

10.0 + 3.43938s 0.1 +-1.21370s
10.0 + 1.14372s 0.1 + 2.51497s

1.0 100.0.

_ (E2-3)
10.0 + 1.14372s 100.0 + 9.34985s
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1000.0 + 6.74527s + 4.53868s% 100.0 + 4.57638s

Gz(s) = 0.58
100.0 + 0.0s 100.0 + 1.26840s

10.0 10.0 A
100.0 + 6.96980s 10.0 + 1.445858

10.0
10.0 + 1.44585s

(E2-4)

An evaluation of the amount of improﬁement can be ma@e'by comparing
_the initial tableau, Table 3, of iﬁportant informatién.to the final
tableau, Table 4. As in the last example the first ﬁargin is the
aerodynamical gain margin, and the next two margins are the lead and
lag phase margins of the first bending mode respectively. The remain-
ing margins under relative stability information are listed as stability
margins. The margins under the attenuated frequency information are
the attenuation margins above 1.2 hz. The desired margins' values are
listed in the right hand column.

Taking into account the desired improvements-it is seen that
significant improvement has been made. Furthermore, this is reinforced
by comparing the initial compensated frequency response, Figure 13, to
the compensated frequency response at iteration 200, Figure 14. The
termination reason was maximum iterations; thus, as in the first
example the designer is left with the same three alternatives. From
the convergence curve. shown in Figure 15; it appears that several
additional iterations may have to be attempted before any significant
improvement in the smallest stability‘margin.is obéervedi The impor-
tance of this example is the significant imp?ovement over the initial

frequency response.
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Additional Analysis of Results and Comments

The@fesults obtained from the two examples clearly indicate that
the CIP can be a valuable desigh aid. It must be pointed out that as
the name, Compensator Improvement Program, imples the program is a
design aid, not a design technique. That is, the,prbgram does not
decide the order, the type,; or the number of compensat§rs necessary.
All of this requires good engineering judgement before fhe running of
the program is attempted. |

As the two examples exemplifie& the solution canﬁot be worse than
‘the original compensator if the specifications on the input are‘ﬁade
properly. 1In regard to stability margins and'attenuatioﬁ'margins this
simply requires pushing and pulling theée3 respectively, wifh respect
to the -1 + jO and 0 + jO points. By doing this, these can always be
bettered, except when they proceed from activity to inacti&ity. How-
ever, the amount of slippage in going from inactivity to activity can
be minimized by choosing a reasonable maximum step size such as 0.1 or
less of the smallest compensator coefficieﬂt. As long as a margin
stays in a vicinity of the desired value it is acceptable.

The specifications for ipsuring‘tﬁe improvement in gain and
phase margins are not always as simple as those for stability margins
and attenuation margins. In fact; in many'instanceS‘it"is necessary
to push and pull these with respect to two points in the_complex
plane. This is especially true if the acute angle between the tangent
to the GH(jw) frequency rgéponse where these occur and either the tan-
gent to the unit circle or real azis is very small. Both of these

" cases are illustrated in Figure 16 where tangents to some hypothetical
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GH(jw) frequency response are assumed as A and B, The points o and B
are‘the points where the margins occur. ' If they are perturbed so that
the distances between them and the =1 + jO .point are increased, then
they are allowed to move in any direction which has a positive dot
product with vectors.emanating‘from the =1 + jO point to these points.
Suppose that a was perturbed in the direction 6 indicated-in Figure 16.
It is obvious that by moving o in this direction the vector from -1 +
jO to o is increasing in magnitude. However; after o is perturbed it
is no longer the point of interest. Some other point such as X is
then the point under consideration, where A is in some neighborhood of
a, From practical considerations it is known that if o moves in the
direction 6 then a small neighborhood around o will move in the direc—
tion 6. Let A be in this. neighborhood. The result is that X will be
the new point of intersection with the real axis, and, furthermore,
its distance from the -1 + jO point is less than what a's was. Similar
results can be demonstrated for B.

These types of problems can be circumvented by perturbing a point
with respect to two points in the complex plane. In fact consider the
example in the last paragraph. Suppose that a is not only pushed with
respect to the -1 + jO point, but it is also pulled with respect to
the -7 - j4 point. The permissible-region for the movement of o now
becomes the intersection of the permissible region for pushing from
the -1 + jO point and the permissible region for-pulling with respect
to the -7 - j4 point. The result is the cross-hatched area in
Figure 16, Movement of a anywhere in this region cannot result in

the gain margin being decreased.
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For the single channel example conditions did not exist to warrant
pertubations with respect to more than one point. On the'other hand
the dual.channel example.required perturbing_the.aerodynamicalvgain
margin with respect to two points. Runs in which this mas not done
resulted in a significant reduction in thls margin; ..

" In neither example did the lead and lag phase margins of the first
nbending mode become active. In the single channel example, conditions
just never prevailed As for the dual channel example, conditions
would have probably resulted if the ‘magnitude of the first bending mode

‘had not been controlled by the attenuation margin technique. Since the

frequencies where these margins occur are very close to the frequency

r

- i P o,

of the first bending mode; then it iS‘quite natural that an increase
1n the first bending mode - magnitude would have resulted in the reduc-

tion of at least one of these margins.

[y

The program indicated for the dual channel example that better
results could be obtained with one less zero in the numerator of the
first channel's compensator and.one less pole in the second channel s
compensator. It did this by driving these to infinity. It also drove
two polee in each channel 'to equal values. This probably indicates
that if these poles were included in second order factors they would
split into complex conjugates. However, the first order pole factors
were chosen so that complex poles would not be allowed.

One other fact which should be pointed out is that the program
was used in the SIFR mode. However; because of the maximum step size

choices (0.1 for the first 1000 iterations of the first example and
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0.2 for the second 1000 iteratioms and u.l for the second example) the
' program actually performed in'theffIFﬁ'mode.*

‘One ﬁhenomenon which ‘should not paSS‘without'mention'is fhe
apparent unsmoothness of the-convergénce curves; Figures 7 and 15. 1In
actuality, these cﬁrves*should be digcrete curves: For conveﬁience
they were drawn continuously. The sharp, abrupt changes;.where the
smallest stability margins make much greater gains than on other itera-
tions, occur at iterations where the aerodynamical gain-mafgin:bgcame
inactive. This allowed the smallest stability margin £0'make a m#rked
gain for one iteration. While thiS'was'occurring'thé'aerbdynaﬁical
gain margin was returning to activity. OncéAiﬁ'bécame activé"again
the rate of increase éf the smallest stability'margin Aecreaéed. On
‘higher iteratioﬁS'the-curve was smboth'untii tﬁe aerodynamiéaligainl
margin went inactive again, at which'time the process wasirépeated.
The overall effect of the program 1s a “ratchet" tjpe; i. éﬁ; once a

margin is increased; it will not decrease.

* . . . : :
Of course again this is neglecting instances where constraints
went from inactivity to activity.
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CHAPTER VIII

CONCLUSION, LIMITATIONS, AND SUGGESTED

FUTURE STUDIES

- Summary

In this dissertation, the theory for a compensator improvement
algorithm has been presented. The goal from the onset was to accom-
plish this by way of mathematical programming. Thus, in Chapter I
a concise review of the more popular mathematical programming tech-
niques wés given. After this review a discussion of the uses of
mathematical programming in the_design of control systems was pre-
gsented. Also, a discussion of the uses of mathematical programming
in the design of control systems was made. 1In this discussion it was
pointed out that only a small amount of effort has been devoted to
using mathematical programming as.an aid in' the design of control
systems by classical means, Furthermore, it was shown that the tech-
niques which have beeﬁ developed suffer from some serious drawbacks.
Thus, the thesis of this dissertation was to develop a computerized
compensator design' procedure-which-circumvented these pitfalls.

In Chapter II, some important-concepts for the measuring of
expected performance of a control system were given. This involved.
defining relative stability in a way-somewhat different from. the
normal textbook definition. 'Also, concepts of relative attenuation

and proper phasing were defined. Finally, using these the design of

a compensator was formulated as a mathematical programming problem--

which in the end resulted in a strict-constraint problem.
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In Chapter III compensator-iimitations for two possible iterative
techniques for-solving the problem fo;mulated in Chapter Il were pre-
sented by the proving of two theorems. The first theeorem showed that
to be assured of being able t0'pe¥turb n points in the GH(jw) plane
in n optimal directions there ﬁust exist 2n coefficients for variance.
On the other hand, Theorem 2 stated that if each point was given 180°
of freedom for movement (a sub=optimal direction), then only n coef-
ficients were needed for variance. From this it was deduced ‘that a
sub-optimal algorithm would be the most practical,

_ "Then, in Chapter IV the development of a sub=optimal algorithm
was made.  The result was the evolvement of the constraint improve-
ment algorithm. In this development-several definitions were given,
e.g., total improved frequency' response, sum improved frequency
response, improved solution, and active and passive constraints.

In order to employ the constraint improvement algorithm in
Chapter IV, it was expedient to have the gradients of the active con-
straints. These were found in Chapter V for a general jtb channel
_control system. Furthermore, the partials were derived so that push-
'ing . or pulling on points of the frequency response could be accom-
plished with respect to-any points desired in the complex GH(jw)
plane.

Next, the ideas and material in Chapters II, III, IV, and V were
included in a computer program-called CIP ‘(Compengator Improvement
Program). In Chapter VI the general iterating“procedﬁre‘of this pro-
gram was incorporated. In addition, several special programming

techniques employed by CIP were presented in this chapter.
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.Chapter VII was used to demonstrate the practicality of CIP. This
was illustrated by two large system examples. Tﬁese examples clearly
showed ‘the program's capability of handling‘singlé“or mu1ti*cHénne1 con-
trol systems. A significant amount of improvement in the frequency
response of both systems was seen after an application ‘of CIP;;ﬁAlso,

"+ curves to show the convergence properties of'CIP"weré'given. In
addition, several comments in regard-to proper speciftcations for the

_-program were mentioned.

‘Limitationms and ‘Concluding Remarks

One of the'limitations'of'le'is fhat“the initial compensator must
be chosen to stabilize the system. Thisviériﬂé‘fé;son é%ﬁi tﬁélprogram
was termed an ''improvement program' rather than a design program. A
méjo; goal of the program is to tmprove. stability margins, etc., from
one ite:atipg.to;anothe:; ‘Obviously, if the system is initially un-
stable phen stability;margins have no meaning.

Anotber shortcoming of CIP is that a choice‘of'the“components‘of
the ¢ vector ?n'Chapter IV must be-made:. If the strict constraint
problem has a solution which is reachable from the initial starting
point, the choice of the c vector "has 1itt1e<qonse§uence'other than to
affecg the rate of convergence. ‘However; if the problem does not have
_an obtainable solution; then the choice of this vector. will definitely
determine ;he relative extremal where convergence occurs, ‘Neverthe-
less, it should be .pointed out that if the initial guess at the:
soiption is not a relative extremal then the solution-at convergence

will be better than the initial solution.
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A very good property which CIP possesses is an inherent ability
not to.design an unstable-compensator, provided the step size is main-
_tained at a reasonable value. The reason for this is that CIP con-

. .tinuously improves relative stabiitity; thus the stability of.the
system cannot decrease.

A}thqugh,CIP'requires_a choice of the c¢ vector .elements; it still
has the capabilities of yielding a practical design .on every-run. As
long as the input specifications of the program .are properly made,
the program cannot yield a compensator worse than the original compen-

sator, CIP is not a design techhique; but it is a ‘design aid.

‘Suggested Future Studies

.. There are several areas ‘in which the work in this dissertation

can be extended. One such study could involve using the constraint

- . improvement algorithm in other design problems in engineering and

science. This author does not see any reason that it could ‘not be
used to make improvements in any'deéigntwhere the number of -variables
is greater than the number of constraints to be controlled and where
the gradient vectors of the constraints are deterministic.

Also, it 1is foreseen by this author that the'eonstraint“improve-
. ment algorithm could be the basis of a new or -extended gradient algo-
rithm for nonlinear programming. For example; if any of the elements
of the ¢ vector are set to zero then the determined -directional vector .
will lie in the tangent planes of the constraints corresponding to the
‘c's with zero value. Of course this would be similar to the gradient
projection technique mentioned-in-Chapter I: However; it is deemed by

this author that by using the constraint improvement approach an
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optimailgradient projection algorithm can be developed. Up to the
present such an algorithm has not been developed.

In regard to future studies in compensator design, there would be
nothing wrong with starting with physical electrical networks, rather
than transfer functions. If a program started with a network and varied
" the elements for making the 1mprovements:described previously, the end
results would be the actual network needed. The practicality of this
network would depend upon the constraints placed on the network ele-
ments,

A compensator design procedure could be devised using the con-
strain;iimprovement algorithm on the Routh-Hurwitz array. By forming
the chéracteristic equation as a function of the compensator coeffic-
ients, the first two rows of the Routh array can be formulated as
functions of these compensator coefficients. Since it is known how the
other rows of the array are formed from the first two rows, the changes
in the elements of the first column of the array with respect to the
compensator coefficients could be determined by an application of the.
chain rule for partial derivatives. Then, the constraint improvement
algorithm could be used to drive all the negative elements of the first
column positive, as long as the number of negative elements did not
.exceed the number of compensator coefficients. If all the elements are
driven positive then a certain amount of relative stability could be
achieved by evaluating the characteristic équation at (s + a) where a is
a positive real ﬁumber; the previously mentioned procedure can now be
applied to the new characteristic equation. If in this application all
elements of the first column could again be.driven to positive values,

then it would be known that no pole of the closed loop system has a
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real part greater than - a., This process could be repeated until a
desired value of a is achieved or until ‘ail the elements of the first
column of one of the characteristic equations:cannot be driven

positive.
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APPENDIX A
COMPENSATOR  TMPROVEMENT PROGRAM

In the following is a complete Fortran version of the Compensator
Improvement Program. The program 1s,completely'self-contained, i.e.,
it does not require any system library, etc. The necessary input to
theAprpgrah is explained in the comment statements at the beginning of
the main program. Furthermore, all inputs except the frequency
response points are printed out with explanations of the iﬁput'speci-
fications. The other output is, also, explained by certain comments

.pfinted,out with the information.
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MAIN PROGRAM

OEFINITIONS OF I/0 VARIABLES

KCHNL -NO. OF CHANNELS FED BACK

NUMC(T) =NO, OF COMPENSATORS IN I-TH CHANNEL

NRATOR(I,J) =NUMERATOR ORDER OF J=TH COMPENSATOR IN THE I~TH CHANNEL
NDENOM(I»J) =DENOMINATOR ORDER OF J=TH COMP. IN I=TH CHANNEL
XCOMN(IrJ) ~NUMERATOR COEFFICIENTS OF J=TH COMP., IN I-TH CHNL.
YCOMN(I,J) =DENOM. COEFFICIENTS OF J=TH COMP. IN I~TH CHNL.,
OMEGA(I) =I=TH FREQ.(ASSUMED T0 BE IN HZ.)

GRA(I,y) -J=TH REAL PART OF OPEN LOOP FREQ. RESP, OF I=TH CHNLe«
GIAt(Iey) -J=TH IMAG. PART OF OPEN LOOP FREG@e. RESP. OF I=-TH CHNL.,

KSTART ~STARTING ITERATION NO.

KQUIT ~STOPPING ITERATION NO.

KPOINT =NO+ OF POINTS FROM OPEN LOOP FREQ. RESPONSE USED

KPRINT = NO. OF ITERATIONS SKIPPED BETWEEN PRINTING OF INFOR.

STPMAX =MAXIMUM CHANGE TO BE MADE IN COMPENSATOR COEFFICIENTS
ON ANY ONE ITERATION(PROBABLY NO MORE THAN 30% OF THE
SMALLEST COMPENSATOR COEFFICIENT OF THE INITIAL
COMPENSATOR)

STPMIN = MINIMUM STEP SIZE DESIGNATOR

F10 & Fi1l = FREQUENCIES BETWEEN WHICH G.M.*'s ARE FOUND

F12 & F13 ~ FREQUENCIES BETWEEN WHICH P.M.'S ARE FOUND

FMIN ~ A«M.'S ARE FOUND FOR FREGS. ABOVE THIS FREQ.
VAKIABLES FOR GAIN MARGIN RADII DESIGNATIONS

IF FREQ. «LE. F1 DESIRED MARGIN = Rl
IF FREQ. «6GT. F1 BUT «LT. F2 DESIRED MARGIN = R2
IF FREQ. «GE. F2 DESIRED MARGIN = R3
VARIABLES FOR PHASE MARGIN RADII DESIGNATIONS

IF FREGQ. +LE. F3 DESIRED MARGIN = R4
IF FREG, «GT. F3 BUT .LTe F4 DESIRED MARGIN = RS
IF FREQ., +GE. F4 DESIRED MARGIN = R6
VARIABLES FOR STABILITY MARGIN RADII DESIGNATIONS
IF FREG., «LE. F5 DESIRED MARGIN = R7
IF FREQ. «GTe. FS5 BUT +LTe F6 ©DESIRED MARGIN = R8
IF FREG. «GE. Fb DESIRED MARGIN = R9
VARIABLES FOR ATTENUATION MARGIN RADII DESIGNATIONS
IF FREG. oLE. F7 DESIRED MARGIN = R10
IF FREQ. «G6T. F7 BUT «LT. F8 DESIRED MARGIN = R11
IF FREQ. «GE. F8 DESIRED MARGIN = R12

GAIN(I)-DENOTES INITIAL D. C. GAIN VALUE FOR I~-TH CHANNEL
KNk (I) =NUMBER OF NUMERATOR. COEFS. FOR I~TH CHANNEL
KDR(I) =NUMBER OF UENOM. COEFS. IN I=TH CHANNEL
KONT(1)=D.C. DESIGNATOR FOR I~-TH CHANNEL

KONT(I)=1 GAIN ALLOWED TO VARY
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KONT (I)=2 GAIN NOT ALLOWED TO VARY

KIkM =NO+ CHANNELS THAT FRE@. RESPe« INFIRMATION IS TO BE READ IN

PPY(1) =POINTS THAT THE CRITICAL FREQUENCIES WILL BE
PERTURBED WITH RESPECT TO (COMPLEX POINTS)
I=1 GAIN MARGIN POINT
12 PHASE MARGIN POINT
I=3 STABILITY MARGIN POINT
I=4 ATTENUATION MARGIN POINT’

LSN(I) =

DENOTES WHETHER POINTS ARE TO BE PUSHED OR PULLED

LSN==1 POINT TO BE PULLED
LSN=+1 POINT TO BE PUSHED

INCGMS =INDICATES WHETHER GeMe'S ARE TO BE ARTIFICALLY
INCLUDED AS SeMstS

INCGMS=0 NOT INCLUDED
INCGMS=1 INCLUDED
INCPMS ~INDICATES WHETHER P.Me'S ARE TO BE ARTIFICALLY
INCLUDEED AS S.M.'S
INCPMS=0 NO INCLUDED
INCPMS=1 INCLUDED

SOME INTERIOR VARIABLE DEFINITIONS

GCR(Ird) =REAL PART oF COMPENSATOR FREQ. RESP. AT SOME ITERATION
GCI(1ry) =IMAGs PART OF COMPENSATOR FREQ. RESPe« AT SOME ITERATION
GCOMR{j,J) ~REAL PARTS OF I=TH CHNL. OPEN LOOP FREQ. RESP.
GCOMR(I,J) =IMAGe PARTS OF I~TH CHNL. OPEN LOOP FREQ. RESP.

GR(I) =REAL PARTS OF TOTAL OPEN LOOP FREG. RESP.
GI(I) =IMAG. PARTS OF TOTAL OPEN LOOP FREQe RESP.

*sxxx THERE ARE 13 READ STATEMENTS #**%%x

DIMENSION XCOMN(10,50)+»YCOMN(10+50) +PRY(50),PRX(50) »STBM(99)
PX(50)¢PY(50)+RG(99)yGR(999)+1GI(999]) +OMEGA(999) +GRA(5¢r999)»
GIA(50999)0G(20+,99) 1DV(50) +WEIGHT(50) »BCOMN(10+50)

GCOMI(59999)» NUMC(20) rNRATOR(10020) +NDENOM(10020) yCNUM(L10)

1
2
3 B8COMD(10+50) ¢+ GCR(50999) ¢+ GCI(50999) 1 GCOMR(5¢999) ¢
4
5

CDOM(10) »KNR(10) »KDR{10)+COTN(10¢50)+COTD(10+50)
DIMENSION KACT(99),sML{(g9)
DOUBLE PRECISION GyDVeIWEIGHT
DIMENSION KONT(20), KPTS(99),» GAIN(10)
DIMENSION TYPE(99)
OIMENSION PPT(4)s LSN(4)
COMMON TYPE
INTEGER TYPE
COMPLEX PPT
READ(5¢5) KCHNL

READ(5¢5)

(KONT (1) I=1¢KCHNL)

READ(SOS)(NUMC(I).I 1,KCHNL)

WRITE(6,1)

KCHNL

1 FORMAT(*0"+5X» *NUMBER OF CHANNELS FEDBACK- e 15)

WRITE(6+3)

(KONT(I})»1=1+KCHNL)

3 FORMAT(10'»SXs»*DsC, GAIN CONSTRAINT DESIGNATOR FOR EACH CHANNEL (
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lKONT=1+ ALLOWED TO VARY: KONT=2y HELD CONSTANT )'/6X08(12010X)) !

WRITE(6,4) (NUMC(I)»IZ1loKCHNL) -~ _ !
+4-FORMAT(107/5X» 1CONPENSATORS PER CHANNEL':lOIS) = o
. D02 I=1sKCHNL - .. .

KNAT=NUMC (1) S ;

READ(S?»5) (NRATOR(Ir»J)2J=1,KNAT) - ‘

WRITE(696) I+ (NRATOR(IVJ)2JUs1IKNAT)

o w06 FORMATL 10 e 5X0 *CHANNEL NO.'oIZvZX.'NUMERATOR ORDERS'OZleOIS)

- READ(S5¢5)  (NDENOMLI»J) rJ=12KNAT)
WRITE(6»7) 1o (NDENOM(IvdJ)»J=1,KNAT) )
FORMAT(* v»5Xs *CHANNEL NO."IZOZXO'DENOMINATOR ORDERS"IOIS’
CONTINUE
. FORMAT{1615), T
~READ(5¢10) KSTARTiKQUIT KIFMOKPOINTOKPRINT' Rl FloRZOFZtR3v
1 . R4rF3I1R5/F41R6e R71F5¢R8¢F6¢RI R100F79R110F80R12' FMINeF10
e FL11/F1l2¢F13)STPMAX2STPMIN
10 FORMAT(SIS/5F10+5/5F10¢5/5F1045/5F10+5/8F10,5)
WRITE(6211)KSTARTIKQUIT»KIFM/KPOINT KPRINT - - 7 '
11 FORMAT(v0'»1X» *START ITER«=1+15,2X¢'STOP ITER-='015'2X"NOo CHNL. »
LFREGe RESPe IN='»15s2X»*NO, OF FREQ. POINTS-"ISrZXD'PRINT INCREME
eNT=1415)
WRITE(6+25)STPMAXsSTPMIN ’
25 FORMAT(Y0'rSXr *MAXIMUM DESIGNATEU STEP SIZE "!FlOoS/éXO'MINIMUM D
LESIGNATED STEP SIZE ='+F10,.5) ' o o
WRITE(6,12)
12 FORMAT('0'SX/'DESIRED GAIN MARGIN RADII DESIGNATIONS')
WRITE(6+13) F1,R1r» F1eiF2/R2i F2/R3 = - :
13 FORMAT('0*e5Xs 'IF FREQUENCY -LE.'»FIO.EoSX!'DESIRED MARGIN ISty
1 F10¢576X1*1F FREQUENCY oGTe'rF1045¢2Xe'BUT. «LTo"eF10.512Xs"DESIRE
2D MARGIN IS? vF10-5/6X0'IF FREGUENCY oGTo'oF1005'2Xv'DESIRED MARGI
3N 151'9F10.5) )
WRITE(6,17) F10/F11
17 FORMAT(Y *95X/s'GAIN MARGINS ARE DETERMINED BETWEEN THE FREQUENCIES
L OF ' F10.512Xi*ANDYF10.,5) - )
WRITE(6s14)
14 FORMAT('0'»SXr*DESIRED PHASE MARGIN RADIT DESIGNATIONS'
WRITE(6+13) FIrRU4s F3+F4rR3r F4IR6
WRITE(6018) Fil2/FL13
18 FORMAT(* '»5X»'PHASE MARGINS ARE DETERMINED BETWEEN THE FREQUENCIE
218 QFY9F104512X0 YANDYF1045) -
WRITE(6:15)
15 FORMAT(0'r5Xs"DESIRED STABILITY MARGIN RADII DESIGNATIONS')
WRITE(6+13) F5/R7¢+ F5¢F6+R8¢ FOIR9 - o
WRITE(6116)
16 FORMAT( 10 »5Xr'DESIRED ATTENUATION: MARGIN RADII DESIGNATIONS')
WRITE(6013) F7:R10s» F7oF8/R11s F8rR12 -
WRITE(6+39) FMIN -
191F0R2AT(""SXO'ATTENUATION MARGINS - ARE FOUND FOR FREGSv ABOVE'»
105
READ(89s50) (GAINCI) e ISLsKCHNL) -
WRITE(6,20) (I1GAIN(I)rI=1,KCHNL)
20 FORMAT('0'r5Xr2('CHANNEL NO-'!IS:le'INITIAL DoC. GAIN IS"F1005'

':, 60 SN

90




1 5X))

READ(S+50) (PPT(I)rI=10y4)

WRITE(6,22) (PPT(I)sI=104) o
22 FORMAT(10*r5Xr *PERTUBATION POINTS FOR GAIN: PHASE, STABILXTY: AND

LATTENUATION MARGINS) RESPECTIVELY"/6X'4('REAL'1F6e2'2X"IMAGo'v

2 F6e202X))
READ(5¢5) (LSN(I)rI=1s4)

WRITE(6¢23) (LSN(I),I=1,4) »
23 FORMAT(*0'+SX» "DENOTING WHETHER EACH OF THE PRECEDING POINTS ARE !
1 ¢ *TO BE PUSHING OR PULLING POINTS(PUSHING=+1l, PULLING==1)" /6Xs

2 4(12,10X))
READ(5¢5) INCGMSs INCPMS

WRITE(6,24) INCGMS,INCPMS

24 FORMAT('0'+5Xs *DENQTING

WHETHER GAIN OR PHASE MARGINS ARE ARTIFICA

1LLY -INCLUDED AS STABILITY MARGINS (NOT INCLUDED=0r» INCLUDED=1)'/6X»

2 2(12,10X))

KVARY=0

DO 21 K=1+,KCHNL
LAMP=NUMC (K)

KNR (K)=0

KDR(K)=0

DO 21 I=1.LAMP
KVARY=KVARY+NRATOR(K+I)
KVARY=KVARY+NDENOM(K»I)

KNR(K)= KNR(K) + NRATOR(Kr,I) + 1
21 KDR(K)= KDR(K) + NDENOM(KeI) + 1

DO 29 I=1,KCHNL

29 IF(KONT(I)+EQ+1)KVARYZKVARY+1

00 42 K=1/,KCHNL

LNC= KNR(K)

LDC= KDR(K)

READ(5r50) (XCOMNAK»I) oI

50 FORMAT(8F10.5)

_ =1LNC)
42 READ(5¢50) (YCOMN(K,1) o I=

1,LDC)

60 FORMAT(10*r6Xe ' INITIAL COMPENSATOR COEFFICIENTS')

WRITE(6+60)

DO 72 K=1»KCHNL
LNC=KNR (K)

LDC= KDR(K)
WRITE(6162)K

62 FORMAT('O"SX"CHANNEL NO.'vIZtZXp'COMPENSATORS - FACTORED FORM?)

WRITE(6+68)

68 FORMAT(*0'25Xs *NUMERATOR COEFFICIENTS?)

WRITE(6+70) (XCOMN(KeI),
WRITE(6,69)

I=1,LNC)

69 FORMAT(*0'»5X s 'DENOMINATORS COEFFICIENTS')

72 WRITE(6¢70) (YCOMN(KeI)»
70 FORMAT(* *»5X»10F10,.5)
C MODIFICATION OF FREQ. RESPs
DO 135 J=1+KIFM

I=1,L0C)
INFOR. BY CONTANT COMPENSATOR

135 READ(5+140) (OMEGA(I)»GRA(JrI)1GIACJrI)r1I=1y KPOINT)

140 FORMAT(9F8.5)

91



148
150

149
190

185
200

IF (KIFM. GE +KCHNL ) 6 TO 150
K= KIFM + 1

DO 148 J=KrKCHNL

DO 148 I=1+KPOINT

XV= OMEGA(I) * 6.,2831853

GRA(Jr»I)= =OMEGA(I) * XV * GIA(JU=1r1I)

GIA(JrI)= OMEGA(I) *x XV % GRA(J=1,1)

CONTINUE

DO 149 J=1+KCHNL

DO 149 I=1,KPOINT

GRA(J»I)= GRA(J»I) % GAIN(J)

GIA(JrI)= GIA(JII) * GAIN(Y)

CONTINUE

?ATA STEPoKHOPrSMLZrPSGL'SBCZ/l 0E‘0200v0 0r1.0E+2000, 0/
1=0 .

12=0

DO 195 K=1vKCHNL

I11= KNR(K) + 11

12z KDR(K) + 2

LOX= KSTART

CONTINUE

LPRESV=KVARY

NM=0

C EVALUATION OF VARIABLE COMPENSATOR AT CHOSEN FREQS.

204
205

DO 210 K=1»KPOINT
GR(K)=0,0

Gl(K)=0.0

XV=OMEGA(K) *6.,2831853
DO 209 I=1+KCHNL

KCOMP=- NUMC(1T)

LNOT=0

KNOT=0

GCR(I'K’= 100

GCI(IsK)= 0.0

DO 208 J=1rKCOMP

NTR= NRATOR(I»J)+1

NTD= NDENOM(I»J)+1

DO 204 M=1/NTR

CNuM(M)= XCOMN(I/M+KNQT)
DO 205 M=1/NTD

COOM(M)= YCOMN(I»M+LNOT)
KNOT= KNOT + NTR

LNOT= LNOT + NTD

K2= NTR~-1

K3= NTD-1

CALL POLFV(CNUMeK29XVeCNReCNI)
CALL POLFV(CDOM»K3,XVeCDReCDI)
CD= CDR%%x2 + CDIx*x2

‘ACR=GCR(I+K)

ACI= GCI(IrK)
ACOMR= (CNR * CDR + CNI =* CDI)/CD
ACOMI=(=CNR * CDI + CNI * CDR)/CD
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GCR(IsK)= ACR * ACOMR = ACI * ACOMI
208 'GCI(IvK)= ACR * ACOMI + ACI =* ACOMR _
GCOMR(IK)= GRA(I+K)*GCRII/K) = GIA(I+K)®GCI(IrK)
. GCOMI(I/)K)= GRA(I/K)*GCI(I/K) + GIA(IvK)*GCR(ItK)
GR(K)= GR(K) + GCOMR(I¢K)
209 GI(K)= GI(K) + GCOMI(IsK)
210 CONTINUE
C DETERMINATION OF GAIN MARGINS POINTS BETWEEN F1 AND F2
ﬁALL GAINMG(GR.GIoKPOINTvNMvFlO'FlviPTSvSTBMvOMEGA)
GMS=NM
C SETTING DESIRED STABILITY RADII OF GiMe?S
KPM=NM+1
IF(NM.EQ+0)GO TO 213
D0 212 I=1+NM
P TYPE(1)= G
KWHICH=KPTS(I)
FREHZ=OMEGA (KWHICH)
IF(FREHZLE.F1)RQ(I)=R1
IF(FREHZ.6T,F1)RQ(I)=R2
IF(FREHZ «GE.F2)RQ(]I)=R3
212 CONTINUE
213 CONTINUE
C DETERMINATION OF P.M. BETWEEN F3 AND F4
. CALL PHASEM(GRsGI+KPOINT/NM¢F12/F13¢KPTS»STBMrOMEGA)
 IF(NMeLT<KPM)GO TO 215
C SETTING DESIRED STABILITY RADII OF P.M.vs
' DO 214 I=KPMyNM
TYPE(I)= 'P?
KWHICH=KPTS(1I)
FREHZ=OMEGA (KWHICH)
IF(FREHZ«LE.F3)RQ(I)=R4
IF(FREHZ+GT+F3)RQ(I)=RS
IF(FREHZ+GE «F4)RQ(I)=R6
214 CONTINUE
KPM=NM+1
215 CONTINUE
IF(NM.EQ+0)GO TO 221
KLAST=NM
DO 220 I=1+KLAST
IF(({I<LE«NGMS) «AND. (INCGMS.EQ.1))GO TO 219
IF((1+6GT+NGMS) 4AND. (INCPMS,EQ+1))60 TO 219.
GO TO 220
219 KPM=KPM+1
NM=NM+1
KPTS(NM)=KPTS(I)
STBM(NM)=STeM(I)
RQ(NM)=RQ(I)
TYPE(NM)=1S¢
220 CONTINUE
221 CONTINUE
KSTBM=KPM
RPT=1,0

93



" NSG=1 .
FOGMIN=0,0
C DETERMINATION OF STABILITY MARGINS - .
CALL SRMINS(GR+GIsKPOINT»NMIRPT»NSG FGM:N.KPTSoSTBM.OMEGA)
C SETTING DESIRED STABILITY MARGINS
IF(NMLT.KPM)GO TO 216
DO 230 I=KPM»NM
TYPE(I)= ¢S
KWHICH=KPTS(1)
FREHZ=OMEGA(KWHICH)
IF(FREHZ «LE.F5)RQ(1)=R7
IF(FREHZ+GToFS)RQ(I)=R8
IF(FREHZ+GE.F6)RA(1)=R9
230 CONTINUVE
C CHECKING TO SEE IF ANY PeMetSs GeMe'Ss OR S Me.'s ARE EQUAL-
¢ IF THERE RESULTS SOME THAT ARE EQUAL ONLY THE FIRST Is RETAINED-
00 228 LB=2/KSTBM
DO 228 I=KSTBM!NM
IF(KPTS(LB=1) «NEKPTS(I))GO TO 228
NM=NM=1 :
D0 226 L=I'NM ' : _ o
KPTS(L)= KPTS(L+1) . ’ -
. STEM(L)= STBM(L+1) o
R@(L)= RG(L+1)
226 TYPE(L)= TYPE(L+1)
228 CONTINUE
KPM=NM+1
216 CONTINUE
KMIN=NM -
RPT=0.0
NSG==1 .
FAMIN=FMIN . ,
C.-DETERMINATION OF ATTENUATION MARGINS . '
CALL SRMINS(GR/GI KPOINTINMeRPT NSGvFQMINoKpTSoSTBM.OMEGA)
C SETTING DESIRED ATTEN. MARGINS A :
. IF(NMeLT.KPM)IGO TQ 217 : ) coLr :
DO 232 I=KPM+/NM ‘ : a :
TYPE(I)= 'Ar
KWHICH=KPTS(I) , S .
- FREHZ=OMEGA (KWHICH) ' . _ - -
IF(FREHZ.LE.F7)RQ(1)=R19 T
IF (FREHZ.6T.F7)RQ(I)=R11
IF(FREHZ +GE» FB)RQ(I)—RIZ
232 CONTINUE : .
217 CONTINUVE - ' - : i

SBC1=R1
C DETERMINING SMALLEST STABILITY MARGINS OF PRESENT ITER+ AND ALL 1TER.
SML1= 100.0
DO 290 IS1/KMIN S
IF(STBM(I) «GT+SML1)GO TO 288 L

SML1= STBM(I)
288 CONTINUE
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IF(STBM(I).GT-SBCI)GO TO 290
.- SBCl= STBM(I)
290 CONTINUE
IF(SBC2.GE+SBC1)G0 TO 298
SBC2s SBC1 :
IBEST= LOX
DO 292 K=1+KCHNL
LNC= KNR(K)
LDC= KDR(K)
D0 291 I=1+LNC
291 BCOMN(K»I)= XCOMN(K:I)
00 292 1=1rLDC '
292 BCOMD(KeI)= YCOMNIK,I) - ‘
. 1298 CONTINUE
< CHECKING SATISFACTION OF SYSTEM 'REQUIREMENTS
DO 320 I=1rNM
PORM= 1,0 _
IF(1.6T«KMIN)PORM==1,.0
310 IF((STBM(I)=RQ(I1))*PORM) 350,320,320
320 CONTINVE
WRITE(6+330)
- 330 FORMAT(!O'!lSXo'***** ALL SYSTEM REQUIREMENTS HAVE BEEN MET #x%x%?
1)
340 CONTINUE
CALL OTPTI(STBMoOMEGAvKPTS'NMvXCOMNoYCOMNrKMINvRGvLOXpKCHNLONUMCO
"1 NRATOR!NDENOM/sPRX*PRYrI1912)
WRITE(6,341) IBEST
341 FORMAT( Y0 e5Xo * ks’ BEST COMPENSATORS WITH RESPECT TO STABILITY =*
1xxx%1//6X9 *OCCURRED ON STEP*'sI4s2Xs 'AND THEIR COEFFICIENTS ARE: ")
CALL MULOUT (KCHNL » NUMC'NRATORrNDENOMvKNRvKDR'BCOMN!BCOMD)
WRITE(6,345) SBC2
345 FORMAT('0'»21Xr *SMALLEST STABILITY MARGIN FOR THE BEST COMPENSATOR
~/ I=VyF10,8) :
WRITE(60347)
347 FORMAT(10? eSXr t k¥ Kk COMPENSATORS AND COMPENSATED FREQUENCY RESPON
1SE AT THE LAST ITERATION PERFORMED ARE -AS FOLLOWS *x%&x¢)
CALL MULOUT (KCHNL »NUMC»NRATOR»NDENOM 'KNR ’ KDR » XCOMN» YCOMN)
WRITE (6, 346)
‘346 FORMAT('0%r9Xe 'COMPENSATED FREQUENCY RESPONSE'//IOXv'FREQUENCY'o
1 2X+ "MAGNITUDE ' # 3%+ *ANGLE ')
00 349 I=1,KPOINT .
GMTE= SQRT(GR(I)*%2 + GI(I)**Z) 1
AGLE= ATANZ(GI(I)vGR(I))*57.3 g
WRITE(6,348) OMEGA(I)+GMTEsAGLE o
348 FORMAT(¢ "7X0F10-5rIXvF10 Sr1XeF1045)
+ 349 CONTINUE - '
SToP
350 CONTINUE
-C STEP SI1ZE SELECTING.
IF(LOX.EQ.KGUIT)NRITE(6.351)
351 FORMAT( (10 sSXs txxxxx TERMINATION REASON = MAXIMUM ITERATIONS P
i)
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IF(LOXsEQ«KQUIT)WRITE(6+400)STEP
IF(LOX.EQeKQUIT)IGO TO 340
IF(LOX«EQ.KSTART)IGO TO 354
ADD=0.0
MAD=0
PORM=1.0
D0 355 I=Si!NM
IF(I.GT«KMIN)PORM==1,0
IF(PORM*(STBM(I)=RG(I)).GE+0.0)60 TO 355
DO 352 J=1+NML
362 IF(KPTS(I)EQ.KACT(J))GO TO 353
MAD=MAD+1
G0 TO 355
353 CONTINUE
IF IT 1S DESIRED TO HAvec ALL CONSTRAINTS TO BE IMPROVED AT EVERY
ITERATION REMOVE THE C FROM COLUMN 1 OF THE FOLLOWING CARD
IF (PORMx (STBM(I)=SML(I))+LT.=1+0E~05)CG0 TO 360
ADD=ADD+PORMx (STBM(1)=SML (J)).
355 CONTINUE
" IF(MAD+EQsNML)ADD=1.0
IF(ADD.LE.0.0)G0 TQ 360
354 CONTINUE
G0 TO 371
360 STEP= STEP/2.0
IF(STEPLTSTPMIN )WRITE(6e365)STPMIN
365 FORMAT('0*»5Xr *x%xkx TERMINATION REASON = STEP SIZE IS LESS THAN ¢
1 sF10e502Xe tkkkkkt)
IF(STEP.LT.STPMIN )GO TO 340
Lex= LOX -~ 1
60 TO 450
371 STEP=1.41416 * STEP
373 CONTINUE
SML2=SML 1 )
. IF(STEP.GT+STPMAX)STEP= STPMAX
C OUPUT CONTROL
IF(KHOP«GT«1)GO TO 410
KHOP=KPRINT
WRITE(6,400) STEP
400 FORMAT('0%s 15X 'PRESENT STEP SIZE "9F10.7)
CALL OTPT1(STBM, OMEGA'KPTS'NM'XCOMN'YCOMN'KMIN'R@'LOXOKCHNL'NUMC'
1 NRATOR »NDENOM»PRX»PRY»11,12)
G0 TO %420
410 KHOP= KHOP - 1
420 CONTINUE
C SELECTING ACTIVE CONSTRAINTS
=0
DO 411 I=1'NM
IF(I=1¢EQsKMINIKMIN=K
PORM=1.0
IF(I.GT.KMIN)PORMz'IOO
IF (PORM*STBM(I) «6T.PORM*RQ(I))GO TO 411
K=K+]
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KPTS(K)= KPTS(I)
TYPE(K)= TYPE(I)
SML(K)= STBM(I)
KACT(K)= KPTS(I)
411 CONTINUE
NM=K
NML=NM
C CALCULATION OF GRADIENTS OF ACTIVE CONSTRAINTS
RPT=1.0
CALL PARCLT(XCOMN»YCOMNyGR»GI»OMEGA»NMsNRATOR»NDENOM
1 KCHNL ¢ NUMC r KONT » GCOMR ¢ GCOMI v G2 PPTsLSN o KPARC o KPTS»KNR ¢ KDR)
C SET DOT PRODUCT VECTOR
DO 422 K=1/NM
422 WEIGHT(K)=1.0
C CALCULUTE DIRVECTIONAL VECTOR
LRE=0
‘KRE=0
423 IF(NM«GT+LPRESVIWRITE(6:415)
IF (NMsGT.LPRESV)GO TO 340
CALL DIRVEC(G'NMiKPARC'DVIWEIGHT)
415 FORMAT(*0*'»5X s ***xxx TERMINATION REASON = NQ¢ OF ACTIVE CONSTRAINT
1S IS GREATER THAN THE NO. OF ALLOWABLE VARIABLES #*%%%x!)
DO 426 I=1:11
426 PRx(1)= DV(I)
DO 427 I=1r]2
427 PRY(I)= Dv(Ii+])
. IF(KRE+EQ+1)GO TO 433
C CKECKING POSSIBLE NEGATIVENESS OF ANY COMPENSATOR COEF.
IF(LRE.GE.I1+41I2)G0 TO 433
LRE=LRE+1
K2=0
K3=0
DO 431 K=1+KCHNL
LNC=KNR (K)
LDC=KDR(K)
D0 429 I=1+/LNC
K2=K2+1
IF (XCOMN(K?1)eGT+1.0E~05)G0 TO 429
IF(PRX(K2) +GE«0,0)G0 TO 429
LPRESV=LPRESV~1
KRE=1 .
DO 428 J=1+/NM .
428 G(JUyK2)=0.0
429 CONTINUE
D0 431 I=1.LDC
K3=K3+1
IF(YCOMN(K?I)+GT+1.0E~05)GO TO 431
IF(PRY(K3)¢GE«0.0)G0 TO 431
LPRESV=LPRESV~-1
KRE=1
0O 430 J=1+NM
430 G(JrI11+K3)=0,0
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431
433

438

440

462

464
450

4e7
468
465

470

490
500

CONT INUE
IF (KRE+EQe1)GO TO 423
CONTINUE

PS@= 0.0

DO 438 I=1r]1

PX(I)= pPRX(I)

PSG= PSG@ + PX{(I)*x2
DO 440 I=1rI2
PY(I)=PRY(I)

PS@= PSQ@ + PY(I)#*x*2
PMG= SQRT(PSQ)

PsSqL= Psa

DEL= STEP/PMG .

DO 462 K=17KCHNL

LNC= KNR(K)

DO 462 I=1+LNC
COTN(KeI)= XCOMN(KsI)
DO 464 K=1+KCHNL

LDC= KDR(K)

D0 464 I=1,LDC
COTD(KrI)= YCOMN(KsI)
60 TO 465

DEL= DEL/2.0

DO 467 KS17KCHNL SR
LNC= KNR(K) ‘ ' oot
DO 467 I=1r,LNC ,
XCOMN(K»I)= COTN(KsI) -
DO 468 K=1sKCHNL

‘LDC= KDR(K)

DO 468 I=1:LDC
YCOMN(KeI)= COTD(K.I)
CONTINUE

KKK=0

D0 470 K=1rKCHNL
LNC= KNR(K)

00 470 I=1+LNC

KKK= KKK+1

XCOMN(K,I)= XCOMN(KoI) + DEL * PX(KKK)

IF(XCOMN(K?I)oLT.0, O)XCOMN(KoI) 0 0
KKK=0

00 490 K=1¢KCHNL
LDC= KDR(K)

DO 490 I=1,LDC

KKK= KKK+1 :
YCOMN(KsI)= YCOMN(Ko»I)+ DEL * PY(KKK) C o

IF(YCOMN(K?I)eLT+0.0)YCOMN(K»I)=0.0

CONTINUE
LOX= LOX + 1
G0 To 200
END
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SUBROUTINE PARCLT(XCOMN, YCOMN'GOROGOIOOMEGA NFREQ'NRATOR'NDENOM'
1 KCHNL rNUMC »KONT » GCOMR +GCOMI sG»PPT+LSN/NPARC+KPTS»KNR¢+KDR)

PROGRAM FOR CALCULATING THE CHANGE OF A_FREGUENCY:RESPONSE'NITH
RESPECT TO A CONPENSATOR COEFFICIENTS

DEFINITIONS OF I/0 VARIABLES

XCOMN(IrJ) =NUMERATOR COEFSe OF COMPENSATOR IN I-TH CHANNEL
YCOMN(I,J) =DENOM, COEFSe OF COMPENSATOR IN I-TH CHANNEL

GOR(1) =I=TH REAL PART OF OPEN LOOP FREQ. RESP,
60I(1) =I-TH IMAG., PART OF OPEN LOOP FREQ. RESP.
OMEGA(]) =I=TH FREQUENCY RESPONSE POINT

NFREQ ~NUMBER OF MARGINS TO BE IMPROVED

NRATOR(1,J) =NUM. ORDER OF J=TH COMP. IN I-TH CHANNEL
NDENOM(I+J) =DEN. ORDER"OF J=TH COMP« IN I=TH CHANNEL

KCHNL =NUM. OF CHANNELS
NUMC (]) =NUM. OF COMPS. IN I-TH CHANNEL
KONT(I) =GAIN CONTROL NUM. FOR I-TH CHANNEL

GCOMR(1,J) =REAL PART OF J=TH CHANNEL COMP. FREQe RESP. AT J=TH FREQ.
GCOMI(I,J) =IMAG. PART OF J=TH CHNL. COMP. FREQ. RESP. AT J=TH FREQ.

6(1rJ) =J=TH PARTIAL OF I-TH FREQ.
2 ~NEG. OF POINT FOR WHICH PARTIALS ARE DESIRED
L =NO, OF POINTS TO TREAT AS STABILITY MARGINS(THE REMAINING

ARE CONSIDERED AS ATTENUATION MARGINS)

DIMENSION C(IO)uD(IO)vE(IO)vGR(SO)rGI(So)oOMEGA(999)'Y(ID)oX(IO)o
1 NUMC(20) rKONT(10)»6(20099) »GOR(999) +G01.(999) ¢+ NRATOR(10,20)
2  NDENOM(10+20) »GCOMR(S5+999) »GCOMI(5¢999) +PFX1(5¢50)»

3 PFY1(5+50) ¢ KPTS(1)rXCOMN(10+50)+YCOMN(10¢50) +KNR(1) »KDR(1)

DOUBLE PRECISION G

IMPLICIT REAL*8(A=~F)P=~W)

REAL*4 XsYoXVeCNR?CNI»XCOMN» YCOMN¢sCDRCOI

DIMENSION PPT(4) ¢ LSN(®)

COMMON TYPE(50)

INTEGER TYPE

COMPLEX P/PPT

DO 140 J=1+NFREQ

IF(TYPE(J) «EQe G ') P==~PPT(1)

IF(TYPE(J) «EQe 'P')P==PPT(2)

IF(TYPE(J) «EQe 'S ' )P=~PPT(3)

IF(TYPE(J) +EQe 'A" )P=~PPT(4)

IF(TYPE(J) +EQe+ "6 )SGN= LSN(1)

IF(TYPE(J) ¢EQe*P')SGN= LSN(2)

IF(TYPE(J) ¢EQe 'ST)SGN= LSN(3)

IF(TYPE(J) «EQe*A?)SGN= LSN(Y)

KWHICH= KPTS(J)

XV= OMEGA(KWHICH) * 6.2831853
‘D0 130 L=1rKCHNL

NCOMD= NUMC (L)

KNOT=0

LNOT=0 )

10P= KONT(L)
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20

DO 130 N=1+NCOMD
IF(N.GT.1)I0P=2

N1z NRATOR{(Ly)N)} + 1

M1z NDENOM(L,N) + 1

D0 5 LP=1/N1
X(LP)= XCOMN(L/LP+KNOT)

DO 6 LP=1,M1
Y(LP)= YCOMN(L/,»LP+LNOT)

K2=Ni=-1

K3=Mi~-1

CALL POLFV(XyK29rXVeCNR?CNI)
CALL POLFVIY»K3¢XVsCDReCDI)
RD= CNRx%2 4+ CNI%x%x2

RR= (CDR*CNR+CDI%*CNI)/RD
RI=(~CDR*CNI+CDI*CNR)/RD
GR(J)= GCOMR(L/KWHICH)*RR = GCOMI(L/KWHICH)=xRI -
G6I(J)= GCOMR(L/KWHICH)*RI + GCOMI(L'KWHICH)*RR
A= REAL(P)+GOR(KWHICH)=GCOMR (L s KWHICH)

B= AIMAG(P)*GOI(KWHICH)-GCOMI(LrKWHICH,

FREQ=1.0
KSKIP=1

DO 40 I=1,N1
KULLIS(=1)xx{(I+1)/2)
KuUuL2=(=1)**((1+2)/2)

FULi=KULL

FUL2=KUL.2

IF(KSKIP=1)20020¢30 .
C(1)==GR(JI*FREG*FUL2 : -
D(I)-—GI(J)*FREQ*FULI

KsKIp=2

G0 TO 40

C(1)==GI(J)*FREG*FUL2
D(1)==GR(J)*FREG*FUL1

KSKIP=1

FREQ= FREQ*OMEGA(KWHICH)*6.2831853

FREQ= 1.0

DO 50 I=1,M}

KMUL=(=1) 3% ((I+1)/2)

EMUL=KMUL - .
E(I)= ~FREQ * EMUL w
FREQ= FREQ x* OMEGA(KNHICH)*6.2831853
FNA1=0.0

FNA2=0.0

00 60 I=1/Ni

FNALSFNAL+C(I) *X(])
FNA2SFNA2+D (1) *X (1)
...FD2=0.0

KIz 2 * ((K3+1)/2)
DO 70 I=2+K]1r2
FD2=FD2+E(I1)*Y(])

FD1=0.0 "

KE= 2 * ((K342)/2) - 1
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80

90

100

110

130
135
139

140

145

149
150

DO 80 I=1leKEs2
FOL=FD1+E(I)*Y(I)
FN1= FNAlL + FD1 * A = FD2 * B

'FN2= FNA2 + FD2 * A + FD1 * B

FO=FD1*x2+FD2*%2
FN=SFN1®*24FN2*%2
FYE= (FD »(A * FN1 + B x FN2) = FN * FD1)/ FD**2
FYO= (FD*(=B * FN1 + A x FN2) = FN * FD2)/ FD*%2

" FX1=FN1/FD.

FX2=FN2/F0

PFXL(LeKNOT+1)= 0.0

D0 90 I=1+KEs2 _

PFYL(L I+LNOT)= FYE * E(I) * SGN
CONTINUE

DO 100 I1=2rKIr2

PFYL(LeI+LNOT)= FYQ * E(1) % SGN
CONTINUE '

IFCIOP. EQ.Z)PFYI(LOLNOT*I)- 0.0
DO 110 I=2+N1
PFX1(LsI+KNOT)=(FX1xC(I) + FX2x*D(I)) * SGN
CONTINUE

KNOT= KNOT + N1

LNOT= LNOT + M1

CONTINUE

KLAD=0

DO 135 IX=1,KCHNL

- KNOT= KNR(IX)

DO 135 LX=1,KNOT
KLAD=KLAD+1
G(JerKLAD)= PFX1(IXeLX)
D0 139 IX=1,KCHNL
LNOT= KDR(IX)

00 139 LX=1¢LNOT
KLAD=KLAD+1 :
G(JUrKLAD)=PFYL1(IXsLX)
CONTINUE

NPARC=KLAD

‘DO 150 J=1+'NFREQ

SUM=0.0

D0 145 I=1+/NPARC
SUM=SUM+G(Jr 1) %G (Je )
SUM= DSQRT(SUM)

DO 149 I=1+NPARC
GlurI)= G(JrI)/SUM
CONTINUE

RETURN

END

SUBROUTINE PHASEM(GR¢Gl KPOINT'NM!FQMIN'FQMAX'KPTS'STBMOOMEGA)
DIMENSION GR(l)vGI(l)oKPTS(l)vSTBM(l)vOMEGA(l)
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SUBPROGRAM FOR CALCULATING PHASE MARGINS
DEFINITIONS OF 1/0 VARIABLES

GR ~ARRAY OF OPEN LOOP TRANSFER FUNCTION REAL PARTS

Gl =ARRAY OF OPEN LOOP TRANSFER FUNCTION IMAGINARY PARTS
KPOINT=NOs OF POINTS

OMEGA =-ARRAY OF FREQS.

NM =COUNTER .

_KPTS ~FREQUENCY NOS. WHERE MARGINS OCCUR

STeM ~STABILITY MARGINS OF MARGINS

- FQMIN =LOWER FREQ. FOR MARGIN DETECTION

FQMAX = UPPER FREG. FOR MARGIN DETECTION
P=1.0
DO 50 I=1/,KPOINT
SO0= GR(I)**2 + GI(])**x2
52380-1 00 .
IF(1.EQ.1)51=S2 -
IF(OMEGA(I) «LT.FAMIN)GO TO 40
IF(QMEGA(I) «GT«FGMAX)RETURN
IF(ABS(S2) «LT+1.0E=20)60 TO 30
SGN=S2/ABS(52)
IF(51%SGN«6T+0.0)60 TO 40

30 I1zI-1.
IF(ABS(S2) ¢ LTABS(S1))I=1
NM=NM+1
KPT1S(NM)=11
'S3= (P+GR(IL))*x2+GI(I1)*%2
SToM(NM)= SQRT(S3)

40 S1=52

50 CONTINUE

" - RETURN
END

"SUBROUTINE GAINMG(GReGI o KPOINT/NMrFQMINsFQMAX e KPTSeSTBM, OMEGA)
DIMENS;ON GR(1)eGI(L) e KPTS(1)eSTBM(L1)rOMEGA(L)

SUBPROGRAM FOR CALCULATING GAIN MARGINS
DEFINITIONS OF 1/0 VARIABLES

GR - =~ARRAY OF OPEN LOOP TRANSFER FUNCTION REAL PARTS

6l =ARRAY OF OPEN LOOP TRANSFER FUNCTION IMAGINARY PARTS
KPOINT=NO« OF POINTS

OMEGA -ARRAY OF FREQS,

NM =COUNTER
KPTS =~FREQUENCY NOS. WHERE MARGINS OCCUR

STEM ~ =STABILITY MARGINS OF MARGINS

FQMIN =LOWER FREQe. FOR MARGIN DETECTION

FQMAX = UPPER FREQ@. FOR MARGIN DETECTION

P=1.0
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30

40

00 50 I=1/KPOINT

S2=6I(1I)

IF(1,EQ.1)S1=S2

IF (OMEGA(I) ,LT.FQMIN)IGO TO 40
IF (OMEGA(I)«GTFGMAX)RETURN- . -
IF (ABS(S2) «LT+1,0E-20)60 TO 30
SGN=52/ABS(S2)
IF(S1%SGN.GT.0.,0)60 TO 40

CR= GRI(1) ‘
IF(CR+GE.0+0)GO TO 40

I1=1-1

IF (ABS(S2) +LT+ABS(S1) I I1=1
NM=NM+1

KPTS(NM) =11

S3z (P+GR(I1))*x#2+GI(I1)#*%2
STEM(NM)= SQRT(S3)

S1z82

CONTINUE

RETURN

END

SUBROUTINE SRMINS(GRvGIvKPOINTONM'P NoFQMIN KPTSOSTBMoOMEGA)

DIMENSION G6R(1)+GI(1) KPTS(1)e

STBM(1) »OMEGA(1)

SUBPRUGRAM FOR DETERMINING THE MINMUNS OF THE OPEN OOP FREGUENCY

RESPONSE WITH RESPECT To THE .-
OPEN LOOP REQUENCY RESPONSE

DESCRIPTION OF I/0 VARIABLES

KPTS

GR = VECTOR OF REAL PARTS

1 POINT.WHEN GIVEN POINTS ON THE

OF OPEN LOOP FREQUENCY RESPONSE

Gl = VECTOR OF IMAGINARY PARTS OF OPEN LOOP FREQ. RESPONSE

KPOINT = NUMBER POINTS OF THE

OPEN LOOP FREQs RESPONSE GIVEN

OMEGA - CORRESPONDING FREQUENCIES OF CHOSEN POINTS

=FREGQUENCY NOS. WHERE MARGI

FGMIN  =-MINIMUM FRGe. CONSIDERLDY,- .
=POINT W,ReTe A MAXe OR MIN. IS DESIRED

-p
N

10
20
30

-DETERMINES WHETHER -A MAX.
ASN1=0e0
51=0.0
00 50 I=1,KpPOINT
IF(OMEGA(L) JLE«FQMINIGO TO 50
S2= (P + GR(IN)I*%2 + GI(I)*%x2

ASN2z52-51

CONTINUE

IF (ASN2xN)10+50¢10

IF (ASN1%ASN2) 20140040
IF (ASN1%N)30+40040
NM=NM+1

I1= 1 - 1

KPTS(NM)=I1

SToM(NM)= SQRT(S1)
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40 Si=s2
- ASN1=z ASN2
50 CONTINUE
RETURN
END

. SUBROUTINE DIRVEC(GsNMsKPARC¢DVsWEIGHT)
DIRECTIONAL VECTOR PROGRAM

DEFINITIONS OF I/0 VARIABLES

G =MATRIX WHOSE ROWS CONTAIN THE GRADIENT VECTORS OF THOSE
STABILITY MARGINS ONLY CONSIDERED PERTINENT
. NM ~NUMBER OF STABILITY MARGINS CONSIDERED PERTINENT
WEIGHT-WEIGHTING FACTOR VECTOR

OOOOOOOO0

DIMENSION G(20,99), A(30030)¢ WEIGHT(1),
/ AI(30¢30), X(3Q0)s DV(30)s Y(30)
IMPLICIT REAL*8(A=~H»0=2)
D0 200 K=1+NM
Y(K)= WEIGHT(K)
DO 200 J=K/NM
SUM: 0.0
D0 150 I=1+KPARC .
150 SUM= SUM + G(JrI) % G(K»I)
AlurK)= SUM
A(KrJ)= SUM
200 CONTINUE
© IFANM«GT«1)GO TO 230
AI(1+1)= 1.0/A(1,1)
X(1)= WEIGHT(1) * AI(1.1)
G0 TO 310 -
230 CONTINUVE
CALL MATINV(A!'NMrAI,IER)
IF(IER«EQ.0)G0 TO 300
WRITE(60250)
250 FORMAT(*0*+ 15X, ' THE PARTIALS ARE NOT LINEARLY INDEPENDENT.
/HE PROGRAM IS TERMINATED.')
STopP '
300 CALL MATMUL (NMsAI NMeYr1eX)
310 CONTINUE
D0 450 I=1+KPARC
SUM= 0.0
DO 400, J=1+/NM
400 SUM= SUM + G(JeI) x X(J)
450 DV(I)= SUM
690 RETURN
END

SUBROUTINE MATINV(Z¢NeYsIER)
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30

40
50

D0 50 1=1+KPOINT

S236I(1)

IF(1,EQ,1)S1=52

IF COMEGA(I) JLT.FGMINIGO TO 40

IF(QMEGA(I) .GT.FGMAXIRETURN

IF(ABS(S2) +LT«1.0E=20)G0 TO 30
SGN=S2/ABS(S52)
IF{S1%SGNGT.0.0)GC TC 40

CR= GR(I)

IF(CR.GE«0+0)G0 TO 4O

I1z]1-1
IF(ABS(S2) s LT«ABS(S1))11=]
NM=M+1

KPTS(NM)=IL

"S3= (PHGRIIL) ) *x2+G1(I11)*%2

STEM(NM)= SQRT(S3)
S1=52

CONTINUE

RETURN

END

SUBROUTINE SRMINS (GR»GIyKPOINT/NMsPoNiFQMIN¢KPTSsSTBMsOMEGA)
DIMENSION GR(1)¢GI(1)»KPTS(1)9STBM(1) »OMEGA(L)

: SUBPROGRAM FOR DETERMINING THE MINMUNS OF THE OPEN LOOP FREQUENCY

RESPONSE WITH RESPECT To THE =1 POINT WHEN GIVEN POINTS ON THE

OPEN LOOP REQUENCY RESPONSE

DESCRIPTION OF I/0 VARIABLES

KPTS
FQMIN

=P
N

10
20
30

GR
GI

-~ VECTOR OF REAL PARTS OF OPEN LOOP FREQUENCY RESPONSE
~ VECTOR OF IMAGINARY PARTS OF OPEN LOOP FREQ. RESPONSE

KPQINT ~ NUMBER POINTS OF THE OPEN LOOP FREQs. RESPONSE GIVEN

OMEGA

~ CORRESPONDING FREQUENCIES OF CHOSEN POINTS

-FREQUENCY NOS. WHERE MARGINS OCCUR

~MINIMUM FR@e. CONSIDERED
“POINT WeReTe A MAXe

OR MIN«

IS DESIRED

-DETERMINES WHETHER A MAX. OR MINe. IS DETERMINED

ASN1I=0.0
$1=0.0

DO 50 I=1/KPOINT

IF(OMEGA(I) ,LE.FEMINIGO TO 50
S2= (P + GRII))I*%2 + GI(I)*x2

_ASN2=52-S1

CONTINUE -

IF (ASN2%N)10+50+10

IF (ASN1I%ASN2)201040,40
IFCASNLxN)30,40040
NMzNM+1

di= 1 - 1

KPTS(NM)I=TL
SToM(NM)= SQRT(S1)
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L0000 00

OO OOOOO0

MULTIPLIES (A) % (B)
A IS AN NR X N
8 IS AN N X NC
X IS AN NR X NC

DO 4 I=1/NR
4 X{1) = 0.0
00 5 I=1/NR
D0 5 K=1¢NC
00 5 J=1'N
S X(I)= X(I) + A(I»J) % B(J)
RETURN.
END

SUBROUTINE POLFV(FW'KvaFREALrFIMAG)
PROGRAM FOR EVALUATING A POLYNOMIAL AT AN IMAGINARY FRE@UENCY

DEFINITIONS OF 1/0 VARIABLES

" FW ' =VECTOR POLYNOMIAL COEFFICIENTS

K ~0RDER OF POLYNOMIAL - &
X =FREQUENCY TO BE EVALUATED AT
FREAL =REAL PART OF Fiw(JX)
FIMAG =IMAGINARY OF .Fw(JX)
DIMENSION Fw(l)
KEVEN=(K+2) /2
KOUD=(K+1)/2
Y=1.0
FREAL=0.0
DO 10 I=1,KEVEN
LezxI=1 a
FREAL= FREAL + Fw(L)x*Y
10 Y==Y*xX*xX
FIMAG=0.0
IF(KQODD.EQ«0)GO TO 30
Y=X
DO 20 I=1,KODD
L=2%]
FIMAG= FIMAG + Fw(L)x*xY
20 YS=YxX*X
30 RETURN
END

AR
SUBROUTINE OTPT1(STBMsOMEGA+KPTS»NMs XCOMN, YCOMNIKMIN?RQrLOX» KCHNL ¢
1 NUMC » NRATOR ¢ NDENOM+PRX?PRY»11+12)

DIMENSION STBM(l)'OMEGA(l)'KPTS(I)'XCOMN(IO!SO)'YCOMN(IOISO)'RQ(l)
i vPRX(l)vPRY(l)cNUMC‘l)'NRATOR(IOoZO)vNDENOM(lOvZO)

OIMENSION TYPE(50)

COMMON TYPE
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INTEGER TYPE

C .
C SUBPRQGRAM FOR THE OUTPUT OF INFORMATION CALCULATED

C

10

110

102

106
107

104

120

130
160

Iop=1

WRITE(6,10) LOX

FORMAT(10'¢e25X» *ITERATION NO. 'oI4)

DO 110 I=1epnM

Kwh= KPTS(1)

FREQ= OMEGA (KWH)

IF(I.EG.KMIN+1)GO TO 50

IF(1.EQ.,1)GO TO 7¢

60 TO 90

WRITE(6+60) _
FORMAT (20" r25X» *ATTENUATED FREQUENCY INFORMATION'//)
G0 TO 90

WRITE(6¢80)

FORMAT (09 25X» 'RELATIVE STABILITY INFORMATION'//)
CONTINUE

WRITE(6,100) I, STEM(I)» FREQes RQA(I)e TYPE(I)
FORMAT(* "22Xr *MARGIN RADIUS NO, "+11292'=1+F10.5+5X¢ '"FREQUENCYZ?,
1 F1045¢1X,*HZ2"¢5X, 'DESIRED MARGIN=*»F10,5,5X? *MARGIN TYPE='r1Xs
2 Al) '
CONTINUE

DO 104 I=1+KCHNL

WRITE(6,102) I

FORMAT(v01 925X *CHANNEL NO«.'0I2¢" COMPENSATORS')
L=numc (1)

Lx=1

Ly=1

KX=0

KY=0

DO 104 IX=1,L

KX=KX + NRATOR(I+IX) + 1

KY=KY + NDENOM(I»IXx) + 1

WRITE(6¢106) (XCOMN(IsN) ¢ N=LX2KX)

WRITE(6¢107) (YCOMN(I/N) N=LYKY)

FORMAT (0 v 10X» *NUMERATOR'»8F10.5)

FORMAT( Q2 8X» 'DENOMINATOR? ¢8F10.5)

LX=KX+1 ‘ '

LYSKY+1

CONTINUE ,

WRITE(6,130) (PRX{I)eI=IOP,11)

WRITE(6,120) (PRY(I)sI=IOP,I2)

FORMAT (102 'PARTIALS WITH RESPECT TQ Y',8E1Q+3)
FORMAT (D' » 'PARTIALS WITH RESPECT TO X'+8E1(0+3)
WRITE(6¢160) '
FORMAT(*0*)

RETURN

END
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40

‘62

64
65

67
69

72

74
75

77
80

SUBROUTINE MULOUT (KCHNL » NUMC » NRATOR » NDENOM ¢ KNR ¢ KDR» XCOMN? YCOMN)
DIMENSION CON(30)s COM(30)s» XCOF(30)» XCOMN(10+50)r YCOMN(10+50)

1 NUMC(30)y NRATOK(10,20)s NDENOM(10¢20)»

DO 80 I=1,KCHNL
Coivn(l)= 1.0

N=0

LAX=1

NAT= NumMC(I)
WRITE(6,40) 1

KNR(20)+ KDR(20)

FORMAT (v0 s 25X *CHANNEL NOos'»I2/2Xe *COMPENSATOR?)

DO 65 J=1/NAT

M=iNRATOR (I J)

Mi= M + 1

LAY= LAX + M

KL=0

DO 62 K=LAX,LAY

KL=KL+1

ComMIKL)= XCOMN(I¢K)

LAX= LAY + 1

CALL POLMUL(CON2»COM)NosM»XCOF)
N=N+M

N1=N+1

DO 64 K=1¢N1

Con(K)= XCOF(K)

CONTINUE

WR1TE(6+67) ,
FORMAT(*0*r25X, *NUMERATOR COEFFICIENTS')
WRITE(6¢69) (CON(J) pyJ=1,N1)
FORMAT(*0'»2X¢7EL15.5)
Coin(l)=1.0

N=u-

LAX=1

CO 75 Jz=1leNAT

M= NDENOM(I,J)

M1z M+1

LAY= LAX+M

KL=0

DO 72 KzLAX,LAY

KL=KL+1

COM(KL)= YCOMN(I¢K)

LAX= LAY + 1

CALL POLMUL(CON+COMN+sM»XCOF)
N=iN+M :

N1=N+1

DO 74 K=1/N}

CON(K)= XCOF (K)

CONTINUVE

WRITE(6,T77)

FORMAT (20" r 25X '"DENOMINATOR COEFICIENTS?)
WRITE(6,69) (CON(J)r»J=1sN1)
CONTINUE

RETURN
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"* . END

SUBROUTINE POLMUL (CONsCOMsNe¢M» XCOF)
DIMENSION CON(1)s» COM(1)s XCOF(1)s» CONA(S50), COMRA(S50)

FOK DOUBLE PRECISION REMOVE C FROM FIRST COLUMN OF NEXT CARD.
DOUBLE PRECISION CONe COMs» XCOFy» CONA» COMRA

THE VECTOR CON IS A VECTOR OF THE COEFFICIENT OF A POLYNOMIAL

OF ORDER No -

THE VECTOR COM IS A VECTOR OF THE COEFFICIENTS OF A POLYNOMIAL OF
ORUER M, .

THE VECTOR XCOF IS A VECTOR OF THE COEFFICIENTS OF THE PRODUCT OF
A POLYNOMIAL OF ORDER N AND A POLYNOMIAL OF ORDER M. THE
POLYNOMIAL OF WHICH THE COEFFICIENTS ARE THE VECTOR XCOF HAS AN
ORDER OF M + N.

DO 1 I=1vM
CONA(I)=0.0
NX=N+1

00 2 I=1,NX
LX=M+I .
CONA(LX)=CON(I)
MX=M+1 .

DO 3 1I=1.,MX
MYZM+2=-]
COMRA(I)=COM(MY)
004 I=1.N
NX=M+1+]1 .
COMRA(NX)=0,0

KY=M+N+1

KX=KY
00 7 K=1l.KY

. XCOF(K)=0.0

D0 5 L=1vKX : .
XCOF (K)= CONA(L) * COMRA(L)+XCOF (K)
KX=KX=1

DO 6 J=1,KX

CONA(J)=CONA(J+1)

CONT INUE

'RETURN

END
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APPENDIX B

SUBPROGRAM SUMMARIES OF -COMPENSATOR IMPROVEMENT PROGRAM

INTRODUCTION

In many -instances, modifications of large computer—éided—design
programs are neéessary. This is especially true in cases where the
program is to be.adapte& for solving problems othérvthan those for which
it was designed. In many situations these changes are to be made by
someone other than the‘programmer who coded the progra@ originally,
Making changes in a program wiﬁhout prior knowledge of the theory and/or
programming techniques used by the programmer can be a very time con-
suming and laborious task. However, 1f certain specific and concise
information is given, then, the amount of time and effort for changing
gr.reproducing a program is decreased significantly. It is the purpose
of this report to produce certain pertinent info:mafion concerning the
subprograms of the CIP (Compensator Improvement Program). With this
information a programmer should be able to modify the programs or to

replace any program with its equivalent.

111



Subroutine PARCLT -

The purpose of subroutine PARCLT is to calculate the'gradients with
respect to a control system's compensator coefficients of the distances
squared between GH(jw) frequency response points and other points\in the
complex GH(jw) plane. The Yother points" are specified by the type of
GH(jw) frequency response point under consideration! i.e.,’phase-ﬁargin,
attenuation margin, gain margin, or stability margin, Alsb, the-points
are chosen as pushing or pulling points accordiﬁg to their type.

The equatioﬁs for performing these calculations are given in the
following. First consideration is focused on the general feedback con-
trol system configuration shown in Figure‘l° For this systém with s = jw:
the open loop frequency response is C(jw)/R(jw) when the feedback loop
is broken at o. The compensated frequency résponse of the kth cﬁannel
when all channels are open is.

Ok

R Gu) = e (@) + If () . (1)
The kth‘channel's compensator is assumed to consist of_nk sub-compensators
in a cascaded arrangemepnt . or

| : nk A

G (s) = 121 Gy 4 () (2)
where Gki(s) is the ith sub-compensator of the kth'channel. Each sub-

‘compensator is assumed to have the following general form:

o | |
xnsn+xn_lsn + ... + % (3)

qu (8) = =1 .

m. .
yms + ym_ls_ + ... +yg
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Using the above notation the distance squared between some point, -P, in
the complex GH(jw) plane. and some point on the GH(jw) frequency response

is represented as
2

d(w) = |P+ k%1'[ek(w) + jfk(m)]| . | (4)

”This‘expression is now rewritten as a function of the pth sub-compensator

of the qth channel or

2
d(w) = |A+ jB + (c + 3d)Gqp (J0) (5)
where
o] . o : '
A+ 3B = P+{ ] [e )+ jf I} - (6)
k=1 o '
{eq(w) + ij(w)}
and
c+ jd = [eq(m) + ij(w)]/[qu(jw)] . )
Qubstitﬁting (3)-into (7) and maﬁipulating results in
i I i :
( C,x, + A E,.y.. - B E ...y ) +
2o 11 550 28723 so 22
] ) i 2
() D,x, +A E . 1Yn:uy + B ) E..y..)
_ i=0.-i i =0 2j+172j+1 jgo 23723 (8)
d(w) = Kk

(T By ) 4 E E 2
j=d 237235 (j=0 2j+ly2j+l)

where k = m/2 and p = m/2-1 1f m 1is even or k = (m-1)/2 énd p = (m-1)/2

if m is odd and the C's and D's, and E's are defined by the following sets:
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[CO, Cl’Cz, Ca, C“’ Cs,.on] = [C, -dm’ “sz, dwa’ Cu.)u, _dws,o.‘]

[Do, D1, D2, D3, Dy, D5yee.]i= [d, cw, -d92. °cwa,‘dwu’ cwss-'°]'-

[Eo, E1, E2, E3, Ey,-Es,...] = [1, w, _w2’ _w3, w“s‘wsak---] . . (8a,b,c)

With the following definitions:

n k o p .
FN1 = c,x, + : _
N1 = 1Zo % AjZoEZjYZj szo 2472541 (9)

P kK
FN2 = Z D,x; + A ZOE2j+1y2j+l + BjZOEzjyzj (10)
TPl = Z EyiY2] . Can
FD2 = j£0E2j+1y2jfl (12)
FD = (FD1)2 + (FD2)2 . S e (13)
FN = _(FN1)2 + (FN2)2 I (14)

" the partials of d(w) with réépect to the qth channel's pth sdﬁécéﬁpénsator.

coefficients are obtained 'as’

3d () 2+ [FD.* (A * FN1 + B - FN2) - FN * FD1) - E,
- = (153)
By N . ()2
e . ’ LT e B
for e even or . . S ' i
3d(w) _ 2 - [FD + (-B + FN1 + A + FN2) - 'FN - FD2] - E_ (15b)
KU . _' . . 2 B FRa
ayé - (FD)
for e odd and e =1, 2, ..., .m and .
3d (w) 2+ [FN1 - C_+FN2 +D1. . .
= —t——e- " (16)
PV -~ o
e
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for e even or odd and e = 1, 2, ..., n. Equations (8a,b,c), (9), (10),
(11), (12), (13), (14), (15a,b) and (16) are programmed in PARCLT. The-
program has the capabilities of calculating the.total grédient vector of
the distance squared between some frequency respbnse.point.andva choéen
point in the complex GH(jw)-plane.

The input'and output variables and definitions for PARCLT is given

in the following:

Input Variables
KCHNL - This is the number of channels fedback. - It corresponds to

jJ in Figure 1.

NUMC (1) -~ This is a one dimensional array which specifies the number
of sub-compensators in the I—tﬁ channel.
" NRATOR(I,J) =~ A two dimensional array that dénotes the numerator order of
the j-th sub-compensator in the I-th channel.*
NDENOM(I,JX -~ A two dimensional array that denotes the denominator order
of the J-th sub-compensator in the I-th channel.*
XCOMN(I,JS ~ This is.a two dimensional array which contains the numerator

féctors of the I-th channel's compensator. The factors' co-
efficients are iisted in ascending order according to the
powers of s where the s° coefficient is first and are listed
succeedingly. The order and lgcatipn of each,facfor is
determined by NRATOR(I,J). The J of XCOMN(I,J) denotes the
J-th coefficient of all the numerator coefficients. The

factor in which this coefficient belongs is determined by

*NRATOR(I,J) and NDENOM(I,J) for a specified I and J, which are equiva-
lent, respectively, to q and p of (3), give the proper n and m of (3).
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YCOMN(I,J)

KNR(I)

KDR(I)

NFREQ

KPTS (1)

OMEGA (I)

GOR(I)

NRATOR(I,J) only. Once a particular factor and the location
in XCOMN(I,J) is determined then the x's of (3) can be

retrived from XCOMN(I,J).

- This is a two dimensional array which contains the I-th

channel's denomination factors in succeeding order. The
factors are arranged in a parallel order to.theit orders,
given in NDENOM(I,J). Using the orders in NDENOM(I,J) the
location and length of a certain factor can be determined.
Thus the y's of (3) can be retrieved from YCOMN(I,J).

-~ A one dimensional array which contains the total number of
numerator compensator coefficients of the factors in the

I-th channel.

. - A one dimensional arfay which contains the total number

of compensator coefficients of the denominator factors in

the I-th channel.

-~ The number of critical frequencles or frequency points for

which gradients are to be found.

- The frequency numbers of the NFREQ critical frequencies.

If, for example, a frequency response is represented by
348 frequency points then the frequencies-afe sequenced
from 1 through 348. Thus, KPTS(I) contains the sequence
number of the I-th critical frequency.

- This one dimensional array contains the I-<th frequency (in

~e ey L -

Hz) for representing the system.

A

- A one dimensional array that contains the real b#rt-of the
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open loop frequency.response corresponding to the I-th-

*
frequency.

GOI(I) - A one dimensional array containing the imaginary part of the
open loop frequency response corresponding to the I~th
frequency.*

GCOMR(I,J) - The real part of the compensated frequency response of the
I~-th channel for the J-th frequency. This is equivalent .to
ei(wj) in (1).

GCOMI(I,J) - The imaginary part of the compensated frequency response of
the I-th _channel for the J-th frequency. This is equivalent

to £ ) in ().

15

KONT (1) - This one dimensional array specifies whether the d.c. gain of
the compensator in the I-th channel is to be held constant.
The d.c. coefficients (so terms) of the numerators of all sub-
compensators are constrained to remain constant by automati-
cally setting their partials to zero. This Insures compensa-
tor uniqueness. In every chaﬁnel the d.c. coeffiﬁient partial
derivatives of every sub—compensator except the first are
automatically set to zero. Thus, the d. c. gain of each
channel's compensator is assumed to be controlled by the d.c.
term of the denominator of the first sub—compensator.; If

the partials for the I-th channel are being calculated and

KONT(I) = 2, the partial of the d.c. term of the denominator

* ' A
Both GOR and GOI are related to the quantities in (4) by the following
expression: ‘ :

J
GOR(I) + JGOI(I) = kil [e, () + 3£, (@] .

(The j used to denoted vY~1 should not.be confused with summation termina-
tion index, j).
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TYPE(I)

PPT(I)

LSN(I)

G(I,J)

A one dimensional array labeling the NFREQ frequencies. The

referred to as the "other points") and to set the sign on

of the first sub-compensator of this channel is set to zero;
If KONT(I) 1s something other than 2, this partial is

unaltered.

quantities stored in TYPE are alphanumeric and consist of
any of the letters G, P, S, or A which, respectively, stand.
for gain, phase, stability or attenuation margins. These

symbols are used to set the perturbation points (previously

the gradient. The gradient sign determines whether the per-

turbation point is to be a pushing or a pulling point.

This is a complex one dimensional array that carries the four.

perturbation points respectively of gain, phase, stability,
and attenuation margins (corresponds to P in Equation 4).

This one dimensional integer array.carries signs that déter—
mines whether the pefturbation points in PPT afe to be pushing
or pulling points. If LSN(I) =+ 1 thé point 1is a pushing

point where if LSN(I) = - 1 the point is a pulling point.

Outpﬁt Variables
A real two dimensional array that contains the I-th critical
frequency's scaled gradient vector with-fespect to the compenF
sator's coefficients. The arrangemeﬁc-of every row of G is.
the scaled partials of all numerator coefficients startiﬂg
ﬁith channel no. 1, sub-compensator no. 1 and progressing
from sub-compensator to sub-compensétor and from channel to

channel until all scaled partials are listed. In the same row
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of G following the numerator terms the scaled denominator
partial derivatives are:ér:anged similarly. The scale factor
for the gradients is a quantity yhiék‘converts,each;row of G
to a unit vector. In-é single row of G there is an element
for évery éqmpensator éoefficient, even those whose partials
are always set to zero.

NPARC ° -'This variable specifies the tdtal number - of columns in G.

119



Subroutine PHASEM
The purpase of PHASEM is to detect and calculate phase margins'of as
open lpop control system which is represented by a discrete frequency re-
sponse. The method for achieving this is given in the following diseussion..
It is assumed that the open loop frequency response is given in terms
of real and imaginary parts. 1In partiquiar suppose the ith'frequency is fi
then the cerrespbnding real and imaginary parts,of'tﬁe open loop frequency
response are GRi'and-GIi. _Phase,maréins occur at the real zeros crossing
of  the fellowing-sequence: | o |

Y 2 S
s = 1.0 - iGRi + jGIil . (17)
Next the following sequence is formed:

1f Ui <0 then Si or Si—l is zero or Sy has made a zero crossing. Regard-
less of which of these have occurred the phase margin freQuency number is
chosen as 1 or i - 1, depending on.the smaller magnitude of S i 1°

The corresponding phase margin is calculated as 83 = Il 0+ GRk + JGIkl
where k is either 1 or 1-1 as mentioned above.

The input and output variables for this sub-program are as follows:

Input Variables
OMEGA(I) - A real one dimensional array that contains the frequencies in.
ascending order for describing the system.
GR(I) - A real one dimensional array containing the I-th.real part of

open loop frequency response.
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GI(I)
KPOINT

FQMIN

FQUAX

NM

KPTS(I)

STBM(I)

This is a real one dimensional- array that contains the Ifth
imaginary .part of the open loop frequency response.

The number of frequency poiﬁts.ﬁsed to describe the opeﬁ loop
frequency response of . the system.

The lowest frequency for which phase margins are to be detected.
The largest freqﬁency for which phase margins are to be deter-
mined.

NM + 1 is the number thét the first margin found is to be

given. For egample, suppose NM is initially 2 and this program
locates 3 margins. Then these margins would be labeled as

margins 3, 4, and 5 respectively.

Outpué Variables
This is the number that the last phase margin found 1is given.
A one dimensional integer array that contains the frequency
members of the margins found.
A one dimensional real array that contains margin values
corresponding to the frequency numbers of KPTS. These margins
are measured in terms of distances from the -~ 1.0 for 30.0

point in the complex GH(jw) plane.
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Subroutine GAINMG

The purpose of this sub-program is to locate and calculate the gain
‘:mayg;ns'of a discrete-open loop ftequency.response. The‘p:ocedure nsed
for accomplishing this ie.es.foilows.' Suppose that the iFh_f:egueney“ds

fi' Then the corresponding real and imaginary parts of the open loop

frequency response can be represented as GRi and GIi respectively. From

the sequences of these real and inaginary parte the following sequence

. .can be formed:
Ui = GIi . GIi_l T (19)

" Whenever Ui becomes negative or is zero a gain margin is detected. The

frequency number of the gain margin is taken as 1 or i—l depending whether

|GI l > |GI | or IGI I < |GIi 1| Then the gain margin is calculated as

.83 ,1 0+ ch + §6I l where k 1s 1 or 1 - 1.

For definitions of the 1/0 variables see Subroutine PHASEM,
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Subroutine SRMINS

The purpose of this sub-program is.to calculate maxima or minima

of a discrete open loop.frequency responseAwith respect to some chqsen.point

h h

along the real axis. Letting GR, and GIine the‘it real and it imaginary

1
parts, réspectively, of an open .loop frequencj response, the following
sequence is formed:

2

U, = |[P+GR + JCI, | . (20)

where -P is some point along the real axis. From this another sequence is

generated as.follows:

v, = U -U (21)
Ifv, *+ VvV, ,20andV, ,>0, the (i—l)th frequency point corresponds to
a relative maximum with respect to P. On the other hand, if Vi . Vi—l <0

and Vi-l <0 the.(i-l)th frequency point is a relative minimum with respect
to'P.

The definitions of I/0 variables are as follows:

Input Variables

GR(I) - See PHASEM.
GI(I) - See PHASEM.
OMEGA(I) - See PHASEM.
KPOINT - See PHASEM.
NM - - See PHASEM.
P - The negative of the real axis point for which maxima or

minima are to be found.
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N - This integer variable determines whether the program is to be
used for determining maxima or minima. Maxima are found if
N =+ 1, and minima are found if N = - 1.

v

FQMIN - The minimum frequency for which maxima or minima are ‘determined,

Sy e

All frequency points below this frequency are skipped.

Output Variables

Same as Subroutine PHASEM.
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- .Subroutine DIRVEC

The purpose of thisisub-pfogram is to calculate the directional vector

e r

of the constraint'improvemént,algorithm. The'directiqnal.vector, d, is

1

calculated‘a;¥ )
-d =" [V6la (22)

where VG is a n x m matrix whose columns consist of the gradients of the
active constraints. The quantity, a, is a m-component column vector

which is determined from
a=[vevel ™t e (23)

where ¢ is a m-component column vector whose elements are all positive.

Definitions of I/0 variables are given in the following lists:

Input .Variables

G(1,J) ~ A two dimensional array whose rows are comprised of the
gradients of the active constraints.

NM ~ The number of rows in G.

KPARC ~ The number of columns in G.

WEIGHT (1) ~ A real one dimensional array that contains the column

matrix c of (23).

Output Variables

DV (I)

A real one dimensional array which corresponds to d in (22).
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Subroutine MATINV

The purpose of this sub-program is.to determine the inverse of a.
matrix. The method used is Gauss-Jordon reduction. It is assumed that

no d;agonal elements of the original matrix are zero. If in applying

h

the Gauss-Jordon reduction procedure the magnitude of the it element of

tﬁe ith pivot row is less than 1.0 x 10721 it 1is assumed that the
matrix does not possess an inverse.

The I/0 variables'definitions are as follows:

Input Variables

X(1,J) = A real two dimensional array whose inverse is desired.
N - Number of rows and columns in X.-
Output Variables
Y(I,J) - A real two dimehsionaIAarray that is the inverse of the X array.
. o v .
IER - The error code of the program
IER = 0 No error
. A § T xi"‘ N
IER = 1 Matrix does not.possess an inverse.

1 - - . HEN i !‘
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Subroutine MATMUL

" The purpose.of this éubfﬁrégram_is to mﬁltibly.an n X m matrix by

A . P S L - : : . .
'amx 1 column matrix. The equation for accomplishing this is

T X = 2 Aikbk‘ . ) (24)

where A 1s the n x m matrix, b is the m-component vector (m x 1 column.
ﬁatrix),and x is the n-component vector resultant. -
The 1/0 variables for this sub-program are:

Input .Variables

A(I,J) - A real two dimensional array (The matrix A in (24)).

NR - An integer variable denoting the number of rows in A.

N - An integer yariable denoting the number of columns.in A.

”ﬁ(Ij - A re;lnéne dimensional:érray which contains the elements of b
in‘(24); o

NC --Always.chosen as.the integer 1.

X(1) - A reai oné dimensional-arréy ;hat contains the,eléments of

x in (24).
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Subroutine POLFV

The purpose of this sub-progrém is to evaluate a polynomial at a.

ﬁoint on the jw-axis of the complex s-plane.  When given a polynomial

s 1
F(s) = ) as ‘ (25)
i=0 :
where n is the order. The real and imaginary parts of F(s) when
= jw are
RE[F(ju)] = E (-1, (26)
i
1i=0 A .
MFG0] = ] (Dla, 2t (27)
‘ 21+1%

1=0

where p = n/2 and ¢ =n/2 - 1 1f n 1s even or p = (n-1)/2 and q = (ﬁ-l)/2
if n is odd.

Definitions of the I/0 variables for POLFV are as follows:.

Input Variables

FW(I) - A real one dimensional arfay that containg the coefficients of
the polynomial that is ta be evaluated. The arréngement of ;he
coefficients is assumed to be in ascending order according to
powers of s.

K - The order of the polynomial to be evaluated.

X - The value along the imaginary axis for which evaluation is to be
done [w in (26) and (27)].

Output Variables

FREAL - RE[F (jw)] '

FIMAG - IM[F(jw)]

128




Subroutine OTPT1

3

~ The purpose of this sub-program is to output certain information at

various stages of the main program. The information which is printed by

fhis~program is:

The marginlnuﬁbers”

The frequency where each margin occurs

The value of each margin

The desired value of each margin

The margin type, i.e., phase margin (P), gain margin (G),
stability margin tS), or attenuation margin A

The directional vector at the last iteration

The compensators at the last iteration.
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Subroutine’ MULOUT

The purpbsé of this sub-program is to qonvert the éompeﬁsétofs which
are in a cascaded factored-arrangemént into a singie.rafiéﬁél funétiaﬁ o
form. It is assumed that the compensator for aﬁy channel is given by an
equation such as 2. This compensator .is converted t§ a single rational.‘
function form by multiplying éll;numerator factors together and multipiy-
ing all deﬁominator factors together so that single polynomials are
obtained for each.
,lDefinitions of the input and output va;iables for this‘prqg:ag are.

the same as given in Subroutine PARCLT.

I
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Subroutine POLMUL

The purpose of this program is. to multiply two polynomials together.

Assume there are two polynomials of the form:

n

A(g) = z aisi (28)
i=0
and
2 1
B(s) = ) b,s (29)
1=0

which are”td‘be'ﬁultiplied together. It is known that if_(285 and (29)
are multiplied together the resultant polynomial, P(s), will be of ofdér
m + n. Suppose that the coefficients of (28) are included as the last
n + 1 elements of a vector which has m + n + 1 elements with the first m

elements as 0's. Denoting this vector as ¢; it becomes.

c = (cl’ C2, seey Cm, CIIH'l’ eey cm+1) (30)
whgre
ci = 0 i = l’ 2’ ee, M
" and
e = a4 i = m+1l,m+2, ..., m=n=1 .,

Next, let the coefficients of (29) be cast in a vector d of the following

form

d ) (31)

d = (dl, dz, .6, dm“'l’ dm+2’ ..."m"'l
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where
i =1,2, ..., m+ 1 (31)
and

d = 0 i = m+2’m+ 3’ -..,m+n»+1

h

From (30) and (31) the it coefficient of P(s) can be calculated as

mEl
P, = Gy dk (32)
17 b et ©
i = 1,2, i, m+n
and
m+n 1
P(s) = z PR - - (33)
i=1
/
Definitions of I/0 variables for subroutine POLMUL are:
Input Variables
CON(I) - A one dimensional array confaining the coefficients of A(s) .
COM(I) =~ A one dimensional array containing the coefficients of B(s) ;,
N - The order of the polynomial, A(s).
M - The order of the polynomial, B(s).
Output Variables )
XCOF(I) - A one dimensional array containing the coefficients of .the

polynomial, P(s).
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