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A STUDY OF ZODIACAL LIGHT MODELS

SUMMARY

Various interplanetary dust cloud models which were formulated to
predict the photometric properties of the zodiacal light are considered. A
compilation and analysis of the models in the literature is presented. This
study revealed a lack of unified coverage of the zodiacal light models in the
literature.

The important points of the present study are as follows:

1. A detailed compilation of most of the models presented in the
literature.

2. A correlation of the models and their association with the develop-
ment of more detail models.

3. The coverage of out-of-the-ecliptic models.

4. An introduction to the inversion formulation.

The authors' own calculations of single particle Mie scattering results, size
distribution Me scattering results, and ecliptic and out-of-the-ecliptic zodi-
acal light model results are presented to illustrate and extend the presentation
for various models.

The conclusion of the study is that at present there is not a unique
model for the zodiacal light, although extensive work has been carried out
by various authors. However, it is believed that this direction of research
is fruitful and, with new observation results, defensive data on the nature of
the interplanetary dust cloud can be obtained.

The study makes the following recommendations for better refinement
for model calculations and analysis of the zodiacal light by photometry:

1. The size and spatial distribution needs to be based on experimental
data. This is particularly true in the case of particle size distributions where
a lower cut-off limit is assumed.



2. A set of polynomials needs to be created to form da/dfl .

3. The effects of irregularly shaped particles compared to spheres
should be better defined to categorize differences.

4. The method of inversion of the photometric observation to find
particle sizes and composition .needs more definition and study.

5. The complete effects of the physical forces on the dynamics of
the interplanetary particles need to be determined for input into models.

6. A Mie theory model which satisfies all the gross properties of
the observation data should be found, if possible.



SECTION I. INTRODUCTION

Zodiacal light is produced by sunlight scattered.by: the interplanetary
cloud of particles around the sun. The cloud is concentrated toward the plane
of the ecliptic so that the zodiacal light appears as a band along the ecliptic.
In the vicinity of the sun, the interplanetary particles merge with the .plasma ;

surrounding the sun to form part of the solar corona. In the antisolar direction,
a slight increase in brightness occurs; this phenomenon of the zodiacal light is
called either gegenschein or counterglow. '-. • ; . , = - • . • • . • > . , • / ' • ' ,:

Zodiacal'light observations have a lorig history. , It;is known that .zodi-
acal light was observed by the Egyptians and-the Greeks [106]. The/first
recorded systematic series of observations of zodiacal light was made by -
Cassini in 1672 [20]. Cassini proposed that the zodiacal light was sunlight
scattered by. an interplanetary lenticular dust cloud. Searle [ 1] compiled the
notes on the observations of the zodiacal light and gegenschein made at the
Harvard University Astronomical Observatory during the period from 1840 to
1890. He modeled the zodiacal cloud using different phase functions and spa-
tial densities. He found that the best fit to observational data was given by a
phase function approximately proportional to the phase angle and a density
inversely proportional to the distance of the scatterers from the sun, although
data from asteroids indicated to him that it may fall off faster. To account
for the increase in brightness near the sun, an increase in the amount of
meteoric matter was suggested. Fessenkoff in 1914 attempted further theo-
retical models to explain his own observations [106]. He assumed the meteor
cloud to be infinite in extent and the density to vary inversely with the distance
from the sun. For phase functions, he used Euler, Lambert, and Lommel- •
Seeliger laws.

As reported by Schoenberg [2], Van Rhijn [3], in the course of at-
tempting to determine the contribution of scattered stellar light to the sky
brightness, observed that zodiacal light constituted almost 43 percent of the
light in the night sky. Van Rhijn modeled the zodiacal cloud, assuming phase
functions for the particles that corresponded to meteor phase functions and
assuming that the spatial density was constant over spheroids. His studies
and calculations extended outside the ecliptic. Dufay [4] reported a substan-
tial polarization of the zodiacal light through photographic analysis. Elvey
and Roach [5] made detailed photoelectric observations. Whipple and
Grossner in 1949 [ 107] used the polarization data of Dufay and the brightness
data of Hoffmeister [6,7] and Elvey and Roach [5] to set upper limits on the
electron density. However, they concluded that the dust component alone could

3,



probably account for the observed polarization. Behr and Siedentopf [8] made
the first accurate measurements of the polarization. From-'these measurements
it was proposed that near the sun (e < 35 deg), almost one-half of the zodiacal
light was because of scattering from electrons. ' . , i

The spectrum of the zodiacal light was observed by Fath [108] in 1909
and found to be like that of the sun. Blackwell and Ingham [9, 10, 11] used the
spectrum of the zodiacal light obtained by them to infer an upper limit of the
electron density much lower than that"predicted by Behr and Seidentopf.

Allen [12] and Van de Hulst [13] independently showed that the increase
in brightness of the zodiacal light near the sun was caused by light diffracted by
the interplanetary particles. Because of this result the requirement for an
increase in spatial density of the particles near the sun could be omitted.

Richter [ 14] made -studies of the scattering of light from dust clouds
using scattering functions measured in the laboratory. Walter [15] and Giese
and Siedentopf J16] used the Mie theory of scattering from spheres to obtain
theoretical scattering functions for use in gegenschein and zodiacal light model
calculations.

Detailed radiance and polarization measurements of the zodiacal light
were made by Weinberg [ 17, 18]. Smith, et al. [19] obtained a whole sky
radiance map. ' • • . ' • ' " :

It is impossible to include all'the research in ̂ a condensed history of
the zodiacal light as is attempted above and summarized in Table 1. Such
abbreviation inevitably omits the works of many important contributors. The
above history is presented to give an indication of the work done in the past
on zodiacal light. Since about 1960, there has been a great deal of study
(theoretical and observational) of the zodiacal light, using modern tools and
techniques, which does not show in the condensed history.

Representative results' of photometric observations of the radiance and
polarization in the ecliptic are shown in Figure 1. Figure la presents the
range of the results for the radiance of the zodiacal light. The ordinate is
radiance in units of the number of 10th magnitude stars per square degree and
of the average brightness of the solar disk (B ). The abscissa is the elonga-

tion in degrees; elongation is the angle between the earth-sun line and the line
of sight. The radiance increases rapidly as the zodiacal light merges with the
solar corona. Gegenschein is indicated by a much smaller peak in radiance in
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Figure 1. Representative results of (a) radiance and (b) polarization of the
zodiacal light in the plane of the ecliptic. (The solid line indicates the average
value, and the shaded region indicates the spread in the observational data.)



'TABLE 1. A CONDENSED HISTORY OF THE ZODIACAL LIGHT.

Egyptians [106]

Cassini [20] ,

Brorsen [109]

Searle [1]

Fath [108]

Van Rhijn [3]

Dufay [4]

Elvey/Roach [5]

Allen [i!2] arid
Vande Hulst [13];

Richter;[14]

Walter [l5] '

Blackwell/Ingham
[9, 10, 11]

Giese/Siedentopf [ 16]

Weinberg [17, 18]

Smith etal. 119]

Observed the zodiacal light and drew pictures of it- • . • • ; ...
in the pyramid. ; .: ' .,

Observed the zodiacal light and proposed a lenticular
cloud,of dust in the ecliptic for its origin. "

• ' • - P - • ' . • ; - - . , • ' - ! • • < .

Observed the gegenschein.

Calculated the radiance by using asteroidal observations.
Compiled observations, at HCO. ; ; ( .

Photographed the spectrum of the zodiacal light.

Observed the zodiacal light photometrically and calculated
6ut-<>f-the-ecliptic mo'dels for ithe radiance of the zodiacal
light.

, . - - . , > . . . -

Found considerable polarization in zodiacal light.

Carried out detail photoelectric observations.

'Added diffraction peak contribution to the F-corona calcu-

lations:: . ; • . , ' • : : • . . .

• ' - ' > ' ' ' ' *-• . '' ' ' •. - - '
Made,laboratory studies of the scattering of dust clouds.

Used the Mie theory in gegenschein model calculations. >
' " • - • ' • ' ' • • ! • • ' • " • • . • . . • . • • : ] • • ' : . .

Used the spectrum of the-zodiacal light to set ah upper. • • .
limit of 120 electrons/cm3 at the earth in interplanetary ,
space. . , • . j . . . - • ' - . - • . . . - - • • - , - . . . • ' • '

Used the Mie theory to obtain optical properties of th'e
zodiacal light for various models.

Obtained detailed radiance and polarization data.

Obtained a whole sky radiance map of the zodiacal light.



the antisolar direction. In Figure Ib , the range of the degree of polarization
of the zodiacal light versus elongation is presented. The maximum degree of
polarization occurs at approximately 70-degree elongation.

The particles which produce the zodiacal light are assumed to range
between 0. 01 and 10 microns in diameter with a peak frequency distribution
near 0. 5 micron. The spatial concentration is toward the ecliptic and decreases
as a function of radial distance from the sun. This distribution is supported by .
photometric measurements and by analysis using scattering theory.

t

A number of hypotheses have been generated to explain the existence of '
interplanetary dust. These hypotheses include the following [21];

- . i
1. Dust injection from comets.

• • •' " • -• i : i , ; . - •. ; ' • • . •
2. Debris from asteroidal collision.

3. Grains from condensation of gas on nucleation centers.
• '• ! - . '" ' • '• ' • • ' ' --'' ' , . ! • : . ;• •• - . . •

4. The remains of an original and very dense dust cloud.

I 5. The passing of the solar system through an interstellar dust
cloud. • • • • = • .

i ;
In recent years, there has been renewal of interest in problems con-

cerned with the interplanetary; medium, since it is believed that the determina-
tion of the correct hypothesis for the existence of the interplanetary medium
will be a major step forward in understanding the environment of interplanetary
space and, by apocatastasis, the origin of the solar system. Earlier studies of
zodiacal light.were performed visually or with photographs at unfavorable sites
and include uncertain corrections for extinction and extraneous sources. Photo-
electric techniques are now being employed to measure the distribution over the
celestial sphere of the parameters of the light. Earth-based observations are.
still hampered by the earth's atmosphere. However, polarimetric observations
from spacecraft are now planned. These observations will give better data on
the radiance, degree of polarization, color, and orientation of the polarization
plane of zodiacal light.

To deduce physical characteristics of zodiacal dust from photometric
observations,1 it is necessary to compare the observed properties with those
calculated for several models of the zodiacal cloud. These several models -
must be used, for there is no unique model for the cloud because of the number
of parameters in each model and the lack of sufficiently accurate experimental



data; nonetheless, the models are very informative. The difficulty in obtain-
ing a unique model may be appreciated by considering the following major steps
in the calculation of a zodiacal light cloud model [22]:

1. Select a particle size and shape distribution which is consistent
with me dynamics that act upon the particles and their physical constraints.

2. Calculate the individual scattering functions for the particles
assumed.

3. Calculate the photometric properties, based on the spatial distri-
bution assumed for the model.

4. Analyze the results of varying the parameter to determine the in-
dividual uniqueness.

The last two steps are presented in detail later in this report.



SECT I ON 11. SCATTER ING THEORY

A. Introduction

To be able to. accurately model a cloud of scattering particles, the
scattering properties of the individual particles composing the cloud must be
known. In this section, the general scattering theory for individual particles
will be presented and then extended to a tenuous cloud of such particles.
Since the scattering is classical field scattering for electromagnetic radiation,
the derivations are omitted since they are available in the literature. This
section presents the general treatment for scattering, the forms of some
differential scattering cross sections which are used to describe the angular
distributions of the scattered field from different scatterers, and a discus-
sion of the size distribution for the scattering centers.

B. General Scattering Theory

To know the scattering properties of the particles, one must know the
relation between the electromagnetic fields that are incident on and scattered
by the particle. Such a relation depends on the shape and physical properties
of the particle and, in general, the relation is very difficult to describe
analytically. However, the scattered properties can be described in a general
formalism without direct reference to the properties of the particle. Con-
sider the electromagnetic fields at a large distance r from the particle. The
field is transverse to the direction of propagation, and the amplitude of the
scattered waves, is a function of position. The fields are a combination of the
incident wave, considered hereafter to be a plane wave with a wave vector
k = 27T/X, and a spherical outgoing wave.

(1)

where IA (0, 0) | is the amplitude of the scattered wave, e^r is its phase,
and l.is the geometric attenuation factor. A (0, <ft) is such that the scatter*
part contributes nothing to E before scattering. It is related to the incident



field by a scattering matrix, S, which will be "defined shortly. The linear

relationship between the incident and scattered waves is a consequence of the
linearity of Maxwell's equations and is valid for the cases considered here;
Before definin'g S, consider Figure 2 which shows the coordinate system used

to describe both the directionand polarization of the incident and scattered fields .i

Figure 2. The geometry for incident and scattered;,radiation,
and the scattering plane from a different perspective.

The X, Y, and Z axes are fixed to the scattering center and oriented
such that the Z-axis is along the direction of the incident radiation. The unit
vector n and the propagation vector k are in the direction of'the incident radi-

ation. The unit vector n' and propagation vector k' are defined similarly

10



for the scattered radiation, n and n= define the scattering plane and the ,
scattering angle, 0, which is the angle between them (0 < 0 < 180 deg).
A ;" : ' 'A * ' ' •• ' • ' ' - ' ' • . . : . . • ' : ' • - . ' - . . - ' . • . . - . . > • • • ' - . •
A. and As. are the, same and are perpendicular to the scattering plane which is :

inclined an angle, 0 , to, the X-axis. Since the amplitudes are transverse to <
A A' A A A* A'

k ,, the unit vectors S. and £ are.perpendicular to /i,:n and A, n , respectively.

The quantities E and E . are the electric field components of the incident
/\ A . ;

radiation A and S.. Likewise, E and E are^the electric field components of
A* 'A*

the scattered radiation along A and £ . The amplitudes of the incident and
scattered waves .are related by the scattering matrix S,

' v ikr " ' • ' \ • *, jkc

*$ ' : '• •. • ; • • ; < . - • ' ;
•;!- ., . • ,- • . . ' , . - • . - . - • • • • • ' ' • - , - - * ^•v-i-v'"--: -

eikr ,,

,(3)

\ -,

In general, scattering amplitude functions S , S , S , and S are dependent
_ 1 2 «5 4

on the particle properties, complex, and functions of 9 and 0 . The compo-
nents (E., E ) and (E ., E ) are referenced to coordinate systems

f f *• A, OJt O/t ;

(i , A.) and(r, £), respectively. Hence, the scattering matrix is a function
of k andk *, . '

S ( 0 , 0 ) = S (k;, k') > ' • ' ' • • ; j
:- • :..

I

where S reduces to the unit matrix for no scattering. The S-matrix contains

all the information one can obtain about the particle from a scattering analysis.

' Fora spherically symmetric particle, the scattered r* component

is directly related to the incident £ component only, and similarly for the
component. Hence, the S3 and S4 elements of the S matrix are zero.

A'

11



In the case of a spherical particle, the energy at a given wavelength which
crosses a unit area in unit time at a distance r is given by

£ ' = k~2r~2 5 '

(S. A Vwhere £ ' is the spectral radiant density and is related to E by

(4)

e is the electric permitivity and fj, is the magnetic permeability.

The scattering intensity functions i1 and i2 are defined as the square
of ISJ and I S ^ , respectively, ij and i2 are calculated for spherical par-
ticles by 'the use of the Mie theory [23, 110]. As will be seen, ^ and i2 play
an important role in modeling zodiacal light.

Particles which have no three-dimensional rotational symmetry have
elliptical polarization; i. e.. the incident £ and £ component will be scattered
such that each will have a V and yt' component. Therefore, S3 and S4 do
not vanish; hence the general form for it and i2 is

and

0) + 83(0, ?)|2

C. Differential Scattering Cross Section

The angular distribution of the scattered radiation can be described by
the differential cross section. The differential cross section do/dJ2 is
defined as the ratio of the flux scattered from an object in the direction 9
and 0 per unit solid angle to the flux per unit area incident on the object,

12 M-454



da _ energy scattered/unit time/unit solid angle
dfi energy incident/unit time/unit area (5)

In terms of the Poynting vector S for the incident,ajid scattered fluxes

da

S~sca
(6)

where r is the distance of the observation point from the scattering center^,
The differential cross section has, the dimensions of area per steradian. In

terms of the flux density — is

.da ;=

dO
scat\

• --
>inc /

.r

Hence, in terms of the components
components are

and i2, the differential cross-section

1,2
~kF~

The scattered flux density for unpolarized incident light is given by

Differential scattering cross sections of some well-known scatterers are
listed in Table 2 for reference. The notation is that of Van de Hulst [120]
except that C „ is polarizability.

p£

: 13



TABLE 2. DIFFERENTIAL SCATTERING CROSS SECTIONS
FOR SINGLE SCATTERERS [121]

Seatterer da.
da

-. =- I • . • • - • : . '
Isotropic Seatterer

Xambertian Sphere

Circular Diffraction

Rectangular Diffraction

Rayleigh

Electrons

RayleighiGans Spheres

Rayleigh-Gans Cylinders

Mie Spheres

Cylinders

aV4

: , , . . .

. TTT^- (sin0..-0 cose)
07T ' '

(ka0)

k2a4

4
E('Jkb sin0..tcos0)i E(^kc sine cos0)

2 4
a ( l+cos 2 0) .

STTC.

!•(!+ cos20)

* C2, k4

87T6 ,

(u)

(u)
4?reu

2 .T, (0) / .T 2 (0)
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D^ Size Distributions

Electromagnetic radiation traveling through a scattering medium can ;
be scattered one or more times, depending on the distance between scattering j
centers. In many situations (e.g., zodiacal light, fogs, haze, some clouds),
the scattering centers are widely separated and, hence, the radiation is
scattered only once before striking a detector. It is this special case of sin-
gular scattering that is considered in this section. Another condition that is
usually assumed in single scattering is that the scattering centers are'ran-
domly located with respect to each other. When both conditions are met, each:
scattering center can be considered separately and the effects of all the centers
is just the sum of the effects of each.

The components of the differential cross, section from an isotropic.
homogeneous cloud of particles is given

£ i. (*n, 0, ka) n(a).Aa •;-- ' j = 1, 2
Aa 3

where the sum is over the particle sizes '. For an isotropic, heterogeneous
cloud, the differential cross section is the sum of the cross sections of each
particle,

i. (m , 0, ka) n(a) Aa
Aa J

where each sum is taken only for a given refractive index (material) and all
particles are assumed to follow the same size distribution law.

\
If the size distribution is continuous, the summation can be replaced by

an integral

15



where n (a) represents the size distribution. As can be seen, n (a) plays an
important role in scattering. For this reason, several families of size dis-
tributions are discussed in this section.

There are many size distributions used in the study of light scattering;
most are empirical formulae. Usually, two parameters are sufficient to de-
scribe the distribution, one parameter being associated with a particular par-
ticle size (mean, mode, median) and the other defining the spread or variance
in the distribution. • •

Distributions may be unimodel, bimodel, etc. However, since the
simple bimodel and higher model distributions can be represented as a sum of
unimodel distributions, only two parameter unimodel distributions will be con-
sidered .

The formulae for the distributions discussed below are categorized
according to form. The four categories used are listed in Table 3.

TABLE 3. SIZE DISTRIBUTION FORMULAE

Category I. Modified Gamma Distribution

n(a) = n a^ exp(-ba )

Category II. Exponential Distributions

n2(a) = n
0 exp(ca

Category III. Logarithmic Distributions

m, v m
s (a) = n

0
 a exP
m -vT2

Category IV. Inverse Power Law

n4(a) = n
0(

a/a
0)

-P

16



Category I is a modified gamma distribution

iij (a) =n a^exp(-bap) (8)

which has been used by Deirmendjian (1966) to describe haze and"clouds.
no» Y» b, and p are real positive numbers and y is an integer. As used by
Deirmendjian, i^, y, b, and p are not independent of each other and are
related to quantities in the frequency distribution, ri is related to the total
number of particles per unit volume, and b is related to the mode radius,
provided y and p are fixed. If p = 1, nt(a) reduces to the gamma distri-
bution.

Differentiating n^a) with respect to in a, one obtains

-fc)' (9)

where a is the model radius. This formula represents the slope of the curve
J?

of log n (a) versus log a. Figure 3 shows the size distributions for some
particular examples of nt (a) . Table 4 gives the parameters used for each
distribution. The mode radius is the same in each one, and the parameters
were chosen so that the slope of the curves is -4 at a radius of 1.6 microns.
A particle density of 1.5 x 10~15 cm ~3 was used.

TABLE 4. PARAMETERS FOR
THE MODIFIED GAMMA DISTRIBUTION OF

FIGURE 3.

Distribution

1

2

3

y •

6.0

3.0

1.0

P

0.1705

0.2828

0.5372

nO

7.4247 x 10+8

_7
3.7400 x 10 '

2.9998 x 10~13

b

54.1778

21.7002

7.2442
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Figure 3. Category I distributions.
(All distributions have mode radius = 0.08.)
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-The family of distributions represented by

• P\ ;

n (a) =n exp (ca ) , . , . , (10)

represents Category II distributions. It includes the normal or Gaussian
distribution ' •

'

n2 (a) = — — e x p - U-a)2 , - 1 - - ! -. ' (11)

where the parameters a and a are the mean and standard deviation 'defined by

v " . ; *

a" = f a n (a) da V • :
J —00 O \

—00

This distribution hasithe disadvantage that it admits particles with "negative"
radii, figure 4 shows the Gaussian distribution for a mean radius of 1.0
and standard deviations of 1.0 and 3.0. Only the portion of the curve corres-
ponding ;to positive radii is shown. Figure 5 shows the form of the Category II
distribution for simple powers of exponent. \

*'. f'

Category in distributions are those that are similar in form to the
logarithmic distributions described by

exp W(a/a)\ 2

(12)

where ri is the normalizing factor for n3 (a) . m is a shape factor, a is one
om

of the moments of the distribution (media, mean, mode, etc.), and;ais a
measure of jthe widtii of the dispersion. Figure 6 shows a plot of equation (12)
for several values of m. Note that this family of curves is skew symmetric.

A simple relation between the mode "radius, 'aVo2, and the shape factor m is
found by differentiating n (a) with respect to a and setting it equal to zero.

-iria\

19

dn/da is zero at the model radius,' hence, m-.= l- — -. •-. .3 v'



nn(a)/c

10
10.0

Figure 4. Gaussian particle size distribution for positive radii.
(Mean radius = 1.0 anda = 1.0 and 3.0.)
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Figure 5. Category n distributions for some examples of
simple powers of the exponential.
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If m = -1, the logarithmic distribution^ecomes the logarithmic normal
distribution

-1
n3 (a) =

-1 exp (13)

In this case, a^ is both the median and the mean value of a; a is the standard
o

deviation for f. na. The log normal distribution has the advantage that the
median (which is also the geometric mean) remains invariant over allcr's
(Fig. 7).

Espenschied [111] and Kerker [24] make extensive use of the zeroth
lorder logarithmic distribution ( ZOLD) in their work on aerosols. For this
distribution, m = 0 and equation (12) reduces to

n n
tfna -Ina)2

(14)

a" is now the model value and remains invariant for all values of CT. if the dis-
" 2tribution is narrow, i.-.e',, if a is negligible compared to a, then a is related

to the standard deviation crg by

= a

As a gets smaller," ZOLD.becomes symmetric as shown in Figure 8.

" Category IVdistributions are most popular for zodiacal light studies.
The inverse power law distribution

n4 (a) = n0 ( —
-P

(15)

represents this distribution. For published zodiacal light models, k has
usually been in the range of 2.5 to 4.0. As with the other distributions, the
distribution can be modified; e.g., Aller et al. [22], in an attempt to obtain a

23
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better model of the zodiacal light, allow k to .vary for. different ranges of a.
This form of the Category IV distribution is the broken power law. Figure 9
shows the Category IV distribution for the values of k noted above, it is evi-
dent that the smaller particles dominate in this distribution; / •

t

The importance of the inverse power law comes from the fact that the
cumulative mass distribution for meteors between 10 and lO'*1 g (a radius
between 1 cm and 1 micron) is relatively linear on a log-log plot [25]. This
region covers the range from visual observations to dust-particle sensors on
rockets and spacecraft. The number density increases with decreasing size,
although'there must be a physical limitation to this trend. . If and when a lower
particle size cut-off is determined, the other categories will be more impor-
tant i n t h e study o f .zodiacal light. . - • • : • ' • -
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Figure 9. Category IV distributions for p = 2.5, 3.0, and 4.0,
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SECTION 111. MODEL CALCULATIONS

A. Introduction

The main objective in the study of zodiacal light is to deduce the nature,
amount, and distribution of the particles responsible for this light. This know-
ledge is of fundamental importance in the theory of the origin and structure of
the solar system. The zodiacal light can be interpreted on the basis of scat-
tering of sunlight by a cloud of interplanetary particles. The properties of this
cloud are to be determined without a priori knowledge of spatial extent, particle
shape and size distribution, and concentration, and the variation of these param-
eters with radial distance from the sun. The mathematical formulation for the
problem is relatively simple, though there are difficulties related to the obser-
vational uncertainties and the choice of models.

The basic scheme is to make as many models as feasible and to approach
a solution by trial and error, checking for consistency, and agreement with
other theoretical criteria. To date, the number of parameters for the models
exceeds the number of observed integral quantities.

There are two important questions to be answered: (l) which forms of
the mathematical functions permit the expression of the physical properties
observed? (2) what are the values of the parameters of these functions which
satisfy the observed quantities? It is by no means certain that there is a
unique answer to each of these questions. The approach to the problem is
through the integral equations which characterize the physical process of the
scattering of the light. These equations for the radiance L are as follows:

1^ (e) = / / • • • /TJ (a, £, m, x, y, z) • i^ (a, £, m, 0, 9)

• da d£ dm dx dy dz d<j> d6

j = 1, 2 .. (16)

The number density TJ and the scattering intensity functions i are to be deter
\

mined. Generally, one postulates the form of these functions, evaluates the
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integral equations, and compares the .calculated values for the radiance compo-
nents with observation. This approach manifests itself in the approximation of

the functions 77 and i with their dependence on the particle size a, refractive
A.

index m, position x, y, z, and other intrinsic variables £.

The calculation of the observable photometric radiance and polarization
based on various models is presented in this secti9n. The calculated values of
these quantities are compared to the observed data in Section V. Radiometric
quantities are used in the development. These quantities are defined in Table 5.

B. Cloud Radiance Integral ,•

' '• •' A basic assumption throughout the development is that of single scatter-
ing; For 1-micron particles with a density of 10"10 particles/m3, the mean
free path is on the order of 1011 AU. Single scattering appears to be an appro-
priate assumption. Hence, extinction of the solar radiation and multiple scat-
tered radiation will be neglected.

Figure 10 shows the geometry for sunlight scattered by interplanetary,
particles in a cylindrical volume element of length dA and volume dA dA
at a distance r from the sun and a distance A from the earth.

The particles in the volume element dAe dA receive solar energy
in the wavelength interval \ to A.+ 5 A at the rate of

E 6X [dA dA r j ( a , r) da] G (17)

where

G = the projected area normal to the incident sunlight (IT a2 for
spheres of radius a) (m2).

E = the spectral radiant flux density at the surface of the volume
element (w/m2 - nm).

T](a, r) = the number of particles per unit volume per unit increment
of the size factor (radius) at a at a distance r from the
sun (number/m4). • ' •

From the definition of the differential cross section, the fraction of energy
received that is scattered toward the earth is

29



TABLE 5. RADIOMETRIC QUANTITIES

Radiant Energy, Q, is the energy propagating in the form of
electromagnetic waves (j).

Radiant Density, W .= dQ/dV, is radiant energy per unit volume
(J/ms). .-. .-

Radiant Flux, <i> = dQ/dt, is the time rate of flow of radiant
energy (w) . ,

Spectral Radiant Flux, 4> = d<3?/d\, "is the ; radiant flux per unit
wavelength interval at wavelength A (w/.Nm). ' . - . . '

• • ' K. '•' "'-

Radiant Intensity, I = d<|> /dco , of a source is the radiant flux .
proceeding from the source per unit solid angle in the direction
considered (w/sr) . -•• •

. ,

Spectral Radiant Intensity, 1^ = dl/d^, is the radiant intensity per
unit wavelength interval at wavelength A. (w/sr-Nm) . • '<

Radiance, L = d23> /dw(dA cos$), in a direction, at a pdint on
the surface of a source, is the quotient of the radiant flux d$
leaving and propagating in directions defined by an elementary
cone containing the direction by the product of the projection of
an element of the surface dA containing the point onto a plane
perpendicular to the given direction and the solid angle dw of
the cone (w/sr-Nm).

Radiant Flux Density at a Surface (Irradiance) , E = d$/dA, is
the quotient of radiant flux at that element of surface to the area
of the element (w/m2) .
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(I)
where o;e is the solid angle the detector subtends-at the volume element. For
simplicity, spherical -scatterers have been assumed.

To obtain the radiance, the flux coming from the particles is divided
by the area element dA and by the solid angle through which it propagates

6

from that area a; • The result is
e

j •. it)

d L x = - E f i X t d A e d A r , ( a , r)dW fc . (19)

and

dL = E 6\ dA i, (a, r) da — (20)

In the literature, the term Tra2 I_(9) may appear in lieu of doYdJ2. The
scattering function of a sphere I (9 ) is defined as the amount of radiation
scattered per unit solid angle in a direction inclined at an angle 9 to the inci-
dent direction divided by the radiation that falls on the geometrical cross
section of the particle;

T(9) = -r - . (21)v '• - v '

Since radiance L is the flux $ per unit area of the emitting surface
A per unit solid angle co , then if a detector A at a distance A from the .

6 ' G d

surface sees the surface through a solid angle a;,, one has the relation:

L = */A co = */(A A7A2) = ^/A^w, ; (22)
e e e d d d

a symmetry which causes derivations in the literature to differ in appearance.
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The integrated radiance from all the volume elements along a given
line of sight is from equations (6) and (16)

' f /"" V x "< a ' r > ^da <23>
min

where a and a are the minimum and maximum values of the particle
min maxsize.

Equation (23) has been derived in various forms by numerous
authors; e. g.; Searle 11], Schoenberg [ 2], Van de Hulst [ 13], Walter [ 15],
Giese [ 26], Gillett [ 27], and AUer et al. [ 22].

C. Particle Size Distribution

Due to the mathematical difficulties involved in solving Maxwell's
equation for a scatterer of arbitrary shape, the approaches to the scattering
functions are limited to using the following:

1. Mie theory formulation for spherical particles.

2. Formulations for other basic shapes, e.g., cylinders and spheroids,
from which the scattered radiation can be described in a closed
form.

3. Perturbation methods and approximation.

4. Laboratory results.

Considerable analysis is based on the assumption that the interplanetary
dust particles are spherical, even though in actuality, spherical particles in
interplanetary space are thought to be rare. On the other hand, a large number
of spheroids have been found in recent Apollo finds. These spheroids were
formed by a process which may have produced spheroids in interplanetary space.
However, one cannot, a priori, extend the properties of particles in the finds
to particles in interplanetary space, even though the two may have had similar
origins and histories.

In support of the assumption of spherical interplanetary dust particles,
one must also note that distributions of large volume, irregularly-shaped par-
ticles can be approximated by equivalent distributions of spherical particles [28].
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The distribution function 7) (a, r) can be separated into a particle-size
distribution n(a) and a spatial distribution s(r) ." The size distribution function
n is arbitrary, but in zodiacal light model calculations the assumption of an
inverse power law is dominant because.of meteor studies, physical considera-
tions, photometric analysis, and simplicity.

The inverse power law particle-size distribution (Category IV)

»(a) = n /-i

will be primarily used here. Section II. D lists other distributions which could
be used. However, the particle .sizes and materials havetto:be chosen so that
the observed-radiance and polarization curves are reproduced.. It may be pos-
sible by using the dynamical forces (see appendix) and chemical and physical
processes working on the interplanetary matter to derive a particular distribu-
tion, although this has not been done. The forces and processes are important
in the selection of a distribution form.

D. Heliocentric Distributions of Scattering/Particles

The spatial distribution function s(r) is primarily determined by the
solar gravitation and radiation fields and, therefore, is assumed to be a>
heliocentric distribution and symmetric about the ecliptic. The various
heliocentric spatial distribution models are divided into planar and ellipsoidal
models. The planar models, due to Gillett, are the constant thickness plane
model and the linearly increasing cone model. These models represent first
approximations for calculations of the photometer functions out of the ecliptic.
.A somewhat more realistic model, the exponential model due to Aller et al.
[22], has an exponential decay factor for the spatial density of the particles.,
The decay is in a direction perpendicular to the ecliptic.

The other models have ellipsoidal symmetry and are, at least partially,
based on the orbital motions of meteors. The flatness of the ellipsoidal sur-
face is characterized by one of the parameters.
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. -' Bjefore studying these models, consider 'the photometric functions as
observed^ in the ecliptic plane for heliocentric'models. '' "'"

Let the function TJ (a, r) have the form:

where n (a/a ) is the particle size distribution and a , p, m, and n are
o o o o

parameters for the model.

1 • The radiant flux surface density has an inverse square dependency on
-the -solar distance due to the geometric attenuation; If we define the spectral!

radiant flux sutfaWdensil^ at ]R =" 1 Alf to beJE ,'then the general spectral
radiant flux surf'ace density is " .',\. " :.'... ' , ;

(25): ( 5 )

Equation (23) then becomes : ' fsT;- ; ,:--.;: 3.';>.-;'; .-. ,: •,"

From''FigurW 11 (Fig. 10 modified), it is seen that'

: A' = R cos c - r cos 6 ' \ : . '." ""' '' (27)

where € is the elongation and 0 is the scattering angle. From the law of
sines, we have

; (28)

R sin 6 v '
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hence,

A = R cos e - R Sm * cos 0 . (29)sin 0

Therefore,

dA = R sin e dG/sin2© . (30)

Substitution of equations (24), ( 28), and (30) into expression (26) gives

a , . « \ 2 / j \ / vmax - e / sm 9 \ RT,/°£. \ /a \ -p

min

/ s i n O \ , R sin g d9 •
x I — ) da ——5-r » (31)

\ sin e J sin2 6 ;
 v '

or

RE® 6 A
I *\ f ** 1 , I , AJ.A _-

o I ——1 da L sin 0
r

J
max > -p TT

n m

sm €. a .mm \ o

de

Note that we now have an integration over 0 and that all scattering
angles from e to IT contribute, as illustrated in Figure 12.
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/o9 \ ran be written as
Equation ( 32) can u

ir m
sin O I dfi

(33)

where

max / a \

W- * L '•fe) da
(34)

and
/

« - /
max .

"

-P
/a \ da

a .mm

meter

(35)

and

(36)

.(So, (33)

5i is independent of 6 .
, consider the i
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I (g > -• -1, . . / "-"(e) de

For m = 0,

m = 0 sin

for m = 1,

1 + COS €
I , — ~

and for m = 2,

_ i (TT-C + sin e cos e)
m = 2 sin3 e

For m= .0, there is no radial dependence, (R/r)°= 1, except for geometric
attenuation of solar radiation. These results are illustrated in Figure 13.
Notice that for e = 45 deg, I is approximately independent of m . Also,

I has the form of the observed radiance data which indicates in the ecliptic
m _ g-j-

that the dependence of L on — is limited.
dfl

As e approaches TT ,

TT y
r . m 1 r m
I sin e de *- ~ I x dx =•^e e-*7r m + 1 J. m+l ,. _ — . _sin e y o
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Figure 13. I dependence on e form
m = 0,1, and 2.
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hence, I • ( € =• TT ) = — . This result can give an estimate for the value
m v m+ 1

of the gegenschein, assuming that ( *—^—r ^"-J is known and is

behaving smoothly in this region.

E0 Gillett Models
/

The two models now considered which are not limited to the ecliptic
plane are due to Gillett [27 ]:

1. Model I - Constant thickness model (Fig. 14). The particles are

distributed in space-like s(r);= (R/r) up to a perpendicular distance W/2
from the ecliptic plane. For perpendicular distances greater than W/2,
s(r) =0.

2. Model II - Linear thickness model (Fig. 15). The particles have

a spatial distribution of (R/r) - up to a perpendicular distance from the
ecliptic equal to r sin w , and s(r) = 0 for distances greater than r sin co .

Since the physical density would not have the discontinuity from

s = (R/r) to s = 0 at the boundaries of Models I and n, it would be desirable
to use a combination of layers of width Wlf W2, W3, etc., for Model I and
various cone angles w ., co , etc., for Model II. In addition, the components0 1 • ' o £ • . • _ • ' . .
would not all have the same weighing factors, so that L (e , i) would have the
form: '

~ N ' '. '
L ( € , ! ) • = Z k L • ( € . ! ) , (37)

: 1=1 *

with the sum over the various layers. The angle i is the inclination of the
scattering plane from the ecliptic. '

Figure 16 shows the parameters of Model I. At point P, where the line
of sight is at a perpendicular distance W/2 above the plane of the ecliptic, the
scattering angle 9=0 . The length d, the distance from P to the earth-

sun line, is given by d = W/[ 2 sin ( i)] . 9 , ip, e , and d are all in themax
scattering plane defined by the lines of sight to the point P from the earth and
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the sun. The scattering plane is inclined an angle i to the ecliptic. In the
scattering plane , ;

0 = ! / > < + ' € (38)
max T , v '

and

smi}> = d/>/d 2+ (R - dcot e)2 ; (39)

'- ''•> -
hence, for Model Ij \

0 (e, i, W) = e + sin"1 (l//l + (~ sin i- cot £\ I. (40)
max \ *.. \ w.,:. . • / /

For Model II (Fig. 17); P is the point which/is a distance r sin co

from the ecliptic plane. The scattering angle for this point is 9 (e , i, to ).
y ; .-'''I ., :- " / \ max v ox

The distance d of P from the earth-sun line is / ,,

d = rsino? /sin i ; /.' \v«; (41)

In the plane defined by the line of sight and the earth-sun line

9 = e + w (42)
max • v '

and

sin co = ~ := 'sinco /sin i ; (43)
r i o
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therefore,

9 (e, i, co ) = e + sin" (sinco /sin i)max o o (44)

From this equation it is seen that for i < co , the line of sight never passes out

of the dust envelope and no 0 < TT exists. For these values of i, 9 ismax max
taken as 9 = TT. The line of sight can be such that 9 is doubly definedmax ° max
as shown in Figure 18 or as seen from the multivalueness of the sin in
equation (44). In this case, the integration limits are (e , 9 ) andmax
(9f , vr) . The formula can be transformed tov max '

9 (e , i, co ) = e + tan (sinco /*>/ sin2 i - sin2 co )max v o' V o o /

for sin2 co /sin2 i < < 1. The double cross relation iso

9f (e, i, co ) = e - tanmax v o'
-i sin

N/ sin2 i - sin2 to
o _

+ 7T (45)

for e < 9f < TT. For i < co , then 9' = TT.max o max

The distribution of dust away from the plane of the ecliptic and up to a
scattering angle, 9 , has the same form as in-the-ecliptic plane for

max
Models I and II. 9 is determined by the elongation e and inclination i.

mnvmax

The expression for the spectral radiance out of the ecliptic can be
written as [ 27 ]
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sin e €

RE 6A. N '
X o

.sin e

6
(I)

max

(47)

Define

6A N

9R

Now, equation (47) can be written in the form of in-the-ecliptic integrals:

.. o) -
in 0 m+l

Consider the spectral radiance equation for the ecliptic plane (i = 0):

de <50>

t;
where C = RE 6A. N . Then, becauseA. o

o < e ^ TT,

e < e ±s TT,
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, . . , v o•-.-£ sin.0 '< 1,

and

for any value of m > 0, a smooth ( — ) which reproduces L (e ) can be\ di2 / A

found as long as L (e) ,s in e generally decreases with increasing e. TheA . - .. ;
integrand is positive and, as £ -*• ,if, the area under the curve decreases as
e increases toward its upper limit. Thus, there is a wide range possible for

m and dor/d J2 which will reproduce L ( e ). If, however, it is required thai
_^^^^^^ ^^ A
d<r/dfi reproduce L (e , i) for points off the ecliptic, then another set: of •

A
parameters, 6 ( e , i ) , which describes the variation of the density ofmax ' . j
particles away from the. ecliptic is introduced and the possibility exists of

further limiting the range" of acceptable, values for m and d a/dfl :

'^ de .

For the same' value of m, an average'pplar.izatibri function g (e ) where g (9 )
= i 1 ( 0 ) . - i 2 ( 0 ) can be found which will reproduce the integrated polarization
in the ecliptic

"- 2 L sin
A

; sinm.e.g.(0.) /de ., , (52)

This can be done because g(6 ) can assume negative as well as positive values.

This g(9 ) together with 6 (e , i) must predict values of P (<-: , i):
ITlcLX • A,
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(e, i) si
A

which are in accord with the observed values.

The model calculations were outlined by Gillett [ 27 ] in the following
fashion:

; ' t . * ^ - . p ' \ .

1. For a given set of m's and using

de •
sin

is found which reproduces the observed values of L (e , o).'
"A x

2. Using the (do/dfi) determined above, the values of 6 (e", i)
max

are determined by fixing

r m a x . rn
= 1 sm e

o) e-

x de/ / sinme ( 9 £ ) - de , (55)
/ J \ r \ \ t I

m

where the experimental values appear on. the left side of the equation and e

is a specific value.

3. The values of m, (dcr/dfi) and 0 (e , i) are tested by determining

whether they can reproduce the values of the P (e, o) and P (e , i) .
A A

Gillett has Vised the difference
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L (e,, i) -L (90, 90) (56)
A A

to compare observations of the zodiacal light. This allows observational values
used to be less dependent on the total observed radiance and instrument calibra-
tions obtained from various observers.

F. Exponential Model [22]

To avoid the discontinuities in Gillett's models, the spatial distribution
can be written as a smooth function. The exponential model assumes the form:

s ( 2 . . Z ) = NQ (-) exp(-KZ/R)

where N is the particle density at the earth, v and 1/K are density distribution
o

parameters, and 2 is the length of the position vector projected onto the
ecliptic plane.

i

Since the geometry is the same as the ellipsoidal model which is to be
discussed, Figure 19 can be used to define,

r = R sin e/sin 9 ,

A = R sin (0 - e)/sin6 ,

, . Rsine
dA = . 2 Q

 de
sur 9

Z = A sin 6 ,

and cos e * cos 6 cos i . 6 and i are the ecliptic coordinates of the line of
sight. If y is defined by

Z = r sin y
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then, from the equations above,

R sin (9 - e)' sin 6 1
smy ~, sine ' R sine/sine

and Z/r takes the form

sin 7 = sin (0 7 e ) sin 6/sin e .
•', •

Again, from Figure 19,

: S /r = r cos "X/R = sin e cos Y/sin 0

; Therefore,
'' \

S _ sin e L sin2 (0 - e) sin2 6
R . sin 0 ,\[ sin2 e

or

S 1
R sin 0 / sin2 e - sin2 (0 - e ) sin2 6

and

Z _ sin (0 ,- e) sin 5
R ~ sin 0
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With these expressions, the equation for s (S, Z) becomes

s (S, Z) = s (e, 9, 6)

_. l

= N
sin2 9

sin2 e - sin2 (9 - e) sin2 6

2

exp -Ksin (0 - e)sin 6
sin 0

(57)

G. Belt Model [8, 30]

In this model, interplanetary space (in the ecliptic) is separated into a
system of belts such that the boundary of each belt coincides with the orbit of
a planet. The kth belt is populated with particles having a given size distribu-
tion and any refractive index In each belt one must take into account the dis-
persion forces which act or have acted on the particles. Behr and Siedentopf [8]
used the belts to determine electron densities versus distance from the sun.

From equation (28) and Figure 21, we have

6. = sin
-i R sin e

(58)

so that the belt model components of the spectral radiance from equation (32)
become:

K Rfif 6X N qmax
<«. i) - .sin

Z /
1=1 a .J mm

0) 6.
J

K

where 0 = e. Figure 20 indicates that equation (58) must be used with care:
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Figure 20. Belt model.

Figure 21. Geometry for the belt model.
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since a single r. can define two e/s. This model has the property that the

spatial density can be increased at specified distances, such as at the asteroid
belt [ 31 ] .

H. Ellipsoidal Symmetry Model [32, 33]

In the ellipsoidal symmetry model, the particle number spatial density
distribution is assumed to have equal values at ellipsoid surfaces. These
ellipsoids are in a Cartesian coordinate system centered on the sun with x- and
y-axes in the ecliptic plane and the +z-axis pointing into the Northern Hemi-
sphere ( Fig. 22) .

For this model, the spatial number density s (x, y,z) of each particle
component is assumed to decrease with the distance from the sun according to

s(x,y,z) = n - , (60)

where in the ecliptic x2 + y2 =. p.2, R is set equal to 1 AU and n is the number

density of the particles at 1 AU. Outside the ecliptic, the particles are assumed
to have an equal number of densities along the surfaces of the ellipsoids defined
by ' ;

•y-2 '.. V

Out of the ecliptic plane, y is a parameter characterizing the flatness of the

ellipsoidal surface corresponding to the number density, n (R/p; [33]. In

the ecliptic plane only, p represents the distance of the corresponding equiden-
sity surface from the sun.

A spherical distribution of the particle number density would correspond
to y = 0, while values of y » 1 correspond to a strong concentration of inter-
planetary dust toward the ecliptic plane (a disc).
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Using Figure 19 and equation (61), we have

x 2 + y 2 + z 2 (y2 + l) = P2 (62)

or

p = r
li

where

r2
 =

Therefore,

-, /3/2

= "o/(l)' I . (63)
--' J

From the law of sines, we have

r = R sin e / sin 6 (64)

i

and

A = R sin (O - e)/sin 9 ,

and the element of distance dA is given by

dA = R sin e dG/s in 2 9 . (65)

60



From Figure 19, •

- z = A sin 6 (66)

and

cose = cos 6 cos I . (67)

Since we have a continuous distribution, no 6 exists; hence, the formulationmax
of the spectral radiance equation becomes

RE® 6 \ N TT si/ 6 (-£ ) d9
L. = A

A 0+1
sin e e

0/2
+ /y sin 5 sin (9 - e) V 1

V sin e / J
(68)

which is evaluated by numerical integration.

As reported by Schoenberg [ 2 ], Van Rhijn [ 3 ] used spheroids as con-
stant density surfaces. He assumed the density distribution

s (x, y) = n ( R 2 - a (x2 + y2) - bz2)

with the condition

R 2 - a ( x 2 + y 2 ) -bz2 = 0

at the upper boundary of the radiance integral, x,- y, and z are the orthogonal
heliocentric coordinates (i. e., centered at the sun with the x-y plane in the
ecliptic). The integral cut-off condition can be written as
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sin2 9 -a sin2 e (b - a) sin2 6 sin2 (0 - e) = 0 ,
max v ' v max '

where 6 is the geocentric latitude of the line of sight. The last condition used

x2 + v2 = R2 F Sln

, A L sin29

and z as is in equation (66).

To determine the polarization at the celestial poles, Fesenkov [ 34 ]
assumed surfaces of constant density that were ellipsoids of revolution

Assuming that the size and spatial distribution are separable,

TJ (a, r) •= nQn (a ) s.(r) .

and using the relations

r2 = R 2 + z 2 = R 2 ( l + g 2 q 2 -g 2 )

2A = g - v a - R 2 = g R N q 2 - ! ,

where g is a constant* q = a/R, and A has been assumed to be equal to z ( i. e. ,
along the line of sight) , equation ( 26) becomes

i E 6 X 2 a A R 2 N r a s(r)i^dA,
TJ _A _ o r 1 o .L = - 7-5 - I - 2 i = 1, 2X 47T12 J

0 ri J >
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As before,

N.-= IT / n » (« )
, a max
A.

O 27T J O

min

a / a_ max / max
i. = / n (a) i (6, a) da / / n (a)

a . / a .mm / mm

In terms of q, LL* becomes

A2 EX 6 A R2 N a s (r) F (e) g Rq dq
= "

R 2 ( l - g + q 2 g 2 )

If s(r) varies as I/a, then

T. (6) dq

(1 + g - g 2 ) (q2

where C* = E A.2 6 A R/4?r2. Assuming q= sec 0' , then

7T/2 I ( 0 ) d 0 '

^ A - —
cos

where

-1 / -gtane = cos i — •
g2tan2
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For any point in the sky, Fesenkov gives the general expression for the
variables a, r, and 9 as:

a2 = R2+ A2cos26 - 2RA cos6 cos^ + A2/g2sin26 ,

r2 = A2 + R2 - 2R A cos e ,

sin (6 -e ) = A/r sine,

and

cos e = cos 6 cosi. ,

where 6 and i. are the ecliptic coordinates for the line of sight.

I. Meteor Model 135]

As a logical starting point, observations of asteroids, meteors, and
comets have been used to develop zodiacal light models. Most of the early
work used large interplanetary matter as a source of the scattering functions
or the equivalent phase function (e. g., see Ref. 1). In the meteor model to
be described, the distribution of the orbital elements is used.

In the meteor model, the concentration of dust material in interplane-
tary space is calculated as a function of the distance from the sun and the
heliocentric latitude $ on the basis of a bivariate distribution f(j, a) of
meteor orbits with respect to inclination j from the ecliptic and semimajor
axis a.

The number N( j, a) of orbits with parameters j and a within the inter-
vals (j, j + dj) and (a, a + da) is

N ( j , a) = f (j, a) dj da .

If the orbits are circular, then within a segment df of the orbit (Fig. 24), con-
fined to the interval (*, $ + d$) in heliocentric latitude, a particle will make
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Figure 23. Parameters of an elliptical orbit.
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(b) «= 0
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a contribution to the number of particles in d? which is proportional to the ratio*
of the time dt it is within this interval to the total period T. This contribution is
equal to the ratio of the element df. to the circumference 2wa; i e. , dtf/27ra =
dt/T. The element d£ can be found in terms of j using (Fig. 24):

sin j _ sin (7T/2)
sin* ~ sin

and

hence,

sin $•= sin j • sin (£/a) . - "• ••'•'•• (70)

Differentiating both sides with respect to S., we have

d sin $ d$ . :. d sin I /a

cos* — = sin j ( c o s — V —
d£ J \ a / a

By using equation ( 70), we have

cos * — = sin j N 1 - sin2 * dl
sin2 j a
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or

dS_ _ cos $ d$

\/ sin2 3 - sin2

Assuming that the number of particles is proportional to the number of
orbits and that the longitudes of the ascending nodes are distributed uniformly,
then the number of particles located in the segment df and having orbits with
parameters j and a is proportional to the quantity

f (j,a) dj da dtf f (j, a) cos $ dj da d$
2?ra _ r . ? . 5—

27r v sin* j -sin* 3>

where all these particles refer to a volume of dv = 27rr2 cos$ dr d$ . The
volume element dv is determined by the surfaces between $, $•+ d$, r, and
r + dr. A unit volume at a point having the coordinates (r, *) will contain a
number of particles proportional to the quantity

cos $ f (j, r) dj dr

2ir N/ sin j -

f ( j . r) dj
4?r2 r2 v sin j - sin2

(72)

Integrating with respect to j, we obtain the dependence F ($ , r) of the particle
concentration on the heliocentric latitude * and the radius (r = a) of the cir-
cular orbit:
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where C is the normalization constant. ' Recalling equation (44),

_ . -i sin*0 = e + sin — ,sin i

one finds that

, , $(0»,e» i) = sin [sin (9 -e) sini] .. ' . , , . . . ' . .

From equations (28) and (30), the integrated radiance [equation (26)] becomes

CEe 6X ir "max ir - sin"' [sin (9 - e) sin i] f (I. R sin e/gln 9) ell da d9 / 74)
— , . . A ( f t n / a ) sin'S — ' » /
H (£- l) = 4u'R sin'1 € J£ Jamin

 J
sin-'[sin(e -£) sin 11 .. '- -;.

 dS1 NTsin^j - sin2 (9 - f )e l* l

where

n (a, r) = n (a, j, r) ,

and n(a, j, r) is assumed separable into a particle''-size-Aad a spatial distri-
bution; i.e.,

h(a , j, r) = n (a) n (j, r) .

This method can be generalized [21] by writing the distribution f (j, r)
as a function of the following parameters:

v . i -. • . ' ' . ' . V ! •

a = semimajor axis

e = eccentricity

•'< j ; = inclination : . •'-•'''.- " ' • ' • ' • " ' ' - v : ; ; • -

s = radius of dust particle . . , . . , . . .
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B = shape parameter

5 = physical density

and time. Then

f (q, e, j, s. B. 6. t) = d 6 r j ( t ) /dadedj ds dB d6 ,
J J J .

where TJ refers to the total number of particles in interplanetary space. For the
spatial and size dependency, it could be assumed that f is separable into a pro-
duct of functions of each independent variable:

f (a, e, j, s) = fj (a) f2 (e) fs (J) f4 (s)

Assuming f4 = s , then the number density as a function of r and 6 is

co 1 ' ' • 7T/2 ' -2 '

n(r>e) = 1 / / / -: a f ( a , e , j ) d a d e d j

r/2 |r/a - if TT/

- : (75)

, J. Generalized Method For Meteor Models [36] ,

The particle number density can be generalized and formulated in terms
of the distribution of orbital elements semimajor axis, a, eccentricity, e,
inclination, j, node, fi, and argument of perihelion, co. The number density of
particles having orbital elements between (a, e, j, n, co) and (a + da, e + de,
j + dj, J2 4- dfi, co + dco) with period P and velocity V is equal to

g _ f (a, e, i, fl, co) da de dj dR dco dL
r2drsine de d0 VP

The time spent by a particle in the volume is equal to dL/V where dL is the
pathlength of the stream in the volume element at r, V is the stream velocity,
and P is the normalization factor.
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The differential area dfi dco is related to the differential area d9 d0 by
the Jacobian:

do;
de

= j ( f i , c o , e,

8co

/9fi

\90

(77)

To deduce the Jacobian, refer to Figures 23 and 25 where .the geometry of an
elliptical orbit is defined and to Table 6 which gives the properties of an ellipti-
cal orbit. The elliptical orbit is defined by

r =
a ( l - e 2 )

1 + e cos £ (78)

where angles referenced in.Figure 25 are

£ = true anomaly

£2 = longitude of the ascending node

co = argument of perihelion

r, 6, 0 = spherical coordinates

i = angle of inclination

* = co + £ = argument of latitude

co = co + fi = longitude .(amplitude) of perihelion

£2 + co + £ = free longitude.

Using the following basic equations of spherical geometry (Fig. 26),

cos a = cos b cos c + sin b sin c cos A

sin A
sin a

sinB
sin b

sin C
sin c

sin a cos B = cos b sin c - sin b cos c cos A ,
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Figure 26. Definition of the spherical angles a, b, c and A, B, C.

we have the following relations:

cos (o> + f) = sin 9 cos (^> - J2)

cos 9 = sin j sin (a; + £)

sin cos 3 = si^ 9 sin

;•/ :• (79)

;: (80)

(81)

and equation ( 81) divided by equation (80) yields

cot j = tan 6 sin (0 - J2) (82)

From equations (78) arid (79),

-i t . rt= cos [ sm 9 cos - cos
i fa (1 - e2) 1 1

— > - ' - — ,L re e J
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but equation (82) yields

- -i
J2 = -sin (cot j cot 0) + 0 ;

thus, the expression for a; becomes

w = cos • Lsin 9 cos [sin"1 (cot j cot 0)1 j. - cos"1 ^ — ̂ J- _ -
...... J ' • • - . . L re eJ

'1 1 / 2 " " 1

c* = cos' (sin20 - cot2 j cos2e) -cos

hence

re
; (83)

cot j/sin2

(1 -cot2}

se)
(sin2 0 - cot2 j cos2 0) ̂  (2 sin 0 cos 0 + 2 cot2 j cos 0 sin 0)

[1 - (sin2© - cot2 j 90s2 0)]vz

-sin 0 /N/ sin2 j - cos2 0
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This dependence is seen directly from Figure 25. Therefore,

J ( n , u > , 9 , <£) = sin e/N/sin2) - cos2e . (84)

The relations

~ COS"1!! = -1/(1~U 2 )V2

arc sin x = ± arc cos (l - x2)J/2

with a, e, j, and r assumed constant were, used in the derivation.

Note that dL/dt = V , hence, upon dividing the numerator and denominator

of equation ( 76) by dt, one obtains:

3 _ f (a, e, j . 'n .xo) da de dj
d N~ r2V P(a) (sin2) -

From the dynamics of two particle orbits

P = 27ra3/2/(GM )—. . , o'

and

v =r
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Therefore,

. , « 1 7T/2

N = S 7 / / /
r/2 |r/a-l| 7r/2-€

da de dj

( 85)

The argument of perihelion and the node is assumed to be uniformly distributed
over (0, 2ir). Azimuthal symmetry exists in dN(r), since ^ does not appear
in the equation. • . . , , .

If only gravity and radiation drag are important, the inclination of the
orbit does not change with $ime and one can assume that" ' -

f (a, e, j) = f (a, e) £ (j) .

The integration over the inclination can be performed and will yield a quantity
M(0), depending only on 9 : . ' . - . ' ".",',. "~. ,

7T/2-9 (sin j - cos- 9)
(86) ,

!f ? (a> e) = g(a) h(e) , where h(e) is continuous between 0 and 1, arid if g(a)
is given by a power law [E f (a, e) = ea2 for small e, then dN is independent of
r].

g (a) « a (87)

then, upon making the change of variables x = r/a,

« M(0) / r
2~y
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thus yielding a power law in r.
* - • . ' ' . ' - " ' • . • ' " •»" ' ' ' •

For the particle radius s, assume

•; , • d N (r). • . •: . ; •' • : 7T/2 . . . . . . . . ..... . ,

ds = C£, h (^ S. r J . • • -7 2 2 ,1/2
7T/2-e (sin j - ' c o s e ) « :- ;•;

"•'-. ' ' ' . '."'. '".- - 4 " . * ' - " • • ' ' ' ' ; • • ' • ; - - ' . . " - - : • • • : ' , ) ' • • • : • •-..,..;•.?-.

where - , , , „ . , ; . ,

fg (a, e, j) = const. s"pa rh'(e)f (j) ; ; / '(89)

s 2-7 :•-. :> " • ..-.^:
• ' . S -.

and C (j3) is a constant depending on f and h.
f » h : • ' • - . ' \ • . t • • • - ^ - ' ;

; V

' ? f (j)^represents the, distribution of inclinations on a sphere, but it has
already been assumed that there is no ^ dependence. Hence, a uniform distri-
bution of inclinations would not give a uniform dust population on the celestial

• :" ;- '- i .• • . 'c •

sphere. If the intersection of the pcJle of the orbit5 with the sphere is represented
by a point, then the density of points is given by

# points _ # points
dA sin j dj d

But, since there is no 0 dependence, f (j) must be proportional.to sin j to have
a uniform distribution of dust.

- , - . ' . .'Distributions of the forms ,£ ( j )=* exp(-bj) sin j

k
£ (j) •« (cos^j) s in j ,- . , .: ,;ii

(k = integer) are suggested from meteor studies [ 36 ].
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SECTION IV. INVERSE FUNCTION ANALYSIS

A. Integral Inversion

The analysis of the observations of radiance L and polarization P of
• . • - • • • ' . . . . . - • ' : ' • _ A . - ' A .

zodiacal light would be simplified if it could be reduced to a consideration of the
average scattering intensity functions, where the average is over the particle
size distribution. Several methods for doing this are considered in this section.

Assuming (a) the particle size distribution to be independent of the
spatial distribution, (b) one refractive index for all the particles, and (c) the
spatial distribution to vary as (R/r)m, then the components of radiance in
the ecliptic plane are given by :

LA = Sinm-He /* sinme 77(0) d0 <

where i.(Q) are the average scattering intensity functions and C is" a constant.
' , ' ' J • • - • ' ' : ' ; - ' > : - ' - C . - ' . ' i t . • • • . . • - . . , . . ; • • , , . ; • • • : , • • , . : • - .

' ' • " • ' • ' " - l ' - ' • "-.: ."•• ' .•• '• ' ,• '* ' • i • . . • . - . : ; • - , ' • ; . - . , • . - , . . .
- • . ; v The,radiance and polarizationyaluies are. given by '

L \ -
p. =._*__

from which the relations between the calculated values (L1 , I? ) and the ob-
A A

served values [F * (e), FjT (e)] can be;fpund:
1
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(90)

(91)

and F2' are the values obtained from observations and are related to

2 = - ~ Sn
7T

. m „ —

sin e e

For later convenience, define F l s2 (e) such that

_„
F > '(93)

Given F t,2 (e) from observations, the problem is to find i1}2 (0). Equations
(92) and (93) are of the form

F(x) = / K U, x) f (£) d£ (94)

which are known as. Volterra equations of the first kind, where K(£, x) is
the kernel, | is the auxiliary variable, and x is the current variable. Numer-
ical methods for the solution of this type integral equations are given by
Hildebrand [37]. Several such methods are presented below.

B. Numerical Approximation Methods [37]

A general method for obtaining solutions of integral equations consists of
reducing the integral to a finite set of algebraic equations. The solution of
equation (94)
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F(x) = K ( x , £ ) y U ) d£ (95)

may be approximated by a linear combination of n suitably chosen functions
0 , 0 , . . ., 0 of the form1 2 n

. (96)

k=l
The n constants of combination are determined to satisfy equation ( 95) as
nearly as possible over the interval (a,b) . If y(a) and y(b) are known, it
is convenient to assume the approximation in the form

n
Y(x) « 0 (x) + 7 A 0 (x)

where 0 is chosen so that it satisfies the end conditions,

0Q(a) = y (a)

0 (b) = y (b) .o

and the remaining 0's are made to vanish at the corresponding ends of the
interval. In some cases, 0 may be chosen so that it approximates y(x)
closely. The remaining terms, the summation, can then be considered to
constitute a perturbation expansion.

C. The Method of Collocation [37]

For the particular problem, equation (93), assume that

i^lflT - Z c k i 1 > 2 ( a . , 0 ) (97)

where the a.'s are preselected particle size parameters and the C^'s are
constants whose values are to be determined. Then

n•TT m
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becomes

n
Z
k

(98)

n
(99)

A set of n equations for the determination of the C, 's can be obtained by
requiring that equation (99) be an equality at n distinct points in the inter-
val (e, ?r) . If we denote these points by e., the resultant equations are then
o f t h e form: . • • • . . . • • . •

k=i
= Fi,

or in matrix form

C G - F .

D. The Met hods of Least Squares [37]

The method of least squares requires that the integral of the differ-
ence between two functions over an interval be as small as possible. In the
present case we wish to determine the best fit of

k=l
(100)

to the observed values F (e) by varying the Ck's for a chosen set of known
functions g, (9) . Hence the method of least squares requires

1C . • - '"•
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Z c
k r

 si

k=l
- F (e) de (101)

be a minimum. For notational simplicity, define

gk (9) d0 (102)

In order that, equation. (101) be a minimum, its derivatives .with respect to
each parameter C, must vanish; thus,

k=l
de = 0 i = , 2, ... ,, n / (103)

or

Z
k=l

F (€) de '(104)

Since F(e) are observed values, this is not a functional form, and a numerical
approximation method ."must be used to solve;equation (104). \The integrals
are approximated by a weighted sum of the relevant ordinates of N conve-
niently chosen points resulting in

N

k=l r=l

' ' .-.•• N -..- : •
<e r) = Z Dr* l(

r-1

i = 1, 2, ..., n (105)

where Dr (r=l,2..N) are the appropriate weighting functions associated with
points €p e2, • • • , e^j involved in the numerical integration"method. By
suitably choosing gk ( Q ) , the integrals of equation (102) can be carried out in
closed form.
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Several integration procedures applicable to equation (104) exist; e.g. ,
a Gauss- Legendre quadrature, the trapezoidal quadrature, Simpson's rule,
etc. For the examples given here, Simpson's rule was used. Simpson's rule
is based on the area under a parabola and is,

(x) dx = j(yQ + 4y, + 2y2 n_2 + 4yn_1

where

Yo = y (a
yt = .y (a + h)

yn = Y ̂  +nh; ='y '^

and h =' (b'-a)/('n-l) for n>2 and n odd. But, since equation (105) is homo-
geneous in the D's, the coefficients can be taken as |, 2, 1, ..., 1, 2, |. In
matrix notation, equation (105) becomes

a C = (106)

where

N

Z^
r=l

2, .... n, (107)

N

2
r=l

(108)

and

(109)

D r = D . 6 i r (110)
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Equations (107) and (108) can be written as

a= £TD 0 . (Hi)

£=£ DF (112)

where, since D is diagonal,

T Tj£ p = (D<£) . • • • .

TT signifies that a matrix has been transposed, [e.g., (0 ..) = $ ..] . Hence,
J J

equation (106) using equations (111) and (112) is the matrix equation that has
to be solved to find the C^s.

, When N = n, the number of chosen points e is equal to the number of

C. Ts to be determined. However, when N > n, one can choose a number'of
K -. '

points greater than n and require that the integral equation be satisfied as
nearly as possible at those points, thereby obtaining a best fit for all points.
The errors committed by not satisfying the equation at the respective points
ei are weighed in proportion to the influence of the ordinate in the integration!
of the squared error over (0, TT) by the coeffecients D.. The comparison of

F ( e r )

and
n

sinm (0) £ Ck gk (0) d0
k=l

at the N chosen points gives an indication of the accuracy of the solution.

The result gives it, 2 (0) with the assumption of the spatial variation
and number density; hence, uniqueness is dependent on these two parameters.

For further analysis of i (0) = V C, g, (0) , one can use the least-squares
A-/ K K.

method a second time so that
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7T

o .

a n
max -k .—:—r /> max v» ' " • • / « \i (0) - ( ) a a iX0, a)

' J k=l k.a
mm

d0 = min

where

n
T a aAJ k- "

-k

is an assumed form .for the particle size distribution. Possible candidates-for
the values of various parameters such as refractive index, a , a . , and

i, c j u ^u- : max min •n can be found by this process. '

The methods of collocation and least squares were used for the inten-
sity functions

ModelA: i. ,(0) = 2 e~0

Model B: 2 _0e a sin 9

-12 - 3
assuming a particle density of N = .10 . cm . The results are given in
Table 7. m in equation (98) is set to zero. In the collocation method,
equalities were required at € =40 and 120 deg for Model A and e = 40, 120,
and 160 deg for Model B. Weinberg's [17,18] data were used as the experi-
mental data. The intensity from Model B is the better fit to the data in both
collocation and least squares than that from Model A. Both the collocation
and least squares fit tend to be inaccurate for angles larger than 140 deg. This
would indicate that data for these angles are not weighted enough in either
method.

Neither method gives satisfactory polarization;for the models used.
This is the main problem in using average scattering functions; i'.e., either
the polarization or the intensity can be matched easily, but it is not as easy to
find one function that will reproduce both. It is apparent that these functions
are not unique.
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E. Liouville Solution [37]

Relaxing the assumption that the particle-size distribution is indepen-
dent of the spatial distribution and allowing the particle-size distribution to be
dependent on the spatial distribution, then another inverse method is available.
By using

dF(x) _ fB(x) 8 K t e . x ) f ( g ) d g + K(x,B)f(B) |B--K(x,A)f(A)~ ,
dx "

and If i (0) = i . ( e ,0 ) , thenLl, 2

p. 1-/4.J.* \_ *. \t * * 1 t/ ' ( «-/•*.* \S ^ Q.(7

oe

This can be used only if i1>2 is dependent on e, which will be the case if the
particle-size distribution is spatially dependent; i.e.,

a max
/

J.1J.CL.A.
TJ (e, a) i1>2 (a ,6) da

ca mm

Solving for i<6,

. msin"1 c

0 91 (6.0). m a^ ' 'smme 3e

to which one can apply the method of successive substitutions; i.e., assume a
value for i on the right side and solve for the left side, then iterate upon the
solution.

88



F. Southworth Analysis [38]

Southworth [38] analyzed, by a least squares method, the data of
Smith, Roach, and Owens for the phase function and particle size distribution.
It is assumed that a unique average scattering function i(0) exists and the dis-
tribution is heliocentric of the form

77 ( r , / 3 ) = n ( r )

and symmetric with respect to an axis through the sun and ecliptic poles. /3
is the heliocentric latitude and n( r ) is defined by

n ( r ) =C1 log1 0 r+ C2 (log l f tr) . • (113)

The phase function and the function for the latitude distribution, S, are taken
to be the linear combination of seven triangular functions.

7
s (sin/3) = Z s j Q j (sin$ (H4)

j
and

7
Tie) = £'hk \ 0) . (us)

k

t^ (0) is defined by tk (0<0k_1)= 0, tfc (0>6>k+1)= 0, and tR (0=0k) = 1.

t(0) between 0 and 0 and between 0 and 0 is represented by straight

lines. q.(sin/?) is similarly defined. The radiance equation then becomes

7 7
. L = / n s i M = V• s. V h, f q. t, n dl .

«/ • L-l 1 i—/ b- i/ "i T»- / j j /•» \

line of j J k K line of ] k (116)

sight sight

Southworth stopped the integration at r =5 AU since contributions beyond this
are negligible. A least squares successive approximation method was used to
solve the equations for q. and h, . For Southworth's case with the least root

J K

mean square residual intensity,
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loglfl n ( r ) ' = -I.8log1nr - 2. 0(log1flr)10

The phase function and latitude distribution at selected values of sin |3 and 6
for the triangular functions are given in Table 8. For 0>54 deg, Lambert* s;
law roughly fits the phase functions. For 0<54 deg, a diffraction peak appears.

TABLE 8. SELECTED VALUES OF i (0) AND s (sin /3)

0 deg

Tffi

sin )3

s (sin j3)

30.0

0.52

0.0

1.00

54.0

0.00

0.1

0.84

79.2

0.26

0.3

• 0.51

104,4

0.40

0.5

0.381

129. 6

0.64

0.7

0.25

• 154. 8

0.76

0.9

0^20

180.0

1.00
1 ; 1

- i.o

0.23 '

G. Cumulative Function [39]

Powell and Circle [39] formulated a mathematical procedure to remove
the integrals over the scattering angle and particle size which occur in analyz-
ing observations of the zodiacal light. The resulting algebraic equations are
expressed in terms of scattering functions with known and recognizable prop-
erties. Consequently, the uniqueness of deductions concerning the nature of
the interplanetary dust is determined by studying the mathematical behavior
of these functions. The development in this section is based on that given by
Powell and Circle.

Consider a uniform size distribution of particles N (X, R ) per unit

volume per increment 60; in the range 0<a<X at a radial distance R from the

sun. X is called the termination parameter since it terminates the unit step
function at

2rra
X -

max
(117)

where a is the radius of the largest particle in the uniform distribution,max
The scattering from the terminated unit step size distribution of particles with
refractive index m* is given by the cumulative scattering ratio:

X .
F.(0,m*X) = /o i. (0,m*,o;) da , j .= 1,2 (118)
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The explicit functional dependence of m* will not be shown in the following
equations.

•I An arbitrary, continuous size distribution of particles, n (at) ', can be
expanded as a sum of terminated unit step functions^ with appropriate coeffi-
cents, C ( X ) : ' • : • ' • • •

n(a )"= J C(Xn) N(Xn) , ' ' " ' ' (119) (

1 ' ' ' . ' ' " > . n • • " , . - • • . " • • ; : • • . • .
!. where the radial dependence of N(X, E ) has been assumed and not shown .

, . . - . . ° . : ' - ' • '
; explicitly. Some of the coefficients C(X ) may be negative, indicating a lack
• i t » '
'of particles in the range defined by X . However, the sum of the negative

: coefficients must be less than the sum of the positive coefficients since a
.negative -number of particles in any region has no physical meaning. Using
the step functions, the scattering from the actual size distribution of particles
c a n b e written a s , . . , . . '

00

nXa) i (0, a)do; ..- C(X n )F ( 0 , X n ) , , .. ., ( 120)
' '

The spectral radiant equation for, a polarization component j:

A ' ' '• o • • ' : m+1STT sin e e

. . . . . .
r— : ' .T swmed6 f n(a) i.(9,a) da .(.121).
11 ' J J v j ' '

-r- f- r^ J '.

becomes

m

. 7 ! c ( X ) f sin 9 F. (0, X .) d0 .. (122)
^ v n ' J • > i v n7 v A.8 s i n e n

The cumulative polarization function, p(6 , X ) is defined asm ... ...... . - .

^"'~' - F ( 0 , X )

wtiere

F ( f\ -\r\ 17 / f\ ~V\ j_ IT / n V\
\"9 A^ — r j ^ u9 A^ + J? 2 \ ^' ^/
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The measured polarization, P , due to all terminated step functions required
A

to characterize an arbitrary continuous distribution, is given by

P = -S - - - (124)

n

where

- ,F2(0,Xn) = p(0,Xn) F(0,Xn) . (125)

Hence, one has the following relation:

(126)

Now define two functions of the measured radiance and polarization:

M ( m , e , A ) = T (e) sinm+1e (127)
A

and

W ( m , e , A ) = P (e) M(m,e, \ ) . (128)
A

Then,

Z /1 TY1

C(Xn) J£ sin 0 F ( 0 , X n ) d 0 (129)
n

and

, ' W ( m , e , A ) = K ( A ) 2 c ( x
n ) J^ sinm 0 A (0.XJ d0 (130)

n
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where

' E ^ R S A A 2

K(A) - -\p> • . (131>

Let- - •

7T

/ sinm 0 F ( 0 ) d0 - q( j r ) . - q(e) (132)

and

= Q(TT) - Q(e) . , (133)

Now, differentiating M and W with respect to e , and rioting that

1|M = 1^1 = o , (134)

one obtains

(135)
n

and

. (186)
n ___

However,

• • -fSL- = sinm
e F(c) ' • • - . - (137)de

and

= s i n m e A ( e ) , (138)
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so that

'- 9M

." 9e n

8W = - K ( A ) sin e J C(X ) A ( e , X ) " . (140)
3 e n n n . . . : . - ; :

From equations (125) 'and (126),

and

—— = — sin111TJ"e + (l + m)L (e) sinlu e cos e (141)

, 3L
T ( x . m+1 — I A . m+1

86 - 86 Ve ) sm £ + PA|"8l- Sm

+ (1 +,m)iL, sin- e cos e
A

• - : • .= . " • .'.; • ' - • - . : ' , - : ' . - . • - • - - . = . - ' - ; • : ; , : . - • • • v t . (142).

Now define two new functions of the measured radiance and polarization:

. sin e

Combining equations (137) through (142) , one obtains

S(e,C,Xn) = -2c (X n )F(e ,X n ) (145)
. . . . n
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and

•T(e ,C,X n ) = - ( 146)
n

S and T are obtained from the measured radiance L and polarization P for
A A

various assumed values of m as follows:

-1S(e,\,m) =

T(e ,X,m) =

K(X)

-1
K(X)

3L
(1 + m) cos e L (e) + ——

A oe
sin e (147)

+ (1 + m) P cos e)
A

pp •sme (148)

Equations (145) through (148) represent the fundamental mathematical rela-
tionships between optically measurable quantities and the physical properties
>f the interplanetary dust. S(e) andT(e) can be obtained directly from the
observed curves and plotted for various values of m. The resulting curves
are smooth and continuous. However, the measured curves, T(e) and S(e) ,

obtained by combining L , -
A 9e • V °!s

9e
, according to equations

(147) .and ( 148) must be matched by a sum of the theoretical curves, F(e,X )

and A (e,X ) , as in equations ( 145) and (146) , with appropriate coefficients,

C(X ) , to determine the unknown X , C(X ) and the refractive index which hasv n n v n7

been implicit in the equations. Powell and Circle accomplished this as follows:

1. Characterize the measured curves S and T.

2. Investigate the behavior of F(e) and A (e) by varying the refractive
index and X .

n

3. Choose a refractive index and X for which the curves of F (e) and

A (e) are similar to S and T.
n
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4. Substitute F(e) and A (e) into equations (145) and (146) and solve.

5. Find a set of curves, A (e ,X ) , which when summed match the

product C ( X ^ A ( e , X ) , corresponding to noniiegative coefficients,n n

This scheme is a systematic way to match scattering diagrams. Steps
2. and 3. involve a great amount of computation and study since, for a large
spread in a, the curves are complex. Also, the fact still exists that this
cedure does not give unique values for m* or X .n
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SECTION V. OBSERVATIONAL RESULTS

Although the radiance and polarization of the zodiacal light have been
measured many times, there is considerable disparity among the values found
by observers. Most observers have restricted their studies to the deduction
of radiance of the zodiacal light in the ecliptic as a function of elongation from
the sun. Observations at small elongation are necessarily close to the horizon
and although this region is intrinsically the brightest, it is more subject to
uncertain corrections for atmospheric extinction and scattering. Larger
elongations can be observed at greater distances above the local horizon, but
uncertain corrections for extraneous light then plague the reduction procedure.
Most investigators regard it sufficient to assume that the zodiacal light is
symmetric about the sun and the ecliptic plane and have reduced their measure-
ments accordingly. According to Weinberg [40], the main factors contributing
to the differences in the reported values are as follows:

1. The lack of dark-sky, low-latitude, high-altitude sites.

2. The lack of a proven method for separating zodiacal light from air-
glow and starlight, especially at high geographic latitudes and when using
broad-band spectral systems.

3. Difficulties associated with absolute calibration.

4. Limited observational coverage, in time, over the sky.

5. The lack of a satisfactory formulation for the effects of tropospheric
scattering, especially near the horizon.

6. Real changes in the zodiacal light, if any.

The most photometric observations measure (l) the total radiance
(L j ), which for ground-based studies is a sum of various sources, (2) the

ODS - ,

total degree of polarization (P ), which is dominated by the zodiacal light

polarization, and (3) the orientation angle of the plane of polarization.

The measurement of the total radiance involves a number of terms
from which the zodiacal light must be separated [ 17, 18] :
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obs zodiacal
light

scattered
components

galactic integrated
light starlight

f

e-riM^z)

L . . + L '• . ,
airglow airglow
emission lines continuum.

e-T2M2(z)

. - . - • . . (149)

'where TI} r% are diffuse-source extinction coefficients for the astronomical i
and the atmospheric components, respectively; :

'•t . •• -,.
(

Mj (z) is the total air mass (equal to unity in the zenith at sea level);

M2 (z) is the air mass to the level of the atmospheric components;
~ ' . j

L is the component arising from the line and continuum emission
airglow . .

earth's atmosphere;

. L . . is the component arising from scattering in
scattered components

the earth's atmosphere;

;, L. '' , ,. , is the diffuse component of radiance that comes
integrated starlight

from faint stars which are below the instrument threshold for resolution; '•.

L . .. is the scattered light from interstellar grains (which ;galactic iignt
would be expected to have a polarization component); ; '•

L , ,. • is thejight from the interplanetary particles,
zodiacal light • • . - • - > . :

^Various methods are invoked to determine the zodiacal light from the non-
linear multivariable function L, [41]. These methods usually involve the

. . obs . - - . . - -
'symmetry characteristic of each source to its, natural coordinate system (e.g.,
:ecliptic, altazimuth, and galactic coordinates). , '

Figure 27 is a collection of representative results for the zodiacal
light radiance in units of S10(vis) between elongations of 25 and 110 degrees
in the ecliptic. The data included are only in the visible spectral region.

The relative variation of the. radiance of the zodiacal light as a function
of elongation e can be approximated sufficiently by a power function of the
form
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,GILLET (1966) OCT 63 - MAY 65
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ROBLEY (1962) MAR 61
WEINBERG11964) NOV61 - MAY 62
PETERSON (1961) NOV-DEC 59

BEHR AND SIEDENTOPF (1953) FEB-MAR 52

DIVARI AND KRYLOVA (1963) AUTUMN 59
ELSASSER (1958) AUG-SEPT 56 :

FESENKOV (1964) OCTrNOV, S)

20" 40° 60" 80° 100

ELONGATION

Figure 27. Collection of representative results between 25 and 110 deg
for the radiance of the zodiacal light in the ecliptic [40, 27].
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for e ^ ,80 deg. Table 9 lists the values of the gradient exponent K for the-
data of several observers.

Table 9 shows that considerable discrepancies exist in the relative
variation of the radiance along the ecliptic (as obtained from different observa-
tions) . The influence of the atmosphere on these data has yet to be determined.

TABLE 9. VALUES OF THE RADIANCE GRADIENT EXPONENT K [42, 43]

Observer

Divari/Krylova [44]
\ • .

Blackwell/Ingham [9]

Elvey /Roach [5]

Robley [45]

Weinberg [46, 47, 48 f

Peterson [49]

/•

Behr/Siedentopf [8]

Divari/Krylova [50 1

Elsasser [51] i

Fesenkov [34]

Gillett [27]

Smith/Roach/Owen [19]

Regener/Van de Noord [52]

Range
. Cdeg)

35 to 65

20 to 70

40 to 70

35 to 65

30 to 60

25 to 60

'•(

35 to 60

40 to 80

30 to 60

. 30 to 60

30 to 60

30 to 60

25 to 35

K Value
(X, nm)

2.4 (520.0)
3.5 (.520,0).

t

2.4 (620.0)

1.9 (450.0)

2.3 (463.0)
2.3 (616.5)

2.1 (530.0),

2.2 (435.5)
2.2 (542.5)
2.2 (638.0)

1.5 (543.0)

2.5 (540.0)

1.5 (visual)

2.9 (_)

2.1 (350.0-
500.0)

2.2 (530.0)

3.0 (435.0)
3.0 (550.0)

Figure 28 presents the distribution of the degree of polarization in the
plane of the ecliptic [ 40]. Considerable discrepancies also exist in the values
of the degree of polarization. For an elongation of 60 deg, the values shown
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vary from 0. 15 to 0.33. Generally, however, the polarization seems to
increase when the elongation increases from 30 to ~ 65 deg. In'the 50 to .-..
70-deg region, the degree of polarization changes little about the inflexion ,
point. At elongations larger than 60 deg, the degree of.polarization* decreases
with increasing elongation. The polarization vector in the ecliptic; is dominated
by the vertical component; i.e., the component perpendicular to the ecliptic.-;

In Table 10, the radiance and polarization values obtained by
Weihberg [47] in the ecliptic are given for reference since his data were
chosen as the base which the models are, compared.:- The zodiacal light was'
observed at 530 nm with a photoelectric polarimeter atop Mt. Haleakala, :

Hawaii (geographic latitude 20° 43' N, altitude 3052 m) between November
1961 and May 1962. Simultaneous observations of the 557.7 nm airglow
emission line were used toy-separate the components of night-^sky radiation. ;
The field of view of polarimeter was 3. 2 deg in diameter. ' , : "
. '• " " . . . ' '. ". • - — • - • --• _ - • '( j

For radiance and polarization values within 30 deg of the sun, the data
of Blackwell and Ingham [ 53] are given in Table 11. , : i •"

i
The results of Smith, Roach, the Owen [19] for the variation of the;

radiance out of the ecliptic are given in Table 12. The data were obtained
from Mt. Haleakala using a photoelectric photometer having a 4-deg field
of View and 530 nm filter. The results are also presented in Figure 29 in an:

isophotal map where the circumference represents the plane of the'ecliptic
with values of differential longitude, (X - X ) increasing from 0 to 180 deg. .

The ecliptic latitude, 0, increases from 0 deg at the ecliptic.to 90 deg in the
center of the circle. The photometric perturbation at 65 deg from the sun at
high ecliptic latitudes has not been confirmed by other-observers [54; 55].

' " < • • • • - ' . ; ' : ; . ' ' ' ' • • • " . ' • " i , . . • ' '.'. . • ' ' , ,
I Dumont's [56] data for the average radiance out of the ecliptic are.

given in Figure 30 for comparison. The minimum in the radiance for these -•
data is at 70 deg and not at the ecliptic pole (90 deg) as indicated by Smith,
et al. The difference between the data of Smith, et al., and Dumont is a
typical example of the discrepancy between different observers. The dis-
crepancies between observers are again shown when a comparison of the
radiance value of the zodiacal light at the ecliptic pole is made. Table 13
presents data for such a comparison. Few observers have reported the
polarization values at the-ecliptic poles. Beggs et al. -[57, 58] and Weinberg
[54] found the values of ^ 20 and s 10 percent, respectively (Table 13).
Color measurements have yielded color indices'both redder and bluer than
sunlight (Table 14). Also, the color index has 'been found to increase, [ 8],
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TABLE 12. ZODIACAL LIGHT IN ECLIPTIC COORDINATES [ 19]

x-X^

180

175

170

165

160

155

150

145

140

135

130

125

120

115

110

105

100

95

90

85

80

75

70

65•

60

55

50

45

40

35

30

25

20

15

JO

5

0

0

205

195

185

175

175

170

170

175

175

175

175

180

185

190

200

210

220

235

250

265

290

320

(370)

(425)

(500)

(600)

(745)

(945)

(1185)

(1595)

(2330)

5

195

190

175

170

170

165

165

170

170

170

175

175

ISO

185

190

200

20$

215

235

255

275%

300

335

3̂ 0

425

505

610

735

870

(1145)

10

185

175

170

165

160

160

160

165

165

170

170

175

180

180

185

190

195

205

215

235

255

285

310

345

380

430

485

555

655

845

15

175

165

160

160

155

155

155

155

160

160

165

165

170

175

175

180

185

190

200

215

230

245

265

285

. 305

330

370

425

505

690

905

(6150)

20

165

160

155

150

145

150

150

155

155

160

160

165

165

170

170

. 175

175

180

185

195

210

225

240

255

270

290

315

345

390

450

545

(1820)

25

155

150

150

145

145

145

150

155

155

155

155

160

160

165

165

170

170

170

175

180

190

200

210

225

240

255

285

315

360

410

465

520

(995)

30

150

150

145

145

145

145

145

145

145

145

145

145

145

150

. 150

150

155

155

155

155

165

185

205

205

215

225

230-

240

250

270

300

(525)

35

140

135

135

135

135

135

140

140

145

145

145

145

150

150

150

150

150

155

160

165

170

175

185

205

205

205

205

215

220

225

230

245

(330)

40

125

125

125

125

125

125

125

125

130

135

135

135

135

135

140

145

145

150

150

155

155

160

175

200

205

205

205

210

215

215

220

225

230

235

(250)

45

130

130

130

130

130

130

130

135

135

135

135

135

135

135

135

135

135

135

135

135

135

135

145

170

195

200

195

190

190

190

195

200

205

205

210

(215)

50

125

125

120

120

125

125

125

130

130

135

135.

135

135

135

135

• 135

135

135

135

140

140

145

145

150

165

180

205

205

195

185

180

180

180

180

180

(180)

55

125

125

125

125

120

125

125

125

120

120

.125

125

125

125

125

130

130

130

130

130

130

130

130

140

145

160

170

190

205

200

195

190

185

180

175

175

(175)

60

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

135

140

145

155

160

170

170

175

185

190

190

185

185

(185)

65

125

125

125

125

125

125

125

125

125

125

125

125

125

120

120

120

120

125

125

125

125

130

135

140

145

150

150

155

160

165

170

175

180

185

185

185

(185)

70

115

115

115

115

115

115

115

115

115

115

115

115

120

,'120

.120

120

120

120

125

125

125

125

130

130

135

135

140

140

140

145

145

150

' 150

155

155

155

155

75

115

115

115

115

115

115

115

115

115

115

115

115

115

115

115

115

115

120

125

125

125

130

135

135

135

135

140

140

140

145

150

150

150

155

155

160

160

80

115

115

115

115

115

115

110

110

115

115

115

115

115

115

115

115

115

120

125

130

130

130

130

130

130

135

135

135

135

140

145

145

145

150

150

(150)

85

110

110

115

115

115

120

120

120

125

. 125

125

130

135

(135)

90

110
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Figure 29. Isophotal map of Smith, Roach, and Owen [19] observations of the
zodiacal light out-of-the-ecliptic. (The ecliptic plane lies on the circumfer-

ence, and the center is the north ecliptic pole. The Sun is at the left.)

• 90°

30° 150°

.180°

30°

60° 120°

Figure 30. Dumont [56] results for out -of -the-ecliptic.
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TABLE 13. RADIANCE AND'POLARIZATION OF THE ZODIACAL
... . . r . LIGHT AT THE ECLIPTIC POLE [59, 60]

Observer

•Elvey/Roach [.5]

Beggs/:e.t,.al;|t 5,7, 58] •

Weinberg [54]',-

Smith/Roach/Owen [ 19]

Dumont.[6l]

Wolstencroft/Rose [62]

Gillett [ 63]

Sparrow/Ney [ 60]

.(1)
Pole-

[S10 (vis)]

73

'177 ....:r

IBB. . ; ; ;
UoVi

7°

-,M43:.;..-

'" ••̂ -:'::
50 .

(2);. . ;

• e = 45 on the
'Ecliptic
[S10 (vis)]

' '1323 ',

'.( 661 '

' • 897

Y ] 945

700 ; • ;

.- .-'840 ' • ' • ' .

••>',' '-4k ;

'

: • ••. . • . •

• :\(2)
. ra:10;:(D

; ; i^i;vA

M3;t-C
;.;-.4:8;2V^

' • ;8.60;;

,-;io,ov

1 ; -V5.87

8.67

Polariza-
tion at

Pole

.. °-20

0.09

0.18

0.19

0.21

0.21

TABLE 14. VALUES OF THE COLOR INDEX (CI) OF THE
ZODIACAL LIGHT [42]

Observer

Behr/Siedentopf [8]

Divari/Asaad [64]

Nikol'skii [cf 42]

Peterson [49] .

Divari/Krylora [50]
V

Robley [45]

Divari/Krylova/Moroz [112

CI (zl)

, 0.63 ,

0.35

0.56 .

0.48

' • 0 .47-

i CI ( sun)

0.43

0.45

, .

' 0.45

0.63

—
• .

A

+0.20

-0.10

: +0.03

-0.16

+0.16

+0.14

v\
444/542

414/541

414/540

435/543

406/543

463/528

460/520
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to decrease [64] , and to remain constant [49] . If, indeed, an elongation
dependence of the zodiacal light color index exists, it must be very small.
However, if such a dependence is found, it will yield information on the
dust-particle sizes.

Figure 31 shows the relationship between the neutral-point position in
elongation and the wavelength in the plane of the ecliptic [40] . For larger
wavelengths, the neutral point tends to move closer to the sun. The data have
a 25-deg error spread so the linear nature shown may not be real. These
data are important because neutral points calculated by models are dependent
on the model chosen, at least more so than the general shape of the radiance
curve produced by the models.

The components of the zodiacal light caused by dust and electrons can
be separated by the use of the spectrum of the zodiacal light. Blackwell and
Ingham [9, 10, 11] determined that the electron density at 1 AU should be no
greater than 120 electrons/cm3. The photoelectric observations of Beggs et al.
[57, 58] which determine the electron contribution to be 16 ± 20 electrons/cm3

have been confirmed as to the order of magnitude from space vehicles [65] .
Thus , it may be confidently stated that free electrons play a negligible role
in the scattering of sunlight except in the corona.

Photometric observations and recent results on the gegenschein have
been summarized by Roosen [31, 66, 67] . He concludes that the gegenschein
lies at the antisolar point, with no net displacement in either latitude or
longitude to within 0. 03 deg. The relative brightness of the gegenschein as a
function of the distance in declination is shown in Figure 32. Its relative
brightness as a function of longitude from the antisolar point is shown in
Figure 33. The general shape of the gegenschein is oval. The shape param-
eter, Q, is determined as a function of angular distance by the ratio of the
brightness of the gegenschein and zodiacal light in a plane at right angles to
the ecliptic to that in the plane of the ecliptic. Figure 34 presents the shape
parameter a,s found by various observers. The discrepancy in the brightness
of the gegenschein between various observers is given in Table 15. The ratio
of the brightness of the gegenschein, B , to the brightness at the eclipticu
pole, B , is given to find more consistency, but, again, a large amount of

'scatter is evident since the maximum is 4.00, the minimum is 1.40, and the
average is 2.10. The important result of Roosen is that to within 1 percent
earth's shadow did not effect the brightness distribution of the gegenschein.
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SECTION VI. COMPARISON AND ANALYSIS OF
MODEL CALCULATIONS '

A. Model Comparison

From the preceding sections, one can see that to predict the observa-
tional quantities of the zodiacal light, the" parameters of the models must be
varied. Though the mathematical formulation for the problem is relatively
simple, the observational uncertainties or lack of observational data has
hindered the determination of definite values for the various parameters. In
this section is presented an analytic approach to a method of variation of the
parameters and a trial-and-error approach for matching the present data.

A comparison of model predictions with observational data will give
information on the range of the following:

1. Particle spatial distribution.

2. Particle size and numerical distribution.

3. Particle shape and anisotropic effects.

4. Particle composition (refractive index).

The following procedure is adopted in this section: . .

1. Assuming i(0) is independent of 9 and assuming that no radial
dependence (m= 0) exists, it is shown that the radiance dependence on
elongation e is approximately that which is observed. Also, assuming that
the size distribution n(o; ) is a constant between a . and a. and other-min max
wise zero, an indication of the number density parameter is given. As a
further refinement to i(0), simple models using diffraction scattering theory
are investigated.

2. An indication of the material and a range on the particle size
is found by comparing the radiance and polarization of the zodiacal light with
that of single particles.
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3. Further analysis in comparing polarization and radiance is
accomplished by the use of scattering-intensity functions for a distribution
over the particle size. This gives a further indication of particle size and
materials. It is noted that a backscatter peak (gegenschein) in radi&nce is
produced only by dielectric particles.

4. Zodiacal light models are investigated for ecliptic variation of
radiance and polarization. This follows the work by Giese [26]. First, a
variation of materials is investigated, and then a variation of the parameters
is. investigated; Specific parameters considered are as follows:

; : , . . a . ; Spatial parameter (m). > • • • • -

. . . . : ,. . bi Number density variation parameter (p).

c. . Number density constant (n ).

d. Minimum and maximum size parameter (a . and
x - mma ).max

e. . Material (refractive index m*).

f. Wavelength (A) .

g. Ecliptic thickness parameter (R/W).

An analysis of the integration procedure and the influence of the maximum
size cutoff is cursorily investigated. Finally, the various models are
compared.

5. Out-of-the-ecliptic calculations using the linear thickness model
are presented; Thickness and distribution effects are investigated.

6. Cylindrical and other shapes are considered as to their influence
on the variations of the zodiacal light. .

Several conclusions have been made using restricted models for the
zodiacal dust-in the ecliptic. By comparing observations with models using
spherical particles, it has been concluded that [54, 55]:
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1. Only dielectric-component models produce a radiance enhance-
ment corresponding to the gegenschein.

2. Dielectric-component models produce an irregular decrease of
the degree of polarization such as that observed at large elongations (^ 160
deg)' .

3. Dielectric-component models can give a maximum polarization
at 70 deg. , •-

4. Metallic-component models cannot account for observed radiance
and polarization.

5. To include more than some tens of electrons per cm~3 at 1 AU,
one must postulate the existence of a hypothetical nonpolarizing dust component.

6. A simple power law for particle-size distribution and spatial
distribution seem partially correct.

\.

7. The interplanetary matter has a low index of refraction
(m= 1.3-1.8).

B. Basic Heliocentric Model

Results from the basic heliocentric model are presented to provide
an understanding of the basic variation of radiance and polarization with
particle number density and with elongation because of geometric considera-
tions. The radiance equation for the heliocentric model is given by equation
(33):

R Ef SXN TT
r =

X • m+lsin

o r . m. / dp- \
I sm 0 1 ~£T~)J \ dfl /

where

a
max , . -p

min
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and
a
max _p

N = f * —} da
o J o \ a /a . \ o /

mm

An investigation was carried out in Section in. D with emphasis on the product

(
7T

i ( e ) = — 2—— f s m m e d e < ' •
m . m+1 J

sin . e e
' : ' '

specifically, for m «= 0, 1, and 2. Employing • '

t / '\ =
 7r- £

m=0 v ' sine

and

one now uses that analysis assuming isotropic scattering (i.e., "777= C
O. d0

constant) and a distribution independent on the solar radial distant. Let
• . " ' i ,

o

nQ I — ) da

min

then

L = III ' (150)
\ 47r^ \ sin e / \ 2 /

To use units of the number of 10th magnitude bolometric stars, one uses [69]

solar constant = E6 1.39X 103 w/m2

(m, = 1 0 ) , ~ 2.52xlO-1 2w/m2 - -
DO! 'star

i5
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to obtain the value of

'= 158.28X10-12 10 mag. stars, cm ; (
Q deg . v '

where X = 500 nm. Using for — (ij + i^) the value of 10 which is the average
£

value for ice with an a. on the order of 10 and 0 > 40 deg (i.e., a =* 1/n at
500 nm) then at e = 40, ' • -

T - 7 F " e - q ft-J. - — . — o. O, . '-V
m = 0 s i n e - , , ' • •

hence, to match Weinberg' s data for e = 40 deg, the radiance equation (150)
becomes ;

' 1.13X 103= 1.58X 1014 N ,(3. 8) ('lOJ , ' '

f ' :

which gives / *• ., ; ....

N (6 = 40) = 1.88 x lO-» PartifeS'..' ' " • • -?o v. ' • ' cm-5./ ... :

' - „ " ' . ' ' .1 • ' -

For e= 80 deg, one has , / ,: ' (

N (80) = 1.07 x 10"13 Par 1C es

ov ' cm-5 :

and, for e =140 deg,'

__ / \ _ _.»-io fjaj7kicj.es
N (140) =1.17 x 10 " -* 3 .o v ' cm-5 ;•

The values for the radiance, using the various values of N compared with

Weinberg's data are presented in Table 16 and Figure 35. The last column
;_(A) is the difference between the third and sixth column which gives an
indication of the average total intensity as a function of 6 , although the
radial dependence is also, contained in'this difference. £

The 30 to 60 deg exponential gradient for these models is K.= 1.2,
compared to 2.1 from Weinberg' s data. Hence, in the basic -model, the
radiance rises slower in the solar direction than measured data. The wave-
length or spectral dependence is the same as the sun (i.e., a GO-type star).
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Figure 35. Comparison of the basic heliocentric model
with Weinberg' s data.
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TABLE 16. COMPARISON OF THE BASIC HELIOCENTRIC MODEL
WITH WEINBERG'S DATA

e

30

40

60

80

100

120

140

160

Im=o

5.23

3.80

2.41

1.77

1.41'

1.20

1.08

1.02

Weinberg
Sio(v)

2200

1130

520

300

215

185

200

220

Heliocentric Models

NQ(40)

1555

. 1130

717

526

419

357

321

303

NQ(80)

886

644

408

300

239

203

183

173

No(l40)

967

. 704

446

328

261

222

200

189

A

1233

426

74

-28

-46

-37

0

+31

For a distribution of particle sizes of

n(a) =
1 a . < a < amin max
0 otherwise ,

and for a . = 0. 5 Mm and a =1.5 Mm, thenmm max

N = n (a .. - a )o o mm max'

or
N

n =o

Hence, for N (140), the parameter n has the value

n (140)= 1.17 X 10-9

o cm
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In conclusion, the radiance dependence on -777- is not very great, as was notedd &2
in earlier theories [ 13], although the lack of this dependence is quite noticeable.

C. Basic Heliocentric Model with Spatial Dependence

The radiance variation of the basic heliocentric model (HM) does not
correspond to Weinberg' s data. To improve the basic model, a spatial de-
pendence ,for the number distribution of the form .

m
s(r) ^ 1/r

is included in the model. From the analysis of I , it is evident that m = 1.
Hence,

/ \ _ 1 + cos e
m = 1 sin2 e 1152)

will give e"2 dependence for the radiance as e — 0. This is_comparable with
observed data (Table 9). Although for I _ , we have a e~3 dependence as

TH — &
e — 0, e"2 dependence can be obtained for a higher range of e. The result of
these radial dependence models, normalized to Weinberg' s value at e= 140
deg, is shown in Table 17 and Figure 36. Comparison of the 30- to 60-deg
exponential gradient gives K = 1.7 and K = 2 . 6 .

m = 1 m — ̂

TABLE 17. HELIOCENTRIC MODEL WITH SPATIAL DEPENDENCE .

e

30

40

60

80

100

120

140

160

'm-l

7.46

4.27

2.00

1.21

0.852

0.666

0.566,

0.515

Im= 2

12.2

5.52

1.94

1.00

0.641

0.4(80)

0.387

.0.345

f a
L m = l

2635

1508

. 706

427

301

235

200

182

L ,bm = 2

6310

2855

1050

517

332

248

200

178

a. N = 3. 53 x 10
o

b. N = 5.17X 10
: O

-13

-13

M454 121
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ELONGATION

120 140 160

Figure 36. Comparison of a spatial dependent heliocentric model
with Weinberg' s data.
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D. Belt Model for I sotropic Scattering

The variation of radiance with respect to elongation can be improved
by the use of the belt model which is described in Section IIL For simplicity,
assume an isotropic scattering intensity functions; i.e., I

MO) + 1 (e)
* = constant

and m = 0. As before, the constant is chosen to be 10. In units of 10th
magnitude stars per square degree, the radiance equation (59;) becomes

-Q- " •'
158. 28 x 1012 x 10

sin x

where

. I R .0 . = sin f — sin e

The values (R/r.)"1 are chosen to be 0. 723 and 1*00; i.e., the orbits of ,
J .- - - - i

Venus and Earth. For sufficiently small elongations, the line of sight crosses
the Venus-Earth belt twice. Note that N. and/or 0 . could be varied, but be-

. • J • - j

cause of the dependence of 0^. on the elongation, one determines, for ease of
• j J • . ' / ' . • ' '

calculation, the 0.'s by choosing the r.'s.

' "For '.N';; in units of 10"1,3, particles/cm3 (using Weinberg' s data) , the

following conditions exist: For e = 40 deg,

2R
113°= 0.&4279 [N3(l- 09528- 0.69813)

+ N2 (2.04631 - 1.09528)

+ N3 (2.44349 - 2.04631)

' +N4 (3.14159- 2.44349)1.
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For e = 60 deg:

1 58 28
520 = , . ' ° [N,(2. 09439- 1.04720) +N4(3. 14159- 2.09439)] .

u. obbUo

For e = 120 deg:

28

N2 represents the density inside r = 0; 703, N3 represents the density between
r = 0. 703 and 1. 00, and N4 represents the density for r > 1.00. These equa-
tions yield

N2= 2.653 x 10

N3= 1.747X 10

N4= 0.969X 10

-13

,-13

,-13

particles/cm3

where the factor 10~13 has been included. The comparison of the belt model
and Weinberg' s data is given in Table 18. Also, the comparison is made in
Figure 37 which shows the basic heliocentric model for m = 0. The results
are promising although more parameters are introduced relatively ad hoc.
The 30- to 60-deg exponential gradient for the belt model is K = 1.8.

The density calculated decreases with distance for the three separate
concentric regions. Since i(9) is constant, the effect could represent either
the actual spatial dependence or the diffraction peak, or both. The diffraction
phenomena will be investigated in Section F.

In the belt model, when r. = 1. 524 and e = 170 deg, then only approxi-

mately the last 10 deg of the scattering intensity functions for particles outside
Mars orbit.contribute. Thus, particles with very large backscatter could be
the main contributors to gegenschein. This effect could be a type of opposi-
tion effect for large particles (i.e., with a radius greater thanl cm) outside
the Martian orbit.

E. Approximation

In the calculation of scattered light, approximations can be used to
represent the angular distribution of the scattered light. These approximations
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Figure 37. Comparison of a belt model with Weinberg' s data.

125



TABLE 18. COMPARISON OF A BELT MODEL WITH WEINBERG' S DATA

€

30

; 40

50

60

701

, 8 0

90

100

110

120

130

140

150

160

Weinberg

2200

1130

730

520

385

300

250

215

195

185

190

200

205

220

A Belt Model

1782

1130 -

678

520

404 i
r,

315
•'. '•* *

240

217

199

185

174 •

166

160

156 j

were empirical and usually fit a particular scattering curve. The advantage of
the approximations over exact expressions is easily seen when the labor
needed to compute the exact scattering functions is compared to that needed for
an approximation. Some of the earlier approximations to scattering functions
of particles were those used to explain diffusely scattered.light from a planet.
As may be expected, no diffraction peaks were included. Figure 38 shows four
such functions [2]:
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Figure 38. Approximate reflection scattering functions (no diffraction peak).
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sin 0-0 'cos 0 / _ , ' va. - (Lambert)

. - *b. 1 - sin (— - — ) tan

(Lommel-Seeliger)

/TT -c t \ 2 (VanRhijn)
C* \ ?r / 150 ̂  0 =s 180 deg , .& (Van Rhijn)
d. 0.655 - 0.711 sin 0 - 0.345 cos 0 + 0.406 sin3 0 , _40 deg < 0

Van Rhijn found his phase function from a best fit to observed radiance curves
for zodiacal light. Lambert's law and the Lommel-Seeliger law have also
been applied to such calculations [2] .

To explain scattering from interplanetary media at small elongations
from the sun, empirical scattering functions are needed which include a dif-
fraction component and a reflection component. Allen [12] proposed that the
F corona of the sun is due to diffraction on interplanetary material. He used
an approximation to the diffraction function given as

2 +.a3 sins 0 (153)

It is plotted in Figure 39, although it was not intended to be used out to 180 deg.
At almost the same time, Van de Hulst [13] also explaining the F corona
separated the scattering function into a diffracted and reflected part, using
Lambert's law for the reflection term. This separation procedure is valid
for large particles. Van de Hulst' s function is

Jt
2 (a sin 0) j<L •
o;2 sin2 0 47r

where co is the albedo of the particles. Since the calculations of Van de Hulst
represent a simple model of the zodiacal light which incorporates the diffrac-
tion effects, it will be considered further in Section F.

Schoenberg [2] used the general formula

1 - p cos 0 + q.cos2 0 (154)
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Figure 39a. Approximate scattering functions with a diffraction peak.
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Figure 39b. The scattering functions of Gillett [21].
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to characterize the properties of scattering in the atmosphere. He used
p =;2. 7 and q = 3. 0. With p = 0 and q = 1, this formula reduces to that needed
for a Rayleigh scatterer. To correct for the effects of relatively large
particles, V. A. Kratt modified the Schoenberg formula to [ 70]

' - 3 0 -37T/2,. , ̂1 - p(e - e ) + q cos"1 0 (155)

'This has been further modified for corona, etc., by adding or subtracting
r3 0 .-37T/2,

[71] used the formula
terms [e.g., 1 - p(e"3 0 -e 3?r/2) + q cos2 0 + S e~36 9]. [113]. Divari

3[1+22.3 (e -0.009) + 0.02 cos20] (156)

to calculate the contribution of a dust cloud around the earth to the radiance of
zodiacal light.

Banderman [36], by splitting the scattering function into a diffracted
and a reflected component, found that, according to his meteor models, the
zodiacal light radiance is given by

0.1
27T

1 + (1.056)2

1.0567T
1 -f e

1.056 0 1 ,„ ,,v • /_ »e +- (0.14) ( 0 7 r ) -3 (157)

The particle albedo is 0.1 and the ratio of the mean particle radius to the mean
square of the particle radius is about 0.264. The wavelength used for the cal-
culations was 0. 53 M.

-..Gillett [27], also attempting to model the zodiacal light for different
models of the,cloud of interplanetary medium, used as a best fit

1 1 . _
- Sin0

sin

3/4 cos2 0 0 ss 7T/2

0 0 > ir/2
(158)

in his constant thickness models (Paragraph E of Section

Each function discussed above is plotted in Figure 39 and has been
normalized to one at 0 = 90 deg. Apparently, Bandermann1 s phase function
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is the best approximation to the shape of the radiance curve for zodiacal light.
Table 19 lists the functions and their authors.

TABLE 19. .PHASE FUNCTION,APPROXIMATIONS

Author Function

F. Schoenberg [2]

V. A. Kratt [70]
• • _ : ( < '

N. Bl Divari [71]

C. W. Allen [12]

H. C. Vande Hulst [13]

L. W. Banderman:t36]

F. C. Gillett [27]

VanRhijn [2]

Lommel-Seeliger [2]

Lambert [2]

1 + p cos 0 + q cos2 0

. _30 -37i72N o ~
1 + p( e -e ) + q cos2 0

1
—
j. i •

30~l + 22.3(e~ -0.009)+0.02 cos2©]

C a'2/(2 +V sin3 0) '

Jj2 (a sih0)/Q!2 sin2 0 + w/47r

0.1
27T

1 + (1.056^2"| 1.
1.0567T 1 G

1 + e I

—V+isin:e
sinT ,

3/4 cos2 0 0^ .'7T/2

0 0 a TT/2

0.655 - 0.711 sin'0 .-' 0.345 cos 0 + 0.406 sin3©

/ 7 T -

\ *

•- sin .tan 0 - ,cot

sin 0 /TT - 0 cos 0 /TT

Obviously, many approximate scattering functions exist which can be
used. For zodiacal light, the most common are given as a sum of a reflected
and a diffracted component. Chandrashekhar [114] points out that any phase
function can be represented by a series of Legendre polynomials
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= E « p
n

u> is a constant for a given particle size and material. In general, co is an n
function of a. and m. Hunt [72] uses a discrete least-squares method to find-
the phase function found from Mie theory calculations as a series of Legendre
polynomials. Such representations of the phase function were found for both
single scattering and scattering from a polydispersion of spherical particles,
specifically the haze and cloud models of Diermendjian [11.5] were used.
Hunt's method gives an overall relative error of 10~5 for single particles and
10~8 for the distributions. It should be noted that phase functions for polydis-
persed collections of particles are independent of the density of particles due
to the normalization constant.

F. Diff ract ion, -Ref lect ion Models [12, 13]

Van de Hulst [ 37], in a study of zodiacal light in the solar corona,
separated the differential cross section into a diffraction component and a
reflection component

r

which is a first-order approximation that is valid for particles with a size
parameter greater than 5. The first term is the differential scattering
caused by forward diffraction of a sphere. It is dependent of the particle
surface structure and refractive index. Fraunhofer diffraction gives

J (ka s inO)i
ka sin 6

J? ( k a 9 )i
- a2 ! . (160)

The second term is for reflection of a diffusely reflecting sphere
(Lambertian),

- 9 cos 9) , (161)
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which includes an albedo ; factor y [ 13] . The reflection differential cross
section is independent of the incident wavelength.' " These scattering functions
are shown in Figure 40 for a = 10 and y = 0. 33 [ 73J . . . i

From the photometric observation of Richter [74, 75] , scattering from
meteorites of 102 to 10"1 cm in diameter approximately agrees with Van de
Hulst's equation (159) . In the range of 10~2 cm, little variation of radiance
exists with the scattering angle outside the forward diffraction zone. This
gives rise to a simpler form for the reflection differential crpss section.
Assume the total cross section is the geometric cross section:

then for an isotropic scattering, i.e., it = i^ = constant,

o ^ 1 2 /
TST 47T=-i

hence, for a sphere of radius a',
>' -. -. •

da ; 1 /. . a2

An albedo factor y is added to give

• . • • • • • • . - • . ; •
for which Figure 41 displays the total differential cross section. ' The approxi-
mation is also good f or j metallic spheres [76] . Following Van de Hulst [13]
and using equation (33)', the radiance for fixed wavelength and particle size
is given by : ,_ ;;

,a2''
where
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y = .33
a =10 '
X = .Sum

100° 180°

SCATTERING ANGLE

Figure 40. The differential cross section for a Lambertian sphere, the
forward diffraction peak for a sphere, and the sum

(a. = 10, A = 0.5 (J.m, 7 *= 0.33).
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Figure 41. The differential cross section for an isotropic ^catterer, the
the forward diffraction peak for a sphere, and their sum

(a = 10, \ = 0. 5 Mm, y * 0. 33) .
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and where the particle distribution has an r"1 radial dependence. For isotropic
scatter ers with y = 1, the reflection part becomes

F (€) .= fi6 , (164)rv ' sin e .

which is approximately constant, varying from ir2/4 at € = Tr/2 to 0 at e = 0
or TT. For the Lambertian function,

F ( e ) = y - r — -^- (2+ 2 cos e + e sine) . (165)rv ' . r sine STT v ' v • /

Both forms of the reflection functions remain relatively constant, giving
radiance an e"1 dependence.

For the diffraction component, Van de Hulst obtained

Fd(e) = ka ip (ka e) , (166)

where

(167)

Since the .diffraction term is only accurate for small values of 6 , the factor
e/sin e has been omitted and the range of integration has been extended to « .
The values of !/>(z) are given in Table 20.

For large values of z, z/>(z) fluctuates around 2/7rz2 [ 77] . The radiance
diffracted by large particles is therefore proportional to e~3. The values of
F (e) calculated by Van de Hulst [ 13] are shown in Figure 42. The radiance
variation can be divided into three regions.

Region Radiance Dependence

6

n c-
Hi e"1 F (Lambertian)
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-3

3'.4 34' 5°.7 10° 30° 60° 90° 180°

Figure 42. The scattering dependence F (e) 'for diffraction of spherical

particles for a = 10, 100, and 1000 (curves.(a) and (b) are for a
isotropic scatterer and a Lambertian sphere (y = 0.1), respectively [13]},

TABLE 20. 4>(z) VALUES

z

0

1

2

3

4

5

' .. #(«)

1.698= 16/3 TT

0.779

0.225

0.055

0. 040

0.030 I

z

6 . . .

7

8

9

10

*(*)

0.0156, .,

V t
0.0127,

0.0112 , .

1 • • - . , • . -
0. 0074 ,

0. 0061

. : . . . • •
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Comparison with'Weinberg' s data-is given in Table 2! and Figure 43 for N
established at e= 140 deg and for a= 1; 10, and 100. Although using
a = 1 for the diffraction peak is unrealistic, it gives the. best fit and also
gives an indication of'the form of da/dfi . " "[

As early as 1893, Searle, in modeling:the zodiacal light by a dust cloud,
used various simple scattering functions and a density distribution proportional
to a constant or 1/r. It is interesting to compare his and Van de Hulst' s

"results, although Searle' s models do not include the diffraction contribution
which originated with Van de Hulst's work. .. •

Sfarle's models are:

Model Scattefihg'Fuhctibn Form Spatial Distribution'Form

I , Sin 0-0 cos 0 Constant
:..,• £.v. ]-]' . , . *•'..',.' (Lambertian) " " " ' • . ' ' . . -,>

, : , ,n, : .j - 1 - cos .0 -., . . - . . . 4 . . ,(; Constant ; , ,:

t
 l- :,; ' i n ' - • • • . • ' • •;' •i '-cbs'e- / ' : ' -"-" "' ' : i/r _ '"••' • • l " - > \

IV 0 Constant

V 0 1/r

; VI ' • • • * 02 'v : : • '

The scattering distributions reflect observations made of the asteroid scatter-
ing functions. Searle' s [ l] results of the normalized values are shown in
Table 22. It is worthwhile to quote this early work:' '

;"A remark obviously suggested by the inspection of Table XXVII -[Table
]22 in this report] is that for small values of e the hypothesis relating to
the density of'the meteoric'matter is more important than that relating
,to the phases of the separate particles, while for large values of e this
'last hypothesis chiefly determines the result. Compare, for example,
'the values derived frdm Formulas III and V,' both of which assume the
density to vary inversely-to r. For small values of e',- these'values are
practically the same, although in the first case the projection of the
illuminated surface, and in the second that surface itself, is assumed
to represent the quantity of light reflected. Even when we employ the
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L A (y= .1, a= 100)

• ' ~LA(y= .1, a= 10

100
60 80 100

SCATTERING ANGLE

Figure 43. Comparision of diffraction model with Weinberg' s data
for albedo of y= 0.1 and a = 1, 10, and 100.
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very forced hypothesis of Formula VI respecting the effect of small
phases but retain the same hypothesis respecting density, we reduce
the light only by half a magnitude. On the other hand, for the same
small values of e, Formulas n and IV, in which the hypothesis of
uniform density is adopted, agree with each other and disagree with
the remaining formulas. But for large values of e, according to the
respective hypotheses adopted for the phases of the particles, the first
three formulas agree with each other and disagree with Formulas IV,
V, and VI, in which the minimum of light occurs before opposition is
reached, while the light at opposition becomes equal to that at an
elongation of agout 85 deg to about 125 deg."

"All the formulas agree in representing fairly well the rapid
diminution in brightness of the zodiacal light at small elongations
and its much slighter subsequent changes, while the fourth and fifth

. formulas show that a representation of the phenomenon of gegenschein,
can be theoretically obtained even when the hypothesis respecting the

'' phases requires very moderate assumptions, as will appear more
clearly below. Upon the whole, the fifth formula best expresses the
observed facts; the sixth unduly magnifies the relative amount of light
at opposition, although so faint a'gegenschein as that indicated by the •
fifth formula would possibly never be discovered."

This early work describes the important features of a model and shows
how relatively simple models can depict the dominant effects on the zodiacal,.
radiance.

Roosen [31, 66, 67] employs a reflection model for the scattering
functions to predict the radiance of the gegenschein. Roosen was able to fit
Weinberg' s observations of the gegenschein by using a 0. 023 mag/deg phase
function and a spatial distribution corresponding to that for asteroids (Fig.
44a). He concludes from the observed lack of effect from the earth' s shadow
on illumination of the gegenschein that a spatial distribution of particles which
follows an inverse power law cannot satisfactorily explain the gegenschein
(Figs; 44b and 44c) and that there must be an increase in the spatial density
outside the earth's orbit. He suggests the asteroid belt is the source for
this material. The spatial distribution of asteroids gives support to this
argument. Recent observations at 500 nm from OSO-6 [116] show, based
on a preliminary calibration, a gradient for the gegenschein radiance which
is in accord with Roosen's data (Fig. 44d).
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Figure 44a. The asteroidal phase function determined by Gehrels f 78]
showing the opposition effect. The phase function with the

opposition effect removed [66, 67, 79].

G. Polarization-Empirical

The basic heliocentric models have been used with a simple scattering
intensity function and therefore exhibited no polarization. In this section we
consider the experimental investigations of Richter [14, 74, 75] on the polar-
ization from single particle scattering and distributions of particles. An
investigation on the polarization attributed to several particle sizes and
materials will give an indication of the material and particle-size distribution
of the interplanetary dust.
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Figure 44c. Gegenschein brightnesses for models assuming the material is

distributed according to an inverse power law R~ ,(where R is the helio-
centric distance) for an isotropic phase function [66, 67, 79].
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To introduce polarization in simple zodiacal light models, Ingham [53]
used diffraction scattering and the empirical form

p ( e ) ' = . . 2 , (168)F • ' q- sin2 (0) x '

for the degree of polarization, q is a constant depending on the nature of the
material. Figure 45 plots p(0 ) versus the scattering angle 9 for q= 3, 4, 5,
6, and 11. Note that p(0 ) given, by equation (168) is symmetric around
0 = 90 deg and that the maximum value of polarization is given by

m a x p ( 0 ) = p ( 0 = 90 deg) = - - .

An inversion gives:

' q = l p ( 0 = 9 0 deg)

The justification for assuming a form such as this results from the labor a- '•
tory studies of Richter [74, 75, 80] and Kloverstrom and Rense [73] on
photometric properties of meteorites.

Figures 46 and 47 show a portion of Richter' s results. In Figure 46a,
radiance dependence on scattering angle is shown for pulverized iron, graphite,
and quartz dust in the =* 1- to 10-^m size range. The size distributions were
roughly Gaussian. The modes are indicated in Figures 47a, b, and c which
show the variation of polarization with angle. According to Little [86],
Richter's results show that dielectric and metallic powders differ from one
another in the observed radiance (directly related to the scattering intensity
function). The radiance of the dielectrics decreased mbre or less smoothly
to 0 = 140 deg and then rose again slightly toward 180 deg; the metallic
variation declined to about 100 deg, rose to a secondary maximum near 150
deg, and then declined toward 180 deg. The polarization curves of iron and
quartz powder' are similar in that both rise to a flat maximum not exceeding
20 percent near 0 = 90 deg (Fig. 47), giving experimental foundation for
Ingham's polarization function. Quartz powder polarization differs from the
iron powder since the maximum is shifted towards larger values of 0 (Fig.
47b). Graphite dust shows a difference in that the observed polarization
attains a maximum of 30 percent near 55 deg.
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Mie theory (spherical particles) can be used to match the radiance and
polarization of the irregular bodies of the powder studied by. Richter. The
results [86] indicate that dielectrics with a small imaginary component in the
refractive index in the Mie theory can represent Richter's data, although the
radiance and polarization of the powder in Richter's data were not reproduced
by Mie theory.

In Figures 46b and 47b, the observed radiance and polarization for a
6-cm iron meteorite is given for comparison with that from the micron
powders. The radiance does not show the diffraction peak but only the reflec-
tion component. The 47-percent polarization maximum occurs near 40 deg.
In general, the stony meteorites have a smaller radiance and polarization than
metallic meteorites [74, 75], For submicron particles, Rayleigh's theory
can be applied.

Following Ingham [53], the heliocentric model is used with an isotropic
scattering function:

and an empirical polarization function

i - i
p ( 6 ) = T^-^-p = sin2e/(q_sin2e)

.1 2

Hence,

/ sin29 \
I q - sin29 I '\ /

By equation (52), one has (in the ecliptic) the zodiacal light polarization as

7T

„— . m+1
2 L sin e e

\

/
in "~sin e g(e) de

152



where

g(0) = / [i!(9, a) -i2 (9, a)]

7T =TJ —
. m_ do- -v.sin e de

. /_ . x . ,
i (0 , a ) + i2 (8,a

mm

Now, assuming n(a ) = a , the polarization of the zodiacal light 'is expressed
by .

2+m

q - sin2 0
Px(«) - — - ; (169)

f sin 0 d0

with
i

a
max,

' sinme «- do, . (170)
16 7T2 sin e e .mm

Ingham' s results for m = 1 q = 3. 2 and m = 3/2' q = 3. 3 for p(0 ) and p(e) arer\
given in Table 23. Figure 48 gives the 'degree of polarization versus elongation
for q= 3, 4, and 5 for three values of m(0, 1, 2). Ingham' s choice of q was
arrived at by maintaining the electron density derived by Blackwell and Ingham
[9, 10, 11] and Giese [26] . The q's give values of P(90 deg) which are higher
than any P(9 ) measured by Richter for freely suspended particles. Dollfus
[ 81] , however, measures a maximum polarization greater than this at angles
greater than 90 deg. However, the powders of Dollfus were spread on a sur-
face and were not freely suspended.
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TABLE 23. INGHAM'S POLARIZATION RESULTS FOR THE
ISOTROPIC SCATTERS [53]

e

0

10

20

30

40

50

j 60

70

80

90

100

110

120

130

140

150

160

170

180

, . sin29
p ( 0 )-q-S in29 '

q = 3. 2 q = 3. 3

0.000 0.000

0.009 0.009

0.038 0.037

0.085' ' 0.082

0.148 0.143

0.225 0.216

0.306 0.294

0.381 0.365

0.435 0.416

0.455 0.435

0.435 0.416

0.381 0.365

0.306 0.294

0.225 0.216

0.148 0.143

0.085 0.082

0.038 0.037

0.009 0.009

o.ooo - o.ooo

P(e)

m = 1", q = 3. 2

0.279

0.281

0.287

0.296

0.306

0.315

0.320

0.317

0.303

0.279

0.246

0.203

0.159

i 0.115

0. 076

0.045

0. 018

0.007

0.000

P(e)

m = 3/2, q = 3. 3

0.290

0.290

0.295

0.300

0.309

0.317

0. 324

0.324

0.312

0.290

0.255

0.213

0.169

0.123

0.082

0.051

0.029

0.003

0.000
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H. Polarization-Single-Particle Scattering

To reproduce the variation of radiance with elongation, the empirical
scattering function used by Ingham does as well as more sophisticated ones,
but polarization depends markedly upon the nature of the material and physical
dimension of the particle. Mie theory can be used to investigate the polariza-
tion and radiance dependence on particle size and material [24, 82, 83]. The
results of such an investigation can be used to predict or isolate certain ranges
of these variables for a given light-scattering situation. In this section the
radiance and polarization from single particles is discussed. .In Figures 49
and 50 the total scattering intensity functions versus the scattering angle for a
single spherical particle with a refraction index of 1. 33 (dielectric ice) is
shown for various values of a. (=2ir a/A.). The corresponding polarizations are
shown in Figures 51 and 52. For small particles, the scattering follows the
Rayleigh law with a symmetric polarization of about 90 deg. As a increases,
the diffraction peak appears, the patterns become asymmetrical, and the num-
ber of maxima and minima in the scattering intensity functions increases. The
polarization deviates from the Rayleigh case as a increases and oscillates about
zero more with the higher a's. This can be seeri in Figure 53 which shows the
degree of polarization for a particle with a = 20. Figure 54 shows the total
intensity for this particle. The diffraction peak has become very narrow and
an increase in backward scattering occurs. .

Figures 55 and 56 show the dependence of the scattering intensity func-
tion and polarization upon the absorption term of the refractive index. In these
figures, m*.= 1.33 + ik (k = 0.00, 0.05, 0.10, 0.50) and a = 5.0. The total
scattering intensity function decreases by a factor of 2 in the forward direction,
and 10 in the backward direction. The polarization for a small absorption term
does not differ much from the pure dielectric, but for k = 0. 50 the polarization
is totally positive, showing a metallic nature. The behavior is further shown
in Figures 57, 58, 59, and 60, where data for dielectric and metallic particles
of size parameter a. = 5 are presented. The polarization from the dielectrics
oscillates in sign while the metals give a predominantly positive polarization.

An analysis using single-site particles indicates that the positive
polarization of the zodiacal light can be obtained from small particles (a :£ l)
or metallic particles with a greater than 1. This must be considered a
primitive result because of the integration over particle size and scattering
angle that is necessary in a model of zodiacal light.
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Figure 53. The degree of polarization for a spherical ice particle
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Figure 54. The total intensity scattering function for a spherical ice
particle (m* = 1.33) for a. = 20.
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I. Scattering from Distributions

A distribution of particles will tend to average and smooth the oscil-
lations of the radiance and polarizations curves of single particles. The
results using examples of each of-the four categories of distributions are
compared and discussed in this section. Particle sizes between a = 1 and
a = 20 and a = 0.1 and a = 20 were used, since this represents a possible
size range of particles of zodiacal dust and does not require excessively long
computer times. :. "

Power Law Distribution. Since this distribution is used extensively
in zodiacal light calculations, it has been the most.frequently used in the
present studies of light scattering from a distribution of spherical particles,
particularly with p = -4. The materials considered were water (ice), quartz,
titanite, carbon, iron, zinc, and nickel. The scattering intensity functions
were calculated from

a ' • ' •max .
J i. (9, m*, a) n(a) da .

a. J

max •
• . . . .

n(a) da i
a . v ' .

mm

where a is the minimum particle size in the distribution and a is the-mm ,.' max .
maximum particle size. i.(© , m*, a) was calculated from the Mie theory.

Figures 6la and 61b show the intensity versus scattering angle for the materials.
(.Each curve is displaced a cycle upward for clarity.) The backscatter peak
is visible for the dielectrics, this being one of the well-known distinguishing
characteristics between metals and dielectrics. Another distinguishing ''' •
characteristic is the degree of polarization, being positive for metals in which
the absorption term k is at least a fourth of the real part of the index of
refraction [39]. Dielectrics produce negative polarizations at some scatter-
ing angles. For the materials used, these properties are clearly visible in
Figures 62 and 63. With ice, the radiance and polarization for distributions
with a. > 20 does not vary much from that found with particles with a. • =max max
20, as seen from Figures 64 and 65. For iron particles, the polarization is
changed very little by particles with a. > 5 as seen from Figures 66 and 67.
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The radiance does increase slightly in both cases as a increases (Figs.max - v

64 and 67). Due to the distribution, very few particles exist with o> > 15.
Their contribution to the total scattered radiance or polarization is small.
The effect of cutting off the small particles for ice is seen in Figures 68 and
69. The effect is. especially noticeable in the polarization diagrams. If
Figure 65 is compared to Figure 69, it may be seen\that the particles with
a < 2 produce a strong positive polarization in the range 40 < 0 < 100 deg.
This is caused by Rayleigh scattering from these particles. The dip at
approximately 170 deg is due mainly to'particles with size a s 5.

Many cases occur for which a cloud of particles is not homogeneous.
Results of radiance and polarization calculations for a half-and-half mixture
of ice and quartz are given in Figures 70 and 71. As before, the backscatter1

peak of dielectric particles tends to indicate that these particles are necessary
for the zodiacal light. The positive polarizations of water in Figures 62 and
65 indicate that dielectrics as well as metals could be candidates for the :
interplanetary material.

. The normalized scattered intensities and polarizations obtained from
Categories I through III distributions are shown in 72. A size range of 0.1
to 20 was used so that in the cases of Categories I and in both sides of the peak
would be covered. Figures 72a through 72d show the radiance and polarization
from the modified gamma distribution (specifically distribution 1, Table 4);

n(a ) = (1.49 x 105) a 6 exp (-35.18:a °'im)

This distribution was tailored to peak at a = 1.0 and to have a slope of -4 at
a. = 20. tThe large particle contributions are evident in the large diffraction
peak and also in the degree of polarization for ice.

.Figures 72e through 72h show the radiance and degree of polarization
of ice and iron as obtained from an exponential size distribution,

n(a) = (1.QX10-") e1/a

The relative number of particles with size parameter a. near 10 is larger for
this distribution than for the particular Categories I and in distributions con-
sidered. Curves for the degree of polarization have structure which indicates
the effects of the large particles. The logarithmic distribution used is
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Figure 72b. Normalized scattered intensity versus angle for ice in a
modified gamma distribution (Category I).
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Figure 72d; Degree of polarization for ice in a modified gamma
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Figure 72f. Normalized scattered intensity versus angle for ice in an
exponential size distribution (Category II).
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Figure 72h. Degree of polarization for ice in an exponential
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A modal size parameter of a = 1.0 and a distribution width of cr = 0. 5 were
assumed. Kerker [24] points out that for a distribution such as this (shape
factor m = 0) there is no structure in the radiance curves when cr is as large
as used here. For the distributions he considered, a cr of 0.3 is the upper
limit. For cr' s smaller than this, maximum and minimum peaks did appear.
Figures 72i through 721 shows the radiance and polarization as obtained from
this distribution. As can be seen from the smooth radiance and polarization
curves, the position of the peak values of degree of polarization and the low
values QI radiance, the smaller particles dominate this distribution. The dip
ajt^!75 deg in the radiance curve for ice does not appear. This dip is apparently
due to particles with a > 5. In this distribution, the number of particles with
a > 5 is very small.

J. Ecliptic Zodiacal Light Models

Mie theory has been used in models of the zodiacal light to calculate
the components of the scattering intensity functions. Although the particles
are restricted to spheroids, the models are on much firmer footing than those
based on empirical laws. In a series of papers, Giese et al. [16, 26, 32, 35]
considered the photometric properties of different models by the use of Mie
theory. This section closely follows these papers.

Start with the basic equation for the radiance of the zodiacal light
[equation (33)1 of the heliocentric model restricting the region of interest
to the ecliptic plane.

R fif 6 N TT ,T~\
L = X X, ° / sinm0 (^-) d0 , (172)
\ . m+1 J \ dn / v '

sin e e

where

—. j ?max ,_-p

min
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Figure 72i. Normalized scattered intensity versus angle for iron with a
logarithmic (shape factor m = 0) size distribution (Category IE).
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Figure 72j. Normalized scattered intensity versus angle for ice iii a
logarithmic (shape factor m = 0) size distribution (Category HI).
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Figure 72k. Degree of polarization of .iron in a logarithmic
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Figure 721. Degree of polarization for ice in a logarithmic distribution
( shape factor m = 0) (Category III).
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a -Pmax
N = f n f — \ da

and

a . \ omm

From these equations, one sees that the model parameters are:

n = number density parameter,
o

a = size distribution parameter.

a = maximum particle size,max

- a . = minimum particle size,min

p = size distribution exponent.
i

m = spatial distribution exponent.

This general model assumes a density distribution of the form

/ \ -m -PT](a, r) = nQ r a

A specific model calculation requires the selection of the refractive indices,
or equivalently the selection of the material composition, and the percentages
of each material selected. A series of selections and iterations will probably
be needed before a model satisfying observations is obtained.

Before considering different compositions, a single material (ice) will
be considered and the above parameters varied. N is varied to obtain a

match to the magnitude of the observed radiance. The parameters a . ,mm
a , p , and m are varied to study their effects on the elongation depend-

ITlclX

ence of the radiance and polarization.

For a small, all particles will scatter light approximately accord-max
ing to the Rayleigh law. The calculated radiance from a distribution of small
particles (0.01 < a. < O.l) with m= 1, p= 4.0, and N = 5 x 10~2 particles/o
cm3 is shown in Figure 73. The number density
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a -p
max

N = o / n (— V da , (173)o 27T -^ . o ( a / v '
a V 0/

is calculated at a wavelength of A = 0. 5 Mm and ot is set equal to 1.
o o

The variation of radiance with elongation roughly follows the observed
dependence with the obvious discrepancy at e = 180 deg. The polarization is
shown in Figure 74. Since the scattering intensity functions for electrons
behave according to the Rayleigh theory, this distribution of small particles is
equivalent to approximately 1.1 x lo3 electrons /cm3, a value which is too high
[57, 58], The polarization is large for e< 90 deg. It peaks at 6.0 deg with a :

value of 0.60 which is three times greater than the observed value.

In Figures 75 and 76, a. is varied while a. . - 1. For a particle
max mm

distribution of a , the radiance and polarization do not have a strong de-
pendence on particles with a greater than 10 (Part I of this section) . In
Figure 75, the radiance curve for a. - 20 is very close to that for a = '

° max max
10. The curve labeled "coarse" uses a 16 -point Gaussian integration proce- ,
dure which has been used in most cases in this study to save computer time.
Although the coarse integration gives some false features, it is felt that the
comparisons made are still valid. ;

As one would have anticipated from the single particle and distribution
results, the variation of a . with a fixed affects the degree of polariza-

min max .
tion strongly, as shown in Figures 77 and 78 [22] . The increase of the
radiance (Fig. 77) with increasing a . is due to holding N a constant and

to the greater scattering efficiency per particle for the large particles.

Figures 79 and 80 show the results of varying the spatial dependence >
parameter m. The radiance increases for e < 50 deg as m increases and '.
decreases for e > 50 deg as m increases. Polarization increases with m.
From the earlier study of

7T

I (e) = - -i— - f sinm(e) d9 , • ...... - • • • 'mv ' . m+1 J v /
sin e e
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it was noted that

m

which shows the inverse dependence of the radiance on m at e = 180 deg; The
increase of radiance toward the sun is caused by the increase in particle
number (i.e., increasing m). The increase of polarization with increasing
m results from having less smoothing effe'cts along the line of sight, since
for higher m the contribution to the polarization by the larger scattering angles
decreases. For comparison purposes, the results of Giese [26] and Giese and
Siedentopf [16, 84] for the variation of m are shown in Figure 81. Their
calculations are based on particle sizes that go from a = 2 to a = 120; however,
the variational dependence is the same as shown in Figures 79 and 80.

Table 24 compares the exponential gradient for the variations of m and
p for the range of 30 to 60 deg. K is directly related to an increase in m and
varies weakly with an increase in p. The variation with p is shown in Figures
82 and 83. Increasing p gives more weight to the smaller particle sizes in
the distribution. These particles have lower scattering efficiencies and a
Rayleigh-like polarization. The decrease in scattering efficiency causes the
radiance curves to be lower for higher p. Likewise, the higher p, the polari-
zation peak increases and shifts towards 90 deg when Rayleigh-type particles
are included (cf. Ref. 22). Giese's results for varying p,,are shown in Figure
84. Except for the changes in magnitude of the radiance and polarization,!
the dependence on p is the same. An explanation for the lack of changes in
the shape of Giese's curves for quartz and ice as compared to. Figures 82 and
83 is that his distributions, in starting from a = 6 and .a = 12, eliminate the
particles which contribute most to the change. The structure ,of the curves
for iron does not change because the scattering cross section after a ^ 5 is
more stable than that for dielectrics. >

• ' ( • • •
TABLE 24. EXPONENTIAL GRADIENT (30 TO 60 DEG) FOR ICE •

m= 0

1

2

K

2.6

3.3

3.9

p = 3

4

5

3.3
i

3.3

3.2
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For a given m and p, the shape and magnitude of the radiance and
polarization curves depend on the material. The results of varying the ma-
terial while keeping m = 1, and p = 4 fixed are presented below. For these
calculations, the particle size range is 1 ̂  a ^ 20.

In Figure 85 the radiance curves for the metallic materials iron
(m* = 1.27 - l.Sl.i), carbon (m* = 2.45 - 1.42 i), nickel (m* = 1.46 - 2.68 i),
and zinc (m* = 1.41 - 4.10 i) are compared. Polarization and radiance for.
these metals have similar dependences on elongation, although the numerical
values differ. No increase in the antisolar direction is seen in the radiance'.
The polarization from 130 to 180 deg is very similar for all metals. Position
and value of the maximum polarization for each material are given below
(Fig: 86):

.. Maximum Value Position of
•-• I Material of Polarization Maximum (deg)

';<• -• "'* Iron. . : 0.49 46

; Carbon ' ; 0.30 48

'Nickel. ..; = '.- 0.31 33 •

Zinc^ 0.24 33
\ ' '

The maximum in the polarization occurs in the forward direction.

Dielectric materials are compared in Figure 87. Except for dirty ice
(m* =1 .33-0 .5 i) which approaches a metallic material, the radiance shows
the effect of a gegenscheih. The scattering efficiency increases as the
particles become hard (i.e., as the refractive index increases). Polarization
fluctuates with no general trend (Fig. 88). . Ice is dominantly positive, while
quartz and titanite are dominantly negative for the range of particles con-
sidered.

Table 25 compares the exponential gradient for various materials.
Generally the dielectric materials have a higher value of K than do the metallic
materials for the 30- to 60-deg range. No conclusions about the composition
of the interplanetary matter can be drawn from this because of the limited
number of materials studied and the limited range of particle sizes used.
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Figure 87. Radiance for a variation of dielectric materials
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TABLE 25. EXPONENTIAL GRADIENT FOR VARIOUS MATERIALS
BETWEEN 30 to 60 DEC FOR THE MODELS CONSIDERED

Titanite

Quartz

Ice

Dirty Ice

K

2.7

3.0

3.3

3.4

Iron

Carb'on '

Nickel

Zinc

K

2.6

2.6

2.4

2.3

Since no single component model has resulted in duplicating completely
the observed zodiacal light quantities [ 40] , various combinations of materials
should be investigated. In general, metals give the correct position of the
polarization peak, while dielectrics give the gegenschein effect. To combine
these effects, a model should include at least one metallic and one dielectric
material.

For a combination of two materials, the radiance expression is

where L * ' are the jth component and the a th particle type. The pol
\

tion is

+ L
A(2) B(2)

P =

ariza-

(175)

X , \ .

— B A •
In general, P is not equal to P + P , but the following statements can be

\ . \ \
made as a result of the definition above:

A TD

L = L then P
A. A. \

(176)
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(2) if

=P? then p f = p f = P ; (177)
A. \ \ \

(3) the polarization tends toward the polarization of the material with the larger
total radiance.

A method to fit experimental data using a two-component model is as
follows (cf. References 16 and 84). From computed values of

A(2) B(2):
•*-'•» > AJ» > -^J* ' > ^~\

\ A. A. A-

(which could be curved fitted), the values of

rA -B ' A 'B

..I.-"- ni - -r-D ,.,. ... „ , ,A , -^can be calculated for some N and N . Variation of N and N changes
o o o o

"•A ~—R A B
the levels of L and L , while P and P remain unchanged. But from the

A. \ \ A,

statements abdve, the average polarization P will follow the material with the

larger radiance values. Hence, by varying N and N , a best fit for L and
o o A.

P can be obtained. For a metallic-dielectric combination, the dependence
' • ' ' • ' • 1 \ T T " »

of both the radiance and polarization is changed by varying N and N
o o

(i. e., the number densities for each component). The correct polarization
peak is obtained from the metallic component, while the dielectric component
gives the gegenschein or backscattering peak. Figure 89 illustrates the

results that can be obtained by varying N and N for a given model.
o o

Clearly, almost any result can be obtained. The procedure can be extended
to models with several compositions of materials.

As an example, a dielectric-metallic and a dielectric-dielectric model
are shown in Figures 90 and 91 along with single-material models. In the

•-• - ) A B
combination examples N =N (compare with Fig. 89).
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Giese and Siedentopf [ 16, 84] investigate combinations of electrons
and purely dielectric dust; electrons, iron, and dielectric dust; and iron and
dielectric without electrons. Their results are shown in Figures 92, 93, and
94V The high electron values of Figures 92 and 93 result from early observa-
tions which gave high values for the polarization. (Compare with Figure 74
of electron polarization.)

Figure 95, which summarizes their results, illustrates that several
composition models can yield approximately the same results, giving no '
uniqueness to the models [16, 84]. However spectral dependence was not
calculated. Models I and II have £00 large a value for the electron density.
Model in contains small (Rayleigh) scatterers. Weinberg [17, 18] concluded
from his observations and the results of Giese and Siedentopf that a major
fraction of both the radiance and polarization of the observed zodiacal light
can be accounted for by small dielectric particles without resorting to high
electron densities.

Other composition models have been considered by other authors.
Kovar and Kovar [ 85] based their compositions on the Apollo 11 lunar sample
analysis. Consequently, they include glass in their models in varying amounts.
The glass is considered to be in three forms having a refractive index of
m* = 1.55, 1.65, and 1.75. Several models were reported which differed in
materials and percentages of the constituents. Two models from their prelim-
inary report are shown in Figures 96 and 97. The parameters for the models
are:

Refractive
Model 5 Percent Index m p

Iron 60 1.27-1.371. 1.5 2.5

Ice 30 1.33 0.0 2.0

Glass 7 1.55 2.0 4.0

2 1.65 2.0 4.0

1 1.75 2.0 4.0
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Refractive
Model 7 Percent Index m P

Iron 50 1.27 1.0 2.5

Ice 20 1.30 0.0 2.0

Glass 20 ' ' 1 . 5 5 0.5 3.0
N

7 1.65 0.5 4.0

3 1.75 ' 0.5 ' 3.0

N = 5 x 10~14 particles/cm3

o

Model 7 has less ice and more glass with a different spatial and size dependence
than Model 5. The radiance curves for both Models 5 arid 7 are in good agree-
ment with the observed radiances of Weinberg [47] and Wolstencroft and
Rose [52-1. However, the polarizatiori.of.these models is somewhat lower <
than the observed values; for e > 160 deg, the deviation is significant.

Earlier, Little *et al. [86] also considered a model with a glass content.
Using a model with 97 percent ice (m* = 1.33) and 3-percent pyroxene (m* =
1.70), they were able to obtain moderate agreement with the polarization
observations of Ingham and Weinberg. But, for e > 160 deg, their curves
exhibit the same behavior as the curves of Kovar and Kovar given above.
This is because of the ice content with a particle size range of 1 ^ a. ^26
and p = 4. Little concluded that for the polarization of this model to agree
with observation, m must be greater than 0.6.

Giese and Dziembowski [32, 33], in connection with out-of-the-ecliptic
analysis, give an'iron-quartz model and an ice-dirty ice model which agree
approximately with observations. Their models (Table 26) are based on
scattering by absorbing and dielectric particles large enough to produce non-
Rayleigh scattering. The different models use the fact that the scattering
functions for a distribution are dependent on the imaginary part of the refrac-
tive iridex. For example in the distributions used by Giese and Dziembowski,
the polarization for particles with m* = 1. 0 - 0. 01 i peaks at =* 90 deg; for
particles with m * = 1 . 0 - 2 . 0 i i t peaks at ^ 40 deg. Both models used by
them have a particle size range of 2 to 120 and a size distribution with p = 2.5.
They noted [33], models which contain large particles, whose sizes are
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distributed according to the inverse power law, allow an increase of the
particle sizes to increase the forward portion of the scattering intensity
function without seriously altering the polarization of higher scattering angles.
This differs from the case with very small particles (a, = l) where any con-
siderable increase of particles with a high a value would result in deviations
from the Rayleigh-like scattering behavior.

To match observational data, using single material' models, Aller et al.
[22] had to "break" the power law distribution (Table 26) ; i, e. , for some range,

and for

a < a =5 a p=p . (179)
B max H ^M

Any number of breaks could (be included, but they employed two break points.
Using dirty ice (m* = 1.33 - 0.01) ,m= 1 and

1.25^ a :£ 25.5,

they obtained an approximate agreement with observations in three cases; for

a . = O.OlM p = 4.0
mm , M

and ,

a = 0.40 pT =2 .0
-D J_l

a_, = 0. 50 p = 2. 3
D Ll

a = 0. 60 p = 3. 0
r> Li

However, in breaking the distribution, another parameter, the break
point radius a , is introduced into the calculations, as well as another ex-is
ponential parameter for the distribution.

The same situation is obtained with the belt models. The belt models i
i

increase the versatility of the model but also increase the number of parameters, j
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Powell et al. [28] matches the observations of Weinberg [46, 47, 48],
Blackwell and Ingham [9, 10, 11] , Divari and Asaad [64] ,,-Robley [45] , and
Behr and Siedentopf [8] using such models; They conclude .that particle sizes
are in the range of a = 0.08 to 1.5. The number density of particles in each
size range is approximately constant between the orbits of Venus and Mars
where dielectric particles ( l . 4=< m < 1.8) dominate. Powell et al. concluded
that the density of particles in the region beyond Mars is not sufficient to
affect the character of the zodiacal light.

In these models, the size distribution is arbitrarily truncated at some
lower limit a. . . Although this is within the order of the current models, itmm .
is not physically realistic, especially in certain cases (appendix).

In summary, many models can closely match the observational data
taken in the ecliptic plane. Although good physical arguments may exist to
justify preference of some models over others (e.g. , multimaterial versus
single-material models) , these arguments have no firm basis. Table 26 is
a partial listing of zodiacal light models which are in close agreement with
observational data. . . . . .

K. Spectral Dependence and Null Point

An additional step in studying the behavior of the radiance and polariza-
tion from models is to study the variation of these quantities with wavelength.
Color differences between models is a function :of;the refractive indices of the
material used. Thus, observations of radiance and polarization in several
wavelengths would help establish possible compositions of the zodiacal cloud.

Color magnitudes are calculated by

MA = - 2. 5 Iog10 (L"x) . . . ' (180)

For two wavelengths, the color excess, with reference to the spectral content
of the sun, is calculated from

A(M -M ) = ( M . - M )+2 .5 log 1 0
A B A B
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£ . is the radiant energy flux, at wavelength \., from the sun. Color excesses
Al • ' 1 ' ;

-'for Rayleigh scattering are easily calculated. Since the scattered energy flux
is £ A4 , the color magnitudes are given by

~A- • • ; '

. . .
- M' = - 2. 5 Iog10 -rj- -2. 5 Iog10 R .

. . - . • " . "• - • . . j V • ' - '• '

All terms common to each calculation are included in R. The color excess
i s thus . . • - - . • • -

\A XB "-A ( M A - M B ) = •- 2. 5iogfo --£r- + 2.5ioglo '-^-
• B

.
+2.5log lo -^~ = 10 Iog10 \A - 10 Iog10 \R .

X B / - . " - " " . " : ' . • . /

Using explicit subscripts and the wavelengths \T7 =380 Nm, 'Y_ = 500 Nm,
V (JT

and \_. = 650 Nm, the color excesses
K • ; . , . . , . . . , • . , ' _ , ' . •

, A ( M V - M Q ) = -i.i92 . . . . ' . . . . , . :

and '.;„/ , _ . . . / ; . , , . . - . . . . . ; • , - -- . . • . ' - • • :

A (M -MR ) - -1.139 ' '
* J - t t p . . . . , - . ' l • • I I ' ' ' ' '

are obtained. Thus, tne color enhancement in both cases is bluish. These
values represent an upper limit for small particle models. Aller et al. [22]
using these same wavelengths, calculated the color excesses from Model Fl
of Table 26. Selected values of their results are listed in Table 27. From
their Mie theory models they concluded that the zodiacal light is about 0.2
magnitudes bluer than the sun in both V-G and G-R color indices. Powell,
et al. [28] , using the belt model, also found some color enhancement in the
blue in agreement with observations of Tanabe and Huruhata [87] .: Blue \
enhancement indicates submicron-size particles because of Rayleigh scattering.
Gindilis and Karyagina [88] find a wavelength dependence of the zodiacal light
that goes as X~ 0 < 1 , while for the gegenschein the dependence is X"1'28;
Peterson [43, 89] , on the other hand, finds a \°'065 dependence, a reddening
effect. (Peterson used a Gl star for his calculations.)
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TABLE 27. COLOR EXCESSES FROM ZODIACAL LIGHT MODEL Fi [22]

e

20

40

60

80

100

120

140

160

•A(W
-0.132

-0.152

-0.148

-0.197

-0.203

-0.187

-0.273

, -0.054 .

A(MG-MR)

-0.252

-0. 061

-0.170

-0.157

-0.181

-0.228

-0.211

-0.239 :

Degree of
Polarization

0.063

0.129

0.218

0.236

0.213

0. 102

•j -0..061

-0,068

Approximate
Radiancea

50 000

6 310

1 590

631

399

317

282

317
- . 1

' ' * ' , f ' ,' ' •

, a; Read from Figure 11 of Reference 22. .

The dependence of the neutral point position of polarization on wave-
length is -not well defined because of a lack of observational data. The de-
pendence found by Weinberg [40] has yet to be .predicted by any published model.
For ice (n ~ a. ~4), the null point variation is not that which is observed. Fig-
ure 31 shows the null point variation for our basic model (1 ^ a. ^ 20, n ~ a ~ 4 ,
r"1, ice). The null points were determined by extrapolating from the values
at e = 150 and 160 deg. The tendency is for the null point to move'to higher
elongations with increasing wavelength rather than to decrease as observed.
Greenberg [90, 91] finds this is the behavior of the null point for ice. How-
ever, for particles with m= 1.65 whose sizes are distributed according to

n(a) ~ e~
5^4a' ", he finds, over'a limited wavelength region, that the null

point position moves to lower elongations with increasing wavelength as
observed.

' * , •

Greenberg has observed that mixtures of metallic and dielectric materials
(e.g., Giese'-s models) should be examined. A significant difference between
them would be expected because the backscattering from metals differs from

that of dielectrics.
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L. Out-of-the-Ecliptic Model
____ _ .- ... - »v - .

The out-of-the-ecliptic models discussed in Chapter in were:

1. Constant thickness model [27].
j

2. Linear thickness model [27].

3. Ellipsoidal symmetry model [32, 33].

4. Exponential model [22],

5. Meteor model [35, 36].
,' ' '

This section presents the results of radiance and polarization calcula-
tions using the models given above. Only those values of the parameters
which made the model fit the observations closely will be considered. How-
ever, observational results out of the ecliptic are scarce.

Gillett [27] used an empirical formula for the total differential cross
section d<r /dn (Fig. 39) in the constant and linear thickness models. The

specific cross sections used and the values obtained for K. and (2R/W) for the

constant thickness model and K. and (o> ). for the linear thickness model arei o'i ,
given in Table 28. W is the width of the interplanetary cloud, co is a defining

cone angle, and K. is a weighing factor (Fig. 17). The out-of-the-ecliptic

polarization obtained by the models was high compared to that observed. Gillett
obtained results, for the constant thickness model with m = 1/2 or 1 and for ,
the linear thickness model with m = 1/2 which were fairly consistent with
observations in the ecliptic. The variation of L (45, i)/L (45, 0) for various
values of (2R/W) is shown in Figure 98. The best fit is obtained by having
d\7T/dn reproduce L (e, 0) for 30 to 100 deg with L (90, 90) = 0, such that

L(90) > L(180) > L(110) with the minimum value L(e) in the range 125 < e <
155.

To understand the behavior of Gill ett-type models, several simple
models and several models using the Mie theory were considered by the
authors., Therresults are shown in Figures 99 through 109. In Figures 99
and 100, the radiance contours for a hemisphere are shown for a simple
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1.0 —

0.1-

171= 1

(1) 2R/W = 2.5

(2) 2R/W = 5.0
(3) 2R/W = 7;5

(4) 2R/W =10.0

(5) .5v(2R/W = 2.5) + .5 -,(2R/W = 7.5)
AND OBS

80 60 40
ECLIPTIC INCLINATION

20

Figure 98. Gillett's [27 ] results for a constant thickness model.
(The variation out of the ecliptic for the radiance is shown

for various thickness models.)
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M = 0 CONSTANT THICKNESS

60°

30"

60"

120"

ISO"

•180°

150"

120°

Figure 99. Out-of-the-ecliptic results using the constant thickness
model and the basic heliocentric model (R/W =2.5)

LINEAR THICKNESS a,-

120°

-180"

Figure 100. Out-of-the-ecliptic results using the linear thickness
. model and the basic heliocentric model.
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heliocentric model with constant thickness and with linear thickness. The
ecliptic pole is at the center of the figure and the ecliptic plane is on the
circumference. The difference in the contours is that the linear thickness
model is only piece-wise smooth and has a discontinuity in the rate of change
of the radiance when the line of sight reaches the defining cone. The constant
thickness model has the minimum radiance shifted from the ecliptic pole, whereas
it is at the pole for the linear thickness model. Changes in the radiance and
polarization of the constant thickness model with a change of R/W (=ROW)
are shown in Figures 101 through 104. Ice (m = 1.33) was used as the particle
material. As R/W is decreased (i.e., W is increased), the*radiance values
off the ecliptic increase although the values on the ecliptic remain the same
and the minimum value remains in the same region. The value of R/W =1/10
is the best fit to radiance-observed data. The polarization value increases
for e < 90 deg (Fig. 104) and decreases for e > 90 deg. For this figure, the
point of observation moves such that e - 90 deg is the ecliptic pole. -Figures
105 through 107 show the result of changing the materials. The contours are,
in general, established by the distribution scattering functions, as is the
effect of changing p (Figs. 108 and 109). Refer to Figure 102 for a compari-
son.

The ellipsoidal symmetry model [32, 33] adopted a spatial distribution
put-of-the-ecliptic mode that is continuous,;

—m r / \ 21 —ni/2

Two of their models (Table 29 and Fig. 110) approximate the out-of-the-
ecliptic results of Smith, et al. [19]. In Figure 110, i is the ecliptic latitude
and 6 is the distance from thie sun in ecliptic longitude.

TABLE 29. GIESE-DZIEMBOWSKI MODELS [33]

Model

•, I
Model

n
Model

Refractive
Index

1.5
1.5

. 1.27 - 1.37 i

1.33
1.33 - 0.1 i

Alpha
Range

6 to 120
6 to 120
2 to 120

12 to 120
2 to 120

/particles^
o \ cm3 /

5.3 x 10" f*
4.2 x 10 "
2.1x 10

8.7x10"^
7.5xlo" l d

m

3.0
0.1
3.0

0.1
0.1

r
10
10
10

300
300

233



0)
o .

•IH

1
(u a
I "

-4-* fl

3 S

o „
w II

-12 B

1 S I

O
.« •*

2 U
5 a
'S'S

234



3?
|T_

<M

e
CO03

*

t-l

Ia
o a
« ,
Q) i-l

5 II

JS'b

o

5 «
« • a
O 'oJ g
3 ro

O o

<M ^

»

235



I
<
M

• 5

0)
u

•l-t

t-lo

0) O
t3 (N

i " >
CO 0
w c

I s

•§'§
S ea

O

§ a
CO

co o
0) rH
LJ

; " v/

.S"-1
SH „
O II
CD
I ^

^ a
S T3

! O 5
ca

co
o

236



O Z
o O

H

o
•Z
o

o
CO

F-H

0)

CO

O
'S °
•S 05

flQ
O ctf
Q fi

•»H
fl> r—(

5 H
,̂

O "
4-1 C$

a ^o o
•£ ««
ri co
N o

a
0)

m W

fi 2

NOIlVZiyVlOd JO 33^930

237



0
o

E g
I »
I 3
•a a
tj

2
o
3°
i:
« s
(3

8s'
I'S
g3X

a

II

* II

13 i-»
W &t
(0 >—'

^ ^
a iiu o,
^3 73o a
a> ea

o>
t* .

238



o 2
O. N

§

•i-t
SI .

W Q

o ..
-2 *~ II
1 -s
I a
§ e
O "

If"

• s »
ft o

,1>

g

239



g

CQ

X

•iH

S

Ig

to 23 ̂
3 X

o

cu

240



0)
u

o o
<*-< <M

"S II
"O s,

2 S
S £

§ a^ 03

.„
o «
9 .

Mo*v
S o

^ VM X
W ,n

•3

J ^
O T3

i js
O S
00
o

241



ss:
^o o

«*H M

a> ir

co

CO

.ats s
0 Q
o „

UJ 9 a

fc,

o ^
3 I"Sf o

O T3

? s
O 9

is
•

242



8 = 0°

L 1

10'

MODEL I
(o)

6 = 80°

Ifl3j

10^

MODEL II

90 £(0) 170

. (b)

8 = 80°
.J---.JL.-- 3

103-

30 90 £(0) 170

OBSERVATIONS (SMITH et. al., 1965)

.6 = 0° (c)

30 90 170

Figure 110. Giese and Dziembowski's [33] results for two ellipsoidal
symmetry models compared with Smith'et al. [19] observations.

Model I is metallic and Model n is dielectric. Both models have large
particles with slowly decreasing (p = 2.5) size distribution. By comparing
large particle models with Rayleigh models (i.e., smaller size particles)
which tend to have a minimum further from the sun than the ecliptic pole,
Giese and Dziembowski concluded that the larger particles better fit the ob-
served data.

Van Rhijn used a density distribution of the form

n(x, y, z) = NQ (1 - a (x2 + y2) - bz2), (182)
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where x, y, z are heliocentric coordinates for out-of-the-ecliptic calculations
[ 2]. The integral was terminated when

n(x, y, z) = 0,

and a phase function was assumed; thus,

47rh(e) = 0.655- 0.711 sin 0 - 0.345 cos 6 + 0.406 sin3 9 (183)

for the angular distribution of the.scattered light. The values of the parameters
a and b were determined from observed radiance to be a = 0.176 and b = 1.406.
This gives a ratio of the major-to-minor axis of 2. 8. For geocentric longi-
tudes (ecliptic longitudes) of 6 = 0, 20, and 60 deg, the values of Van Rhijn
are compared with the out-of-the-ecliptic data of Smith et al. [ 19] in Figure 111.
The data points (6 = 0 and e = 80 deg) were used to normalize the data. The
agreement is good. Using a particle with an albedo of 0.3 and a 50-cm radius
(rocks), Van Rhijn estimated the density of particles at 1 AU to be 10~18

g/cm3.

Fesenkov [ 34] also used the ellipsoidal model and the scattering func-
tions for aerosols to determine the polarization at the ecliptic pole. The
following values resulted:

- Eccentricity Polarization

e = 0 disc model p = 34. 0 percent

e = 0.1 p = 32. 8 percent

e = 1 (spherical model) p = 26.4 percent

Aller et al. [ 22] used the exponential model to calculate out-of-the-
ecliptic contours. However, their polarizations are generally too high com-
pared with observations; cf., Table 13, p. 107. The radiance minimum
occurred near e = 130 deg, with i = 90 deg. However, the exponential decay

away from the ecliptic varies as e~ , which gives an exponential half-
width of the cloud of on the order of 10 * AU.

Rouy and Aller [ 92] make the observation that the distribution of the
radiance perpendicular to the ecliptic could be approximated by a Gaussian
distribution. For scans orthogonal to the ecliptic plane at a specific elonga-
tion e, the radiance could be expressed by
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o

40

-300

-200

-100

60 80 100 120

ELONGATION

140 x 160

Figure 111. Van Rhijn's [3] ellipsoid results for out-of-the-ecliptic
(sojid lines) compared with Smith et al. [19] data (• •** 6=0 deg,

O ~ 6 = 20 deg, D ~ 6 = 70 deg) normalized at
6=0 and e = 80 deg.
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L (W, €) = LzQ (6)

where . ' .

L (e) = the peak radiance of the zodiacal light.zov '

L (e) = the average radiance of the background.

a; = the angular measurement from the ecliptic.
t

By analysis of the derivatives* various zeroes (Fig. 112) arise which one can
use for determining the parameters in the equation. Examining Weinberg' s
data for a particular scan for total radiance, Kbuy and Aller determine that
K = 1.182 (Fig. 112). Their calculation should be considered a preliminary
one since the accuracy of the approximation has yet to be determined. . ...

Singer and Bandermann [ 21] used the generalized model with the size
distribution given by

n(r, 0 )
;=I f f f /2 a 2 f ( a e, i ) d a d e d i

T * * ^ * ^ I f 1 — I Y / 3
T»/O I T-/Q — 1 I TT/9 Q ^r/4 |I/d.— J. | T\/£i—\3

(184)

where : ..

f(i) = sin i e~bl . . (185)

They assumed a scattering intensity function i(6 ) of the form

where the first term is the diffraction component, and the second is the re-
flection component, y is the albedo of the particle, TJ is the phase coefficient of
of reflection, and <S> and <S2> are the mean and mean-square of the particle
size dimension. The values of T) = 0. 02, T = y'< S >/< S2 > = 0. 14, b = 3,
y = 0.1, and m = 1. 5 fit the observations of Smith et al. [ 19] best for the
functions: • • . . . - .
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L(e)/L(e = 30deg), i= 0 deg

L(i)/L(i= 0 deg), e = 90 deg •

and

L(e, i = 0 deg)/L(e, i = 90 deg).

T = 0.14 indicates a flat size spectrum of large particles and b = 3 indicates
an average orbital inclination of i= 30 deg. The radial dependence is r ' .
Polarization values were not calculated because of the form of the scattering
intensity function.

Divari [ 93] has taken the meteor model with a scattering function of
the form

_ Of}

f ( 9 ) =0.0549 [1 + 11.1 (e - 0.009)1 (187)

and calculated relative radiance. The isophotes obtained are close to those
observed. The polarization was also matched by using an empirical function
taken from atmosphere observations. The zodiacal light polarization values
obtained are high, even in the ecliptic (e.g., p(e = 80) = 40 percent); hence,
due to the values of the parameter used as input by Divari, the results are
inconclusive.

It can now be seen that there are several out-of-the-ecliptic models
(some using Mie theory, some not) which achieve reasonable agreement with
observations. The agreement is not yet close enough to be really satisfactory,
but further improvement will probably await the results of measurement made
outside the earth's atmosphere.

M. Nonspherical Particles

The Mie-theory models deal only with spherical particles and can sfiow
peculiar effects, e.g.; haze bow [32]. Analysis using this theory may give an
erroneous interpretation of experimental data, especially in the anti-solar
direction where the geometry of the particle plays a more important role [ 90,
91]. However, Little et al. [86], Napper and Ottewill [94], and Bonn and
Powell [ 95] have shown that the radiance, in the 50 < 9 < 150 deg range, from
a distribution of nonspherical particles of random orientation can be represen-
ted approximately by an appropriate distribution of spherical particles. For
scattering angles 0 < 60 deg, the protrusion of irregular structure increases
the scattering functio'n by diffraction. Nonspherical particles may prefer a
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given orientation, resulting in further differences from Mie theory. Though
Powell et al. [28] concluded that the scattering intensity functions at a given
wavelength for a distribution of cubes (large-volume shape) could be repro-
duced by spheres whose distribution is approximately that of the cubes. They
also conclude that a size distribution for small-volume shapes may differ
markedly from that of equivalent spheres. The difference between small-
volume scatterers and spheres can be seen geometrically by considering the
ratio of the projected area of rods and disc to that of a sphere. If the rods
have a length-to-radius ratio of 10, and the disc has a radius thickness ratio
of 10, then, for an equivalent volume, the projected area ratio to a sphere is
1.7 and 5. 5, respectively. Hence, small-volume particles, such as flat
particles and very elongated particles, are more efficient scatterers than
spheres for equivalent volumes.

Only a few scattering problems for finite bodies have been solved
(e.g., sphere, prolate spheroid, oblate spheroid, disc and rods [96]} although
various perturbation procedures have been applied to other shapes. Recent
investigations on finite cylinders might lend themselves to zodiacal light
studies [24, 97, 98, 117, 118, 101]. Cylindrical scattering differs from
spherical scattering in that there is a loss in the degree of symmetry which
introduces anisotropic scattering. A shape factor can give a general charac-
terization of the anisotropic scattering. The anisotropic processes should
lead to new results in zodiacal light model parameters, although no model
exists employing cylinders to date.

Figure 113 and 114 give the scattering intensity functions and polariza-
tion for infinite cylinders whose axes are perpendicular to the incident direction
[82, 98]. The polarization for the cylinders is not zero in the forward or
backward direction, a marked difference from spheres. For larger a. , the
diffraction peak (Fig. 113) is observed as an increase in the radiance in the
forward direction for all angles of incidence. Kerker et al. [24] give single-
size scattering functions for oblique incidence. The functions are strongly
dependent on the orientation of the cylinder axis with respect to the incident
direction. The scattered intensity functions contain a perpendicular and a
parallel component for both perpendicular and parallel polarization of the
incident beam.

For a distribution of dielectric cylinders, (m* = 1.33), Banner [97]
observed that with natural light at normal incidence, the total scattering
intensity is analogous to dielectric spheres, having a forward diffraction peak
and an increase in the back-scattered radiance. However, the polarization
differed significantly from that for spheres (Fig. 115).
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For a distribution of particle sizes, as the tilt angle increases, the
total intensity decreases. The tilt angle is the angle in the incident plane
between the incident direction and the perpendicular to the cylinder axis.
Also, as the tilt angle increases, the polarization in the forward direction
does not change much while the polarization in the backward direction oscillates
in polarity. Compare Figures 115a and 115b [97]. Making use of an exten-
sion given by Lind [99] to the infinite cylinder treatment, Hanner gives results
(Fig. 115c) for randomly oriented long, finite dielectric cylinders. The shape
of the curve is similar to that for a distribution of dielectric spheres [m* =
1.33, n(a) = nooT4 , 1 < a := 20] (cf. Fig. 62). The differences are that
the polarization for cylinders is nonzero in the forward direction, less nega-
tive in the backward direction, and its peak is at 110 deg instead of 120 deg.

Thus, it is seen that the radiance and polarization from models depend
greatly on the shape of the particles. Hence, the Mie theory approach can be
considered a first-order approximation. To obtain better models, the effects
of irregular shapes on the radiance, polarization, and color of zodiacal light
require further investigation, both experimentally and theoretically, and more
reliable and consistent observations are needed.

N. Areas for Further Research

Presently, a unique model does not exist which predicts the observed
photometric properties of the zodiacal light. However, comparing the various
models which are in approximate agreement with the observations (cf. Table
26), one finds that the following properties are representative of the zodiacal
light dust cloud:

1. Composition — Largely dielectric particles with a refractive
index in the range 1.3 to 1.8 with smaller percentages of metallic particles.

2. Shape structure — An equivalent size distribution of spheres in
the range from 0.1 to 1.0' micron or 1. 0 to 10 microns. Assuming the smaller
size distribution, the exponential power law exponent is on the order of 3-4,
while the larger size distribution has a smaller value of, say, 2-3.

3. Spatial structure — The spatial structure of the cloud can be
considered to be heliocentric with a decrease in the particle density according

-m •
to r wherje 0 < m < 3. 0. The out-of-the-ecliptic spatial density models
indicate a characteristic half-thickness of 10-1 AU for the dust cloud. The
number density is on the order of 10~13 - 10~15 particles/cc.
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In conclusion, it can be said that an enormous amount of work has been
done in relating light scattering models to the-photometric observations of
the interplanetary dust cloud; however, a conclusive knowledge of the physical
properties of the dust cloud still remains elusive.

The following areas need refinement for model calculations and
analysis of the zodiacal light by photometry:

1. The size and spatial distribution needs to be based on experi-
mental data. This is particularly true in the case of particle-size distributions
where a lower cut-off limit is assumed. A sharp cut-off seems unlikely.

2. A set of polynomials needs to be created to form do/dJ2 .

3. The effects of irregularly shaped particles compared to spheres
should be.better defined to categorize differences.

4. The methods of inversion of the photometric observations of
do/dS2 to find particle sizes and composition need more definition and study.

5. The complete effects of the physical forces on the dynamics of
the interplanetary particles need to be determined.

6. If possible, a Mie theory model which satisfies all the gross .-. <
properties of the observational data should be found.
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APPENDIX. DYNAMICAL FORCES

This appendix considers the physical'torces which act on the interplane-
tary particles, thereby possibly determining the spatial and size distribution
and the temporal variation.

1. Radiation Pressure [24]

According to Maxwell' s theory of electromagnetic radiation, light '
carries momentum as well as energy. The direction of the momentum is "in
the same direction as the energy flow and is given by

. M = E / c . . . . .

where E is the energy and c is the velocity of light. Electromagnetic momen-
tum produces a radiation pressure on the interplanetary particles. The
momentum of the incident field is scattered and absorbed by the scattering
center. The total energy per second removed from the incident beam of unit
radiance by absorption is equal to the cross section for extinction, C . How-

" ' '

ever, of the momentum carried away by the scattered radiation, that part which
is associated with the forward component is restored to the incident beam.
The time- averaged radiation force is [24] . - . . - . ' - c

(c t - cos e c } ,\ ext sea/

where 2 is the spectral radiant flux density at the surface of the particle,
C is the cross section for scattering, andsea

p- f_+ (ij + i2) cos 9 d( cos 9)
cos 0 =

i2) d( cos 6)

cos 9 d(cos 9) /C
sca

The asymmetry factor, cos 6 , is the mean of cos 6 with the scattering inten-
sity functions as the weighting function. The efficiency factor for radiation
pressure is defined as

C C
_ X _ X -x _ X ext -T sea
Q = Q ' - cos 9 Q = 5- - cos 9 s-

pr ext sea ira^ ira*
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The asymmetry function can be expressed as

co I" . .
- T ~ A 4 v n ( n + 2 ) T , / i . * , \
cos 6 Q = — T // ~~^ - , Re ( a *a + b *b )sea or ^-M n + 1 \ n n + 1 n n + 1/

n=l

2n „
+ - - - Re a

n ( n + 1) n n

Hence, for a specific wavelength the pressure exerted on a particle of a cross-
sectional area ?ra2 is

pr

2. Gravitational Force Versus Radiation Force

The force of gravity on a particle of radius a, mass density p , and
distance r from the sun is

0 4 ,
F = —j— — Trpa3 ,

g r 3

where G is the universal gravitational constant (6. 670 x 10 nt m2/kg2)
and M is the mass of the sun (1.989 x 1030 kg). For r in AU, p in kg/m3 ,

and a in meters [ 100]

2.5 x 10 3F = ~2 paj

g r

To compare this to radiation pressure, one sees that the radiation force is

Tra2 -—,—( „, f2 ^A ,, Tra2 R2 r2 X , . ^A _F
T. = 7^Q^J^R J 2 ^ = -r-z J Q ( m f o ! ) z d\r cr2 • pr
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A. ' —7—twhere S is evaluated at 1 AU. Q ( a ) is a function which is on the order ofprv

unity for a greater than 0.6 x 10~7 m and which declines approximately as a4

for smaller a. For r in AU and a in meters,

-5 a2 _
F = 1.4 x 10 — g- Q [nt] ..

The quantity of 1 + /z, defined as the ratio^of the force caused by radiation
pressure F to the force of gravitational attraction F , is independent of th

distance r of the particle from the sun and is given by Gindilis et al. [105]

i+ =fl = *L f2 Q( X (m a) 2X d\
F pa •* pr ' '

' S *i

where p is the density of the dust particle, A = 3 R2/4cG M . They use

(m, a) = p (! + /*)

to represent the ratio of radiation force to the gravitational force per unit
density for a given particle with radius a and refractive index m*. This
quantity is important in evaluating the relative magnitude of the two forces.
Table A-l gives the values of Q (m, a) obtained by them; Table A-2 gives

the values $ (m, a); Figure A-l gives the pertinent results for several
substances. In the case of quartz and water, the radiation pressure is less
than the force caused by gravitational attraction for all particle sizes.

An analogous situation occurs for most dielectrics (m* ^1.6 and p
« 2-3 g/cm3). When m is larger than two, particles of certain sizes will
be pushed out of the solar system. For titanite (m* = 2, p = 3.5 g/cm3),
particles with 0.1^ a < 0 . 3 X 10~6 m will be ejected. If Q (¥J = 1, then the

— Vradiation pressure dominates solar gravity for a ^ 5 x 10 m. The rapid
decline of Q Ta] below 1 x 10" m limits the region of radiation pressure,pr
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Figure A-l. The magnitude of 1 + JLI as a function of the particle radius:
1= water, 2 = quartz (m* = 1.5, p= 2.5), 3 = titanite (m* = 2. 0, p = 3.5) ,

4= iron (p = 7.8), 5 = graphite (p = 2. 0) [1051.
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3. Lorentz Force

The processes which are important in determining the electric charge
q on an interplanetary dust particle are shown in Figure A-2.

Because of magnetic fields carried in the solar wind, the particle can
experience the Lorentz force which is exerted by the magnetic field B on the
particle moving with a velocity v and is given by

F" •= - qv x B ' .
L

For I "v I = 400 km/s and |B| = 3 x io~5 gauss at 1 AU, then with a in
meters [99]

F w 10"W a[nt] .J_j "

The Lorentz force F is caused by the interaction with the interplanetary
L

magnetic field alone, whereas the convective force F = qw x B depends oncon
the fact that the solar wind carries the magnetic field along at a speed w, which
is large compared with v.

4. Corpuscular Drag

The drag forces caused by collisions with solar wind particles can be
calculated by:

F , = rate of momentum transfercd .

= proton flux x momentum x area of particle.

— 19
of the total drag force is 6.3 x 10 a2

drag parallel to the velocity is 4 x 10~20 a2 [nt] [77].

—19 '
An estimate of the total drag force is 6.3 x 10 a2 [ntl. The component of
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Figure A-2. Processes which determine the electric charge
on an interplanetary dust particle [102].

5. Coulomb Drag

An equilibrium charge q on a dust particle can be approximately calcu-
lated if the charging process is the photoelectric effect and the discharging pro-
cess is the collection of electrons from the solar wind. An estimate of the
equilibrium potential is ^ 2 volts [ 103]. If the charged particle sees an elec-
tric Field, then the particle will experience a Coulomb drag force, F = qE.

-19 q
An estimate of this force is 10 " a2 [ntl and the drag component parallel to the
particle velocity is 6. 6 x 10~21 a2 [nt] [27].
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6. Mass Loss Effects

The solar wind will cause a radial sputtering erosion. Solar radiation
will cause evaporation or sublimation. Both of these effects contribute to mass
loss of the interplanetary particles and are more important closer to the sun.
Mass loss effects ..will affect the dynamics through the equation of motion.

7. Physical Process

Sputtering by protons and alpha particles is most effective at kilovolt
energies. The threshold energy for sputtering of metals by ions has been
found to be given by the requirement that the product of the momentum trans-
ferred at .threshold from an ion to the target atoni and of the sound velocity in
the target be proportional to the heat of sublimation of the target [ 36]. The
erosion rate of a dust particle is proportional to,the flux of ions in the solar
wind. The mass rate loss is

dm A y / da \ . ,.—— = -4iraz (——- ) , a = radius
dt ; ; ' \ dt /

where da/dt is the shrinkage rate:

dadt - cmt.i riYl •
1

and m is the atomic mass of the target, F. represents the various fluxes, and
L , • ' : - 1

Y. the corresponding yields (atomic/ion).

To estimate the temperature, the solar irradiance blackbody equilib-
rium temperature is calculated from the equilibrium equation; energy received
is energy radiated:

= ea T4 A
7T ' t

(Stefan-Boltzmann Law) where

a. = absorptivity

S = solar constant [1390 watts (AU)2/m2]
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r = solar distance ( 1 AU = 1.496 x 1011 m)

A = projected area (solar-oriented) = Tra2 (sphere)

e = emissivity

cr = Stefan-Boltzmann constant,

T = equilibrium temperature,

A = total area = 47rr2 ( sphere)

and heat loss from vaporization is neglected.

Assuming that ( l) the sphere is rotating or the sphere is small enough
that equilibrium temperature has meaning and (2) a. = e; then for interplane-
tary spherical blackbody particles the equation for the equilibrium temperature
for various solar distance is

T2r = 0.785 x 105 l°K2 AU]
i

8. Poynting-Robertson Effect

Because light has momentum, its reradiation or general reflection
from a particle in orbit about the sun produces a retarding force on the motion
of the particle. While the process of absorption and re-emission produces no
net force when one chooses to work with a stationary frame referred to the
particle, it is found when the solar reference frame is used that a resisting
force is introduced on the particle which is proportional to its velocity [ 104] .
Assuming (1) spherical particles of radius a and uniform density, (2) gravi-
tational forces are dominant over the radiation pressure, (3) diffraction is
not considered, and (4) the particles absorb all incident radiation over a
cross section ra2 and re-emit the radiation isotropically at the same rate,
then the equations of motion are

r -

d * 2M ad
(r 0) = —5~

dt V ' r^
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where

M = GM0 - ac

a =3 E1 / 167rc2ap

Ef = total energy emitted by the sun per second (3.79 x 1033 erg/s)
i '. • \

The resultant equations for the semimajor.axis b and the eccentricity e are
1 !

db a ( 2 + 3 e2) '

de • 5a e
dt 2b 2 ( l -e 2 ) / 2

For circular orbits, the total time of fall for a particle of radius a, density p
at an initial distance r in AU is [ 119]

b2

t .= —— = 7.0 x I0 6 apr 2 [years]

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama 35812, March 30, 1972
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