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ADVANCED TECHNOLOGY FOR REDUCING AIRCRAFT ENGINE POLLUTION

*
by Robert E. Jones

ABSTRACT

The proposed EPA regulations covering emissions of gas turbine engines

will require extensive combustor development. The NASA is working to de-

velop technology to meet these goals through a wide variety of combustor

research programs conducted in-house, by contract, and by university grant,

In-house efforts using the swirl-can modular combustor have demonstrated

sizable reduction in NOV emission levels. Testing to reduce idle pollut-
A

ants has included the modification of duplex fuel nozzles to air-assisted

nozzles and an exploration of the potential improvements possible with

combustors using fuel staging and variable geometry. The Experimental

Clean Combustor Program, a large contracted effort, is devoted to the

testing and development of combustor concepts designed to achieve a large

reduction in the levels of all emissions. This effort is planned to be

conducted in three phases with the final phase to be an engine demonstra-

tion of the best reduced emission concepts.

SUMMARY

This paper describes combustor research programs whose purpose is to

demonstrate significantly lower exhaust emission levels. The proposed EPA

regulations covering the allowable levels of emissions will require a major

technological effort if these levels are to be met by 1979. Pollution re-

duction technology is being pursued by the NASA through a combination of

in-house research, contracted programs, and university grants. In-house

research with the swirl-can modular combustor and the double-annular com-



2

bustor has demonstrated significant reduction in the level of NO., emis-

sions e This work' is continuing in an attempt to further reduce these

levels by improvements in module design and in air-fuel scheduling. Re-

search on the reduction of idle emissions has included the conversion of

conventional duplex fuel nozzles to air-assisted nozzles and an explora-

tion of the potential improvements possible with fuel staging and variable

combustor geometry.

A major contracted effort is the Experimental Clean Combustor Program.,

The Clean Combustor Program objective is to evaluate the potential emis-

sions reduction of a wide variety of combustor designso The program goal

is a 75+ percent reduction in the level of NO^ emissions at take-off and

a 50 percent reduction in the level of idle pollutants from the present

day levels for large turbofan engines„ This effort is planned to be con-

ducted in three phases consisting of combustor concept screening, com-

bustor development, and full engine demonstration of the emissions reduc-

tion possibleo

INTRODUCTION

This paper describes the research efforts conducted and sponsored by

the NASA to develop new low emissions combustor technologyo While consid-

erable progress has been made in reducing the smoke levels of gas turbine.

engines, no combustors at present incorporate design features specifically

for the reduction of gaseous pollutants. The Environmental Protection

Agency will have standards that require reduced aircraft combustor emis-

sions by 1979= The time available for combustor development is short if

substantially reduced emission levels are required by 1.979= But the tech-

nological approaches are available to design new combustors, The NASA has

taken a major role in sponsoring the study and development of new com-
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bustor concepts.

The problems of gaseous pollutant production are reasonably well

understood. The pollutants are known and the mechanism of their produc-

tion is understood. In general the techniques that can be employed to

reduce pollutants are universally agreed to. However, the application of

these techniques to specific combustor designs that will prove to be most

effective in controlling emissions have yet to be demonstrated. The NASA

is attempting to solve this problem through a wide variety of research

efforts conducted in-house, by contracts with aircraft engine manufac-

turers and by grants to universities,

This paper summarizes the NASA in-house research and the Clean Com-

bustor Program contract work that are aimed towards reduction of aircraft

combustion emissions.

POLLUTANT GENERATION

The problem of controlling gas turbine pollutant generation is di-

vided into two regions of interest. These are the pollutants generated

at engine idle (low power) conditions and those generated during takeoff

and high power conditions°

Idle Pollutants

Aircraft combustors are designed for maximum performance at takeoff

and cruise conditions. Operation at off-design points generally results

in lower combustion efficiencies and, as a result, in higher pollutant

emissions. Typical combustion efficiencies at idle vary between 88 and

96 percent; the actual values are dependent, on engine size, type, and age

as well as other factors such as the amount of power extracted and the

amount of compressor air tleed usedo The principal pollutants at. idle are
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carbon monoxide and hydrocarbons, either as raw fuel or as partially oxi-

dized fuel fragments. The latter are primarily responsible for the char-

acteristic odor common to all jetports (ref. 1).

Attaining levels of idle combustion efficiency that may be required

to meet the EPA standards will require a substantial effort. Engine oper-

ating conditions at idle result in low combustor-inlet temperatures (366

to 466 K) and pressure (typically about 2 to 4 atm). In addition, the

low fuel-air ratios required at idle result in poor fuel atomization and

distribution. The low volatility of commercial aircraft kerosene fuel

further aggravates this problem.

High Power Pollutants

As the power level of a gas turbine engine is increased, the combustor

pressure and inlet-air temperature are increased. At full power the com-

bustion efficiency is nearly 100 percent and almost negligible levels of

carbon monoxide and unburned hydrocarbons exist. Unfortunately the higher

temperature and pressure levels within the combustor lead to the generation

of smoke and oxides of nitrogen. The problem of smoke reduction has re-

ceived a great deal of attention for many years and new engines generate

little if any visible smoke. In general the smoke reduction was accom-

plished by reducing the fuel-air ratio in the primary zone of the combustor

to avoid locally overrich pockets. This results in locally higher flame

temperatures.

The trend in gas turbine engine development toward higher pressure

ratio also caused increased production of oxides of nitrogen. The forma-

tion of oxides of nitrogen in combustors is relatively well understood and

has been the subject of many technical reports (e.g., refs. 2 to 4).
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While the levels of idle pollutants can be affected by many factors re-

lated to the way engines are operated and by the way in which aircraft

traffic is managed in and around the terminals, significant reductions in

NOy levels can come about only through redesign of the gas turbine com-

bustor. Expedients such as water injection into the primary zone of the

combustor can reduce NOV emissions, but have the disadvantage of requir-
A.

ing increased engine maintenance and the handling of large quantities of

demineralized water. At the present time the NASA is exploring many new

and radical combustor designs that have the potential to reduce NOVA

levels.

The EPA proposed emission standards as of December 12, 1972 for the

T3 class of gas turbine engines (engines with thrust levels exceeding

29 000 Ibs) for the 1979 time period are shown in table I, reference 5.

The values in the second column are integrated values for a Landing-

Takeoff-Cycle and are presented in terms of pounds of pollutant per

1000 pounds of thrust per hour per cycle. The third column gives values

of emission index in terms of pounds of pollutant per 1000 pounds of fuel

consumed. The values shown for CO and THC were computed by assuming that

the combustor is 100 percent efficient at all operating conditions other

than taxi-idle. This allows one to then estimate the required value of

minimum combustion efficiency, The minimum value of combustion efficiency

at taxi-idle that will meet the standards in table I for CO and THC com-

bined is 99*52 percent. If some combustion inefficiency occurs at other

operating modes within the Landing-Takeoff-Cycle then the computed value

of combustion efficiency at idle must increase in order to keep the total

weight of emitted pollutants within the standard. The allowable emission
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index for NOX at takeoff was calculated by assuming that any change in

combustor geometry would not alter the presently measured values of NO,,

at idle and approach and that the level of NOj, produced during climb-out

was 75 percent of the allowable NOy index at takeoff.

Table II compares the goals of the NASA Clean Combustor Program with

the proposed EPA standards in table I on an emission index basis. The

primary differences are that the Clean Combustor Program is allowing com-

bustion efficiency at idle to be as low as 99 percent but is imposing a

lower level on NO,, emissions. Table III compares the present day perform-

ance of the T3 class engines (JT9D and CF6-6) with the goals of the NASA

Clean Combustor Program. Idle emissions of CO and THC will have to be re-

duced by half while emissions of NOjj must be reduced by 75 percent. The

performance of these engines already meets or exceeds the proposed smoke

goal. The primary focus of the NASA combustor research programs is on

NOjj reductions. Once proven techniques of NO,, reduction are developed in

practical combustors then more effort will be devoted to the control of

idle emissions,

PROGRESS IN NOX REDUCTION

Swirl-Can Combustor

One unique combustor concept that has demonstrated substantial poten-

tial for lower NOy emissions is the swirl-can combustor. Figure 1 is a

cross-sectional sketch and photograph of this combustor. The combustor

is of annular design, 0.514 m long and 1,067 m in outer diameter. The

combustor consists of 120 individual swirl-can modules which distribute

combustion uniformly across the annulus. The modules are arranged in

three concentric rows with fuel flow independently controlled to each row.
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There are 48 modules in the outer row, 40 in the center, and 32 in the

inner row.

The combustor module design is shown in ifgure 2. Each module pre-

mixes fuel with air in the carburetor, swirls the mixture, stabilizes

combustion in its wake, and provides interfacial mixing areas between the

bypass air through the array and the hot gases in the wake of the module.

More detailed information on swirl-can combustors can be found in refer-

ences 6 to 8,

Figure 3 compares the NOV emissions of the swirl-can combustor with
A

NOjj emissions of present day combustors (ref. 9). The curves for the

swirl-can and advanced annular combustor were obtained by increasing the

measured NO., values by multiplying by the square root of the pressure

ratio. The figure shows the variation of the NOx emission index with

inlet-air temperature or engine pressure ratio. The trend of greatly in-

creased NO^ emission with increasing engine pressure ratio is evident.

Although NO^ emi-ssi°ns from the swirl-can combustor are considerably lower

than those from conventional combustors, the goal of 75 percent reduction

in NOX levels has yet to be met. Attempts to reduce the level of NOx have

concentrated on changes in the design of the flame stabilizer plate.

These flame stabilizers have been modified in an attempt to increase the

rate of mixing of the module bypass air with the combustion products.

This should result in minimizing the residence time of gases in the hot-

test part of the recirculation zone. Some of the various flame stabi-

lizers tested are shown in figure 4 and their performance in reducing

emissions of NÔ - is shown in figure 5. The contra-swirl plates are the

only flame stabilizers tested so far that seem to have any potential for
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further NCv reduction. Although the measured values of NOV are reduced
A A

from levels shown for the previously reported flat plate flame stabilizers,

the overall combustion efficiency was also slightly reduced. This was

largely accounted for by a large increase in the level of unburned hydro-

carbons which indicates that fuel is being sprayed through the recircula-

tion zone before reaction can take place. If a way can be found to re-

tain the fuel in the reaction zone, thereby improving efficiency, then the

quick mixing caused by the opposed swirlers may be successfully utilized.

Experimental Clean Combustor Program

The Experimental Clean Combustor Program is a contracted program with

both the Pratt & Whitney Aircraft and the General Electric companies. The

primary emphasis of this effort is to design, test and evaluate combustors

aimed at significantly reducing NOX emissions as well as idle emissions.

The emissions goals for this program are given in tables II and III.

This program effort consists of three planned phases: the first phase is

a screening of several combustor concepts; the second phase consists of

further development testing of the most promising concepts and the third

phase will be a demonstration of the emissions reduction possible with

these combustors installed in a JT9D or CF6-50 engine. At present only

the first phase of this effort is underway.

Figures 6 through 12 are sketches of the various combustors being

tested. Figure 6 is a sketch of a two-row swirl can combustor installed

in a CF6 combustor passage. Combustors consisting of 60, 72, and 90

modules will be tested. Figure 7 shows a three row swirl-can combustor

consisting of 120 modules of varying diameter mounted in a JT9D combustor,,

Each row contains 40 modules. Each contractor will study swirl-can com-
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bustors by evaluating many variations in swirler, flame stabilizer design,

fuel injection techniques, and flow through the swirl-can.

Figure 8 is a sketch of the fully premixed combustor designed for the

JT9D engine. This combustor consists of two premix passages. The primary

burner supplies all power during engine idle operation. Both burners are

employed for operation at higher power levels. Another version of a

staged premix combustor is shown in figure 9. This combustor designed for

the CF6-50 engine uses a pressure atomizing nozzle in the primary passage

and employs premixing in only the secondary or full power passage. Fig-

ure 10 is a sketch of a modified CF6-50 combustor that incorporates a

pressure atomizing fuel nozzle and a high dome air flow rate such that the

entire primary zone operates at a low overall value of equivalence ratio»

Variable geometry xtfill be simulated with this combustor by varying the

primary and secondary air flow splits. Figure 11 is a cross-sectional

sketch of a swirl type combustor designed for the JT9D engine. In this

combustor concept, combustion is initiated in the pilot combustion zone

which is the only zone operating at idle conditions. For higher power

operation, fuel is added through the secondary fuel injectors and combus-

tion occurs in the secondary combustion zone. NO^ emissions may be mini-

mized by the intense stirring caused by air admitted to this zone through

rows of secondary air swirlers. The final combustor configuration being

investigated is a double annular combustor designed for use in the CF6

engine and shown in figure 12. This configuration employs the lean dome

concept similar to the one shown in figure 10. The use of a double-

annular concept allows for radial staging of the fuel during idle opera-

tion while the overall fuel lean primary zones should result in low
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at full power operation.

CONTROL OF IDLE POLLUTANTS

Since idle emissions are exclusively due to combustion inefficiency,

the remedy is to improve combustion efficiency. Many varied approaches

all offer some partial improvement in idle emissions. The use of engine

bleed to increase the combustor operating fuel-air ratio at idle can im-

prove idle emissions. Fuel staging in multizone combustors also will im-

prove idle emissions. One approach that has been investigated has poten-

tial as a retrofit to existing engines as well as a design feature for

future engines. This technique is the conversion of the usual duplex

fuel nozzle to an air-assisted fuel nozzle at idle conditions.

Air-Assisted Fuel Nozzle

The air-assisted fuel nozzle conversion of a conventional duplex

fuel nozzle is illustrated in figure 13. During idle operation fuel is

injected using only the primary fuel nozzle, the secondary fuel flow

being cut in during higher power operation. Conversion of a conventional

duplex nozzle to an air-assisted nozzle is relatively simple. A small

amount of air would be drawn off the compressor, passed through a small

supercharger and then ducted to the secondary fuel passage of the duplex

nozzle. The effectiveness of this approach in reducing idle emissions

has been illustrated in reference 10 and is shown in figure 14. These

tests were conducted on a single JT3D combustor can operated at a typical

idle condition. The figure illustrates that as the quantity of air-

assisted flow increases the overall combustion efficiency increases with

simultaneous decreases in the levels of CO and THC. While the improve-

ments demonstrated are significant, some emissions at idle still exist
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and may not meet the proposed standards for this class of engine. Fig-

ure 15 illustrates the same technique applied to a JT8D combustor at sim-

ulated idle conditions. At an air assisted flow of 0.00318 kilogram per

second or 0.25 percent of the total combustor air flow CO emissions are

reduced by a factor of 3,5 to 1 and hydrocarbons by a factor of 8 to 1.

The emission of NOx is increased slightly as expected due to the increase

in flame temperature with improving efficiency.

Variable Geometry

It is generally agreed that reduction of idle emissions to the very

low values proposed by the EPA will probably require some use of variable

combustor geometry. A combustor incorporating variable geometry could

have a primary zone optimized for low emissions at idle and then by ad-

mission of more air during high power operation achieve low NO^ produc-

tion. Combustor geometry changes simulating variable geometry have been

tested. Figure 16 is a cross-sectional sketch of the double-annular ram-

induction combustor. Detailed descriptions and performance of this com-

bustor can be found in references 11 to 16. This particular version has

a snout attached to the headplate of the combustor. The open area of the

snout was varied by attaching punched plates with holes of varying diam-

eter, Varying the snout air flow changed the amount of air admitted to

the combustor primary zone through the swirlers and central scoops. In

order to maintain a reasonable combustor pressure loss as well as assure

the desired air flow distribution, a portion of the transition liner on

the outer diameter was opened. This allowed the air that cannot be ac-

cepted by the snout to bypass the combustor by being admitted further

downstream. The arrangement presented may be neither optimum nor prac-
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tical but is intended to illustrate the potential of the variable com-

bustor geometry concept for idle emissions reduction. Figure 17 shows

the variation in idle pollutant levels for two variations of combustor

geometry. Test results are also shown with only the outer annulus burn-

ing. With this type of combustor fuel can be staged to either annulus

during idle operation, thus locally increasing the fuel-air ratio in that

annulus with resulting improvements in combustion efficiency. With com-

bustion in both annuli CO and THC emissions were significantly lower than

the base-line model for both variable geometry configurations. Combus-

tion in the outer annulus gives markedly less THC emissions than when

both annuli are burning. In this mode the lowest emissions occur with

the open liner configuration. The open liner-plus-blocked snout config-

uration gives slightly higher levels of CO and THC indicating that the

primary zone is too fuel rich. A configuration having a lower snout

blockage than that tested is probably more optimum.

CONCLUDING REMARKS

Research on most of the combustor concepts mentioned will be con-

tinuing in an attempt to better understand ways of minimizing combustor

generated pollutants,, The goals that have been established for future

gas turbine engines will require the development of new technology in

combustor design. Several trends and approaches for pollutant reduction

have been determined, but: with the exception of exhaust smoke have yet to

be demonstrated on flight engines. This demonstration is the goal of the

NASA Experimental Clean Combustor Program.
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TABLE I. - 1979 EPA STANDARDS

(As of Dec. 12, 1972, Ref. 5)

T3 Class Engines

Pollutant LTO-cycle Emission index
#/hr - 1000 ///cycle #/1000.# fuel

CO 1.7 310.3

THC 0.4 a2.4

NOY 3.0 b!2.9
A

Smoke 20
(SAE no.)

o

Assumes 100 percent combustion efficiency at all
LTO cycle modes except "Taxi-Idle."

NOX emission index at takeoff. Computed by assum-
ing that NOX emission index values at Taxi-Idle
and Approach are unchanged and that Climb-Out
value equals 75% of the computed takeoff value.

TABLE II. - COMPARISON OF 1979 EPA STANDARDS

WITH CLEAN COMBUSTOR GOALS

Pollutant Mode EPA Clean
combustor

CO

THC

NOX

Smoke
(SAE no.)

Idle

Idle

Takeoff

Takeoff

10.3

2.4

12.9

20

20

4

10

15

aComparison based on emission index values.
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TABLE III. - COMPARISON OF PRESENT T3 CLASS ENGINE

EMISSIONS WITH CLEAN COMBUSTOR GOALS

Pollutant Mode T3 engines Clean
combustor goal

CO

THC

NOX

Smoke
(SAE no.)

Idle

Idle

Takeoff

Takeoff

d50-60

10-20

40-50

10-15

*20

4

10

15

o

Emission indices.
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