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GATED HIGH SPEED OPTICAL DETECTOR

1. INTRODUCTION

The gated high speed optical detectors which were fabricated, tested, and

delivered under this program include a 400 Mbps receiver for NASA GSFC and a

200 Mbps receiver for Army ECOM. The NASA receiver is operable at 0.53 pm and

1.06 urn by means of interchangeable detector heads. The ECOM receiver is

supplied only with a 1.06 ym detector head. The equipment functions as a gated

high speed photomultiplier receiver for pulsed, binary encoded, laser radiation.

The NASA receiver is described in sections 1 through 6. The ECOM receiver is

described in section 7.

The Optical Detector is comprised of a detector power supply and control

unit, electronics module stack and optical detector head. It performs optical

detection, electron amplification, gating, threshold detection, gain control,

and remote synchronization, and includes all power supplies. The first three

functions are performed by a dynamic crossed field photomultiplier (DCFP) in

the detector head; the remainder by electronic circuits.

A simplified block diagram of the Optical Detector is shown in Figure 1.

Incoming pulsed laser radiation incident on the DCFP photocathode yields photo-

electrons which are amplified by secondary emission multiplication on the DCFP

dynodes. The sensitivity of the receiver to low laser light levels is a func-

tion of the photocathode quantum efficiency and the secondary multiplication

gain. The DCFP internal gating can significantly reduce the effect of back-

ground radiation. Receiver gating is synchronized with the incoming optical

signal pulse train by means of a unique dithered gate phase discriminator phase

locked loop. An AGC loop is used to maintain the output level nearly constant

over the allowed input signal level range. The DCFP output is amplified and

threshold detected to recover the original binary modulation on the laser beam.

The data output is converted to NRZ format. Photos of the equipment are pre-

sented in Figures 2, 3, and 4.



INPUT
BINARY CODED

LASER LIGHT'
BEAM

DETECTOR
HEAD

RF
DRIVE

DYNODE
BIAS
VOLTAGES

ACQUISITION AND
SYNCHRONIZATION
CIRCUIT

OUTPUT

DATA
REGENERATION

DATA
ERROR
DETECTION
ELECTRONICS

T

POWER
SUPPLIES

TO
ERROR

COUNTER

FIGURE 1 SIMPLIFIED BLOCK DIAGRAM OF OPTICAL DETECTOR



FIGURE 2 POWER SUPPLY AND CONTROL UNIT



FIGURE 3 RECEIVER ELECTRONICS MODULE STACK



FIGURE 4 OPTICAL DETECTOR ASSEMBLY



The NASA Optical Detector only is accompanied by a set of error rate

electronics shown in Figure 5. The error rate electronics compare the

optical detector output with the original transmitted code and determine when

errors occur. Experimental communication, system error rate measurements were

made using a 400 Mpps mode locked and frequency doubled Nd:YAG laser

modulated by a 400 Mbps pseudorandom code in conjunction with the 400 Mbps

gated high speed optical detector and these error detection electronics.

FIGURE 5 ERROR RATE ELECTRONICS



2. PERFORMANCE SUMMARY

Measured performance results on the delivered NASA 0.53 ym Optical

Detector are presented in Table 1. The 1.06 ym DCFP is not available from the

manufacturer at the time of this writing.

TABLE 1

SUMMARY UF PERFORMANCE RESULTS

CHARACTERISTIC USING DCFP S/N 013 Value

Operating Wavelength (micrometers)

Photocathode Quantum Efficiency
(maximum)

Dynamic Range of Signal Input
(Photoelectrons per pulse)

Required Input Laser Pulse Width

Synchronization

Acquisition range at 400 Mbps

Deviation rate product

Acquisition time (maximum)

Loop bandwidth

Clock/Data Timing Accuracy
(picoseconds)

Outputs

0.53

5%

30 - 1000

<500 picoseconds
(at the 10% of maximum
points)

+ 67 kHz

>3 x 105 Hz/sec

1 sec

1 kHz

+ 50

Two complementary outputs in
NRZ format.
Output levels are -800 mv and
-1600 mv.



3. HARDWARE DESCRIPTION

A functional block diagram of the Optical Detector is shown in Figure 6.

It is comprised of a power supply and control unit, a stack of electronic

modules, and a detector head containing the DCFP, the adjustable magnetic field

assembly, and protective circuit which prevents -the application of RF drive

power in the absence of dc dynode bias voltages. Two interchangeable detector

heads are supplied, one for 0.53 ym, and one for 1.06 pm. The electronic

modules perform the tasks of RF drive power generation, acquisition and

synchronization, automatic gain control, threshold detection, and regeneration

of received data in NRZ format. The error rate electronics serve as communi-

cations system test equipment and are packaged separately.

3.1 DETECTOR.

The function of the DCFP detector is to convert the pulsed laser signal

into an electrical pulse train with sufficient amplitude to drive the post

detection electronics.

The DCFP is a high speed photomultiplier which is driven by a radio

frequency (RF) electric field, dc biasing fields, and a crossed static

magnetic field. It offers the advantages of high gain, relatively large

photocathode area, and internal subnanosecond gating. Receiver gating is

useful in rejecting a portion of the extraneous background radiation by

temporal discrimination. The gating recurs at a specific portion of each

cycle of the RF drive frequency, so that the DCFP is particularly useful for

receiving regularly recurring optical pulses from a mode-locked laser trans-

mitter.

Detection of pulsed optical inputs is achieved in the DCFP by sampling

the photoelectrons generated at the photocathode at the frequency of the RF

driving field. These electron bunches are then multiplied in successive

steps by means of secondary emission. The electron bunches are focused in

position and phase, such that large current gains are achieved without pulse

to pulse overlap. The DCFP is illustrated in Figure 7.



I
FIGURE 6 400 Mbps OPTICAL DETECTOR BLOCK DIAGRAM
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The DCFP consists of two parallel metal strip electrodes between which

is applied an RF driving electric field and a dc biasing electric field. A

static magnetic field is applied normal to the electric field, and normal to

the length of the strips, so that an electron in motion between the strips

moves along the direction of the strips. The lower strip has a photocathode

near one end, a collecting hole near the other, and is treated to be a good

secondary emitting surface. Photoelectrons generated at the photocathode

are accelerated towards the top strip, or rail, during the positive half

cycle of the RF drive, and the magnetic field causes them to curve in a

cycloidal path towards the collector end of the assembly. On the opposite

half cycle, the electrons are returned to the lower strip with sufficient

energy so that each electron generates several secondary electrons. The

secondary electron multiplication process is repeated until reaching the

collecting hole near the end of the lower strip. After passing through the

collecting hole, the multiplied secondary electrons strike the collector, or

anode. A cutaway photo of a 1 GHz DCFP is shown in Figure 8.

Only photoelectrons which are generated during the proper phase of the RF

drive cycle are "sampled" and amplified by the phase-focusing secondary

multiplication sequence; hence, the gating effect of the DCFP. Photoelectrons

generated at other phases of the RF cycle are collected by the upper

electrode which is biased strongly positive, or will follow a suboptimal tra-

jectory in which they receive insufficient kinetic energy to generate second-

ary electrons when reaching the lower electrode. Changing the input pulse

arrival time or shape does not result in an equivalent change in output pulse

shape or arrival time. The output pulse occurs .synchronously with

the RF drive to the DCFP. Since there is no phase change in the DCFP output

for a phase change of the optical input, a dithered gate tracking loop is

required to keep the DCFP gate aligned with the input pulse.

The gain of the DCFP is proportional to RF drive power level. Only a

slight compensation of DC bias is required as the RF drive power level is

varied. This feature allows both manual and automatic control of DCFP gain.

11



FIGURES CUTAWAY VIEW OF DCFP
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3.2 RF DRIVE CHAIN.

The purpose of the RF drive chain is to provide the 1.2 GHz source, with

appropriate amplitude, frequency, and phase characteristics, for the DCFP tube.

The output signal is modulated by control signals from other portions of the

receiver in order to control the current gain of the DCFP and to implement

acquisition and synchronization to the input optical pulse train.

The required 1.2 GHz drive source must be a very stable low noise RF

signal. A block diagram of the RF drive chain is presented in Figure 9.

The tuning range is + 240 kHz at 1.2 GHz. The oscillator tuning rate is dc

to 20 kHz. The phase of the 1.2 GHz signal is dithered 0.1 radian peak-to-

peak in order to implement the dithered gate phase discriminator. DCFP gain

is controlled by varying the RF drive power from 0.5 to 1.8 watts.

The fundamental frequency source is a Voltage Controlled Crystal

Oscillator (VCXO). Its 100 MHz output is amplified, frequency doubled, and

filtered. A portion is sampled by a power divider to provide an external 200

MHz signal in addition to the required internal signal. The 200 MHz signal is

then frequency doubled, filtered, and split to provide two 400 MHz outputs.

One 400 MHz output is then fed to the clock synchronizer while the other

is fed back into the RF chain with an external jumper. An external 400 MHz

source is used in place of this internally generated 400 MHz signal in the

external synch mode. The 400 MHz signal is then "phase dithered", amplified,

frequency tripled, filtered, and amplified to produce the high level 1.2 GHz

signal. The final amplifier has a gain control input to electronically set

the power output level. The 1.2 GHz output drives the DCFP and supplies the

energy for the secondary multiplication process.

3.3 SYNCHRONIZATION LOOP ELECTRONICS.

Synchronization of the DCFP gate with the incoming optical pulse train

is achieved by the synchronization loop electronics. A functional diagram of

the synchronization circuitry is shown in Figure 10. A 1.0 MHz crystal

oscillator is the dither signal source. This dither signal phase modulates

the DCFP RF drive signal and causes the gate to alternately advance and retard

13



FIGURE 9 RF DRIVE ELECTRONICS FUNCTIONAL DIAGRAM (NASA)
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FIGURE 10 SYNC LOOP ELECTRONICS FUNCTIONAL DIAGRAM
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with respect to the optical pulse train. This process produces a 1 MHz com-

ponent at the DCFP output which is in phase or out of phase with the dither

signal depending on whether the gate precedes or follows the optical pulse.

This dither frequency signal component is sampled at the 2nd dynode. The

phase and amplitude of the recovered dither signal depend upon the relative

timing error between the gate and pulse positions. The recovered dither

frequency signal is then filtered to eliminate harmonics and beat frequency

signals, and amplified by an AGC amplifier. The magnitude of the recovered

dither frequency signal component is dependent upon the magitude of the RF

carrier phase deviation, the average 2nd dynode current, the gating character-

istics of the DCFP, and the width of the input optical signal pulse. Typi-

cally, for 0.1 radians peak-to-peak deviation and 0.3ma dynode current, this

signal level is 0.3 mV. The AGC amplifier output level to the mixer remains

constant at approximately 500 mV and thus normalizes the loop gain for all

operating conditions.

The double balanced mixer is used as a phase detector which produces an

error voltage proportional to the phase difference between the recovered

dither component and a reference signal from the dither oscillator. The

loop filter is a conventional lead-lag network producing a natural loop
3

frequency of to = 6.28 x 10 rad/sec and a damping factor of 0.7. The

summing amplifier adds the error signal and a triangular sweep voltage which

is enabled when the receiver is not synchronized. This composite error

signal controls the phase and frequency of the 100 MHz VCXO in the RF drive

electronics which in turn controls the phase and frequency of the DCFP RF

drive signal.

The lock detector determines whether the loop is locked, controls the

operation of the acquisition sweep generator, and also provides a signal to

light the remote lock indicator. When the loop is not locked, a beat note is

present at the dynode at the difference frequency between the optical pulse

train and the RF drive frequency. A fullwave rectifier with an overall gain

of about 200 produces a sufficiently large signal at the comparator to switch

it, when a beat note is detected. When the loop locks, the beat note dis-

appears and the comparator switches to the locked state, after a suitable

holding time determined by the input RC network.

16



3.4 AUTOMATIC GAIN CONTROL.

The function of the automatic gain control (AGC) and bias compensation

circuitry is to provide a constant output pulse amplitude to the threshold

decision circuits.

The secondary multiplication current gain of the DCFP is proportional to

the applied RF drive power. Thus the DCFP is well suited to automatic gain

control. Performance does not deteriorate over a wide range of applied RF

drive power. However, a slight change in step size occurs with changes in

RF electric field, thereby requiring a small tracking correction in dc bias in

order that the last step passes through the center of the dynode aperture to

reach the anode. This correction is considered a vernier control with the

primary gain control being variation in RF drive power.

The AGC and bias compensation circuits are shown functionally in Figure

11. The average dynode current is sensed by a resistor in series with the 2nd

dynode bias return line. The sensed dc voltage is amplified in two cascaded

operational amplifiers. The second of these provides a frequency rolloff with

a time constant of 1 ms. The amplified voltage is then used to control the

output power of the 1200 MHz power amplifier, which in turn controls the DCFP

gain and the DCFP second dynode current, closing the loop. The anode output

current is directly proportional to the 2nd dynode current.

The AGC control voltage to the power amplifier is related to the RF field

and is also used to control the bias compensator. The bias compensator con-

sists of a variable gain operational amplifier and a series pass transistor in

the return side of the 2nd dynode bias supply. The series pass transistor

acts as a voltage source subtracting from the bias supply some value from 1 to

25 volts. The ac component of the dynode signal is capacitively coupled from

the high side of the bias supply to the synchronization loop electronics. A

portion is also used in the AGC loop to extend its bandwidth and improve the

phase margin.

3.5 THRESHOLD DETECTOR.

The threshold detector provides wideband amplification of the DCFP output

pulse train, binary decision of the serial data on the basis of pulse amplitude,

17



FIGURE 11 DYNODE AGC AND BIAS COMPENSATION FUNCTIONAL DIAGRAM
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and conversion from return-to-zero (RZ) to a non-return-to-zero (NRZ) format.

A functional diagram of the threshold detector is shown in Figure 12.

The da^a preamplifier has an overall gain of 100 from dc to 600 MHz. This

wideband operation is achieved by combining two cascaded ac coupled hybird

amplifiers with an operational dc amplifier having suitable input and output

matching networks. The effective gain to the narrow DCFP output pulse is a

factor of 2 to 3 less, due to the spectral components above 600 MHz.

The threshold decision is made by a tunnel diode xaonostable which is

biased into the unstable state when a "one" level signal is present. The

threshold attenuator controls the amplitude of the RZ data pulse train to the

tunnel diode. The amplitude is set so that "ones" trigger the tunnel diode,

but "zeros" do not.

The post detection amplifier is similar to the preamplifier with a gain

of 10. The output of this amplifier is at MECL levels of -800 mV and -1600 mV.

The RZ to NRZ conversion is accomplished by a D-type flip-flop. The flip-flop

is clocked at a 400 MHz rate to recover the data in NRZ format. An emitter

coupled pair and two emitter followers provide complementary outputs.

3.6 CLOCK SYNCHRONIZER.

The 400 MHz clock synchronizer shown functionally in Figure 13 main-

tains the clock signal and the data signal in a fixed phase relationship. A

narrow range of relative phase shift between the clock and data signals is

required for proper operation of the RZ to NRZ conversion flip-flop. Two

mechanisms lead to clock/data phase variations. The first is the phase

ambiguity resulting from using a 1200 MHz DCFP in a 400 Mbps system. When

the synchronization loop acquires lock, the data is equally likely to appear

in any one of the three possible gating sequences. The 400 MHz clock signal

from the RF drive chain has three possible phase states, with respect to the

data stream, that are 120° apart. The second source of phase shift is the

1200 MHz power amplifier. As the RF drive level is varied to control the

DCFP gain, the phase shift through the amplifier changes leading to further

clock/data uncertainty.

19



FIGURE 12 THRESHOLD DETECTOR FUNCTIONAL DIAGRAM
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FIGURE 13 CLOCK SYNCHRONIZER FUNCTIONAL DIAGRAM
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A second order phase control loop is used to minimize these phase

variations. A sample of the RZ data from the threshold detector is taken as

a reference and the 400 MHz clock signal from the RF drive electronics is

phase shifted to minimize the relative phase error. Two electronic phase

shifters are cascaded to give a total control range in excess of 360°. The

clock amplifiers and hybrid power splitters provide gain and signal distribut-

ion for the synchronized clock signal and a high level drive to the double

balanced mixer which acts as the phase error detector in the control loop.

The resulting error voltage from the mixer is amplified to produce an approxi-

mate closed loop gain of 60.

The remainder of the clock synchronizer electronics is required to make

the phase control loop operate modulo 2ir. When the phase shifter reaches a

phase extreme, the loop saturates and further correction is not possible. The

presence of a saturated control loop is detected by the comparator, which gates

a pulse from the pulse generator into the loop amplifier. This pulse, when

steered to the correct input, forces the loop amplifier to the opposite

saturation state thus subtracting 360° from the accumulated phase. After the

pulse is removed, the loop corrects toward the linear region of operation since

the polarity of the error voltage remains unchanged.

3.7 ERROR RATE ELECTRONICS.

The error rate electronics serially compare a received code with a

similar internally generated code. The occurrence of a discrepancy between

the codes generates an error signal. The error signals are counted in a

fixed time interval to determine error rates.

The error rate electronics automatically synchronize the internally

generated code to the received code. A block diagram of the error rate

electronics is shown in Figure 14 .

The 400 Mbps pseudo-random (PN) code pulse train is amplified by Buffer

Amplifier number 1. One of the outputs is routed thru a coaxial delay line

(D3), which is changed to correspond to the various PN code lengths

available. This system has been designed to operate with code lengths of

22



FIGURE 14 ERROR RATE ELECTRONICS FUNCTIONAL DIAGRAM
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6, 7, 9, 10, 11, and 15 stages. The PN code, after having been delayed, is

used as one input to the exclusive OR (XOR) gate. The other input to the XOR

gate is the reference PN code, which is generated by the reference PN gene-

rator within the error rate electronics.

The reference PN generator delay cables (Dl & D2) should be selected to

generate a reference PN code which is the same stage length as the code being

received.

The two PN codes are compared in the XOR gate, and if the two codes are

alike in every bit, there is a constant low level out of the XOR. One

of the outputs of the XOR is an input to the AND gate, where a logical AND

is performed with a 400 MHz clock signal which is synchronized with the PN

codes. The AND gate output is routed to a flip-flop where the AND output

frequency is divided by two. This signal is available on an external jack

(Errors/2) for input to a frequency counter of 50fi input impedance. This

signal is also connected to FF2 where the frequency is divided by five, and

this output is also available on a jack (Errors/10).

The XOR gate output is high each time the PN code inputs disagree. The

AND gate output is high each time the PN codes disagree and the clock is high

The Errors/2 output is high once for each two input pulses to FF1 and the

Errors/10 output is high once for each ten input pulses to FF1, or five input

pulses to FF2.

The second output of Buffer Amplifier 1 is used as one of the inputs to

the acquisition switch. The second input to the acquisition switch is the

reference PN code. The output of the acquisition switch is either the re-

ceived PN code, or the reference PN code, depending on the position of the

switch. If the received and reference PN codes agree, i.e. the XOR gate

output is low, the acquisition switch will be in the reference PN code position.

If the reference PN generator loses synchronization with the received PN code,

the output of the XOR gate will be high for considerable lengths of time.

This condition will be detected by lowpass filter number 3, and Schmitt

trigger number 1. The output of the Schmitt trigger will go high, and cause

the Q output of FF3 to become high. This condition causes the acquisition

switch to switch to the received PN code position.
24



With the acquisition switch in the received PN code position, the

received PN code is the output of the switch, and the input to the reference

PN generator. The reference PN generator then acquires the received PN

code, and again becomes synchronized to the received code. Shortly

after synchronization is obtained, the XOR gate output goes low, the

Schmitt trigger output and the 0. output of FF3 become low, Q of FF3

becomes high, and the acquisition switch switches to the reference PN code

position once again.

Low-pass filter number 3 can be adjusted, in most instances, to distinguish

between a large number of errors in the received PN code, and loss of synchro-

nization; however, if the received signal is either a constant high, or con-

stant low, the XOR output appears similar to the loss of synchronization

condition. This is of little consequence, since the reference PN generator

does not re-establish synchronization until a satisfactory PN code is received.

The synchronization light is illuminated while the reference PN generator

is synchronized with the received PN code, and is extinguished when synchro-

nization is lost. Error counts should be ignored during the time the synchro-

nization light is off.

3.8 POWER AND CONTROL UNIT.

The power and control unit operates from a standard 115 Vac, 60 Hz power

line and provides low voltage dc power to the receiver electronics, dynode bias

to the DCFP. and control and display functions. The three voltages used by

the receiver electronics are +15V, -15V and +28V. Primary dc power is obtained

from commercial ac/dc power supplies. The secondary dc power requirements in-

clude +22V, -5.2V and high voltage dynode bias. The +22V is derived from the

28V supply using a regulator, and the ^5.2V is similarly derived from the -15V

supply. The dynode bias is produced by two dc-dc inverters. The first dynode

inverter is a low current device whose output dc voltage is variable from -300V

to -450V by controlling the input dc voltage. The second dynode supply is a

moderate current inverter which operates from 28V and is controlled from an

external potentiometer. A current limiter is included in this supply to set

the maximum available current at 1 mA. Both dynode inverter outputs require
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filtering to reduce ripple frequency components. The control and display

functions available on the front panel are shown in Figure 2. The power on

switch controls ac power to the ac/dc supplies. The power indicator lamp

is connected to the 28V supply. The gain control mode is selectable between

manual and AGC. In the manual mode the potentiometer controls the gain while

in the AGC mode the gain is adjusted by the AGC control loop. In both cases

the second dynode current is displayed on the 1 ma full scale meter.

The remaining switch selects the synchronization mode to be used. In the

INT position the receiver electronics acquire synchronization while in the EXT

position power is removed from certain of the synchronization circuits and an

external clock must be supplied to the receiver. The sync loop lock indicator

lamp is illuminated when synchronization is acquired in the INT sync mode.
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4. OPERATING INSTRUCTIONS

These precedures contain instructions for using the 400 Mbps receiver,

indicating configuration definition for various operating modes, adjustment of

various receiver operating parameters, specification of receiver interfaces

and some measurement methods for evaluating receiver performance.

4.1 INITIAL INSTALLATION.

The receiver mounting plate should be secured firmly to the optical table

to insure mechanical stability. The control electronics power cable should be

connected to the power and control unit, and 117 Vac 60 Hz applied to the ac

power connector.

4.2 INPUT BEAM.

4.2.1 Beam Positioning. An optical method for adjusting the beam

should be provided to allow for both vertical and horizontal displacement on

the DCFP photocathode.

4.2.2 Beam Size. The beam size at the photocathode should be as small

as practical. Typical spot sizes used for testing the receiver are 0.20 mm -

0.25 mm diameter.

4.2.3 Beam Intensity. The receiver is designed to work with optical

signal levels corresponding to 30 photoelectrons/pulse to 1000 photoelectrons/

pulse. At a quantum efficiency of 4% this corresponds to optical powers of

55 nW- 1900 nW for a data rate of 400 Mbps (50% duty cycle). The absolute

maximum optical power should not exceed 3.0 microwatts.

4.3 DCFP OPERATING PARAMETERS.

4.3.1 Dynode Voltage Adjustments. The static component of the electric

field is provided by two independently adjustable high voltage supplies, one

for each dynode. The two dynode biasing fields are designated E01 (dynode 1)

and E02 (dynode 2). The adjustments for E01 and E02 are on the rear of the

power and control unit. Also included are test jacks for monitoring the two
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dynode voltages. Caution should be used in measuring these voltages as they

are typically -400 Vdc and a floating voltmeter must be used. E01 should be

set at -410 Vdc and left at this value. The setting of E02 is dependent upon

the desired receiver characteristics. For maximum DCFP gain the recommended

value for E02 = -365 Vdc.

The next operating point is for one less gain step and occurs at E02 =

-400 Vdc. The third operating point occurs for E02 = .-465 Vdc, and this point

sacrifices DCFP gain but yields better electron bunching, higher collector

efficiency, and a somewhat better system error rate.

4.3.2 Magnetic Field Adjustments. The magnetic field should not require

adjustment under normal receiver operation. However an adjustable screw is

provided on each side of the detector head which allows the field to be varied

The number of turns from the full in position are calibrated in gauss as

indicated in the calibration chart below. The normal setting is underlined.

TABLE 2

MAGNETIC FIELD CALIBRATION FOR DCFP S/N013.

TURNS FROM
FULL IN POSITION
(Both Screws)

0

1/2

1

1 1/2

2

2 1/2

3

4

5

MAGNETIC FIELD
GAUSS

330

335

345

350

370

380

390

400

410
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4.3.3 RF Interlock. The DCFP is provided with an interlock feature that

prevents RF drive power from being applied unless both dynode voltages are

adequate to prevent damage to the DCFP. The small circuit board within the

mount provides this function. Switch SI on this board allows for disconnecting

the voltage sensing element from the first dynode. This should only be done

when DCFP photocathode current is being measured. The "up" position for

switch SI is the photocurrent mode, and the "down" position is the normal

operating position.

4.4 SYNCHRONIZATION MODES.

4.4.1 Internal (Remote) Synchronization. In this mode the receiver

acquires synchronization from the input optical pulse train. The SYNC MODE

switch on the control panel should be in the INT position and jumper cable

P13-14 should be in place on the RF drive electronics. When the receiver is

phase locked to the optical signal, the sync loop lock indicator will be

illuminated.

4.4.2 External Synchronization. The use of an external signal which is

phase coherent with the optical pulses may be used to operate the receiver.

This is accomplished by applying a 400 MHz signal to the manual phase shifter

supplied with the receiver. The required level into the phase shifter is -7

dBm(0.28 Vp-p) + 1 dB. The output of the phase shifter is connected to J14

on the RF drive electronics in place of the jumper cable P13-14. The SYNC

MODE switch should be in the EXT position for this mode of operation. The

phase shifter is adjusted to center the DCFP gate on the optical pulse. This

can be observed by monitoring the DCFP output with a sampling oscilloscope.

If an NRZ data output is desired when operating in the EXT SYNC mode, an

additional synchronous 400 MHz signal must be applied to the Clock Synchro-

nizer input at J16. The level of this signal should be -10 dBm (0.20 Vp-p)

+ 1 dB and requires no external phase shifter.
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4.5 GAIN CONTROL MODES.

4.5.1 Automatic Gain Control (AGC). The AGC mode is considered to be

the normal operating mode for the detector. This mode is implemented by the

DCFP gain switch being set to the AUTO position. When operating in the AGC

mode, the optical signal may be varied without re-adjusting other receiver

parameters. The meter on the control panel measures the DCFP second dynode

current. Full scale for this meter is 1.0 mA. When operating in the AUTO

mode, the AGC maintains the second dynode current constant at 0.3 mA over

the receiver dynamic range. This value of 0.3 mA is a trade-off between

required tube gain and pulse output amplitude. This value can be changed to

any value from 0.15 mA to 0.50 mA by adjusting pot R45 on the Sync Loop

Electronics Board 1. Since the AGC loop senses the average second dynode

current, any long term change in data duty cycle will change the output pulse

height correspondingly. This is normal.

4.5.2 Manual Gain Control. A manual gain control mode is also provided

whereby the DCFP gain is varied by the MANUAL GAIN knob on the control panel.

Before switching the DCFP gain switch to the MAN position the MANUAL GAIN

control should be set to the extreme clockwise limit (minimum gain). Again

the operating second dynode current is measured by the panel meter. An

upper limit of 0.5 mA is recommended for long DCFP life. If the current

exceeds 0.7 mA the current limiter in the second dynode power supply begins

to reduce the bias voltage. A point is reached where the interaction of the

current limiter and RF interlock results in an audible relay chatter in the

power and control unit. This condition should not.be allowed to remain for

any period of time, as it represents an overload condition.

4.6 THRESHOLD DETECTOR.

4.6.1 Preamplifier Input Level. The data preamplifier in the Threshold

Detector provides the necessary gain for the DCFP output levels to the tunnel

diode operating levels. It is essential that this amplifier be operated in

its linear region, so the input level must be attenuated to the extent that

the preamp output level at J22 is approximately 400 mV peak-to-peak. The

DCFP output pulse amplitude will vary depending on the number of gain steps
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selected by varying E02, the dynode current, and the duty cycle of the digital

data. A 6 dB broadband resistive signal splitter provided at the DCFP output

serves as an attenuator and as a signal monitor test point. An additional

3 dB or 6 dB pad in the input line should be used if the level at J20 exceeds

400 mV.

4.6.2 Threshold Attenuator Setting. The variable attenuator on the

receiver mounting plate provides the means of adjusting the amplitude of the

pulse going to the tunnel diode threshold detector. The optimum setting for

this attenuator is dependent on optical signal power and preamplifier output

level. To set it properly the NRZ data output should be monitored at J25

either with error rate instrumentation or a sampling oscilloscope. The former

method is much more sensitive and is therefore preferred.

4.7 RECEIVER OUTPUTS.

4.7.1 NRZ Data Output. Complimentary NRZ data outputs are provided at

J25 and J26. The levels are standard MECL levels of -800 mV and -1600 mV.

4.7.2 Synchronous Clock Output. A 400 MHz clock is available at J19.

This clock is always synchronous with and maintains the same phase relation-

ship with the NRZ data. The amplitude of this clock is nominally +4 dBm into

a 50 ohm load.

4.7.3 200 MHz Clock. A 0 dBm 200 MHz clock is available at J15 of the

drive electronics when operating in the internal synchronization mode.

4.8 DCFP PHOTOCURRENT QUANTUM EFFICIENCY MEASUREMENT.

To measure the DCFP photocathode current, observe the following procedure:

(1) Turn off power to the receiver

(2) Disconnect PI from Jl

(3) Remove DCFP enclosure cover. Move interlock switch SI in the DCFP

enclosure to the UP position.

(4) Place magnetic field shorting plate into position inside the DCFP

assembly.
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(5) Connect a 300 volt battery and nanoammeter to PI as shown in
Figure 15 .

DCFP

p, (
DYNODE 1 LEAD-

300V

Y Y

-DCFP GROUND

• METER GROUND

\. NANOAMMETER

«r

FIGURE 15 SETUP FOR PHOTOCATHODE CURRENT MEASUREMENT
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(6) Reduce ambient light as much as possible.

(7) Measure the cathode current with and without presence of the 0.53 pm

optical beam. The difference is the photocurrent .

(8) Measure the incident power of the optical beam.

(9) Compute photocathode yield = •*- - : - i - in amps /watt.
optical power

100%
Multiply by - - - to obtain the quantum efficiency in percent.

watts

4.9 ERROR RATE ELECTRONICS.

A Reference PN Generator within the Error Rate Electronics is auto-

matically synchronized to the incoming data stream, and a PN lock light is

illuminated when the received and reference PN codes are phase aligned. The

two PN codes are compared serially to obtain the error count. This count is

divided by two and divided by ten. The "errors divided by two" signal is

available on J17, and the "errors divided by ten" signal is available on J19.

These signals should be monitored with a frequency counter which has a 50 ohm

input impedance. A scope synchronization signal is available on J21. (50 ohms)

The supply voltage required is -5.2 volts dc, and the power supply used

should be capable of supplying at least two amperes. Power dissipation is

approximately 10 watts total.

The received PN code must be synchronized with the 400 MHz clock signal,

and the received PN code should be approximately the same shape as the

reference PN code. Input and output signals are specified below:

Inputs: 1. Received PN data stream:

400 Mbps, NRZ, pseudorandom noise code. MECL level,

DC coupled. Error rates can be measured on codes of

6, 7, 9, 10, 11, and 15 stages.

The rise and fall times of the received pulses should

be approximately 1.5 nanoseconds (10% to 90%).

2. Clock:

400 MHz sinusoidal waveform, 1 volt peak-to-peak, + 5 volts

maximum dc offset, synchronized to incoming data.
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Outputs: Scope Synchronization Trigger and Error Outputs:

900 mV, peak-to-peak, biased about -2.1 volts dc.

All cables should be connected as numbered, with the number on the end

of the cable corresponding to the J number on the jack. Delay cables numbers

1, 2, and 3 should be selected to correspond to the stage length of the code

being received. These cables are labeled according to code length, cable

number, and cable length. All the cables, with the exception of the error

outputs and the scope sync cables, are cut to specific lengths. These lengths

are necessary to insure that all signals are correctly aligned. The correct

cable lengths are also listed in Table 3.

Once power is applied, connect all cables with the exception of J10 and

J16. Monitor J15 with an oscilloscope. The 400 Mbps NRZ reference PN code

should be present. The synchronization light should be illuminated since

there are no inputs to the XOR gate. Next, monitor J21 and adjust Rl for a

square wave with a half period as indicated in Table 4. This period is

determined by the stage length of the PN code.

Connect a cable from J21 to the external synchronization trigger input

on the oscilloscope. The signals can all be monitored using J21 as the

external sync. Since the scope sync signal is derived from the reference PN

generator the signal will be erratic during periods when the received and

reference PN codes are not synchronized.

Connect the proper cables to JlO and J16, and connect J17 or J19 to a

frequency counter with 50 ohms input impedance. If J17 is used, the count

should be multiplied by two to obtain the actual error count, and if J19 is

used, the count should be multiplied by ten. The error counts should be

recorded only when the synchronization light (DS1) is illuminated. When

this light is extinguished, the reference PN generator is no longer synchro-

nized with the received PN code.

When there is no data present on J16, the synchronization light will be

illuminated, but is will not be as bright as when synchronization is obtained.

During this condition, the acquisition switch will be switching back and
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TABLE 3

ERROR RATE ELECTRONICS CABLE LENGTHS

CABLE
DESIGNATION

Dl

D2

D3

Clock Input

Data Input

P3-4

P5-6

P7-8

P9-10

6

22

2

96

121.

51.

3.

3.

-J •

3.

PSEUDORANDOM CODE STAGE LENGTH
7 9 10 11 15

* 43 26 62 103 198

2 59 42 20 4.5

119 156 175 196 276

c s.
-> S

5 : TT>

X

r -~_
J ^

<; v.

* All Cable Lengths in Inches.

PSEUDORANDOM CODE
STAGE LENGTH

TABLE 4

PSEUDORANDOM CODE SEQUENCE DURATION

SEQUENCE DURATION

6

7

9

,10

11

15

157.5 ns

317.5 ns

1277.5 ns

2557.5 ns

5117.5 ns

81917.5 ns

* Scope Sync period equals twice sequence duration
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forth between the reference PN generator and the received data line. Since

there is no data present on the received data line, the output of the XOR

gate will consist of approximately one sequence length of PN data followed by

a low signal of approximately the same length. This total signal has a

higher dc value than when synchronization is obtained, but not as high as the

unsynchronized condition when data is present on J16. As a result, the

synchronization light will be of intermediate brightness.

The following test can be run if difficulties are encountered during

error rate measurements. With received data present on J16, adjust R3 until

the synchronization light is competely extinguished. The error count should

then be very low, usually zero, unless the received data has an extremely

high error rate. The XOR operation is being performed between the received

data, and the same received data after propagation thru the reference PN

generator. This test checks the length of the data cables Dl, D2, and D3.

To readjust the low-pass filter, remove J16 and adjust R3 until the synchro-

nization light is illuminated. Then rotate R3 in the opposite direction until

the light begins to extinguish. Reconnect J16.
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5. PERFORMANCE TESTS

This section discusses the performance tests applied to the gated high

speed optical detector and the error rate electronics.

5.1 GAIN CHARACTERISTICS.

The DCFP was operated in a special test set up in which fixed operating

biases were maintained at preset levels. The RF drive was derived directly

from the laser transmitter output rather than using the remote synchronization

circuitry. Input photocathode current in response to the laser transmitter

signal was calibrated against a precision variable optical attenuator placed

in the optical beam. Anode output current was then plotted versus input

current at various RF drive power levels. The dc dynode bias was adjusted

slightly to compensate for step size variations with RF drive level. The

resultant transfer characteristics for DCFP S/N013 are presented in Figure 16 .

The number of steps in each case is the same, except that an error in bias

voltage resulted in one less step for the 0.5 watt curve. The linearity of

these curves is excellent up to 0.5 mA of second dynode current.

5.2 QUANTUM EFFICIENCY.

The photocathode quantum efficiency of each DCFP was determined by

measuring the photocurrent due to a known optical signal level. DCFP photo-

current was measured by operating the DCFP as a photodiode, with magnetic

field and RF drive power removed. With only the. dc electric field bias

acting on the photoelectrons, they were accelerated to and collected by the

rail electrode which was at ground potential. The cathode response in amps

per watt was compared with the theoretical maximum of one electron per photon,

which was 0.43 amps per watt at 0.53 ym and 0.86 amps per watt at 1.06 ym,

in order to determine the quantum efficiency.

The quantum efficiency of DCFP S/N 013 at 0.53 ym averaged 3.7% over the

entire cathode and had two hot spots of 4.0% and 5.0%.

The quantum efficiency of DCFP S/N013 at 1.06 ym was 0.005%.
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FIGURE 16 DCFP S/N 013 CURRENT GAIN
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5.3 COLLECTOR EFFICIENCY.

The collector efficiency is the portion of the second dynode current which

is delivered to the anode and is a function of the DCFP operating conditions.

At lower gain and fewer multiplication steps, the phase focusing and bunching

is tighter, and a greater fraction of the dynode current passes through the

collector aperture to reach the anode. The chosen operating conditions for

DCFP S/N 013 in the 0.53 ym detector head (E02 = -465 volts) result in a

collector efficiency greater than 20% over the operating range.

5.4 GATING.

Gating is measured by a convolution technique in which the narrow mode

locked laser pulses are used to sample the shape of the DCFP gating function.

The DCFP gating function is synchronous with the RF drive. The RF drive

frequency is chosen to be slightly different than the frequency of the incoming

optical pulse train. Each succeeding pulse is then received at a different

portion of the DCFP gating function which in turn affects output pulse ampli-

tudes corresponding to the degree of gating. The envelope of the output pulse

train then reproduces the shape of the gating function at the difference

frequency to an accuracy limited by the laser pulse width. If the DCFP output

is displayed on a low frequency oscilloscope, integration of this output pulse

train results in a display of the envelope which is the convolution of the

optical pulse train with the DCFP gating function.

The convolution waveforms of DCFP S/N013 with normal and optimal operating

biases are shown in Figure 17 in response to a 400 Mpps mode locked laser pulse

train.

5.5 ACQUISITION AND SYNCHRONIZATION.

Testing of the acquisition and synchronization functions was designed to

measure the static and dynamic limits of loop performance.
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MINIMUM GATING
E01 = 433 VOLTS
E02 = 408 VOLTS

ESTIMATED GATE WIDTH
150-250 PICOSECONDS

AA/V\
NORMAL OPERATION
E01 = 408 VOLTS
E02 = 412 VOLTS

ESTIMATED GATE WIDTH
350-400 PICOSECONDS

FIGURE 17 CONVOLUTION OF DCFP S/N013 GATING FUNCTION

To measure the static acquisition range, the frequency of the 400 Mpps mode

locked laser was offset a fixed amount and the optical signal power level

reduced until acquisition threshold was reached. The results of this test are

shown in Figure 18 .

The dynamic performance of the synchronization loop is described by the

deviation-rate product. This figure was measured by frequency modulating the

test laser with a triangular modulating waveform at a peak deviation of +1.7

kHz and slowly increasing the modulation frequency until the loop lost lock.

With a large input signal, the laser pulse repetition frequency was modulated

with 3.3 kHz peak to peak deviation 480 times per second before the acquisition

circuitry was unable to track the incoming signal. Therefore, the allowed
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10 Pe/PULSE

MINIMUM SIGNAL
FOR ACQUISITION

I

5 Pe/PULSE •6

-66,6 KH, -33.3 KH 33.3 KH 66.6 KH,\-j W*W III l« MWitl 111 I<J WWiW 1*1 I™

FREQUENCY OFFSET

FIGURE 18 STATIC ACQUISITION RANGE

transmitter deviation rate product is 1.6 x 10 Hz/sec. It is estimated that

this figure is greater than 3 . 10 Hz/sec for input signals down to 30

photoelectrons per pulse.

The loop bandwidth and damping factor were estimated at 1 kHz and 0.7

respectively using a similar test at lower deviation with a sinusoidal modu-

lating signal.

5.6 RF DRIVE CHAIN.

The spectral purity of the RF drive chain outputs at 200 MHz, 400 MHz and

1200 MHz is shown in Figure 19. The 1200'MHz drive to the D'CFP is variable

over a range of 0.1 to 1.9 watts.

5.7 AUTOMATIC GAIN CONTROL.

The characteristics of the dynode AGC loop were specified by static error

of the dynode current and illustrated by photographs of the output pulse ampli-

tude of the DCFP detector.

The static error was a measure of the change in dynode current as the

optical input signal was varied over the specified dynamic range. The results
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1200 MHz OUTPUT
LEVEL =+32.9 dBm

400 MHz OUTPUT
LEVEL =-11.6 dBm

200 MHz OUTPUT
LEV EL =+4.9 dBm

VERTICAL 10 dB/DIV
HORIZONTAL200 MHz/DIV

FIGURE 19 RF DRIVE ELECTRONICS OUTPUTS

42



of this test are presented in Table 5. The closed loop frequency response of

the AGC loop was measured to be 10 kHz at -3 dB down. The estimated tracking

response of the dynode 2 bias compensator is 30 Hz.

The effect of AGC and E02 bias compensation on the detector output pulse is

shown in Figure 20. These photographs demonstrate that the receiver had a dynamic

range of input optical power greater than 15 dB (corresponding to a 30 dB range of

detected photocurrent). The different E02 voltages indicate the amount of bias

compensation required to change step size to keep the output pulse centered in the

dynode collector aperture.

5.8 THRESHOLD DETECTOR.

Following is a summary of measured characteristics of the Threshold Detector:

Preamplifier Bandwidth dc - 600 MHz ± 1.5 dB

Preamplifier Gain 100

RZ Input Range 10 - 20 mV peak

Threshold Resolution 1 dB

Post Detection Amplifier Bandwidth dc - 700 MHz +1.5 dB

Post Detection Amplifier Gain 10

NRZ Output Levels -800 mV and -1600 mV

Threshold resolution is a measure of the width of the threshold uncertainty region.

Resolution is expressed in dB and is defined as 20 log^Q Vj/VQ where V-j_ is the

minimum signal voltage level which always results in a "one" count and Vo is the

maximum level which always results in a "zero" count at the threshold detector out-

put.

Figure 21 shows various threshold detector waveforms. Figure 21A shows the

preamplifier input and output. Figure 21B shows the output of the tunnel diode

threshold detector and post detection amplifier for the same input signal. Figure

21C is the clock/data relationship which was required at the NRZ flip-flop for

proper conversion to NRZ format. Figure 21D is the NRZ data output and the output

400 MHz clock.

5.9 CLOCK SYNCHRONIZER.

The essential requirement for the clock synchronizer is to keep the clock

phase fixed with respect to the data. The second order control loop had the

following measured parameters:
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TABLE 5

STATIC AGC CHARACTERISTICS

Optical Input
Signal Level
(pe/pulse)

25

50

100

200

300

450

600

750

2nd Dynode
Current

(ya)

294

296

299

300

301

302

304

304

Static Error

-2.0%

-1.3%

-0.3%

0

+0.3%

+0.7%

+1.3%

+1.3%
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25 PHOTOELECTRONS/PULSE
Eg2 = -357 VOLTS PRF= 0.95 WATTS

75 PHOTOELECTRONS/PULSE
Eg2 = -359 VOLTS PRF = 0.76 WATTS

250 PHOTOELECTRONS/PULSE
EQ2 = -361 VOLTS PRp= 0.58 WATTS

750 PHOTOELECTRONS/PULSE
EQ2 = -364 VOLTS PRp = 0.43 WATTS

VERTICAL 10 mV/DIV
HORIZONTAL 1 nSEC/DIV
EQ1 = -408 VOLTS
B = 380 GAUSS
Id2 = 300 u a

FIGURE 20 DCFP S/N013 OUTPUT WITH AGC
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(upper) PREAMPLIFIER OUTPUT
(lower)i PREAMPLIFIER INPUT
HORIZONTAL 5 nSEC/DIV

B

POSTAN1PLIFIER OUTPUT
400 mV/DIV, 5 nSEC/DIV

NRZ FLIP FLOP INPUTS
(upper) RZ DATA
(lower) 400 MHz CLOCK
400 mV/DIV, 1 nSEC/DIV

RECEIVER OUTPUTS
(upper) 400 MHz CLOCK
(lower) NRZ DATA
400 mV/DIV, 2 nSEC/DIV

FIGURE 21 400 Mbps - THRESHOLD DETECTOR WAVEFORMS
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Closed Loop Gain 65

Closed Loop -3 dB Bandwidth 40 kHz

Static Phase Error + 6° maximum

These closed loop parameters were measured by electronically phase shifting the

clock input signal to the clock synchronizer. The bandwidth was measured by

phase modulating the clock signal with a variable frequency sine wave. The

static phase tracking error is shown in Figure 22 as a function of phase

difference between the clock and data signals. The worst case static error

of + 6° corresponded to a timing error of + 42 picoseconds at the input to the

NRZ conversion flip-flop. This was well within the requirement of + 80 ps for

proper flip-flop operation.

0°
o

LU O

-8°

5 -161

60° 120° 180° 240° 300° 360°

RELATIVE PHASE ANGLE OF 400 MHz CLOCK INPUT

FIGURE 22 STATIC CLOCK SYNCHRONIZER PHASE ERROR
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5.10 ERROR RATE ELECTRONICS.

The Error Rate Electronics was operated using a pseudorandom code gener-

ator as the input test signal source. These tests were performed with each of

the six pseudorandom code sequence lengths. The photographs shown in Figures

23, 24, and 25 were taken using the six stage code. This code is sixty three

bits, or 157.5 nanoseconds long.

The pseudorandom code input to the Error Rate Electronics is shown in

Figure 23A and B. The input clock signal was the 400 MHz sine wave shown

in the lower part of Figure 23 B. The Reference Pseudorandom Code Generator

output is shown in Figure 23A.

RECEIVED PN CODE (INPUT)

INTERNAL REFERENCE PN CODE

RECEIVED PN CODE

400 MHz INPUT CLOCK SIGNAL

FIGURE 23 ERROR ELECTRONICS I
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tRRORS DIVIDED -BY-TWO (OUTPUT)

ERRORS DIVIDED-BY-TEN(OUTPUT)

SCOPE SYNCHRONIZATION SIGNAL OUTPUT

FIGURE 24 ERROR ELECTRONICS II
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RECEIVED PN CODE (INPUT)

ERRORS DIVIDED-BY-TWO (OUTPUT)

ERRORS DIVIDED-BY-TWO (OUTPUT)

ERRORS DIVIDED-BY-TEN (OUTPUT)

FIGURE 25 ERROR ELECTRONICS

50



When the received pseudorandom code and the reference code were out of

phase the Error Rate Electronics automatically realigned the reference code

generator to the phase of the received code. As a result, under normal condi-

tions, no meaningful test could be made to evaluate the ability of the

electronics to measure maximum error rates. The tests with maximum error

rates were therefore performed with the acquisition switch disabled. Disabling

the acquisition switch prevented realignment of the pseudorandom codes.

Figure 24 A shows the input code and the errors divided-by-two output

with maximum errors. Figure 24 B shows the errors divided-by-two and the

errors divided-by-ten with the same error rate. A frequency counter was used

to monitor the error outputs, and both of the outputs gave the correct count.

Figure 25A shows the two error outputs with the acquisition switch in

the normal condition. Again, a frequency counter was used to check the count,

and a constant zero count was present at both outputs.

The scope synchronization signal is shown in Figure 25B . This syn-

chronization signal became erratic during phase realignment, but was stable

once realignment was accomplished.

The final tests were run using the 400 Mbps receiver as the input to the

Error Rate Electronics. The received data input and the 400 MHz clock must be

properly aligned in phase; therefore the cables used for these two signals

were cut to specific lengths. The receiver error rate tests gave results which

were very close to the theoretical results, as indicated in the Performance

Tests .
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6. COMMUNICATIONS SYSTEM EXPERIMENT

The gated high speed optical detector and the error detection electronics

were operated in an experimental 400 Mbps communication system along with a 400

Mpps mode-locked, frequency doubled Nd:YAG laser and the 400 Mbps optical

modulator system. A block diagram of the set up for error rate measurements

is shown in Figure 26 . The electrooptic modulator encoded the transmitted

optical beam with a pseudorandom code. The clock signal for the optical modu-

lator system was derived from the laser output pulse train by means of a

photodiode detector and a phase locked loop (rather than from the reference

oscillator which drives the laser) in order to eliminate the effect of phase

shifts which occur between the reference oscillator and the laser output due

to laser cavity length detuning. The optical attenuator simulated the optical

attenuation experienced over long transmission distances. The NRZ data output

and a 400 MHz clock signal from the receiver were fed to the error detection

electronics with suitable relative delay. A pseudorandom code generator in

the error detection electronics which duplicated the transmitted code was

automatically brought into synchronization with the received code. The error

detection electronics then compared the codes serially, and the discrepancies

which were detected were counted in a preset time interval and printed. The

results of a series of such measurements, using the NASA 0.53 ym detector head,

are shown in the error rate curves of Figure 27 . No special significance is

attached to the fact that the longer code sequences produced lower error rates,

since the tests were conducted on different days and all system parameters may

not have been faithfully duplicated. Error rates below 10 were difficult to

obtain because the test laser amplitude was not sufficiently stable for the

extended counting periods required.
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7. ECOM DETECTOR

The 200 Mbps detector for ECOM ±s supplied with a 1.06 ym detector head.

Differences between the ECOM detector and the NASA detector are discussed in

detail. Operating instructions and performance test results for the ECOM

detector are included in this section.

7.1 INTRODUCTION.

The ECOM detector is similar to the NASA detector in concept and design.

The notable hardware differences are changes in the RF drive chain due to the

lower bit rate and the larger, more powerful RF drive amplifier. There are

also changes in the detector operating procedures and performance. Photos

of the equipment are shown in Figures 28 and 29.

7.2 PERFORMANCE SUMMARY.

Measured performance results on the ECOM 1.06 ym Optical Detector are

presented in Table 6.

TABLE 6

SUMMARY OF PERFORMANCE RESULTS

CHARACTERISTIC USING DCFP S/N 021 VALUE

Operating Wavelength (micrometers)

Photocathode Quantum Efficiency (maximum)

Dynamic Range of Signal Input
(photoelectrons per pulse)

Required Input Laser Pulse Width

Synchronization

Acquisition Range at 200 Mbps

Deviation Rate Product

Acquisition Time (maximum)

Loop Bandwidth

Clock/Data Timing Accuracy (picoseconds)

Outputs

1.06

0.27%

100 to 1000

<500 picoseconds (at the 10% of
maximum points)

+ 25 kHz

>1.6 x 105 Hz/sec

1 sec

1 kHz

± 50

Two complementary outputs in
NRZ format. Output levels are
-800 mv and -1600 mv.
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FIGURE 28 RECEIVER ELECTRONICS

FIGURE 29 200 Mbps OPTICAL DETECTOR

56



7.3 HARDWARE DESCRIPTION.

A functional block diagram of the ECOM 200 Mbps Optical Detector is shown

in Figure 30. This diagram is similar to that of the NASA detector in Figure

6 except that the RF drive electronics is reconfigured to allow external

synchronization at the lower bit repetition frequency. A functional diagram

of the RF drive electronics is shown in Figure 31. The clock synchronizer

also operates at 200 MHz.

A larger, more powerful 1200 MHz power amplifier is used in the ECOM

detector. This amplifier is less efficient and less expensive than the NASA

unit which was optimized for size, weight, and power consumption. " The power

amplifier is located beneath a chassis which supports the remaining receiver

electronics modules as shown in Figure 28. Some changes are incorporated in

the automatic gain control circuitry to match the input characteristics of

this amplifier.

7.4 OPERATING INSTRUCTIONS.

These procedures contain instructions for using the 200 Mbps receiver,

indicating configuration definition for various operating modes, adjustment

of various receiver operating parameters, specification of receiver inter-

faces and some measurement methods for evaluating receiver performance.

7.4.1 Initial Installation. The DCFP enclosure should be

secured firmly to the optical table to insure mechanical stability. The

control electronics power cable should be connected to the power and control

unit, and 117 Vac 60 Hz applied to the ac power connector.

7.4.2 Input Beam.

7.4.2.1 Beam positioning. An optical method for adjusting the beam

should be provided to allow for both vertical and horizontal displacement on

the DCFP photocathode.

7.4.2.2 Beam size. The beam size at the photocathode should be as

small as practical. Typical spot sizes used for testing the receiver are

0.20 mm to 0,25 mm diameter,
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I

FIGURE 31 RF DRIVE ELECTRONICS FUNCTIONAL DIAGRAM (ECOM)
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7.4.2.3 Beam intensity. The receiver is designed to work with optical

signal levels corresponding to 30 photoelectrons/pulse to 1000 photoelectrons/

pulse. At a quantum efficiency of 0.27% this corresponds to optical powers of

0.21 yW to 7.0 pW for a data rate of 200 Mbps (50% duty cycle). The absolute

maximum optical power should not exceed 200 microwatts. Due to the higher

quantum efficiency in the visible, no more than 2 microwatts of optical power

should be applied.

7.4.3 DCFP Operating Parameters.

7.4.3.1 Dynode voltage adjustments. The static component of the electric

field is provided by two independently adjustable high voltage supplies, one

for each dynode. The two dynode biasing fields are designated E01 (dynode x)

and E02 (dynode 2). The adjustments for E01 and E02 are on the rear of the

power and control unit. Also included are test jacks for monitoring the two

dynode voltages. Caution should be used in measuring these voltages as they

are typically -400 Vdc and a floating voltmeter must be used. E01 should be

set at -450 vdc and left at this value. The setting of E02 is dependent upon

the desired receiver characteristics. The recommended value for E02 is -440

Vdc.

7.4.3.2 Magnetic field adjustments. The magnetic field should not require

adjustment under normal receiver operation. However an adjustable screw is

provided on each side of the detector head which allows the field to be varied.

The number of turns from the full in position are calibrated in gauss as

indicated in the calibration chart below. The normal setting is underlined.
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TABLE 7

MAGNETIC FIELD CALIBRATION FOR DCFP S/N 021

TURNS
FULL IN POSITION

(Both Screws)

0

1/2

1

1 1/2

2

3

4

5

MAGNETIC FIELD
GAUSS

320

330

340

355

370

380

390

400

7.4.3.3 RF interlock. The DCFP is provided with an interlock feature

that prevents RF drive power from being applied unless both dynode voltages

are adequate to prevent damage to the DCFP. The small circuit board within

the mount provides this function. Switch SI on this board allows for dis-

connecting the voltage sensing element from the first dynode. This should

only be done when DCFP photocathode current is being measured. The "down"

position for switch SI is the photocurrent mode, and the "up" position is

the normal operating position.

7.4.4 Synchronization Modes.

7.4.4.1 Internal (remote) synchronization. In this mode the receiver

acquires synchronization from the input optical pulse train. The SYNC MODE

switch on the control panel should be in the INT position and jumper cable

P12-13 should be in place on the RF drive electronics. When the receiver is

phase locked to the optical signal, the sync loop lock indicator will be

illuminated.
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7.4.4.2 External synchronization. The use of an external signal which

is phase coherent with the optical pulses may be used to operate the receiver.

This is accomplished by applying a 200 MHz signal to the manual phase shifter

supplied with the receiver. The required level into the phase shifter is

+5 dBm (1.1 Vp-p) ±1 dB. The output of the phase shifter is connected to J12

on the RF drive electronics in place of the jumper cable P12-13. The SYNC

MODE switch should be in the EXT position for this mode of operation. The

phase shifter is adjusted to center the DCFP gate on the optical pulse. This

can be observed by monitoring the DCFP output with a sampling oscilloscope.

If an NRZ data output is desired when operating in the EXT SYNC mode, an

additional synchronous 200 MHz signal must be applied to the Clock Synchro-

nizer input at J15. The level of this signal should be +5 dBm (1.1 Vp-p)

±1 dB and requires no external phase shifter.

7.4.5 Gain Control Modes.

7.4.5.1 Automatic gain control (AGC). The AGC mode is considered to be

the normal operating mode for the detector. This mode is implemented by the

DCFP gain switch being set to the AUTO position. When operating in the AGC

mode, the optical signal may be varied without re-adjusting other receiver

parameters. The meter on the control panel measures the DCFP second dynode

current. Full scale for this meter is 100 pA. When operating in the AUTO

mode, the AGC maintains the second dynode current constant at 50 pA over,

the receiver dynamic range. This value can be changed to any value from

50 yA to 200 yA by adjusting pot R45 on the Sync Loop Electronics Board.

Since the AGC loop senses the average second dynode current, any long term

change in data duty cycle will change the output pulse height correspondingly.

This is normal.

7.4.5.2 Manual gain control. A manual gain control mode is also provided

whereby the DCFP gain is varied by the MANUAL GAIN knob on the control panel.

Before switching the DCFP gain switch to the MAN position the MANUAL GAIN

control should be set to the extreme counterclockwise limit (minimum gain).

The opposite convention is used in the NASA detector. Again the operating

second dynode current is measured by the panel meter. An upper limit of
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100 pA is recommended for long DCFP life. If the current exceeds 0.7 mA the

current limiter in the second dynode power supply begins to reduce the bias

voltage. A point is reached where the interaction of the current limiter and

RF interlock results in an audible relay chatter in the power and control

unit. This condition should not be allowed to remain for any period of time,

as it represents an overload condition.

7.4.6 Threshold Detector.

7.4.6.1 Preamplifier input level. The data preamplifier in the Threshold

Detector provides the necessary gain for the DCFP output levels to the tunnel

diode operating levels. It is essential that this amplifier be operated in

its linear region, so the input level must be attenuated to the extent that

the preamp output level at J21 is approximately 400 mV peak-to-peak. The

DCFP output pulse amplitude will vary depending on the number of gain steps

selected by varying E02, the dynode current, and the duty cycle of the digital

data. A 3 dB or 6 dB pad in the input line should be used if the level at

J21 exceeds 400 mV.

7.4.6.2 Threshold attenuator setting. The variable attenuator on the

receiver mounting plate provides the means of adjusting the amplitude of the

pulse going to the tunnel diode threshold detector. The optimum setting for

this attenuator is dependent on optical signal power and preamplifier output

level. To set it properly, the NRZ data output should be monitored at J24

either with error rate instrumentation or a sampling oscilloscope. The

former method is much more sensitive and is therefore preferred.

7.4.7 Receiver Outputs.

7.4.7.1 NRZ data output. Complimentary NRZ data outputs are provided at

J27 and J28. The levels are standard MECL levels of -800 mV and -1600 mV.
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7.4.7.2 Synchronous clock output. A 200 MHz clock is available at J18.

This clock is always synchronous with and maintains the same phase relation-

ship with the NRZ data. The amplitude of this clock is nominally +4 dBm into

a 50 ohm load.

7.4.7.3 400 MHz clock. A -10 dBm 400 MHz clock is available at J10 of

the RF drive electronics when operating in the internal synchronization mode.

7.4.8 DCFP Photocurrent/Quantum Efficiency Measurement. To measure the

DCFP photocathode current, observe the following procedure.

(1) Turn off power to the receiver.

(2) Disconnect P31 from J31.

(3) Remove DCFP enclosure cover. Move interlock switch Si in the DCFP

enclosure to the DOWN position.

(4) Place magnetic field shorting plate into position inside the DCFP

assembly.

(5) Connect a 300 volt battery and nanoammeter to P31 as shown in

Figure 15.

(6) Reduce ambient light as much as possible.

(7) Measure the cathode current with and without presence of the 1.06

urn optical beam. The difference is the photocurrent.

(8) Measure the incident power of the optical beam.

(9) Compute photocathode yield = P . = in amps/watt.

Multiply by - to obtain the quantum efficiency in percent.
0.86 ?™£2-

watts

7.5 PERFORMANCE TESTS.

This section discusses the performance tests applied to the ECOM optical

detector.

7.5.1 Gain Characteristics. The DCFP was operated in a special test

set up in which fixed operating biases were maintained at preset levels. The

RF drive was derived directly from the laser transmitter output rather than
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using the remote synchronization circuitry. Input photocathode current in

response to the laser transmitter signal was calibrated against a precision

variable optical attenuator placed in the optical beam. Anode output current

was then plotted versus input current at various RF drive powei levels. The

dc dynode bias was adjusted slightly to compensate for step size variations

with RF drive level. The resultant transfer characteristics for DCFP S/N

021 are presented in Figure 32. The number of steps is the same for each

power level. The linearity of these curves is excellent up to 100 pA of

second dynode current.

7.5.2 Quantum Efficiency. The photocathode quantum efficiency of the

DCFP was determined by measuring the photocurrent due to a known optical signal

level. DCFP photocurrent was measured by operating the DCFP as a photodiode,

with magnetic field and RF drive power removed. With only the dc electric

field bias acting on the photoelectrons, they were accelerated to and collected

by the rail electrode which was at ground potential. The cathode response in

amps per watt was compared with the theoretical maximum of one electron per

photon, which is 0.86 amps per watt at 1.06 urn, in order to determine the

quantum efficiency.

The quantum efficiency of DCFP S/N 021 at 1.06 pm was 0.17% average and

had a hot spot of 0.27%.

The quantum efficiency of DCFP S/N 021 at 0.53 ym was about 3.5% average

and had a hot spot of 5.3%.

7.5.3 Collector Efficiency. The collector efficiency is the portion of

the second dynode current which is delivered to the anode and is a function

of the DCFP operating conditions. At lower gain and fewer multiplication

steps, the phase focusing and bunching is tighter, and a greater fraction of

the dynode current passes through the collector aperture to reach the anode.

The chosen operating conditions for DCFP S/N 021 result in a collector effi-

ciency greater than 17% over the operating range.
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FIGURE 32 DCFP S/N 021 CURRENT GAIN
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7.5.4 Gating. Gating is measured by a convolution technique in which

the narrow mode locked laser pulses are used to sample the shape of the DCFP

gating function. The DCFP gating function is synchronous with the RF drive.

The RF drive frequency is chosen to be slightly different than the frequency

of the incoming optical pulse train. Each succeeding pulse is then received

at a different portion of the DCFP gating function which in turn affects

output pulse amplitudes corresponding to the degree of gating. The envelope

of the output pulse train then reproduces the shape of the gating function at

the difference frequency to an accuracy limited by the laser pulse width. If

the DCFP output is displayed on a low frequency oscilloscope, integration of

this output pulse train results in a display of the envelope which is the

convolution of the optical pulse train with the DCFP gating function.

The convolution waveform of DCFP S/N 021 with normal operating

bias is shown in Figure 33 in response to a 200 Mpps mode locked

laser pulse train. Unfortunately, the sampling laser pulse is too wide to

allow an accurate determination of gate width.

7.5.5 Acquisition and Synchronization. Tests of the acquisition and

synchronization functions were designed to measure the static and dynamic

limits of loop performance.

To measure the static acquisition range, the frequency of the 200 Mpps

mode locked laser was offset until acquisition was no longer achieved. At

50 photoelectrons/pulse the static acquisition range was ±25 kHz.

The dynamic performance of the synchronization loop is described by the

deviation-rate product. This figure was measured by frequency modulating the

test laser with a triangular modulating waveform at a peak deviation of

+.83 kHz and slowly increasing the modulation frequency until the loop lost

lock. The allowed transmitter deviation-rate product is 3.3 x 10 Hz/sec at

1000 photoelectrons per pulse and decreases to 1.7 x 10 Hz/sec for input

signals down to 30 photoelectrons per pulse, as shown in Figure 34.
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NORMAL OPERATION
E01= 450 VOLTS
E02= 388 VOLTS
B= 370 GAUSS
ESTIMATED GATE WIDTH
IS 200 TO 250 PSEC AT
50% OF MAXIMUM

SAMPLING LASER PULSE
WIDTH = 440 PSEC
AT 50% OF MAXIMUM
HORIZONTAL = 200 PSEC/DIV

FIGURE 33 CONVOLUTION OF DCFP S/N 021 GATING FUNCTION

100 200 300 400 500 600 700 800

SIGNAL PHOTOELECTRONS PER PULSE

FIGURE 34 SYNCHRONIZATION LOOP DYNAMIC TRACKING CAPABILITY
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The loop bandwidth and damping factor were estimated at 1 kHz and 0.7

respectively using a similar test at lower deviation with a sinusoidal modu-

lating signal.

7.5.6 RF Drive Chain. The spectral purity of the RF drive chain outputs

at 200 MHz, 400 MHz and 1200 MHz is similar to that displayed for the NASA

detector in Figure 19, though the levels are somewhat different. The 1200 MHz

drive to the DCFP is variable up to 1.2 watts.

7.5.7 Automatic Gain Control. The characteristics of the dynode AGC

loop were specified by static error of the dynode current and illustrated by

photographs of the output pulse amplitude of the DCFP detector.

The static error was a measure of the change in dynode current as the

optical input signal was varied. Decreased loop gain in this detector allowed

a static error of ±12% over the range of 50 to 800 photoelectrons per pulse.

The effect of AGC and E02 bias compensation on the detector output pulse

is shown in Figure 35. These photographs demonstrate that the receiver had

a dynamic range of input optical power greater than 10 dB (corresponding to

a 20 dB range of detected photocurrent). The different E02 voltages indicate

the amount of bias compensation required to change step size to keep the output

pulse centered in the dynode collector aperture.

7.5.8 Threshold Detector. Following is a summary of measured character-

istics of the Threshold Detector:

Preamplifier Bandwidth dc - 600 MHz ±1.5 dB

Preamplifier Gain 100

RZ Input Range 10 - 20 mV peak

Threshold Resolution 1 dB

Post Detection Amplifier Bandwidth dc - 700 MHz ±1.5 dB

Post Detector Amplifier Gain 10

NRZ Output Levels -800 mV and -1600 mV
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30 PHOTOELECTRONS/PULSE

90 PHOTOELECTRONS/PULSE

300 PHOTOELECTRONS/PULSE

VERTICAL 2 mV/DIV
HORIZONTAL 1 nS/DIV
E01 = 450 VOLTS
E02= 370 TO 385 VOLTS
B = 370 GAUSS
Id2 = 50 n a

FIGURE 35 DCFP S/N 021 OUTPUT WITH AGC
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Figure 36 includes various threshold detector waveforms. Figure 36A

shows the preamplifier output. Figure 36B shows the output of the tunnel

diode threshold detector and post detection amplifier for the same input

signal. Figure 36C is the clock/data relationship which was required at the

NRZ data output. Figure 36D is the NRZ data output.

7.5.9 Clock Synchronizer. The essential requirement for the clock

synchronizer is to keep the clock phase fixed with respect to the data. The

second order control loop had the following measured parameters:

Closed Loop Gain 65

Closed Loop -3 dB Bandwidth 40 kHz

Static Phase Error ±6° maximum

These closed loop parameters were measured by electronically phase shifting

the clock input signal to the clock synchronizer. The bandwidth was measured

by phase modulating the clock signal with a variable frequency sine wave.

The static phase tracking error is similar to that shown in Figure 22 as a

function of phase difference between the clock and data signals. The worst

case static error of ±6° corresponded to a timing error of ±42 picoseconds at

the input to the NRZ conversion flip-flop. This was well within the require-

ment of ±80 ps for proper flip-flop operation.

7.5.10 Dark Anode Current. At high gain, DCFP S/N 021 demonstrates a

large dark anode.current which is not due to dark cathode current. Cool-

ing tests have revealed a strong temperature dependence of the dark anode

current which indicates that it is due to thermionic emission on the first

dynode prior to the cathode. These thermionic electrons undergo one or two

gain steps before reaching the cathode and two additional steps of very high

gain on the cathode where they compete with the signal photoelectrons for a

portion of the output current. Due to the additional gain steps, the therm-

ionic dark anode current increases much more rapidly than the signal with

increasing RF drive power. Improvements will be incorporated into future

DCFP's to eliminate this problem.

The output dark current of DCFP S/N 021 reaches a level of 20 ua at the

second dynode when the overall gain is 5 x 10 and the RF drive power is 1.2

watts. The DCFP in the ECOM receiver is operated at the lowest possible gain
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PREAMPLIFIER OUTPUT
400 mV/DlV, 5 nSEC/DIV

B

POSTAMPLIFIER OUTPUT
500 mV/DIV, 5 nSEC/DIV

(upper) CLOCK
(lower) NRZ DATA OUT
400 mV/DIV, 1 nSEC/DIV

NRZ DATA OUT
400 mV/DIV, 10 nSEC/DIV

FIGURE 36 200 Mbps THRESHOLD DETECTOR WAVEFORMS

in order to minimize the effects of the dark current. Reserve gain in the

following preamplifier is utilized to bring the signal up to the required

level for threshold detection.
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8. CONCLUSIONS

At the conclusion of this program, a. 400 Mbps Gated High Speed Optical

Detector was delivered to NASA GSFC. This equipment is a highly efficient

detector of binary encoded 400 Mpps mode locked laser pulses. Error rate

measurements performed with this detector, the associated error rate electronics,

a 400 Mpps mode locked and frequency doubled NdrYAG laser, and an electrooptic

modulator driven by pseudorandom codes have demonstrated very good overall

system performance. Similar measurements under other programs have attributed

only 1/2 to 1 dB of system degradation to the DCFP and the remainder to limita-

tions of the electrooptic modulator and the electronics, and instabilities in

the laser.

A similar 200 Mbps detector was delivered to Army ECOM, Fort Monmouth.
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