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LOW-SUBSONIC AERODYNAMIC CHARACTERISTICS OF A 60°

SWEPT DELTA-WING SPACE SHUTTLE ORBITER

By Delma C. Freeman, Jr.
Langley Research Center

SUMMARY

An investigation has been conducted in the Langley low-turbulence pressure tunnel
to determine the low-subsonic longitudinal and lateral-directional aerodynamic charac-
teristics and longitudinal control effectiveness of a North American Rockwell phase B
delta-wing orbiter concept designated 134D. The model was tested with and without fixed
transition over a range of Reynolds numbers, based on body length, from 5.25 x 10^ to
29.40 x 106, at Mach numbers less than 0.35, at angles of attack from approximately -2°
to 28°, and at angles of sideslip of 0° and -6°.

The results of the investigation showed that the model exhibited static longitudinal
stability up to an angle of attack of 15° with sufficient eleven effectiveness to trim up to
an angle of attack of 22° with relatively small Reynolds number effects except on the
maximum lift-drag ratio, which was increased by 0.8 from the lowest to the highest test
Reynolds numbers. Increasing the Reynolds number, based on body length, from
5.25 x Ifl6 to 29.40 x 10^ resulted in a large increase in the directional-stability param-
eter and a large decrease in the effective-dihedral parameter between angles of attack
of 16° and 22°.

INTRODUCTION

One of the current goals of the National Aeronautics and Space Administration is the
development of an economical space transportation system capable of transporting large
payloads to and from near-earth orbit. As part of this general effort, wind-tunnel tests
of a North American Rockwell phase B delta-wing orbiter concept designated 134D (see
ref. 1) have been conducted over the entire entry to landing speed range at the Langley
Research Center. The investigation reported herein was conducted in the Langley low-
turbulence pressure tunnel to determine the basic low-subsonic longitudinal and lateral-
directional aerodynamic characteristics and longitudinal control effectiveness of the
model. The model was tested with and without fixed transition over a range of Reynolds
numbers, based on body length, from 5.25 x 106 to 29.40 x 106, at Mach numbers less than



0.35, at angles of attack from approximately -2° to 28°, and at angles of sideslip of 0°
and -6°. Some preliminary results were presented in references 2 and 3.

SYMBOLS

The longitudinal data are referred to the stability system of axes and the lateral-
directional data are referred to the body system of axes. (See fig. 1.) The moment cen-
ter was located at 67.1 percent body length, as presented in figure 2.

The units used for the physical quantities of this paper are given both in the Inter-
national System of Units (SI) and in the U.S. Customary Units. Measurements and calcu-
lations were made in U.S. Customary Units. The equivalent values of units were deter-
mined by using the conversion factors given in reference 4.

A aspect ratio

b wing span, m (ft)

c mean aerodynamic chord, m (ft)

-FXC A total axial-force coefficient,

CT-) drag coefficient,

q s
^•oo

Drag
qJS

forebody drag coefficient (corrected to correspond to a base pressure equal
to free-stream static pressure)

Cj) Q drag coefficient at C-^ = 0

CT lift coefficient, ——
q^S

CL lift-curve slope

iv/r__
C, rolling-moment coefficient,

q Sc
^

AC7
GI = -, per deg (where j3 = -6° and 0°)

MY
Cm pitching-moment coefficient,



-Fz
Cjj normal-force coefficient, ——

^so8

MZ
Cn yawing-moment coefficient, ——

Cn = -, per deg (where /3 = -6° and 0°)
P A/3

= Cn --^C, sin a
0 l-x 8

Pu - P
3 b base pressure coefficient, -^——— (see fig. 2 for definition of subscripts 1

and 2)

Pc - P
balance cavity pressure coefficient, —-—-

"oo

FYlateral-force coefficient, —-
q S
^00

CY
r-=-, per deg (where /3 = -6° and

A/3

CY laterai-iorce coemcient, —-
Q o

Cy = —r-f-, per deg (where /3 = -6° and 0°)
j3 A/3

D drag

FX axial force, N (Ib)

FY lateral force, N (Ib)

FZ normal force, N (Ib)

Ix moment of inertia about longitudinal body axis, kg-m2 (slug-ft2)

Iz moment of inertia about normal body axis, kg-m^ (slug-ft2)

L lift, N (Ib)

L/D lift-drag ratio

(L/D)corr lift-drag ratio computed using CD corr

I body length, m (ft)



MX rolling moment, m-N (in-lb)

My pitching moment, m-N (in-lb)

Mg yawing moment, m-N (in-lb)

p^ static pressure at base of model, N/m2 (lb/ft2)

p cavity pressure, N/m2 (lb/ft2)

PTO free-stream static pressure, N/m2 (lb/ft2)

q^ free-stream dynamic pressure, N/m2 (lb/ft2)

R Reynolds number, based on body length

S reference wing area, m2 (ft2)

Se elevon area, m2 (ft2)

s leading-edge suction parameter, percent

X,Y,Z body reference axes

a angle of attack, deg

|3 angle of sideslip, deg

6e elevon deflection, positive when trailing edge is down, deg

i// angle of yaw, deg

Subscripts:

corr corrected

max maximum

s stability axes



trim at longitudinal trimmed conditions

Model components:

B body

W wing

Vj vertical tail

Z orbital maneuvering system pod (see fig. 2)

DESCRIPTION OF MODEL

The model tested was an 0.0118-scale model of a conceptual high-cross-range shut-
tle orbiter (the North American Rockwell phase B delta-wing orbiter concept designated
134D). The general arrangement of the model is shown in figure 2. A photograph of the
model is presented in figure 3. The model had a leading-edge wing sweep of 60° and
elevon surfaces (Se/S = 0.065) that served both for pitch and roll control. The wing had
an NACA 0009-64 airfoil section with 0° incidence at the root and an NACA 0012-64 air-
foil section at the wing tip with -5° twist about the wing trailing edge. The rudder could
be deflected for directional control or flared for speed-brake applications at transonic
and supersonic speeds.

APPARATUS AND TESTS

The experimental results were obtained in the Langley low-turbulence pressure
tunnel, which is a variable-pressure, single-return facility having a closed test section
0.914 meter (3.0 feet) wide and 2.282 meters (7.5 feet) high. This facility can accommo-
date tests in air at Reynolds numbers up to approximately 49.2 x 10^ per meter
(15.0 x 106 per foot) at Mach numbers up to about 0.40.

Tests were made at Reynolds numbers, based on body length, from 5.25 x 10^ to
29.40 x 106 at Mach numbers up to 0.35. Angle of attack was varied from -2° to 28° at
angles of sideslip of 0° and -6°. In order to assure turbulent flow at a fixed location on
the model and thereby allow extrapolation of skin friction estimates to full-scale, some
tests were made with fixed transition. Two different sizes of grit as determined by the
methods of reference 5 were tested: 0.0073-cm grit sized to assure turbulent flow with
minimum grit drag at a Reynolds number of 16 x 10^ and 0.0124-cm grit sized to assure
turbulent flow at a Reynolds number of 5 x 106. Transition was fixed on the aerodynamic



surfaces 1.27 cm aft streamwise of the leading edge and on the body 3.81 cm aft of the
nose.

MEASUREMENTS AND CORRECTIONS

The drag coefficients presented represent gross drag in that base drag has not been
subtracted. Base and balance cavity pressures measured during the tests are indicated
in the final part of each of the basic data figures presented. Measurements were made
in three different locations and these locations are shown in figure 2. The data have been
corrected for blockage and lift interference by the methods of references 6 and 7. Angles
of attack have been corrected for the effects of balance and sting deflection due to aero-
dynamic loads.

RESULTS AND DISCUSSION

Static Longitudinal Characteristics

Effect of Reynolds number.- Presented in figures 4 to 7 are the results of tests to
determine the effect of Reynolds number on the static longitudinal characteristics of the
model. The data presented in figures 4 and 5 were obtained with a smooth model (natural
transition), and the data presented in figures 6 and 7 were obtained with fixed transition
by using 0.0124-cm-grit and 0.0073-cm-grit sizes, respectively. These results are
summarized in figure S by comparing the forebody drag coefficient at zero lift and the
maximum lift-drag ratio computed using forebody drag coefficient through the Reynolds
number range for the smooth model and two grit sizes. At a Reynolds number of approx-
imately 17 x 106 based on body length, the values of (L/D)Corr,max and (cD}O)corr

indicate that supercritical Reynolds numbers have been achieved and any changes in these
parameters above this Reynolds number are small and result from reductions in skin-
friction drag. These comparisons show that by addition of the grit to the smooth model
to assure turbulent flow conditions over the entire model, the level of CD 0 at the lower
Reynolds number is increased and gives values that would be expected from extrapolating
the high Reynolds number data. This indicates that properly fixing transition produces
skin-friction drag that can be scaled directly to full-scale, as has been shown in previous
investigations. These differences between natural-transition and fixed-transition mea-
surements at the lower Reynolds numbers (less than approximately 12 x 1()6) indicate a
mixture of laminar and turbulent flow on the smooth model, with the flow becoming more
turbulent as the Reynolds number increases. A comparison of the base-pressure data
(cp,b)l (fig8- 4(g) and 6(g)) indicates that at the lower Reynolds numbers there is laminar
separation in the area of the model base for the smooth model. There are other small dif-
ferences indicated by the data but these are within the accuracy of the drag measurements.



Presented in figure 9 is the leading-edge suction parameter s (as derived from
the expression of ref. 8 with the assumption of elliptical lift distribution) computed at
(L/D)max plotted against Reynolds number for the smooth model and model with the
0.0073-cm-size grit:

r 2
CL .

s = — x 100
r 2 2
CL CL
CT 7TAL 01

Increasing the Reynolds number from 5.25 x 10^ to 29.40 x 10^ increased the leading-edge
suction parameter for the smooth model from approximately 81 percent to 94 percent.
This effect is considered relatively small but results in an increase in maximum untrim-
med lift-drag ratio of about 0.8. The model with transition fixed with 0.0073-cm grit
shows an increase in s from approximately 77 percent to 92 percent for the range of
Reynolds numbers presented. These results agree reasonably well with the results of
reference 1, which were obtained with the use of a very similar model of a smaller scale.
Although figure 8 shows that proper transition fixing insures drag data which can be
scaled to full-scale conditions, these data show that transition does not greatly affect
leading-edge suction. In order to obtain proper values of suction (>90 percent, ref. 8),
leading-edge Reynolds number has to be greater than can be measured on scale models in
atmospheric tunnels. Therefore, the remainder of the presented data were measured for
the smooth model at R = 21.0 x 10 .̂ This value of Reynolds number insures turbulent
flow conditions and leading-edge suction greater than 90 percent.

Basic longitudinal characteristics.- The basic longitudinal characteristics of the
model are presented in figures 10 to 12. Figure 10 shows only slight changes in the aero-
dynamic characteristics at low values of a due to the addition of the vertical tail and
orbital maneuvering system pod to the wing-body combination. The eleven effectiveness
data are presented in figure 11 and show that the model is longitudinally stable in the
angle-of-attack range up to about 15° (center of gravity at 0.67Z) with a slight destabilizing
break in the curve above an angle of attack of 15° for the lower eleven deflections. This
unstable break results from wing-tip separation, which is relieved as the elevens are
deflected for trim. The model could be trimmed up to an angle of attack of approximately
22° at the maximum elevon deflection investigated and was longitudinally stable at trim
throughout this range. The values of (L/D)trim and CL trim calculated by using the
data of figure 11 are presented in figure 12. These results show a maximum trimmed
lift-drag ratio of 6.8 at angles of attack of 10° to 11° with a trimmed lift coefficient of
approximately 0.3.



Static Lateral-Directional Characteristics

Effect of Reynolds number.- The effect of Reynolds number on the static lateral-
directional stability characteristics is presented in figure 13. Increasing the Reynolds
number, based on body length, from 5.25 x 106 to 29.40 x 1()6 resulted in a large increase
in Cng and a large decrease in the effective dihedral parameter (-Cj \ at angles of

attack between 16° and 22°. These effects are probably caused by the weakening of the
wing leading-edge vortex influence on the windward sides of the body and vertical tail and
on the leading wing-tip separation as Reynolds number increased (see ref. 3). The
dynamic directional-stability parameter Cn fi , (see ref. 9) computed by using the

data presented in figure 13 and IgAx = ^-^ *s presented in figure 14. The fact that
the value of Cn remained positive throughout the test angle-of-attack range indi-

cates that aperiodic divergence would not occur. An interesting point to be made is that
even though the previously discussed longitudinal data indicated that supercritical
Reynolds numbers have been achieved, there were still effects of Reynolds number on the
lateral-directional characteristics.

Effect of elevon deflection. - The data of figure 15 present the effect of eleven
deflection on the static lateral-directional characteristics of the model. These results
indicate a slight increase in Cn and an increase in negative CS for the elevon

deflection of -5.1°. These effects probably result from induced effects on the flow field
over the wing, since the absence of any marked effect of control deflection on Cy,, indi-

cates that the body and vertical tail lateral loading are essentially unchanged.

Effect of vertical tail. - The data presented in figure 16 show the effect of the center-
line vertical tail on the static lateral-directional characteristics of the model. Installa-
tion of the vertical tail resulted in the addition of a constant positive increment in Cn

/3
and a correspondingly constant negative increment in C» . The fact that the relative

shapes of the curves were essentially unchanged confirms that the loading on the vertical
tail is not greatly influenced by the flow field of the wing-body.

SUMMARY OF RESULTS

An investigation has been conducted to determine the low-subsonic aerodynamic
characteristics of a 0.0118-scale model of a North American Rockwell phase B delta-wing
orbiter concept designated 134D. The results of these tests may be summarized as
follows:



1. The effect of Reynolds number variation from 5.25 x 106 to 29.40 x 106 on the
longitudinal aerodynamic characteristics of the model was relatively small except for an
increase in the maximum lift-drag ratio of approximately 0.8.

2. The model could be trimmed up to an angle of attack of 22° at the maximum
eleven deflection of the investigation, and the model was longitudinally stable at trim
throughout this range.

3. The model directional-stability and effective-dihedral parameters were sensitive
to Reynolds number variation at angles of attack above 12°. Increasing the Reynolds
number, based on body length, from 5.25 x 10^ to 29.40 x 10^ resulted in a large increase
in directional stability and a correspondingly large decrease in effective dihedral between
angles of attack of 16° and 22°. These Reynolds number effects persisted at high values
where longitudinal characteristics were essentially independent of Reynolds number.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., May 8, 1973.
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Figure 1.- System of axes used in investigation. Arrows indicate positive
directions of moments, forces, and angles.
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Figure 4.- Effect of Reynolds number on longitudinal characteristics of model.
Natural transition; 6e = 0°; BWV1Z.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 4.- Concluded.
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Figure 5.- Effect of Reynolds number on longitudinal characteristics of model
with elevons deflected. Natural transition; 6e = -10.4°; BWVjZ.
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Figure 5.- Continued.
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Figure 5.- Continued.
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Figure 6.- Effect of Reynolds number on longitudinal characteristics of model.
Fixed transition, 0.0124-cm grit; 6e = 0°; BWVjZ.
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Figure 6.- Continued.
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Figure 6.- Continued.
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Figure 6.- Concluded.
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Figure 7.- Effect of Reynolds number on longitudinal characteristics of model.
Fixed transition, 0.0073-cm grit; 6e = 0°; BWVjZ.
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Figure 7.- Continued.
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Figure 7. - Continued.
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Figure 7.- Continued.
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Figure 7.- Continued.
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Figure 7.- Concluded.
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Figure 10.- Configuration buildup. R = 21.0 x 106; 6e = 0°.
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(b) CD as a function of CL.

Figure 10.- Continued.
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Figure 10.- Continued.
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Figure 10.- Continued.
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Figure 10.- Concluded.
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Figure 11.- Longitudinal control effectiveness. R = 21.0 x 106; BWV^Z.
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Figure 11.- Continued.
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Cm and L/D as a function of

Figure 11.- Continued.
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Figure 11.- Concluded.
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Figure 13.- Effect of Reynolds number on lateral-directional characteristics. 6e = 0°.
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Figure 15.- Effect of pitch control on lateral-directional characteristics.

R = 21. Ox 106.
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Figure 16.- Effect of vertical tail on lateral-directional characteristics.
6P = 0°; R = 21.0 x 106.
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