General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
STUDY OF THE FAR WAKE VORTEX FIELD GENERATED BY A RECTANGULAR AIRFOIL IN A WATER TANK

Dietrich K. Lezius

Ames Research Center
Moffett Field, Calif. 94035

May 1973
STUDY OF THE FAR WAKE VORTEX FIELD GENERATED BY A RECTANGULAR AIRFOIL IN A WATER TANK

Dietrich K. Loxius*
Ames Research Center, NASA
Moffett Field, CA 94035

Abstract

Underwater towing experiments were carried out with a rectangular airfoil of aspect ratio 5.3 at 4° and 8° angles of attack and at chord-based Reynolds numbers between 2x10⁶ and 7.5x10⁷. Quantitative measurements by means of the hydrogen bubble technique indicated lower peak swirl velocities in the range of 100 to 1000 chord lengths downstream than have been measured in wind tunnel or flight tests. The maximum circumferential velocity decayed as t⁻³/₂, whereas the turbulent eddy viscosity, ν_T, increased as t⁻¹/₂. This behavior and other known rates of vortex decay are explained in terms of an analytical solution for the vortex problem with time varying eddy viscosity. It is shown that this case corresponds to nonequilibrium turbulent vortex flow which has other self-similar solutions, such that the rate of vortex decay is greater than t⁻¹/₂ when the eddy viscosity increases with time. Conversely, the decay proceeds at a rate less than t⁻¹/₂ when ν_T decreases with time.

Notation

- a: core radius
- b: wing span
- c: chord length
- ΔH: head loss in boundary layer
- m: exponent for time varying eddy viscosity
- p: pressure
- p(o): fluid pressure as r → ∞
- P: rate of turbulent energy production
- r: radius measured from vortex axis
- s: tangential shear deformation, s = 3υ/3r - v/r
- T: time parameter, T = 3υ/3r
- T: time difference in velocity measurement
- u: radial velocity component
- v: tangential velocity component
- ω: tangential velocity at r = a
- ω: axial velocity component
- ω: axial velocity on vortex axis
- z: downstream distance behind airfoil
- α: angle of attack
- β: constant of proportionality, Eq. (10)
- Γ: circulation
- Γ_a: circulation at core radius
- Γ_w: circulation of wing
- θ: angle in velocity measurement
- p: kinetic viscosity
- p: effective viscosity
- ν_T: eddy viscosity
- ν_T: eddy viscosity at core radius
- ν_T: eddy viscosity level after roll up
- ϱ: density
- η: turbulent shear stress

Introduction

With the advance of the heavy transport jet planes such as the 747, and more recently the DC-10 and L-1011, a rather intense theoretical and experimental effort has been directed toward the problem of "wake turbulence." This so-called turbulence, also known as turbulent wake, consists of the remains of a system of counter rotating wing tip vortices which are shed from the aircraft as part of the generation of lift. When a following plane enters the vortex wake it can, depending upon its size, be rolled out of control or, in the more severe cases, even suffer serious structural damage.

The intensity and longevity of vortex wakes increase with the weight of the aircraft generating the wake, but in general, the severity of the upset is proportional to the swirl momentum left in an effective cross sectional area of the wake at the time of encounter. Since the wake vortices dissipate in time as a result of turbulent and atmospheric effects, an encounter with an "old" wake is expected to induce less severe roll on the following craft than one with a newly formed wake. Present aviation rules call for several miles separation between planes on approach, so that possible encounters would occur in the far field of the wake where the separation between planes is on the order of 10⁴ or more mean chord lengths. There are, however, strong incentives toward closer aircraft spacing and hence toward increased hazards from encounters with vortex wakes.

In several recent wind tunnel studies, most notably those of Chigier and Corsiglia, 1,2 Logan, 3 and Mason and Marchman, 4 tangential and axial velocity components of the vortex field were measured after roll up. Subsequent velocity distributions and initial rates of decay of the flow field were obtained for downstream distances up to z/c = 50, and can thus be regarded as data from the near and intermediate fields of the wakes.

Although flight measurements of maximum tangential vortex velocities acquired as far back as 7000 chord lengths have been reported by McCormick et al., 5 no such data are available for comparison from model tests where the dynamics of vortex decay in the far field can be studied under well controlled conditions. Since in-flight encounters with vortex wakes are most likely to occur in the far field, a better understanding of the mechanics and the structure of wake vortex flow in the late stage is required.

The purpose of the present paper is to report on a series of underwater towing experiments which allowed measurements in the far wake region of a rectangular NACA-0015 airfoil of 0.915 meter span with rounded wing tips and aspect ratio 5.33. Chord-based airfoil Reynolds numbers ranged from 2,2x10⁶ to 7,5x10⁷, and angles of attack were set at 4° and 8°. Use of the hydrogen bubble technique** permitted

**This technique uses hydrogen bubbles generated by electrolysis on a metal wire to mark the flow.
visual observations of the development of the turbulence structure in the core and the potential regions during vortex decay. Simultaneously, the flow was photographed on 16 mm movie film from an axial and a crosswise viewing direction. Quantitative measurements were made from these films of the tangential velocity profiles and maximum axial velocity. Thus, rates of vortex growth measured at the core and decay of the maximum tangential velocity were established as a function of chord-based downstream distance.

In the last section of this paper, a closed-form solution is obtained for the vortex decay with the varying eddy viscosity, which affords determination from the data of eddy viscosity levels in the vortex flow at given points in time. This information is then used to compute radial distributions of turbulent shear stresses and rates of production of turbulence energy.

Experimental Procedure

The towing tests were conducted in the Lockheed Underwater Missile Facility (4.6 m x 4.6 m x 55 m) with the airfoil mounted to a towing carriage by a streamlined strut (see Fig. 1). The hydrogen bubble generating wire consisted of three twisted platinum wires, 4.6 µ dia, and was mounted within the tank at an angle to the vertical and below the right wing tip. A 5 kw light source mounted above the tank was capable of illuminating the plane of the platinum wire with an intense light sheet, 1.2 m x 0.3 m in cross section. Two cameras were mounted at the elevation of the airfoil, one of which was lined up within the plane of the platinum wire; the view of the other camera was pointed in the axial direction by use of a mirror.

Side view and axial view film recordings of the right vortex were made in two modes, one in which hydrogen bubbles were generated at the rate of 31/sec from the moment of passage of the airfoil until the vortex flow field was well marked. This mode of operation, illustrated in Fig. 2, yielded excellent photographs for further visual study. In the second mode, lines of hydrogen bubbles were only pulsed while the vortex core crossed the wire, so that they were not obscured by previously marked fluid. These lines, also visible in Fig. 2, served for measurement of the tangential velocity profiles. For the purpose of velocity measurements, the age of the vortex was determined by the time elapsed between passage of the airfoil and the instant at which the vortex core crossed the wire. The center of the core, or vortex filament, was usually well marked by hydrogen bubbles left in the water from the previous run.

Discussion of Results

Tangential Velocity and Circulation

The method of obtaining velocity profiles by means of the hydrogen bubble technique in a linear flow is described in detail by Schraub et al. In the present work, radial velocity distributions were deduced from film by measuring from the center of the vortex the polar coordinates of the hydrogen bubble time line next to the wire, whereby the downward motion of the vortex system, given by , was neglected. Since the time delay, , between time lines is known from the film frame speed, the tangential velocity variation is given by

\[v(r) = \frac{r\omega}{\Delta t} \]

(1)

This procedure is indicated schematically in Fig. 3. After computation of for each side of the vortex, the results were averaged in order to represent the vortex by one velocity profile.

Typical velocity profiles, normalized on the towing speed, are shown in Fig. 4 for 4° and 8° angles of attack. The radius is normalized on the wing span, b. The velocity profiles decay with downstream distance in a manner quite similar to a laminar vortex; this point will be discussed further in later section. The reduction in maximum tangential velocity proceeds with a simultaneous enlargement of the core. Outside the core, the tangential velocity approaches the envelope of the potential vortex, but it should be noted that due to viscous or turbulent shear forces, the flow field decays everywhere simultaneously.

Fig. 5 shows the decay of the maximum tangential velocity for the range of downstream distance investigated in this study. For comparison, we also list the flight test data of McCormick et al. for 40° and 80° angles of attack upon . This data is known from the film frame speed, and also noted in Refs. 2, 5, and 7 for short distances behind the wing, has disappeared from our data for downstream distances investigated. As will be shown in the discussion of turbulence contributions to vortex decay, higher levels of turbulence, or eddy viscosity, were produced at higher angles of attack. The result was an increased rate of decay of , which tended to diminish the differences in maximum tangential velocities caused by the dependence upon . The data indicate, furthermore, that for a/c above 80, the rate of decay of the maximum swirl velocity approached a slope of -7/8. This rate is considerably higher than the -1/4 dependence exhibited by the flight test data of McCormick et al., for large distances behind the airfoil. Using the notion that turbulent diffusion is proportional to the root mean square of the turbulent fluctuations, Brown concluded that the turbulent vortex decay should follow as -1/3, hence (2/3)-1/3, indicating a slower rate of vortex decay than that usually observed. The computations by Baldwin et al. on turbulent vortices, however, showed that turbulent diffusion contributes significantly only in regions of low shear, Brown's analysis, applied to the region of the core radius, does not adequately explain the vortex spreading rate, since the turbulent shear stresses are maximum just outside this region. Examination of the present velocity data with respect to eddy viscosity levels within the trailing vortex showed that the high rates of decay and transport of core angular momentum outward were, in fact, due to the increase of the eddy viscosity with time. This discussion is deferred until a later section.

The growth of the vortex core region with downstream distance is illustrated in Fig. 6. The indicated growth rate proportional to (2/3)c, for the data at 4° agrees only coincidentally with vortex spreading rate proposed by Browne. As mentioned above, the rate of radial transfer of angular momentum is related to changes of the eddy viscosity with time. This higher growth rate observed at 4° would be expected only if a factor of two.

The development of the vortex growth rate was investigated in detail by Schraub et al. in the present work, radial velocity distributions were deduced from film by measuring from the center of the vortex the polar coordinates of the hydrogenbubble time line next to the wire, whereby the downward motion of the vortex system, given by , was neglected. Since the time delay, between time lines is known from the film frame speed, the tangential velocity variation is given by

\[v(r) = \frac{r\omega}{\Delta t} \]

(1)

This procedure is indicated schematically in Fig. 3. After computation of for each side of the vortex, the results were averaged in order to represent the vortex by one velocity profile.

Typical velocity profiles, normalized on the towing speed, are shown in Fig. 4 for 4° and 8° angles of attack. The radius is normalized on the wing span, b. The velocity profiles decay with downstream distance in a manner quite similar to a laminar vortex; this point will be discussed further in later section. The reduction in maximum tangential velocity proceeds with a simultaneous enlargement of the core. Outside the core, the tangential velocity approaches the envelope of the potential vortex, but it should be noted that due to viscous or turbulent shear forces, the flow field decays everywhere simultaneously.

Fig. 5 shows the decay of the maximum tangential velocity for the range of downstream distance investigated in this study. For comparison, we also list the flight test data of McCormick et al. for 40° and 80° angles of attack upon . This data is known from the film frame speed, and also noted in Refs. 2, 5, and 7 for short distances behind the wing, has disappeared from our data for downstream distances investigated. As will be shown in the discussion of turbulence contributions to vortex decay, higher levels of turbulence, or eddy viscosity, were produced at higher angles of attack. The result was an increased rate of decay of , which tended to diminish the differences in maximum tangential velocities caused by the dependence upon . The data indicate, furthermore, that for a/c above 80, the rate of decay of the maximum swirl velocity approached a slope of -7/8. This rate is considerably higher than the -1/4 dependence exhibited by the flight test data of McCormick et al., for large distances behind the airfoil. Using the notion that turbulent diffusion is proportional to the root mean square of the turbulent fluctuations, Brown concluded that the turbulent vortex decay should follow as -1/3, hence (2/3)-1/3, indicating a slower rate of vortex decay than that usually observed. The computations by Baldwin et al. on turbulent vortices, however, showed that turbulent diffusion contributes significantly only in regions of low shear, Brown's analysis, applied to the region of the core radius, does not adequately explain the vortex spreading rate, since the turbulent shear stresses are maximum just outside this region. Examination of the present velocity data with respect to eddy viscosity levels within the trailing vortex showed that the high rates of decay and transport of core angular momentum outward were, in fact, due to the increase of the eddy viscosity with time. This discussion is deferred until a later section.

The growth of the vortex core region with downstream distance is illustrated in Fig. 6. The indicated growth rate proportional to (2/3)c, for the data at 4° agrees only coincidentally with vortex spreading rate proposed by Browne. As mentioned above, the rate of radial transfer of angular momentum is related to changes of the eddy viscosity with time. This higher growth rate observed at 4° would be expected only if a factor of two.
angle of attack is found to be the inverse of the rate of vortex decay deduced from Fig. 5, but this condition need only be satisfied if we require that the product $v(a,t)a(t)$ remain invariant with time. The faster spreading of the core angular momentum can be associated with higher turbulence levels in the vortex after roll up and with increased rates of turbulence production by the mean shearing deformation outside the core.

Typical circulation profiles as a function of downstream distance are shown in Fig. 7. The trend toward self similarity, also evident in the velocity profiles, is well demonstrated by the data. Overtake of the circulation was observed in some cases and may have been related to radial variations in the rate of turbulent momentum transport, as discussed by Govindraju and Saffman. As a result of these studies, it has become evident that the axial velocity in the core can be directed either toward the wing or away from it, depending upon a balance between the viscous airfoil drag, which causes a wake to form, and the swirl induced radial pressure gradient, which tends to propel the core fluid as a jet down the vortex core. Batchelor's formulation for the radial variation of the axial velocity, expressed in coordinates of a stationary observer, is given by

$$w(r) = \frac{1}{2\pi} \int_0^\infty \frac{P(t)}{r} \, dr - 2M$$ \hspace{1cm} (3)$$

where M is the head loss due to the viscous boundary layer on the wing. If the viscous drag term is larger than the integral term, as is the case at moderate angles of attack, one observes a velocity defect in the core. However, the data of Chigier and Corsiglia show a reversal from a wake flow in the core to an axial velocity excess, measured at a downstream distance of $z/c = 9$, when the angle of attack increases from 8° to 12°. Here, as at large angles of attack, the swirl induced pressure gradient along the vortex axis immediately behind the wing is strong enough to accelerate fluid from the wing tip area in the downstream direction, despite the momentum loss incurred by passing through the viscous boundary layer.

In the present experiments, quantitative axial velocity profiles were difficult to obtain, but the visual studies revealed velocity defects in the core at 4° and 8° angles of attack. The most notable feature of the axial flow was the presence of a sharp radial peak in the axial velocity profile near the vortex axis. This observation qualitatively agrees with theoretical results of Brown regarding the roll up of the momentum deficient boundary layer fluid into the vortex. Accordingly, the axial velocity profile, whether representing a wake or a jet, assumes a $1/r$ dependence through the core.

Measurements of the axial velocity on the axis were made by following fine lines of entrained hydrogen bubbles which marked the vortex filaments in many cases. The magnitude of the maximum defect velocity depended strongly upon the angle of attack, as shown in Fig. 10. These measurements, furthermore, revealed that the velocity on the vortex axis accelerated to a maximum before decaying with time. Acceleration of the axial flow was accompanied by strong radial flow toward the axis in the core region. The mechanism for acceleration of the axial flow may be related to a streamwise pressure rise resulting from the decay of the integral for the radial pressure gradient:

$$p(0) - p_0 = -\rho \int_0^\infty \frac{v(t)}{r} \, dr$$ \hspace{1cm} (4)$$

Since the stationary observer sees a velocity profile that decays with time, we have for the pressure gradient in fixed coordinates:
where we made the transformation \(z = U_\tau t \). The fluid surrounding the axis would thus tend to accelerate toward the low pressure region behind the wing. With increasing time, the axial pressure gradient is diminished, while viscous and turbulent friction cause the axial flow to slow down.

The initial acceleration of the axial flow toward the wing at moderate angles of attack assumes significance in regard to the stability of the vortex core, that is, its resistance to turbulent eddies diffusing from the outer core region inward. Letting the axial velocity be invariant in the azimuthal direction and setting again \(z = U_\tau t \), the equation of continuity is given by

\[
\frac{\partial \rho}{\partial z} + \frac{1}{U_\tau} \frac{\partial (\rho u)}{\partial r} = 0
\]

If we have a mean value for the axial acceleration in the core, \(\frac{\partial w}{\partial t} \), the radial inflow, \(u(r) \), is approximated by

\[
u(r) = \frac{r}{U_\tau} \frac{\partial w}{\partial r}
\]

The momentum equation for the tangential flow is

\[
\frac{\partial v}{\partial r} + \frac{u \frac{\partial v}{\partial r}}{r} + \frac{w \frac{\partial v}{\partial z}}{U_\tau} = 0
\]

Inside the core, \(\frac{\partial v}{\partial r} \approx 0 \), so that by combining Eqs. (7) and (8), we obtain for the rate of change of the tangential core velocity

\[
\frac{1}{v \frac{\partial r}{\partial t}} = \frac{1}{U_\tau (1 + w/U_\tau)} \left(\frac{\partial w}{\partial t} \right)
\]

Hence, spin up of the core angular velocity is induced by acceleration of the axial core flow. The vortex filament is thereby strengthened and further stabilized. This phenomenon may be partly responsible for the reported persistence over long periods of time of well defined cores of aircraft trailing vortices.

Effect of Turbulent Viscosity on Vortex Decay

Theoretical Considerations

It is generally agreed that the effective, or turbulent eddy viscosity, \(\nu_T \), present in the vortex is considerably higher than the molecular viscosity, and thus contributes to the rate of vortex decay. According to data from various investigators collected by Owen, estimates for \(\nu_T/\nu \) fall between 30 and 2000, depending upon the vortex Reynolds number, \(\Gamma_0/\nu \). Kuhn and Plelson, for instance, proposed a theory to calculate the vortex decay by using the z-component of the eddy viscosity evaluated at the vortex axis. Their predictions fit the wind tunnel data of Chigier and Corsiglia, and Squire suggested that Lamb’s laminar solution can still be applied to the turbulent vortex decay when the eddy viscosity is constant with time and the radial coordinate, and is given by

\[
\nu_T = \beta z
\]

Owen proposed a more sophisticated model, but in order to achieve agreement with experiment, also finally assumed that \(\nu_T \) is proportional to \(\Gamma_0/\nu \). Both models result in a rate of decay of \(v_\theta \) proportional to \(t^{-1/2} \).

However, different rates of vortex decay have been previously observed, which, together with the data of this study, suggest that the eddy viscosity may vary with time. Particularly in towing experiments, where the airfoil is moved through an undisturbed fluid, one may expect an initial increase of the eddy viscosity and a corresponding contribution to the rate of vortex decay. This reasoning seems logical in view of the fact that the fluid is initially free of turbulence, and that the rolled up boundary layer from the airfoil does not account for the turbulence levels found in the vortex field at some later time. In wind tunnel tests, and particularly in flight test situations where propulsion thrust contributes to the initial turbulence, one would expect a decay of the initial turbulence with time, and hence a decay rate for \(v_\theta \) slower than \(t^{-1/2} \). Lilley’s examination of the experimental flight data of Rose and Dec21 with respect to time varying eddy viscosity led to a decay of the maximum tangential velocity according to \(t^{-1/3} \). In the work of Baldwin et al, on turbulent flow calculations, it was pointed out that the vortex initially is a non-equilibrium flow, i.e., turbulence production \# dissipation. Thus their calculated eddy viscosity decreased sharply from the initial value (\(\approx 0.5 \times 10^5 \)) and then reached a constant of \(\nu_T/\nu \approx 150 \). It is interesting to observe that during this time, the circumferential velocity attained only a very small decay rate. As \(\nu_T/\nu \) approached a constant or presumably an equilibrium value, the maximum tangential velocity reached the familiar dependence upon \(t^{-1/2} \).

The following describes an analytical solution for the decay of an originally potential vortex with turbulence when the eddy viscosity is allowed to vary with time, but remains constant in the radial direction. Since the actual development of turbulence in the vortex flow is not considered, the solution shows the dependence of the rate of vortex decay upon particular assumed variations in \(\nu_T(t) \) which are actually observed.

We define the effective viscosity of the flow

\[
\nu_e = \nu + \frac{\nu_T(t)}{\nu} (r)
\]

where \(\nu_T(t) \) is the initial eddy viscosity level in the flow after roll up. The symbol \(\Gamma \), is dimensionless time using appropriate parameters of the flow, e.g., \(\Gamma = \nu_0/\nu \). In order to solve the resulting differential equation, we make the further assumption that \(\nu_T(t) / \nu_0 < 1 \). This assumption is justified in wind tunnel and flight tests, except perhaps in low Reynolds number towing experiments. Under these circumstances, the two-dimensional vortex motion is governed by

\[
\frac{\partial v}{\partial r} = \left(\frac{\nu_T(t)}{\nu_0} \right) \left(\Gamma_0 \right)^2 \frac{\partial^2 \nu}{\partial r^2} + \frac{1}{r} \frac{\partial \nu}{\partial r} - \frac{v}{r^2}
\]
The solution to this equation is

\[v(r,t) = \frac{r^2}{2\pi} \left[1 - \exp\left(-\frac{(m+1)r^2}{4\pi \alpha (T + 1)^m} \right) \right] \]

(15)

We note that the overall features of the flow remain the same as with constant \(\nu_T \), but the rate of change with time now depends upon the development of the eddy viscosity. We want to establish the rate of change of the maximum tangential velocity and the growth of the vortex core as \(m \) assumes various values. Solving for the radius at the point of maximum tangential velocity, \(a(t) \), and substituting \(r = a(t) \) in equation (13), we have

\[v(a(t)) = 2\pi a(t)^2 \left(\frac{1}{c^2} \right)^{(m+1)/2} \]

(14)

and

\[a(t) \sim b \left(\frac{1}{c^2} \right)^{(m+1)/2} \]

(15)

In contrast to vortex decay with constant \(\nu_T \), the growth of the vortex is proportional to \(t^{(m+1)/2} \), i.e., time dependent changes in \(\nu_T \) contribute to the rate of vortex decay through the additional exponential factor \(m/2 \). Table 1 demonstrates the significance of these results.

<table>
<thead>
<tr>
<th>(m)</th>
<th>-1</th>
<th>-2/3</th>
<th>-1/3</th>
<th>0</th>
<th>1/3</th>
<th>2/3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(a(t)))</td>
<td>(\sim)</td>
<td>(\sim 1/2)</td>
<td>(\sim 1/3)</td>
<td>(\sim 2/3)</td>
<td>(\sim 2/3)</td>
<td>(\sim 1/2)</td>
<td>(\sim 1/2)</td>
</tr>
<tr>
<td>(a(t))</td>
<td>(\sim)</td>
<td>(\sim 1/4)</td>
<td>(\sim 1/2)</td>
<td>(\sim 1/2)</td>
<td>(\sim 2/3)</td>
<td>(\sim 2/3)</td>
<td>(\sim 1/6)</td>
</tr>
</tbody>
</table>

Surveying the literature, including the results of this study, one finds that the range of time decay factors listed in Table 1 include those either previously measured or predicted using various theories of turbulent shear flow. The case \(m = -1 \) is of interest since turbulent vortex decay initially behaves remarkably in this way, namely with no appreciable decay of the circumferential velocity or growth of core radius. The initial value of \(m_0 \), of course, does not remain constant but tends toward zero at the same rate at which equilibrium conditions are established in the vortex flow. On the other hand, the calculations of Baldwin et al., showed that the \(t^{-1/2} \) dependence of the rate when the initial conditions were chosen corresponding to an equilibrium flow. The authors called those solutions self similar, but we recognize that all solutions with constant \(m \) possess the self similar property. Hence, \(m = 0 \) represents the law for turbulent vortex decay when equilibrium conditions have been established in the flow. The available data on wake vortices, suggest strongly that the time required to reach this condition is proportional to the degree to which the initial flow conditions deviated from those of equilibrium.

In view of the findings above, our test results in a towing tank suggest primarily that the turbulence intensities were rising during the development of the vortex, but had not reached the equilibrium level which is characteristic of the dependence upon \(t^{-1/2} \). This conclusion derives from the result that the rate of vortex decay remained proportional to \(t^{-7/9} \). For the rate of change of the eddy viscosity with time, we obtain from Eq. (14) and the data in Fig. 5 that \(m = 3/4 \), and thus \(\nu_T(T) \sim t^{3/4} \). Using the appropriate equations given in the papers of Baldwin et al. and Donaldson, we estimated the equilibrium eddy viscosity level to be \(\nu_T(\infty) = 150 \).

Experimental Results

The variation of \(\nu_T/\nu \) with radius and time was computed from a graphical fit to the circulation profiles. Substituting

\[\nu_T/T = \left(\frac{\nu_T}{\nu} \right)_0 \left(\frac{1}{c^2} \right)^m \]

in Eq. (13) and solving for \(\nu_T/\nu \), we have

\[\frac{\nu_T}{\nu} = \frac{(m+1)^2}{4\pi \ln \left(\frac{1}{c^2} \right)} \]

(17)

Using \(m = 3/4 \) as established from the data of Fig. 5, profiles computed from Eq. (17) were accepted as representing levels of the eddy viscosity approximately when \(\nu_T/\nu \) was invariant with \(r \), or nearly so, at the location of the core radius. Surprisingly, this condition was satisfied in the majority of the examined vortex profiles. Some typical results are shown in Fig. 11, indicating an expected dependence upon \(\Gamma_0 \) through \(\alpha \) and \(\omega_0 \). A summary of the eddy viscosity data obtained at the location of the core radius is plotted in Fig. 12, together with the wind tunnel data of Refs. 18, 22-25. It is seen that the eddy viscosity levels in the towing experiments were below those obtained in wind tunnel tests.

Fig. 13 shows the time dependence of eddy viscosity, \(\nu_T/(\nu_T)^0 \), determined at the radius of maximum tangential velocity from the data taken at \(\alpha = 8^\circ \). The indicated increase of \(\nu_T/(\nu_T)^0 \), proportional to \(t^{3/4} \), is in agreement with the value of established from the slope in Fig. 5.

Interaction of the turbulent shear stress, \(t/a = -u_{\tau}^2 \), with the mean flow provides the significant mechanism for dissipation of the mean flow energy via production of turbulence. Nondimensional turbulent shear stress profiles were computed from

\[\frac{r/\rho}{\omega_0/\nu} = \frac{v_T}{\nu} \left(\frac{\partial v}{\partial r} \right) \]

(18)

Fig. 14 shows shear stress profiles for \(\alpha = 8^\circ \) at various downstream distances. They agree with the computed results of Donaldson and Baldwin, et al., in shape and the relative location of the peak value with respect to the core radius. Rates of production of turbulent kinetic energy, normalized upon \(\rho \omega_0/\nu^2 \), were computed from

\[\left(\frac{\partial v}{\partial r} \right) \left(\frac{\partial v}{\partial r} - \frac{\partial u}{\partial r} \right) \]

(19)

Fig. 15 shows representative profiles of turbulence production for the conditions of Fig. 14 in relation
to downstream distance. At the core radius, P attains approximately one-half its peak value. It is also evident that as the core radius grows, decreasing portions of the mean flow energy are dissipated in the core due to the increasing region of solid body rotation.

Concluding Remarks

Using a towing tank facility, tangential velocity profiles were measured for downstream of a rectangular airfoil. The resulting rates of decay of the maximum tangential velocity followed a $t^{-1/2}$ dependence, and rates of growth of the vortex core were also greater than expected. Analysis of the data showed that this particular behavior was related to the increase in the turbulent eddy viscosity with time; specifically, ν_t/ν appeared to increase according to $t^{3/4}$. Values of circulation measured at the point of maximum circumferential velocity, although scattered, remained constant in the mean with downstream distance at about 0.67 R_w. High axial velocities with initial acceleration in the towing direction were observed and were attributed to a strongly stabilizing influence upon the vortex filament.

An analytical solution to the problem of vortex decay with time varying eddy viscosity revealed that only under equilibrium flow conditions does the self similar solution for the tangential velocity depend upon $t^{-1/2}$. Wind tunnel and flight test data, as well as flow calculations for turbulent vortex decay, have established these results as the expected long time behavior. Nonequilibrium flow with temporally decreasing turbulence intensity (eddy viscosity) yields other self similar solutions which decay slower than $t^{-1/2}$. When P, Analysis of the data showed that this particular behavior was related to the increase in the turbulent eddy viscosity with time; specifically, ν_t/ν appeared to increase according to $t^{3/4}$. Values of circulation measured at the point of maximum circumferential velocity, although scattered, remained constant in the mean with downstream distance at about 0.67 R_w. High axial velocities with initial acceleration in the towing direction were observed and were attributed to a strongly stabilizing influence upon the vortex filament.

References

Fig. 1 Experimental set-up in towing tank: 1-strut, 2-mirror, 3-window, 4-cameras, 5-pulse generator, 6-ground plate, 7-H$_2$ bubbles, 8-airfoil.

Fig. 2 Axial view of vortex field.

Fig. 3 Schematic of hydrogen bubble technique indicating determination of tangential velocity.

Fig. 4 Typical tangential velocity distributions as a function of downstream distance at 4° and 8° angles of attack.
Fig. 5 Decay of maximum tangential velocity.

Fig. 6 Growth of core radius behind airfoil.

Fig. 7 Decay of circulation profiles with downstream distance.

Fig. 8 Similarity plot of circulation profiles.

Fig. 9 Values of circulation determined at the core radius.
PRESENT STUDY

\[e_{60}^\alpha \]

Fig. 10 Maximum axial velocity in towing direction after roll up.

Fig. 11 Eddy viscosity profiles computed from experimental data and Eq. (17).

Fig. 12 Comparison of experimental eddy viscosity data.

Fig. 13 Time dependence of eddy viscosity determined from data.
Fig. 14 Decay of turbulent shear stress profiles. Fig. 15 Profiles of turbulent energy production.