Technical Report 32-1581

A Bibliography of the Theory and Application of the Phase-Lock Principle

William C. Lindsey
University of Southern California

Robert C. Tausworthe
Jet Propulsion Laboratory

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

April 1, 1973
Technical Report 32-1581

A Bibliography of the Theory and Application of the Phase-Lock Principle

William C. Lindsey
University of Southern California

Robert C. Tausworthe
Jet Propulsion Laboratory

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA
April 1, 1973
Preface

The work described in this report was sponsored by the National Aeronautics and Space Administration, under Contract NAS 7-100, and by the Department of the Navy, Office of Naval Research, under Contract N00014-67-A-0269-0022. The National Aeronautics and Space Administration sponsorship was directed through the Telecommunications Division of the Jet Propulsion Laboratory.
Contents

I. Introduction .. 1

II. Listings by Categories ... 2
 A. Books and Monograms ... 2
 B. Basic Theory .. 2
 C. Nonlinear Theory ... 6
 D. Acquisition ... 9
 E. Stability .. 12
 F. Threshold .. 14
 G. Demodulator and Discriminator 16
 H. Performance ... 21
 I. Tracking .. 23
 J. Phase-Locked Receivers 25
 K. AGC, AFC, and APC Systems 27
 L. Synchronization .. 30
 M. Operation in Presence of Noise or Interference 32
 N. Oscillator and Frequency Multipliers 35
 O. Cycle Slipping .. 37
 P. Applications ... 38
 Q. Digital Phase-Locked Loops 41
 R. Miscellaneous .. 44

III. Alphabetic Listing by Authors 48
Abstract

Since much has been recorded on the phase-locked loop, a literature search was conducted in an effort to collect and compile as many references on the subject as possible. Although not all inclusive, this report presents a comprehensive listing of approximately 800 references covering the past two decades of work reported throughout the world. The compilation is given in two parts: first by categories, and then alphabetically by authors.
I. Introduction

As the reader may be made aware by the mere weight of this report, the world has had much to say about the phase-locked loop over the past two decades. Several years ago, the authors decided to compile as many references on this subject as possible and list them both categorically and alphabetically into one report. The project sounded easy enough. A computer search of the literature generated a six-inch-thick printout of references that had been keyed to such words as "phase lock," "tracking systems," etc. The task remained, however, to first weed out those which did not appear to be appropriate, and then incorporate those with references which we had accumulated over the years, if not already included in the list.

But the more we stirred around in it, the more we found and the bigger the job got. Some references were missing page numbers, journal references, and were otherwise incomplete; others contained errors in the title, journal reference, date, etc. We have attempted to check as many sources as possible, but we know that we still do not have a complete set of references, that in the ones given here errors yet remain, and that some are still inadequate for the reader to locate the cited work.

Readers who detect omitted references or errors in the ones given or who can supply missing information in these references are requested to contact the authors so that the supplemental information can be incorporated into future updates of this report.
II. Listings by Categories

A. Books and Monograms

B. Basic Theory

Phase-Locked Loop Study, Phase I (June 15, 1961) and Phase II (Dec. 15, 1961) of Project 2-520-1202, Motorola, Inc., Military Electronics Division, Scottsdale, Ariz.

C. Nonlinear Theory

Chalkley, H. B., False Lock in Sampled-Data Phase Lock Loops, University Microfilms, Virginia Polytechnic Institute, Blacksburg.

Cleland, L. L., Improvement of Phase-Locked Loops by the Introduction of Nonlinearities, University Microfilms, Purdue University, Lafayette, Ind.

Hussein, A. W., Phase-Error Statistics and a Second-Order Phase-Locked Loop and Design of an Optimum Decision Unit for Space Communications, University Microfilms, Virginia Polytechnic Institute, Blacksburg.

Iceland, L., and Leon, J. B., Improvement of Phase-Locked Loops by the Introduction of Nonlinearities, Purdue University, Lafayette, Ind., 1968.

Lindauer, C. M., Nonlinear Behavior/Analysis and Simulation of Several Second-Order Random-Modulated Phase-Locked Loops, University Microfilms, Virginia Polytechnic Institute, Blacksburg.

Pearce, J. L. R., Optimum Reception of Digital FM Signals, Queens University, Kingston, Ontario.

Shakhtarin, B. I., "A Critical Case in Phase-Lock Control," pp. 635–637, and

Simon, M. K., "Nonlinear Analysis of an Absolute Value Type of an Early-Late

Stiffler, J. J., "Communication Systems Development: On the Optimality of the
Square-Wave Correlation Function for the First-Order Loop," in Supporting

Strom, T., Approximation of the Probability Density Function of a Phase-Locked
Loop, Technical Report No. 45, Royal Institute of Technology, Stockholm 70,
Sweden, July 1971.

Thomas, E. F., Investigation and Analog Simulation of the Type Two and Type
Three Phase-Lock Loop, AD-295096, Air Force Institute of Technology, Wright-
Patterson AFB, Ohio, Dec. 1962.

22, pp. 1051–1086, 1934.

Van Trees, H. L., "Functional Techniques for the Analysis of the Nonlinear

Viterbi, A. J., "Phase-Locked Loop Dynamics in the Presence of Noise by Fokker-

Wang, C. C., "An Exact Solution of Injection Phase-Locking," ITC Proc., Wash-

Whitbeck, R. F., Graphical Analysis of Nonlinear Systems, Ph.D. dissertation,

D. Acquisition

Acampora, A., and Newton, A., "Use of Phase Subtraction to Extend the Range

Acampora, A., and Newton, A., "The Use of Phase Subtraction for Increasing the
Range of a Phase-Locked Loop," Proc. National Electronics Conference, Chi-

Anderson, T. O., and Gallo, A. J., "Design for a Rapid Automatic Sync Acquisi-
tion System," Instrument Society of America 13th National Aerospace Sym-

"Automatic Acquisition for Narrow Bandwidth, Phase-Locked, Reference Loops," in The Deep Space Instrumentation Facility, Space Programs Summary 37-21,

E. Stability

F. Threshold

Urhan, J. J., *Threshold Study of Phase Lock Loop Systems*, University Microfilms, Purdue University, Lafayette, Ind.

G. Demodulator and Discriminator

June 1965.

Schmueckle, W., *A Contribution for Optimization Demodulation of Disturbed
Frequency Modulation Signals*, Technische Hochschule, Hannover, West Ger-
many, 1967 (in German).

Schmueckle, W., "Optimum Demodulation of Disturbed Frequency-Modulated

Schwartz, M., *Maximum A Posteriori Demodulation of Analogue-Type Signals
Through Random Fading Media*, Polytechnic Institute of Brooklyn, New York,
1964.

"Strong Signal Sideband Discriminator," in *The Deep Space Instrumentation
Laboratory, Pasadena, Calif., July 31, 1963.

Thomas, C. M., "Optimization of Phase-Lock Demodulator for Single-Channel

Thomas, C. M., "Study Charts Phase-Locked Demodulator Distortion in TV,

6th Annual Allerton Conference on Circuit and System Theory*, Monticello, Ill.,

Urhan, J. J., Jr., and Lindenlaub, J. C., "Experimental Results for Phase-Lock
Loop Systems Having a Modified nth Order-Tanklock Phase Detector," *IEEE

Vaughan, G. R., and Osborne, E., "Phase-Locked Phase Modulator," Digest of

Viterbi, A. J., *Functional Design of Telemetering Discriminators*, Technical Mem-

Viterbi, A. J., and Cahn, C. R., "Optimum Coherent Phase and Frequency De-

Williams, W. J., "Selection of Phase Sensitive Detectors for Space Radar," *IEEE

Wynn, W. D., *The Optimum Phase Demodulator for Interfering PM Subcarrier
Signals*, Bellcomm, Inc., Washington, D. C.

Yang, J. H., and Wolff, S. S., "A Phase-Locked Loop with Quasi-linear Phase

H. Performance

Victor, W. K., Minimum Bandwidths of Phase Lock Loops Using Crystal-Controlled Oscillators, Jet Propulsion Laboratory, Mar. 15, 1954.

I. Tracking

Riedel, E. G., Jr., *The Effect of Frequency Tracking, the Use of a Phase Lock Loop, and Predicted Tracking on Receiver Sensitivity*, AD-286920, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, Aug. 1962.

J. Phase-Locked Receivers

K. AGC, AFC, and APC Systems

L. Synchronization

M. Operation in Presence of Noise or Interference

Malling, L. R., "Phase-Stable Oscillators for Space Communications, Including the Relationship Between the Phase Noise, the Spectrum, the Short-Term Stability, and the Q of the Oscillator," *Proc. IRE*, Vol. 50, pp. 1656-1664, July 1962.

N. Oscillator and Frequency Multipliers

Sakaroff, S., "Frequency-Controlled Oscillators," Communications, Vol. 19, No. 50, pp. 7–9, 1939.

O. Cycle Slipping

P. Applications

Gee, T. H., An Analytical and Experimental Investigation of a Frequency-Shift-Keyed Signal Generated by a Phase-Locked-Loop with Application to Narrow-band FSK, University Microfilms, Virginia Polytechnic Institute, Blacksburg, Va.

Q. Digital Phase-Locked Loops

R. Miscellaneous

Active Notch Filter, AD-438 252, Eng. Experiment Station, Georgia Institute of Technology, Atlanta, Ga., Apr. 1964.

III. Alphabetic Listing by Authors

Active Notch Filter, AD-438 252, Eng. Experiment Station, Georgia Institute of Technology, Atlanta, Ga., Apr. 1964.

Burton, D. J., and Hebbert, R. S., Third Order Phase Locked Loops, Naval Ordnance Laboratory, White Oak, Md., Apr. 1969.

Chalkley, H. B., False Lock in Sampled-Data Phase Lock Loops, University Microfilms, Virginia Polytechnic Institute, Blacksburg.

Cleland, L. L., Improvement of Phase-Locked Loops by the Introduction of Non-linearities, University Microfilms, Purdue University, Lafayette, Ind.

Gee, T. H., An Analytical and Experimental Investigation of a Frequency-Shift-Keyed Signal Generated by a Phase-Locked-Loop with Application to Narrow-band FSK, University Microfilms, Virginia Polytechnic Institute, Blacksburg, Va.

Heckert, G. P., Design of Phase-Locked FM Demodulators for Maximum Sensitivity, TR 102, Philco Western Development Laboratories (to be published).

Hussein, A. W., Phase-Error Statistics and a Second-Order Phase-Locked Loop and Design of an Optimum Decision Unit for Space Communications, University Microfilms, Virginia Polytechnic Institute, Blacksburg.

Iceland, L., and Leon, J. B., Improvement of Phase-Locked Loops by the Introduction of Nonlinearities, Purdue University, Lafayette, Ind., 1968.

Lindauer, C. M., Nonlinear Behavior/Analysis and Simulation of Several Second-Order Random-Modulated Phase-Locked Loops, University Microfilms, Virginia Polytechnic Institute, Blacksburg.

McMaster, R. L., Design for a Subaudio Phase-Lock, Pulse-Tracking Oscillator, Stanford University, Calif.

Olsen, D. P., Equivalence of PLL Systems and a Discriminator Followed by a Nonlinear Feedback Filter, Purdue University, Lafayette, Ind., June 1967.

Osborne, P. W., Threshold Analysis of Phase Locked Loops, N70-24407, University Microfilms, Polytechnic Institute of Brooklyn, New York, 1969.

Pearce, J. L. R., Optimum Reception of Digital FM Signals, Queens University, Kingston, Ontario.

Phase-Locked Loop Study, Phase I (June 15, 1961) and Phase II (Dec. 15, 1961) of Project 2-520-1202, Motorola, Inc., Military Electronics Division, Scottsdale, Ariz.

Riedel, E. G., Jr., The Effect of Frequency Tracking, the Use of a Phase Lock Loop, and Predicted Tracking on Receiver Sensitivity, AD-286920, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, Aug. 1962.

Sakaroff, S., “Frequency-Controlled Oscillators,” *Communications*, Vol. 19, No. 50, pp. 7-9, 1939.

Urban, J. J., *Cycle Slipping and FM Signal Distortion for a Class or Phase Lock Loops*, Notre Dame University, Ind.

Urban, J. J., *Threshold Study of Phase Lock Loop Systems*, University Microfilms, Purdue University, Lafayette, Ind.

Victor, W. K., Minimum Bandwidths of Phase Lock Loops Using Crystal-Controlled Oscillators, Jet Propulsion Laboratory, Mar. 15, 1954.

