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Preface

Recently it has been deemed important that remote sensing data analysis

technology be developed so that earth resources programs initiated by

several agencies, both in the United States and abroad, can be utilized

effectively to assess fully available earth resources. Techniques when

judiciously used could provide answers to certain important and pertinent

problems facing mankind. Under the technology of remote sensing the multi-

channel scanning devices are employed for securing earth information and

identifying response pattern for each natural (earth) resource as completely

and reliably as possible. This, however, gives rise to multivariate data

and hence, handling of the large amounts of data requires a careful con-

sideration of both the underlying physical properties and the data analysis

techniques. The foremost problem after a region has been scanned from

above by using airborne data scanning devices is that of recognition of

different earth resources in the region. This emphasizes the importance

of developing certain classification procedures that can meet any urgent

demand of identification of the scanned ground.

The greater part of the v/ork presented in this report is addressed to

the classification problem from a statistical viewpoint as applied to the

remote sensing technology. It is easy to visualize that a remote sensing

data will generally inherent a high degree of variability. This suggests

being careful in associating a stochastic model to the underlying earth

resources. The empirical approach for determining a model may not be
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reliable because of uncertain!ty in identifying the resource of an observa-

tion obtained via remote sensors. This has led investigators to assume the

usual law of errors, and thereby, to consider the multivariate Gaussian

probability model for the earth resource classes. Though the Gaussian model

has many virtues, it is somewhat an arbitrary choice, and so a careful

screening of the data is called for prior to associating any such model

with the underlying classes. This and further consideration of computa-

tional advantages has led us to suggest alternative models which we have

called normed exponential densities in one of the given reports. The use

of these density models which are appropriate in several physical situa-

tions provides an exact solution for the probabilities of classifications

(i.e. probability of misclassification and probability of correct classifi-

cation) associated with the Bayes discriminant procedure even when the

covariance matrices are unequal (a property not enjoyed in the normal density

case). The computational difficulties that one faces in a complex situation

such as remote sensing can be reduced to a certain degree if suggested

normed densities are used as class models.

In another report the problem of finding the probability that a random

instantaneous field of views of a multispectral scanning device consists of

areas across class boundaries is discussed. Based upon an empirical study

an estimate of this probability for our example was approximately .4. Such
/

an amount of contamination is significant and it points out another potential

irregularity that any remotely sensed data may have.

Some of our reports deal with the problem of estimating probabilities

of misclassification for the Bayes procedure as applied to Gaussian dis-

i i i



tributed classes, a well-studied problem in the classification theory. Both

theoretical and empirical work has been done toward the investigation of the

estimation problem. Further, the relationship between sample-size, feature-

size, and Euclidean distance measure betv/een classes was evaluated using a

Monte; Carol study. These results indicate that if the ratio of a sample-

size to a feature-size becomes small, the probability of misclassification

is increased accordingly.

Also, we have obtained the minimum variance unbiased estimates (MVUE)

of the probabilities of misclassification for the case of univariate normal

probability models for the classes. Other ad hoc procedures previously

given in the literature such as table look-up technique, have also been

studied and certain modifications are suggested for making these more

useful in remote sensing application.

One report deals with clustering using dynamic programming. The

problem of dimensionality of the observation vector has been treated from

. the point of both computation and reduction. The reduction of dimension-

ality has been related to the probability of misclassification under the

Bayes disciminant procedure. It is pointed o-jt that such basis of probabil-

ity of misclassification for reduction is not possible by using Karhunen-

Loeve expansion method; and Wilks' dispersion techniques is recommended

for the purpose of reducing dimensionality as it involves smaller risk

in losing information concerning separability of the classes.

The present work is a continuation of the research being conducted by

us on the subject of remote sensing data analysis techniques. Besides the



classification and feature selection problems, other statistical investiga-

tions such as the determination of sample size and the accuracy of estimates

have been discussed in one of the reports. For the problem of estimating

proportions for different categories of objects a model has been developed

which takes into account the uncertainty that exists in classifying an

object measured by remote sensor. More related problems are being con-

sidered for the sampling scheme in obtaining sample observations from

any remotely sensed data and deriving estimates of the actual amount or

size of underlying classes.

Our reports as listed in the table of contents contain results deserving

of publication in professional journals. Publications based upon the re-

sults of the following two reports have been accepted and are expected to

appear soon in the respective journals:

(a) Discriminant analysis using certain normed exponential densities,

(Journal of Pattern Recognition, 1973)

(b) On the table look-up in discriminate analysis, (Journal of Statistical

Computation and Simulation, 1973)

Other reports submitted for publication and being reviewed are:

(c) An empirical study of classification by thresholding, (IEEE Transactions

on Computers) /
/

(d) A space application of an extension of the buffon needle problem,
/

(Journal of American Statistical Association)

(e) Concerning dimension reduction in discriminate analysis, (IEEE, Informa-
i

tion Theory) • .



(f) Effect of intraclass correlation among training samples on the linear

discrimination procedure, (Journal of Pattern Recognition)

(g) Estimation of proportion of objects and determination of training

sample-size in a remote sensing application, (Journal of American

Statistical Association).

VI
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An Empirical Study of Classification by Threshplding

by

J. Tubbs, B. S. Duran, T. L. Boullion, and P. L. Odell

1. Introduction

Consider m populations TT, , ir_ ,'. „. , IT and suppose each indi-

vidual in the union of these populations possesses p common ob-

servable characteristics c,, c_,...,c . The observed values of

T
an individual are denoted by x = (x,,...,x ) , where x. denotes

the observed value of c.. Let p (x), p2(x),...fp (x) denote m

known multivariate probability density functions.of the p-dimen-

sional observation vector x and g,, q 2 / « « - / q be known a priori

probabilities that an individual, I, be selected from a popula-

tion K TT ,.. .,11 , respectively. '

The classical discriminate analysis problem consists of

formulating a technique for assigning an individual I selected
m

at random from \J IT. into one of the m populations. There
1=1 a

have been various techniques, proposed for solving the problem,

of.which the Bayesian solution is optimal, in the sense that it

minimizes the expected cost of misclassification.

In various applications of discriminate analysis, for example

in the analysis of remote sensing data [6], the amount of compu-

tation time is immense. Thus it is desirable to develop a tech-

This research was supported in part by NASA Manned Space-
craft Center under Contract NAS 9 - 12775.

2 Presently with the University of Texas at Dallas.
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nique which either reduces the number of calculations by reducing

the dimension of the problem or which judiciously assigns indivi-

dual I to its "most likely" population, while maintaining approx-

imately the optimality of the Bayesian procedure. In this paper

we investigate a discrimination procedure of the latter type,

which is called classification by thresholding as formulated by

Winter and Hallum [3].

Before considering the thresholding procedure we first re-

view the maximum likelihood classification technique. Suppose

Tthe observed value x = (x,,X2/..-/x ) is to be classified into

one of m populations TT, , 7r9,...,u . Assuming q.-= q, i = 1,2,...,
JL & Iu 1

m, the maximum likelihood procedure is to assign x to TT . if

p.(x) > p. (x) for all .1 i- j. For unequal a priori probabilities

q., q ,...,g the procedure becomes that of assigning x to rr.
JL ^ Hi • I

if q .p . (x) > qipi(x) for all i / j. . .

In the thresholding procedure the maximum likelihood pro-

cedure has been reformulated in the following manner:

1. Obtain an observation x to be classified.

2. Select a density p.(x) and evaluate it at x = X where

the index i is such that q. > q. for all j ̂  i.

3. Compare p.(x) with threshold T. where

T. = max t..

If p. (x) > T. , classify X into population IT. and go

to step 1, otherwise go to step 4.

4. If p,(x) < T. go to step 2 and select another density

function (next largest q.). If all the density functions
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have been evaluated go to step 5.

5o Assign X using the maximum likelihood decision rule.

One would expect the computation time to be reduced by, using the

thresholding technique since the thresholds can be computed prior

to the discrimination operation and need to be computed only once.

Consider the following example and figure to clarify the

thresholding procedure.

Example 1.1. Let m = 3, p = 1, q, > q~ > q- and suppose T,, T~,

and T_ are known. Since q, = max (q,, q2, g^K X is "most likely"

to be a member of TT . Hence we first compute q-jP-, (x) and compare

it with T,. If q-p-jCx) > T, , X is assigned to TT ; otherwise,

compute q,}p_(x) and compare it with T.,. If X is not assigned to

ir^/ i.e., q̂ p.,(x) < T.,, then the maximum likelihood procedure

is used. If the classification is done according to the maximum

likelihood procedure, then the actual classification will take

longer than the usual Bayesian procedure, due to the extra time

involved in thresholding. However, if X is classified in TT

considerable amount of time has been saved since only one density

function has had to be evaluated.
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In this paper we compare the thresholding and maximum like-

lihood procedures for four choices of three populations.

2. Comparison of Thresholding and Maximum Likelihood Procedures

Let p,(x), p_(x),...,p (x) be m multivariate normal proba-
JL £» »ll

bility density functions and let q,, q9,.,.,q be m a priori
JL ' £+ ill

probabilities corresponding to m normal populations TT, , TTO/...,TT .x 4. m

Then ' .

gipi(x) =
q., exp[-l/2(x -

(2TT)
P/2 1/2

where y. is the estimate of the mean vector, £. is the estimate

of the covariance matrix for population TT ., and p is the number

.of characteristics measured.

If t. . denotes the threshold for populations. TT . and TT .

then

ipi(yi} " SjPj^i and

/ /\ ••• *
min{qipi(yi) , q.p. (y.)}, if

) have

same sign

max (q.p.(x) = q.p.(x)), otherwise,
\xcE 1 z J J

where E = {x: qiPi(x) = q.p.(x)}. Minter and Hallum [3] have
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developed a procedure by which the set E can be determined. They

define t.. to be

q

t. . =

/ qi 4i( min{ln ~-̂ — , In —^—} , if q.p. (y.) - q .p . (y. } and

q.p. (y.) - q .p .(y . ) have
/ - 1 1 3 3 D x
' the same sign

- 2 In a + (x(k) - n )T ?"1rx
(k)^ JLII u. i v ̂ - y«/ /• vxi. i ^-i

otherwise

(k)where the x are "candidates" determined by their procedure,

Then the threshold for population IT. is

^ = min t^. , j = l,2,...,m,

v/here the classification is carried out as before except x is

classified in ir. if

In - \ l . I - 2 In q. + (x - y. ) }_. (x - y. ) < T. .

3. A Monte Carlo Evaluation

For the Monte Carlo simulation m = 3, p = 3, and n = 100.

The 100 samples from each population were generated using the

multivariate normal random generator described in [4]. Four

trials were considered in each of which thresholding was compared

with the classical Bayes technique when the parameters are unknown
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and must be estimated. The same set of covariance matrices

, and £- were used for all four trials. The four trials then

differed only in "separation" among the mean vectors. The fol-

lowing covariance matrices were used in each of the four trials:

400 -240 -200\

-240 .400 360

^-200 360 400

I, -

/ 400 240 -200

240 400 -360

V-200 -360 400

400 -240 200 \

-240 400 -360

200 -360 400

The mean vectors for each trial were

Trial 1: \i = (125, 150, 175) ,

P0 = (150, 175, 125)T,

(175, 125, 150),
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Trial 2: = (115, 150,

(150, 185, 115)T,

(185, 115, 150)T.

Trial 3: V = (100, 150, 200)T,

(150, 200, 100)T,

(200, 100, 150)T.

Trial 4: p = (50, 150, 250)T,

P2 = (150, 200, 50)
T,

P3 = (200, 50, 150)
T.

The results of the comparison of thresholding and Bayes

procedure for each of the four trials is given in Table 1. The

time of 650 (.01 seconds) in the last row of the table was ob-

tained only for trial 1. However, since the only difference

among the four trials was the choice of mean vectors, one would

expect about 650 (.01 seconds) for trials 2, 3, and 4, also.

The a priori probabilities used were q, = .5, q~ = .3, and

g3 = .2. The thresholding classification procedure was carried

out by classifying 100 observations from TU (say), then 100 ob-

servations from TT_, and finally 100 observations from TT_. This

is not the usual manner in which the classification should be
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carried out, however, this method of classifying the 300 obser-

vations will yield the minimum time for classification for

thresholding. This allows us to assess the "best" that can be

done by thresholding. For example, thresholding took 4.37 seconds

as compared with 6.50 seconds for the Bayes procedure in trial 4

in Table 1. In reality, however, thresholding would yield a
\

value greater than 4.37 seconds whereas the Bayes procedure

would still take 6.50 seconds.

In remote sensing applications, such as in per field clas-

sification [2], the measurement vectors corresponding to a

"small" area consisting of adjacent resolution cells, would tend

to be from the same population. Thus one obtains a set of ob-

servations from one population, followed by a set from another

population, etc. The'thresholding procedure would perform better

(timewise) for data observed in this fashion than for data taken

in the usual manner. The situation described in the previous
st

paragraph is1" an extreme case of data observed in a remote sensing

application.
•

4. Feasibility of Thresholding as a Discriminate Technique

It is evident from our empirical study that there are situ-
*

ations in which thresholding is a feasible procedure, and situ-

ations when one would be better off using the classical Bayes

.technique. According to Table. 1 thresholding is a "better"

procedure for the situation in trials 3 and 4. However, in

trials 3 and 4 the separation among the populations is sufficiently
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TABLE 1

Classified in : ,

Classified in -

Classified in 3

Misclassified

Number of times
classified using
Bayes

Time using
Thresholding*
(in .01 sec. )

Time using
Bayes* (in .01' sec.)

Trial 1

95

94

89

22

,]59

707-

550

Trial 2

99

100

100

0

:.7a

..545

650

Trial 3

100

100

100

0

16

463

650

Trial 4

100

100

100

0

0

437

650

* includes input-output time of 2 seconds

large to yield a small probability of misclassification, in which

case one could use some other procedure such as the "table look-

up" technique, [1], [5]. The table look-up technique has been

shown to require smaller computer time•than the classical Bayes

procedure [5]. •

• In trial 1 the "closeness" of the populations forced the

time for thresholding to be higher than for the Bayes technique.

In this case 159 out of the 300 observations were classified

according to the Bayes- technique. Additional time was required
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for thresholding on the remaining. 141 observations. Also, at

least one of the density functions p,(x), p2 (x) ,, and Po(x)

to be evaluated for each of these 141 observations.

The following example illustrates the relationship between

separation among the populations and the feasibility of the

thresholding technique.

Example 4.1.̂ . Let m = 3, p = I, and .suppose q,, q~ / and q. are

known (see Figure 2). By .the thresholding technique x is clas-

sified in ir. if x e RT, i = 1,2,3. Thus the probability that

x is classified using thresholding is the probability that
3

x e U R'. Now extending the above argument to the general
i=l i

case we have

m
P (x classified using thresholding) = J Pv(x e-R?)
r r 1

where RT = (x: (x - y . )T H1 (x - y . ) < Q. } ,
~~

Qi = (yi " yi) i(yi ~ yi)/ and yi is such that qipi(yi)

for i = 1,2,... ,m. Since (x - y) l~ (x - y) has
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a chi-square distribution with p degrees of freedom the proba-
x

bilities P (x e R'), i = l,2,...,m, are easily obtained. These

probabilities can be used to determine the number of times one

can expect to classify according to the thresholding technique.

The results in Table 1 indicate thatlU, 222, 284, and 300

observations were classified by thresholding for trials 1, 2, 3,

and 4, respectively. The corresponding expected number of times

thresholding v/ould be used are 130 , "2'28, 287, and 300 for trials

1, 2, 3, and 4, respectively.

5. Concluding Remarks

From the similation study of this, paper it appears that

there are situations in which the thresholding technique might

be optimal in terms of time required for classification. One

such situation is when the number of populations m and the number

of observations to be classified are large. For example, in a

remote sensing application the number of observations to be

classified may be extremely large. • '

The number of populations in our study was m = 3. It seems

reasonable to expect the thresholding technique to be useful,

for example, when m = 10 and the average number of density func-

tions evaluated for each classification is 5 (say). This de-

pends, of course, on the degree of separation among the 10 popu-

lations. Final emphasis should be placed on the fact that if

there is a high degree of closeness among the m populations then

one should use the classical Bayes or .some other technique. In
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summary, thresholding could prove useful when there are many

populations with moderate separation among them.
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A SPACE APPLICATION OF AN EXTENSION

OF THE BUFFON NEEDLE PROBLEM1

by

H. L. Gray and B. S. Duran

Texas Tech University

1. Introduction

A problem of some interest in the current space program is

that of collecting data from the yround through airborne remote

sensors and using these data to classify the type of ground cover

or vegetation below. The data collected are often in the form of

a measure of the light energy radiated in various bands of the

light spectrum, from a small square on the ground. When the in-

terest is in classifying the data as coming from a finite number

of populations, such as in field classification of an agricultural

area, the problem is a multiple decision problem. Since this is

a standard problem and an optimal solution is known only in the

case of conditions which, here, are unrealistic, a number of solu-

tions have been posed [1]. Regardless of which solution is uti-

lized, its success is of course a function of the amount of noise

in the data. This noise, although a function of many variables

is strongly influenced by the altitude of the satelite or other

collecting device.

This research was supported in part by NASA Manned Spacecraft
Center under Contract NAS9-12775.
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One of the more direct influences of the altitude on the data

is the fact that the diagonal of the data square is a monotonic

increasing function of the altitude and consequently so is that

component of the noise which is due to the size of the square.

In many instances then the question of primary interest is whether

or not the data square is too large, i.e., whether or not certain

types of remote sensing are feasible from altitudes as great av

those of a satelite. Thus if'the data square is a one mile square

and the average field size of interest is a 1/2 mile square then

no data will be obtained which is strictly from the population of

interest. If those dimensions are reversed, it is still quite

likely that very little data of interest will be collected.

Briefly, the question is, for a square of a given size, how

much data is likely to be obtained from the population of interest

and how much will be a conglomerate of several populations?

Although it is not a complete answer to the problem, a measure
•

which conveys essentially the information needed to decide the

feasibility question is the probability, P , that a square dropped

at random on a "r.ap" will land in the interior of a "region".

Put in terms more suggestive of the title of this paper, and equally

informative, the measure of interest is the probability, P, that

a square randomly placed on a map will cross a boundary line of

one of the pieces which form the map. The purpose of this paper

is to determine this latter probability for maps which are "quilts"

(to be defined later) and to give some empirical evidence to show

that the results can also be used for maps which are not "quilts".
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2, Main Result

Since a map can be formed by any 'collection of geometrical

shapes it is impossible to find the probability, P, (defined

above) for all possible maps. However it is usually possible (at

least for agricultural fields) to approximate a given map by a

finite collection of rectangles having at least one side in com-

mon. Moreover, as we shall see, an analytical expression for P

when our map is such a collection of rectangles which we will

henceforth refer to as a quilt, can be obtained. Given any map

our approach will therefore be to approximate it by a quilt,

calculate the probability of crossing the boundary lines of the

quilt, and approximate P by this probability. We now make the

following definitions.

[CQ] = Event that a square dropped at random on a quilt,

Q, will cross a boundary line.

[R.'J = Event that the center of a square dropped at random
n

will land in rectangle R. , where U R. defines
x i«l x

the quilt, Q.

A. = Area of R. .

A = Area of the quilt.

2w. = width of R. .

2hA = length of R^.

With this notation we can now write

(1) P[CQ] = I P [ C Q | R . ) P [ R . ] =| I P [ C Q | R . ] A .
i=l x z A i=JL 1
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A typical fall of the square center in a rectangle of dimen-

sions 2w by 2h is displayed in Figure 1.

2h

2w

Figure 1.

In Figure 1. x and y denote the minimum distances from the center

of the square to the vertical and horizontal edges, respectively,

and e denotes the smallest angle that a diagonal makes with the

horizontal. We assume that the length, 2d, of the diagonal of

the square is such that d < w and d < h. This is a convenience

and could be removed but realistically it does not seem necessary

to do so.
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In determining the probability of the square intersecting

the quilt we first note that the square crosses the quilt if

and only if at least one of the diagonals crosses it. Thus it

is sufficient to determine the probability that at least one dia-

gonal crosses the quilt.

We will let D, and D2 denote the diagonals that form the

smallest and largest positive angles, respectively, with the

horizontal. Further we assume the quantities X, Y, and 0 defined by

figure 1 are independent uniform random variables over (0,w),

(0,h) and (0,ir/2), respectively.

In determining P[CQ|R.] we first consider the events

[D-CJR.] = event that diagonal D. crosses the quilt, given

. . the center of the square is in R. .

[D.C.V] = event that diagonal D. crosses a vertical line given

the center of the square is in R..

[D.C.H] = event that diagonal D. crosses a horizontal line,

given the center of the square is in R..

[D.Ĉ V ] = event that diagonal D. crosses a vertical line only,

given the center of the square is in R..

[D.C.H ] = event that diagonal D. crosses a horizontal line

only, given the center of the square is in R..

[D.C.VH] = event that diagonal D. crosses a horizontal and

vertical line given the center of the square is

in J^.
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In view of these definitions v/e then have .

- P[D 1C|R i] + P [D 2 C|R i ] - P l (D 1 C|R i ) 0 (D 2 C|R i

= 2 P [ D , C | R . ] - P [ ( D C|R
J-, X X _L

2{P[DJLC iV] + PfD-^H] - P[(D1C iV) 0 (D^H) ] }

- P[(D1G|Ri) 0 (D2C|Ri)]

However,

2 Tr/2 d cos 9

and

= P(X < d cos 9) = -=- / /
\,J TT * »

i 0 0

= P(Y < d sin 9) = 2d
- - H J — JT V J. - U OO.H \J I — —Tj

Therefore,

To determine P[D.,C|R.) n (D2c|R.)] we observe that D, can

cross a vertical line only, a horizontal line only, or both types
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of lines. Similarly for the diagonal D2 . Consequently, the

event ID,C|R.] n [D-CJR.] can be decomposed into a complete system

of nine events, i.e.,

^ n [D^JFU = [ (D^V^ n (D2
civ

0
) 3 u [ (Dicivo) n (D2ciHo]

u [(D,C.V ) n (D C.VH] u [(D c.ii ) n (D c,v )]
.1. X {j 4L* jL J- J_ \S • £ JU \*J

U [(D,C H ) 0 (D7C.II ] U [(D.C.H ) 0 (D C VH)J
J L j L O 4 u J . w Ju JL, \J £ J.

U [ ( D ^ C . V H ) n (D,C V )] U [(D C.VH) 0 (D C.H ))
j. I ** JL \) * J. X ^. X Vj

U i(D,C.VH) 0 D,C.VH).
J. 1 <i X

Using this decomposition we obtain

C.V ) n (D0C.V )) = Pf(X <'d cos 6, Y < d sin 6)
Jb X. O « i. O "*~~ *""*

(X < d cos 8, Y < d cos 0) ]

2d [(2 - /2)h, - |]Tfh.w. tv" '"y"i 2

Similarly,
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2

P[(D CiV0)

fl2 5 - n.
7thiwi

(D2C..V0J] =

7rhiwi

= P[(DlCiHo) n (D2CiVH)

i rh.w. l 4

Collecting all these results we obtain

(3)

w, + h,)i r h .w . l '^w i ' "i ' 2V A ' 2 / J '
•L. J-

By (1) and (3) the probability that the square crosses a

quilt consisting of n patches is given by

n
P[CQ] = I P [ C Q | R . ] (A. /A)

. 1 = 1

?d n
= I { - i— i - 2 - ?-> 4w .h

i x
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n
Ji</2(wi + h±) -

since A. = 4w.h.. If we let P- denote the perimenter of the

thi patch then the probability (4) may be written as

(5) P[CQ] = |£ {/2 7 P. - 2nd (1 + 7T/2)}.

3. Examples and Applications

It is of interest, and in fact quite simple, to verify the

probability given by (4) empirically. For a particular rectangu-

lar region consisting of n rectangles, all one needs to do is

choose a rectangle (at random) from the n rectangles and then

choose x, y, and 6 in (0,w), (0,h), and (0,ir/2) by means of a

random number generator. With this information one can then

determine whether the square, of fixed diagonal length, crosses

the rectangle boundaries. If this procedure is repeated m times

then an estimate of P[CQ] is given by .

P = m,/m,

where m denotes the number of times that the square crosses a

boundary.
^

For n = 12 and d = 1 (see Figure 2) P = 0.7030 was obtained'

using m = 1000. The actual value of P[CQ], by (4), is
f

P[CQ] = 0.7039.
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Figure 2.

As we previously stated, the probability that a square dropped

at random on a map intersects at least one boundary of the map

can be estimated by the probability in (4). To demonstrate this

an aerial photo of an agricultural area was considered. The map

was first "covered" with an approximating quilt and then equation

(4) was used to find the probability that the square crossed the

quilt. This probability was then used to approximate P. The

• accuracy of such an estimate of course depends on how well the quilt

fits the map. However, it is possible to check the accuracy in
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this instance by generating points on the approximating quilt as

described above and then by means of an overlay, note those

instances where the quilt was crossed but not the map and visa

versa.

Figure 3 contains a particular map including an approximating

quilt. The dimensions of the quilt are 20 cm. by 19.6 cm. and

the map scale is 1 mi. = 10.4 cm. The diagonal of the square was

2d = 0.85 cm. For m = 100 we obtained, empirically, 37 drops

which crossed quilt and map boundaries, 3 which crossed map

boundaries only, and 2 which crossed quilt boundaries only. We
* /N

thus have the empirical results P[CQ] = .39 and P[CM] = .40. The

actual value of PfCQ] by (4) is P[CQ] = .324. The large difference

^
between P[CQ] and P[CQ] is probably due to the small number of

simulations (m = 100) . However, the important observation is the
xv y\

closeness ofP[CQ] and P[CM], and hence, these results indicate

that P[CQ] may be used to approximate P[CM].
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CONCERNING DIMENSION REDUCTION

IN DISCRIMINATE ANALYSIS

1.. Introduct ion

Let IT. ,TT_,. . . ,n be m distinct populations with their i n d i v i d u a l s

having p common observable characteristics. The samples obtained as ob-

servations on these characteristics are then vectors from p-dimensional

real Euclidean space, the probability density functions p.(x) of the popu-

lations are p-dimensional density functions. When p is large compared to
/

m, or large irrespective of magnitude of m, then we face an undesirable

situation (from computational point of view) where statistical analysis

involves (perhaps unnecessarily) large dimension of data vector. One way

to avoid this situation is to compress the data before starting the actual

statistical analysis by a "suitable linear transformation," to be referred

to as compression matrix later, of the form

Y = CX

where X is a p x 1 sample vector and C is a real r * p matrix satisfying

certain conditions. This in statistical literature is referred to as

"dimension reduction" technique and in the engineering literature as feature

selection. There are at least 'two different approaches to the problem of

selection of C, of which one due to Wilks is based on his concept of scatter

and the other is based on so called Karhunen-Loeve expansion. Both methods

are modifications of principal component analysis. In this paper we compare

the two methods and show how they are related to total misclassification

probability consideration when the populations are all normal with equal

covariance matrices.
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2. Wilks' Technique for Dimension Reduction [5]

Let {X. }(i = l,2,...,N ; a=l ,2 m) be m sets of samples from m

populations TT , . . . ,TT . Then the within scatter matrix S , between scatter

matrix SD and the total scatter matrix ST are defined to beb i

m m N , <> _f«V In"] —la.) T
s(1 = y s = y y (x\; - xk ') (x: ; - xv ') , (2.1)

\J l~» ft. *~* ** I IW o-l a=l i=l ' '

S = I Na (7
(a) - X) (X"(a) - X")T, . (2.2)

a=l .

m N / v _ / \ _ T
c •_ V V ^Y* ' - Y\ (y\ ' - y\ (") "*.\ST = i I I*. - A; (,\. A; k^O/

i _ i . t i *a=l i=l

where

Sa = p (xfa) -X(a)) a) - X(a))T, X(a) -° x Q )/N, (2.

and
_ m N / \
X = I I X CXV(N1+N9+...+Nm) . (2.5)

a-1 i=l ' ' L m

It is easy to show that ST=SR+S .. Let us denote these matrices by SY(x),
i D W A

S (x) and ST(x) respectively, so that the corresponding matrices of the
D I

transformed samples Y = C X of dimension r are denoted by S.,(y)» S-(y)
r*l rx xl W B

and S_(t). j.t is evident that

Sw(y) = C Sw(x)C
T, SB(y) = C S^xJC

7, ST(y) = C $T(x)C
T . (2.6)

/

The Wi Iks ' technique selects a_ r * p real matrix £ such that the r_ columns

of C are orthogonal p x ] vectors and the rat i o

|sw(y)|/|sT(y)|

i s minimi zed for a_ f i xed val ue j< of | S.(y) | . '
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Using Lagrange m u l t i p l i e r method it is not difficult to show that such

C w i l l satisfy the following relations.

|SB(x) - XSw(x) ) C
T|= 0 (2.7)

and C S (x) CT = K . (2.8)
w

Equation (2.7) has a nonzero solution if and only if

|SB(x) - ASw(x)|= 0 (2.9)

a

It is well known (Rao [5] p. 37) that since SD(x) and S.,(x) are two p x p
D W

symmetric matrices of which S,.(x) is positive definite (with probability
S-

one), then there exists a nonsingular matrix .P such that

PTSw(x)P = lp and P
TSB(x)P = L (2.10)

where I is the p x p unit matrix and L is the diagonal matrix,

T = diag {A,,...,X } .

Without loss of generality it can be assumed that X.>^2>...>Xl p

P P ± 0, the values of X for which |Sg(x) - XS (x)| vanishes are identical

with those for which |P S (x)P - XP S (x)P| = |L-Xl| vanishes. The nonzero

roots of equation (2.9) are thus the nonzero elements among X.,...,X . The

number of such nonzero elements X,,...,X is exactly equal to the rank of

S (x), which in its turn is equal to the dimension of the affine subspace
15

spanned by the points X , ...,X^ , which is (m-1) with probability one.

If r = (m-1), that is if X is to be projected to a (m-1) dimensional

subspace, then the (m-1) rows C.,...,C, _., of C w i l l be chosen as orthogonal

vectors such that

(SB(X) - XjSw(X)) c! = 0 (j = l (m-1), . (2.11)

that is, C. is the eigen vector associated with the eigen value X.. The
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vectors C.,...,C are then scaled so thot |C S (x)C I = K. The value of1 m~ I w

|S. .(y) |/JST (y) | is then a minimum for the above choice of C andW i

"'" |S W (Y ) I lc s
wW c T ! ] IS

WW|W - W - w (2.12)
|ST(y)| |C ST(x)C

T| (l+X1)...(H-Xm_,) |ST(X)|'

Thus if r = (m-1), the above choice of C not only minimizes |S (y)J/jS^Cy)| ,

subject to the condition |S (y)J= K, but it conserves the ratio |SW|/[ST| also.

When r < (m-1), we select C.,...,C as the eigen vectors corresponding

to the r largest eigen values A.,...,A such that

(S_(x) - A S (x)cT = 0 (j-l,...,r) (2.13)
O J W J .

and |C Sw(x)C
T| = K. (2.1A)

In • th t s case

min Isw(y)|/|ST(y)| = \/[(\ + \}) ... (H-̂ )] ̂  |sw(x) |/|$T(x) | .

It should be noted that the A's are random variables. When r = (m-1),

the transformation Y = C X for the above choice of C is actually a projection

onto the subspacc spanned by the vectors X"^2^ - X"'1 ', . . . ,)Tm' - X"^1 '

3- Karhunen-Loe ve . Expansion Technique [2,3]

Let (X. } (i=l , . . . ,N ; o=l,...,m) be m sets of samples (p x 1 vectors)

from m populations. The covariance matrix S of the grand sample is then

S = ST/(N.+...+N )1 l m

where S_ is the total scatter matrix. The generalized Karhunen-Loeve

expansion theorem (due to Chien and Fu[2]) states that every sample vector

X. can be represented as
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x(a> = yp• /

where a^ = <&
T X^

U j i

and 4> , . . . , <j> are eigen vectors of S. Let the corresponding eigen values

be A.,..., A , which without loss of generality can be assumed to be ordered,

viz, A A ... A . The compression matrix .C for compressing the observation
P rxp

to r dimensions is then given by

C = [ < { > . . .<{> ] .
pxr , ,r pxl px]

The motivation of such choice of C lies in the fact that the mean squared

error between X!Q^ and C x!°̂
i i

||A. "~ 0 A* I I "~ "• . i • • * • "r" A1 ' i i '' r+l p

is minimum. But this choice of C has no association (in general) with

misclassification probability or separability of classes. Nothing can be

said about the information regarding separability of classes, since it is

not apparent what this transformation does to the between scatter matrix SD.
D

4. Probability of Misclassification and Dimension Reduction

Let the probability densities p.(x) be known to be normal N (y.,E)

(i=l,...,m). Let x = (x,,...,x ) denote a set of observations on the
• P

p(common) characteristics of an individual I(x), q. the a -priori probability

of selecting an individual from if., C(jji) the cost of misclassifying an

individual from 71. as being from rr. . Let R = (R.,...,R ) be a partition of
i j I m

the p-dimension at Euclidean space E into m regi-ons defining a classification
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procedure such that I (x) e it. whenever x e R.. Then the expected misclossi-

fication cost for this procedure is given by

m m
/ [ ( x ) c(0] dx . (4

If C(j|i) = I for all j ^ i and q. = 1/m for all i, then

m m
QD(*,R) = I I '/m/R Pj(x) dx
P R '

m
p.(x)dx)=I-Z /R p.(x)dx .

i 1=1 i

It Is well known (Anderson [1] p 148) that the regions of classification
£ J; £

R = (R.,...,R ) that minimize the expected cost Q (x,R) (or maximize the

sum of probabilities of proper classification 7./ p,(x)dx, in this case)
i R. . .

are defined by '

R « (x:U.. (x)>0 for all k^j ) (j = l , . . -. ,m) ,
J JK

T -1
where U.. (x) = [x - l/2(n.+vi .) ] ' I -(n.-y.). t^-3)

JK J K J K

* m
and Q (x,R") = 1-1 /R... p.(x) dx . (*t.V

P j=) Rj J

As in dimension reduction technique, let us compress the p x 1 observation

vectors by a linear transformation Y = C X before starting classification.
r*l r*p pxl

The probability density functions p. (y) of the transformed populations

n . (i=l , . . . ,m) are then given by

= Nr(Cp.,CEC
T).
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* . " ~ \ • '
The classification regions in this r dimensional space, R =(R.,...,R ),

giving minimum expected misclass i f ica t ion cost (or maximum sum of probabil-

ities of proper classification, in this case) are now given by

at = (u.k(y) > 0 for ail k t j) , (A. 5)

where U.k(y) = [y - 1/2 C (p .+p. ) ]T(CICT) "] C(u.-p.)
J J K • J K.

[x - 1/2 ( y . + i i J l f C E c c ^ . - y . ) , (4.6)
J K J K

and Qr(y,R") = 1-1 f» P; (y)dy .R J

Our problem is to find C such that Q (x,R"), that is, (in this case)

probabilities of proper classification or misclassi f ication are not changed.

This is possible if

' / p (x)dx = /^ PJ (y) dy . (*-8)
£ J J

Let T denote the projection of E onto a r-dimens ional subspace S given by
*. A

y = Cx, By definition Rv = r(R») and p.(y) is the density of the probability

measure P obtained as the projection onto this r-dimensional space of the

probability measure P with density p.(x). Then it follows from (̂ .5) that

the probabilities of proper classification or misclassif ication are preserved

if

(1) P can be expressed as the product. of two measures, viz P =P x p
p r ^ ' p r p-r

(2) Rv, for each j=l,...,m can be expressed as the cartesian product
A

of two sets, viz R» = Rv E -S = P(Rv) x E -S (E -S denoting
J J P J . P P y

subspace orthogonal to S) .
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The first condition can always be met. But, as we w i l l show, the second

condition can be met only ? f F is a projection onto the subspace M

spanned by the difference of the mean vectors, viz. l^-n,>•••>V ~P,- Withouti. I m I

loss of generality we can assume JJ,=0. Then M becomes the subspace spanned

by p_,y- y . Thus, we need to show that condition (2) is met if S = M.
2. $ m

Let the dimension of M, the space spanned by y?,...,y (assuming u. = 0),
*

be k; C be a k*p matrix such that y = CxeM for xcE and C a p-k*p matrix

such that z = Cx E -M. Then CCT = <j>. If X ^ N (y-E) then Y - CX -v N.
P P ' k

•r f. A <vj

(Cp.CcC ), Z = CX ̂  N . (<j>, CEC ) and Y and Z are independent. Letp-k

D =

so that

C x
= D x (4.9)

and x = D
-1 (4.10)

Then, since Cp. = 0 for all j, we have

U j k (x) = [x - l /2(U j + l J k)]T l~] (Pj

- 1/2

- [y1 - 1/2 Z T ] (DED T ) " '

[y - 1/2 C(u +u )
J N

. - .
J K

[x - l/2(n.-nO]T C T ( C E C T ) " 1 C ( y . - u . )
J K J K
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Thus for each j (j = 1 ..... m) we can write Rv as

o}

0} x(Ep-m)

R* X(E -M) . (4.13)

We thus have the following theorem.

Theorem 1 . Let C be a k x p matrix projecting E orthogonally to the sub-

space M spanned by the vectors ij^-y, , . . . ,p ~Pi» k being the dimension of M.

Then the maximum sum of probabilities of proper classification (hence, for

equal a priori probabilities and misclass i f icat ion cost, the expected mis-

classification cost) is not altered even when the classification is done on

the basis of the compressed observation y = Cx.

Now let us further restrict C so that C.ZC. = 0, for i f5 j and C.,C.
• J i J

representing the i and j row of C respectively. With such C, CEC w i l l

be a diagonal matrix. Now let us define the between and within scatter

matrices for these m populations respectively by

_ m
where p = J y./m

and su = ml • (A. 15)
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Let us further restrict C such that C.S C.T = 0 for i t j. Then bothi B j

C SnC and C S, ,C are diagonal matrices. Now if we choose X,>X, . ..>X,>0B w i /. K.

such that

Then

C.SDC.
T = A.C.S..C.1

J B j J J W j

C(SB - xsw)c
T = o . . (4.16)

Conversely, if C is chosen as solutions of

(sB - xsw)c
T =0

C w i l l project E orthogonally to H. (4

Thus we have the following theorem.

•Theorem 2. Let C be a k x p matrix satisfying the equation

(SB - xsw)c
T = 0,

where $„ and S.. are defined as in (4.1*0 and (4.15). Then the maximum
D W

sum of probabilities of proper classification (or expected misclassification

cost, In this case) is not altered if classification is made on the basis

of compressed observation y = Cx-

Now if C is not a projection onto the subspace spanned by y -u, ,
rxp

\i -u, , then C(y.-y.) £ <•> and hence
III I J

u jk(x) = [yT - i/2C(Mj+uk)
T]

I

+ [ZT - l/2C(u.+u.)T](CZCT)"1 C(y.-y.) ,
s? j K J K

^

Thus we see that in this case, Rv cannot be expressed in the form Rv x E --M,
A

where Rv is a subset of the r dimensional subspace, the range of C.
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5. Comparison of WiIk's and Karhunen-Loeve Technique: An Example.

Let us assume that we have same number (N) of samples from each of

the m populations. Then we may note that SR/N in 2.3 is an estimate of
m

(y.-y)(y.-y) in (4.14) and SD/N in (2.1) is an estimate of mZ .

Thus equation (k.\l) is obtained from (2.7) if we replace SD and S.. by
D W

m
""""" \ I7 (y .-p) (jj .-y) and m£ respectively. This leads us to expect i n t u i t i v e l y

i = l ' '
that misclass i f icat ion probabilities are preserved under Wilk's technique

when C is m-1 x p. We now give an example for comparison of performance
.̂

of Karhunen-Loeve expansion technique and W i l k s 1 technique.

Example. Let p.(x) = N (y.,J:) (i = l,2).. As there are 2 populations,

the means are col linear. Let u. = [0,0,0] t y« = [0,0,2] and

y _
6 0 0

0 5 0

0 0 1

•
Then I

_ y
(y.-y)

0 0 0

0 0 0

0 0 2

and hence S of Karhunen-Loeve expansion is given by
2

S =
_

(y -y)(y -IT)1 +

1 2 0 0

0 10 0

0 0 5
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The maximum eigen value is 12 and corresponding eigen vector 4> is given

by <J>j = (1,0,0). Thus C = (1,0,0). Y = C X = X{. But there is no

discriminant information in Y, since Y ^ N%(0,12) given I (x) e Tij and

Y ^ N (0,12) given I (x) e^ .

In case of Wil k s 1 technique,

" 00 0 0

0 0 0

-P 0 2_

-2A

-12X 0 0

0 -1 OX 0

0 0 2-2X

The nonzero root of |SR - XmZ | = 0 is X=1. The eigen vector corresponding

to the eigen value X=l is <£. = [0,0,1] and thus C = (0,0,1). Y = CX and

Y ^ N(0,l) if I (x) , and Y -v N (2,1) if I(x)eu2. This shows that there do

exist discriminant information in Y.

6. Concluding Remarks

Among the engineers [2,3], a popular technique of "dimension reduction'
x.

or "feature selection" is one based on so called Karhunen-Loeve expansion.

We do not recommend this method for selecting the compression matrix C for

the following reasons.

(l) There may be loss of information concerning the separability of

classes. We have encountered an extreme case in the example of section 5T

where after compression, two populations have become identical.
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(2) ihere is no apparent relation between this method and misclassi-

fication probability. It is not apparent what the compression matrix C

selected by this method does to the misclassification probability.

We rather recommend Wilks' technique for selecting the compression

matrix. We have noted in sections 4 and 5 how the selection of C by

Wilks 1 technique is related to misclassification probability and why

it may be expected to preserve the misclassification probability. Besides,

as the compression matrix C selected by Wilk's technique maximizes the

between scatter matrix, it may be expected that there w i l l be no loss in

information concerning the separability of classes.
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1. ' £ntroduction

The statistical discriminant analysis technique is a rela-

tively old one [1] , [2]; yet in recent years there has been

renewed interest generated primarily by the desire to develop

automatic statistical recognition systems; both analog and

digital [3], [4].' Electronic and optic scientists have

developed multichannel spectral measuring devices [5] which

when attached to aircrafts or space crafts take enormous amounts

of data whose speedy reduction depends on rapid repeated perfor-

mance of a discriminant algorithm using high speed computing

machines.

The purpose of this paper is to discuss the Bayes discrimi-

nant analysis using certain normed exponential probability

densities as models and to provide ways to reduce computations

that are performed for discriminant analysis in the remote

sensing application [6], [7]. For clarity and completeness we

1
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Center under Contract NAS 9-12775.
2
Texas Tech University, Lubbock, Texas 79409.
3
University of Texas, Dallas, Texas 75080.
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will rewiew briefly the classical statistical discriminant

problem. Let I denote an individual belonging to one of m

distinct populations. Assume that each member of the union

of the m populations possesses a finite set of observable

common characteristics or features which we denote by

•»

'P
T

C = _(C, ,C2, ... . ,C ) whose observed values are denoted by

T.x = (x, ,x2,...,x ) such that x. is the observed value of

the characteristic C., j = 1,2,..., p. If one assumes that

Tthe characteristics C = (C,,C2,...,C ) are selected a priori,

the discriminant problem can be summarized as follows:

The Bayesian Discriminant Problem. Let II, ,H~ , . . . ,H denote
.1. £* 111

m distinct populations whose known multivariate probability

density functions of the p-dimensional measurement random

vector x are denoted by p, (x) , p2(x),..". , p (x) , respectively.

Let g..,q2,...,q be the known a priori probabilities that an

individual, I, be selected from a population n-i / II ?/•••* II /u. ^ in

respectively, Let C(ijj) be the cost of misclassifying an

individual from population n • as being from population n •

such that •

) > 0 i ̂  j i,j = l,2,...,m

=0 i = j i,j = l,2,...,m . (i.i)

Given the p x 1 measurement vector x made on the characteristics

of an individual, I, selected at random from the union of the

populations IU,.».,n , the problem is to formulate a decision

rule R which miminizes the expected cost of misclassif ication

for assigning I to one of the populations n., i = l,...,m.
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Let R = (R, ,R?, . . . ,R ) denote an exhaustive partitioning

of the Euclidean p-dimensional space into m mutually exclusive

subsets such that if the observation vector x belongs to R.
i i

then we assign the individual, I, which generated the observa-

tion vector x to the population II. . Note that

m m
L(R) = I q I C(j]i)P(j|i) (1.2)

is the expected cost of misclassif ication associated with an

individual, I, where

.P(jji) = / P, (x)dx (1.3)

' *3
is the probability that x belongs to R. given that the individual

I, is from II.. Clearly, there exists many partitions R, such that

L (R) in (1.2) is minimized. The following theorem proved in [1]

summarizes the Bayesian approach for computing the optimal pro-

cedure (partition) R.

Theorem 1. The procedure R, that minimizes the expected cost

of misclassif ication (1.2) is defined by assigning x to R, if

m m
I q.p.(x)C(kli) < I qiPi(x)C(j|i) (1.4)

X X ~ 1 1

j = 1,2,... ,m.

Corollary 1.1. .Tf C (i| j) = C for all i and j such that i ji j ,

then (1.4) reduces to

m m
.1 qiPi(x) £ I q.p. (x), j=l,.../m (1.5)
1=1 i x 1=1 * x
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which is an ordering of the probabilities of misclassification,

which 'is in 'turn equivalent to

q,p (x) =' max {q.p.(x)} . '• (1.6)
K K. -j 11l^l t a » « fin .

If further q. = q. for all i and j = 1,2,...,in then (1.6)

reduces to

p. (x) = max'{p.(x)J , . (1.7)
Jv • i 1

1=1,..o,m

the maximum likelihood solution of the discriminant problem.

It is important to note that one must know a great amount

in order to apply Theorem 1. Unfortunately, there are many cases

in practice in which the a priori probabilities q., i = l,2,...,m

are unknown. If C(j]i) are unknown or not assumed equal, then

the problem is not very tractable, hence in most applications where

C(iJj) are not known they are tacitly assumed equal for all

i T^. j . If q,,...,q are unknown, one may assume that q. = q.

for all i, j which implies that (1.4) is void of the q.'s.

Another approach which requires a previously performed sampling

task would be to estimate q., i = l,2,...,m and then approximate the
A

Bayes solution to the problem with q. = q., i = l,2,...,m, in (1.4)
A

where g. is an estimate of q.. In the remote sensing application
i i i

which interests us here, the assumptions C(i|j) = C and q. = 1/m

for all i ̂  j and all i = l,2,...,m, respectively, are not in

many cases unrealistic. The remote sensing problem can be summar-

ized as follows:

The Remote Sensing Problem. Let an image (or scene) be a rect-

angular region with r rows (scan lines) and c columns (number of,

resolution elements per scan line) consisting of re resolution
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elements (individuals). Each cell (individual, I) generates

a p x 1 measurement vector X. . = {x . .} where h •= l,-2,...,p,

i = 1,2, „ . „ ,r , and j = 1,2, ... ,c. In order to recognize a

single scene, one must perform re discriminating tasks "as

effectively as possible" (if the scene is classified point

by point). For details, refer to [8], [9] and [10],

The problem is conceptually a repeated application of

multivariate discriminant analysis outlined earlier in which,

if necessary, estimates of parameters are substituted for

parameter values. That is, if p.(x), i = l,2,...fm, denotes

the unknown probability density function of a p x l measure-

ment vector X associated with the ith population II., i = 1,2,

. ..,m, due to the unknown mean vector p.. and covariance matrix

. f an estimate of p. (x) is

*%

where J. and )j . are estimates of v • and £..

Suppose X = x denotes an observation from an individual

we wish to classify. In one of the simplest cases where normal-

ity holds and q. = 1/m and C(ijj) = C for all i f j, the optimal

solution is given by (1.6); or equivalently , the individual

1 = 1 (x) who generated the observation x is assigned to FL if

^ ^

In p, (x) = max (In p. (x)} (1.8)
* 1 Oi— J. ,.£,... /m

where
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ln p^x) = i^ - 1/2 (x - J

and

KJL = -p/2 In 2n - 1/2 In

and in order to .evaluate (1.6) and (1.8) one must always be

able to evaluate the quadratic form

for i = 1,2,...,m.

2. On Eliminating the Normality Assumption

One notes that a computational problem in the form of

evaluating a quadratic is associated with the normality assump-

tion. Experience has shown'that reasonable to excellent results

in the form of minimal expected costs 'of misclassification are

obtained when the normality assumption is made? hence gives

empirical experience to support its value even though there

exists cases in which one can reject statistically that the

data is normal.

Since the normality assumption is an arbitrary choice of a

model, a natural suggestion is to replace the assumption with

a selection of an alternative multivariate probability density

model which can realistically describe the density of the

measurements and whose likelihood values are faster to compute.

However/ it is reasonable to conjecture that if one incorpor-

ates correlation in any multivariate model it will necessarily

imply quadratic terms to be evaluated. Nevertheless the follow-

ing example gives us some experience in our attempt to formulate

i
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a multivariate density not unlike the multivariate normal

but eliminates the quadratic form-

Example 2.1. For a random vector x, let E[x] = y and E[(x-p)

T1 r* r» •— 1
(x-y) ] = /,. Since I is positive definite, then the quad-

ratic form can be expressed as

Q2 = (x-p)
T BTB(x-y)

where B is such that

\ = BTB (2.1)

and is a unique lower triangular matrix. Now define

Y = B(x-u) = (Y1,Y2,...,Yp)
T (2.3)

Then Q2 = Y
TY = ]>Y^ (2.4)

T •
and E[Y] = <j>, a null vector, and E[YY ] = I, a nxn unit

matrix.

Let us denote ||Y|lr = Yp |Y-lr, 0<r<«>. Then Q0 =• i i i ' JT v , 1 ! ' £
2 • 1=1

J J Y ] ] _ , the squared Euclidean distance of x from n weighted

by the matrix J~ . For r=«, denote ||YJj = max (]Y, I).
00 v—1 ? nK. — J. , t. , . . . i \->

Note that ]JY|| and ]]Y|| are different measures of the weighted

distance of x from y. However, it is much faster to compute ]JY||
2

and ]JY|j than ||Y]| as these eliminate the quadratic form. We

will elaborate on this aspect in section 5.

Next, as we discussed in [17] , the evaluation of probabilities

of classification P(jji), i and j = 1,2,...,m, defined in (1.3) is

a difficult task when p.(x) are assumed to be normal, and in part-.

icular, a theoretical solution is completely out of order if covar-

iance matrices \. , i = l,2,...,m are not assumed equal. This is
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because P(j|i) will involve multivariate normal probability

integrals over arbitrary domains described by quadratic func-

tions. This has led investigators in the past either to res-

trict their discussion to a highly simplified form of mean

vectors y • (i=l , 2 , . . . ,m) and .£ . = J for all i = . 1 , 2 , . . . ,m or

to seek refuge in a computer algorithm based upon approx-^

imations which may be far from being accurate and even expensive

due to a large number of repeated computations.

With these considerations in mind, we propose the use of

• certain normed exponential densities given in the next section

for the. Bayes discriminant analysis. These densities lead

to minimum number of computations, piecewise linear discrimi-

nant functions when there exists inequality among the covari-

ance matrices (a property not attained under normality when

unequal covariance matrices are assumed) and a theoretical
t

solution regarding evaluation of probabilities of classifica-

tion .

3. Normed Exponential Density Functions

In order to enlarge the class of density functions, we

first define the r-hormed exponential density.

(r) ^Definition 1; For 0 < r < « , f (y) is the r-norn\a<L expon-

Tential density function of a random vector Y = (Y, ,...,Y )

if

f(r)(y) = Ke-°JHIr , c>0 (3.1)

where

K =

Tand c is determined so that E[YY ] = I.
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Definition 2; For r = °°,. the maximum normed exponential

(»)
density function f (y) of a random vector Y is given by

y) = Ke c>0- (3.2)

where

c = 3 and K =

T

p/(p+2)

12

(Again c was determined so that E [YY ] = I)

(r) (ro)Note that f (y) and f (y) are symmetrical about y = 0

and cover a^wide range of multivariate density functions.

For p = 1, c = /2~ and K = ,2~p' , the density function is

given by . .

= (1/2P/2) exp (- -»<y <« (3.3)
k = 2,2,. . . ,p

which is the multivariate analog of the double exponential

density and can be interpreted as the likelihood function when

a set of p observations are sampled from the univariate popula-

tion with p.d.f.

p(y) =

~p/For p = 2, c = 1/2 and K = (2Tr) .the 2-normed density func

tion is

f (2) (y) = (l/2Tr)P/2 exp(-l/2 \ y2)
1

(3.4)

which is the multivariate normal density with mean vector 4> and

(2)
covariance matrix I . Observe that f (y) is less peaked at y = 0

as compared to f (y) but more peaked when it is compared to

f'-'fy).



-50-

(r)Though f (y) in (3.1) leads to several other density

functions, here we will primarily be concerned with f ' (y)
tca\ .....

and f (y) which are suitable as models in various physical

situations. In the next section, we discuss the problem of

discrimination using these density functions and provide

examples for better comprehension.

4. Bayes Discriminant Procedures

Consider the populations with the probability density

functions p. (x) or p. (x) which can be obtained from f (y)

(°°)in (3.3) or f (y) in (3.2) for the random vector X = (x, , . . . ,
m

V- . -
p..X — t3 - \r

~ i

Accordingly, we have

pl11'̂ -̂  *
i = l ,2 , . . . ,m

where B., is the kth row of the matrix B., that is
IK . . 1

i = 1,2,...,m. (4.1)

(4.2)

B. .= VBip
where each of B., , k = 1,2,...,p, is a Ixp vector. Observe

that the determinant IB . I =
JL JL

Similarly,

p+2) I
p! 12

p/(p+2) max
-c

where

JBje w k=l ,2 , . . . ,n

i = 1,2,.. . ,m

(4.3)

0--&1E+2LI
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4.1. Populations with density functions p. (x) , i = l,2,...,m.

For the sake 'of simplicity, let us assume equal costs of

misclassification. For given a priori probabilities qn/q2'

„..,q ,'it follov7S from [1. p. 142-143] that the Bayes discrimi-

nant regions R,,R.?/...,R with respect to density functions

p. (x) , i = 1,2,... . ,m are given by

R. = {x: I |B (x-y . ) | - I ]B. (x-y .) |>^_log SLi 1 = 1,2, . . . ,m,
3 T, i ^-^ -^ i, i D-*̂  3 ~~'2 Q • i -/-iJc— -L , K=± ^j IAJ i

j=l,2,...,m.}

(4.4)

Observe that the discriminant boundaries for regions R,,R~,

.../R are piecewise linear and can be distinctly found for

given y's and £'s. . Since the integration of a density function

p. (x) over any domain of linear (rectangular) planes can

easily be evaluated, one should be able to obtain the probability

of correctly classifying an observation x from population n.,

p(ij'i) = JR pV; (x)dx , i = 1,2,...,m.
i

And the probabilities of misclassifying an observation x from

ir. to another population -n . ,

P(j]i) = /R.Pi (x)dx , j = 1,2,. . .,m, j ̂  i

However, a Bayes region R. could be characterized by as many as

2 ^different piecewise linear functions. This is because of so

many different possibilities that exist for the values in deter-

mining any inequality in (4.4). If q,=q2=..,=q , the Bayes regions
•A- *• JH

are given by

" • i " P
V ̂ l 1 I lBjk(

x-»Ji)! / i=l,2,...,m,
- k~1 J J î j) (4.5)
"i — 1 O
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We now give an example to illustrate the algorithm

involved in obtaining the "Bayes regions and P(j|i).

Ex'ample 4.1; • Suppose we have two' populations TT and TT

" v. ' T T
with mean vectors y, = (1j-2) . , y2 = (-1,1) and covariance

matrices

^ 4 0 9 0

09 ' 2 0 16

respectively. Then> due to (2.1)

1/2 0 "

0 1/3
and

1/3 0

0 1/4

For the sake of simplicity, assume q, = q~° Since

BJL(x-y1) = and B2(x-M2) =

x.+l

x2-l

the two density functions are

1 -/2"[l/2lx1-:

12

24

and the Bayes discriminant regions are determined by

^ = {x: 1/2 1 xx-l | +1/3 I x2+2 | <

and

= {x: -l/2|x-
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Due to absolute sign, the two-dimensional Euclidean space

is partitioned into 9 different regions and the Bayes dis-

criminant regions are given by

where

T? ss i y *Rll lx'
O — ( Y •R12 ~ IX>

R, = U R.
1 K=l 1K

R — - f ' v* 0 Y ••• v-I "3 I yx • £*J\.~\ <T\.A

R — TV* 0 v — 7 v — 1 ^ •> f) v < — 1 — ̂  ^ v < T ^• jj """ I *• * *•* jrt. ̂  / ^V ^^ J- —' -^ \s f •^ t -1- g S~* ^ ^» ^\ •*• ^
1 4 1 2 — 1 2

15 ~ * 1 2 — ' 1 ' 2

R-,. = {x: 2xT+7x 0 -5<0 , x , > l , -2<X0<1)
J.O J. Z — J. £.

— I"v• Ov —"v *oi <" n -v N! *v <• — o"),-» — \Ac £.7*-, X. ~— £..L^JJ f A., ? JL i J\.^^~ £. I

c\ ^ o ^^ t *^ • J- w rf» •% "v j^ ^* i y ^ \j / *™ J~ ^ ^^ -| -A- / *t »* ̂  "** £* s

"n T~ f "V • O^f ^-^r I "1 ^ /"\ ^ ^ l._ *1 ^f ^ ^^ O ̂

.and R2 is R^, the complement of R,. Since R T T ^ R12' R13

R,4 and R,g are empty sets,

Rl = R15 U R16 U R17 U R18
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One can sketch R, and R0 as in Figure 3.1 below.

R

Figure 3.1: Bayes discriminant regions R, and R,, for popula-
• • j . J- ^tions TT, and ^.
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One can now evaluate the probabilities of correct

classification and the probabilities of misclassification.

For example, the probability of correct classifying an

observation from ir.. is given by

P(ljl) = / p (x)dx
R,
1 1 10/7x,-l l//2"(xn-l)-/2/3(x +2)

= 1/12 / / L e *- * dx.dx
-1-2 ^

~ (5-2xJ/7 -l//2(x -l)-/2/3(x +2)
+ . l/li2 / / L e L * dx dx

1-2 ^ •
« -2 -l//2"(x -l)+/2/3(x,+ 2)

+ 1/12/ / e x ^ dx dx
1 2x -21
-2 l//2(x,-l) + /2/3(x7+2)7

+1/12 / / e -1 - dx.dx
-1 -lOx -9

-/2"1 -17/1/21 -6/2/7
= 1/4 (1-e -e -+e )+ remaining three terms

Similarly, the probability of misclassifying an observation from

TT is given by .

R-i '
" A 1 10/7X..-1 -/2/3(x,+l)+l/2/2(x.5-l)
= 1/12 / / X e ± 2

-1-2 . - -
« (5-2x V7 -/2/3(x + l)+l/2/2~(x -1)

+ 1/12/ / e dx9dx,
1-2 ^ -1

+ 1/12/ / e -1 2 dx dx
X- 1 2x,-21 ^ x

+ 1/12 / / e -1 2 dx^dx,
. -1 -10x^9 ^ x

which can be easily evaluated. In a similar way one can find

P(2J2), the probability of correctly classifying an observation

from TI- and P(2J1), the probability of misclassifying an obser-

vation from TT .
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In example 4.1, we had zero covariance in the covariance

matrices. In the following example we consider random vectors

whose components are correlated, that is covarianees are not

zero.

Example 4.2 Suppose there are populations TT, and i\ ~ with

• T Tmean vectors y, = (2,1) , y = (-l,-2) and covariance matrices

13/4 -9/2

-9/2 9

Then due to (2.1)

1 1/2

and so

B,

1/3

2x,+x,-5

and B =
2

B (x-M«) =
^- *

"100/9 32/3

32/3 16

1/2 -1/3

0 1/4

"W -9v -'
O.X - ^-Xrt.

Accordingly, the normed density functions associated with n,

and TI are given by

.(1)(x) = 1/6 e
-1/3/2(3 ] 2x^X2-5] + 2jx2-l )

and

-l/6/2(2|3x1-2x2-l|+3jx2+2])
PJ

1)(x) = 1/16 e

_3 n =_8
Let q^ - 1;L, q2 11 • Then from (4.4), the Bayes discriminant

regions are obtained as

='{x:

and R 'is the complement of R,.
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By simplying the inequality in R,, we obtain

'8
Rl = K=1R1K

where

R,, = (xj 6x1+llx2-38£0 , 2x-L-fx2~5>_0

R12

R10 = (x: 2x,-f 3x0-6<0f 2x,+XT-5>0/ 3x,-2x0-l>0, x0<-2)JLJ JL f- — J. £ — J.J — f. —

R14

R,5 = (x: 2x^+3x2-6^.0,

R16 = ̂ :

R17 = *X:

R, = {x:

4
Infact, we can write R, = v\3_^v where

f . J. J\— JL A

= {x: 6x +llx2-38<_0, 3x1~2x2-l>L0 , 18x^X2-22^0,

A2 = R14U R15

= {x: 6x.+x^-14<0, 3x,-2x0-l<0, 2x,+3x0-6>0, X0>
- - - -

= {x: 2 x X - 1 0 ^ 0 , 3 x - 2 x - l > _ 0 ,1 2

A4 = R13U R18

= {x: 2x^3x2-6^0,
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A sketch of R^ and R^ is given in figure 3.2 below,

r
L2

Figure 3.2: Bayes discriminant regions R, and R_ for popula-
4— •* f̂ \ r̂  r̂  «*r «̂  »̂  ̂Q «• ^ ™tions TTI and IT-.
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Though each of the regions R, and R?. consists of more than one
' . . ' • * + £ .

subregion , these are piecewise linear and probabilities of

classification P(i|i) and P(i]j), i and j = 1/2, can be easily

evaluated.
(oo)

4.2. Populations with density functions p . (x) , i = l/2,.../m.

For given a priori probabilities q, ,q~ , . , . ,q , the Bayes

discriminant regions are given by

R = (x: ' n 'KK^i^ - K-T2 P { iB"iK (x'y-iJ J\— J. , / . , , . a rp> ll\ 1 JA— J L / Z / o o « / p JiA J

3
-(~F(nT2TT) log i, i= l ,2 , . . . / m; i^j), ( 4 . 6 )

If q 1 =g_=- • "=g , ( 4 . 6 ) is reduced to
• ^. ^ . "*

1=1,2,...,m; î j), (4.7)

:. Again these discriminant regions are described by piecewise

linear functions and once determined these lead to an exact evalua-

tion of probabilities of classification P(i|i) and P(j|i), i and

j=l,2,...,m.

Example 4.3. Consider the populations in Example 4.2 with the

density functions

__ max (3 12x^x^5!, 2|x2-l|)

and
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n ( » ) / v > _ ! -1/6 Vl m a x ( 2 ] 3 x -2x -1|, 3 | x + 2 | )
P2 . ^ ' ~ "S72"

For q-,=q2 / the Bayes discriminant regions are

(2 | 3x^2x2-1 1 , 3 J x2+2 | ) >rnax (6 | 2xJL.+x2-5 | , 4max

and R2 is the complement of R, . After the possibilities for the

inequality are considered we obtain

where

AI='(X: 2 I3x1-2x2-l | ̂ 612x^X2-5 | , 2 | 3x1~2x2-l J >3

, 6|2x1+x2-5]>,4|x2-ll} .

A2='(x:

A3 =' {x: 3 | x2+2] 1612x^X2-5 | , 2 | 3x^2x2-1 1

612x^X2-51141x2-11)

A4="{x: 31x2+21141x2-11, 2 | Sx^x^l | <3 jx

By solving the inequalities in A1/A2/A3 and A for different

possible cases, we obtain R, and R2 as shown in figure 3.3.

We omit the evaluation of probabilities of classification

and let the interested readers carry out these computations.
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Figure 3.3: Bayes discriminant regions RI and R» for popula-
4" "1 /"\ Y\ f+ *rr ~* -r\ s3 *r J- «tions IT, and TT .
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5. ' Computat iona1_Aspe c t s

Apart from a theoretical solution that the problem of classi-

fication has, the number of computations involved in the algorithm

are also reduced when the density functions p. (x) and p. (x) are
-A. JL

(2)considered instead of p. Cx) , i = 1,2,.. ,,111, as population models.

Its explanation derives from the elimination process for the quad-

ratic form . • •

Q2 = Cx - y..)
T '

(2)
that needs to be computed when finding an estimate of p. ( x) ,

i = l,2,...,m. To give an idea of computations associated with the

evaluation of Q2, consider the following examples.

TExample 5.1. Let p = 3, then a quadratic form Q = X AX can be

written as , . .

Q = 2, !2

a21 a22 a23

31 33

M

C2

C3

X2a21 ' X1S12 + X2a22

Xla13 + X2a23 + X3a33]

[b,x,
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where

bi B. Xlali + X2a2i + X3a3i«

I

In the first multiplication of X A requires 3 multiplications and

3-1 additions performed 3 times to obtain the vector b =

Ibjjb-fb-]. The second multiplication bX requires 3 multiplications

and 3-1 additions. , Hence the total number of multiplications is

23 »3+3 = 34-3 and the total number of additions are 3(3 - 1) +

(3-1) = (3 + 1)(3 - 1) = 3 - 1 . Inductively one can deduce the

2 2formulas, p + p multiplications and p - 1 additions are required
/

to compute a value for the quadratic Q.

Example S'.2t Let p = 3, A = {a.j_. } be symmetric then

Q = [X]L x " all
2a21

2a31

0

2a31

2a32

0

0

a33

~Xl"

X2

X3

2X3331' X2a22 + 2x3a32' X3a33]

blXl + b2X2 + b3X3

where

bl = Xlall + 2x2a21 + 2X3331
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4 = X2a22 + 2x3a32

b3-= X3a33 * '

T r~lIn the first multiplication of X ][ requires 3 + ( 3 - l ) + ( 3 - 2 )

= 3 + 2 + 1 multiplications and (3-1) + ( 3 - 2) additions to

obtain the vector b1 = [bj, bi/ b~j. The second multiplication

b'X requires 3 multiplications and 3-1 additions. Hence, the total

number of multiplications is 3 + (3 - 1) + (3 - 2) +3; and the total

number of additions is (3 - 1) + (3 - 2) + (3 - 1). Inductively

one can deduce the formulas p + (p - 1)...+ 1 + p = (p(p+l))/2 + p

= (p2+3p)/2 multiplications and (p - 1) + (p - 2) + ... + 1 + (p - 1)

~ ( p - l ) / 2 + p - l = (p2 + p - 2)/2 additions. Note that if one

takes advantage of the symmetry property of the matrix £, then the

savings A,, and A, in the number of multiplications and additions

are given by

= (p2 - p)/2

= (p2 - p)/2 .

Also, note that when x. = (x - y.) then one must add an additional

p additions; hence in order to compute Q- in which symmetry is
2

exploited the number of multiplications remains (p + 3p)/2, but

the number of additions is increased by p additional additions

2 2making a total of p + (p + p - 2)/2 = (p + 3p - 2)/2 additions.

Recall that the value of m is-the number of populations from

one of which the individual generating the measurement X might come.
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Hence to perform the computation to accomplish a single discriminant

2 2task will require (p + 3p}/2 multiplications and (p + 3p - 2)/2

additions for each Q. , i = l,2,...,m, when A is symmetric. The

decision to classify follows after ordering m positive numbers,

p.(x), i = l,2r...,m. Then

tQ(p,m) = m

tM(p,m) = m(p
2 -)- 3p)/2

and

t..(p,m) = m(p + 3p - 2)/2
• A

where tfl(p,m), tM(p,m), and t (p,m); the number of orderings,

multiplications, and additions (per resolution element), respective-

ly. Since these operations must be repeated a very large number of

times they should be performed using the computer assembly language

upon that computer being used instead of a general language such as

FORTRAN, etc. These values for known applications are not extra-

ordinarily large, yet when put into a remote sensing application

total time becomes significantly large.

If we denote by TQ, TM, and T the total number of orderings,

multiplications and additions, respectively, per image, then

Tn(p,m,r,c) = mrc

2
TM(p,m,r,c) = mrc(p + 3p)/2
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and

2
mrc (p + 3p - 2)/2

To illustrate what size of values T , T , and T can take,

consider the following "real" data where r = 10 , c = 200, p = 5,

and m = 10, then

TQ = 2 • 106

= 4 • 107M

= 3.8 • 107

Clearly these are large numbers of operations to be performed, and

when one realizes that if this image represents only approximat3ly

a 2 mile by 10 mile strip of the earth's surface, and that it is

proposed by space scientists that complete earth surveys be per-

formed by remote sensing techniques, the size of the computation

task indeed is large.

Clearly, it becomes important to investigate schemes which

will reduce significantly the size of the remote sensing problem.

Since r, c and m are not in the strictest sense arbitrary/ there

appears only one parameter, the value of p, which might be reduced.

Through techniques call characteristic selection [11], [12], [13]

and data compression [14] one can reduce the value of p and hope-

fully maintain approximately the optimality of the Bayes Procedure

for discriminating. A second technique developed heuristically [15]
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by computer scientists have proved successful in several empirical

cases and can be considered a close approximation to a Baycs or

optimal procedure. This technique is one which has "traded off"

floating point addition and multiplication for an integer addition,

in a table look up computer operation, thereby reducing the time for

computing from 2 units to .066 units in one empirical example [14],

This technique has come to be known as the table look-up discrimi-

nant technique. ' •

Further savings in computing operations can be achieved by using

the new models proposed in this paper. In the case of p. (x) in

(4.2), one needs to evaluate the linear form

Ql =

2
It can be seen that this requires p(p + l)/2 = (p + p)/2 multipli-

cations and p + p(p - l)/2 + (p - 1) = (p2 + 3p - 2)/2 additions.

When compared to computations involved for Q2/ there is a saving of

p multiplications but no saving in the number of additions. In

most cases any such saving may not be of significance. But we

should check.to see if in the remote sensing application the

saving will be significant. If we denote T', T', and T' the total

number of orderings, multiplications and additions, respectively,

per 'image, when (4.2) is used, then

T*Q(ptmtrtc) - mrc

. Tjjj(p,m,r,c) = mrc (p2 + p)/2
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T^(p,m,r,c) = mrc Up2 + 3p - 2)/2]

3
In our example where r = 10' , c = 200, p = 5, and m = 10, the

numbers are

TJ = 2 » 106 . ' = 2 - 106 = TQ

T' = 30 -' 106 = 3.0 • 107 < 4 - 107 = T,,M M

T' = 38 • 106 = 3.8 • 107 = 3.8 • 107 = T,A A

Note that there exists a savings of 3 to 4 in multiplications by

using the probability density function as defined by (4.2) instead

of the normal probability density functions in this example.

Next/ for the density function p. (x) in (4.3), an evaluation

of .

is needed. What this will do compared to Q, is that (p-1) additions

will be eliminated at the cost of an ordering operation to determine

max { |B ., (x - y . ) | }
* • • » < • • » •*• <*• *^-; 1=1,2...,p

and will not effect any change in the number of multiplications.

If T", T", and T" denote the total number of orderings, multiplica-

tions and additions, respectively, per image, when (4.3) is used,

then
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Ti! ( p , m , r , c ) = nurcp

( p , m , r , c ) = mrc(p + p)/2

T" ( p , m , r , c ) = mrc(p + p)/2

For the numerical example where r = 10 , c = 200 , p = 5, and m = 10,

we have

Tjj = 107 > 2 • 106 = TQ

T^ = 3.0 • 107 < 4 . 107 = T
M

T = 3.0 - 107 < 3.8 - 107 = T

This leads to a saving of approximately 3 to 4 in total number of

computing operations, but has increased the number of orderings by

a multiple o f 5 . . . .

It may be observed from these examples that the non-zero co-

variances in the covariance matrices £., i = 1,2,,.,/m, are the

sources of our computational problems. It certainly would be de-

sirable to select those characteristics which will be uncorrelated

and yet discriminate well.

6. Concluding Remarks

There are several facets of our discussion in this paper.

First it may be noted that we have considered transformed random

variables obtained by linear combinations of .components of a random

vector. The linear combinations depend upon the covariance. matrix
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of the random vector and are therefore not arbitrary. It is some-

time desirable to have the data transformed in some suitable way

so that a consequent analysis becomes more relevant and useful.

For example, the technique of transforming variables is well exploit-

ed in regression analysis for making regression more nearly linear

and, possibly, random variables distributed more nearly normal.

Next, in his discussion on the problem of principal components,

Anderson [1, chapter 11J has cited many advantages that the linear

transformation of. random variables has. It is" therefore our hope

that this paper furthers such a cause and that the consideration

of the proposed normed exponential density functions leads to some

kind of break in the "stalemate" which the Bayes classification

problem has reached in the case of normal density functions with

unequal covariance matrices regarding the evaluation of probabilities

of classification.

Though we have discussed only the problem of discriminant ana-

lysis with respect to the normed exponential density functions as

models, the idea is sufficiently general and perhaps other problems

of.the multivariate analysis theory can be treated and solved by

using these density functions. •
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ABSTRACT

This report discusses dynamic programming and cluster analysis

A dynamic programming technique which yields an optimal partition

is motivated and discussed and its relevance to data of the magni-

tude of remote sensing data is noted.
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1. Introduction.

The utilization of discriminant analysis in the remote sensing

application has been widely discussed; for example see [6] and [7].

The more basic subject- of cluster analysis has also been discussed

in relation to remote sensing data [2], [4], [5]. Cluster analysis

is more basic in that the number of classes (populations) is not

assumed known but is determined, in general, as part of the solu-

tion. • .

A particular cluster analysis technique used in the remote

sensing data situation is Ball and Hall's [1] well known ISODATA

technique. This procedure is well documented and its use, in-

cluding various modifications of the original procedure, are dis-

cussed in [5]. The ISODATA procedure is an iterative procedure

which has received very wide acceptance.

The cluster problem can be viewed as that of partitioning

objects into m subsets such that objects within each subset are

This research was supported (in part) by NASA Manned Spacecraft
Center under Contract WAS9-12775.

9

This research was supported (in part) by NASA 'Manned Spacecraft
Center under Contract NAS9-11925.
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"similar" and subjects between subsets are "dissimilar". The

objective in solving the cluster problem is then to determine the

optimal partitioning such that a certain criterion of homogeneity

within clusters is satisfied. One way of accomplishing this

objective is by complete enumeration, i.e. examine the homogeneity

criterion for all possible partitions into m clusters and choose

that one which is optimal. Unfortunately, the method of complete

enumeration is in general impractical, even for small values of

n and m.

One- alternative to the complete enumeration technique is to

utilize some of the techniques popularly called dynamic program-

ming techniques in an attempt to 'reduce the amount of computation

but yet converge on the optimal solution. Many techniques, such

as hierarchichal techniques, search for the optimal solution in

a class of subsets (clusters) and the optimal solution over the

whole class of clusters is not guaranteed. The aim here is to
/

motivate and discuss a dynamic programming scheme of Jensen [3].

2. Application of Dynamic Programming to the Cluster Problem.

In this section we consider the problem of partitioning

a set of 6 objects into 3 subsets when the distance between two

objects is the Eulidean metric or the criterion is the minimiza-

tion of Within Groups Sum of Squares (WGSS).

Recall that WGSS is given by •

m m
W = tr S. = I W
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-where S . denotes the n x n scatter matrix for the j cluster

and tr S . = W.. Equivalently, we have

, m ', n£, ni> 0 m . n£ n£ .
(1) W= I (£n [ I d2(XifX.)) = I (1 I I d* )

jt=i ̂ i=i j=i x 3 A=I ^ 1=1 j=i 13

where d2(X.,X.) = (X̂ -X.)7 (X̂ X.).

The purpose of a dynamic programming scheme is to systema-

tically search for groupings which yield minimum values of the

quantity W, eliminating those groupings which do not yield mini-

mum values of W and also those that are redundant.

We now discuss.the problem of partitioning n = 6 objects

into m = 3"subsets by complete enumeration. This will serve to

motivate a dynamic programming scheme for the cluster problem

given by Jensen [3].

The total number of ways of partitioning 6 objects into 3

subsets is given by

S I c •} \ _ 1 V / 1 \ ̂  l l / ' 5 _ l - \
(6,3; - -oT Z (~1' IvM^ k'

= 90.

The 90 clustering alternatives can be classified according

to their distribution forms [ 3] . The three distribution forms

in this case ;are denoted by
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(i) - (4} •{!} {!},

(ii) (3} {2} {!},

(iii) (2> {2} (2},

where each of the components in a distribution form {i} denotes

the number, i, of objects in the corresponding cluster. The com-

ponents of a distribution form will always be written in descending

order. In our example there are 90 clustering alternatives but

only 3 distribution forms. In general the number of distribution

forms is substantially smaller than the number of clustering

alternatives.

< 4 > < 1 >There are = 15 clustering alternatives
2

6 "?
corresponding to the distribution form {4}, {!}, {!}; (-3) (9) = 60

clustering alternatives corresponding to {3}, {2}, {!}; and

(2)(2)(T^/^'
 = •"••* clustering alternatives corresponding to {2},

{'2}, {2}. The clustering alternatives corresponding to each

distribution form are. .now lis.ted. / . ' . ••/.

Distribution Form {4},{!},{!}:

(1, 2, 3, 4), (5) , (6)

. (1, 2, 3, 5), (4), (6)

(1, 2, 5, 4), (3) , (6)

(1, 5, 3, 4), (2) , (6)

(5, 2, 3, 4), (1) , (6)

(1, 2, 3, 6) , (5) , (4)
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(1, 2, 6, 4), (5) , (3)

(1, 6, 3 , 4) , ( 5 ) , (2)

(6, 2, 3, 4) , (5) , (1)

(1, 2, 5, 6) , (3) , (4)

(1, 5, 6, 4) , (2) , (3)

(5, 6, 3, 4) , (1) , (2)

(5, 2 , 3 , 6) , (1 ) , (4)

(1, 5, 3, 6) , (2) , (4)

(5, 2, 6, 4) , (if," (?)

Distribution Form {3}, {

U,

(3.,

(1,

(If

(1,

(1,

<!'

(1,

(1,

(I/

(I/

(1,

(1,

(I/

(1,

(I/

2,

2,

2,

2,

2,

2,

2,

2,

2,

2,

2,

2,

4,

4,

4,

5,

3),

3),

3),

4),

4),

4),'

5),

5),

5),

6),

6),

6),

3),-

3),

3),

3),

(4,

(4,

(5,

(3,

(3,

•'(5,

(4,

(4,

(6,

(4,

(3,

(3,

(2,

(2,

(5,

(f,

5),

6),

6),

5),

6),

6),

3),

6),

3),

5),

5),

4),

5),

6),

6),

2),

(6)

(5)

(4)

(6)

(5)

(3)

(6)

(3)

(4)

(3)

(4)

(5)

(6)

(5)

(2)

(6)

2}, {!}.:

(1,

I1'

(1,

(1,.

(1,

(1,

(1,

(1,

<*'

(2,

(2,

(2,

(2,

•(2,

(2,

(2,

4,

4,

4,

4,

4,

4,

5,

5'

'5,

4,

4,

4,

4,

4,

4,

5,

5),

•5),

5),

6) ,

6),

6),

6),

6),

6),

5),

5),

5),

6),

6),

6),'

6),

(2,

(2,

(3,

(2,

(2,

(3,

(2,

(2,

(3,

(I/

(1,

(3,

(1,

(1,

(3,

(1,

3),

6),

6) ,

3),

5),

5>'

3),

4),

4),

3),

6),

6),

3),

5),

5),

3),

(6)

(3)

(2)

(5)

(3)

(2)

(4)

(3)

(2)

(6)

(3)

(1)

(5)

(3)

(1)

(4)
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(1, 5, 3) , (4, 6) , (2)

(1, 5 , 3) , (2 , 6) , (4)

(1, 6, 3) , (4, 5) , (2)

(1, 6, 3), (4, 2), (5)

(1, .6, 3), (2, 5) , (4)

(4 , 2 , 3) , (1 , 5) , (6)

(4, 2, 3), (1, 6), (5)

(4, 2, 3) , (5, 6) , (1)

(5, 2, 3), (4, 1) , (6)

(5, 2, 3) , (4, 6) , (1)

(5, 2, 3) , (1, 6) , (4)

(6, 2, 3) , (4, 5) , (1)

(6, 2, 3) , (4, 1) , (5)

(6, 2, ?}, (1, 5), (4)

. ( 2 , 5 , 6 ) , (1 , 4 ) , (3 )

(2, 5, 6) , (3, 4), (1)

(3 , 4 , 5) , (1 , 2) , (6)

(3, 4, 5}, (1, 6), (2)

( 3 , - 4 , 5 ) , ( 2 , 6 ) , ( 1 )

(3 , 4 , 6) , (1 , 2) , (5)

(3, 4, 6) , (1, 5), (2)

(3 , 4 , 6) , (2 , 5) , (1)

(3, 5, 6) , (1, 2) , (4)

(3 , 5 , 6) , (1 , 4) , (2)

(3 , 5 , 6 ) , (2 , 4 ) , (1)

(4, 5, 6) , (1, 2), (3)

(4, 5 , 6) , (1 , 3) , (2)

(4, 5, 6) , (2, 3), (1)

Distribution Form ( 2 ) , {2}, {2}:

(1 , 2) , . ( -3, 4) , (5 , 6)

(1, 2), (3, 5), (4, 6)

(1, 2), (3, 6), (4, 5)
•

(1, 3), (2, 4), (5, 6)

(1, 3), (2, 5), (4, 6)

(1, 3), (2, 6), (4, 5)

(1, 4), (2, 3), (5, 6)

(1, 4), (2, 5), (3, 6)

(1, 4), (2, 6)., (3, 5)

(1, 5), (3, 4) , (2, 6)
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(1, 5}, .(3, 2) , (4, 6)

(1, 5), (3, 6) , (2, 4)

(1, 6), (3, 4), (5, 2)

(1, 6), (3, 5), (4, 2)

(1, 6), (3, 2), (4/5)

Under complete enumeration the objective function W(WGSS)
/

would need to be evaluated for each of the 90 clustering alterna-

tives given above and that clustering alternative chosen for

which W is a minimum. One notes from the list of clustering al-

ternatives that under complete enumeration the WGSS would be

calculated more than once for some of the clusters, for example,

the cluster (1, 2, 3).

A dynamic programming scheme applied to the cluster problem

is a scheme which works for the optimum grouping in stages such

that at each stage the objective function is computed in such a

way that redundant calculations inherent in the complete enumera-

tion procedure are eliminated. In this way, the optimal solution

will be attained in stages. The dynamic programming approach will

.require large amounts of rapid access storage.

The above example can be put into the framework of a dynamic

programming solution as follows. The clustering alternatives

are first classified according to their distribution forms. Re-

call that the distribution form components are listed in descending

order. At the first stage the objective function for each cluster

corresponding to the first distribution form component is evalua-

ted and saved. At the second stage the objective function for
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the clusters corresponding to the first two components of the dis-

tribution forms is evaluated using all information from the first

stage, that is, the within sum of squares is not recomputed for

any cluster but "carried over" from the first stage.

For a discussion of the dynamic programming approach consider

Table 3.1. The second column gives the clusters corresponding

to the first component of the distribution forms, that is, the

clusters available for the first stage. The number of clusters

for the first stage is rj) + u) + U] = 50. The function W
w Vv V-j

will be computed for each of the fifty clusters in stage 1. At

the second -stage we will have 2 clusters corresponding to the

first two components of the distribution forms, that is, we will

have clusters of size {4} and {!}, {3} and {2} , or {2} and {2}.

Thus the total number of objects at stage 2 will be 5 or 4. The

number of ways of obtaining 5 objects is given by L) Lj + (•?)(?) = 90

The number of ways of obtaining 4 objects is (-)(-) + (o) h) = 15°-
\£/ \2 1 ,\3I \-L/

The total number of ways of obtaining objects in stage 2 is there-

fore 240. However, there are -~ („) L>) = 45 ways to form clusters

giving rise to distribution form components {2} {2} at stage 2,

that is, there are 45 redundancies. Also, for components {3} {1}

at the second stage it will be necessary to add 2 entities at

the third stage giving rise to distribution form {3} {1} {2} which

is ultimately equivalent to form {3} {2} {!}. Thus, the total

number of ways of obtaining entities for the second stage is

3 23 MU6 2< = 30 + 60 + 45.= 135
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TABLE 3.1

Stage 0 Stage 1 Stage 2 Stage 3

1. ( )

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15..
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
2*.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44.
45.
46.
47.
48.
49.
50.

(1,
(1,
(1,
(1,
(5 ,
(1,
(1,
(1,
(6 ,
(1,
(1,
(5,
(5,
(1,
(5,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(2,
(2 ,
(2 ,
(2 ,
( 2 ,
(2 ,
(3,
(3,
(3,
( 4 ,
(1,
(1,
U,
(1,
(1,
(2 ,
(2 ,
(2 ,
(2,
(3,
(3,
(3,
( 4 ,
( 4 ,
(5,

2,
2 ,
2,
5,
2 .
2,
2 ,
6,
2 ,
2,
5,
6,
2 ,
5,
2,
2,
2,
2,
2,
3,
3,
3,
4 ,
4,
5,
3,
3,
3,
4,
4,
5,
4 ,
4,
5,
5,
2)
3)
4)
5)
6)
3)
4)
5)
6)
4)
5)
6)
5)
6)
6)

3,
3,"
5,
3,
3,
3,
6,
3,
3,
5,
6,
3,
3,
3,
6,
3)
4)
5)
6)
4)
5)
6)
5)
6)
6)
4)
5)
6)
5)
6)
6)
5)
6)
6)
6)

4 )
5)
4)
4 )
4 )
6)
4 )
4)
4 )
6)
4 )
4 )
4)
6)
4)

1

1.
2.
3.
4.
5.
6.
.7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

(1,
(1,
(1,
(1,
(1,
( 2 ,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
( 2 ,
(2 ,
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a reduction of 105.

The number of distinct sets containing either 4 or 5 objects

for stage 2 is Lj + I.J = 21. These are listed under stage 2

in the table 3.1 and are called states. Thus there are 21 states

in stage 2. There were 50 states in stage 1. Five of the 135

feasible ways of.obtaining states in stage 2 are indicated in

Table 3.1.

The final stage of the process is stage 3. The final stage

will result in 3 clusters. There is only one state in the final

stage, the one involving all six objects. The number of ways

of arriving at the six objects in the final state is

1} + (6}l2} =i/ Ww
6 , , , ,, _
5 + = 6 + 15 ~

that is, there are 21 feasible arcs from stage 2 to stage 3.

For the example with n = 6 and m = 3 there are a total of

135 + 21 =156 feasible arcs. If one includes the number of

initial states then there are 156 + 50 = 206 feasible arcs. Each

feasible arc results in what is called a transitional calculation

defined by

(2) T(g ) = -
k nk i<jegk

•

where g, denotes a group of n, objects and d.. the distance be-
JC JC -L ̂

tween X. and X..

The total enumeration procedure involves 90 clustering al-

ternatives and 3 transitional calculations for each alternative
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resulting in a total of 270 transitional calculations. The

dynamic programming approach involves 206 or 64 fewer transi-

tional calculations, '

Under dynamic programming suppose there exists a state, at

some stage k, 'containing objects X,, ...,X , q <_ n. The dynamic

programming procedure stores in memory the optimal way to parti-

tion the q objects in k nonempty and mutually exclusive subsets.

In later stages in which the q objects are partitioned into k

subsets it is not necessary to recompute all feasible ways of

performing the partitioning.

As an.illustration consider our example with n = 6, m = 3.

Table 3.2

Alternative . Transitional Calculations

1 T(l, 2) + T(3,- 4) + T(5, 6)

2 T(l, 3) + T(2, 4) + T(5, 6)

3 T(l, 4) + T(27 3) + T(5, 6)

Recall that when n = 6 and m = 3 there aro S(6, 3) =90 unique

clustering alternatives available. Three of these are listed in

Table 3.2. Under complete enumeration 9 transitional computa-

tions would be required for these 3 alternatives. Under dynamic

programming it would take 6 transitional computations for the

optimal partition of (1, 2, 3, 4) into two groups of size 2. The

optimal partition, say T(l, 3) + T(2, 4) = W2(l, 2, 3, 4) is

recorded in memory so that only one additional computation is
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required to determine W2(l, 2, 3, 4) + T(5, 6). For these 3

alternatives dynamic programming has eliminated 9 - 7 = 2 re-

dundant calculations. Actually, as n and m are increased the

number of redundant arcs that are eliminated is substantial,

however, relative to the total number of transitional calculations

the difference may not be so great.

3. Jensen's Dynamic Programming Model.

There is no standard mathematical formulation for the dynamic

programming problem. This is in contrast to the linear program-

ming problem for which there does exist a precise standard for-

mulation. The equations and formulas pertinent to a dynamic pro-

gramming problem depend on the particular situation at hand. The

problem is usually reduced to a recursive relationship or equation

which reflects the multiple interrelated decisions inherent in

the dynamic programming procedure and which result in the final

"optimal" result.

Jensen's dynamic programming formulation is given in terms

of the recursive equation

(3) W.(zL=<

if k = 0,

min [T(z-y) + Wfc_]_(y)]/ if k = 1, 2,...,m0
y •

where

m = number of disjoint and non-empty subsets into

which the n objects are to be partitioned,
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k = index or stage variable,

mQ = m if n >_ m, and n - m if n < m,

z = state variable representing a given set of

objects at stage k,

y = state variable representing a given set of

objects at stage k-1,

z - y = subset of all objects contained in z but

not in y,

T(x-y) = is the "transition cost" of the objects in the

cluster of objects in (z-y).

The variables y and z represent 2 states (sets of objects) in

stages k-1 and k, respectively. The difference z-y represents

those objects contained in the stage k state but not in the stage

k-1 state. T(z-y) then represents the "transition cost" or WGSS

for those objects which are combined with the stage k-1 state

objects and W, (z) = min [T(z-y) + W, ,(y)] gives the minimum value
y

for WGSS in partitioning the objects represented by z into k dis-

joint and nonempty subsets. It will be seen that the use of formula

(3) calls for a substantial amount of bookkeeping. Recall from

section 2, e.g. (2) that if g. denotes a cluster of n. objects

then the transition cost T(g.) is given by
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which is actually the WGSS for cluster g..

Note that the number of stages is ITU = m. if n j> m, and

n - m if n < 2m. The reason for this is that if n < 2m there must

always be at least n - m + 1 single-object clusters. The transi-

tion cost T for a single-object cluster is 0 so that single object

clusters add nothing to W. Consequently, the process may be ter-

minated at stage mQ and all remaining clusters are assumed to be

single-object clusters. Also, in computing W, (z) it shduld be
— ~. _ JC

emphasized that the objects corresponding to. any state in stage k

consist of objects contained in some set corresponding to some

state y of stage k - 1 and objects contained in another set re-

presented by z - y.

As an exampla to illustrate the notions involved in the re-

cursive equation (3) consider state 37 of stage 1 and state 15 of
0

stage 2 when n = 6 and m = 3 (Table 3.1). In this- case y represents

the objects (1, 3) in stage 37 of stage 1, z represents the objects
•

(1, 3, 5, 6) in state 15 of stage 2, and z - y represents the

objects (5, 6). The "transition cost" from stage 37 to state 15

is then

T(z - y) = T(5, 6) = d256

The transition cost from state 37 in stage 1 to state 1 in stage

2 would be

,2 . ,2 ,2a,*. + aoc .+ a. c
T(z - y) = T<2, 4, 5) = -** « 45 ̂
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At the first stage the dynamic programming algorithm

considers the evaluation of W, (z) for a given.set of clusters,

In this case

W,(z) = min [T(z-y) + WQ(y)] = T(z),
y

where z represents a given set of objects. The quantity W,(z)

is computed for each of the possible clusters at the first stage.

The maximum number of objects available for a cluster in the

first stage, denoted by max (1), is given by

max (1) = n - m + 1,

that is, the largest cluster has n - m + 1 objects in which case

the remaining clusters would be single-object clusters. The mini-

mum number of objects, denoted by min (1), in a cluster in stage

1 is

»

min (1) = n/m

if n is an even multiple of m, and

min (1) = <

[n/m] + 1, for 1 < n - m[n/m],

n - (m-1)[n/m], for n - m[n/m] < 1 <
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when n is not an even multiple of m, where [n/m] denotes the

largest integer £ n/m. The total number of clusters available

for the first stage, denoted by NS(1) is given by

max(l)
(4) NS<1) = I (")

j=min (1) J

The first stage of the algorithm consists of computing the quantity

T(z) for each of the NS(1) possible clusters.

In general the maximum number of objects in any one state in

stage k is equal to the maximum sum of distribution form compo-

nents from stages 1 through k inclusive. The minimum number of

states is the minimum sum of the .distribution form components.

For max (k) and min(k) we have

(5) max(k) = n - m + k

•

and

* . :

(6) min(k) = k[n/m]

if n is an even multiple of m. If n is not an even multiple

of m we have

([n/m] + l)k, for 1 <_ k <_ n - m[n/m]

(7) min(k) = <

. ' i . ' •
n - (m - k) [n/m]/ for n - m[n/m] < k < m.
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The number of states available for stage k is given by

1 for k = 0

(8) NS(k) =/

max(k)
I ( .) for k = 1,2,. . .,mn.

1 j=min (k) 3 u

The total number of states available in the dynamic pro

gramming formulation is thus given by

'mo
(9) I NS(k) .

k=0 -

A very important quantity in the formulation is the total

number of values for W,(z) in going from stage k-1 to stage k,

that is, the number of ways of forming a state in stage K.

States in successive stages are connected by arcs. Two states,

in stages k-1 and k, are connected by a feasible arc if the objects

in the state in stage k consist of objects in the state in stage

k-1. That is a feasible arc cannot exist between a state in

stage k-1 and a state in stage k if an object contained in the

stage k-1 state is not contained in the stage k state for 2 <^ k £ mQ,

In the dynamic programming algorithm the total number of

feasible arcs is given by

•V1
(10) ^ TFA = NS(1) + I TA(k)

. . k=l . . ' .
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where TA(k) represents the total number of feasible arcs between

stage k and stage k+1 for k = 1, 2,...,m,.. The value of TA(k)

is given by

max(k) max(k+1)-min(k)
(11) TA(k) I I FA(j,i) ,

j=min(k) i=l

where

[.) ( T3) if min(k+l) <_ i + j <_ max (k+1)

(12) FA(j,i) =

lo otherwise

s*

In (11) and f!2) , i denotes the number of objects among a class

of (feasible) states at stage k. There are such states

containing i objects, since r? is the number of subsets of size

i. The quantity j denotes the number of objects to be combined

with the i objects to form a new state at stage k+1. Obviously

we must have min(k+l) <_ i + j '<_ max (k+1) for a state of size

i + j to exist at stage k+1. If i + j satisfies the required

condition, then there are r •] sets of size n-i that may be

added to the i objects j at a time.

Jensen gives a way of computing the efficiency of dynamic

programming relative to complete enumeration. Efficiency is

defined as the ratio of the total number of transitional calcu-

lations under dynamic programming to the corresponding number of

calculations under complete enumeration. Alternatively, the

numerator can be taken to be the total .number of feasible arcs.
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In either case the dynamic programming procedure is quite efficient.

However, the dynamic programming procedure requires more computer .

memory and consequently slow-access storage could make it less

useful than complete enumeration. In any event for large n and

m one might be better off using some other technique such as

ISODATA or hierarchial procedures.

In order_,to illustrate Jensen's formulation consider the

example with n = 6 and m = 3. In this case n = 2m so we need

to consider n-m = 6 - 3 = 3 stages, i.e. mQ = 3. Furthermore,

max(l) = n - m + l = 4

min(l) = ([6/3])l =2

: max (2) = n - m + 2 = 5

min(2) = ([6/3])2 =4.

max ( 3 ) = n - m ! - 3 = 6

min(2) = ([6/3])3 =6

' ' •

as can be seen from Table 3.1
*

The total number of states in stages 0, 1, 2/ and 3 are given

by
%

NS(0) = 1

NS<2> - (4)+ 5
NS{3) = («) - 1
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These states^are listed in Table 3.1. The total number of states

is thus 73. This figure agrees with Table 3.1 i-f NS(0) = 1. - _

From equation (12) we have, for k=l,

FA(3,1) = = 60

FA(3,2) =

FA(4,1) = . = 30

FA(2,2) = Q Q = 90

.S) = FA(4,2) =0

and the total number of feasible arcs between stages 1 and 2 is

TA(1) = 240.

Similarly for ;:=2 we have

• 8 a
Thus the total number of feasible arcs in our example is, by (10)

2
' TFA = NS(1) + I' TA(k) = 50 + 240 + 21 = 311.

k=l

From section 1 it was seen that half of the stages in stage 2

corresponding.to distribution form components {2}, {2} are re-

dundant and that the 60 arcs corresponding to components (3) {1}
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ultiraately lead to the form (3} (l) {2} which is equivalent to

(3) (2) (l). Thus in the reduced formulation the number of feasible

arcs, denoted by NA,

NA = 50 + 135 + 21 = 206.

The number of feasible arcs, between stages k and k+1, elimi-

nation is given by ---

max(k) max(k+l) -min(k)
NA(k) = I I A(i,j)

i=min (k) j=l

where

W ("j1

AU,j) =<

if :

if

0 otherwise,

xnin(k+l) <_ i+j <_ max (k+1)
and

(m-k) j n

The total number of arcs in the reduced formulation is . given by

(13) NA = NS(1) + I NA(k) .
k=l

It can be verified that (13) .yields 206.

The maximum number of feasible arcs that must be evaluated

in the dynamic programming formulation is then 206.

To illustrate how the dynamic programming algorithm/operates

let p = 2 and let the six objects .be (1,1), (3,4), (5,5), (4,4),
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(1,2), anu (5,6) or

Y _ fl 3 5 4 1 5\
\1 4 5 4 2 6/

The sauared distances are then

d!2 = 13' d!3 = 32' d!4 = 18< d!5 -V1' d!6

d23 = 5' d24 = X' d25 = 8< d26 = 8' d34 = 2>

2 2 2 2 2
d35 = 25/ d36 = 1/ d45 = 13/ d46 = 5/ d56 = 32

According to the dynamic programming algorithm we would

have:

Stage 0;

Stage 1; Compute W-^z) = T(z-y) + WQ (y) = T(z) + W(0) = T(z)

for each set of objects in stage 1. For example

, 2, 3, 4) = T(l, 2, 3, 4) + WQ(0)

(d12 + d!3 + d!4 + d23 + d24 + d34

= 17.75

There are 50 such values for stage 1,
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Stage 2: Compute W_(z) = min(T(z-y) + w,(y)} for each set of
y

objects in stage 2. For example

W2(l, 2, 3, 4) = min (T(5) + 1^(1,2,3,4), T(4) + VJ^ (1,2,3,5) ,

T(3) + 1̂ (1,2,4,5), T(2) + W]L(1,3,4,5),

T(l) + W1(2,3,4,5), T(l,2) + 1̂ (1,2,3),

"T(l,3) + W1(2,4,5), T(l,4) + W-^2,3,5),

• .

T(l,5) + W1(2,3,4), T(2,3) + W1(l,4,5),

: ' T(2,4) +W1(1.,3,5)/ T(2,5) +̂ ^̂ '(1,3,4),

T(3,4) -fc ^̂ (1,2,5), T(3,5) + 1*^(1,4,5),

T(4,5) + 1̂ (1,2,3)}.

Stage 3; Compete W^(z) = min{T(z-y) +«W2(y)) for each set of
y

objects in stage 3. In this stage z represents the one set of

objects (1,2,3,4,5,6). There are 21 feasible arcs between states

in stage 2 and states in stage 3. Thus, we would choose the

minimum of 21 values. As an example one of these 21 values is

T(2,4) + W2(l,3,5,6)

corresponding to state number 15 (see Table 3.1) in which case

y corresponds to the set (1,3,5,6), z corresponds to the set

(1,2,3,4,5,6) and z-y corresponds to the set (2,4). .
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The results of the dynamic programming procedure are the

clusters (1,1) and (1,2); (3,4) and (4,4); and (5,5) and (5,6)

with distribution form {2}, {2}, {2}. The minimum value for

W is

W3(l,2,3,4,5,6) = 1.5

The results are displayed in Figure 1.
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Figure 1. Graph of n=6 objects
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4. Concluding Remarks.

It is apparent that the dynamic programming technique dis-

cussed in this report will not prove useful in a remote sensing

data situation in view of the large magnitude of such data. The

technique discussed herein does, however, yield an optimal par-

tition. It appears that the search for a useful dynamic program-

ming technique will yield one which strives for a local optimum

at each stage of the process.
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1. Introduction

When misclassification costs are equal and prior probabilities are

equal, for classifying an individual I(x), observation on whose p character-

istics is p x 1 vector x, into one of tv/o normal populations IT, and up

with densities N (y . ,£ ) , (i=l,2), the Bayes procedure that minimizes the

total misclassification .probability partitions the p-dimensional real

Euclidean space E into two regions R-, and R~ given by

R£= R1 = (x:(Pl-y2)T T1 Cx-l/2(yi+ii2)] >.0 . (1)

The misclassification probabilities are known (Anderson [1] p 136) to be

given by

P(2|l) = PCXeRJlCXje i r , ) = $(-A/2)
(2)

P(l|2) = P C X e R K X j c i r ) = «(-A/2)

where A2 - (yi-yp) I" (PI-MO) > Mahalanobis distance between TT, and ir^ and

x
#(x) = / exp(-t2/2)dt/v>2T.

—00

When the parameters are unknown, they are estimated from the training
*

samples from each population. In practice, the true values of the para-

meters occurring in (1) are taken to be the value of their corresponding

estimates obtained from the training samples of large size. These esti-

mates are obtained on the assumption that the samples are independent. But

in reality, especially when the data are obtained by remote sensing
/

technique, the samples are never independent. Often the assumption of

independence may at best be approximately valid. So, it will be perhaps

rational to assume the samples to be equi correlated, that is, all pairs
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of these samples to have the same correlation. In this paper we investi-

gate the effect of such intraclass correlation on the misclassification

probabilities of linear discrimination function.

2. Basic Concepts

The random vectors X,,...,X are said to be equicorrelated (Basu,

Odell and Lewis [2]) if

(1) D(X1) = ECXj-EX^MXj-EXj)
1] = I, a symmetric matrix, for all i,

and (2) Cov(X-,X.) = E[(X.-EX.)(X.-EX.)T] = R, a symmetric matrix, for
I J 1 I J J

all i f j. If X , , . . . , X are equicorrelated random vectors, then the

dispersion matrix V of their joint dis t r ibut ion is given by

I R ...R
R I R

where A

V =

_R R ••

B denotes the Kronecker product of "the matrices A and B, I

(3)

is the n x n identity matrix and E the n x n matrix all of whose elements

are 1.

.The random vectors X,,...,X are said to be simply equicorrelated if

(1) D(X-) = £, a symmetric matrix, for all i,

and (2) Cov(X.,X.) = p£, p being a scalar constant for all i 1 j.
I J

If X - j , . . . , X are simply equicorrelated, then the dispersion matrix V of their

joint distribution is given by

,] 0 I - . (4)

Obviously V in (4) has been obtained from (3) by substituting p£ for R.

¥-[(l-p)In*
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Let us define the np * 1 random vector X as

X =
Xl (5)

and suppose that X has a multivariate normal distribution with mean and

variance given by

EX = e ® y and D(X) = V = I - r) + En © R (6)

where e is the n x i vector, all of whose components are 1. Also, let

B be the n x n orthogonal matrix given by

B =

• v V.

^

'i
j_

•

i .

JL

vfT

*
J_

•

1

J_

^

0

-2

ft

1

^_^_ * * , •

ft . . ft

0 . . 0

0 . . 0

• *

• •

-(n-1)
• • •

L/n(n-l) /n(n-l) /n(n-l) /n(n-l)_

(7)

Then the p x 1 random vectors Z,,Z2>...>Zn, the n components of the np

random vector Z given by

Z = (B ® Ip)X (8)

are independent, since
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DZ == (B ® Ip) DX (B ® I p ) 1

= (B © Ip)[In (g) (I-R) + En <g> R](BT 0 Ip)

•• 1 + ( n - l ) R <{> . . 4

* * »
• • •

Also, EZ = (B <g) I )EX

(9)

(10)

.- * _
• . ;

Thus, for all i (2<i<n) Z^ ̂  N (<j>, j>-R), that is, if X-j,...,Xn are equi-

correlated samples from a N (n,y) population such that their joint distri-
P

bution is given by (3), then Zp,...,Z are independent samples from

N («(i,̂ -r) population. The maximum likelihood estimator of £-R is given

by

I (11)

Since B 0 I is an orthogonal transformation, it is well known (Ander-

son [ l] p. 52, Lemma 3.3.1) that

n T n T
I X.XJ = I Z.ZJ (12)

Also from (7) and (8) it is evident that Z^ = v^h~Y. Therefore

n T n T T

;. cxrx)(xrx)
T.. (13)
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Th us when the samples X- j , . . . ,X n are equicorrelated

l" (X rX)(X rX)T / (n- l ) (14)

is an unbiased maximum likelihood estimator of £-R, but not of £.

3. Effect of Intraclass Correlation Among Training Samples

Let X , , . . . ,X and Y , , . . . ,Y be training samples from the popula-

tions N ' ( M I »Z') and ND(Mp»'Z) respectively. In practice, when Bayes

classification regions (1) are defined on the basis of the training

samples, v-pPo anc* I being taken respectively as J, Y and
n _ _ T n _ _ T

CZ (X , -X ) (X . -X ) ' + I (Y . -Y ) (Y . -Y ) ' ] / 2 (n - l ) . When the training samples
i=l n ] i=l 1 1

are really independent, for large values of n, the misclassification

probabilities of Bayes procedure are given by (2). When the training

samples are equicorrelated such that the dispersion matrices V and Vx y

of their respective joint distribution is given by

V X = I N x (Z-R) + En x R

and Vy = IN x (Z-R) + En x R,

for large n X and Y still gives estimates of v-, and ̂ J ^ut

S = LI_ (X i-X)(X1-X)T + l_ (YrY)(YrT)T]/2(n-l) (15)

fails to provide a good estimate of £> it then provides a good estimate of

(£-r) instead.

If the training samples are equicorrelated and inadvertently S is used

in place of Z in (1), then for large n the regions R^ and R2 become the

regions
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R2 =R! - (x: (p ry2) (I-R)" [x-l/2(Ml+i,2)] >. 0 . (16)

If we write

W ( X ) = (y 1 -u 2 ) T (Z-R)" 1 [X-V2(y 1 +y 2 ) ] , (17)

then the new misclassif i cation probabi l i t ies are given by

P(2 | l ) = P ( W ( X ) < 0 | I ( X ) e I T , ) (18)

and P( l | 2 ) = P ( W ( X ) > . 0 | I ( X ) e *2) . (19)

Now, W ( X ) is distributed normally with mean given by

E W ( X ) = l /2(p ru2)T(I-R)"1(y r i J 2) = A2 /2 if I ( X ) e ir1

and EW(X) = - l / 2 ( n y ) T ( I - R ) " 1 ( p - y ) = -A2/2 if I ( X ) e *

and variance under either hypothesis given by

V a r U ( X ) = (u ru2)T(I-R)"1I(I-R)"1(y ru2). (20)

Obviously,

= $(-A2/2/VarW ). (21)

Case 1. R = P£, that is, t ra in ing samples are s imply equi correlated.

A2 = (1/2) (jiru2)T Z ' ^ M P J / d - P ) = AV2(1-P)

Var W = (yrp2)T rV^-U
/ — r

So, A2/2>A/arW = A/2.

Therefore, P ( l | 2 ) = P (2 | l ) = «(-A/2) .

Thus v/hen the t ra ining samples are simply equi correlated and yet the Bayes

regions are constructed on the inadvertent assumption of independence, the

misclassifi cation probabilities do not change.
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Case 2. Training samples are egui correlated, R j p£

We consider a numerical example to illustrate how the misclassification

probabilities are changed when the training samples are equi correlated and

yet Bayes regions are defined with the inadvertent assumption of indepen-

dence.

Example. Let it-, and v~ be two 3 dimensional normal population

where

1
0

_0_

• r^ O *" "

0

0

_0_

and
1 1 1
1 4 1

1 1 2

Also let the training samples be equi correlated, such that for both

population . ._ . .

R =
0.2

0

0

0 0

2 0

0 0.4

Then A2 = (i^-vg)

A/2 = 0.7638

T = 7/3,

= 13-75

VarW = (UT^)

A2/2y^aTw = 0.7627

= 81.25

Therefore, the misclassification probabilities for

actual Bayes procedure: <J>(-A/2) = <|>(-0.7638)

uncorrected Bayes procedure: $(-A2/2/farW) = <f>(-0.7627).

Thus the misclassification probabilities increases when training samples are

equicorrelated .and yet Bayes regions are defined with the inadvertent
/

assumption of independence.
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ESTIMATION OF PROPORTION OF OBJECTS AND DETERMINATION

OF TRAINING SAMPLE-SIZE IN A REMOTE SENSING APPLICATION
(

1. Introduction

The multichannel spectral measuring devices that are used as remote

sensors fail to observe any vegetation, flora, etc. grown underneath

timber on the earth surface. .Suppose the latter is observable via a

spectral measuring device and is, however, identifiable with certain

uncertain!ty. If we know how the amount of vegetation/flora is asso-

ciated with different types of timber, an evaluation of the former over

a large track of land covered by forest, etc. can be made easily by the

remote sensing technique.

However, as in most cases, the true parametric values such as the

probability of correct identification, amount of vegetation/flora corre-

sponding to various types of timber are unknown quantities. Hence a study

of the problem first requires estimates of the unknown parameters on the

basis of samples of both timber and vegetation from the ground. In the

present report thTs estimation problem is being considered in its general

form and our approach constitutes a two-stage sampling process where at

the first stage samples consist of individuals called primary units, and

at the second stage samples consist of categorized elements called sub-

units (e.g., timber and vegetation types at first and second stages,

respectively, in the above example). A formal formulation of the problem

is stated as follows: .
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Let II., i=l,2,...,m be m different classes and every individual from

these classes be characterized by p common observable features so that a

measurement vector X=(X,,X_,...,X ) is associated with an individual l(X)
I 2 p

from each class. Next, associated with these individuals let there be

another kind of elements categorized into k groups with proportions p..,

j=J,2,...,k for each i. Further we assume that at least one element (sub-

unit) is associated with each individual (primary unit) from every class.

On the basis of an observation X, the associated primary unit l(X) may be

misclassified, and let P(i|k) denote the probability of misclassifying l(X)

into ii. when it belongs to IT. and P(i|i) denote the probability of correctly
I l\

classifying I(X) into its class ir.. Then, given an observation X, the

expected proportion of jth category subunits associated with primary unit

l(X) from rc. is given by .

e.. - 7 p .
•J Jli tj

i=lt2,...,m and j=l,2,...,k .

k
Note that for any fixed 5, }> e.. = 1 and e. . = p.., j = l,2,...,k, if

j=l •* U U

and only if P(i|i) = 1. But the later condition is an ideal one and often

is not achievable. However, an effort should be made to separate out the

underlying classes maximum possible, and thereby to obtain maximum possible

values for P(iji), i=l,2,...,m, so that p..'s can be ascertained with minimum

possible error. Otherwise, the evaluation of p.. provided by e.. can be

very misleading. -
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For an estimate of e..., one needs to obtain estimates for P(t|i), p..»

t, i=l,2,...,m and j=l,2 k. For that, samples of primary units and of

subunits are required from each class. Below in section 2 we outline a

sampling procedure and introduce some of the notations being used later

on. Our main results are obtained in section 3 and section k where we

w i l l discuss the interval estimation of e..'s and the determination of

training sample size so that for a given probability an estimate allows

only a specified amount of deviation about each e...

2. Notations and Sampling Procedure

Without loss of generality, let there be two classes T:. and ir?.

Further, suppose the measurement vector X is distributed multivariate normal

with mean y if i(X) e TT. and mean v if l(X) e TT_ and has variance-covariance

matrix £ for both classes. Then it follows by maximum likelihood principle

[1] that P(l|2) = P(2|l) = <K-A//2), where

A2 = (y-v)T I"1 (y-v)

and

_ a 2
*(a) = (1//270/ exp (-y /2) dy .

— 00

In case, y, v and % are known, P(l[2) and P(2|l) w i l l be known. So in

order to estimate e.. and e ., one only needs to estimate p.. and p ,, j=i,

2,...,k. This w i l l be achieved by sampling N. primary units randomly from

IT. and N- from ir. and then determining separately the observed proportions

of k categories of subunits associated with these N. and N. sampled.primary

units.
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When u, v and ][ are partially or completely unknown, A w i l l be

unknown and so.also P(l|2) and P(2[l). Then for estimating any e.. it w i l l

require two estimates, one for p.. and the other for P(l|2) and P(2|l).

The sampling procedure in that case w i l l be to select randomly M. and f-L

primary units from ir. and TT_, respectively. The observations for these

selected units w i l l be utilized to estimate A and thereby P(l|2) and

P(2|l). Next, N| out of M. and N out of M primary units are again ran-

domly selected and these N. and N units are used similarly to the previous

case in finding estimates for p.., i=l,2 and j=l,2,...,k.

3- Interval Estimation for e..'s

3.1. u, v and J all known

Let n.. denote the number of the jth category subunits associated

with sth primary unit randomly selected from it.. Also, denote

and n. = 7 n.., j=l,2,...,k ,
s=l 1JJ ' j=l IJ

for N. randomly selected primary units from ^., i=l,2. Then p.. = n../n.i i rij ij i

is an unbiased estimate of p.., and so also

2 .

of £j j » i=l|2 and j=l,2,...,k. This can be easily seen because the sample-

size n. of subunits being a direct consequence of the sampled primary units

N. can be recognized fixed for a specified value of N. and P(t|i)'s are
A

known quantities. So E[e..] = e.. and '
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2
Var (e..) = I [P(t|i)]2 Pf (1-p .)/n (3a)

J t=l J

. , 2
Cov (e e )= - I [P(t|i)J2 p.. p .,/n J*j • (3b)

•J 'J t=l

1=1,2 and j=l,2,...k.

By the large sample theory, asymptotically the random vector
A A A A -IT

e. = (e.., e._, ..., e..) has multivariate normal distribution with
I II I fc I IX

s'-

mean e. = (e.,, e.0, ..., e. ) and covariance matrix E consisting ofi 11 i / i k

elements in (3a) and (3b). So a lOO(l-a)^ confidence region for e. is

approximately given by the ellipsoid of points e.'s satisfying

where E is an estimate of E obtained by replacing p..'s by their estimates
A ' t

p..'s and x£ (p-0 »s the I00(1-a)% quantile for x2 variate with (p-1)

degrees of freedonr. Considering the coordinate-wise projection, this

yields the simultaneous confidence intervals '

• . ' - . . 2 . 1/2
e,j ±'1x2 (P-0 I (P(t|i)]2 Ptj (l-ptj)/nt] (5)

for e.., j=l,2,...,k and i-1,2.
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3.2. Not all of yi, v and J known ^

Here we need to estimate both p..'s and P(t|i)'s in (1) for an

estimate of e.., 1=1,2 and j=I,2,...,k. Since

, t=i

P(t|i) - i (6)

with i=l,2, the estimation of any P(t|i) amounts to estimating the quantity

*(-A/2). For the later an estimate is given by <2>(-A/2) where A is the

maximum likelihood estimate of A based upon samples observations X.,X_,...,

X.. of M. randomly selected primary units from T\ and observations Y.,Y ,

A

...,Y of M2 randomly selected primary units from TT-. Since *(-A/2) is

a consistent estimate of $(-A/2) , due to (6) it leads to consistent esti-
A

mates of P(tji), i=l,2 and t=l,2, denoted by P(tji). Next, as in the previous
A

case, for an estimate of p.., let p.. be the estimate obtained from subunits

associated with N, and N randomly selected primary units from M, and K_

respecti vely. Then the estimates

(7)

for e.., i=l,2 and j=l,2, — ,k,are consistent.

For our purpose of finding an asymptotic simultaneous confidence

intervals for e..'s, it is suffice to find the mean square errors (MSE)
A . A

for these estimates. After considering the two estimates p .'and P(t|i)

stochastically independent so that
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Var [E(ptj)]2[Var(P(t|i)] + [E(P(t|i)]2Var(pt.;

+ Var(ptj) [Var(P(t|i))] ,

one can easily deduce the MSE of e.., i = l,2 and j=],2,...,k.

Since Var (P(l|i)) =.Var (P(2|i)) = Var (*(-A/2))f i=1,2, we obtain

Var(e]j) = Var(p,jP.(lJl))+Var(P2jP(2|l))+2 Cov(p ,̂ (1 11) ,P2JP(2 1

"3plj°"pl.
nl

,) 3P2j(l-P2j)

n2

(8)
n,

Since it is difficult to evaluate E[<J>(- y) ] and Var(*(- -r-)), we here consider
A .

the mean square error of e.. given by

MSE(ejjj' =
3P,,

"
j"P2j}

MSE(*(- %

(8a)
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Similarly,

MSE(e2j)
3P,.(1-P7.)

+ -21 (̂P.rP,,)'
n~

1J-2J MSE(«(- |)

p. (1-p, .)_Li - LL.+
ni

p ,.(1-P,5)_2j - LL_ (8b)

We denote MSE(e..) = s.. and let its estimate s.. be obtained by replacing
U ij U

unknown quantities by their estimates.

Now as in the previous case, an approximate 100(l-cx)% simultaneous

confidence intervals for e.., i=l,2 and j=l,2,...,k are given by

1/2 (3)

i=l,2 and j=l,2 k, respectively.

The two particular cases of interest are (i) y,v are unknown and £

is known and (ii) ,y,v and ]> are all unknown. For (i), the maximum likeli-

hood estimate of A2 is given by

A2 = CX-Y)' I"' (X-Y) (10)
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and for (ii), this estimate is

A2 = (Y-Y)T S"1 (X'-Y) ' (11)

Nl N2
where X = I X./N, , Y = I Y./N and

1 ' ' 1 ' Z

Nl _ _ N2
(N.+N -2)S = I (X -X ) (X . -X ) T + I (Y -Y)(Y -Y)T

I ^ - * I I . 1 I

k. Sample Size

Presently our concern is to determine the sample size so that only a

specified amount of error for e..'s is allowed by their estimates with a

given probability. In specific terms the problem is to find (n,,n?) and
.•*• . «.

consequently'(N,>N2) so that e.. fall simultaneously in intervals given by

e.. ± r.., i=l,2 and j=\,2,...,k, with probability (1-a). However, this

is equivalent to obtaining (n.,n ) when the length of a confidence interval

for e.. -with confidence level 100 (]-a)% is given. Hence, based upon the

discussion in section 3, an asymptotic solution for the sample size is

available from equations (5) and (9) for the two cases considered above.

Suppose y,v and £ are known. Then using equation (5), an asymptotic

sample size (n.,n_) is the solution of

2 „
I [P(t| i)]2 P t jO-P t j)/n t = Yfj/xJ(p-D . (12)

i = l,2 for any j. After simplifying (12), v/e obtain

n, = C p. j ( l -p i , j ) / ( [Y i jP(2|2) ]2 - CY 2 j P( l |2 ) ]2 )
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and

n = C p ( l - p ) / ( [ Y P ( l l ) ] 2 - [YP(l2)]
2) 04)

where

C = ([P(ljl) P(2|2)]2 -

Note that for each j one finds (n.,n ) fron (13) and (14). So by taking

the maximum of these solutions for each of n and n2 separately a determina-

tion of sample size is obtained. However, by a judicious choice of Y - - »

1=1,2 and j=l,2, — ,k, (13) and (14) may yield the same value for all solu-

tions of n. and so also for n_. Then any such common solution (n.,n?) w i l l

be the desired sample size.

When at least one of y,v and J is unknown, a similar asymptotic deter-

mination of sample size is obtained from a solution of

"5)

i=l,2 for any j. Denoting MSE ($(- -|)) = s and its estimate by s , it

follows from (8a),. (8b) and (15) that,

n,

Y2I i

j >v
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and

nl

Y2I o ;

Then for a determination of (n.,n.), we have

(a2-b2) p.. (1-p..) X2(P-0HL—H0 x« _ (16)

-

and . -_ - .

(a2-b2) p0!

where

. a = 3sQ + (1-*(-A|2))
2

. . * b = 3sQ + (*(-A|2)) .

Once again, n. and n_ are determined by taking the maximum value among

such solutions of n, and n2 respectively for j=l,2,—,k or by having a

common solution derived from a judicious choice of Y - - » '=1»2 and j=l,2,...,k.



-122-

5. Univariate Case

In order to provide a specific and also somewhat interesting result,

we specialize the problem to the case where the random measurement X is

univariate having normal distribution with mean ^ if l(X) e IT, and y» 'f

l(X) e TT? and with variance <j
2 in both cases. Instead of considering maximum

A

likelihood estimates e..'s given in section 3» we want to find an unbiased
A A

estimate for e.., i=l,2 and j=l,2,...,k. Since any p.. and P(i|k) are
' ' • • ' A • -

stochastically independent and p.. = n../n. is the minimum variance unbiasedKU U i

estimate (MVUE) of p.., a similar estimate of P(ijj) in (7) leads to the

MVUE of e.., i=l,2 and j=l,2,...,k.

In order to find the MVUE of any P(t|i), it is suffice to find the

similar estimate of *(- ~) where A =(WI'MOV°' Without loss of generality

let V] > P2- It follows by theorem 1 in Ellison (196A) that (2U-1) /v S

has normal distribution with mean 0 and variance O2 where U independent of

*Y M2
S2 = I (X.- X)2 + y (Y.-Y)2/ (M.+M -2) is distributed as 3(̂ -̂,̂ ~) , beta distribut

i-M0-2. Then the random variable

-
M2

has the normal distribution with mean (p.-y-)/2 and variance o2. Accordingly,

we observe that

*(-|)=Prob {(2U-1)S /v[l,-(l- + J-)] +(x-Y) < 0>
1 2 ~

=E[Prob{(2U-l)s /v[«.- ~»~-)] +(7-7) < O!r,7,s}l (18)M, M2 - i J
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where E stands for expectation with respect to variates X, Y and S.

Now from (18),"the MVUE of «(- |) is

Prob {(2U-1) s /v[Mir- + ir-)] + (x-y) < Olx.y.s)M, M2

Thus the MVUE of <J>(- |) is

Prob {U;lj- (x-y)/2s /,[!,-(i-+ 1-)] J x.y.s} (19)

where U has 3(—5—, —7—) distribution. Since-extensive incomplete-beta

integral tables are available, (19) can be easily evaluated for any given

values of x,y and s obtained from sample observations on M, and M_ individuals

from IT. and v^ respectively.

Denote

1 x" - 7

Then (.). t = i

• (- f) . t i« I (20)

where

2" B(̂ l2li) [u(l-u)] du (21)
^ 2 2 ; 0
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Since the use of (20) leads to the MVUE of e.. given by

2 . .
eij "I Ptj P(t'° '

it is convenient to find var(e..). This easily follows from (8) if
/» A ^ A

var(4>(- j) is evaluated. For that we only need to evaluate E[ (oC-y))2] because
A « «

we al ready know E[*(- -r-) ] = 0(- y). Observ ing that (X-Y) A>/S is a non-

central t v a r i a b l e w i t h v degrees of freedom, denoted by t ( A , v ) , we have

- f))2] - E[(Prob {U±£- (x-7)/2s /v[lt-(Tr + Tr)] j x,7,s})2]z z "] "2

E[(Prob {2U-1 < - t (A.v) /v [ / . - ( - + -)] |t})2]
M, M2

E[Prob {max(2U,-l, 2U2~l) ̂ -t(A,v)/v

where U, and U. are two independent random variables, each distributed as

(—y-). If we let W = max (2Uj-l, 2U2-1), the density function of W is

where I (a,b) stands for the incomplete-beta integral, and
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u
F(u)=Prob {W <_ w}= / f(o>) dw

-1

v-3

/'̂ 'V'o-yr'ml ̂ T'n+1) '̂

B(n+v,v-l)
n-

Then from (22)

= / FO-t/v/IMjr + 7T,j, g(t;A§v) dt (23)
•

where g(t;A,v) is a non-central density function involving the non-centrality

parameter A and v degrees of freedom. As it is somewhat difficult to evaluate

the right side exactly, it can be easily computed numerically for a given

value of A and v.

At present we are seeking an estimate of var(e..) so as to be able to

evaluate the standard errors s.., 1=1,2 and j=l,2,...,k. For that purpose

E[(*(- j))2] can be estimated by evaluating the right side of (23) numerically
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after considering A and v given by A and (M.+M -2) respectively; and

similarly $(-' —) can be used replacing E(o(- -r)) . Further, replacing
A

p.. by its estimate p.., one thus obtains the s.e. s.., i=l,2 and

j=l,2,—k, and then from (16) and (17) the sample size (n.jiO is

* ' * A
determined after replacing SQ by the estimate of Var (*(- y)).

6. Remote Sensing Application /

The previous discussion on estimation and determination of sample

size though treated in general has. primarily been motivated by our need

of finding desirable estimates for the expected proportion of various

types of vegetation/flora over a certain region covered by different

types of timber using remote sensing techniques. But the analogy seems

to exist in many other cases dealing with nultispectral sensor data

because it is not unlikely for different types of objects to be within
s

the instantaneous field of views of a multispectral scanning device. Hence,

the above discussion can be applied to ascertain the contribution of each

type of objects making up a resolution element that gives rise to an obser-

vation obtained by a remote sensor. The analogy may briefly be outlined

as follows:

Without loss of generality let there be two classes of resolution

elements. The measurements on these resolution elements in each class are

supposed to be normally distributed and on the basis of a measurement the

resolution element may be misclassified. Further, let there be k different

categories of objects that might be associated with the resolution elements

in each class. With this set-up one can now obtain estimates of the expected
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proportions of the specified categories of objects from (2) or (7)

depending upon the knowledge about the underlying normal distributions.

Furthermore, by considering the number of objects selected according to

(13) and (14) or (16) and (17) as the case may be, one can actually ob-

fain the desirable estimates which approximately allows a specified

amount of error about the true expected proportions for the object types

with a desired amount of probability.
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ABSTRACT

A computing technique for adjusting remote sensing

spectral data for environmental effects is formulated. The

technique is essentially invariant with respect to the

atmospheric model used in the paper; hence, it can be replaced

with a better model. .
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ON ADJUSTING REMOTE SENSING

DATA USING A RADIATION

TRANSFER MODEL

I. Introduction

In a recent report [1] a radiation-transfer model was

developed to predict the apparent radiance, L, of a ground

target, as it is observed by "a multispectral scanner

L = - ET + Lp ; (1)

where p = the diffuse reflectance of the target material

E = the irradiance at the target :

T = the atmospheric transmittance from the target to

the multispectral scanner,

L= the path radiance.

The following parameters are used to describe the conditions

of observation: . •

1. f(h) = optical depth of atmosphere at altitude h of the

sensor.

2. y = cosine of zenith or nadir angle.

3. (<{> - <t>Q) = angle between scan direction and sun's azimuth.

4. 6 = nadir scan angle.

5. 60 = zenith angle of sun.

6. V = visibility (visual range) of the atmosphere, or some
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bettcr estimate of the distribution of haze and scattering

particles present.

7. p = average diffuse reflectance of the scene thatKavg y

contributes to the path radiance scattered into the sensor's

field of view at wavelength X.

8. ri = anisotropy parameter.

9. TO = total optical depth.

10. EQ = Solar irradiance on a surface where normal lies in the

direction given by y_ and 4>Q.

In order to show the functional dependencies involved in

equation (1)/ it can be rewritten as

L[p,e,(4» - 4>0),T(h),o0,v,pavg,x]

' E[T(h),e,V,p,X] T[6,T(h),V,X], o,, a v g

Lp[e,(cj> - <|>0),T(h),e0,v,pavg/x].

II. Main Content

2.1 When Observations are known to be generated by same target,

We want to consider the radiation-transfer model

statistically as a covariance analysis model with covariates

given by 1 through 10 and obtain the best estimate for E, the

irradiance at the target, once the observations L have been
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adjusted for the atmospheric conditions. For ease of presenta-

tion, the covariates will be denoted by $,,..., B,Q.

The model in equation (1) can be written as

Li = 9i(31,. . . ,eio;E) + ei, i = 1,2,...,N (2)

where the e. are non-observable, uncorrelated random errors

2each with mean zero and variance 0 .

The problem is to obtain estimates of $, ,;..,$,_ which

minimize

Q = [L - G]T [L - G]

rp . T
where L = (L,,...,L ) and G = [g1/...,g ] .

Direct search techniques [2] have been used with success.
• i

One simply searches judiciously for the value of 3 = (3-, , • • • / B-, Q)

= 3LS which minimizes Q, by approximating 3LS with an( a priori

value, say $,, and then iteratively computing 3k+-, so that Q
» '

approaches a minimum.

Hartley [3] suggests a method in which he solves for $LS

by solving the non-linear system of equations 8Q/33- = 0

which is a necessary condition for Q to be minimal. By selecting

3, a priori and letting G be approximately

G(L;3) = G(L;3k) + jg
3=3k

one can solve for 3, ,, and on iterating the sequence
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converges in many cases to 3 T C-JLiO

Walling [4] and Nelson [5] have developed techniques

which take advantage of the linearity in the non-linear

function G. Instead of approximating G* in a truncated Taylor's

expansion, they approximate G by ,

G(L;3) . = G(L;3k) + jj-

8G
'3=3

6(3) = 6(3k)

k

where 0(3) = (8, (3)/62̂  '••''e ($)) is a (non-random)

parameter vector and where G* = A0(3,) + G(L;3)/ and A is a

known matrix of constants. .

Then an a priori estimate 3V leads to 3, ,n which when
K KTO.

iterated gives a sequence (3k) which converges in many cases

more rapidly to 3T0.Lio

Comparison of Hartley's technique, Walling's technique,

and Nelson's technique can be found in [5] and [6].

2.2 When observations are not knov:n to be generated by the

same target.

In the previous section a technique for estimating
^

3-, i = 1,2,...,10 and E. was briefly described. If E is

the estimate for E the irradiance of the target, then one can

use this value to perform discriminate analysis. However, this

is indeed a special case and is not a realistic analysis for
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the remote sensing application. In most cases one is almost

never sure if the i and j observations, X. and X., are from

the same class until after the discriminate task has been

performed. The symbol E must be replaced with the E. in the

model described in (2), that is

Li = 9i<ei'&2 ..... 610;V + ei

i-=- 1,2,. . . ,N. (3)

Note that in (3) , there are N equations and N- + 10 unknowns ,

$, , . . . , B-, « »E. , . . . ,EN , an undetermined system. The estimates

for E,,E2,...,E are the values we seek to base our discriminate

task upon, since the values of these estimates would be void of

any modeled environmental effects. That is

Ei =

One can solve for E. if values of $, /32' • • • /&-, 0
 a^d L.

are available. Hopefully, this is the case in the remote

sensing application.

However, in the case in which some values from the set
^ s+ ^

(3-t «&2' * * *'^IQ} are un^nown, one can iteratively estimate E.'s.

This can be done by the following scheme:
..••

(a) Discriminate using the non-adjusted measurement L.

as E. .

(b) Collect those resolution cells I(x) such that x e R.,
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then use these elements to estimate 3, , 32 /'• • • / 3-, Q

and E = E(ir.) as in section 2.1.

Since if x c R./ one assumes that E. = E(TT.) = E, the radiance

of an individual from TT . . The symbol N. denotes the number of

elements I(x) assigned to TT . .

(c) for each j there exists a set

3-1̂ :)) ,32 (j) ,. . . ,310(j) j = l,2',...,m.

These are combined to get a better estimate

/x m • .'
3, =• I a.3(j)
1 j=l D

such that

m
aj = NJ/-I Ni

«
s* . /v

(d) Using 3-/ i = 1,2,...,10, compute E. in the

equation

and use E. to perform the discrimination,
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III. Concluding Remarks

It is important to note that our purpose here is to

determine any problem areas in adjusting data for environmental

factors and formulate a computation scheme to perform the

adjustment and not select, evaluate, formulate, or modify an

environmental or atmospheric model. Those whose expertise

covers the topic of modeling an atmosphere should select the

"best" model. The computation procedure suggested here is

essentially model invariant.
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ON ESTIMATING THE PROBABILITY OF HISCLASSIFICATION

by .

B. S. Duran, H. L.. Gray, J. Tubbs, and T. L. Bouillon

Texas Tech University

1. Introduction

The problem of discrimination has long been a problem of in-

tense interest (see for example [2], [9]). Given m populations

it i nt 2' ' * * f1Tm' the Pr°klem ^-s that of classifying a pxl vector ohservatio;

or an individual I (x) corresponding to x, as belonging to one of

the m populations. Anderson ([2], chapter 6) discusses the classi-

fication problem v;hen the populations r, , ,TT9 , . . . ,TT , are multi-
JL 4* • ill .

variate normal wiLli equal covariance matrices. In the classification

problem when m = 2 and Z, = Z, = r, the discriminant function is

given by ' . '

(1) O-xW" -p(2)) -| («<» +P
(2))Z-1(,(1> -w(2)).

(1) '2)
Hov/cver, if p ,\i ' , and z are unknovm then a reasonable dis-

criminant function 'to use is .

(2) V = x;? - x<2>) - i (x(1) + S12'^-1^11' - x(2))

Where X^ = V x V ^ ' / n v v < C l ' = V v^ ' / n anrJwiicj.c A — / •"•. /* li / « / ^^ / * * o f dllti

- 2)S =

j = l > J

This research was partially supported by NASA Manned Spacecraft
Center under Contract 'MAS 9-12775.
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The distribution o-f U is the normal distribution N(ja,a] if

x is distributed N(u(1),z:) or N(~ja,a) if x is distributed N(./2\i),

where a = (y - P )Z~ (y -u }. The discriminant function

(2) is a special case of a class of statistics considered by Wald [10]

Further work concerning the distribution of V has been done by

Anderson [1], Sitgreaves [8], and Kabe [6],

Wald [10] actually considered a class of statistics of which
m _]^ —(I) —(2)

the statistic x S (x - x ) is a special .case. For large values

of n, and n? this appears to be a reasonable statistic for classi-

fication purposes. The distribution of the above statistic is given

by Wald in terms of three quantities, say, m.., nu, m~, and an ex-

pected value which he does not evaluate. .

According to Sitgreaves [8] the statistic V may be written as

V = ay^A~ "

where a and b are known scalars, y. and y~ are p-dimensional normal

variates with E (y,) = £, and E(y_) = £;„, and A is a pxp s'ymmetric

matrix having a Wishart distribution with n =.n,+n2 degrees of free-

dom. Furthermore Yi/y^ • an^ A are independently distributed with

common covariance matrix Z . . . . .

Anderson [1] obtained the distribution of m,, m2/ m3 explicitly,

including the evaluation of the expected value in Wald's result, for

the special case when £, is proportional to £?.

Sitgreaves [8] gave the distribution of m.. , m^, m_ when C is

proportional to £2
 an<^ included the normalizing constant of the dis-

tribution which was not obtained by either Wald or Anderson.

Kabe [6] obtained a further extension by finding the distribution
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of m,, m_, m_ without assuming the proportionality of £, and £,.1 2 j . j. A
However, his result is not in closed form and appears to be very

awkward to work with.

Of primary concern in the classification .problem is the probability

P(i|j), i jt j, of misclassifying an individual I(x) from population

j in population i. The complexity of the distribution of V makes

it virtually impossible to compute P(i|j). An available option is
A

to evaluate an estimate, P(i|j), by the Monte Carlo technique.

This is the topic that concerns us in this paper.

2. Description of the method
•

Suppose x(1), x^11,..., x(1) and x(2), x-$2),..., x(2) denote
JL £• XI •» • JL -̂ ii r*

two independent samples from two normal populations TT and ir^ v;ith

mean vectors y and y , respectively, and common covariance

matrix l. If n., = n2 then the distribution of V if x is from IT,

is the same as the' distribution of -V if x is from TT~ (see [2] ,

p. 135) . The statistic U also has this property. For large values

of n, and n2 the probability of classifying an observation from ^2

in TT, is approximately

(3)
.0 /2TTCt

since x is asymptotically distributed N (-a/2, a) when it comes from

TJ« Similarly P(2|l) is approximated by .
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(4)
/2T7

Hence, if x is classified in -n, when V > 0 and in ^ otherwise,

P(2|l) = PC1J2) .

The probability P(2|l) can be estimated by !lonte Carlo

methods for small ( and moderately large) values of n. = n2 = n.

The process involves first sampling n training samples from each

.of two multivariate normal populations which differ only in the

means, i.e., y j4 y . These samples are then used to compute

-1 —(1) —(2)S , x , and x . A sample of size m is generated from

N (y ,£) and m values of V are calculated. The probability P(2|l)

can then be estimated by -

P(2ll) = k/m

where k is the number of values of V that -are negative . This pro-

cess is repeated r times and the average of these r values of
A

P (2 |l) is used as a final estimate of P(2jl). It is of interest

to examine this probability for various values of n, = n~ , a, and

p, keeping in mind that the large sample value of P(2|l) is given

by (4) . Values of a are obtained by keeping £ fixed and varying

the values of y and v
 (2) (or y (2) - y(1)).

3. Monte Carlo Results

Estimates of P(2|l) were generated for various values of

n = nx = n2, a, and p, where a = (y
(1) - y (2) } E~1(y (1) - y(2))
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reflects the separation of the two populations. The covariance

matrices for TT and 7T2 were Z, = £_ = Z = I. (No loss of generality

is incurred by using I for the common covariance matrix since

there exists an orthogonal transformation followed by a linear

non-singular transformation that yields I.)

The data was generated by means of the normal random generator

described in [7-J. The estimates of P(2|l) where simulated for

various choices of two populations by fixing the covariance matrix

and varying a. The values a considered were a = 1,2,3,4,5,10,12,

20,25. The training sample sizes considered were n = 5,10,15,20,

50,100. For each choice of a, n, and p, the values for m and r

were 50 and 50 respectively. Each observation was classified into

IT, if V > 0 and into n0/ otherwise. .
JL ~™ £* • .

S \ , . . .

Table 1 gives the estimate P(2fl) as a function of n and' a
"• •

for various values of p. Ncte that for every a, P(2J1) = P(2|l)

when n = 50 or 100, where P(2J1) is the asymptotic probability of

misclassification given by (4).

Figures I-IV reflect the fact that P(2|l) is a decreasing
/

function of a (for fixed n and p). Figures V-VII reflect the fact

that for fixed a and p the probability P(2|l) is a decreasing

function of n. Also for fixed n, indications are that P(2|l) is

an increasing function of p.

The value of a is of primary concern since in a given situation

the values of p and n are generally known. In an actual situation

such as in a remote sensing application [5] it may be desirable

to know approximately how many training samples are necessary so

that classification based on these training samples will incur an
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error of misclassification not exceeding certain preassigncd

bounds. In a remote sensing application one could estimate a from

the data and thus get an estimate of P(2J1) from Table 1.

The quantity p is also of importance. Its significance in

relation to P(2|l) has already been observed in Table 1 and Figures

V-VII. In agricultural applications of remote sensing data analysis

a popular value appears to be p = 4, [3], [4].
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TABLE 1

/%

Estimated Probabilities of Misclassification, P(2|l),

for Values of a, n and p.

a'

1.0

2.0

3.0

4.0

6.0

10.0

12.0

20.0

25.0

D

3
•6
9
12

3
6
Cl

12

3
6
9
12

3
6
9
12

3
6
9
12

3
6
9
12

3
6
9
12

3
6
9
12

3
6
9
12

5 '

0.4192
0.3960

. 0.417G

0.3292
0.3416
0.3324

0.2732
0.2792
0.2932

0.2396
0.2452
0.2700

0.1872
0.2276
0.2352

0.1228
0.1216 *
0.1540

0.0868
0.0884
0.1368

0.0528
0.0460
0.0768

0.0272
0.0336
0.0588

10

0.3672
0.3824
0.4052
0.4084

0.2768
0.3224
0.3304
0.3584

0.2336
0.2736
0.2888
0.3088

0.2004
0.2356
0.2632
0.2780

0.1472
.0.1652
0.2156
0.2260

0.0804
0.1120
0.1420
0.1752

0.0556
0.0916
0.1196
0.1580

0.0212
0.0428
0.0596
0.0784

0.0140
0.0248
0.0436
n r> so R

n

15

0.3568
0.3632
0.3884
0.3775

0.2724
0.2940
0.3176
0.3224

0.2344
0.2428
0.2596'
0.2924

0.1868
0.2084
0.2352
0.2490

0.1364
0.1520
0.1824
0.1884

0.0744
0.0864
0.1104
0.1352

0.0560
0.0664
0.0844
0.0968

0.0192
0.0268
0.0332
0.0308

0.0140
0.0132
0.0232
On o A ' •. U £ «i -j

20

0.3432
0.3520
0.3556
0.3960

0.2600
0.2796
0.3000
0.3392

0.2116
0.2300
0.2464
0.2884

0.1856
0.1828
0.2284
0.2552

0.1228
0.1440
0.1572
0.1844

0.0728
0.0716
0.1008
0.1100

0.0460
0.0580
0.0656
0.0856

0.0188
0.0188
0.0300
0.0420

0.0112
0.0104
0.0152
On o K. c..(J/.DO

50

0.3252
0.3200
0.3350
0.3524

'0.2552
0.2444
0.2572
0.2820

0.2040
0.2072
0.2072
0.2268

0.1724
0.1672
0.1728'
0.1916

0.1268
0.1080
0.1224
0.1328

0.0728
0.0604
0.0644
0.0748

0.0440
0.0464
0.0584
0.0516

0.0156
0.0196
0.0176
0.0156

0.0072
O.C064
0.0076
O f\ i f\r\. U J.UU

100

n.3ilo
0.3208
0.3150
0.3290

0.2460
0.2337
0.2670
0.2730

0.1875
0.2050
0.2020
0.2050

0.1620
•0.2048
0.1970
0.1560

0.1102
0.1522
0.1290
0.1040

0.0572
0.0770
0.0630
0.0600

0.0414
0.0632

i 0.0540
0.0540

1 0.0124
0.0171

j 0.0120
| 0.0140

0.005.4
0.0060

j 0.0040
O A A £ A. U U OU

CO

.303:

.238'

.192

.158

.111

.057

.041

.012

.006
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Probability of misclassification versus a when p = 3,
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Probability of misclassification versus a when p = 6
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Probability of misclassification versus ex when p = 9.
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Figure IV

Probability of misclassification versus a when p = 12
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Figure V

Probability of misclassification versus n when a = 1.0.
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Figure VI

Probability of misclassification versus n when a = 6,
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Figure VII

Probability of misclassification versus n when a = 20.
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ABSTRACT

The discriminate analysis problem is discussed briefly.

An analytic formulation of the so-called Eppler (Table Look-

up) algorithm is given along with a modification which equates

the algorithm with the classical Bayes procedure. Simulation

results comparing several discriminate analysis techniques are

given.
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ON THE TABLE LOOK-UP .IN DISCRIMINATE ANALYSIS

P. L. Odell, B. S. Duran, and W. A. Coberly
Texas Tech University

1. Introduction

Consider m populations n , ir-,...,^ and suppose each indivi-

dual in the union of these populations possesses p common observ-

able characteristics c,, c2,...,c . The observed values of an

Tindividual are denoted by x = (x,, x2/>.., x ) , where x. denotes

the observed value of c. . Let p1(x), p2 (x) ,. . . /Pm(x.) denote m

known multivariate probability density functions of the p-dimensional

observation vector x and q,, <32'*"*gm be the known a Pri°ri proba-

bilities that an individual, I, be selected from a population TT,,

ir2/ .../IT , respectively.

The classical discriminate analysis problem consists of formu-

lating or developing a technique for assigning an individual selected
m

at random from U TT . into one of the m populations. There have
i=l 1

been various techniques proposed for solving the problem, of w"..ich

the Bayesian solution is optimal, in the sense that it. minimizes

the expected cost of misclassification.

In various applications of discriminate analysis, for example

in the analysis of remote sensing data [1], the amount of computation

involved is immense. Thus it seems desirable to either develop

new techniques, modify existing ones, or to decrease the dimensions

of the problem with the hope of maintaining approximately the

optimality of the classical Bayes procedure. The dimensions of

the problem can be decreased by means of characteristic selection

[8] and/or data compression [12] techniques. These techniques allow
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for reducing the value of p. Since the number of populations, m,

is not arbitrary the only parameter which can be reduced is p, the

number of characteristics.

The characteristic selection procedure calls for selecting

from the set of p characteristics q, g <_ p, characteristics, say

c. , c. ,...,0. , which are "best" with respect to identifying
J- 1 3- *\ 11 2 q

individuals from the populations TT^, ^2 ' " * * ' ̂ m* **" *~S ̂mP°rtant

to note that complete enumeration of all possible choices of

characteristics is practically impossible since the number of ways

one can select. q characteristics for 1 <_ q <_ p is

2
p - i = y p12 1 gii qi(p-q)i

If one lets the compression matrix B be a q x p matrix with q ones

in positions (i., i.)/ j = I/ 2,...,q, then Y = Bx is simply the

Tvector T = (x. , x. /...,x. ) . Thus characteristic selection is

a special case of data compression.

Wilks [12] di'scusses a special type of data compression whereby

k + 1 p-dimensional samples are projected into a q-dimensional space,

q < p, in such a manner that the k+1 projected samples are reason-

ably well separated. The projection is actually carried out so

that the pooled-sample' scatter is as large as possible relative

to the within (total) - sample scatter. For example, one might

'desire to project three 3-dimensional sample points into a 2- .

dimensional or a 1-dimensional space. This is actually done in

section 6 where various discrimination procedures are evaluated

by Monte Carlo simulation. .
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A general approach in solving the discriminate problem is to

define a distance between two populations, say D(i, j; c) where

c = (c. i c. ,...,c. ), and then select a c such that the minimal
Xl 12 ^-q

distance between any two populations TT . and n. is maximized. One

such distance function is divergence [6], [9] defined by
/

CO

D(i,j) = / [p.(x) - p. (x)]' In [p±(x) / p. (x)] dx
— oo -* J

which is of course an arbitrary choice for a distance function [5] ,•

but is being used in at lease one large computer program for

reducing remote sensing data [7]. It is not well known [2], [3]

just how distance or divergence is related to misclassification,

except in the case when the covariance matrices are equal. However,

one is compelled intuitively to believe .that the expected cost of

misclassification should decrease with increasing pairwise distances

between populations.

Another technique, although developed heuristically [4], has

proved successful in reducing the amount of computation involved

in the solution of the discriminate problem. This technique, called

the table look-up technique, is an approximation to the Bayes

partition solution. In this paper we show that the table look-up

technique can be modified so that it is a "closer" approximation

to the Bayes procedure. The table look-up technique "trades off"

floating point addition and multiplication for integer or fixed

•point addition in a table look up computer operations, thereby

reducing the computing time from 2 units to 0.066 units in at least

one empirical example [4],
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In the classical Bayes procedure the probability density

function p.(x) has to be evaluated for each observation vector x.

The procedure discussed in this paper eliminates the need for

computing p.(x) for each observation vector x. The table look-up

technique also utilizes a different set of characteristics from

the p characteristics, for testing the membership of an individual

in different populations. This concept was developed by Eppler,

Helmke, and Evans [4] and they have shown empirically that their

.version in the form of a computing.algorithm leads to a significant

decrease in computer time.

We now consider the analytic development of the table look-up

technique. .

2. Analytic--Development of the Table ' Look-up Technique

Let q be chosen a priori and p be known. Let c = (c,, c~/. . . /

T •c ) denote the q characteristics selected from the larger set of

p characteristics which maximize the minimal distance between each

pair of populations TT^ and TT., i = lf 2,...,m; j = 1, 2,...,m,

i yf j, with respect to an a priori chosen distance function D(i,j).

Let x. denote the scalar measurement made on the characteristic

c. such that

«i 1 *i 1 ai

where a. is known and x. can take on only those values a. + jd,

j = 0, 1, 2,...,n.. For this choice of x.'s the measurement space
q • .

S will contain H (n. + 1) points. The measurement space S ,
q q
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which is a set of lattice points consisting of all possible measure-

ment points can be written as

(1) S = (a.̂  a-ĵ  + n-j^d) 0 (a2, a2 + n2<3) 0 ••• 0 (a , a + n d)

In the case considered by Eppler, Helmke, and Evans, a. = 0, d = 1,

and n . = 255 for all i = 1, 2 ,...,1:1, motivated by the units and

manner in which the x. 's were measured. The number of points in

S when a. = 0 and n. = 255 for all i> is 256q, a very large number.

Consider the region

R^ = {x; p^ (x) = max {p . (x) } and p. (x) >_ max (T.) }

where each T. is an arbitrarily chosen threshold value. One may

make a normality assumption and select T. such that

(2)' P {(x-y.)T r1(x-y.) < C "| I(x) e n . } = 1-a
J. JL i *~ Q JL

where 1-a is selected much as one would select a confidence coef-j-if

ficient in determining confidence intervals in statistical estimation,
n

Statement (2) may be written eguivalently as

P {•

- C
2 a|l(x) e TT.} = 1-a

• I 1/2
•i'
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The threshold value T. is then given by

1 • 1 *

X ' *"" »—•—' / •"» 1 / o"7 *"~

Since x ~ N, J> , then x = (x-y.) (x-jj.) is distributed

chi-square with p degrees of freedom. The value of C may simply
2

be read from a x table [10] from which the value T. may be computed.
^

Let RO = {x; p. (x) <^ T = max {T.}, i = 1, 2,... ,m) be the -region

of no decision, that is, the region in which the information con-

tained in the measurement vector x gives very little or no dis-

criminate information. The region R-. is not unlike the no decision

region in classical statistical sequential testing [10]. If R is

the p-dimensional space -S. then

S = Rn U RT U •• • R .p u i m

Let S(x;R) denote" a storing transformation (storing operation)

defined as follows .

%

S: x ->• i if x e R. .

The table look-up technique is based on pre-storing in fast random

access core memory the prescribed region R., as i, for all points

in S . That is, every vector x defined by

" • T r—1 •" . . •* • ^ i x, \ x— y • / / • \ x*™ y »/ ^ c j

and whose components x. e {aj,3j + d,...,aj + njd), j = 1, 2,...,p
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is placed in a table with x corresponding to i. The value of i

is stored in the "x" location. Thus when x is measured, its loca-

tion is looked up and if a value of i is found then I(x) is clas-

sified into population TT .. The table look-up technique replaces

the calculation in the classical discriminate technique with a

retrieval operation for each observation x. The savings in time is

then the difference in time to retrieve the population classifica-

tion and calculation and ordering in the classical technique.

It is important to note that except for the introduction of

the region of no decision RQ, the table look-up technique is a new

(different) computational technique for performing the Bayes

Algorithm. By selecting T = max{Ti> sufficiently small, RQ = 0,

the empty set, and the table look-up technique is simply a clever

way to perform the Bayes Algorithm. This last statement is sub-

stantiated in the next section.

3. Comparison of the Table Look-up Technique with Bayes Algorithm

Let the p-dimensional Euclidean space R be partitioned into the

Bayesian discriminate partition R = (R,, R2/...,R ), where R, is

defined '

R, = {x; rv = min {r. } }
J* ^ t -J 1

where

q-P.(x) C(i|j),
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and C(i|j) denotes the cost of classifying an observation from r, .

as coining from TT . . The probability of proper classification is

given by

P(i|i; R) = / p. (x) dx.
Ri .

» „,
Let R. be a subset of R. , that is R. c R. , i = 1, 2/...m, and define

• . * . m ^
. R0 = R - U R..,

0 1

to be the no decision region. Then

P(i|i, R) = / p. (x) dx <_ / p. (x) dx = P(iji, R)

*i Ri

and the probability of not making a decision is P (x e RQ; R). Note
^ ^ **

that if R = R, then P (x e RQ; R) = 0 since RQ = 0, the empty set.

Let S (x; R) be a storing operation such that

S (x; R) : x -*• i if x e R..

When an observation x is taken on an individual I(x) one searches
A

through the storage for the range of S (x; R) which is equivalent

to determing the integer i for which x e R.. If x e R. or equiva-

lently, if i is stored in the "x" location in storage, then we

assign I (x) to population TT . . .

Since there exists a continuum of x's in the interval a _<_ x <^ b,

the memory requirements are infinite. However, due to the manner
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in which the data is taken, x takes on only a finite number of

vector values. That is, there exists only'a finite number of values

that each x. in the vector x = (x.̂ , x2,...,x ) can take on. The

possible values for each xi are given by

x.^ = a.^ + jd; j = 0, 1, 2,...,r\^.

.X

In the rejnote sensing application for example, a. = 0 for i = 1', 2,...,

m, d = 1, and n.=*-255, for all i. Hence., the number of storage

locations required is 256̂ . This figure is very large indeed,

even for small values of p. However, there are ways of reducing

this number substantially. Comments on this item and other feasible

and practical aspects of the Table look-up technique are discussed

in section 7.

The foregoing results are summarized in the following theorem

and corollary. •
A

THEOREM: Let R = (R,, R2/.../R ) be a Bayes partition and R =
A A A ' A '

(R0, R,,...,R_) be any other partition such that R. c: R., i = l, 2,...,

ra. Then P (i|i, R) <_ P (i|i, R) if C (i|j) = C for all i. ̂  j.
A * • +>

COROLLARY: Let RQ tend to the empty set and R. tend to R.. Then
A .

R tends to the Bayes partition R.

The problem in using the table look-up technique reduces to

that of selecting the partition R = (RQ, R,,...,R ) which minimizes

computer time and storage requirements but yet approximates the

optimality of the Bayes partition sufficiently closely. Thus the

problem is to select that partition R which maximizes computer

efficiency.
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TABLE LOOK-UP BAYES TECHNIQUE BAYES TECHNIQUE
USING BEST 4 USING FOUR BEST USING SIX BEST

CHARACTERISTICS CHARACTERISTICS CHARACTERISTICS
OUT OF NINE FOR OUT OF NINE FOR OUT OF NINE FOR
EACH POPULATION ALL POPULATIONS ALL POPULATIONS

TIME TO
CLASSIFY A 222-
SAMPLE LINE 0.066 SEC 2.0 SEC 4.0 SEC

ACCURACY

ARITHMETIC
OPERATIONS
REQUIRED BY
ALGORITHM

CORRECT 92.4%
. UNDECIDED 3.2%
INCORRECT 4.4%

INTEGER
ADDITION

CORRECT 93.1%
UNDECIDED 0.7%
INCORRECT 6.2%

FLOATING-POINT
ADD AND MULTI-
PLY

CORRECT 95.0%
UNDECIDED 0.0%
INCORRECT 5.0%

FLOATING-POINT
ADD AND MULTI-
PLY

Table 1. Comparison Between Table Look-up and Bayes Approaches.

4. Modification of the Table Look-up Procedure.

There exists at least one competing algorithm to the table

look-up algorithm. We consider one such algorithm which is sug-

gested in an attempt to minimize storage requirements but yet re-

tain the desirable properties of the table look-up technique. Let
*

q <_ p denote the number of characteristics to be used in a dis-

criminate analysis. The following two alternatives are available

in choosing q.

(1) Select the q "best" characteristics for the union

of the m populations and perform a table look-up

algorithm using measurements on these characteristics

(2) Select the q "best" characteristics for each popula-

tion and for each such choice perform a table look-

up algorithm.
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Eppler, Helmke, and Evans [4] have given some computational

comparisons between the Bayes and Table look-up techniques [see

Table 1]. They selected the four best characteristics from a set

of nine using real data from the Purdue experiment and found that

they were able to decrease computer time by a factor of 32 to 1.

However, storage requirements apparently remained a problem so they

introduced a scaling transformation to produce a coarse set of

lattice points which they called "pointer scale". Arguments are

given in [4] to assure us that little is lost .by modifying the al-

gorithm to include a coarse lattice. These arguments seem reasonable
y\

but one should remember that primitive (i.e. R = R) table look-up

implies relative large storage requirements.

As an alternative procedure one may consider the following

modification of the table look-up procedure. Let R = (R., R9/...,R )JL *£ in
<N A, >S

be the optimal Bayes partition and R = (RQ/ R, ,...,R ) be any table

look-up partition. Let

where

R0 " R10U R20 U ••' U

Ri£) = RQ 0 R.,

1 th ^is the intersection of the i Bayes region R. and RQ. If R. is

such that Ri c R • for all i, then

i|i; R) > P (i|i; R).

Let us select as R. the largest p-dimensional rectangle in
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R. , with planar boundaries parallel to the coordinate planes, which
.' ̂  *

contains as much of R. as possible, including'the center of R. .

Then for a. <^ x ̂  b. , i= I/ 2,...,m, the probability of proper

classification, is

b., b!il ip
P (i|i, R) = / ••• / P.(x) dx

ail aip

which one wishes to be such that the approximation error

(3) P (i|i; R) - P (i|i; R) = e..̂

is small.

Now, since the planar sides (bounds) of R. are parallel to

the coordinate planes of the p-dimensional space one needs only to

find those bounds such that if x e R. then I (x) is assigned to IT . .

Let the bounds of R- be given as a a. _<_ x <_ b. for i = 1, 2,...,

m. Then a modification of the table look-up procedure which uses

the rectangles R, , R2/...R as an approximation to the Bayes Partition

may be summarized in the following algorithm.

Step 1. If the observation vector is such that a. <_ x <_ b.,

then I (x) is assigned to II . .

Step 2. If x < a. or x > b. then replace i with i1 7* i and

go to Step 1.

Step 3. Repeat the algorithm m times and if x ? R. for i = 1,

2,...,m then assign I(x) to RQ/ the no decision region.

This modification of the table look-up algorithm can also be

employed by using the two alternatives in choosing the q "best"
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characteristics from the p characteristics.

If the errors e. in (3) are not sufficiently small, then the

approximation could be improved by choosing two disjoint rectangles
^ ^

R... = R. and R.0 such that R.-.U R-9 = R. contains more of R.X JL X X^ XX X^ X X

than did R. and

Ri =

An algorithm similar to the one above would hold for the case

of two rectangles R., and R- 2«
 In fact/ a union of p-dimensional

rectangles could be used as an approximation to R- and the appro-

priate algorithm could be formulated. However, the amount of in-

crease in classification accuracy might be so small as to not

warrant such a venture.

The algorithm above places an individual I(x) in the no decision

region if x / R. for i = 1, 2,...,m. The results of Table 1 in-

dicate that the table look-up places 3.2% of the cases in the no

decision region for that particular example. For any observation

falling in the no decision region the Bayes procedure could be

used. Thus all individuals would be classified and the procedure .

involved would be as optimal as the Bayes procedure and the com-

puter time involved would be less than the time required for the

Bayes procedure alone..

A last item to note about the modification for the table look-

•up technique is that in using the p-dimensional rectangle approach,

the need to store values of i for each x is eliminated and replaced

with an ordering procedure. That is if a. < x < b. then x e R. c R.
X •*•* ~ " X X X

and I (x) is assigned to ir. .



5. Evaluation of Various Discriminate Techniques

In the application of discriminate analysis to large sets of

data, such as in the remote sensing application, it is extremely

important that one is able to select the "best" available procedure.

The ideal situation would be to have an optimal procedure that

can be performed 'in the least amount of time. However, this is

never the case.

A methodology for ranking existing discriminate techniques is

lacking; however, we will attempt to rank several techniques which

have been mentioned and/or discussed in the previous sections. The

suggested rankings involving these techniques will be obtained

merely by how one would expect them to perform on the basis of the

way they are defined. For example, a table look-up procedure takes

less time to perform than a Bayes procedure; however, the Bayes

procedure is more accurate. In the next section several of these

techniques will be examined by means of Monte Carlo simulation.

One can then icheck to see how those results bear out some of the

results in this section.

The evaluations in this section are in reference to (1)

accuracy, (2) computing speed, and (3) storage requirements. The

discriminate techniques that will be considered are:

T, : A Bayes algorithm using data compressed by means of

Wilks concepts [12]

T2: A Table look-up technique using the same p characteristics

for all populations TT . .

T-: A Table look-up technique using the best q (q < p)

characteristics for all populations. See (1) of section 4,
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T,.: A Table look-up using the best q (q < p) characteristics

for each population IT.. See (2) of section 4.

T,-: A p-dimensional rectangle approximation using the same

p characteristics for all populations.

T,-: A q-dimensional rectangular approximation using the best

q characteristics for all populations.

T_: A q-dimensional rectangular approximation using the best

q characteristics for each population T..

'Tg(j): Let j = 2,...,7 and Tg(j) denotes the T. algorithm

with the modification that a classical Bayes procedure
/v

is performed if x e RQ.

Tg: Classical Bayes algorithm in which p.(x), i = 1, 2,...,m

are known. .. - .

T,Q: Classical Bayes algorithm in which p.(x), i = 1, 2/.../m

are assumed normal with unknown parameters y. and £. .

T,,: Classical Bayes algorithm in which p.(x), i = I/ 2,.../m

are unknown and must be estimated "nonparametrically".

There are other techniques but we will restrict ourselves to

these. The Bayes .technique using the best q (q < p) characteristics

for all populations is not included, however, it is compared with

the Table look-up in Table 1. The Bayes solution is given by

Tg, Tg(2), and Tg(5) when the probability density functions p.(x),

1=1,2,...,m are known. Hence, it is meaningless to ask which is

the more accurate. However, the difference in characteristic selec-

tion implies that Tg(2) >.Tg(3), Tg(4) >_ Tg (3) , Tg(7) lTg(6), and

Tg(5) >_ Tg(6) where the symbol ">_" means "is as accurate as". If
"* ^

one can determine the fact that R. c: R. then one can say that the

table look-up technique is as accurate as the p-dimensional rec-

tangular approximation technique. In this case TR(2) > Tft (5) > Tft (6)
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Other orderings with respect to accuracy are:

(a) T8 (4) 1 T4,

(b) T2 >_ T3,

(c) T{7) >_ T?,

(d) T5 >_ Tgf

<e) T? >. T6,

(f) T8(6) >_ T6,

(g) T8(5) 1 T5, ' '

(h) T8(3) 1 T3, •

(i) Tg(2) >_ T2,

(j) Tg _>. T,Q > T,, when p^ (x) , i = 1, 2,...,m-are known and normal

(k) T,Q >_ T,, when p.(x), i = 1, 2,...,m are normal with

unknown parameters,

(1) T,Q and T,, cannot be compared when p.(x), i = 1, 2,...,m

are not known since the accuracy will depend on how far

the p-(x), i = 1, 2,...,m are from being normal.

(m) T, is uniformly less accurate when compared to every other

member of the list.

Following are several orderings with respect to computing speed.

In this case "^" means "takes no more time than".

(a) T2 >_ T3 >_ T4 >_ Tg(4) >_ Tx >_ (T9/ TIQ/ T̂ },

(b) Tg(2) >_ Tg(3) >_ Tg(4) >_ TI >. {T9/ TIQ , T^K

(c) T3 >_ Tg(3) >_ Tg(4) >. Tx >_ {T9/ TIQ/ T1X},

(d) T5 >.T6 >.T7 >. T8(7) i.^ >.'{T9, T10,_ Tn>,

(e) Tg(5) _> Tg(6) >_ Tg (7) >^ TI >_' {Tg/ TIQ , T̂ },

(f) T >_ T
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(g) whether T~ >_ T_ depends on the speed required to "compare"

with the speed required to "look up".

A preliminary analysis was performed by Data Processing Branch

and Systems Engineering Branch personnel, National Aeronautics and

Space Administration, Manned Spacecraft Center in conjunction with

Control Data Corporation, to estimate the Computer Processing Unit

time required to perform pattern recognition using the Purdue

University LARS (Laboratory for Applications of Remote Sensing)

classification technique. The LARS technique assumes the data from

each class is drawn from a multivariate normal population and the

classification is done according to the maximum likelihood rule.

That is, an observation x is classified in population k if
f\ '. Sl ' .

p, (x) = max (p.(x)}, k = 1, 2,...,m, where the multivariate density
i 1

functions p.(x), i = 1, 2,...,m are evaluated using estimates of the

mean vector and covariance matrix for each class. Thus the LAIS

technique is the classical Bayes technique T,Q with equal priors,

that is, q. = 1/m, i = 1, 2,...,m. The results of the analysis

are-summarized in Figure 1. The graph in Figure 1 presents the

CYBER 73-14 time required to classify 16-10 picture elements in
«

a remote sensing data situation. The graph gives the time required

to classify elements given the member of classes (populations) to

be separated and .the number of channels (variates) to be used in

the classification process.

In a remote sensing data situation the data is obtained in

the form of an image (or scene) which is a rectangular region con-

sisting of r rows (scan lines) and c columns (number of resolution

elements or cells per scan line). Each cell generates a p-variate

observation. Thus to recognize a scene one must perform re
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Figurc 1.
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discriminate tasks, i.e. one must classify re observations.

The graph in Figure 1 gives the time required to classify

16-10 observations (elements), where, for example, r = 4*10

and c= 4'10 . Data of this magnitude is quite common in a remote

sensing data situation.

6. A Monte.Carlo Evaluation.

The techniques evaluated by Monte Carlo Techniques are:

1. (T, ) A Bayes algorithm using Wilks concepts [12].

2. (T») A table look-up technique.

3. (T3) A.table look-up technique.

4. (Tj.) A p-dimensional rectangular technique.

5. (T,) A q-dimensional rectangular technique.
b

6. (Tq) The classical Bayes technique assuming known

parameters.

7. (Tin^ The classical Bayes technique using estimated

-parameters.

The seven techniques listed above have been taken from the

list in section 5. For the Monte Carlo simulation we took m = 3,

p = 3, and n = 100 samples from each population were generated

using the multivariate normal random generator in [11]. Three

separate trials were conducted corresponding to three different

sets of multivariate normal populations. Following are the

vector means and covariance
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Trial I:
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VI = (150, 200, 100)
T,

P2 = (100, 150, 200)
T,

y.. = (200, 100, 150)T,

and

l ~ 12 ~ = 625 I.

Trial.II:

yjL = (150, 200, 100)
T,

V2 = (100, 150, 200)
T,

V3 = (200, 100, 150)
T,

and

625 375 0

375 625 375

0 375 625

625 -375 0

-375 625 -375

0 -375 625

Trial III

y;L = (125, 150, 175),

P2 = (150, 175, 125)
T,

P3 = (175, 125, 150)
T,
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and

400 -240 -200

-240 400 360

-200 360 400

400 240 -200

240 400 -360

\

-200 -360 400»

I, =

400

-240

200

-240

.400

-360

200

-360

400

The results of the discriminate analysis results are given in

Table 2, 3, and 4. There were a total of 24 discriminate analyses

performed. The techniques labeled 1 and la in the tables denote

Bayes procedures with the data compressed by Wilks technique from

3 variates to 2 and 3 variates to 1, respectively. For technique

number 5(Tg) the q-dimensional rectangular technique was used for

the choice of the best 2 variates from the 3 original variates.

Tables 2, 3, and 4 give the number of correct classifications

in each population, the number of misclassifications, the number

not classified, and the amount of time (in .01 sec.) in each analysis

for each trial, respectively.

The orderings with regard to accuracy in section 6 are supported

by the Monte Carlo results for the 7 techniques used.
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However, all the. orderings with regard to computer time are

not, strictly speaking/ supported. For example/ section 6 has T_

as taking no more computer time than T_ (T_ >_ T.,) . However/ for all

three trials T_ took less time than T-, although the difference v/as

very small/ and the computer ordering with respect to time could

be due to certain factors such as language used (Fortran), pro-

gramming procedures, and so on.

Table 2. Trial I.

Technique

Classified in u-.

Classified in TT-

Classified in IT-

Misclassified

Not classified

Time in .01 sec.*

1

99

100

98

3

' 0

542

la

100

98

99

3

0

508

2

- 97

97

98

2

6

288

3

97

96

96

5

6

278

4

79

80

83

0

58

287

5

91

91

94

2

22

278

6

99

99

100

2

0

750

7

100

99

100

1

0

718

* Includes Input-Output time of 2 seconds.
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Table 3. Trial II,

Techniaue

Classified in TT,

Classified in ir2

Classified in rr.

Misclassif ied

Not classified

Time in .01 sec. '

1

100

99

100 '

1

0

560

la

100

98

70

32

0

457

2

96

94

90

2

18

283

3

99

98

96

. 4 .

3

282

4

54

56

81

9

94

287

5

87

86

96

11

29

283

6

99

100

98

3

0

660

7

99

100

98

3 '

0

662

* Includes Input-Output time of 2 seconds.

Table 4. Trial III,

Technique

Classified in IT..

Classified in n2

Classified in it^

Misclassified

Not classified

Time in .01 sec.*

1

• 94

91

84

31

0

578

la

69

75

84

72

0

463

2

94

93

88

12

13

287

3

90

76

83

39

11 .

280

' 4

25

23

19

1

232

282

5

85

89

80

34

12

302

6 '

95

94

. 8 9

22

' 0

650

7

95

95

90

20

0

668

* Includes Input-Output time of 2 seconds.
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7. Feasibility and Practical Aspects of Table Look-Up.

There are various instances when the Table look-up ceases

to be a practical technique. One such instance is when the num-

ber of values to be computed for the table exceeds the number of

values to be classified. Three ways in which to reduce memory

requirements for the Table look-up technique are

(1) reduce the number of variates p,

(2) store only regions of interest in the measurement

space, and

(3) compress the regions of interest.

Item (3) involves storing the classification for several conti-

guous locations all in a single core memory location. This is the

transformation discussed in [4] which produces a coarse set of

lattice points and is called "pointer scale". In [4] it is seen

how storage requirements for a table for one population ?v-<2 re-

2duced from 256 = 65,536 to 864 and from 864 to 144 by successively

using (1), (2), and (3) above.

In our simulation study the table ^or each population consisted
%

of a p-dimensional lattice cube having 12 points to a side. This

called for 12P = 12 = 1723 storage locations. The total storage

requirements in our case were then m(12)™ = 3(12) = 5184 locations.

In using the best 2 of 3 characteristics for each population the

storage requirements were m(12)" = 3(12) = 432 locations. Each

of the lattice points was classified by the Bayes procedure prior

to classifying the 300 observations resulting in 5184 classifications

(p = 3) or 432 classifications (q = 2). In these cases the rumber'

of classifications necessary to construct the table.exceeds the
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number (300) of further classifications. This was done to get

information regarding accuracy, speed, and storage requirements.

In practice one could be faced with classifying data of the magni-

tude of 10 observations, such as in remote sensing, in which

case the Table look-up technique would be quite practical.

In summary; there are cases when the Table look-up would prove

quite useful.

8. Concluding Remarks .

From the evaluation in section 5 and the simulation results

it appears that the table look-up technique has much to recommend

it, especially if all p variates are used and if all observations

x falling in the no decision region are classified according to

the classical Bayes procedure. The procedure Tg(2) had 6, 18, and

13 observations for trials I, II, and III, respectively, falling

in the no decision region. Procedure Tg(5) had 22, 29, and.12

observations falling in the no decision region. All these observa-

tions could have been classified according to the classical Bayes

procedure and would have made the results as accurate.

If the number of observations falling in the no decision region

is large, say 30% or more, then Tg(2) and Tg(5) would take consider-

ably more time than T2 and T^. It would be useful in cases like

these to use the p-dimensional rectangular approach where two or

more rectangles in each R^ are utilized.
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