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ABSTRACT

A finite difference formulation is presented for wave propagation in

a rectangular two-dimensional duct without steady flow. The difference

£ technique, which should be useful in the study of acoustically treated inlet
ID

T and exhausts ducts used in turbofan engines can readily handle acousticalw
flow field complications such as axial variations in wall impedance and

cross section area. In the numerical analysis, the continuous acoustic

field is lumped into a series of grid points in which the pressure and veloc-

ity at each grid point are separated into real and imaginary terms. An

example calculation is also presented for the sound attenuation in a two-

dimensional straight soft-walled suppressor.

INTRODUCTION

' Because of increasingly stricter environmental noise regulations^

noise suppressors are now an integral part of turbojet engine design and
j

other industrial turbomachinery applications. In the particular example

of the aircraft industry, turbojet suppressors must be optimized for mini-

mum weight and length to decrease the direct operational cost of the air-

craft and to increase the return on investment.



Generally, aircraft suppressors dissipate acoustical energy by viscous

action in walls containing absorbing materials. Presently, estimates for

the attenuation of acoustic energy (noise) in suppressor ducts are based

on the analytical study (refs. 1-7) of acoustic waves propagating into

infinitely long straight ducts with uniform impedance (absorbers) along the

walls. The analytical techniques, however, are limited to relatively

simple geometries.

At the present time, there is a need for more flexible suppressor

design techniques which can handle acoustical flow field complications in

engine ducts such as axial variations in wall impedance and cross sectional

area as would occur in a sonic inlet. To meet the need, the present paper

develops a numerical finite difference technique which can be used .in the

prediction of sound attenuation in turbojet engine ducts as well as other

environmental noise abatement problems.

In particular the present paper formulates a solution to the He 1 mho It z

equation with finite wall impedance by a difference technique. The differ-

ence solutions bypass the conventional eigenvalue problem with its assoc-

iated modes which have been considered in earlier works on noise propaga-

tion in ducts (refs. 1-7). As a result of the difference formulation, the

propagation of noise is treated as a diffusion process analogous to problems

in thermodynamics involving heat flow or fluid dynamics involving the

transport of vorticity.

Immediately following the mathematical development of the difference

technique, example solutions are presented for a comparison between the



finite difference and the analytical results for sound propagation in a one-

dimensional hard wall duct and a two-dimensional soft walled duct without

steady flow.

SYMBOU3

c speed o'f sound

dB decibels, Eq. (19)

E acoustic power, Eq. (18)

f frequency

H channel height, see Fig. 1

I acoustic intensity

L length of duct

m total number of grid rows

n total number of grid column

Pf pressure fluctuation, P'(xr, y', t)

p dimensionless pressure fluctuation, p(x, y) = P'/P^

p . amplitude of pressure fluctuation at duct entrance

t time

u dimensionless acoustical particle velocity

x, y dimension axial coordinate, x'/H, and transverse coordinate, y'/H

Ax, Ay grid spacing

Z acoustic impedance

£ specific acoustic impedance

7) dimensionless frequency (eq. (4))

0 specific acoustic resistance

K acoustic conductance ratio



X wavelength

p density

a acoustic susceptance ratio :

X specific acoustic reactance

w circular frequency

Subscripts:

' prime indicates a dimensional quantity

(1) real part

(2) imaginary part

Subscripts:

e exit condition

i, j i axial index, j transverse index, see Fig. 2

t transverse y direction

x axial position

y transverse position

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The operation of a typical turbojet suppressor using a Helmholtz

resonator as a noise absorber is shown schematically in Fig. 1. The

noise source shown in Fig. 1 has associated with it some initial pressure

profile and some entering acoustic energy flux represented by the symbol

I (intensity). The entering acoustic energy is dissipated along the length

of the duct by viscous action in the Helmholtz absorbers imbedded in the

walls of the duct. The acoustic particle fluid velocities u' and u' shownx y
in Fig. 1 play an important role in the dissipation process as well as in the

transmission of the acoustic energy along the duct. The governing equations



and initial and boundary conditions which describe the transmission and

absorption process will now be presented.

WAVE EQUATION

The governing differential equation describing the propagation of

acoustical energy in the wave equation. The two dimensional form of

the wave equation without steady flow is given by

(L)

ax'2 ay'2 c2 at2

In the above equation, the prime, ', is used to denote a dimensional

quantity. These and all other symbols used in this report are defined

in the list of symbols. As customary for steady state, the solution is

assumed to be of the form

P' (x', y, t) = p' (x', y) e+ia)t (2)

Substituting Eq. (2) into Eq. (1), and introducing the dimensionless

parameters, p, x, y and 77 yields the classic Helmholtz equation.

=0 (3)
ax2 ay

2

where the dimensionless frequency 77 is given as

H u> Hf H ' IA\77= -- = — = _ (4)
27T C C X



The frequency parameter ij represents the ratio of duct height H to

acoustic wavelength for the geometry shown in Fig. 1. The dimension-

less height y ranges from zero to 1 while the dimensionless length x

ranges between zero and L/H.

When using the exponential notation displayed in Eq. (2), the dimen-

sionless pressure p has in general both real and imaginary parts. Thus,

P (x, y) = P(1) (x, y) + ip(2) (x, y) (5)

Consequently, Eq. (3) can now be broken into its real and imaginary

parts by substituting Eq. (5) into Eq. (3),

o m
(27rT7)2p(1) = 0 (6)

-> 2 ^dx dy

,2n(2) ,2J2) o fo\
LSLL + LSLL + (27T77)2p(2) = 0 (7)

9 9
dx* dy

Equations (6) and (7) represent the basic governing equations for

noise propagation which will be solved later.

Acoustic Particle Velocity

The boundary conditions in acoustics are generally given in terms

of impedances which relate the pressure and velocity fields at the boundary

(see schematic insert in fig. 1). For a harmonic solution of the form

given by Eq. (2) and in the absence of convective velocities, the dimension-

less momentum equations yield the following expressions for the scalar



velocities in terms of pressure gradients:

P u = iP- (8)
3x y 9y

Where the dimensionless velocities are defined as

Impedance Boundary Condition

The specific acoustic impedance £. is defined as

— •= -£- at y = 0 and 1 (10) ''
pc

where Z, is the acoustic impedance. Equation (10) can also be expressed

in dimensionless form as

Ct = - i27TT7 -P- at y = 0 and 1 (11)

ay

It is convenient to express the reciprocal of the impedance ratio in

terms of the acoustic conductance ratio «. and the acoustic susceptance

ratio a., that is,

- L = « t - l a t (12);t t t



where l/£. is called the acoustic admittance ratio

Finally, substituting Eq. (12) into Eq. (11), and expressing p in

terms of its real and imaginary terms yields

Pv \ - Pv \ aty = 0 a n d l (13)
3y I J

3n$' r O\ (1 \ I
^— = -27TT? p^ >a. + p ( ) K . \ at y = 0 and 1 (14)

3y ! t tj

These are the boundary conditions on pressure to be used at the upper and

lower surfaces of the duct.

The impedance at the exit plane, x = L/H, leads to a similar expres-

sion except an e subscript would be used in place of t in Eqs. (13) and

(14) and the pressure gradient would be with respect to the variable x.

Entrance Conditions

For the entrance pressure profile, the assumption used by Rice

(ref. 1) of a uniform profile will be used herein. At the present time,

there is insufficient information available to improve on this assumption.

For a uniform pressure profile, as will be used in the example considered

later,

p(1) (0, y) = 1 p(2) (0, y) = 0 . (15)



Axial Acoustic Power
i

The sound power which leaves a duct and reaches the far field is

related to the axial intensity. The axial intensity can be expressed in

dimensionless form as

[.=_!_ Re ( p * u ) (16)
2

la 27T7J

For hard wall duct with a pc exit impedance, I is identical to 1 for

all frequencies and duct lengths.

In terms of the complex representation, the expression for I becomes

27TTJ 1, dx 9x J

The total dimensionless acoustic power is the integral of the intensity

across the test section

f Kx,
*/0

Ex= / I(x, y)dy (18)

The minimum value of E will occur at the duct exit, x = L/H. At this
X.

position, the sound attenuation will be a maximum.

By definition, the sound attenuation (the decrease in decibels of the

acoustic power from x = 0 to x) can be written as

AdB = 10 Iog10 Ex/EQ (19)
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Finite Difference Formulation

Instead of a continuous solution for pressure, the pressure will be

determined at isolated grid points, as shown in Fig. 2 by means of the

finite difference approximations. The governing equations and boundary

conditions can be approximated in difference form (ref. 8) by using either

a Taylor series expansion, a variational, or an integral formulation. In

this acoustic problem, where the gradient is specified along a boundary,

the integration method for generating the finite difference approximations

is most convenient.

Wave equation. - The wave equation in finite difference form is

developed by applying the integration method (ref. 8, p. 168) to the cell

marked No. 1 in Fig. 2. The details necessary for the development of

the difference equations are given in Ref. 8 as well as many other texts;

consequently, only the final results are now presented. The difference

form of the p^ ' wave equation, Eq. (6), becomes

(D

2 21 m

. —) - (27777 Ax) P} =0 (20)
I \Ay/ . J >J

which is the basic Helmholtz equation in difference form. Using the same
(2)procedure, the difference equation for the pv ' component can also be

found.



11

Similarily, the difference equation derived from Eq. (13) which

applies in cell No. 2 in Fig. 1 can be expressed as:

2\
(21)

Similar difference equations exist at the exit cell mark No. 3 and No. 4.

Axial intensity. - In terms of the difference notation, the axial

intensity as given by Eq. (17) can be expressed as

277T) AX

(2)(p<l) . (1) \ . p(«(p(2) . p(2)
' ^ ' 1 i > J y 1, 3\ !, J 1

(22)

The total intensity across the test section, as given by Eq. (18), is written

in difference notation as

m-1

+, 2 , m
3=2

(23)

By evaluating Ei at the entrance and exit positions,, taking the log of their

ratio and multiplying by 10, as indicated in Eq. (19), the maximum sound

attenuation for the duct is determined.

We shall now apply the difference equations to the problem of noise

attenuation in a duct.
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MATRIX SOLUTION

The collection of the various difference equations at each grid point

forms a set of simultaneous equations which can be expressed in matrix

notation as

A * P= F (24)

where A is the coefficient matrix, P is the pressure matrix containing

the unknown pressures, and F the known matrix containing the various

initial conditions, where A, P, and F are complex in general.

The solution to the matrix Eq. (24) yields the values of the real and

imaginary pressures P^ ' and P^ ' at each point. Once these pressures

are known, the intensity at any position can be determined from Eq. (22),

and the total intensity can be evaluated from Eq. (23). Finally, the sound

attenuation in the duct can be found by substituting the values of the total

intensity into Eq. (19).

In considering solutions to Eq. (24), it is convenient to express Eq. (24)

in terms of all real quantities. To accomplish this, the matrix P is

written as a column vector in terms of the p^ ' and p^ ' pressures and

subdivided as follows:

r I
A! i -c

ii. ._ — (.
C ! A

1 J

"p(l)"

p(2)

"F(I)~

F(2)

(25)
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The Aj matrix has a form typical of those matrices found in two-

dimensional heat conduction problems, while the C matrix represents

the coupling that occurs between the p*- ' and p^ ' pressures through

the impedance boundary conditions. The C matrix is a sparse matrix

with only one main diagonal term.
2The frequency term (27n}Ax) in Eq. (20) subtracts from the term

which will occupy the main diagonal element of the coefficient matrix;

consequently, for sufficiently high frequencies or spacing parameters, the

matrix will no longer be positive definite (ref. 8, p. 68). As a result,

conventional iteration techniques cannot be used. However, matrices of

the form of Eq. (20) can be solved by elimination techniques. In particular,

the Gauss elimination technique will be used to find a solution in the

example problem which now follows.

Because iteration techniques cannot be used at present, the finite

difference technique cannot currently be applied to complicated problems

which require a large number of grid points. Iteration technique or more

efficient closed form solution will have to be'developed to overcome the

present grid size limitations.

EXAMPLE CALCULATION

° Two example calculations are present in this section so that a com-

parison between the finite difference solutions and the analytical solutions

can be made. First, the simple case of plane waves propagating down a

hard wall duct is presented. This case will allow the comparison of the

numerical and analytical pressure profiles down the length of the duct. In

addition, a rule of thumb on the required grid space is developed. The
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second example will compare the numerical and analytical predictions of

the attenuation in a soft walled two-dimensional duct.

ONE-DIMENSIONAL HARD WALL DUCT

Numerical and analytical values of the pressure were computed for

the special case of a hard wall duct with a pc exit impedance. Because

there is no variation of pressure in the y direction, the two-dimensional

grid lattice shown in Fig. 2 can be reduced to a one-dimensional lattice as

shown in the upper sketch of Fig. 3. The calculation was made for a hard

wall (Z = °°) duct with an L/H of 1 and an inlet plane wave with a dimen-

sionless frequency 1] equal to 1. The analytical and numerical values of

the acoustic pressure profiles along the duct are shown in Fig. 3. As seen

in Fig. 3, the agreement between the numerical and analytical results is

good.

By a series of numerical calculations, the number of grid points

necessary to get pressure profiles, velocities, and intensity accurate to

about four percent was found to be

n>12r]-
H

If n is less than one half the value given by this equation the accuracy

decreases to 10 percent. The accuracy could be further increased by

using a four part derivative approximation for the pressure gradient in

Eq. (17).
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TWO-DIMENSIONAL SOFT WALLED DUCT

As another example of the finite difference formulation, the maximum

noise attenuation will now be calculated for a two-dimensional duct as

shown in Fig. 2 with L/H of 0. 5 and input plane waves with dimensionless

frequencies 77 = Hf/c equal to 0. 6 and 1. At present, for two-dimensional

solutions, the technique is limited to L/H values of 0. 5 or less because

of matrix size limitations discussed previously.

The numerical results can be compared to the corresponding analytical

results found by using the techniques presented by Rice (ref. 1), which is

applicable to infinite ducts (no reflected waves). In the numerical formula-

tion of the infinite duct, the duct can be simulated in a finite length by

using an impedance value of p c ( K = 1; a =0) at the exit plane of the
" "

duct. For plane wave propagating in a hard-wall duct, a pc exit impedance

leads to zero reflected wave which is analogous to an infinitely long duct.

This assumed exit condition is discussed in greater detail in the Appendix

of this paper.

The first step in determining the maximum attenuation in the duct is

to calculate the attenuation at various Z values in the impedance plane.

This is shown in Fig. 4 where

? = A = - f l + i x (26)
pc

The sound attenuation values shown in Fig. 4 were obtained by choosing

discrete values of 0 and x throughout the 0-\ plane, calculating the

appropriate a and K from Eq. (12), solving the matrix Eq. (25) by
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Gauss elimination for the pressure distribution, and finally calculating the

sound attenuation at the duct exit from Eqs. (23) and (19). The results

shown in Fig. 4 were obtained by interpolating between the points to obtain

smooth contours. The impedance associated with the peak attenuation is

,,(-. called the optimum impedance.

Because of matrix size limitations in the subprogram used to solve

Eq. (25), the technique of varying grid size (ref. 9) was used. This is

illustrated in Fig. 5 where the grid spacing Ay is decreased toward zero.

The attenuation at the optimum point is found by extrapolating the grid size

to zero (dotted portion of the curve). As seen in Fig. 5, the extrapolated

numerical value is in agreement with the analytical values calculated from

the theory presented by Rice in Ref. 1. •

This agreement is very encouraging considering the few grid points

(maximum of 50) used in obtaining the results. Once new matrix iteration

or elimination techniques are developed, the prognosis for obtaining accurate

results for complex problems with a minimum of computer storage and

running time is excellent.

STEADY FLOW PROBLEM

At present, I am extending the difference technique to the steady flow

case. Because of the added Mach number terms in both the wave equation

and the slip boundary condition, the coupling matric C in Eq. (25) becomes

tridiagonal. However, these complications have not as yet posed any

barriers in obtaining the steady flow solutions.
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CONCLUDING REMARKS

A finite difference solution for sound propagation in a two-dimensional

soft-walled duct for zero Mach number shows favorable comparison with

the corresponding exact analytical results. Because the solution matrix

for the acoustical flow field is not positive definite, conventional iteration

techniques cannot be used to solve the difference equations; Before the

finite differences formulation can be applied to more complicated problems

which require a large number of grid points, such as the sonic inlet,

iteration techniques will have to be developed to overcome present grid

size limitations.

The finite difference formulation is flexible and should be a powerful

tool in the solution of more realistic studies of inlet and exhaust ducts of

turbofan engines. The present formulation allows complete freedom in

choosing the inlet pressure profile and the complex impedance along both

boundaries. The extension of the present formulation to both uniform flow

and shear flow is straight forward.

r»
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APPENDIX - EXIT IMPEDANCE ASSUMPTION

The close agreement between the numerical theory and the correspond-

ing analytical results substantiates the utility of the pc exit impedance

assumption made in the previous section of this report. However, the

analytical theories (ref. 1 for example) indicate that certain alterations in

the numerical exit conditions are required if the numerical theory is to be

in exact agreement with the analysis.

The analytical theory for an infinite duct with no reflected waves

assumes the solutions to the wave equation are separable and can be

expressed in terms of an infinite number of modes. However, the infinite

duct with no reflections could be replaced by a finite length of duct L with

the exit impedance at L chosen so that no reflections would occur. For

no reflections, the analysis indicates that each mode has its own unique

exit impedance. Thus, reflections must be occurring at the duct exit in

the numerical calculation since choosing an exit impedance equal to pc

can not possibly simulate all the distinct impedance values required for

each mode in the analysis.

Fortunately, in many practical problems, most of the higher order

modes decay out and the lowest order mode appears at the exit. A com-

parison to the analytical results indicates that, in general, the exit

impedance associated with the lowest order mode is close to pc. Never-

theless, it is important to establish a general numerical procedure which

will converge to the correct answer.

Overlooking round-off and truncation errors in the numerical calcu-

lations, the attenuation calculated by the numerical technique will be greater
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than that calculated by the exact analytical technique because of reflec-

tions which occur at the exit; that is

AdB\ > AdB\

Inumerical janalytical
/ 0 < x < L / 0 < x < L

The reflected energy appears to have been absorbed by the soft walls in

the numerical calculation.

Now, consider the case where an additional length of absorbing

liner AL is added to the original liner, so that the liner now has a

length L + AL. If AL is chosen sufficiently long, the reflected energy

at the duct exit x = L + AL will be absorbed before this energy can

reach the previous exit position at x = L. Therefore, for soft-walled

ducts

limit AdB\ AdB\

i I '/ 0 < x < L / 0 < x < L

AL — i , i , . • *Inumerical (analytical

Practically, the liner length need only be increased by some minimum

length AL until the attenuation for the liner length between x = 0 and

x = L remains constant to a given percentage.
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