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Preface 

This monograph is the second in a series dedicated to the organization and 
summarization of knowledge existing in the field of continuum vibrations. The 
first monograph, entitled Vibration of Plates, was published in 1969, also by the 
National Aeronautics and Space Administration. 

The objectives of the present work are the same as those of the previous one, 
namely, to provide 

(1) A comprehensive presentation of available results for free vibration 
frequencies and mode shapes which can be used by the design or development 
engineer. 

(2) A summary of known results for the researcher, facilitating comparison 
of future theoretical and experimental results, and delineating by implication 
those problems which need further study. 

The scope of the present monograph is also the same as that of the previous 
one in that 

(1) Materials are assumed to be linearly elastic. 
(2) Structures were not included in this study, although some attention has 

been given to the accuracy of representing a stiffened shell as an orthotropic shell 
for purpose:s of vibration analysis. 

The key to a comprehensive monograph such as this is organization. Careful 
organization not only makes the completed work more understandable and useful 
to the reader, but also facilitates the writing. Although much of the organization 
can be seen from the Contents, I will attempt to explain it further below. 

Shells have all the characteristics of plates along with an additional one- 
curvature. Thus we have cylindrical (noncircular, as well as circular), conical, 
spherical, ellipsoidal, paraboloidal, toroidal, and hyperbolic paraboloidal shells 
as practical examples of various curvatures. The plate, on the other hand, is the 
special limiting case of a shell having no curvature. So called "curved plates" 
found in the literature are, in reality, shells. Thus, the primary classifier of the 
field of shell vibrations is chosen to be curvature. For a given curvature (say 
circular cylindrical, for example) the available literature is divided as to whether 
complicating effects such as anisotropy, initial stresses, variable thickness, large 
deflections, nonhomogeneity, shear deformation and rotary inertia, and the effects 
of surrounding media are present or not. The next subdivision of organization is 
boundary shape. Thus, a circular cylindrical shell can be open or closed, have 
boundaries which are parallel to the principal coordinates or not, and have cut- 
outs or not. Once the boundary shape is determined, attention is given to the 
possible types of fixity that can exist along each edge (i.e., the boundary con- 
ditions). Finally, attention is given to such special considerations as point sup- 
ports or added point masses. Thus, for each type of curvature, the organization 
3f the previous monograph Vibration of Plates is followed. 
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In addition to having the added complexity of curvature, shells are more 
complicated than plates because their bending cannot, in general, be separated 
from their stretching. Thus, a "classical" bending theory of shells is governed by 
an eighth order system of governing partial differential equations of motion, 
while a corresponding plate bending theory is only of the fourth order. This 
added complexity enters into the problem not only by means of more complex 
equations of motion, but through the boundary conditions as well. The classical 
bending theory of plates requires only two conditions to be specified along an 
edge, while a corresponding shell theory requires four specified conditions. 

To demonstrate the significance of the latter point, consider a flat panel 
(i.e., a plate) which is simply supported along two of its opposite edges. The num- 
ber of possible problems which can then arise, considering all combinations of 
"simple" boundary conditions which can exist on the remaining two edges, is 10. 
For a cylindrically curved panel (i.e., a shell) the corresponding number is 136! 

To complicate matters further, whereas all academicians will agree on the 
form of the classical, fourth order equations of motion for a plate, such agree- 
ment does not exist in shell theory. Numerous different shell theories have been 
derived and are used. Thus, if analytical results for frequencies and mode shapes 
of a given shell configuration are presented, strictly speaking, the shell theory 
used in the calculations must be specified. For the sake of separating and defining 
clearly the various shell theories commonly found in the shell &bration literature, 
chapter 1 is devoted to their derivation, with special emphasis being given to the 
identification of points in the derivation where the different assumptions are made 
which give rise to the different theories. 

Statements are found in the literature which imply the equivalence of all 
eighth order shell theories. The accuracy of such statements is examined care- 
fully in chapter 2 on a problem for which exact solutions exist-the closed cir- 
cular cylindrical shell supported at both ends by shear diaphragms. Extensive 
comparisons of results from the various shell theories are made with those from 
the exact, three dimensional elasticity theory. 

In addition to the differences in theories, simplifications are often made in 
the resulting equations of motion or the characteristic (frequency) equations. 
These simplifications include, among others: neglecting certain (hopefully) small 
terms in the equations of motion, neglect of the tangential inertia terms, linear- 
ization of the characteristic equations, and assuming that the wave length in one 
direction is considerably longer than in the other. Comparisons of the effects of 
these simplifications are also made in chapter 2. 

Comparing plate and shell vibrations, it is found that shell frequencies are 
more closely spaced and less easily identified, both analytically and experimen- 
tally. Furthermore, the fundamental (lowest frequency) made for a shell is gen- 
erally not all obvious, whereas for a plate it usually is. 

There are more parameters required to define the shell vibration problem. 
For example, consider a rectangular plate simply supported on all its edges. 
The complete frequency spectrum is determined by varying one parameter-the 
length-to-width ratio. For the cylindrically curved panel having the same edge 
conditions, however, three additional parameters can be independently varied- 
the thickness-to-radius ratio, the length-to-radius ratio, and Poisson's ratio. 

The present monograph contains approximately 1000 references. Of these, 
more than half deal with circular cylindrical shells. Therefore, two chapters were 
devoted to this voluminous topic. Chapter 2 deals with the results of classical 
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theory while complicating effects are studied in chapter 3. By contrast, very little 
work has been done with noncircular cylindrical shells, and these results are sum- 
marized in chapter 4. Chapter 5 is devoted to circular conical shells. 

Because of the complexity of the field of shell vibrations as described above, 
and because of my own limitations in time and organizational capability, the 
following sacrifices had to be made in the present monograph: 

(1) There are undoubtedly more relevant references which have been un- 
knowingly omitted from this work than in the previous one. This is mainly due 
to the comparative recentness of the shell vibrations literature. 

(2) Chapter 6 is only a bibliography for the vibrations of spherical and 
other shells. 

(3) Numerous forms of nondimensional frequency parameters as given in 
the literature are used directly without conversion to a common parameter. 

For these shortcomings I sincerely apologize to all my readers. 
The support of the National Aeronautics and Space Administration is grate- 

fully acknowledged, particularly that of Mr. Douglas Michel, who sees the value 
of devoting time and effort to making available research results useful to man- 
kind, as well as to the creation of new knowledge. I wish to thank Messrs. S. G. 
Sampath, Adel Kadi, and Ting-hwa Wang, three of my doctoral students, for 
their devotion to this work. Without their help in supervising the procurement 
of the relevant literature, in providing analytical help (particularly in chapters 
1 and 2)) and in editing the manuscript, this monograph would not have been 
possible-indeed, I would not have undertaken it. I also wish to thank Drs. 
Robert Fulton, Francis Niedenfuhr, Herbert Reismann, and Carl Popelar. for 
their technical advice. Finally, the enormous editorial assistance of Mr. Chester 
Ball, and Mrs. Ada Simon is gratefully acknowledged. 

ARTHUR W. LEISSA 
The  Ohio State University 
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Chapter 1 

Fundamental Equations of Thin Shell Theory 

A thin shell is a three-dimensional body which 
is bounded by two closely spaced curved surfaces, 
the distance between the surfaces being small in 
comparison with the other dimensions. The locus 
of points which lie midway between these sur- 
faces is called the middle surface of the shell. 

The distance between the surfaces measured 
along the normal to the middle surface is the 
thickness of the shell at  that point. The thiclc- 
ness need not be constant in the formulation of 
a suitable theory of deformation, but constant 
thickness results in governing equations which 
are easier to solve; furthermore, certain manu- 
facturing processes naturally yield shells of es- 
sentially constant thickness. 

Shells may be regarded as generalizations of a 
flat plate; conversely, a flat plate is a special case 
of a shell having no curvature. The terminology 
"curved plate" is used occasionally in the litera- 
ture-usually referring to a shell having small 
changes in slope of the undeformed middle sur- 
face. In  this work the "shallow shell" will be used 
to describe this type of shell. 

This chapter presents the fundamental equa- 
tions of thin shell theory in their most simple, 
consistent form. Thus the material is assumed 
to be linearly elastic, isotropic, and homogene- 
ous; displacements are assumed to be small, 
thereby yielding linear equations; shear defor- 

' mation and rotary inertia effects are neglected; 
and the thickness is taken to be constant. Inas- 
much as this work is aimed at the vibration of 
shells, it should also be said that the vibration 
results predicted analytically are assumed to be 
for a shell in a vacuum (although experimental 
results will generally be given in air) and that 
vibrations will occur with respect to zero values 
of static initial stress in the shell. These compli- 
cating features will be discussed (in those cases 
for which information is available) in subsequent 

chapters dealing with special configurations of 
shells. 

A large number of differing sets of equations 
have been arrived at by various academicians, 
all purporting to describe the motion of a given 
shell. This state of affairs is in contrast with the 
thin plate theory, wherein a single fourth order 
differential equation of motion is universally 
agreed upon. 

Furthermore, there is considerable argument 
in the literature as to whether the differences 
between the various thin shell theories are sig- 
nificant or not (cf., refs. 1.1 through 1.8). In  
chapter 2 some attempt will be made to com- 
pare the results for free vibration frequencies 
and mode shapes arising from various thin shell 
theories in the case of circular cylindrical shells, 
especially for one particular set of boundary 
conditions. 

The main purpose of this chapter is to present 
straightforward derivations of the sets of equa- 
tions of various thin shell theories. It will be 
seen that differences in the theories result from 
slight differences in simplifying assumptions 
and/or the exact point in a derivation where a 
given assumption is used. Only those theories 
which are obtainable from Love's postulates (see 
sec. 1.3) by using a differential element bf the 
middle surface, have been derived for shells of 
arbitrary curvature, and which have been ap- 
plied in the literature to shell vibration problems 
will be considered in this chapter. Among the 
thin shell theories which will be derived in this 
chapter are those attributed to Donne11 (refs. 1.9 
and 1.10), Mushtari (refs. 1.11 and 1.12), Love 
(refs. 1.13 and 1.14), Timoshenko (ref. 1.15)) 
Reissner (ref. 1.16)) Naghdi and Berry (ref. 
1.17), Vlasov (refs. 1.18 and 1.19)) Sanders (ref. 
1.20)) Byrne (ref. 1.21)) Fliigge (refs. 1.22 and 
1.23), Goldenveizer (ref. 1.24)) Lur'ye (ref. 1.25)) 
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and Novozhilov (ref. 1.26). However, not all of the 
theories listed above are independent. Many of 
the theories use certain sets of equations in com- 
mon, and some are generalizations or duplica- 
tions of another. Numerous other theories are 
available in the literature. Some are derived by 
expansion of the displacements and stresses in 
power series in the thickness coordinate z. Others 
are derived by asymptotic integration. The fol- 
lowing authors have originated some of the gen- 
eral theories for arbitrary curvature not included 
in this chapter: Aron (ref. 1.27)) Basset (ref. 
1.28), Epstein (ref. 1.29)) Trefftz (ref. 1.30)) 
Synge and Chien (refs. 1.31 and 1.32), Lamb 
(ref. 1.33), Osgood and Joseph (ref. 1.34)) Hay- 
wood and Wilson (ref. 1.35), Iioiter (ref. 1.36), 
Cohen (refs. 1.37 and 1.38), and ICnowles and 
Reissner (refs. 1.39 and 1.40). Writings which are 
particularly good from the standpoint of com- 
parison of various thin shell theories include ref- 
erences 1.1, 1.4, 1.7, 1.17, and 1.41 through 1.47. 

1.1 BRIEF OUTLINE OF THE THEORY 
OF SURFACES 

The deformation of a thin shell will be com- 
pletely determined by the displacements of its 
middle surface. Certain relationships relating to 
the behavior of a surface will be summarized in 
this section. More useful information can be 
found in the numerous texts dealing with differ- 
ential geometry, the theory of surfaces, and 
shell theory (cf., refs. 1.19, 1.24-1.26, and 1.42). 

1.1.1 Coordinate System 

Let the equation of the undef~rmed middle 
surface be given in terms of two independent 
parameters a and p by the radius vector 

+ -, 
= ~(ff,P) (1.1) 

Equation (1.1) determines the geometric prop- 
erties of the surface and yields a method for 
finding points on the surface. Suppose that the 
parameter a is kept at  a fixed value ao, while 
p changes. In  this case equation (1.1) deter- 
mines a space curve on the surface. Such curves 
are called p curves, and the set of all values a. 
within a given interval corresponds to a family 
of /3 curves. I n  an analogous manner one can 
introduce the concept of a curves (fig. 1.1). 

Assume that the parameters a and p always 
vary within a definite region, and that a one- 
to-one correspondence exists between the points 
of this region and points on the portion of the 
surface of interest. Denote 

The vectors Za and $ are tangent to the a and 
p curves, respectively. The length of these vec- 
tors will be denoted by I 

Consequently it follows that <,/A and &/B 
are unit vectors tangent to the coordinate curves. 
If the angle between the coordinate curves is 
denoted by x then 

r,a r,,9 -.-- 
A B  

- COS X 

Denoting 

-, -+ 
a A r,b -- -- aa x % 
A -$a -ii, $,=- 

B sin x (1.5) 

where .En is the unit vector of the normal to the 
surface and is orthogonal to the vectors ta and .Es. 

, a = CONSTANT 

FIGURE 1.1.-Middle surface coordinates. 
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The unit vectors t,, t and 2, are usually called 
the basic vectors of the surface. 

1.1.2 First Quadratic Form 

Let there be given two points (a,@ and (a+da, 
@+dB) arbitrarily near to each other and both 
lying on the surface. The increment of the vec- 

tor ;in moving from the first point to the second 
point is 

, -+ -+ 
dr =r,, da+r,@ dp (1.6) 

From equations (1.3)) (1.4), (1.5) and (1.6) the 
square of the differential of the arc length on 
the surface is 
+ -+ 

dr-dr = ds2 = A2 da2 
+2AB cos xda!d/?+B2dp2 (1.7) 

The right-hand side of equation (1.7) is the 
"first quadratic form of the surface." This form 
determines the infinitesimal lengths, the angle 
between the curves, and the area on the surface, 
i.e., the intrinsic geometry of the surface. Hom- 
ever, the first quadratic form does not determine 
a surface by itself. The terms A2, AB cos X, and 
B2 are called the "first fundamental quantities." 

1.1.3 Second Quadratic Form 

The concept of the second quadratic form 
arises when one considers the problem of find- 
ing the curvature of a curve which lies on the 

-+ -+ 

surface. Let r = r(s) be the vectorial equation of 
a curve on the surface (s is the arc length from 
a certain origin). Denoting the unit vector along 
the tangent to the curve by .i, then 

According to Frenet's formula (ref. 1.48)) the 
derivative of this vector is 

where lip is the curvature of the curve, and is 
the unit vector of the principal normal to the 
curve. 

Substituting for + from equation (1.8) into 
equation (1.9) one obtains 

where 

' Let cp be the angle between the normal to the 
surface t, and the principal normal to the curve 
under consideration I?; then 

cos cp =c.@ (1.11) 

If both sides of equation (1.10) are scalar-multi- 
plied by t,, one obtains 

cos -- cp L da2+2M da dp+N dp2 - (1.121 
P ds2 

where 
-+ 

L = r,,,.t, 1 

The expression (L da2+2M da dp+N dB2) is 
called the "second quadratic form" of the surface 
and the quantities L, M ,  and N are the coeffi- 
cients of the form. The second quadratic form is 
thus related to the curvatures of the curves on 
the surface. 

From equation (1.12) one can obtain the nor- 
mal curvatures of the surface; i.e., the curva- 
tures of the curves obtained by intersecting the 
surface with normal planes. For the curve gen- 
erated by a normal plane, t,, and fl are either par- 
allel (cp=O) or have opposite directions (cp=r). 
Since a "plane" curve always leaves its tangent 
in the direction of vector 8 and if one takes its 
outer normal as the positive normal to the sur- 
face, cp = r results. Thus from equations (1.7) and 
(1.12) the normal curvature is 

To obtain the curvatures of the a curves and 
the p curves take p= constant and a = constant 
respectively, thus 
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1.1.4 Gauss Derivative Formulas 

At this point assume that the curves a = con- 
stant and @ = constant are lines of principal cur- 
vature of the undeformed middle surface. The 
coordinates a, B are then called principal coordi- 
nates. Weatherburn (ref. 1.49) shows that the 
necessary and sufficient conditions for the para- 
metric curves to be lines of principal curvature 
on a surface are that 

cos x=O (1.16a) 

The condition given by equation (1.16a) is that 
of orthogonality satisfied by all lines of principal 
curvature, while M = 0 is the necessary and suffi- 
cient condition that the parametric curves form a 
conjugate system (i.e., through each point on the 
surface passes a unique curve of each family of 
curves). 

The second derivatives of; with respect to the 
+ -+ 

parameters may be expressed in terms of r,,,r,@ 
and $. Remembering that L, A&, and N are the 

-+ -+ -3 

normal components of r,,,, T , ~ B  and r,pp, one may 
write 

where I'f, (i, j,k = 1,2) are the Christoff el symbols 
which can be expressed in terms of the coeffi- 
cients of the first principal quadratic form as 
follows (ref. 1.24) : 

1.1.5 Derivatives of the Basic Vectors 

Making use of equations (1.17) and (1.18) and 
the fact that t;tn= 1 one obtains the following 
expressions for the derivatives of the basic vec- 
tors (ref. 1.421 I 

1 a B  B J 
%,a= -- -ta--$n 

A aa R~ 

1 .I .6 Gauss Characteristic Equation 7 n #, I  

The four fundamental quantities for principal 
coordinates A, B, L, and N are not functionally 
independent, but are connected by three differ- 
ential relations. One of these, due to Gauss, is 
an expression for (LN) in terms of A and B and 
their derivatives, and may be deduced from 
either of the following equations : 

Substituting for the derivatives of basic vectors 
from equations (1.19) into equations (1.20) one 
obtains for principal coordinates 



where 1/K= l/R,Rp and is called the Gaussian 
curvature. Since the Gaussian curvature is ex- 
pressible in terms of the coefficients of the first 
fundamental form and their derivatives, one can 
conclude that surfaces which have the same first 
fundamental quantities have the same Gaussian 
curvature. 

1.1.7 Mainardi-Codazzi Relations 

I n  addition to the Gauss characteristic equa- 
tion, there are two other independent relations. 
These may be established from the following 
equation : 

(tn,J,p= @n,b),a (1.22) 

Substituting for derivatives of the basic vectors 
from equations (1.19) into equations (1.22) 

1 a B  a B - - --- $,+ ---- - [ ;p ( t ]  t [R. aa a,(R,)lb" 
(1.23) 

Equation (1.23) is satisfied if 

The formulas given by equations (1.24) are the 
Mainardi-Codazzi relations. It is worthwhile 
noting that Bonnet (ref. 1.49) has proved the 
theorem: When A, B, R,, and Rp are given, 
satisfying the Gauss characteristic equation and 
the Mainardi-Codazzi relations, they determine 
a surface uniquely, except to position and orien- 
tation in space. 

1.2 SHELL COORDINATES AND THE 
FUNDAMENTAL SHELL ELEMENT 

To describe the location of an arbitrary point 
in the space occupied by a thin shell, the po- 
sition vector is defined as 

where z measures the distance of the point from 
the corresponding point on the middle surface 
along 2, and varies over the thickness 

The magnitude of an arbitrary infinitesimal 

change in the vector Z(a,p,z) is determined by 

(ds) 2 = dZ.dFi = (dT+z dt,+$, dz) 

.(dT+z W,+C dz) (1.26a) 

Remembering the orthogonality of the coordi- 
nate system, then from equations (1.5), (1.6), 
and (1.19) and the chain rule 

a at, 
at,=- da+- dp aa aP 

one obtains 

(ds)2=g~da2+g2dp2+g3dz2 (1.27) 
where 

The quantities g ~ ,  g2, 93, A, B, R,, and Ra are 
connected by the equations of Lamb (cf., ref. 
1.18), since the three-dimensional space (the 
space in which the three independent variables 
a, p, z vary) is a Euclidean space. 

which are the Gauss equation (1.21) and the 
n'lainardi-Codazzi equations (1.24) generalized 
for a surface at  a distance z from the middle 
surface. Using equations (1.24) equations (1.29b) 
and (1.29~) can be transformed to 
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while the volume of the fundamental element is 

(1.30) dV(z) = [ A  (1 +z/Ra)][B(l +z/Rg) J da dP dz 
(1.33) 

1.3 LOVE'S FIRST APPROXIMATION 

Having established the coordinate system of 
the shell space, the fundamental three-dimen- 
sional element of a thin shell will be defined next. 
The fundamental shell element is the differential 
element bounded by two surfaces dz apart at  a 
distance z from the middle surface and four ruled 
surfaces whose generators are the normals to 
the middle surface along the parametric curves 
a=ao, a=ao+da, /?=PO and P=Po+dP. The 
assumption that the parametric curves are lines 
of principal curvature ensures that the ruled 
surfaces will be plane surfaces and, furthermore, 
that these planes intersect each other at  right 
angles. The lengths of the edges of this funda- 
mental element are according to equation (1.27) 
(see fig. 1.2) 

the differential area's of the edge faces of the 
fundamental element are 

FIGURE 1.2.-Notation and positive directions of 
stress in shell coordinates. 

1-q 
w .  

I 

In the classical theory of small displacements 
of thin shells the following assumptions were 
made by Love (ref. 1.13) 

(1) The thickness of the shell is small com- 
pared with the other dimensions, for example, 
the smallest radius of curvature of the middle 
surface of the shell. 

(2) Strains and displacements are sufficiently 
small so that the quantities of second- and 
higher-order magnitude in the strain-displace- 
ment relations may be neglected in comparison 
with the first-order terms (ref. 1.43). 

(3) The transverse normal stress is small com- 
pared with the other normal stress components 
and may be neglected. 

(4) Normals to the undeformed middle sur- 
face remain straight and normal to the deformed 
middle surface and suffer no extension. 

These four assumptions taken together give 
rise to what Love called his "first approxima- 
tion" shell theory. These approximations are 
almost universally accepted by others in the 
derivation of thin shell theories. 

The first assumption defines what is meant by 
"thin shells" and sets the stage for the entire 
theory. Denoting the thickness of the shell by h 
and the smallest radius of curvature by R, then 
it will be convenient at  various places in the 
subsequent derivation of shell theories to neglect 
higher powers of z/R or h/R in comparison with 
unity. The second assumption permits one to re- 
fer all calculations to the original configuration 
of the shell and ensures that the differential 
equations will be linear. The fourth assumption 
is known as Kirchhoff's hypothesis and catego- 
rizes the shell theories that will be discussed in 
this chapter, As a consequence of this geometric 
assumption 

yaz = 0 

ypz = 0 (1.34) 

ez = 0 

and therefore the transverse shear stresses 
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from Hooke's law. I n  the following section, non- 
vanishing shear resultants Q, and QB will be 
defined as integrals of the transverse shearing 
stresses, and the transverse shearing stresses 
can be expressed in terms of the shear resultants 
and the surface loads (cf., ref. 1.42). However, 
the vanishing of transverse shearing strains is in- 
consistent with the presence of transverse shear- 
ing stresses. Thus, transverse shearing strains 
must exist. Adding to that geometric assump- 
tion the static assumption that cr, is negligible, 
another inconsistency is introduced; i.e., the 
vanishing of e, and a, simultaneously. 

The third and fourth assumptions deal with 
the constitutive equations of thin elastic shells 
and assume the shell to behave like a material 
having a special type of orthotropy wherein 
Es=Ga,=GBz= 00, and Y,,= v p = O  (ref. 1.41). 

1.4 STRAIN-DISPLACEMENT EQUATION 

The well-known strain-displacement equations 
of the three-dimensional theory of elasticity in 
orthogonal curvilinear coordinates are (cf., ref. 
1.50, pp. 179-180) 

where the ei, rii, and Ui are normal strains, 
shear strains, and displacement components, re- 
spectively, at  an arbitrary point. In the shell 
coordinates the indices 1, 2, and 3 are replaced 
by a, p, and z, respectively, except for the dis- 
placements U1, Uz, and Us, which are replaced 
by U, V, and W, respectively, and the coeffi- 
cients of the metric tensor are given by equa- 
tions (1.28), thus yielding 

Now in order to satisfy the Icirchhoff hypoth- 
esis, the class of displacements is restricted to 
the following linear relationships: 

W(~,@,Z) = w(a1B) (1.37~) 

where u, v, and zu are the components of displace- 
ment at  the middle surface in the a, 8, and nor- 
mal directions, respectively, and %, and %, are 
the rotations of the normal to the middle sur- 
face during deformation about the /3 and a axes, 
respectively; i.e., 

The third of equations (1.34) is satisfied by 
using equation (1.37~) with equation (1.36~) ; 
i.e., W is independent of z and is completely de- 
fined by the middle surface component w. Sub- 
stituting equations (1.37) into equations (1.36e) 
and (1.36f), the first two of equations (1.34) are 
satisfied provided that 
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1.4.1 Equations of Byrne, Fliigge, Goldenveizer, 
Lur'ye and Novozhilov 

Substituting equations (1.37) into equations 
(1.36a1 b, and d) yields 

where E,, EB, and E,, are the normal and shear 
strains in the middle surface (z = 0) given by 

and K, and K, are the midsurface changes in cur- 
vature and 7 the midsurface twist, given by 

i a e ,  e, aA 
K, =- -+- - (1.42a) 

A a a  ABdp  

e, aB 1 ae, K,=-- -+- - 
AB aa B ap 

(1.42b) 

A a (e,) B a (e,) 1 (1 au v aB) =- - -  + - - - +  
B a p  A A a a  B R, B a p  A B a a  

These are the strain-displacement equations used 
by Byrne, Flugge, Goldenveizer, Lur'ye, and 
Novozhilov. 

1.4.2 Equations of Love and Timoshenko 

If in equations (1.40) one neglects the terms 
a/R, and z/R, and their products as being small 
in comparison with unity one obtains 

with E,, . . . , T still given by equations (1.41) 
and (1.42). These are the strain-displacement 
equations which represent the theories of Love 
and Timoshenko. 

1.4.3 Equations of Reissner, Naghdi, and Berry 

If one chooses to make the simplification of 
Love and Timoshenlto (i.e., z/R, and z/Rs<<l) 
earlier in the derivation, then doing so in equa- 
tions (1.36a, b, and d) reduces them to 

Then substituting equations (1.37) into equa- 
tions (1.44) the total strains can again be repre- 
sented as the sum of the stretching and bending 
strains as in equations (1.43) with equations 
(1.41) and (1.42) still applying, except that equa- 
tion (1.42~) changes to become 

1.4.4 Equations of Vlasov 

Recognizing that for a shell z/Ri (i=a,p) is 
less than unity, then one can expand the quo- 
tient l / ( l  f x/Ri) into a well-known geometric 
series by simple division; i.e., 

Substituting equations (1.37) and (1.46) into 
equations (1.36a, b, and d) gives 
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[wI$2(-~)n]) 1 which are the middle surface curvature relation- 
ships of Vlasov's theory. 

n=O 

1.4.5 Equations of Sanders with e,, E@, K,, and ~p given by equations (1.41) 
and (1.42). Equations (1.47) can be rearranged as Sanders (ref. 1.20) developed an eighth order 

shell theory from the principle of virtual work. 

-,  - 

where 

a2w 1 a B  aw 1 aA aw -- - - - -- - - 
aa ap  B aa a p  A ap aa 

in 2, then equations (1.49) simplify to 
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ses represent the "generalized forces" associated 
with the generalized displacements as obtained 
from a "generally accepted" set of equations of 
equilibrium (cf., eqs. (1.112) and (1.115)) neglect- 
ing body forces and moments and surface loads. 
Integrating equation (1.51) by parts yields 

-$,[(Nu au+Nao 6v+Qa 6w 

+Mu 8eu+Mu~ 68,9)B dp 
- (NB, 6u+N~  6v +QD 6w 
+A4,, 6e,+M, 6@)A da] = O  (1.52) 

where the double integral extends over the region 
of the middle surface of the shell enclosed by the 
curve C. The double integral represents the vir- 
tual change in strain energy within C and the 
line integral represents the virtual work of the 
boundary forces. The quantities within the paren- 
theses can now be regarded as the strains corre- 
sponding to the ten components of "generalized 
resultants," N,, . . . , Mg, thereby yielding the 
following strain-displacement relations: 

u aB 1 av w ---+--+- '-AB aa Bag  R, (1.53b) 

1 ae, e, aA 
K,=-- +-- 

A aa AB ap 

e, aB 1 ae, 
Kg=--+-- 

AB d a  B ap 

1 ae, e, aB en 
Kh=----- +- (1.53h) B ap AB aa R, 

where y, and ye are the tangential shear strains 
corresponding to the force resultants NUB and 
NBu, respectively, and where y,, and yflz are the 
transverse shear strains corresponding to the 
transverse shear force resultants Q, and Q,. 
Using Kirchhoff's hypothesis, y,, = y,, = 0; there- 
fore, equations (1.53i and j) yield the same 
expressions for the rotations of the normal, 0, and 
BP, as were obtained previously in equations (1.39). 

The rotation about the normal, en, may be cal- 
culated in terms of u and v by taking the normal 
component of the surface curl of the total dis- 
placement vector (cf., ref. 1.51) giving 

and substituting equation (1.54) into equations 
(1.53~ and d) shows that 

Furthermore, using equations (1.53c, d, g and 
h), (1.39), (1.54), and the Mainardi-Codazzi 
equations (1.24), the following identity holds : 

Now define 
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T = K ~ + K B ,  (1.58) 1.4.6 Equations of Donnell and Mushtari 

If one neglects the tangential displacements 
and their derivatives in equations (1.42) for the 
midsurface changes in curvature and twist, they 
simplify to 

Using equations (1.54) through (1.60), then 
equation (1.52) can be written as 

From the double integral in equation (1.61) 
which represents the virtual change in strain 
energy the generalized strains E,e and T corre- 
spond to the resulting S and H. Hence, it is ob- 
served that the strain-displacement equations of 
the Sanders theory are given by equations (1.41), 
(1.42a and b), and 

The strains at any point in the shell are then 
given for the Donnell-Mushtari theory by equa- 
tions (1.43) where c, ep, and r,o are given by 
equations (1.41) and K,, ~ p ,  and T are given by 
equations (1.63). 

I .4.7 Remarks on the Strain-Displacement 
Equations 

From the preceding section it can be seen that 
the total strains at any point (according to all the 
theories considered here) can be represented as 
the sum of two parts-one due to stretching and 
the other due to bending. In the theories consid- 
ered three types of expressions were found to rep- 
resent the total strain. These are summarized in 
table 1.1. The expressions of Byrne et al. are the 

TABLE 1.1.-Total Strains at Ang Point in a Shell 

Theory ea, eg rag 

Byrne, Fliigge, 1 
Goldenveizer, Lur'ye, (1 f z /R , )  (EU + Z K O ~ )  1 z 
Novozhilov 1 

( ~ i 3  + ZKB) (I +z/R,) (1 + Z / B ~ ) [ ( ~  -&)"+(' +=+&)'] 
(1 -t-~/R,9) 

Love, Timoshenko, 
Reissner, Naghdi, Berry, EOL +ZK, 

Sanders, Donnell, Mushtari v + ~ K @  cap +zr 

%+cK& 
Generalized Vlmov n = l  + c r n z n  

eb + C K o n p  n - 1  

n u 1  
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most general of the three types, with the other 
types being special cases of these. The expres- 
sions of Byrne et al. are the direct result of the 
application of the ICirchhoff hypothesis to the 
strain-displacement relationships of the three- 
dimensional theory of elasticity. The expressions 
of Love et al. were arrived a t  by neglecting x/R, 
and x/Rg in comparison with unity, as is seen in 
table 1.1. A milder approximation is that of 
Vlasov who represented a quotient of the type 
l/(l+z/R,) by its geometric series expansion; 
the accuracy of the approximation then depends 
upon the number of terms retained in the series. 
The expressions ascribed to Vlasov in table 1.1 
are the generalized forms arrived at  before trun- 
cation of the series. However, it will be seen in 
section 1.5.3 that the series will be truncated 

after n = 2 for the subsequent development of the 
Vlasov theory. 

The expressions for the middle surface strains 
e,, eg and e , ~  are the same according to all the 
theories considered here. They are given by 
equations (1.41). 

There is general agreement among the theories 
for the expressions of the middle surface curva- 
ture changes, K, and ~ g ,  as can be seen in table 
1.2. If one considers only the linear terms (n= 1) 
of the series expansions for the strains according 
to the Vlasov theory (i.e., eq. (1.50))) then 
~lasov's KU, for example, differs from those of 
the other theories by the term e,/R,. This differ- 
ence arose due to replacing l/(l+z/R,) by its 
series expansion in the derivation. The Donnell- 

TABLE 1.2.-Change in  Curvature of the Middle Surface 

Theory I K a  I 
Byme, Fliigge, Goldenveizer, 

Lur'ye, Novozhilov, Love, 
Timoshenko, Reissner, 
Naghdi, Berry, Sanders 

1 ae, eg aA -- +-- 
A aU AB as 

Donnell, Mushtari 

I I 

a Terms given for the Vlasov theory correspond only to the linear (n = 1 )  terms of table 1.1. 

TABLE 1.3.-Change in Twist (7) of the Middle Surface 

Byre, Fliigge, Lur'ye, Goldenveizer, 1 -- ( )  - +-- B ") - +- l ( 1  v a ~ )  +- 1 ( l  dv u ( A )  
Novozhilov, Timoshenko, Love A aU B Ra B as AB aU Rg A a~ AB as I 

Sanders 

Reissner, Berry, Naghdi 

a Terms given for the Vlasov theory correspond only to the linear (n = 1) terms of table 1.1. 

$ $(:) +: :($) 
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Mushtari expressions in table 1.2 are simplifica- 
tions of the others obtained by neglecting terms 
containing the tangential displacements u and v. 

However, there is widespread disagreement 
among academicians concerning the proper form 
for the middle surface change in twist, T .  These 
disagreements are summarized in table 1.3. The 
differences in the expressions of Vlasov and of 
Donnell and Mushtari from that of Byrne et al. 
are due to the same reasons discussed in the 
previous paragraph for K,. The r of Reissner et 
al. differs from that of Byrne et al. because the 
neglect of z/R, and z/Rg in comparison with 
unity, and doing so at  an earlier stage in the 
derivation than in the Love-Timoshenlro formu- 
lation. Sanders' expression can best be described 
as one having a correction factor added to that 
of Reissner et al., as will be seen in the next 
paragraph. 

Let a shell be subjected to a rigid body trans- 
lation denoted by the vector 

and a rigid body rotation by the vector 

Then the displacement vector of a point on 
the middle surface is given by 

where ;is the position vector locating the middle 
surface as described in section 1.1. Of course, if 
a shell is given a rigid body motion, then sub- 
stituting the displacement of a typical point as 
given in equation (1.66) into the strain-displace- 
ment equations should result in no strains. 
Sanders (ref. 1.20) showed that his strain-dis- 
placement equations are consistent from this 
standpoint, but that the twist does not vanish 
in the Reissner-Naghdi-Berry theory. For the 
latter theory the twist becomes (ref. 1.20) 

which vanishes only for a spherical shell, a flat 
plate, or an axisymmetrically loaded shell of 
revolution. If the rotation an is large it can lead 
to significant errors, as found by Cohen (ref. 
1.38) on helicoidal shells. Thus if the correction 

factor [(l/R,) - (l/Ra)]On is arbitrarily added 
(with 0, given by eq. (1.54)) to the expression of 
Reissner et al. in table 1.3, the inconsistency 
discussed above is eliminated and the T of the 
Sanders theory results. IZraus (ref. 1.42, p. 68) 
showed that the strain-displacement equations 
of Byrne, Fliigge, Goldenveizer, Lur'ye, and 
Novozhilov have no inconsistencies with regard 
to rigid body motions. IZadi (ref. 1.44) found 
that the equations of Love, Timoshenko, and 
Vlasov are also free from this inconsistency, but 
the Donnell-Mushtari theory gives curvature 
changes 

I 
due to rigid body translations a,, 6g, and 6, in 
the u, v, and w directions, respectively. 

1.5 FORCE AND MOMENT RESULTANTS 

As shown in the previous section one result 
of the Kirchhoff hypothesis is to restrict the 
displacements u and v to those which vary 
linearly through the thickness (cf., eqs. (1.37a 
and b)). Consequently, for the theories of Love, 
Timoshenko, Vlasov, Reissner, Naghdi, Berry, 
Sanders, Donnell, and Mushtari, as shown in 
table 1.1, the resulting strains e,, eg, and r a g  also 
vary linearly with 2. For the other theories the 
strain variation is more complicated, but never- 
theless, completely defined with respect to z. 
Thus, if the relationships between stresses and 
strains are defined (as, for example, in Hooke's 
Law), the resulting stresses can be integrated 
over the shell thickness. The resultants of the 
integrals will be termed "force resultants" and 
"moment resultants" in this work. Other termi- 
nologies for these quantities used variously in the 
literature of shells include "stress resultants" 
and L'forces," corresponding to our force resul- 
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tants, and "stress couples," "couples," '(couple 
resultants," and "moments," corresponding to 
our moment resultants. The force and moment 
resultants are components of second order 
tensors, and hence they are not true forces and 
moments. The force and moment resultants will 
have dimensions of force per unit length and 
moment per unit length, respectively. 

Proceeding along the path laid out in the 
previous paragraph, Hooke's Law will first be 
assumed as the constitutive law to be followed. 
This limits all shells considered in this mono- 
graph to be made from materials which are 
linearly elastic. Furthermore, in this chapter 
devoted to deriving shell theories in their most 
simple forms, the materials will be limited to 
those which are isotropic. The effects of ortho- 
tropy and its generalization, anisotropy, will be 
seen in subsequent chapters. Hooke's Law is 
written in its well-known three-dimensional 
form as 

1 
ea=-[a,- v(ap+a,)] 

E 
(1.69a) 

where, in accordance with the shell element 
shown in figure 1.2, a, and ag are the normal 
stresses and aaa and ag, are the shear stresses in 
the tangential (a! and p) directions and a,, and 
up, are the transverse (i.e., in the z direction) 
shear stresses, all acting upon the transverse 
faces of a shell element; E is Young's modulus, 
and v is Poisson's ratio. Assuming the symmetry 
of the stress tensor (neglecting body couples), 
then a,@ =US,. It is pointed out that the strains 
are also assumed to be independent of temper* 
ture because temperature has no explicit effect 
upon the free vibration case being considered 
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in this monograph. Temperature can enter tne 
problem implicity through its influence upon 
initial stresses or upon the elastic moduli-two 
complicating effects which will be discussed in 
subsequent chapters. 

The Kirchhoff hypothesis, as discussed in 
section 1.3, yields e, = y,, = y ~ ,  = 0, whence, by 
equations (1.69~) e, and f), ~ , ~ = a g , = O  and 
a,=v(aa+a~). But Love's third assumption is 
that a, is negligibly small, which is one unavoid- 
able contradiction in the order of shell theory 
being considered here. Another contradiction is 
that a,, and as, are clearly not zero, since their 
integrals must supply the transverse shearing 
forces needed for equilibrium; but they are 
usually small in comparison with a,, US, and ad. 
Retaining the assumption that a, is negligibly 
small reduces the problem to one of plane 
stress; that is, equations (1.69) reduce to 

which, when inverted, give 

E 
aa = - (e, + veB) 1-9 

E 
.a = - (eB + ve,) 1 - v2 (1.71b) 

Consider the face of the element in figure 1.2 
that is perpendicular to the a-axis (i.e., the face 
for which a! is constant). On that face the stresses 
a,, a,~, and a,, act. The arc length of the intercept 
of- the middle surface with the face is dsa = B dB, 
and the arc lengths of intercepts of parallel sur- 
faces are ds? = B(l+z/Rs) d@, as discussed in 
section 1.2. The infinitesimal force for example, 
acting upon the elemental area of thickness dz 
on the face is then given by a, dst) dz. Inte- 
grating such forces over the thickness of the 
shell and dividing by B do yield the force resul- 
tant N,, expressed in units of force per 
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unit length of middle surface. Thus, the force 
resultants acting on this face can be expressed as 

and, similarly, the force resultants on the face 
perpendicular to the paxis will be 

The positive directions of the force resultants 
are shown in figure 1.3. 

Similarly, the moment of the infinitesimal 
force ua dst' dz about the @-line is simply 
zua ds;' dz and the moment resultant Ma is 
obtained by dividing the total integrated mo- 
ment over the thickness by B d@. Thus, the 
moment resultants are given by 

and, consequently, have dimensions of moment 
per unit length of middle surface. The positive 
directions of the moment resultants are shown in 
figure 1.4. 

It is worthy to note that although aap=upa 
from the symmetry of the stress tensor, it is ob- 
vious from equations (1.72), (1.73), and (1.74) 
that Nap # Ns, and A l a B  #MBa unless R, = Rp. 

At this point the assumption will be made 
that the shell material is homogeneous; in par- 
ticular, that the elastic constants E and v are 
independent of z. Thus, if equations (1.71) are 
substituted into equations (1.72), (1.73), and 
(1.74) and the integrations over z are carried 
out, E and v will be treated as constants. The 
procedure for a heterogeneous material will be 
discussed in subsequent chapters. 

1.5.1 Equations of Love, Timoshenko, Reissner, 
Naghdi, Berry, Sanders, Mushtari, and 
Donnell 

If one neglects z/Ra and z/Rp in comparison 
to unity, then equations (1.72), (1.73), and 
(1.74) can be rewritten as 

%-y 
N.. 1. /' 

FIGURE 1.3.-Notation and positive directions of 
force resultants in shell coordinates. 

FIGURE 1.4.-Notation and positive directions of 
moment resultants in shell coordinates. 

where the stress strain equations (1.71) have 
been used and where the transverse force re- 
sultants have been omitted. Substituting the 
expressions for the total strains according to 
Love, Timoshenko, Vlasov, Reissner, Naghdi, 
Berry, Sanders, Donnell, and Mushtari as given 
in table 1.1, equations (1.75) become 
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To obtain force and moment resultants in terms 
of the displacement u, v, and w it would now be 
necessary to substitute the expressions for E,, 

ep, and E,@ from equations (1.41) and the various 
expressions for K,, KP, and T (according to the 
various theories) from tables 1.2 and 1.3. 

1.5.2 Equations of Byrne, Flugge, and Lur'ye 

If the strain expressions of Byrne, Fliigge, and 
Lur'ye from table 1.1 are substituted into equa- 
tions (1.72), (1.73) and (1.74), along with equa- 
tions (1.71), the results are as given in eq. 1.77. 
Now utilizing the fact that z/Ra and z/Rs are less 
than unity, quotients of the type l/(l+z/Ri) can 
be replaced by their geometric series equivalents, 
as indicated previously by equation (1.46). Then 
for sufficiently small z/Ri, the series of equation 
(1.46) is truncated after terms of the third degree 
and is substituted into equations (1.77). The inte- 
grands are then expanded, terms of degree 
greater than three are discarded, and the inte- 
grations are carried out, giving 

1.5.3 Equations of Vlasov 

To obtain force and moment resultants, Vlasov 
retained two terms of the series expansions for 
the total strains given in table 1.1; i.e., 

with K,,,, KB,,, and T,, defined by equations (1.49). 
Substituting equations (1.80) into equations 
(1.75), integrating, and disregarding terms which 
contain powers of h greater than three, one 
obtains the force and moment resultants of 
Vlasov (ref. 1.19, p. 284). 
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Eh 
Substituting further the expressions for the total 

(1.81) strains in terms of the middle surface strains and 
changes in curvature given in table 1.1, equation 
(1.85) becomes 

Replacing (l+z/Ri)-I in equation (1.86) by its 
series expansion given in equation (1.46) and 
neglectirig terms raised to powers of z greater 
than two in the integrand one obtains 

E 1.5.4 Equations of Goldenveizer and Novozhilov U- --/ ( Q ~ + ~ Q ~ + ~ z Q ~ A B  da dB dz 
2(1-v2) v 

From the theory of elasticity the well-known (1.87) . , 
expression for the strain energy stored in a body 
during elastic deformation is where Qo, &I, and Q2 are defined by (ref. 1.26) 

(~,e,+u~e~$u,e,+u~~.~ +U.JY,~ Q o = ( e . + e ~ ) 2 - 2 ( 1 - v ) ( ~ , e g - ~ )  (1.88%) 

+userad dV (1.83) 
&I= 2(eorKa+eflKfl) +2v(eaKfl+e,¶~a) 

where dV is the element of volume which, ex- 
pressed in shell coordinates, is (see eq. (1.33)) (6,'-e$) (1.88b) 

Applying the Kirchhoff hypothesis of thin shells 
reduces equation (1.83) to 

U - ~ / ~ + U B ~ ~ + ~ , ~ - Y ) ~ " .  (1.84) 

Substituting equations (1.71) into equation (1.84) 1 '  1 1 +- (I 
v)(R,2 yields 
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Carrying out b e  integration of equ:on (i.Q'i) 1 

over the thickness (taken to be constant) be- 
tween limits z = - h/2 and z = +h/2 gives 

u = & ~ ~ ( Q ~ + ~ Q ~ ) A B  du (1.89) 
I t  can now be seen that Iz and I3 are now of the 
orders (h/Ri) and (h/Ri)=, respectively, with re- 

where the integral of the term in equation (1.87) spect to unity; hence, I2 and Ia were neglected 
containing 91 disappears because of symmetric by ~ o v o z ~ ~ ~ o v  in with 11, giving for 
limits. equation (1.89) : 

Novozhilov (ref. 1.26, p. 45) argued that be- 
cause the use of the Kirchhoff hypothesis in u=- 
replacing the strain energy integral given in 2(1-v2) Eh / a 1 ,9 ( [ ( & f ~ e ) ~  
equation (1.83) by that of equation (1.84) intro- 
duces errors of the order h/R in comparison to -2(1-V) E E -- +- (K,+K@)~ 
unity, then terms of this order cannot be arbi- 

( a e  E:)l :;[ 
trarily rejected in equation (1.89), but must be -2(1- v)(K,K,~-$)]] AB dn dB (1.93) 
examined carefully to determine whether they 
are to be retained or rejected. First the curva- This is the same as Love's (ref. 1.13) strain en- 
ture changes and twist are replaced by dimen- ergy expression, wherein stretching and bending 
sionless quantities defined by portions are uncoupled. 

h ,  
Returning to the strain energy functional given 

emf = SK, , by equation (1.84) and taking its variation gives: 

Substituting the expressions for the total strains 
from table 1.1 gives 

where cJ, ~ g l ,  and c i  can be physically interpreted 
as the strains in the extreme fibers of the shell 
resulting from K,, K#, and 7, respectively. Substi- 
tuting equations (1.88a and c) and (1.90) into +go I+-- (6€@+x 8 ~ ~ )  
equation (1.89)) equation (1.89) can be rewritten 
as 

( 3 
+uae(l --) R, % 6 ~ 4  

where 
Making use of the definitions of force and 

I moment resultants given by equations (1.72)) 
(1.73)) and (1.74), equation (1.95) can be 

I 
I rewritten as 

- 

6~ = //(N, b~+iI",g &+IS 6 ~ 0  
(1.92) e 

+ M ~ ~ K ~ + M ~ S K ~ + H S T ) A B ~ ~ ~ @  (1.96) ' 

I --- --- 2 - l( )(EaEd - Eflei) 
3 Ra Re where 
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1 Substituting the definitions of the moment 
H =Z(Mao+M@u) (1.97b) resultants given in equations (1.74) into equation 

(1.100) (remembering a,@ =aa,) yields 
Taking the variation of equation (1.93) yields 

(1 - v) 
+2 €a@ I and using equation (1.71~) gives further 

Comparing equations (1.96) and (1.98) leads one 
to the following relationships : 

These are the force and moment relationships 
given by Novozhilov (ref. 1.26, p. 48). 

To obtain relationships for N,@, NO,, Ma@, and 
Mg, instead of those for S and H given in equa- 
tions (1.99), some further manipulation is 
necessary. Define a function p by 

Integrating equation (1.104) and neglecting 
terms containing h raised to powers greater than 
three (actually neglecting powers of h/Ri greater 
than three with respect to unity, if the equations 
are put into nondimensional form as was done 
earlier in this section) yields 

Inserting equation (1.105) into equations (1.101) 
and (1.102) and using the nondimensional form 
of the twist given by equation (1.90c), one can 
see that the function q~ is of order h/Ri in com- 
parison with unity and, hence, can be neglected. 
Thus, a consistent set of force and moment 
relationships for N,@, No,, Ma@, and M*, by this 
theory is, from equations (1.101), (1.102), 
(1.97a), (1.99f), and (1.99c), 

Adding equations (1.97b) and (1.100) and 
substituting equation (1.99f) gives M,,=M - 

Eh3 
@" -24(1 +v)' 

M -  
Eh3 

r+p  "@-24(l+v) (l-lol) The force and moment resultant equations 
given above aa derived by Novozhilov (ref. 1.26) 

Substituting equations (1-97b) and (1.100) (and independently by Balabukh (ref. 1.52) at 
similarly leads to the same time) are also those which were adopted 

Eh3 by ~oldenveiier (cf., ref. 1.24, pp. 83, 84,-and 
M@a=24(1+~))"-p (1.102) 2301. 
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1.5.5 Remarks on the Force and Moment 
Resultant Equations 

Essential1 y three different procedures have 
been followed in obtaining the force and moment 
resultant equations given in the preceding sec- 
tions. Beginning with the defining equations 
(1.72)) (1.73)) and (1.74) for the forces and mo- 
ments, after the stress-strain equations (1.71) 
are introduced, equations (1.75) corresponding 
to the theories of Love, Timoshenko, Reissner, 
Naghdi, Berry, Sanders, Mushtari, and Donnell 
are arrived at  by indiscriminantly neglecting 
z/Ri (i =cr,P) in comparison with unity. On the 
other hand, integration of the unsimplified equa- 
tions (cf., eqs. (1.77)) over the thickness is 
extremely cumbersome. The theory of Byrne, 
Flugge, and Lur'ye simplifies the integration and 
at the same time attempts a more careful discard 
of terms of higher order by using the series expan- 
sion of quotients of the type l/(l+z/Ri). The 
Vlasov theory does likewise, following a slightly 
different algebraic manipulation. 

Consider now a rationale which could be used 
to reduce equation (1.78a) of the Byrne-Flugge- 
Lur'ye theory to the corresponding equation 
(1.76a) of Love et al. Equation (1.78a) is first 
rewritten as 

OF SHELLS 

For a thin shell, it  is reasonable to neglect the term 
h2[(1/Ra3 - (1/RaRB)]/12 in equation (1.107) 
with respect to unity. The second step required 
to reduce equation (1.107) would be to neglect 
h2[(1/Ra) - (1/RP)]~,/12 with respect to (ea + ~ 6 ~ ) .  
Introducing the nondimensional curvature eaf 
given by equation (1.90a)) it is seen that th6 
second assumption is valid provided that tbe 
strains due to bending are small compared to 
those due to stretching. 

On the other hand, consider the analogous 
procedure to reduce equation (1.79~) for the 
twisting moment Mag to the corresponding 
expression of Love et al., equation (1.76f). To do 
so, it is necessary to neglect the term eaB/Ra in 
comparison with 7. But substituting equations 
(1.39) into equation (1.42~) and using equations - 
(1.41)) the resulting expanded form for T contains 
eaa/Ra as an explicit, non-negligible term. It is 
therefore inconsistent to neglect eaB/Ra in corn- 
parison with 7. 

The third procedure, leading to the equations 
used by Novozhilov and Goldenveizer, avoided 
inconsistencies of the type described above by 
taking variations of the strain energy functional 
and carefully discarding terms. 

The force and moment resultant equations 
arising from the various theories are summarized 

.a =""([I + E ( L  - ')lea in tables 1.4 and 1.5. 
(1 - ~3 12 Ra2 RaRg 

+ g - (  - ) (1.107) 
12 Ra Rg 

TABLE 1.4.-Force Resultants According 80 the Various Theories 

Theory 

Byrne, Fliigge, Lur'ye 

Goldenveizer, Novozhilov 

Love, Timoshenko, Reissner, 
Berry, Naghdi, Mushtari, 
Donnell, Sanders 

Vlasov 

(1 - v2) Na/Eh (1-v2)Ng/Eh 2(l +v)Nag/Eh 2(l+v)Nga/Eh 

2 R n  

% + yefl 

€a + V$ 

Same as Byme, 
Fliigge, Lur'ye 

~g +pea 

eB 

Same as Byme, 
Fliigge, Lur'ye 

h2 
€a@ + -7 

12Rg 

€4 

ha 
€ag+--r 

12Ra 

€4 
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TABLE 1.5.-Moment Resultants According to the Various Theories 

Theory 12(1- vz) Mu/Eh3 12(1 -va) Mp/Eh3 24( l  +v) Mu8/Eh' 24( l+v )  Mgn/Eh3 

Byre, Flugge, Lur'ye K u + v K p - ( & - ~ ) ~ u  K ~ + V K ~ - ( ~ - ~ ) € ~  1 1  r-- ~ u E  7-- €4 

Ru R~ 

Goldenveizer, Novozhilov, 
Love, Timoshenko, 
Reissner, Naghdi, Berry, K~ + v ~ p  K~ + VKU T r 

Mushtari, Donnell, 
Sanders 

Vlasov Same as Flugge, Same as Byrne, €4 €4 
7+- 7+- Byre, LurJye Flugge, Lur'ye Rp Ru 

1.6 EQUATIONS OF MOTION 

At least three distinct methods are used in the 
literature for obtaining equations of motion, all 
depending upon the results obtained in the pre- 
vious sections. The first method is the one most 
widely used and, hence, is the "standard one." 
It simply applies Newton's laws by summing 
forces and moments which act upon a shell ele- 
ment of thickness h. An excellent derivation 
based on this approach is given in Novozhilov's 
monograph (ref. 1.26, p. 33). The second method, 
exemplified by the derivation in section 1.6.2, 
begins with the equations of motion of an in- 
finitesimal element of the three-dimensional 
theory of elasticity and integrates them over 
the thickness to obtain the equations of motion 
for a shell element. The third method is actually 
a class of variational methods. One derivation of 
the variational type depending upon Hamilton's 
principle was made by IZraus (ref. 1.42, p. 40). 
Sander's equations derived in section 1.6.4 are 
also an example of the third method. 

In  the derivations which follow, for simplicity 
the equations of motion are derived in the static 
case, yielding equations which govern the equi- 
librium of a shell element. However, the equi- 
librium equations will include body force and 
body moment terms which are readily capable 
of representing inertial terms by applying 
D'Alembertis principle at  a later stage. 

1.6.1 The Standard Derivation 

Consider the equilibrium of the shell element 
of thickness h shown in figure 1.2 under the 

influence of internal force and moment resul- 
tants as shown in figures 1.3 and 1.4 and exter- 
nally applied body forces and moments and 
surface loads. The total external force intensity 

vector ;is the sum of all such effects and can 
be written as 

+ 
In  general, q has components in all three direc- 
tions as indicated, is considered to be acting at 
the middle surface, and must be multiplied by 
the area of the middle surface (AB dar dp) to 
obtain a true force. Thus, q has the dimensions 
of force per unit area. In  practice it may arise 
due to externally applied pressures or external 
fields (gravitational, accelerative, magnetic, etc., 
see eqs. (1.118) for the integrals defining q,, qp, 
and q,). Similarly, the moment intensity due to 
these external fields is given by 

and has dimensions of moment per unit area. 
Let the total forces acting upon the faces 

defined by a= constant and by p=constant be 

denoted by zu and 2p ,  respectively, where 

as shown in figure 1.3. Love's second postulate 
that the deflections are sufficiently small allows 
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one to refer equations (1.110), which are written naturally in %erms of the deformed middle 
to the undeformed middle surface instead. On the other two faces of the shell element the corresponding 

forces are 2,+ (a?,/da) da and zp+ ( a g B / d p )  dp. Thus, the vector equation of force equilibrium for 
the shell element is given by 

Substituting equations (1.108) and (1.110) into equation (1.1 11) and utilizing the rules for cliff erentia- 
tion of unit vectors given by equations (1.19)) the vector equation can be expanded into its three 
scalar components as follows: 

a a aA  aB AB 
-(BN,) + - ( A N B ~ )  + -N~B--NB +-&or+ ABq, = 0 a a p  aP a a! (1.112a) 

R, 

Let the total moments acting upon the faces defined by a=constant and by @=constant be 

denoted by %, and %@, respectively, where 

as shown in figure 1.4. On the other two faces of the element the corresponding moments are 

~%,+(a%~/aa!) da and %p+(a%B/ap) dp. Thus, the vector eqcation of moment equilibrium for the 
shell element is given by 

where the point 0 has been used as the reference origin for the moments; where the term (3, XQ) dss/2, 
for example, represents the moment of the force P, located by the position vector (ds@/2)tP with respect 
to 0 ;  and where ds, = A  da! and dss = B dp. Substituting equations (1.109), (1.110), and (1.113) into 
equation (1.114), performing the indicated vector cross products, and utilizing equations (1.19), the 
vector equation can be expanded into its three scalar components as follows: 

a a aA aB 
-(BMu) +--(AMo,) +-Me@ --MB - A B & , + A B ~ ~  = o aa! a p  a@ aa! 
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' ---. Equations (1.112) and (1.115) form the set of equations of equilibrium used by most authors in 
,I_ i shell theory. 

1.6.2 An Alternative Derivation 

The three-dimensional equations of equilibrium in a set of orthogonal, curvilinear coordinates are 
given by (cf., ref. 1.50, p. 181) 

where g=2/gz and qi* is the body force intensity per unit volume. In shell coordinates the indices 
1, 2, 3 are replaced by a, /3, and x, respectively, and the coefficients of the metric tensor are given by 
equations (1.28), thus yielding (ref. 1.41) 

where the symmetry of the stress tensor has been assumed and where the term l/zqn* is, for example, 
a combined body and surface force intensity in the direction $. 

Upon multiplying equations (1.117) through by dx, integrating over the thickness, and making 
use of the generalized Mainardi-Codazzi equations (1.30) and the definitions of the force resultants 
given by equations (1.72) and (1.73), one obtains the force equilibrium equations (1.112), with the 
following definitions for q,, qp and q,: 

Upon multiplying equations (1.117) through by z dz, integrating over the thickness, and making 
use of equations (1.30) and the definitions of the force and moment resultants given by equations 
(1.72), (1.73) and (1.74), one obtains the first two moment equilibrium equations (1.115a) and (1.115b). 
However, equation (1.1 17c) does not give equation (1.115~) ; rather, it gives a relationship between 
Mu, MB and certain higher order stress resultants not used in classical shell theory. 

1.6.3 Equations of Donnell and Mushtari 

The equations of Donnell and Mushtari are arrived at by neglecting the terms containing Q, and 
QB in the two tangential force equilibrium equations (1.112a, b). The remaining force equilibrium 
equation (1.112~) and the moment equilibrium equations (1.115) remain unchanged. 
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1.6.4 Equations of Sanders 

In  section 1.4.5 the strain-displacement equations of Sanders' theory were derived from the 
principle of virtual work. The "generally accepted" equilibrium equations (1.112) and (1.115) were 
accepted as basic axioms for which a consistent set of strain-displacements were deduced. However, 
the process of reducing the number of independent force and moment results (not including Q, and 
Qo) from eight to six requires derivation of a new, consistent set of equilibrium equations by another 
application of the principle of virtual work. 

Beginning with the virtual change in strain energy due to the internal force and moment resultants 
as given by the area integral in equation (1.61)) reintroducing the transverse force resultants Q, and 
Qs, and integrating by parts gives 

where the functionals F1, . . . , FK are defined by 

a a aA  
Fl = --(BN,) +-(AS) +S-- Npz+- - --- aa a@ a p  aB A a [( ' ia)H]+g~, 

' 

2 a p  R, 

a a a~ aA  ~ a [ ( l  ;,) ] ; 
Fz=-(ANB)+-(BS)+S--N,+- - --- H +-Qs 

ap aa aa a p  2 d a  Rs 

A B  A B  a F3=--N --N a 
R, a RB 

P + ~ ( B Q ~ )  +$AQ,) + (1.120) 

a a aA  aB 
F4 = -(BM,) +-(AH) +H- - Mg- - ABQ, aa a p  ap  aa 

a a dB a~ 
FK=-(AMB)+-(BH)+H--Ma-- ABQ@ 

a p  aa aa a@ I 

For the shell to be in equilibrium, the principle of virtual work requires that the left-hand side of 
equation (1.119) must equal the line integral on the right-hand side, in which case the area integral on 
the right-hand side must vanish. Because the virtual displacements 6u, . . . , 68, are independent 
and arbitrary, each term of the area integral must vanish independently. Thus, setting 

in equations (1.120) equal to zero gives the modified'equations of equilibrium for the internal forces 
according to Sanders' theory. Adding suitable inertia terms to them gives corresponding equations of 
motion. 
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FUNDAMENTAL EQUATIONS 

on the Equations of Motion 

There is widespread agreement on what. con- 
stitutes the equations of motion. Equations 
(1.112) and (1.115) were directly arrived at  either 
by summing force and moment resultants acting 
upon a shell element, or by integrating the three- 
dimensional equilibrium equations of elasticity. 
Icraus (ref. 1.42) obtained the same equations by 
means of variational calculus and Hamilton's prin- 
ciple. Sanders' equations (1.120) and (1.121) were 
seen to be different. This difference resulted from 
his initial assumption that the rotation about the 
normal 8,) is a basic entity to be included in the 
virtual work principle and then later redefining 
8, to be dependent upon u and v (cf., eq. (1.54)). 
As a result of this redefinition, a second applica- 
tion of the principle of virtual work resulted in 
additional terms appearing in the force equilib- 
rium equations taken in the ar and directions 
(that is, corresponding to u and v). 

If the sixth equilibrium equation (1.115~) is 
rewritten in terms of the force and moment 
resultants (eqs. (1.72), (1.73)) and (1.74)) then it 
becomes 

which is identically satisfied if the symmetry of 
the stress tensor is assumed. This symmetry was 
assumed a priori in the alternative derivation 
given in section 1.6.2. 

1.7 SYNTHESIS OF EQUATIONS 

At this point the equations governing the 
motion of each point within a shell are now 
complete for each theory considered except for 
the boundary conditions (initial conditions are 
not needed for the problem of determining free 
vibration frequencies and mode shapes for a 
given configuration). Because of the relatively 
large numbers of equations and unknowns which 
were necessarily introduced in the preceding 
sections, it is now desirable to delineate the 
necessary and sufficient sets of equations which 
define the motion and lay out the procedure 
which is customarily followed in combining them 
to reduce their number. A summary of the sets 
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of equations and the independent and dependent 
variables is now given. 

Strain-displacement equations. Six strain-dis- 
placement equations are summarized for each 
theory by equations (1.41) and tables 1.2 and 
1.3. Substituting for the rotations 8, and 8s from 
equations (1.39), there remain six generalized 
components of strain e,, €0, ea~, K,, KO, and T which 
are given explicitly in terms of the three dis- 
placement components u, v,  and w. 

Force and moment resultants. Eight equations 
summarized by tables 1.4 and 1.5 express the 
eight force and moment resultants N,, No, Nab, 
NBa) Ma, Mg, Mas, and MB, as explicit functions 
of the six strain components E,, €0, e,~, KU, KO, 

and T. 
Equations of motion. Five equations of motion 

must be satisfied. These are given by equations 
(1.112) and (1.115a and b) (or by equations 
(1.120) and (1.121) in the case of the Sanders 
theory). Equation (1.115~) is satisfied identi- 
cally. The five equations are implicit relations 
among the ten force and moment resultants N,, 
No, Nab, Ns,, Q,, Qp, Ma, MB, Map, and Msa. 

Thus, in general, there are 19 equations relat- 
ing 19 unknowns-u, v, w ;  ea, e ~ ,  CP, K,, KB, T ;  

Na, NP, Nab, NBW Qa, QP, Ma, MB, Mas, Msa. 
For some theories (e.g., Love, Timoshenko, 
Reissner), Nap = Ns, and Mas = Msa, thereby 
reducing the number of equations and unknowns 
to 17. 

The usual procedure followed to reduce the 
number of equations and unknowns to a more 
manageable number is to begin by eliminating 
Q, and QB from the five equations of motion, 
which reduces their number to three. This is 
done, for example, by solving equations (1.115a 
and b) for Qa and QB and substituting into equa- 
tions (1.112). The force and moment resultant 
expressions are then substituted into the equa- 
tions of motion, giving them in terms of the 
generalized strains. Finally, the strain-displace- 
ment equations are substituted, yielding three 
differential equations of motion having u, v,  and 
w as dependent variables and a, P, and t (time) 
as independent variables. The set of differential 
equations is of the eighth order. 

Time enters the equations of motion through 
inertial terms. For the free vibration problem 
the body force intensities q,, qo, and q, will be 
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replaced by their translatory inertia equivalents 
given by 

q@ = - ph- 
at2 

where p is mass density per unit volume and t 
is time. Rotary inertia can be included by suit- 
ably replacing mu, and ma in equations (1.115a 
and b), but this effect is generally negligible 
unless the shells become relatively thick (say, 
h / R  > 1/10, where R is the bast radius of curva- 
ture of the shell). However, in this case it be- 
comes equally important to include the effects 
of shear deformation, which requires a complete 
reformulation of the shell theory and leads to a 
tenth order set of differential equations of mo- 
tion. Thus, the effects of shear deformation and 
rotary inertia will be considered as a separate 
subject in later chapters. 

Following the systematic procedure outlined 
in the paragraph before the last, it would be 
possible to display general equations of motion 
in terms of u, v, and w for shells having arbitrary 
curvature properties. However, the equations 
would be extremely unwieldy, especially when 
the radii of curvature R, and Rg (and, conse- 
quently, the Lam6 parameters A and B) are 
not constant, but depend upon a and P. Thus, 
the procedure will be followed only for specific 
curvatures (cylindrical, spherical, conical, etc.) 
and the resulting equations of motion will be 
presented where relevant in the subsequent 
chapters. 

If the equations of motion are solved to find 
u, v, and w (in the case of free vibration the mode 
shape is determined), then the resulting stresses 
a,, a@ and a,@ can be found in the following 
manner : 

(1) Substitute u, v, and w into the strain- 
displacement equations. 

(2) Determine the strains at  points through- 
out the shell thickness (particularly at  x = + h/2) 
by using the expressions given in table 1.1. 

(3) Find the stress components at  any point I 
by means of the stress-strain equations (1.71). 

1.8 BOUNDARY CONDITIONS 

Assume that the boundaries lie along coor- 
dinate curves. The work done by the reactions 
at  the boundaries is zero; i.e., 

along the boundary a = a 2  and 

W ,  = L2(?B.u+&.~)) A da = 0 (1.125) 
@=Pa 

along the boundary P=&. The vectors $,, 8@, 
%, and %@ are given by equations (1.110a and b) 
and (1.113a and b), respectively, and 

By substituting equations (1.110), (1.113), 
(1.126), (1.127), and (1.39) into equations 
(1.124) and (1.125)) one obtains 

WI = lY[JJu~ + ~ u ~ v +  Q ~ W  + 1 

but, integrating by parts 

By substituting equations (1.129) into equations 
(1.128) and collecting terms, one obtains 



r--> - On 
8 2 

I Equations (1.130) are satisfied if the integrand Hw = O  (1.133e) -=  
lo1 I 

- - -  

and the second parts of the equations are set . - =. , equal to zero. Thus the boundary conditions, on on an edge where a= constant an6 I _ . .. 

i a;edfs y@m, 9 =constant, are 
+- --9 - _  L 

4p;-?-:d +- , Na or u-0 (1.131a) [sf(&-&)] or u=O (1.134%) ' ,  ' 
1 - -  8 ;  

r-:-- #, &,----; I-. 8 

Ns or v = O  (1.134b) 
l -  - , ' -  , ' ( iVa8+5) or v = O  (1.131b) 

T ;.-;- - L- 

on an edge where p = constant. 

on edge where p = constant 
1.9 SHALLOW SHELL THEORY 

Np or v = 0 (1.132b) curvature at every point is large compared with 

shell. Vlasov (ref. 1.19) describes a shallow shell .- 
M8 or Os=O (1.132d) 

the category of shallow shells. 

(1.112) and (1.115). -,: .- - . , , #  
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Reissner (refs. 1.54 and 1.55)) and Vlasov (ref. 
1.19). An extensive bibliography on shallow shells 
is given by Leissa and Kadi (ref. 1.56). 

No attempt to present a rigorous derivation of 
shallow shell theory will be made in this section. 
For rigorous derivations the reader is referred 
particularly to references 1.19, 1.54, 1.55, and 
1.56. The primary purpose of this section is sim- 
ply to present the shallow shell equations for 
shells having arbitrary curvatures for reference 
in subsequent chapters. 

The terms containing Q, and Qa in the first 
two equilibrium equations (1.112a) and (1.112b) 
are neglected as in the Donnell-Raushtari theory 
(see. 1.6.3). Further, the tangential loads q, and 
qa (which are tangential inertia terms in the free 
vibration probiem) are neglected. With these 
two assumptions equations (1.112a) and (1.112b) 
are identically satisfied by the introduction of 
an Airy type of stress function (p defined by 

The expressions for changes of curvature are 
taken as in the Donnell-Mushtari theory (eqs. 
1.63) and the compatibility condition for dis- 
placements of the middle surface are approxi- 
mated (in particular, the Gaussian curvature, 
l/R,Ra, is assumed negligibly small). The re- 
sulting equations of equilibrium and compati- 
bility which govern the deflected region of a 
shallow shell then become, respectively (ref. 
1.19) 

where V4 = V2V2 and 

Further, according to the shallow shell theory 

with the expressions for K ~ ,  K2, and T given by 
equations (1.63). The governing eighth order set 
of equations (1.136) is then solved in terms of :,: 
the two dependent variables w and (p, with -$- 
physical quantities being determined from equa- , a  

tions (1.135)) (1.139)) and (1.140). 
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Chapter 2 

Thin Circular Cylindrical Shells 

This chapter will be limited to the study of 
thin circular cylindrical shells, not including the 
effects of initial stress, anisotropy, variable thick- 
ness, shear deformation, rotary inertia, large 
deflections, nonhomogeneity, or surrounding 
media. These complicating effects will be studied 
(as they pertain to circular cylindrical shells) in 
chapter 3. 

Nevertheless, there is a great deal of complexity 
in the organization of the remaining material. 
The standard or classical theories of thin shells 
are governed by eighth order systems of differen- 
tial equations which, as was seen in chapter 1, 
take many forms, depending upon the assump- 
tions made. For some problems, simplifying 
assumptions leading to the fourth order inexten- 
sional or extensional theories can be justified. 
Cylindrical shells can be opened or closed, and 
edge restraint conditions can take many forms. 
Several physical parameters can be varied, 
including 

of the shell of infinite length is discussed first 
because of its relative mathematical simplicity. 

Results are subsequently presented both for 
closed and open thin circular cylindrical shells of 
finite length. By far, most of the results available 
are for closed shells, although in some cases the 
results for closed shells can also be interpreted in 
terms of open shells. Open shells can be either 
shallow or deep. Although there are 136 combina- 
tions of "simple" boundary conditions possible 
for a closed circular cylindrical shell, most of the 
results are available for a single one of these 
cases-when both ends are supported by shear 
diaphragms. Two types of boundary conditions 
not axisymmetric but of practical value have no 
reported results. These are 

(1) Point supports. 
(2) Boundary conditions that are discontin- 

uous along a single edge; for example, one portion 
of a boundary may be clamped and the remainder 
free. 

(1) Number of circumferential waves 
(2) Thickness/radius ratio 
(3) Length/radius ratio 
(4) Poisson's ratio. 

Furthermore, little has been done with circular 
cylindrical shells when the natural cylindrical 
coordinates of the problem are incompatible with 
the boundaries, as in the case of closed shells 

The governing differential equations of motion 
are sometimes simplified by neglecting tangential 
inertia, or by neglecting other terms in the equa- 
tions for various justifying reasons. Solution of 
the governing equations is often accomplished by 
one of several approximate methods. Finally, 
experimental, as well as theoretical, results are 
frequently available for comparison. 

In  the first section of this chapter the shell 

having noncircular edges or cutouts. 

2.1 EQUATIONS OF MOTION 

The shell coordinates to be used are x and 0 as 
shown in figure 2.1. Further, the length coordi- 
nate x is replaced by a nondimensional length s 
defined by 

s = x / R  (2.1) 

equations derived in chapter 1 will be expressed where R is the cylindrical radius. Following the 
in terms of circular cylindrical shell parameters procedure outlined in section 1.7 the equations 
and the corresponding equations of motion will of motion are synthesized for the case of a circular 
be synthesized. The remainder of the chapter is cylindrical shell by using the following parame- 
devoted to reporting vibration results. The case ters in tables 1.1 through 1.5: 
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a = S, p=e  

A=R, 

R,=w, Rg=R 

The equations of motion for thin circular cylindri- 
cal shells can be written in matrix form as 

[$J{uil= (01 (2.3) 

where (uiJ is the displacement vector 

* , i  . , ,  (2.4) 
I' 

u, v,  and w are the orthogonal components of 
displacement in the x, 8, and radial directions, 
respectively, and [$I is a matrix differential 
operator. 

2.1.1 Eighth Order Equations 

FIGURE 2.1.-Closed circular cylindrical shell 
and coordinate system. 

Different eighth order systems of equations are commonly used to model the vibrational behavior 
of circular cylindrical shells. In  this case the [&] operator in equation (2.3) can be treated as the sum 
of two operators; i.e., 

where [SD-M] is the differential operator according to the Donnell-R/lushtari theory, [$MOD] is a 
"modifying" operator which alters the Donnell-AiIushtari operator to yield another shell theory, and 
k is the nondimensional thickness parameter defined by 

Thus, each eighth order shell theory for circular cylindrical shells differs from the Donnell-Mushtari 
theory by an operator [&OD] which is multiplied by the constant k, which is very small for small 
h/R ratios. 

The Donnell-Mushtari operator is found to take the form 
I 

where V4 = V2V2 and 
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Similarly, the modifying operators for various circular cylindrical shell theories take the forms shown 
below. 

Love-Timoshenko: 

Goldenveizer-Novozhilov (also Arnold- Warburton) : 

Houghton-Johns (simplified Golclenveizer-Novozhilov) : 

Flugge-Byre-Lur'ye (also Biezeno-Grammel) : 
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Sanders: 

Vlasov: 

Epstein-Kennard: 

[ ( 3 + ~ - - 1 7 ~ q - i 2 ~ ~ )  a2 - 
2 ( l -  v)" as ae 

~2 a 4  +-- ( I -  ~ ) 2  as3 ae 
v2  +-- ( I - ~ ) ~  as a03 I 

Y ( I + ~ v )  a 3 2  a 3  -+- - 
a 2 ( 1 - - ~ ) ~ a ~ ~  [&I$ 

( 4 - 5 ~ + ~ ~ + 3 ~ ~ )  a 3  (2-7v+l lv2-3v3)  a 3  

+ ~ ( ~ - - v ) v s  -1 ae2 + 2(1- v)" as2 ae 
+ 3 ( 2 - 4 ~ + 3 ~ ~ )  a 3  

2(1- V ) Z  -1 a03 - 
Kennard simpli$ed: 
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For the various shell theories the modifying 
operators are simple in some cases and compli- 
cated in others. Furthermore, several of them are 
seen to be nonsymmetric, which has resulted in 
much criticism in the literature of shell theory 
(cf., refs. 2.1 and 2.2). Nonsymmetric equa- 
tions of motion can yield imaginary vibration 
frequencies. 

The shell theories described by the differen- 
tial operators in some cases are specializations 
of the theories derived in chapter 1 for arbitrary 
shells and, in other cases, were developed spe- 
cially for circular cylindrical shells. The theories 
of Donnell-Mushtari, Love-Timoshenko, Golden- 
veizer-Novozhilov, Fliigge-Lur'ye-Byrne, Reiss- 
ner-Naghdi-Berry, Sanders, and Vlasov were 
derived in chapter 1. 

Arnold and Warburton (refs. 2.3 and 2.4) 
derived their widely used equations of motion of 
circular cylindrical shells by using Lagrange 
equations with suitable strain energy and kinetic 
energy expressions. Although they began with 
Timoshenko strain-displacement equations, par- 
ticular assumptions made when integrating over 
the thickness yielded the equations of Golden- 
veizer and Novozhilov. This equivalence has 
apparently been pointed out in the literature. 

Houghton and Johns (ref. 2.5) suggested a set 
of simplified equations of equilibrium for static 
problems of circular cylindrical shells which are 
obtained by neglecting k with respect to unity 
in the Goldenveizer-Novozhilov equations. This 
procedure was also carried out by Eijlaard (ref. 
2.6) on the Timoshenko-Love equations. Epstein 
(ref. 2.7) derived a general set of equations of 
shell theory from the three-dimensional theory 
of elasticity by means of expansion of stresses and 
displacements with respect to the thickness coor- 
dinate, x. These equations were subsequently 
rederived and specialized to circular cylindrical 
shells by Kennard (refs. 2.8 through 2.11). 

As indicated in chapter 1, in addition to the 
theories derived there, there exist many other 
distinct theories for thin shells having arbitrary 
curvature. In  addition there are theories derived 
specially for circular cylindrical shells which will 
not be accounted for in this chapter, for example, 
those of Coupry (refs. 2.12 and 2.13)) Morley 
(ref. 2.14)) Herrmann and Armenakas (refs. 2.15 
and 2.16)) Yu (ref. 2.17)) Galerkin (ref. 2.18 and 

ref. 2.19, p. 295)) Miller (ref. 2.20)) Simmonds 
(ref. 2.21)) and Mugnier and Schroeter (ref. 2.22). 

The strain energy of a circular cylindrical 
shell is obtained by substituting the appropriate 
strain-displacement equations into equation 
(1.84) and integrating over the thickness. The 
total strain energy can be written as 

where ID-M is the integrand of the strain energy 
of the shell according to the Donnell-Mushtari 
theory and is given by 

and 1 ~ 0 ~  is the "modifying integrand" which 
differs depending upon the shell theory being 
used. Some examples of modifying integrands 
which are appropriate to the shell theories being 
considered here are given below. 

Goldenveizer-Novoxhilov: 

Houghton-Johns: 

Flugge-Lur'ye-B yrne: 

(1- V) au au azw au azw 
IMOD=- - +(I-v)--- 2- - 

2 (ae) ae as as as as2 
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Reissner-Naghdi-Berry: 

Sanders: 

Vlasov: 

It is further noted that the strain energy inte- 
grands given by equations (2.11) and (2.12) are 
consistent with the equations of motion given 
earlier in this section for these theories. Consis- 
tency requires that the equations of motion are 
derivable from an energy principle by means of a 
variational procedure. 

For example, one variational principle which 
may be invoked is Hamilton's principle, which 
may be written as 

That is, the variation of the time integral be- 
tween given time limits of the difference between 
the kinetic and potential energies must vanish. 
The kinetic energy of the shell is 

Substituting equations (2.10)) (2.11)) (2.12)) and 
(2.14)) it can be seen that equation (2.13) can 
be written in the form 

and the functions u, . . . , a2w/d02 are functions 
of s, 0, and t. From the calculus of variations, 
the conditions that equation (2.15) be satisfied 
are the Euler-Lagrange equations, given by 

where, for example, aS/au, indicates the partial 
derivative of the functional 5 with respect to the 
function &/as. 

Using the various strain energy functionals 
given by equations (2.11) and (2.12) in con- 
junction with equations (2.16)) the equations of 
motion determined by equations (2.7) and (2.9) 
will result. 

Strain energy integrands which are consistent 
with the other theories included in equations 
(2.9) cannot be found because the equations of 
motion are not symmetric. 

The total strain energy integrand given in 
equation (2.10) can be written as the sum of 
two parts-one part due to stretching (mem- 
brane) and one part due to the addition of 
bending stiffness; i.e., 

I to ta l=  Irnembrane+ Ibending (2.17) 
where 

and Ibenaine is the sum of those terms of the 
integrand of equation (2.10) which contain k, 
taken both from equations (2.11) and (2.12). 
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2.1.2 Extensional (Membrane) Equations 

The extensional or membrane theory for cir- 
cular cylindrical shells has an extensive history, 
including the early works of Rayleigh (refs. 2.23 
and 2.24) and Love (refs. 2.25 and 2.26). In  
using this theory it is assumed that the bending 
rigidity of the shell is negligible at every point. 
Thus, the extensional equations of motion can 
be arrived at  by setting IG = 0 in equations (2.5) 
and (2.7)) yielding 

This system of differential equations is of the 
fourth order in s and 8. The strain energy inte- 
grand given in equation (2.18) is consistent with 
these equations. 

2.2 SHELLS OF INFINITE LENGTH 

where A, B, 6, and X are undetermined constants, 
n is an integer for closed shells, and o is the 
frequency of free vibration in radians per second 
(if the mass density p is expressed in units involv- 
ing seconds). The cyclic fi-equency (cps) is ob- 
tained by dividing w by 2 ~ .  The form of solution 
taken in equations (2.20) assumes that the time 
and spatial variables are separable, giving rise to 
normal modes executing simple harmonic mo- 
tion, the period and phase of the motion being 
the same for all points on the shell. The periodic 
functions of e used in equations (2.20) guar- 
antee that the displacements are periodic (e.g., 
w(s,B) = w(s,O+27r)) and continuous (e.g., 
w(s,7r) = w(s, -7r)). 

Substituting equations (2.20) into equations 
(2.1) and (2.3), using any form of the eighth or- 
der shell theories given by equations (2.7) and 
(2.9), it can easily be seen that the number of 
differentiations in each term of the equation of 
motion are such that each equation of motion 
permits factorization of terms containing s, 0, 
and t out of each equation. The equations of mo- 
tion must be satisfied for all values of s, 8, and t 
allowed to vary independently. This leads to a 
set of homogeneous equations which, for the 
Donnell-Mushtari theory, for example, can be 
written in matrix form as in equation (2.21). 
For a nontrivial solution, the determinant of the 
coefficient matrix in equation (2.21) is set equal 

Consider first the closed circular cylindrical to zero, which yields either of the following two 
shell of infinite length having displacements of eigenvalue problems: 
the form 

u =A cos AS cos n0 cos wt) (1) For a given h, there exists one or more 
proper values of the frequency parameter 

v = B sin As sin nfl cos wt } (2'20) p(l-~3R2w2/E such that the determinant van- 
w = C sin As cos ne cos wt ) ishes, or 
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(2) For a given frequency w, there exists one 
or more proper values of A such that the deter- 
minant vanishes. 

Of course, since s = x/R, then the half-wavelength 
of the displacement functions in the x direction 
is I if X is chosen to be ?rR/l, and the frequencies 
of free vibration can be found which correspond 
to the given wavelength. 

As will be seen in section 2.3 the displacement 
functions chosen as in equation (2.20) also exactly 
satisfy the freely-supported or shear diaphragm 
end conditions of finite length shells. Thus, a 
circular cylindrical shell of infinite length vibrat- 
ing in a mode, so that the half-wavelength in the 
x-direction is 1, corresponds to a finite shell of 
length 1 having a particular set of end conditions. 

One simple mathematical model of a cylindrical 
shell of infinite length is obtained by using the 
concept of plane strain. The necessary assump- 
tions are that there is no motion in the direction 
of the length of the shell and that the physical 
quantities (displacements, membrane forces, 
bending moments, etc.) do not depend upon loca- 
tion along the length. Thus, the case of plane 
strain requires 

which changes the character of the shell motion 
from two-dimensional to one-dimensional (varia- 
tion only with 8) and simplifies the analysis 
considerably. For example, under the assumption 
of equations (2.22) the Fliigge equations of 
motion given by equations (2.1)) (2.3)) (2.7), and 
(2.9d) reduce to (refs. 2.27 through 2.29) 

Equations (2.23) may be solved by assuming 

v = B sin no cos wt I (2.24) 
w = C cos no cos wt 

Substituting equations (2.24) into (2.23) yields 

where 

p(l - v2) R2w2 
Q2= 

E 
(2.26) I 

For a nontrivial solution, setting the determinant 
of the coefficient 
to zero gives the roots 

as was shown by Reismann (refs. 2.27 and 2.28). 
The root Q2 = 0 for 12 = 0 corresponds to rigid - 

body torsional rotation of the shell. a 

Now consider the solution functions given in 
4FR 

equations (2.20) for the case when the wave- 
length in the x (and s) direction becomes infi- 
nitely long. The solution functions can then be 
represented as 

u= A cos no cos wt 

v = B sin ni3 cos wt (2.28) 

w = C cos no cos wtJ 

Talcing, for example, the Donnell-Mushtari the- 
ory and substituting equations (2.28) into the 
equations of motion yields a set of homogeneous 
equations which can also be arrived at  by taking 
the limit as I+ co (i.e., A+O) in equations (2.21) ; 
that is, 

It is seen that from equations (2.29) the motion 
uncouples, giving a purely axial (or longitudinal) 
motion characterized by the frequency parameter 
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and, because the v and w displacements are now 
uncoupled from u, the other two modes for a 
given n are the same as the plane strain modes 
discussed earlier in this section. In  the case of the 
Donnell-Mushtari theory, finding the roots of the 
uncoupled second order determinant arising from 
equations (2.29) gives 

which can be compared with the corresponding 
plane strain frequencies from the Fliigge equa- 
tions of motion given in equations (2.27). 

The off-diagonal terms 2 1 2 ,  S z l ,  213,  and $31 in 
the matrix operators in the equations of motion 
for the remaining theories (equations (2.9)) are 
also either zero or contain derivatives with re- 
spect to s (giving A) in each term, so the same 
uncoupling for a circular cylindrical shell of infi- 
nite length occurs for each theory. The resulting 
frequency formulas for the three roots Q2 for 
each theory are listed in table 2.1. In deriving the 
frequency formulas for table 2.1 terms containing 
k2 were neglected. 

- TABLE 2.1.-Frequency Parameter Formulas for Circular Cylindrical Shells 
" of Injinite Length According lo Various Theories 

Shell theory n2 Q2 . 
(Axial mode) (Radial and circumferential modes) 

1 1 
Donnell-Mushtari $1 - v)nP - (  (1 +n2+kn4) + [(I +n2)2+2kn4(1 -n2)]112) 

2 
Love-Timoshenko Same as 

Donnell-Mushtari 
Goldenveizer-Novozhilov Same as Same as Love-Timoshenko 

(also Arnold-Warburton) Donnell-Mushtari 
Houghton-Johns Same as 1 

- { (1 +n2+kn4) +[(I +n2)*+2kn4(5 -n2)l1l2) (Simplified Goldenveizer- Donnell-Mushtari 2 
Novozhilov) 

1 1 
Biezeno-Grammel -(1 +k) (1 -v)n2 - ([1+n2+k(l -n2)2] T [(I +n2)=+2k(1 -n2)3]112) 

2 2 
Fliigge Same as 

Donnell-Mushtari 

Sanders $1 +:) (1 - v)n2 Same as Love-Timoshenko 

Reissner-Naghdi-Berry Same as Same as Love-Timoshenko 
Donnell-Mushtari 

Vlasov - - Same as Same as Biezeno-Grammel 
w Donnell-Mushtari 

8- - 1 1+3v ( I o - ~ o v ~  l l v 2  
Epstein-Kennard - -(1 2 +k) (1 - v)n2 ~{[l+ck+n2-  2 (1 - v ) ~  kn2+akn4 

(1 - v) 
I 

i? - 

I 
kn2 

kn4 - 

Kennard Simplified Same as 2+v 4-v 
k+n2-- Donnell-Mushtari a kn2+kn4 

2(1 - v )  

2+v 
I 

3(2-3v) 
T 1+-k+2(1 -3k)n2+n4+- [ 1 - v  1 - v  kn4-27~n~l"~) 

Same as 0, l+n2 
Donnell-Mushtari 

Membrane 
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In  table 2.1 the "Biezeno and Grammel shell in nature, and these differences decrease as R/h 
theory" is listed separately. It is actually the is increased. I 
same as that of Flugge, but a subtle difference Considering table 2.2, which shows up the 
exists between their frequency equations (ref. largest differences among the theories, one ob- 
2.30) and those of Flugge (ref. 2.31). In  their serves that: 
work only the terms containing k2 are discard.ed 
when expanding the frequency determinant, 
whereas Fliigge also neglected k with respect to 
unity, thereby discarding additional terms. 

It is interesting to note that'the membrane, 
Biezeno-Grammel and Vlasov formulas are the 
only ones in table 2.1 that yield the correct zero 
frequency (corresponding to rigid body transla- 
tion in the transverse direction) for the lowest 
radial-circumferential vibration mode in the case 
n = 1. On the other hand the Vlasov, Epstein- 
Kennard, and Kennard Simplified formulas do 
not yield zero frequencies for the torsional mode 
for n = 0 as they should. 

I n  tables 2.2 and 2.3 frequency parameters are 
given for infinite shells and v =0.3 according to 
the various theories for R/h = 20 and 500, respec- 
tively, and for n = 0, 1, 2, 3, 4. The formulas of 
table 2.1 are the basis for tables 2.2 and 2.3. Only 
the Epstein-Kennard and Kennard Simplified 
formulas for the radial and circumferential fre- 
quency parameter Q2 depend upon V .  Significant 
differences among the shell theories exist only 
for certain of the radial-circumferential modes, 
usually those modes which are primarily radial 

(1) For n =  0, the agreement among all the- 
ories is excellent for the one nontrivial frequency 
which exists. 

(2) For n =  1, the differences among the the- 
ories for the rigid body "beam bending" mode 
are clearly seen. The Houghton-Johns equations 
yield an imaginary frequency. 

(3) For n = l ,  considering the highest fre- 
quency, the theories fall into two groups having 
frequencies differing by approximately eight 
percent. 

(4) For n 2 2 ,  all theories are in close agree- 
ment except for those of Donnell-AIushtari, 
Flugge, Houghton-Johns, and the membrane 
theory for the lowest frequency. 

The significant difference arising out of the 
Flugge theory for infinite circular cylindrical 
shells by neglecting k with respect to unity in the 
characteristic equation apparently has not been 
pointed out previously in the literature. 

Considering table 2.3 for thinner shells 
(R/h = 500) it is seen that the Donnell-AIushtari, 
Flugge, Houghton-Johns, and membrane equa- 
tions again give results which differ considerably 

TABLE 2.2.-Frequency Parameters for Circular Cylindrical Shells of Infinite 
Length According to Various Theories; v = 0.3, R/h = 20 

Shell theory 

Donnell-Mushtari 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Houghton-Johns 
Fliigge 
Biezeno-Grammel 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 
Kennard Simplified 
Membrane 

n 

0 

Axial 
modes 

0 

w 

Q 

Radial-circumferential modes 

Lowest 

0 
0 
0 
0 
0 

1.03441 X 10-4 
0 
0 

1.03441 X 10-4 
0 

1.71796 X lo-* 
0 

Highest 

1 
1 
1 
1 
1 

1.00010 
1 
1 
1 

1.00028 
1.00013 

1 
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TABLE 2.2.-Frequency Parameters for C,ircular Cylindrical Shells of Infinite 
Length According to Various Theories; v = 0.5, R/h = 20-Concluded 

Shell theory 

Donnell-Mushtari 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Houghton-Johns 
Fliigge 
Biezeno-Grammel 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 
Kennard Simplified 
Membrane 

Donnell-Mushtari 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Houghton-Johns 
Fliigge 
Biezeno-Grammel 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 
Kennard Simplified 
Membrane 

Donnell-Mushtari 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Houghton-Johns 
Fliigge 
Biezeno-Grammel 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 
Kennard Simplified 
Membrane 

Donnell-Mushtari 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Houghton-Johns 
Fliigge 
Biezeno-Grammel 
Reissner-Naghdi-Berry 
Sanders 
~ a s o v  
Epstein-Kennard 
Kennard Simplified 
Membrane 

n 

1 

2 

3 

4 

Axial 
modes 

0.591608 
.591608 
.591608 
.591608 
.591608 
.591670 
.591608 
.591623 
.591608 
.591676 
.591608 
.591608 

1.18322 
1.18322 
1.18322 
1.18322 
1.18322 
1.18334 
1.18322 
1.18325 
1.18322 
1.18334 
1.18322 
1.18322 

1.77482 
1.77482 
1.77482 
1.77482 
1.77482 
1.77501 
1.77482 
1.77487 
1.77482 
1.77501 
1.77482 
1.77482 

2.36643 
2.36643 
2.36643 
2.36643 
2.36643 
2.36668 
2.36643 
2.36650 
2.36643 
2.36668 
2.36643 
2.36643 

n 

Radial-circumferential 

Lowest 

1.02062X10-2 
1.47648X10-4 
1.47648 X 
1.02052X10-2i 
1.25000X10-2 

0 
1.47648 X 
1.47648 X lo-' 

0 
0 
0 
0 

5.16417 X10-2 
3.87307 X loL2 
3.87307X10-2 
3.65151 X10-2 
5.47755 X10-2 
3.87306X10-2 
3.87307 X 
3.87307 X 
3.87307 X 10-2 
3.87307 X lo-" 
3.87313 X10-2 

0 

.I23256 

.lo9548 

.lo9548 

.lo8691 

.I26637 

.lo9557 

.lo9548 

.lo9548 

.lo9557 

.lo9638 

.lo9560 
0 

.224118 

.210077 

.210077 

.209617 

.227600 

.210102 

.210077 

.210077 

.210102 

.210267 

.210108 
0 

modes 

Highest 

1.41425 
1.30676 
1.30676 
1.30672 
1.30657 
1.41416 
1.30676 
1.30676 
1.41416 
1.41372 
1.41420 
1.41416 

2.23622 
2.23666 
2.23666 
2.23652 
2.23614 
2.23615 
2.23666 
2.23666 
2.23615 
2.23457 
2.23606 
2.23607 

3.16254 
3.16334 
3.16334 
3.16308 
3.16301 
3.16249 
3.16334 
3.16334 
3.16249 
3.15962 
3.16232 
3.16228 

4.12348 
4.12463 
4.12463 
4.12424 
4.12482 
4.12344 
4.12463 
4.12463 
4.12344 
4.11897 
4.12319 
4.12311 
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TABLE 2.3.-Frequency Parameters for Circular Cylindrical Shells of InJinite 
Length According to Various Theories; v = 0.3, R /h  = 500 

n 

Axial 
Shell theory n modes Radial-circumferential modes 

Lowest Highest 

Donnell-Mushtari 0 0 1 
Love-Timoshenko 0 
Goldenveizer-Novozhilov 0 
Houghton-Johns , 0 
Fliigge 0 
Biezeno-Grammel 0 1.00000X10~6 
Reissner-Naghdi-Berry 0 
Sanders 0 
Vlasov 1.00000X10-6 
Epstein-Kennard 0 
Kennard Simplified 3.69865 X 
Membrane .+ 0 v 

Donnell-Mushtari 0.59161 4.08166X10-P 1.41421 
Love-Timoshenko .541195 
Goldenveizer-Novozhilov .541195 
Houghton-Johns .540924 
Fliigge .541196 
Biezeno-Grammel 1 0 
Reissner-Naghdi-Berry .541195 
Sanders .541195 
Vlasov 0 
Epstein-Kennard 6.90534 X lO-"i 
Kennard Simplified 2.61725 X10-4 
Membrane t 0 v 

Donnell-Mushtari 1.18322 2.06553 X10-2 2.23607 
Love-Timoshenko 1.54919 X 2.23607 
Goldenveizer-Novozhilov 1.54919 X 2.23607 
Houghton-Johns 1.46045 X 2.23607 
Fliigge 2.19075 X low3 2.23607 
Biezeno-Grammel 2 1.54916 X loF3 2.23607 
Reiesner-Naghdi-Berry 1.54919 X 2.23607 
Sanders 1.54919 X 2.23607 
Vlasov 1.54916 X 2.23607 
Epstein-Kennard 1.69146 X 2.23606 
Kennard Simplified 1.55785 X 2.23607 
Membrane v 0 2.23607 

Donnell-Mushtari 1.77482 4.92926 X 3.16228 
Love-Timoshenko 4.38155 X 3.16228 
Goldenveier-Novozhilov 4.38155 X 3.16228 
Houghton-Johns 4.34721 X 3.16228 
Fliigge 4.42416X10-3 3.16228 
Biezeno-Grammel 3 4.38156 X 3.16228 
Reissner-Naghdi-Berry 4.38155 X 3.16228 
Sanders 4.38155 X 3.16228 
Vlasov 4.38156 X 3.16228 
Epstein-Kennard 4.36732 X 3.16227 
Kennard Simplified 4.38316 X 3.16228 
Membrane v 0 3.16228 
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TABLE 2.3.-Frequency Parameters for Circular Cylindrical Shells of Infinite 
Length According to Various Theories; v =0.S, R/h =500-Concluded 

h2 

Axial 
Shell theory n modes Radial-circumferential modes 

Lowest Highest 

Donnell-Mushtari 2.36643 8.96144 X lo-$ 4.12311 
Love-Timoshenko 8.40119XlO-a 4.12311 
Goldenveizer-Novoehilov 8.40119XlO-3 4.12311 
Houghton-Johns 8.38257 X loF3 4.12311 
Fliigge 7.92069 X 4.12311 
Biezeno-Grammel 4 8.40126 X 4.12311 
Reissner-Naghdi-Berry 8.40119 X 10-3 4.12311 
Sanders 8.40119XlO-3 4.12311 
Vlasov 8.40126 X 4.12311 
Epstein-Kennard 8.28641 X 4.12310 
Kennard Simplified 8.40174 X 4.12311 
Membrane v 0 4.12311 

for those of the other theories for the lowest fre- 
quency for n 2 2 .  The Epstein-Kennard theory 
now also differs considerably. 

The amplitude ratios B/C for the coupled 
radial-circumferential modes are determined by 
substituting the corresponding frequency into 
either of the homogeneous equations governing 
these modes (e.g., either of the last two of eqs. 
(2.29)). Thus, for example, from equation (2.29) 
for the Donnell-Mushtari theory the amplitude 
ratio B/C is given .by 

where Q2 is given by equations (2.31). For a 
discussion of the ordering of the frequencies and 
the corresponding mode shapes for various n, see 
section 2.3.2 in the case of long shells (small A) 
of finite length. 

2.3 CLOSED SHELLLSHEAR DIAPHRAGMS 
AT BOTH ENDS 

Consider the closed circular cylindrical shell of 
finite length 1 which satisfies the boundary 
conditions 

These conditions can be closely approximated in 
physical application simply by means of rigidly 

attaching a thin, flat, circular cover plate at each 
end. The plates would have considerable stiff- 
nesses in their own planes, thereby restraining 
the v and w components of shell displacement at  
their mutual boundaries. However, the plates, 
by virtue of their thinness, would have very little 
stiffness in the x direction transverse to their 
planes; consequently, they would generate neg- 
ligible bending moment M, and longitudinal 
membrane force N,  in the shell as the shell 
deforms. Because of the capability of the plates 
to supply shearing forces Nee to the shell, the type 
of boundary conditions satisfied by equations 
(2.33) will be called shear diaphragm in this work. 
Other terminologies frequently found in the lit- 
erature to describe the edge conditions given by 
equations (2.33) are "simply supported" and 
"freely supported." The phrase "simply sup- 
ported" is a carryover from linear beam and plate 
theory where it is thought of as a flat edge either 
supported by knife edges or hinged. In the case 
of a beam or plate, hinged ends are usually found 
in practical application as fixed hinges; that is, 
fixed with respect to their longitudinal or inplane 
directions as well as the transverse direction. For 
small deflections yielding the classical linear 
theory, this fixity has no effect on the transverse 
deflections. Of course, in the case of a shell the 
degree of tangential fixity at the edges has a 
major effect on transverse deflections and vibra- 
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tion frequencies. The phrase "freely supported" 
is also misleading for it may connote no tangen- 
tial fixity (i.e., N,,=O at x=O,Z) at first en- 
counter with the reader, although it has also 
been used by some authors to identify boundary 
conditions of the type u = v = w = M ,  = 0 (cf., refs. 
2.32 through 2.34). 

The circular cylindrical shell supported at both 
ends by shear diaphragms (referred to later in 
this monograph as SD-SD) has received by far 
the most attention in the literature. This is due 
to the fact that one simple form of the solutions 
to the eighth order differential equations of 
motion is also capable of satisfying the SD-SD 
boundary conditions exactly. This solution has 
already been presented as equations (2.20). 
Choosing 

X = ntlrR/Z ( m  1 2  . . . (2.34) 

the boundary condition equations (2.33) are 
satisfied exactly. Further substitution of eque 
tions (2.20) into equations (2.1)) (2.3)) (2.7)) and 
(2.9) yields the characteristic (or frequency) deter- 
minant. The characteristic determinant according 
to the Donnell-n4ushtari theory has already been 
indicated as the determinant of the coefficient 
matrix of equation (2.21). The determinant may 
be expanded to yield a characteristic equation, the 
roots of which are the nondimensional frequency 
parameter eigenvalues. 

2.3.1 Comparison of Theories 

The solution procedure described above has 
been carried out for each of the shell theories 
given in section 2.1.1. The resulting characteristic 
equations can be written as 

Q6- (K2+k AKz)Q4+(Kl+k AKi)Q2 
- (Ko+k AKo) =O (2.35) 

where Q is the nondimensional frequency parame- 
ter given previously in equation (2.26) ; k is the 
nondimensional thickness parameter given in 
equation (2.6); KO, Kt, Kz are constants arising 
from the Donnell-Mushtari theory; and AK1, 
AK2, AK3 are modifying constants depending 
upon the shell theory being used. 

When the characteristic equations are written 
in the form of equation (2.35)) the differences 
among the shell theories insofar as they affect the 
computed free vibration frequencies can be seen 

more clearly. That is, each coefficient of the cubic 
equation in Q2 differs from the Donnell-Mushtari 
theory (and each other) by a term multiplied by k, 
which is a small number for thin shells. The 
Donnell-Mushtari constants are 

The modifying constants for each shell theory are 
given in table 2.4. For simplicity the modifying 
constants given in table 2.4 have been linearized 
with respect to k. That is, terms containing k3 
and k2 which arise in the expansion of the char- 
acteristic determinants have been neglected with 
respect to those containing only k. A further 
simplification which can be made at this point is 
to neglect k with respect to unity in the coeffi- 
cients Ko+AKo, etc. of equation (2.35). This is 
precisely the difference between the Biezeno and 
Grammel modifying constants and those of 
Flugge. Flugge (ref. 2.31) made this further sim- 
plification, while Biezeno and Grammel (ref. 2.30)) 
using the same characteristic determinant, did 
not. The two types of simplification described 
above are examples of why it is often difficult to 
compare equations used in different references on 
shell vibrations. 

The characteristic equation for the membrane 
theory is obtained from that of the Donnell- 
Mushtari theory by simply setting k = 0. 

The cubic equation (2.35) in the nondimen- 
sional frequency parameter Q2 will have three 
roots for fixed vaiues of n and X ( =m?rR/l) (cf., 
the discussion in ref. 2.3). Thus a shell of a given 
length may vibrate in any of three distinct modes, 
each having the same number of circumferential 
and longitudinal waves, and each having its own 
distinct frequency. The modes associated with 
each frequency can be classified as primarily 
radial (or flexural), longitudinal (or axial), or 
circumferential (or torsional). The lowest fre- 
quency is usually associated with a motion that 
is primarily radial. 



TABLE 2.4-Modifying Constants for the Characteristic Equation (2.35) 

Shell theory AKZ aK1 AKO 

Donnell-Mushtari 0 0 0 

Love-Timoshenko 

Goldenveker-Novozhilov 
(also Amold- 
Warburton) 

RoughtonJohns 
(Simplified 
Goldenveizer- 
Novozhilov) 

Reissner-Naghdi-Berry 

Sanders 
1 

-v)X2+-(9 -v)ne 
1 9 

f i ( l - ~ ) h ~ + - ( 9 - v ) n ~ + ~ ( 1 - v ) h ~  - ~ ~ ~ ~ + 4 ~ ~ n e f n ~  
8 8 8 

1 1 
--(4-3v+3v2)X2n2-i(ll$5v)n4 -6X4n2-8X2n4-2n6 

4 
I I I 

a Obtained from equation (2.9d) by keeping all Iinear terms in k in the expanded determinant. 
Obtained from Bieaeno and Grammel frequency equation by neglecting Ic with respect to unity. 



TABLE 2.4-Modifying Constants for the Characteristic Equation (2.35)-Concluded 

Shell theory I AKZ 1 AKl I AKo 

Kennard Simplified 

Membrane 

"Obtained from equation (2.9d) by keeping all linear terms in k in the expanded determinant. 
bobtained from Biezeno and Grammel frequency equation by neglecting k with respect to unity. 
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The mode shapes (or eigenfunctions) of free vibration are found by returning to the homogeneous 
set of equations which yielded the characteristic equation. In the case of the Donnell-Mushtari theory, 
this set is given by equation (2.21). Any two of the equations are chosen and the third is discarded. 
The two remaining equations can be solved for the ratios of amplitudes, the most convenient ratios to 
choose being A/C and B/C.  For example, using the first two of equations (2.21)) it is clear that they 
can be rewritten as 

/ z F-I - - - - 
- 1 : ;  (1 - v) 

- h 2 - ~ I Y a + n 2  2 
(2.37) 

- -  I (l+v) Xn 

-- 
. . %.. - . - 2 2 - - 

which can be inverted to find A/C and B/C 
corresponding to each of the three frequency 
parameters 0 which exist for fixed values of n  
and X. The resulting mode shapes will not have 
true nodal lines; that is, there will be no lines on 
the surface of the shell for which u, v, and w will 
all be zero. * As can be seen from equations (2.20) 
nodal lines will occur so that two of the displace- 
ment components will be zero and the other will 
be a maximum. As indicated above, the lowest of 
the three frequencies for each n  and X will usually 
yield A/C and B/C ratios less than unity, indi- 
cating that the motion is primarily radial. Typical 
radial nodal patterns for circular cylindrical 
shells supported by shear diaphragms are shown 
in figure 2.2 (taken from ref. 2.35). 

Because exact solutions of equation (2.35) can 
readily be found, this permits comparison of dif- 
ferences in frequencies according to the various 
theories for the particular shell curvature and 
boundary conditions being used here. Numerous 
references are available which take this approach 
to obtain exact solutions; these references, and 
the shell theories which they use are summarized 
in table 2.5. In  addition to the references in table 
2.5, there are others following the same exact 
solution procedure, but using a theory other than 
those included in table 2.5; this group includes 
references 2.50 and 2.93 through 2.97. Other 
works, including references 2.98 through 2.107 
deal with an energy formulation of the problem. 
Other analytical methods such as Galerkin, finite 

differences, and finite element techniques are 
used in references 2.12, 2.13, 2.16, 2.36, 2.79, 
2.84, and 2.108 through 2.114. In many of these 
cases the approximate method was used to solve 
a more complicated problem (cf., chapter 3) and 

- 

m= 1 m.2 m = 3  
AXIAL NODAL PATTERN 

* In the cme of axisymmetric modes (n = 01, the radial, ' FIGURE 2.2.-Nodal patterns for circular cylindrical 
longitudinal, and circumferential motions do completely shells supported at both ends by shear diaphragms. 
uncouple, giving distinct nodal lines. (After ref. 2.35) 
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TABLE 2.5.-References Using the 
Exact Solution Equations (2.9) 

Shell theory References 

Donnell-Mushtari 2.32 through 2.53, 2.115 

Love-Timoshenko 2.32, 2.37, 2.47, 2.54 
through 2.59, 2.130 

Goldenveirer-Novoahilov 2.3, 2.4, 2.32, 2.42, 2.48, 
(also Arnold & Warburton) 2.54,2.60 through 2.67 

Houghton and Johns 2.68 
(Simplified Goldenveirer- 
Novorhilov) 

Fliigge 2.20, 2.27, 2.28, 2.31, 
2.35, 2.47, 2.48, 2.49, 
2.50, 2.54, 2.59, 2.62, 
2.66,2.69 through 2.82 

f- ilc Reissner-Naghdi-Berry 1 2.83 

Epstein and Kennard (2.54, 2.66, 2.88, 2.89, 

Kennard Simplified 1 2.91, 2.92 

Coupry I 2.12, 2.13, 2.62 

results for the more simple problem discussed in 
this section were included as a special case. Lit- 
erature sources for experimental results include 
references 2.3, 2.4, 2.12, 2.29, 2.33, 2.36, 2.37, 
2.39, 2.45, 2.62, 2.64, 2.70, 2.74, 2.83, 2.85, 2.87, 
2.88, 2.90, 2.98, 2.99, 2.101, 2.102, 2.103, 2.106, 
2.107, 2.116, and 2.117. 

To allow for a meaningful comparison between 
the various theories on the circular cylindrical 
shell supported at  both ends by shear diaphragms 
it was necessary to perform an independent set of 
calculations for the roots of the cubic equation 
(2.35) in Q2. This procedure was necessary be- 
cause of the different thickness/radius and 
length/radius ratios used by the various refer- 
ences listed above and because of the paucity 
of numerical results which are available in the 

literature for some theories. Furthermore, to 
allow an accurate comparison of theories, tabular 
results must be available. 

Numerical results for fundamental frequencies 
arising from the solution of equation (2.35) by 
digital computer are given in table 2.6 for the 
shell theories shown, for five circumferential 
wave numbers (n = 0, 1, 2, 3,4), for six values of 
length/radius ratio (l/mR=O.l, 0.25, 1, 4, 20, 
100)) for R/h = 20, and for v =0.3. The quotient 
Z/m indicates that a shell having twice the length 
and twice the number of axial half-waves as 
another will vibrate at  the same frequency as the 
latter, because node lines duplicate shear dia- 
phragm edge conditions. For simplicity, m is 
considered to be unity in the discussion of the 
tables below. I n  table 2.7 corresponding results 
are given for R/h = 500. 

To emphasize the differences in free vibration 
frequencies which can result from the various 
theories, tables 2.6 and 2.7 list the percent by 
which the shell frequency parameters differ from 
those found by an exact three-dimensional elas- 
ticity solution. Values of the frequency param- 
eter Q arising from the elasticity solution are 
given in table 2.8. The elasticity solution is 
explained in appendix A. In reference 2.118 com- 
parisons of the results of eighth order shell the- 
ories with the exact three-dimensional elasticity 
solutions are also made. 

For the case of the very thin shell (R/h= 500) 
for l/mR = 0.1 and 0.25, the numerical procedure 
was not able to find the roots of the character- 
istic determinant of the elasticity solution even 
though 30 significant figures were carried during 
all phases of the calculations (expansion of the 
series for Bessel functions, set-up of the fre- 
quency determinant, evaluating the determinant, 
etc.). Consequently, the corresponding ten values 
listed in table 2.8 are from the widely-used 
Fliigge theory instead. 

Tables 2.6 and 2.7 also divide the shell theories 
into four categories: (1) the Donnell-Mushtari 
theory, (2) other general first approximation shell 
theories, (3) two "simplified" shell theories ob- 
tained from other theories by neglecting k with 
respect to unity in the equations of motion (see 
sec. 2.1.1)) and (4) the membrane theory. 

From tables 2.6 and 2.7 the following general 
~onclusions are evident: 
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(1) The theories within each group show close 
agreement with each other over essentially the 
entirelrange of length parameter l/mR and for 
both thickness ratios. Significant differences exist 
only between one group and another. 

(2) All theories show close agreement for shells 
of moderate length (l/mR = 1,4) and small num- 
bers of circumferential waves (n=O, 1, 2). 

(3) For very thin shells (R/h = 500) the theo- 
ries are in closer agreement than for thicker ones 
(R/h = 20). 

(4) For very short shells (Z/mR =O.1, 0.25) 
none of the shell theories compare favorably 
with elasticity theory (due to end effects), 

, although they compare well with each other. The 
J -  = - membrane theory is inadequate in this region. 

(5) For very long shells, and n = 0 (l/mR = 20, 
100) the theories are in essentially exact agree- 
ment (the mode shape is pure torsional for the 
funda.menta1 frequency). 

(6) For very long shells the membrane theory 
is grossly inadequate except for n = 0, 1. 

(7) For very long shells and n =  1, most of the 
"simplified" theories are completely inadequate, 
yielding frequencies which are imaginary (nega- 
tive values of the roots for Q2).  These theories 
behave acceptably, however, for all other n. 
This same type of behavior was found for 
corresponding "simplified" versions of the Love- 
Timoshenko, Reissner-Naghdi-Berry, and San- 
ders theories, although the simplified Kennard 
theory behaved acceptably. 

(8) For very long shells and n = l ,  2 the 
Donne11 theory is in substantial error, although 
the error decreases if n continues to increase 
(n=3, 4 . . .). 
These qualitative conclusions are more readily 
apparent from figures 2.3 through 2.10 (from 
ref. 2.119) wherein Sl is plotted versus l/mR for 
the thicker shell (R/h=20). The numbers used 
on these graphs identify the groups of shell 
theories as in tables 2.6 and 2.7. The number 
"5" indicates the exact, three-dimensional elas- 
ticity solution. 

As indicated previously, for each n three roots 
of the frequency equation exist. Tables 2.6 and 
2.7 give the percent by which the lowest non- 
trivial frequency for each n deviates from the 
corresponding three-dimensional elasticity solu- 

tion. The agreement is generally much better 
for the higher two modes than the lowest. It 
was found that the higher frequencies agreed 
within 0.01 percent for all theories, all n, and all 
l/mR when R/h was 500. The percentages by 
which the higher two frequencies differ from 
those of the Fliigge theory are listed in table 
2.9 for R/h=20. Again it is seen that the agree- 
ment among the theories is excellent, with only 
the Epstein-Kennard theory showing significant 
deviation for very short shells. The frequency 
parameters according to the Fliigge theory which 
are the basis for the comparisons made in table 
2.9 are given in table 2.10. 

The amplitude ratios A/C and B/C accord- 
ing to the Fliigge theory for the lowest fre- 
quencies are presented in table 2.11 for n =O, 
1, 2, 3, 4 and l/mR =0.25, 1, 4, 20. The percen- 
tages by which the amplitude ratios differ from 
these values according to the other shell theories 
are given in table 2.12 for R/h = 20. These ratios 
and the corresponding mode shapes agree very 
closely for all the theories except for very short 
shells (Z/mR = 0.25). The Biezeno-Grammel, Vla- 
sov, and Fliigge equations agree closely on ampli- 
tude ratios even for short shells. For R/h = 500, 
the agreement among the theories for the ampli- 
tude ratios was even better. For l/mR = 1, 4, 20 
the values of A/C and B/C differed from the 
Fliigge theory by less than 0.01 percent for 
all theories, as well as for the B/C ratio for 
l/mR = 0.25. The A/C ratio for l/mR = 0.25 
differed among the theories by 0.02 percent or 
less for all theories except for n =  1 where the 
Flugge, Biezeno-Grammel, Vlasov, and Epstein- 
Kennard results agreed to within 0.01 percent, 
but the others all differed from Fliigge by 
approximately 4 percent. 



AXIAL WAVELENGTH PARAMETER i / m R  
AXIAL WAVELENGTH PARAMETER &mR 

FIGURE 2.3.-Variation of the fundamental frequency FIGURE 2.5.-Variation of the fundamental frequency 
parameter Q with l/mR; v =0.3, R/h =20, n =O. (Nos. parameter Q with l/mR; v =0.3, R/h =20, n =2. (Nos. 
1, 2, 3, 4 refer to the groups listed in tables 2.6 and 1, 2, 3, 4 refer to the groups listed in tables 2.6 and 
2.7. No. 5 indicates the three-dimensional elasticity 2.7. No. 5 indicates the three-dimensional elasticity 
solution.) (After ref. 2.119) solution.) (After ref. 2.119) 

AXIAL WAVELENGTH PARAMETER l / m R  

FIGURE 2.4.-variation of the fundamental frequency FI~URE 2.6.-Variation of the fundaments1 frequency 
parameter a with l/mR; v =0.3, R/h =20, n =l. (Nos. parameter with l/mR; v =0.3, R/h =20, n =3. (Nos. 
1, 2, 3, 4 refer to the groups listed in tables 2.6 and 1, 2, 3, 4 refer to the groups listed in tables 2.6 and 
2.7. No. 5 indicates the three-dimensional elasticity 2.7. No. 5 indicates the three-dimensional elmticity 
solution.) (After ref. 2.119) solution.) (After ref. 2.119) 
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AXIAL WAVELENGTH PARAMETER l /mR AXIAL WAVELENGTH PARAMETER l /mR 

FIGURE 2.7.-Variation of the fundamental frequency 2.9.-~ariation of the fundamental frequency 
parameter Q with l/mR; v ~ 0 . 3 ,  R/h=20, =4. (Nos. parameter Q with V =0.3, R/h =500, n =3. (Nos. 
1, 21 3, refer to the groups listed in 2.6 and 1, 2, 3, 4 refer to the groups listed in tables 2.6 and 
2.7. No. 5 indicates the three-dimensional elasticity 2.7. No. indicates the three-dimensional elmticity 
solution.) (After ref. 2.119) solution.) (After ref. 2.119) 

AXIAL WAVELENGTH PARAMETER l /mR 

FIGURE 2.8.-Variation of the fundamental frequency 
parameter Q with Z/mR; v =0.3, R/h=500, n =2. (Nos. 
1, 2, 3, 4 refer to the groups listed in tables 2.6 and 
2.7. No. 5 indicates the three-dimensional elasticity 
solution.) (After ref. 2.119) 

AXIAL WAVELENGTH PARAMETER L/mR 

FIGURE 2.10.-Variation of the fundamental frequency 
parameter Q with l/mR; v =0.3, R/h =500, n =4. (Nos. 
1, 2, 3, 4 refer to the groups listed in tables 2.6 and 
2.7. No. 5 indicates the three-dimensional elasticity 
solution.) (After ref. 2.119) 
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TABLE 2.6.-Percent Differences in Lowest Frequency Parameters Between Shell Theories 
and Three-Dimensional Elasticily Theory; SD-SD Supports; v = 0.3; R/h = 20 

Shell theory l/mR 

Group I Name 1 %  0.1 0.25 1 4 20 100 

Donnell-Mushtari 1 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Biezeno-Grammel 
Flugge 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 

3 Houghton-Johns 
Kennard Simplified 

4 Membrane 

1 Donnell-Mushtari 

Love-Timoshenko 
Goldenveizer-Novoehilov 
Bieeeno-Grammel 

2 Fliigge 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Ep~tein-Kennard 

3 Houghton-Johns 
Kennard Simplified 

4 Membrane 

1 -1 Donnell-Mushtari 1- 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Biezeno-Grammel 
Fliigge 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 

3 I Houghton-Johns 
Kennard Simplified 

4 I Membrane I 
a Differences of less than 0.01 percent. 
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TABLE 2.6.-Percent Dgerences in Lowest Frequency Parameters Between Shell Theories and 
Three-Dimensional Elasticity Theory; SD-SD Supports; v = 0.3 ; R/h = 20-Concluded 

Shell theory Z/mR 
n 

Group Name 0.1 0.25 1 4 20 100 

1 Donnell-Mushtari 36.77 8.62 1.57 10.35 12.87 12.87 

Love-Timoshenko 36.69 8.50 .39 .46 .32 .31 
Goldenveizer-Novozhilov 36.62 8.45 .21 .25 .31 .30 
Bieeeno-Grammel 36.61 8.35 .39 .46 .33 .32 

2 Fliigge 36.63 8.35 .31 .40 .28 .26 
Reissner-Naghdi-Berry 3 36.72 8.53 .56 .69 .33 .31 
Sanders 36.68 8.50 .35 .28 .30 .30 
Vlasov 36.71 8.38 .36 .04 .34 .33 
Epstein-Kennard 40.09 8.42 .15 .35 .42 .42 

3 Houghton-Johns 36.75 8.50 .16 -.37 - .47 - .47 
Kennard Simplified 36.76 8.59 .98 1.54 .40 .33 

4 Membrane -91.03 -61.89 -10.82 -55.48 -97.74 -99.93 

1 Donnell-Mushtari 36.97 9.01 2.94 7.18 7.34 7.34 

Love-Timoshenko 36.88 8.83 .78 .70 .61 .61 
Goldenveizer-Novozhilov 36.81 8.77 .53 .61 .61 .61 
Bieeeno-Grammel 36.81 8.70 .79 .71 .63 .63 

2 Fliigge 36.83 8.70 .71 .64 .57 .56 
Reissner-Naghdi-Berry 4 36.92 8.87 1.03 .78 .62 .61 
Sanders 36.88 8.83 .69 .62 .61 .60 
Vlasov 36.91 8.73 .77 .71 -64 .64 
Epstein-Kennard 40.33 8.82 .55 .74 .74 .74 

3 Houghton-Johns 36.95 8.81 .47 .41 .39 .39 
Kennard Simplified 36.97 8.95 1.68 1.13 .65 .63 

4 Membrane -91.14 -64.44 -28.13 -84.34 -99.32 -99.52 



TABLE 2.7.-Percent Diferences in Lowest Frequency Parameters Between Shell Theories 
and Three-Dimensional Elasticity Theory; SD-SD Supports; v = 0.3; R/h = 600 

Shell theory I/mR 
n 

Group Name a 0 . 1  " 0 . 2 5  1 4 20 100 

1 DonnelEMushtari (b) (b) (b) (b) (b) (b) 

Love-Timoshenko (b) (b) (b) (b) (b) (b) 
Goldenveizer-Novozhilov (b) (b) (b) (b) (b) (b) 
Biezeno-Grammel (b) (b) (b) (b) (b) (b) 

2 Fliigge (b) (b) (b) (b) (b) (b) 
Reissner-Naghdi-Berry 0 (b) (b) (b) (b) (b) (b) 
Sanders (b) (b) (b) (b) (b) (b) 
Vlasov (b) (b) (b) (b) (b) (b) 
Epstein-Kennard -0.01 (b) (b) (b) (b) (b) 

3 Houghton-Johns (b) (b) (b) (b) (b) (b) 
Kennard Simplified (b) (b) (b) (b) (b) (b) 

4 Membrane -14.14 -0.45 (b) (b) (b) (b) 

1 Donnell-Mushtari (b) (b) (b) (b) 0 .03  17.37 

Love-Timoshenko (b) (b) (b) (b) (b) (b) 
Goldenveizer-Novozhilov (b) (b) (b) (b) (b) (b) 
Biezeno-Grammel (b) (b) (b) (b) (b) (b) 

2 FIiigge (b) (b) (b) (b) (b) (b) 
Reissner-Naghdi-Berry (b) (b) (b) (b) (b) 0.01 
Sanders 1 (b) (b) (b) 6) (b) (b) 
Vlaaov (b) (b) (b) (b) (b) - .03 
Epstein-Kennard - .01 (b) (b) (b) (b) (b) 

3 Houghton-Johns (b) (b) (b) (b) (b) -21.10 
Kennard Simplified (b) (b) 6) (b) (b) .04 

4 Membrane -14.19 - .46 (b) (b) (b) (b) 

1 Donnell-Mushtari (b) (b) (b) 0.01 .02 32.92 

Love-Timoshenko (b) (b) (b) (b) .02 .09 
Goldenveizer-Novozhilov (b) (b) (b) (b) .01 .09 
Biezeno-Grammel (b) (b) (b) (b) .02 .09 

2 Fliigge (b) (b) (b) (b) .02 .09 
Reissner-Naghdi-Berry (b) (b) (b) (b) .02 .10 
Sanders 2 (b) (b) (b) (b) .01 .09 
Vlasov (b) (b) (b) (b) .01 .09 
Epstein-Kennard - .01 (b) (b) (b) .01 .09 

3 Houghton-Johns (b) (b) (b) (b) - . 4 4  -5.53 
Kennard Simplified (b) (b) (b) (b) .05 . l l  

4 Membrane -14.32 - .50 -0.01 - .O1 -4.16 -86.53 

Comparisons for l /mR=O.l,  0.25 are made with the Fliigge theory, rather than with the three-dimensional 
elastioity theory. 

Differences of less than 0.01 percent. 



TABLE 2.7.-Percent Digerences in  Lowest Frequency Parameters Between Shell Theories and 
Three-Dimensional Elasticity Theory; SD-SD Supports; v = 0.3; R/h = 500-Concluded 

a Comparisons for l /mR =0.1, 0.25 are made with the Fliigge theory, rather than with the three-dimensional 
elasticity theory. 

b Differences of less than 0.01 percent. 

TABLE 2.8.-Lowest Frequency Parameters According to Three-Dimensional 
Theorp; SD-SD Supports; v = 0.3 

I I Z/mR 

Group 

1 

2 

3 

4 

1 

2 

3 

4 

Note: Values in parentheses are from the Fliigge shell theory. 

n 

3 

4 

Shell theory 

Name 

Donnell-Mushtari 

Love-Timoshenko 
Goldenveizer-Novozhilov 
Biezeno-Grammel 
Fliigge 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 

Houghton-Johns 
Kennard Simplified 

Membrane 

Donnell-Mushtari 

Love-Timoshenko 
Goldenveizer-Novozhilov 
Biezeno-Grammel 
Fliigge 
Reissner-Naghdi-Berry 
Sanders 
Vlasov 
Epstein-Kennard 

Houghton-Johns 
Kennard Simplified 

Membrane 

l /mR 

"0 .1  a 0.25 1 4 20 100 

(b) (b) (b) 0.09 9.71 12.42 

(b) (b) (b) (b) .09 - .07 
(b) (b) (b) (b) .09 -.07 
(b) (b) (b) (b) .09 -.07 
(b) (b) (b) (b) .09 - .07 
(b) (b) (b) (b) .10 - .07 
(b) (b) (b) (b) .08 -.07 
(b) (b) (b) (b) .09 - .07 
-.01 (b) (b) (b) .08 - .07 

(b) (b) (b) -.01 - .51 -.85 
(b) (b) (b) .01 .14 - .06 

-14.56 -.56 (b) -.33 -50.89 -97.74 

(b) (b) .01 - . I5  6.48 6.66 

(b) (b) (b) .01 (b) - . O 1  
6 )  (b) (b) (b) (b) -. 01 
(b) (b) (b) .01 (b) - .01 
(b) (b) (b) (b) ' (b) -.01 
(b) (b) (b) .01 (b) -.01 
(b) (b) (b) (b) (b) -.01 
(b) (b) (b) (b) 6 )  - .01 
-.01 (b) (b) (b) (b) -.01 

(b) (b) (b) - .01 - .22 - .20 
(b) (b) (b) .03 .02 - .01 

-14.88 - .66 (b) -3.08 -83.30 -99.32 
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a Difference <O.Ol percent. 

TABLE 2.9.mPercent 
and Flugge 

Dqerences 
Theory; 

n 

O 

1 

Group 

1 

. 
--- & 

2 

3 

4 

1 

2 

Shell theory 

Name 

Donnell-Mushtari 

Love-Timoshenko 

Goldenveizer-Novozhilov 

Biezeno-Grammel 

Reissner-Naghdi-Berry 

Sanders 

Vlasov 

Epstein-Kennard 

Houghton-Johns 

Kennard Simplified 

Membrane 

Donnell-Mushtari 

Love-Timoshenko 

Goldenveizer-Novozhilov 

Biezeno-Grammel 

Reissner-Naghdi-Berry 

Sanders 

Vlasov 

Epstein-Kennard 

in Higher Frequency Parameters Between Shell Theories 
SD-SD Supports; v = 0.3; R /h  = 20 

0.1 

-0.07 
(4 

- .02 
(4 

.03 
(4 

(a) 
.O1 

-.04 
(4 

(8) 

(8) 

- .07 
.01 

-.07 
-2.43 

-.07 
(4 

-.07 
(4 

- .07 
(8) 

- .07 
(4 

- .02 
(a) 

.03 
(4 

(a) 
.01 

- .04 
(a) 

- .01 
(a) 

- .07 
.01 

- .07 
-2.43 

20 

(a> 

(4 

(8) 

(8) 

(8) 

(4 

(8) 

0.01 

(8) 

(4 

(8) 

(4 

(a> 
0.01 

.17 
-.08 

(a) 

(4 

(a) 
.02 

-- 
(4 
(4 

-.02 
(a) 

- .02 
(4 

-.02 
(4 

- .02 
(4 

- .02 
(4 

- .02 
(4 

- .02 
(8) 

-.03 
- .03 

100 

(8) 

(4 

(4 
(4 

(a) 

(8) 

(a) 
0.01 

(a) 

(4 

(4 
.01 

(a) 
.01 

.17 
- .07 

(a) 

(a) 

(a) 
.02 

(8) 

(4 
-.02 
(4 
- .02 
(4 

0.02 
(4 

-.02 
(a) 

- .02 
(4 

- .02 
(4 

-.02 
(8) 

- .03 
- .03 

l/mR 

4 

(8) 

(4 

(a) 

(4 

(a> 

(4 

(8) 

0.01 

(8) 

(a) 

(a) 

(a) 

(a) 
.01 

.29 
- .19 

(4 
(a) 

(8) 

.01 

(4 
(4 

- .02 
(4 

- .02 
.01 

-.02 
.01 

-.04 
.02 

-.02 
.01 

-.02 
.01 

-.03 
(4 

- 
-.01 
-.03 

0.25 

-0.03 
(4 

(a) 

(4 

.02 
(4 

(8) 

(4 

-.02 
(4 

(8) 

(4 

-.03 
(8) 

-.03 
-.31 

-.03 
(4 

-.03 
(8) -- 
- .03 
(4 

-.03 
(4 

(a) 

(4 

.01 
(4 

(a> 
. O 1  

- .02 
(4 

(a) 

(4 

-.03 
.01 

-.03 
- .31 

1 

-0.04 
(4 

- .02 
(4 

(8) 

(4 

(a) 
.01 

-.02 
(8) 

-.01 
(4 

-.04 
.01 

- .02 
-.03 

-.04 
(4 

- .04 
(4 

- .04 
(4 

-.05 
(4 

-.02 
(4 

(a) 

(4 

- .03 
.02 

- .02 
(4 

- .01 
(4 

-.05 
.01 

- .04 
- .02 
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TABLE 2.9.-Percent Di$erences in  Higher Frequency Parameters Between Shell Theories 
and Fliigge Theory; SD-SD Supports; v = 0.3; R/h = 20-Continued 

Shell theory Z/mR 
n 

Group Name 0.1 0.25 1 4 20 100 

3 Houghton-Johns -0.07 -0.03 -0.03 -0.02 -0.02 -0.02 
(4 (8) (4 .01 (4 

Kennard Simplified 1 
- .07 - .03 -.05 -.02 -.01 - . O 1  
(4 (a) (4 (a) (4 

- .07 - .03 - .06 - .03 - .02 -.02 4 Membrane 
(4 (4 (4 (4 (a) 

1 Donnell-Mushtari - .07 - .04 -.07 - .06 - .06 -.06 
(4 (4 (4 (4 (4 

Love-Timoshenko - .02 (8) -.03 - .05 -.06 - .06 
(a) (8) .01 .03 .02 

Goldenveizer-Novozhilov .03 .01 - .01 - .05 - .06 - .06 
(8) (a) .02 .03 .02 

Biezeno-Grammel (a) (a) - .06 - .07 - .07 - .07 
.01 .01 .03 .03 .02 : .02 

Reissner-Naghdi-Berry - .04 -.02 - .03 - .05 - .06 - .06 
2 (4 (4 .01 .02 .02 .02 

Sanders 2 - .01 (a) - .02 - .05 - .05 -.06 
(4 (4 .02 .02 .02 .02 

V ~ ~ S O V  - .07 - .03 - .06 - .06 - .06 - .06 
.01 .01 .02 (4 (a) (4 

Epstein-Kennard - .07 -.04 - .09 - .I3 - .I4 - .I4 
-2.44 - .31 (b) .02 .02 .02 

3 Houghton-Johns - .07 - .03 -.03 -.05 - .06 - .06 

(4 (4 . O 1  .02 .02 .02 

Kennard Simplified - .07 - .04 - .07 -.05 - .04 - .04 
(4 (4 (4 (4 (4 (4 

4 Membrane - .07 - .04 -.09 - .07 - .06 -.06 

(4 (4 (4 (4 (4 (4 

1 Donnell-Mushtari - .07 - .04 -.08 -.08 - .07 - .07 

(8) (a) .01 (a) - .07 (4 

Love-Timoshenko - .02 - .01 -.04 -.07 -.07 - .07 
(a) (a) .02 .03 .03 .03 

Goldenveizer-Novozhilov .03 .01 -.03 -.07 - .07 - .07 
3 

(8) (a> .03 .03 .03 .03 
2 

Biezeno Grammel (a) -.01 -.08 - .09 - .09 - .09 
.01 . O 1  .03 .03 .06 .03 

Reissner-Naghdi-Berry - .04 -.02 - .05 -.07 - .07 -.07 

(4 (a) .02 .03 .03 .03 

a Difference <O.Ol percent. 



VlBRATION O F  SHELLS 

TABLE 2.9.pPercent Differences in Higher Frequency Parameters Between Shell Theories 
and Fliigge Theory; SD-SD Supports; v = 0.3; R /h  = 20-Concluded 

Shell theory l/mR 
n 

Group Name 0.1 0.25 1 4 20 100 

Sanders -0.01 (4 -0.03 -0.07 -0.07 -0.07 
(4 (8) .02 .03 .03 .03 

- 
2 Vlasov I -.07 - .04 - .08 - .08 -.07 - .07 

.01 .01 .02 (8) .04 (4 
- 

Epstein-Kennard - .07 -.05 - .13 -.I8 -. 19 -.I9 
-2.46 - .32 (4 .03 .04 .04 

- - 3 - 
3 Houghton-Johns - .07 - .03 - .05 - .07 - .07 - .07 

(4 (4 .02 .02 .02 .02 

Kennard Simplified - .07 - .04 - .08 - .06 - .06 - .06 
(4 (4 (4 (4 (8) (4 

- -- 
4 Membrane - .07 - .05 -.I1 -.08 - .07 - .07 

(4 (8) (4 (8) (4 (4 - -.--- - 
1 Donnell-Mushtari - .08 -.05 - .09 - .08 - .08 -.08 

(4 (8) .01 (4 (4 (4 
- - 

Love-Timoshenko -.02 - .01 - .05 -.08 - .08 - .08 
(4 (4 .03 .04 .04 .04 

Goldenveizer-Novozhilov .03 (8) - .05 - .08 - .08 - .08 
(4 (4 .03 .04 .04 .04 

Biezeno-Grammel (4 -.02 - .09 -. 10 - . l o  - . lo 
.01 .02 .04 .03 .03 .03 

2 Reissner-Naghdi-Berry - .04 - .03 -.06 - .08 - .08 - .08 
(8) (4 .03 .04 .07 .04 

-- 

Sanders 4 - .01 (8) -.04 - .07 - .08 - .08 
(a) (8) .03 .04 . l o  .04 

Vlasov - .07 - .05 - .08 - .08 - .08 - .08 
.01 .01 .02 (8) (4 (4 

Epstein-Kennard - .08 - .06 - .I6 - .20 - .21 - .21 
-2.48 - .33 (4 .03 .04 .04 

3 Houghton-Johns - .07 - .03 -.06 - .08 - .08 - .08 
(8) (4 .02 .03 .03 .03 

Kennard Simplified - .08 -.05 - .09 - .07 - .06 - .06 
(8) (4 (4 (8) .02 (4 

4 Membrane - .08 - .06 -. 12 - .09 - .08 - .08 
(4 (8) (4 (8) (6) (4 

a Difference <O.Ol percent. 



TABLE 2.10.-Higher Frequency Parameters According lo Fliigge 
Theory; SD-SD Supports; v = 0.3 

l/mR T 
n - 

R/h n 
0.1 0.25 1 4 20 100 

-- 
0 18.5983 7.43666 1.85928 0.710511 0.149675 0.029968 

,I.* - , 31.4164 12.5696 3.15724 1.05458 1.00113 1.00004 

.r 
-- 

it 1 18.6079 7.46093 1.98755 .888499 .609951 .592466 
n; 31.4323 12.6095 3.31870 1.52574 1.41818 1.41440 

2 18.6368 7.53317 2.27370 1.32106 1.19015 1.18415 
31.4800 12.7281 3.75991 2.34035 2.24024 2.23628 

3 18.6847 7.65176 2.63998 1.85602 1.77950 1.77627 
31.5593 12.9235 4.39158 3.24657 3.16569 3.16245 

7 -  
! ,  . 4 18.7516 7.81423 3.06600 2.42323 2.37061 2.368845 

31.6699 13.1921 5.13976 4.19160 4.12587 4.12323 
,!-, 

0 18.5859 7.43437 1.85859 .710460 .I49674 .029968 
\! -> - 
I ,  31.4173 12.5700 3.15731 1.05456 1.00113 1.00004 
' i I.-- 1 18.5954 7.45847 1.98631 .888232 .609841 .592359 

31.4332 12.6098 3.31882 1.52571 1.41815 1.41437 
i 
I '  ' 

2 18.6237 7.53021 2.27160 1.32017 1.18946 1 :I8347 1: 31.4809 12.7285 3.76012 2.34034 2.24019 2.23623 
LL -- 
' : 
I - 3 18.6708 7.64802 2.63711 1.85451 1.77817 1.77496 

31.5603 12.9239 4.39184 3.24657 3.16566 3.16241 - - 
I *  

- - 4 18.7366 7.80949 3.06248 2.42114 2.36867 2.36652 
31.6710 13.1927 5.14004 4.19162 4.12585 4.12321 

- 

TABLE 2.11.-Amplitude Ratios for the Lowest Frequencies According to the Fliigge 
Theory; SD-SD Supports; v = 0.3 

1/mR 

~ / h  n 0.25 1 4 20 Mode 
No. 

F 

--- 
A/C B/C AIC B/C AIC B / C  A/C BIG 

0 1 0.027453 0 0.105051 0 0.560678 0 2.80248 0 
1 1 .028648 .023467 .I75923 .358264 .993739 1.30367 .407336 1.03268 - 

20 2 1 .032050 .045471 .a8136 .427311 .410777 .575505 .lo5419 .504356 
3 1 .037160 .064801 .253258 .372694 .209999 .360895 .047283 .334954 
4 1 .043299 .080678 .224076 .302545 .I25034 .263035 .026765 .251122 

--- 
' I .  

0 1 .OH004 0 .lo4146 0 .560487 0 2.80243 0 
1 1 1 .025077 .021729 .I74560 .356523 .994089 1.30423 .407511 1.03293 

500 2 1 .028120 .042056 .246201 .425264 .410458 .575377 .lo5361 .504293 ,. 
3 1 .032664 .059825 .250773 .370494 .209260 .360420 .047129 .334617 
4 1 .038064 .074290 .221055 .300182 .I24085 .262315 .026570 .250544 



Shell theory 
1 I 1 20 

Group 1 Name 

1 I Donnell-Mushtari I 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Biezeno-Grammel 
Reissner-Naghdi-Berry 
Sanders 
Vlmov 
Epstein-Kennard 

I Houghton-Johns 
Kennard Simplified 

4 1 Membrane I 

-9.87 1 (a) 1 -0.66 

-9.87 (a) -.66 
-9.87 (a) -.66 

(8) (8) (8) 
-9.87 (a) -.67 
-9.87 (a) -.66 

(a) (a) (8) 
-3.32 (a) - .24 

-9.87 (a) -.66 
-9.871 (a) 1 -.66 
-- 

-12.58 1 (a) 1 -.86 

B/C A/C B/C A/C B/C ----- 
(a) -0.03 (a) (a) (a> 

(a) - . O l  (a) 0.02 (a) 

(8) (a) (a) .04 (a) 

(4 .04 (a) .03 (a) 

(a) - .05 (a) (8) (a) 

(a) - . O l  (a) .02 (a) 

(8) (a) (a) (4 (4 
(a) - .08 (a) -.. 06 (a) 
----- 

(a) - .03 (a) (a) (a) 

(a) - .03 (a) (8) (a) 
----- 

(a) - .03 (a) (a) (a) 

1 Donnell-Mushtari -9.33 1.94 -.25 0.21 .09 0.08 .08 0.04 
pppppp- 

Love-Timoshenko -9.46 -.92 -.39 -.07 (a) -.02 .01 -.02 
Goldenveizer-Novozhilov -9.55 -2.92 -.46 -.24 -.02 -.03 .01 -.02 
Biezeno-Grammel (a) (a) .02 .02 .02 . O l  (a) (8) 

Reissner-Naghdi-Berry -9.46 -.89 -.38 -.05 (a) (a> .01 -.02 
Sanders 1 -9.52 -1.91 7 - 4 4  - .I4 -.03 -.03 (a) - .02 
Vlasov (a) (a> .02 .03 .03 .03 .03 .02 
Epstein-Kennard -3.19 .79 - .I3 .10 .12 .19 .12 .20 

--pppp- 

3 Houghton-Johns -9.54 -2.82 -.43 -.I5 -.02 -.02 (a) (a> 
Kennard Simplified -9.33 1.94 -.26 .20 .07 .07 .05 .02 

------- 
4 Membrane -12.48 -7.42 -.78 -.49 .04 .04 .04 .02 

- 
---ppp- 

1 Donnell-Mushtari -8.01 1.98 (a) .26 .16 .09 .16 .05 
---ppp- 

Love-Timoshenko -8.46 -.95 -.27 -.I1 -.02 -.07 (a) -.08 
Coldenveizer-Novozhilov -8.76 -2.96 -.38 -.27 -.03 -.08 (a) - .08 
Biezeno-Grammel (a> (8) .01 . O l  (a) (4 (a> (8) 
Reissner-Naghdi-Berry -8.45 -.92 -.24 -.08 -.01 -.07 (a) - .08 
Sanders 2 -8.68 -1.95 -.36 -.I9 -.07 -.08 -.05 -.08 
Vlasov (a) (8) .02 .03 .03 .03 .04 .02 
Epstein-Kennard -2.88 .83 -.06 .18 .10 .25 .ll .27 

------- 
3 Houghton-Johns -8.74 -2.86 -.a4 -.21 -.02 -.06 (a) - .06 

Kennard Simplified -8.01 2.01 (a) .26 .ll .09 .10 .06 
------- 

4 Membrane -12.28 -7.52 -.78 -.48 -.08 - .02 -.05 -.01 

a Difference <O.Ol percent. 



THIN CIRCULAR CYLINDRICAL SHELLS 

TABLE 2.12.-Percent Differences in  Amplitude Ratios Between Shell Theories and Flsiigge 
Theory; SD-SD Supports; Lowest Frequency P = 0.3, R/h = 20-Concluded 

l/mR 
Shell theory 

n 0.25 1 4 20 

Group Name A / C  B/C A / C  B/C A/C B/C A / C  B / C  
- ----ppp 

1 Donnell-Mushtari -6.45 2.03 0.13 0.30 0.22 0.09 0.22 0.06 
~~~~-~~ 

Love-Timoshenko -7.30 -1.00 -.25 - .I7 -.05 -.I7 -.04 - . I9  
Goldenveizer-Novozhilov -7.85 -3.01 -.36 -.32 -.06 -.I8 -.04 - .19 
Biezeno-Grammel (4 (4 (4 (4 (4 (4 (4 (4 

2 Reissner-Naghdi-Berry -7.29 -.98 -.22 -.I5 -.05 -.I7 - .04 -.I9 
Sanders 3 -7.72 -2.03 -.39 - .27 -. 14 -. 18 - .12 -.I9 
Vlasov (4 .01 .03 .03 .04 .02 .04 .02 
Epstein-Kennard -2.52 .89 -.04 .28 .08 .35 .09 .38 

~~~~~~~ 

3 Houghton- Johns -7.82 -2.92 -.33 -.27 -.05 -.I6 -.03 - .I7 
Kennard Simplified -6.43 2.11 .14 .35 .19 .16 .18 .13 

------- 
4 Membrane -12.12 -7.69 - .98 -.59 -.35 - .I3 -.33 - . lo 

- -- ---- 
1 Donnell-Mushtari -5.02 2.10 .23 .33 .28 .09 .28 .06 

ppppppp 

Love-Timoshenko -6.27 -1.08 -.27 -.27 -.09 -.3l - .08 -.33 
Goldenveizer-Novozhilov -7.05 -3.10 -.38 -.42 - . lo - .32 -.08 -.33 
Biezeno-Grammel (4 (4 (4 (8) (8) (4 (4 (4 

2 Reissner-Naghdi-Berry -6.25 -1.05 -.25 -.25 -.09 -.31 -.08 -.33 
Sanders 4 -6.90 -2.14 -.47 -.39 -.23 -.a3 -.22 -.33 
Vlasov (4 .01 .03 .03 .04 .02 .04 .02 
Epstein-Kennard -2.19 -.98 -.05 .41 .05 .50 .06 .52 

~ - ~ ~ p ~ ~  

3 Houghton-Johns -7.02 -3.00 -.35 -.38 -.09 -.30 -.07 -.31 
Kennard Simplified -4.97 2.26 .29 .46 .30 .25 .30 .22 

p~~~~~~ 

4 Membrane -12.11 -7.93 -1.35 -.78 -.76 -.27 -.73 -.23 

a Difference <O.Ol percent. 



2.3.2 Additional Results for Frequencies and 
Mode Shapes 

In  the previous subsection the accuracy of the 
shell theories was compared for n = 0, 1, 2, 3, 4 
circumferential waves. The lowest of three fre- 
quencies for each n was determined. However, 
no attempt was made to determine the "funda- 
mental frequency" (i.e., the lowest frequency 
for all n) for any shell. Some fundamental fre- 
quencies may have occurred in the tables for 
particular values of l/mR, but others will require 
larger values of n. 

Thus, the complexity of the frequency spec- 
trum for the shell is apparent. There appears to 
be no simple rule for determining the spacing of 
the frequencies as the wave numbers m and n 
are varied. This condition is in contrast with 
other, more simple, physical systems. For exam- 
ple, in the case of the transversely vibrating 
prestretched string, the successive natural fre- 
quencies are spaced according to the longi- 
tudinal wave number n (an integer), while for 
a simply supported beam they are spaced by 
l/n2. Considering two dimensional problems, for - 

an initially taut rectangular membrane the fre- 
quencies depend upon d(m/a)z+ (n/b)2, where 
m and n are integers and a and b are the mem- 
brane length and width, and for a simply sup- 
ported rectangular plate they vary according to 
(m/a)2+ (n/b)2. Such simple behavior is not the 
case for the circular cylindrical shell supported 
by shear diaphragms (which is the generaliza- 
tion of the simple support conditions used in the 
other problems described above). To determine 
the response of a structure excited in a very 
complex or random manner it is important to 
know the relative spacing of the frequencies. 
This spacing can be expressed in terms of the 
"modal density" concept. Studies of the modal 
density of circular cylindrical shells supported 
by shear diaphragms were made in references 
2.88, 2.90, 2.120, and 2.195. 

A comprehensive study of the circular cylin- 
drical shell supported at both ends by shear 
diaphragms was made by Forsberg (refs. 2.35, 
2.72, and 2.73) using the Donnell and Fliigge 
theories. In  figure 2.11 (taken from ref. 2.35) 
the frequency parameter Q = o ~ d p ( l -  v2)/E is 
plotted as a function of the length/radius ratio 

l/mR for numbers of circumferential waves n 
varying between 0 and 28 for a relatively thin 
shell ( R / h  = 500) according to the Flugge theory. 
It is obvious from figure 2.11 that, for a fixed 
number of circumferential waves, the frequency 
increases with an increased number of longi- 
tudinal half-waves m, and that the fundamental 
(lowest) frequency always occurs for m = 1, but 
for varying n depending strongly upon the 
length/radius ratio of the shell. For example, 
for a shell having R/h= 500 and l/R = 2, the 
fundamental frequency occurs for m = 1, n = 8. 
However, there are over 90 modes with values 
of m up to 6 and n up to 24 having natural fre- 
quencies which are less than that for the simple 
mode shape m = 1, n =  2 (ref. 2.35) ! The funda- 
mental frequencies, which are given by the 
envelope of figure 2.11 when m = 1, are shown 
in figure 2.12 for various R/h ratios (ref. 2.35). 
Results from both the Fliigge and Donnell- 
Mushtari theories are given. Further com- 
parisons of frequencies obtained from the 
Donnell-Mushtari and Fliigge theories can be 
made in figures 2.13 where n is taken to be 2. 

AXIAL WAVELENGTH PARAMETER, 

FIGURE 2.11.-Variation of the frequency parameter B 
according to the Fliigge theory (R/h  =500). (After 
ref. 2.35) 



As found in section 2.3.1, figures 2.12 and 2.13 

thickness (h/R) ratios increase. 
A similar numerical study was made by 

Bozich (ref. 2.69)) also using the Fliigge theory . 
and (apparently) v=0.3. Figures 2.14 through 
2.17 show lowest values of B plotted versus 
l/mR for R/h=20, 50, 100, and 2000, respec- 
tively. I n  these figures the solid lines corre- 
spond to motions which are primarily radial 
(A < C, B < C). However, it is also seen that for 
the axisymmetric (n=O) and beam bending 
(n = 1) modes, as Z/mR is increased, the motions 
become axial and mixed, respectively, as shown 
by the dashed lines. More precisely, Bozich 
showed that for n = 0 the motion associated with 
l/mR < 2  in these figures is primarily radial, 
and for Z/mR > 2 it is torsional. Furthermore, for 

0 Z/mR >r, radial motion corresponds to the largest . . 
of the three eigenvalues. Fdr n = 1 the amplitude 
of the radial and circumferential displacements FIGURE 2.12.-Fundamental frequency parameters It 
corresponding to the lowest eigenvalue are ap- %-* for various Z/R and R/h ratios. (After ref. 2.35) 
proximately equal and greater than the axial (or - 
longitudinal) displacement for l/mR>3.5, and . -. . 
the resulting deflection is similar to beam bend- - 

I - 
ing with little deviation in circular cross section. . I - 7.  

I n  figure 2.14 the envelope of the frequency - 1  - A m  

6 6 

curves establishes the fundamental frequency - =L -2 

for the R/h ratio of 20. It is interesting to note .& 
that for shells having an l/R ratio in the vicinity - ! \  
of unity, the fundamental frequency is asso- I _  . - 
ciated with four circumferential waves (n = 4)) - - 

- - 
whereas for both larger and smaller l/R ratios , -  

the fundamental frequency occurs for smaller , '  -. - -. 
n. For very short shells (l/R <0.3) it is seen that ..- .! 
the fundamental mode is axisymmetric. ' L  

Figures 2.18 and 2.19 (taken from ref. 2.69) 
n 

show the frequency spectra of the second and 
third eigenvalues for given n and A. A single 2: 1 

f 

figure covers the range of R/h from 20 to 5000 ,fa 
for modes corresponding to the second and third 

- iJ eigenvalues. For small values of l/mR and n 
8 :y 

the second eigenvalue yields amplitude ratios --I 
0.3 a5 1.0 2 5 10 20 5 0  100 

such that B> A, C (torsional modes) while 
modes having larger l/mR and n have ampli- ;$ 

LENGTH TO RADIUS RATIO 1 / R  
tude ratios such that A >  B, C (axial modes). b -- ' 

L - - 2 
FIGURE 2.13.-Comparison of Fliigge and Donne11 The converse of this is found for the third -- .i 

frequency spectra for n =2. (After ref. 2.35) 
L eigenvalues. I n  figures 2.20, 2.21, and 2.22 the d m  

': 1- 
1 - .  

_ I '  
- 

s - 



FIGURE 2.14.-Variation of the fundamental frequency 
parameter Qwith l/mR according to the Flugge theory; 
v =0.3, R/h =20. (After ref. 2.69) 

AXIAL W A V E L E N G T H  P A R A M E T E R  

FIGURE 2.16.-Variation of the fundamental frequency 
parameter Q with l/mR according to the Flugge theory; 
v = 0.3, R/h = 100. (After ref. 2.69) 

AXIAL W A V E L E N G T H  P A R A M E T E R  -& 
FIGURE 2.15.-Variation of the fundamental frequency 

parameter Q with l/mR according to the Fliigge theory; 
v = 0.3, R/h =50. (After ref. 2.69) 

AXIAL W A V E L E N G T H  P A R A M E T E R  
mR 

FIGURE 2.17.-Variation of the fundamental frequency 
parameter Q with l/mR according to the Fliigge theory; 
v =0.3, R/h =2000. (After ref. 2.69) 



AXIAL WAVELENGTH PARAMETER 5 AXIAL WAVELENGTH PARAMETER. 

FIGURE 2.18.--Second vibration frequencies; Flugge FIGURE 2.19.-Third vibration frequenc~es; Flugge 
theory, v=0.3, R/h=20 to 5000. (After ref. 2.69) theory, v = 0.3, R/h = 20 to 5000. (After ref. 2.69) 

NUMBER O F  C IRCUMFERENTIAL WAVES n NUMBER OF CIRCUMFERENTIAL WAVES n 

FIGURE 2.20.-Variation of the fundamental frequency FIGURE 2.21.-Variation of the fundamental freq~ency 
parameter Q with OZ; Fliigge theory, v =0.3, R/h =20. parameter B with n; Fliigge theory, v =0.3, R/h = 100. 
(After ref. 2.69) . m (After ref. 2.69) 



3 4 
P 

can be seen explicitly in equation (2.21) for the i' 

Donnell-Mushtari theory. Thus, the second of 
the three equations of motion becomes uncou- 
pled and yields a purely torsional mode shape. 
From equation (2.21) the frequency parameter 
for this torsional mode according to the Donnell- 
Mushtari theory is found to be 

- (1 - V) mrR " 
2-- - 

2 ( ) (2.38) 

Furthermore, the other theories lead to varying 
results for the simple formula given in equation 
(2.38). Corresponding formulas arising from the 
various theories are given in table 2.13. It is 
important to note that in every case the for- 
ulas differ from each other by a term which 
is multiplied by k = h2/12R2, which is small for 
thin shells. Thus, for practical purposes the 
theories all agree for axisymmetric torsion. 

Returning to the equations of motion in the 
axisymmetric case, the two remaining equations 
are uncoupled from the torsional mode, but do 
yield a coupling of radial and axial displace- 

NUMBER OF CIRCUMFERENTIAL WAVES n ments. These equations can be written as 

FIGURE 2.22.-Variation of the fundamental frequency 
parameter with n; Fliigge theory, v =0.3, R/h = 2000. 
(After ref. 2.69) 

lowest frequency parameter is plotted versus n 
for R/h=20, 100, and 2000, respectively (in 
ref. 2.69 similar plots are also given for R/h = 50, 
500, 1000, and 5000). This last set of figures 
serves to emphasize clearly that the minimum 
frequency for a thin circular cylindrical shell 
of given length and supported by shear dia- 
phragms occurs for n = 2  or greater, unless 
l/R> 10. On the other for very long shells, the 
minimum frequency always occurs for n = 1, 
that is in the beam bending mode. 

Axisymmetric motion (n=O) in the case of 
shear diaphragm supports leads to more simple 
solutions than for n#O. Looking at  the matrix 
differential operators for the various theories, 
equations (2.7) and (2.9), it is seen that sub- 
stitution of the shear diaphragm displacement 
functions given by equations (2.20) results in 
the vanishing of the terms arising from the off- 
diagonal elements &12, &21, s 2 3 ,  and s 3 2  of the 
matrix in the case of n = O  for every theory. This 

where, for example, in the case of the Donnell- 
Mushtari theory 

a = ~ 2 ,  b = -  vX, C =  1 + h 4  (2.40) 

as seen from equations (2.21). The roots of the 
characteristic determinant can be determined 
from the quadratic formula to be 

1 
QG-[(a+c) + d(a-c)  ~ + 4 b ~ ]  (2.41) 

2 

Equation (2.41) has two real, positive roots for 
Q2 provided that ac> b2. Substituting from equa- 
tion (2.40), it is seen that this inequality is al- 
ways satisfied for the Donnell-Mushtari theory. 
Frequency parameters for the axial-radial modes 
are given in table 2.13 for each of the theories 
considered here. A plot of all three frequency 
parameters Q2 arising in the axisymmetric case 
is shown in figure 2.23 for the Flugge theory 
(from ref. 2.69). The lowest frequency in the 
axisymmetric case can correspond to either a 
radial or torsional mode, depending upon l/mR, 
but is never an axial mode. 



Q2 
. 1 Shell theory 

Torsional mode Coupled axial-radial modes 

1 1 
Donnell-Mushtari $1 -v)h2 - ( (1 +h2+kX4) T [ ( I  -X2)z+2Xz(2v2+kX2 -kh4)]ll" 

2 
1 

Love-Timoshenko - (1 - V) (1 +2k)X2 Same as Donnell-Mushtari 
2 

I 
w 

Goldenveizer-Novozhilov 1 
(also Amold-warburton) $1 -v) (1 +4k)X2 Same as Donnell-Mushtari 

Houghton-Johns Same as Same as Donnell-Mushtari 
(Simplified Donnell-Mushtari 
Goldenveizer-Novozhilov) 

1 1 
Biezeno-Grammel -(I-v)(1+3k)h2 -((1+k+X2+kX4) 

2 2 
T [( I  -X~2+2k+2(2v2-k)X2+2(1 -4~ )kh~-2kX~] '~~ )  

Fliigge Same es 1 
Donnell-Mushtari ,((I +X2+kX4) T [( I  -X32+4vSXz - 2 k ~ ~ ] ' ' ~ )  

Reksner-Naghdi-Berry 
1 
i(l -9) (1 +k)X2 Same as Donnell-Mushtari 

Sanders X2 Same as Donnell-Mushtari 

Vlasov Same as Same as Biezeno-Grammel 
Donnell-Mushtari 

Epstein-Kennard Same as 1 +3v 1 -4v2+4v3 
Donnell-Mushtari ( (l +i;;k+" - (1 - v)2 

2(1+3~) 4+3v-18v2+12v' 
(1 -X2)v-k+4v2X2 - kXP 

1 - v  (1 - v)% 
4(1 -v-2v2-2~')kX4-2kXB 

+ (1-v)2 
Kennard Simplified Same as 

~ ~ ~ ~ ~ l l - ~ , h t ~ ~ i  

-- 
1 - v  

Membrane Same as 1 
~ ~ ~ ~ ~ l l - ~ ~ ~ h t ~ ~ i  2 ( (1 +AB) [( I  -X2)2 +4v2h21112 1 

P 
I - 
t' - 

Another interesting set of frequency spectra is 
shown in figures 2.24 through 2.27. In  these 
figures the frequency Q is plotted versus X giving 

- rise to a family of curves for different thickness 
ratios in the range 0.002 < h/R <O. 100. Looking 

I - at these curves, it is obvious that the frequency 
- - increases as the length of the shell decreases and . - 

8 rn 

,$-:- ash/R increases; but, in addition, as one moves 
- from figure 2.24 to figure 2.27 it is apparent that 

- -  the family of curves spreads apart, indicating 
I greater frequency differences with increasing h/R - for larger values of n. These curves were presented 
, - by Arnold and Warburton (ref. 2.4) using their 
'- - .+. 
t '-- 

\i -' ' 
,+ = -  

own theory (which is the same as the Golden- 
veizer-Novozhilov theory). 

Behavior of the amplitude ratios for n= 1 and 
n = 2 is shown pictorially in figures 2.28 and 2.29 
(from ref. 2.50, where the Fliigge theory was 
used). The ratios A/C and B/C are shown for 
h/R=O.Ol and 0.1 for the three possible modes 
which can occur for a fixed value of n and mR/l. 
The change in character of the vibration modes 
with changing mR/l (as was discussed in con- 
junction with figures 2.14 through 2.19) is clearly 
seen from these curves. 

It should be mentioned that another extensive 
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FIGURE 2.25.-Variation of the fundamental Q with A 
AXIAL WAVELENGTH PARAMETER and h/R; Arnold and Warburton theory, n =3. (After 

ref. 2.4) 

FIGURE 2.23.-hisymmetric (n =0) frequency param- 
eters; Fliigge theory, v =O.3. (After ref. 2.69) 

FIGURE 2.24.-Variation of the fundamental Q with X 
and h/R;  Arnold and Warburton theory, n =2. (After 
ref. 2.4) 

FIGURE 2.26.-Variation of the fundamental Q with X 
and h/R; Arnold and Warburton theory, n =4. (After 
ref. 2.4) 
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FIGURE 2.38.-Amplitude ratios for n = 1; Flugge 
theory. (After ref. 2.50) 

FIGURE 2.27.-Variation of the fundamental $2 with X 
and h/R;  Arnold and Warburton theory, n =5. (After 
ref. 2.4) 

set of results is available in the paper by Baron 
and Bleich (ref. 2.121), where the three fre- 
quencies and their corresponding amplitude ratios 
for fixed n and k are given for n=O through 6, 
v =0.3, and over a range of A. The procedure 
followed by them is particularly interesting 
because of the saving in numerical computation 
time. First, they obtained the frequencies and 
corresponding amplitude ratios according to 
membrane theory (see sec. 2.3.1). Then they 
substituted the mode shapes determined from 
membrane theory into a strain energy integral 
including bending effects which was derived in 
ref. 2.122 using the Flugge theory. Finally, adding 
the kinetic energy, they computed corrected 
frequencies by the simple Rayleigh method. This 
procedure is particularly useful because it not 
only avoids finding roots of the cubic equation in 
Q2. enliation (2.35). but at  the same time it 

FIGURE 2.29.-Amplitude ratios for n =2; Flugge 
theory. (After ref. 2.50) 

tangential displacement amplitudes are only 
approximated in the final results. 

No information is available in the literature 
which shows the variation of the frequency 
parameter as a function of Poisson's ratio. To 
gain insight into this question a separate set of 
calculations were made for this monograph using 
the Flugge theory. The results are shown in tables 
2.14 and 2.15 for R/h=20 and 500, respectively. 
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TABLE 2.14.-Variation of !2 with Poisson's Ratio; Flugge Theory, R / h  = WO 
I I 1 1  I i 



TABLE 2.15.-Variation of !2 with Poisson's Ratio; Flugge Theory, R / h  = 500 
' 

v v 

-- -- 
1.00415 0.972321 0.875778 0.00854580 0.00853766 0.00851444 

L L  0.25 8.88576 7.69530 6.34571 4 20 2.83109 2.45181 2.02182 
12.5664 12.5689 12.5760 4.12576 4.12585 

-- 
4.12592 
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long length (i.e., l/mR=0.25, 2, 20) and over a 
range of circumferential wave numbers 0 5 n 5 10. 
Poisson's ratio is allowed to vary over its limiting 
range for isotropic materials, 0 1 v 50.5, although 
the value 0.49 was taken to avoid difficulties 
associated with dividing by zero at  certain places 
in the computer routine. I n  addition to the lowest 
frequency for each n, the higher two frequencies 
are also given. 

As shown in table 2.14 the frequencies corre- 
sponding to modes which are predominantly 
transverse are affected only slightly by changing 
Poisson's ratio (see earlier discussion in this sec- 
tion to associate frequencies with modes), that 
the effect is most important for shells of moderate 
length (l/mR = 2), and that the effect is reduced 
as the number of circumferential waves increases. 
Further, comparing tables 2.14 and 2.15 it is seen 
that the frequency parameter B is more signifi- 
cantly affected by v for thinner shells. Finally, it 
must be remembered that the frequency parame- 
ter B contains v (i.e., 62 = w ~ Z / ~ ( l -  v 2 ) / ~ ) .  Thus, 
although G may decrease with increasing v, the 
actual free vibration frequency w will increase 
with increasing v, as expected. 

From tables 2.14 and 2.15 it can be seen that 
the two largest frequencies for given values of n 
and l/mR essentially do not depend upon R/h. 

Forsberg (ref. 2.35) used the exact solution 
obtained from the Flugge theory (including tan- 
gential inertia) for the SDSD shell as a basis 
for comparison of approximate solutions obtained 
by the finite difference method. Sinusoidal vari- 
ation of u, v, and w with respect to 0 and t was 
assumed, as in equations (2.20)) and the resulting 
set of ordinary differential equations of motion 
were replaced by their finite difference equiv- 
alents. Convergence of the finite difference tech- 
nique was then studied, using 10, 20, 50, and 
100 equally spaced points along the length of the 
shell. Results for the frequency parameters and 
modal characteristics exhibited by the various 
solutions are displayed in figure 2.30 for a shell 
having R/h=500, 1/R - 10, n=4, m= 1, and 
v = 0.3. It is interesting to note that although the 
eigenfunctions (mode shapes) are represented 
very accurately with as little as 10 points, the 
eigenvalues (frequency parameters) converge 
much more slowly. This is due to significant dif- 
ferences between the higher derivatives of the 

Wh = 5 0 0  fi = O 0 1 2 3 2  110PTS) BOUNDARY 
.P/R=IOO fi = 0 01076 ( 2 0  PTS 1 CONDll IONS 

v = O 3  fi = 0.01028 ( 50 PTS 1 w=O . - -  
n = 4  fi = 0.01021 1 100  PTS M, =O 

fi =0.01017  I EXACT) N. =O 
v.0 

,n 
AT x=0,1 

ALL SOLUTIONS 

ALL SOLUTIONS 

a 
ALL SOLUTIONS 

0 
0 0.2 0.4 0.6 0 8  1 .O 

AXIAL CO0RDINATE.X /.Q 

20. EXACT 

0 0 0 4  - 10 PTS 

0 0 0 2 -  50.100, EXACT 

50 ,100 ,  EXACT 

10,20,  EXACT 

ca 8xtO-5 

2 6x1W5 
0 n 100, EXACT 
o 4 x 1 W 5 -  
U. 

2x10-5 

0 I 

. 
I -AW" , 

0 0 2 0 4 0.6 0 8 10 
AXIAL COOROINATE.X/.P 

FIGURE 2.30.-Comparison of finite difference and exact 
(Fliigge) solutions for an SD-SD shell; R/h=500, 
E/R = 10, n =4, m = 1. (After ref. 2.35) 

eigenfunctions, as shown by the plots of the force 
and moment resultants in fi'gure 2.30, particularly 
for the circumferential (hoop) force resultant No. 
Further results showing the convergence of eigen- 
values obtained from finite difference solutions 
are shown in table 2.16. In  reference 2.35 the 



TABLE 2.16.-Comparison of Frequencies Obtained from Finite Digerence and 
Exact (Flugge) Solutions for a SD-SD Shell; v =0.3 

Number of grid points 
n l /mR R/h  

10 20 50 100 Exact 
--- 

100 0.3277 0.3275 0.3275 0.3274 0.3274 
2 500 .3274 .a272 . .3272 .a272 .3272 

5000 .3274 .3272 .3272 .3272 .3271 
2 -- 

100 .02520 .02282 .02210 .02200 .02195 
10 500 .02397 .02146 .02069 .02058 .02053 

5000 .02392 ,02140 .02063 .02052 .02047 --- 
2 500 .I264 .I243 .I237 .I237 .I236 

4 -- 
10 500 .01232 .01076 .01028 .01021 .01017 

following was generally found for frequency 
parameters : 

(1) Finite difference solutions will give better 
results for a short (small Z/mR), thick (small 
R/h) shell than for a long, thin one. 

(2) The accuracies of the finite difference 
results slowly decrease as R/h or n increases. 

(3) The accuracies of the finite difference 
results rapidly decrease as l/mR is increased. 

These statements are substantiated by table 
2.16. 

Further comparisons of the results obtained 
using various shell theories and various solution 
techniques were made in an excellent survey 
paper by Warburton (ref. 2.123). 

2.3.3 Strain Energy Distribution 

It is interesting to observe how the total strain 
energy which occurs a t  any instant in the shell 
(being a maximum, of course, when cos wt = 1 in 
eqs. (2.20) ; i.e., at  maximum amplitude) is appor- 
tioned between bending and stretching (see eqs. 
(2.17) and (2.18)). Arnold and Warburton (ref. 
2.3) plotted curves (figs. 2.31 and 2.32) showing 
this apportionment for a circular cylindrical shell 
having h/R =0.0525 and n =  2 and 4. In  figure 
2.31 for n = 2 the strain energy is extremely small 
for values of X up to 0.5, resulting almost entirely 
from bending. At higher values of A, however, the 
stretching energy increases rapidly and becomes 
predominant, as may be seen from the shaded 

1 STRETCHING ENERGY 

FIGURE 2.31.-Nondimensional strain energy due to 
bending and stretching; h / R  =0.0525, n <2. (After 
ref. 2.3) 

FIGURE 2.32.-Nondimensional strain energy due to 
bending and stretching; h / R  =0.0525, n =4. (After 
ref. 2.3) 



area representing the bending contribution. For for using the membrane theory for small n and a 
n = 4, however, the bending effect is predominant theory which considers bending only for large n. 
throughout the range 0 < X <4, always contribut- This latter theory (called an "inextensional the- 
ing over 1/2 of the total strain energy. Compar- ory") was proposed by Rayleigh (ref. 2.124) in 
ing the two figures for X=1.2, it is seen that 1881 and will be discussed in connection with 
although the total strain energy is approxi- free-free shells (see sec. 2.4.5). 
mately the same for either n =  2 or n=4, the 
portions due to bending in the two cases are al- 2.3.4 Neglect of Tangential Inertia 

together different. Looking at  figure 2.14 (where 
h/R=0.0500 and the Fliigge theory was used) 
it is evident that the frequency parameter curves 
for n = 2 and n =4 cross at the corresponding 
value of l/mR =~/X=2.6.  Another plot of the 
strain energy as a function of the circumfer- 
ential wave number n is shown in figure 2.33 
(from ref. 2.3) for a thinner shell (R/h = 100) 
and for A = 3.82. One observes that the stretching 
energy decreases rapidly as n increases, whereas 
the bending energy increases. This results in n 
curve for total strain energy which has a mini- 
mum a t  n=7. As seen in figure 2.21, the 
corresponding minimum in frequency parameter 
occurs also in the vicinity of n = 7  for 

As seen earlier in this section, for wide ranges of 
h/R, A, and n (but not for all values) the funda- 
mental frequency corresponds to a mode shape 
which is primarily radial, and the tangential 
displacements are then relatively small. Con- 
sequently, one important simplification which 
is frequently made in the equations of mo- 
tion is to neglect the tangential (axial and 
circumferential) inertia terms. 

Neglect of tangential inertia terms in the equa- 
tions of motion eliminates two of the terms con- 
taining @ in the characteristic determinant (cf., 
eq. (2.21)) and reduces the characteristic equa- 
tion (2.35) to a linear equation in Q2. The 
resulting simple formulas for the frequency 
parameter can be written as 

Strain energy apportionment between bending 
and stretching for circular cylindrical shells sup- 
ported by shear diaphragms was also discussed in 
references 2.35 and 2.61. 

Figure 2.33 helps to demonstrate the rationale 
where KO and AI?~ are as given previously in 
equation (2.36) and table 2.4, respectively, 

and values of AKI, according to the various 
theories, are given in table 2.17. The single 
frequency in every case, of course, describes a 
radial mode of vibration. 

The effects of neglecting tangential inertia in 
the various theories can be seen in tables 2.18 
and 2.19. In  these tables the percent change in 
the frequency parameter Q when tangential 
inertia is neglected is given relative to the value 
of D obtained from each shell theory when 
tangential inertia is included. 

The following general conclusions are apparent : 

FIGURE 2.33.-Nondimensional strain energy due to 
bending and stretching; h/R  =O.Ol,  X =3.82. (After 
ref. 2.3) 

(1) Neglecting tangential inertia causes all 
frequencies associated with radial modes to 
increase, with the exception of the axisymmetric 
(n=O) case. 

(2) For R/h = 20 and any given n and l/mR, 
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the frequency changes are approximately the 
same for all theories. The approximation becomes 
practically exact for R/h= 500. 

(3) The frequency changes are essentially 
independent of R/h ratio. 

(4) The differences are generally more signifi- 
cant for long shells than for short ones. 

(5) Large differences occur for small n(n = 0, 
1, 2) and decrease as n increases. Neglecting 
tangential inertia is completely unacceptable for 
long shells in their beam bending (n = 1) modes. 

I t  must be remembered that tables 2.18 and 2.19 
only indicate the changes in frequencies due to 
neglecting tangential inertia, and that con- 
siderable differences can exist among the fre- 
quencies generated by the various theories, as 
was discussed earlier in section 2.3.1. 

I t  was pointed out by Forsberg (ref. 2.35) that 
neglect of tangential inertia in the beam bending 
(n = 1) mode effectively results in leaving half of 
the shell inertia out of the calculations. Because 
the frequency depends upon the square root of 
the mass, having half as much mass yields a 
frequency which is fi greater when tangential 
inertia is omitted for long shells and n= 1. This 
was also observed in tables 2.18 and 2.19. 

The change in frequency spectrum in the case 
of axisymmetric (n = 0) motion is clearly shown 
in figure 2.34 (from ref. 2.35). The three distinct 
modes are replaced by a, single mode which is 
primarily radial when tangential inertia is 
neglected. This causes the significant negative 
difference where the transition zone between 
longitudinal and radial modes normally occur 
(i.e., 2<1/rnR <5). 

A comparison of the effects of neglecting 
tangential inertia for other numbers of cir- 
cumferential waves can also be seen in figure 2.35 
(from ref. 2.35), where the lowest Q is plotted 
versus l/R for various R/h ratios. Results from 
the Fliigge theory, with and without tangential 
inertia, and the Donne11 theory without tan- 
gential inertia are shown in this figure. For very 
thin shells (R/h = 5000) the effect of neglecting 
tangential inertia is essentially negligible, but 
the frequency is increased considerably for large 
h/R and l/R ratios. Again it is seen that the 
differences between the Donnell-Mushtari and 
Fliigge theories (this time neglecting tangential 
inertia) increase as h/R and l/R increase. 

TABLE 2.17.-Parameters A& for the Direct 
Calculation of Frequency Parameters (by eq. 

, 

(2.42)) when Tangential Inertia I s  Neglected 

Shell theory A K ~  

Donnell-Mushtari 0 

h3n2 Love-Timoshenko (1 - v ) X ~ + ( ~ - ~ V + V ~ ) ~  

Goldenveizer-Novozhilov 2(1- v)X4+ (2 -2v + v2)hW 
(also Arnold- n4 
Warburton) f (1 - 42 

Biezeno-Grammel 

Fliigge I 0 

Reissner-Naghdi-Berry 

Sanders 

Epstein-Kennard 

Houghton-Johns (Simpli- 0 
fied Golden.-Novo.) 

Kennard Simplified I 0 

Membrane I 0 
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TABLE 2.18.-Percent Change in Transverse Mode Frequency Parameter by Neglecting Tangential 
Inertia Terms; SD-SD Supports, Y = 0.3, R/h = 80 

Shell theory Z/mR 
n 

Group Name 0.1 0.25 1 4 20 100 

1 Donnell-Mushtari 0.01 0.03 0.50 -9.54 -4.71 -4.61 

Love-Timoshenko .04 .03 .50 -9.54 -4.71 -4.61 
Goldenveizer-Novozhilov .06 . .03 .50 -9.54 -4.71 -4.61 
Biezeno-Grammel .05 .04 .51 -9.54 -4.71 -4.61 

2 Fliigge .07 .06 .54 -9.54 -4.71 -4.61 
Reissner-Naghdi-Berry 0 .02 .03 .51 -9.55 -4.72 -4.62 
Sanders -2.80 .03 .50 -9.54 -4.71 -4.61 
V ~ ~ S O V  .01 .04 .51 -9.54 -4.71 -4.61 
Epstein-Kennard - .53 .02 .51 -9.35 -4.61 -4.51 

3 Houghton-Johns ,01 .03 .50 -9.54 -4.71 -4.61 
Kennard Simplified .01 .03 .50 -9.63 -4.70 -4.61 

4 Membrane (a) .03 .50 -9.54 -4.71 -4.61 

1 Donnell-Mushtari -01 .04 2.53 41.69 42.67 41.48 

Love-Timoshenko .04 .04 2.54 41.69 42.67 41.48 
Goldenveizer-Novozhilov .07 .05 2.55 41.68 42.67 41.48 
Biezeno-Grammel .06 .05 2.54 41.68 42.67 41.48 

2 Fliigge .07 .07 2.57 41.72 42.69 41.51 
Reissner-Naghdi-Berry 1 .02 .04 2.54 41.68 42.67 41.48 
Sanders .04 .04 2.54 41.69 42.67 41.48 
Vlasov .14 .05 2.54 41.69 42.67 41.48 
Epstein-Kennard 7 . 5 3  .03 2.54 41.70 42.67 41.48 

3 Houghton-Johns . O 1  .04 2.55 42.09 42.68 41.49 
Kennard Simplified .01 .04 2.53 41.69 42.67 41.49 

4 Membrane (8) .04 2.51 41.68 42.67 41.48 

1 Donnell-Mushtari .01 .07 4.13 13.13 11.92 11.82 

Love-Timoshenko .04 .07 4.16 13.15 11.93 11.83 
2 Goldenveizer-Novozhilov 2 .07 .08 4.16 13.15 11.93 11.83 

Biezeno-Grammel .06 .08 4.14 13.13 11.92 11.81 
Fliigge .07 .10 4.21 13.19 11.98 11.88 
Reissner-Naghdi-Berry .02 .07 4.14 13.14 11.93 11.83 
Sanders .04 .07 4.16 13.15 11.93 11.83 
Vlasov .02 .07 4.14 13.13 11.92 11.81 
Epstein-Kennard - .53 .06 4.14 13.12 11.89 11.79 

3 Houghton-Johns . O 1  .07 4.17 13.16 11.93 11.83 
Kennard Simplified .01 .07 4.12 13.13 11.92 11.82 

4 Membrane .01 .06 4.10 13.12 11.91 11.81 

Frequency changes less than 0.01 percent. 
b Imaginary frequencies. 
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TABLE 2.18.-Percent Change in  Transverse Mode Frequency Parameter by Neglecting Tangential 
Inertia Terms; SD-SD Supports, v = 0.3, R/h = 20-Concluded 

Shell theory l /mR 
n 

Group Name 0.1 0.25 1 4 20 100 

1 Donnell-Mushtari 0.01 0.10 3.78 5.84 5.44 5.42 

r Love-Timoshenko .04 .12 3.82 5.86 5.46 5.44 
Goldenveizer-Novozhilov .07 .12 3.82 5.86 5.46 5.44 

Biezeno-Grammel .06 .12 3.79 5.84 5.44 5.42 

ti$?: Fliigge .08 .14 

3.85 5.91 5.51 5.49 

Reissner-Naghdi-Berry 3 .03 .ll 3.80 5.84 5.46: 5.44 
Sanders .05 .12. 3.82 5.86 5.46 5.44 
Vlasov .02 .I1 3.79 5.84 5.44 5.42 
Epstein-Kennard -.54 .01 3.79 5.82 5.41 5.39 

3 Houghton-Johns .01 .12 3.83 5.86 5.46 5.44 
Kennard Simplified .01 .10 3.78 5.84 5.45 5.42 

4 Membrane . O 1  .10 3.75 5.82 5.43 5.41 

1 Donnell-Mushtari .01 .15 2.89 3.25 3.10 3.09 

Love-Timoshenko .05 .17 2.92 3.27 3.11 3.11 
Goldenveizer-Novozhilov .08 .17 2.93 3.27 3.11 3.11 

Biezeno-Grammel .07 .16 2.90 3.25 3.09 3.08 

2 Fliigge .08 .19 2.97 3.22 3.17 3.16 

Reissner-Naghdi-Berry .03 .16 2.91 3.27 3.11 3.11 

Sanders 4 .05 .17 2.93 3.27 3.11 3.11 

Vlasov .02 .16 2.90 3.25 3.09 3.09 

Epstein-Kennard - .54 .14 2.89 3.22 3.06 3.06 

3 Houghton-Johns .02 .17 2.93 3.27 3.11 3.11 

Kennard Simplified .01 .15 2.88 3.25 3.10 3.09 

4 Membrane .01 .14 2.85 3.23 3.09 3.08 



TABLE 2.19.-Percent Change in Transverse Mode Frequency Parameter by Neglecting Tangential 
Inertia Terms; SD-SD Supports; v = 0.3, R/h = 600 

Shell theory I/mR 
'n 

Group Name 0.1 0.25 1 4 20 100 
pp 

1 Donnell-Mushtari (a) 0.03 0.50 -9.54 -4.71 -4.61 

Love-Timoshenko (a) .03 .50 -9.54 -4.71 -4.61 
Goldenveizer-Novozhilov (a> .03 .50 -9.54 -4.71 -4.61 
Biezeno-Grammel (8) .03 .50 -9.54 -4.71 -4.61 

4 
-i 

Fliigge (8) .03 .50 -9.54 -4.71 -4.61 
Reissner-Naghdi-Berry 0 (8) .03 .50 -9.54 -4.71 -4.61 
Sanders ( 4  .03 .50 -9.54 -4.71 -4.61 
Vlasov (a) .03 .50 -9.54 -4.71 -4.61 
Epstein-Kennard (a) .03 .50 -9.54 -4.71 -4.61 

3 Houghton-Johns (a) .03 .50 -9.54 -4.71 -4.61 
Kennard Simplified (a) .03 .50 -9.54 -4.71 -4.61 

4 Membrane (8) .03 .50 -9.54 -4.71 -4.61 
--- 

I Donnell-Mushtari (a) .04 2.51 41.68 42.67 41.48 

Love-Timoshenko (a) .04 2.51 41.68 42.67 41.48 
Gold-nveizer-Novozhilov (a) .04 2.51 41.68 42.67 41.48 
Biezeno-Grammel (8) .04 2.51 41.68 42.67 41.48 

2 Fliigge (a> .04 2.51 41.68 42.67 41.48 
Reissner-Naghdi-Berry 1 (a) .04 2.51 41.68 42.67 41.48 
Sanders (a) .04 2.51 41.68 42.67 41.48 
Vlasov (a) .04 2.51 41.68 42.67 41.48 
Epstein-Kennard (8) .04 2.51 41.68 42.67 41.48 

3 Houghton-Johns 
Kennard S i i i e d  

4 I Membrane 
p p  

1 ( Donnell-Mushtari I 
Love-Timoshenko 
Goldenveizer-Novozhilov 
Biezeno-Grammel 
Fliigge 
Reissner-Naghdi-Berry 
Sanders 
VIasov 
Epstein-Kennard 

Houghton-Johns 
Kennard Simplified 
- 

Membrane I 

(a) .04 2.51 41.68 42.67 1 (a) 1 0 4  1 2 5 1  1 41.68 1 42.67 

1 (a) ( .04 1 2.51 1 41.68 ( 42.67 

a Frequency changes less than 0.01 percent. 



T ~ L F  2.19.-Percent Change in Transverse Mode Frequency Parameter by Neglecting Tangential 
Inertia Terms; SD-SD Supports; v = 0.3, R/h  = 600-Concluded 

Shell theory l/mR 
- 

n - I 

Group Name 0.1 0.25 1 4 20 100 - 
-- 

- r .  
I '  

- 7 1 0.01 0.10 3.75 5.83 5.43 5.41 
G Donnell-Mushtari 

, - 

IZ Love-Timoshenko .01 .10 3.75 5.83 5.43 5.41 + 
Goldenveizer-Novozhilov .01 .10 3.75 5.82 5.42 5.41 -. 

Biezeno-Grammel - 
.01 .10 3.75 5.82 5.43 5.41 

Fliigge .01 .10 3.75 5.83 5.43 5.41 
Reissner-Naghdi-Berry 3 .01 .10 3.75 5.83 5.43 5.41 

- 

I- , Sanders .01 .10 3.75 5.82 5.43 5.41 . - 
Vlasov .01 .10 3.75 5.82 5.43 5.41 . ! 
Epstein-Kennard .01 .10 3.75 5.82 5.43 5.41 c 

. - 
Houghton-Johns .01 .10 3.75 5.83 5.43 5.41 - - 

3.75 5.43 Kennard Simplified . O 1  .10 5.82 5.41 I _ -  
.01 .10 3.73 5.83 5.43 5.41 Membrane 

- 
1 

Donnell-Mushtari .01 .14 2.85 3.23 3.09 3.08 = - 
m! 

Love-Timoshenko .01 .14 2.85 3.23 3.09 3.08 -. I 
Goldenveizer-Novozhilov .01 .14 2.85 3.23 3.09 3.08 - - 
Biezeno-Grammel .01 .14 2.85 3.23 3.09 3.08 - ,  i 
Fliigge .01 .14 2.85 3.23 3.09 3.08 
Reissner-Naghdi-Berry 4 .01 .14 2.85 3.23 3.09 3.08 

I -.I 

Sanders .01 .14 2.85 3.23 3.09 3.08 - - 
s 

Vlasov . O 1  .14 2.85 3.23 3.09 3.08 #-- . 
Epstein-Kennard .01 .14 2.85 3.23 3.09 3.08 , .  - - 1. 

I , -  

2.85 3.09 Houghton-Johns .01 .13 3.23 

i- Kennard Simplified .01 .14 2.85 3.23 3.09 

fy - - 
, - .  4 Membrane .01 .14 2.77 3.23 3.09 

I - .. . 
1'; . 
1 - _  
'I . - - 
I - 
- 

8 - - - 
., ' A-- 

z m- -._ 
1 
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Neglecting tangential inertia also allows some 
simplification of the equations of motion (ref. 
2.125) and permits uncoupling of them. Con- 
sidering, for example, the Donnell-Mushtari 
equations (2.1) and (2.7)) if the inertia terms 
are dropped from the first two of the three 
detailed scalar equations, it is easily found that 
the resulting equations can be manipulated to 
give 

and two other fourth order equations in terms of 
u and w, and v and w containing the tangential 
displacements which are 

This uncoupling permits the calculation of the 
eigenvalues directing from the single equation 
(2.44), whereas amplitude ratios are obtained LENGTH TO RADIUS RATIO 210 

by substituting the resulting solutions for w into 
FIGURE 2.34.-Effect of tangential inertia terms on 

axisymmetric (n = O )  mode. (After ref. 2.35) equations (2.45). Further, whereas the type of 
uncoupling shown above in equations (2.44) and 
(2.45) can be accomplished for each of the theo- 
ries when tangential inertia is neglected, the 
Donnell-Mushtari equations can also be uncou- 
pled without neglecting tangential inertia. The 
resulting Donnell-type equations, which are more 
complicated than equations (2.44) and (2.45) are 
given by Yu (ref. 2.32). 

2.3.5 Further Simplifications 

Another type of simplification in the shell 
equations can be made when the circumferential 
wave length is small relative to the axial wave 
lengthp?.e., 

X2<<n2 (2.46) 

This simplification was proposed by Yu (ref. 
2.32) and seems particularly reasonable for a 
Donnell-RJushtari (or shallow shell) type of the- 
ory because, as seen earlier in this chapter, the 

O Donnell-Mushtari theory is less applicable for 
LENGTH TO RADIUS RATIO 1 / k  small n. Thus, as in reference 2.32, under the 

FIGURE 2.35.-Effect upon n of neglecting tangential assumption of equation (2.46) the Donnell- 
inertia. (After ref. 2.35) Mushtari coefficients of the characteristic equa- 
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tion '(2.35) simplify from those of equations 
(2.36) to give 

The modifying constants for equation (2.35) 
given in 
similarly 
equation 
constants 

FIGURE 2.36.-Percent error in frequency parameter by 
neglecting tangential inertia and assuming V<<n2 in 
the Flugge theory; Rlh = 100. (After ref. 2.50) 

table 2.4 for other shell theories can 
be simplified by the assumption of 
(2.46). For example, the modifying 
for the Fliigge characteristic equation 

become (ref. 2.32) 

AKz=O 1 

No extensive calculations are available in the 
literature which show the effect of Yu's simplifi- 
cation on the results obtained, although some dis- 
cussion of loss of accuracy is given in references 
2.32 and 2.48. Armenakas (ref. 2.50) examined 
the effect of the Yu simplification when tangen- 
tial inertia was also neglected. He showed that 
for this extensive simplification the frequency 
parameter reduces to 

for both the Flugge and Donnell-Mushtari the- 
ories. This formula was also obtained by Reissner 
(ref. 2.125) by making the same assumptions in 
shallow shell theory. In figures 2.36 and 2.37 
(from ref. 2.50) the percent change in D resulting 
from neglecting tangential inertia alone (in the 
Fliigge theory) and from Yu's simplification in 
addition (i.e., using eq. (2.49)) is shown for 
R/h = 100 and 10, respectively. 

Another simplification of equation (2.35) can 
be made when it is known that one of the three 
roots is much smaller than the others (cf., refs. 
2.33, 2.62 and 2.69)) as in the case of large values 
of R/h and l/mR (however, often the lowest two 
roots are of the same order of magnitude, despite 

FIGURE 2.37.-Percent error in frequency parameter by 
neglecting tangential inertia and assuming X2<<n2 in 
the Flugge theory; Rlh = 10. (After ref. 2.50) 

frequent statements to the contrary which ap- 
pear in the literature). In  such cases the cubic 
and second degree terms in Q2 can be dropped 
from equation (2.35), leaving a linear equation 
for the fundamental frequency. The frequency 
parameter thus obtained is given by 

Q 2 =  - Ko+k AKo (2.50) 
Ki+k AKi 

where KO and Kl  are as given previously in equa- 
tions (2.36) and AKo and AK1 as given in table 
2.4. The single frequency thus obtained is not the 
same, however, as that when tangential inertia 
is ignored. 

In reference 2.50 the errors introduced by 
using either equation (2.49) or equation (2.50) 
(for the Flugge theory) are compared. 
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Intermediate accuracy can be obtained by 
dropping only the cubic term in Q2 in equation 
(2.35) and solving the resultant quadratic equa- 
tion in Q2. In  reference 2.50 the errors introduced 
by using the linearized form (eq. (2.50)) and the 
quadratic forms of simplification of equation 
(2.35) were analyzed. The results are shown in 
table 2.20. 

Another approximate formula arising from a 
modification of the quadratic equation in Q2 (cf., 
refs. 2.4,2.126, and 2.127) for small values of Q2 is 

for the Donnell-Mushtari theory. For other 
theories, of course, KO, K1, and Kz in equation 
(2.51) are replaced by Ko+AKo, Kl+AKl, and 
K2+AK2. One obtains this formula from a 
quadratic equation of the form 

by substituting the linear solution Q2=Ko/K1 
for Q4 and then solving the resulting linear equa- 
tion in Q2. 

It has been seen above that the number of 
"simplifications" and "approximations" which 
can be made to simplify the procedure of com- 
puting frequency parameters is large and tends 
to cause confusion. To help clarify the picture, 
these simplifications will be summarized below. 
Beginning with a single shell theory, as defined 
by a set of equations of motion (i.e., eqs. (2.3)) 
(2.5)) (2.7) and (2.9)) the following types of 
simplifying assumptions have been encountered 
in various places in this section and in preceding 
sections of this chapter: 

(1) Neglecting k: with respect to unity in 
equations of motion. 

TABLE 2.20.-Percent Error in Frequency Parameter by Using Linearized and Quadratic 
Ximpli$cations of Eq. (2.23); Flugge Theory 

I I 
mR/l 

Frequency 1 equation 1 
0.01 10.03 10.05 1 0.1 10.20 10.30 1 0.50 10.60 ( 0.8 1 1.0 1 2.0 1 5.0 1 10.0 

h/R = 0.001 

Linear -Less than 1%- -1.6 -7.0 -12.2 -13.1 -12.4 -10.4 -3.9 I I I I I I I 1 1 . 0 1  l . O  

Quadratic -Less than 1 %- 1 +I. 41 +l .?I +I. 31 Less than 1 % 

Linear -Less than 1%- -2.0 -2.7 -3.6 -4.5 -5.1 -3.1 -1.0 -1.0 

Quadratic 

I I I I I I I I  
4 Less than 1 % b 

Linear Lessthanl%-1 -1.01 -1.01 -1.61 -2.21 Lessthanl% 

Quadratic 4 Negligible b 

Linear -Less than 1%+ -3.3 -7.0 -12.2 -13.0 -12.4 -10.4 -3.9 -1.1 
1 I I I I I I I I I  

Quadratic -Lessthanl%-1+1.41+1.71+1.3) L ~ s s t h a n l %  

Linear -Less than 1%- -1.0 -2.8 -3.6 -4.8 -5.2 -3.2 -1.1 
2 

Quadratic 

I I l l l I I I  
4 Less than 1 % P 

Linear 4 Less than 1%- -1.0 -1.7 -2.2 -2.3 -1.0 
3 

Quadratic 

I I I I I I  
4 Negligible b 
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*. - 
i .  (2) Neglecting tangential inertia in equations providing the shell is not exceptionally short. 
I of motion. Results for natural frequencies of a thin shell 

I (3) Neglecting terms containing k2 and k3 in according to the three beam theories used in 
characteristic equation. reference 2.128 are given in figure 2.38. Kornecki 

(4) Neglecting k with respect to unity in char- (ref. 2.129) showed that the "beam-likpJJ (n= 1) 
acteristic equation. modes of long (l/R>>l), circular cylindrical 

(5) Neglecting Q6 and Q4 terms in character- shells can be represented by the elementary 
beam theory, including rotary inertia, but neglect- istic equation (linearization). 

(6) Neglecting Q6 terms in characteristic ing shear deformation. 
equation. 

(7) Modified quadratic form of characteristic 2.4 OTHER SIMPLE EDGE CONDITIONS 
equation, Q2 = (Ko/KI) + (Ko/KI)~(K~/KI). 

(8) Yu's assumption, X2<<n2. We now turn to the remaining 135 cases of 
closed circular cylindrical shells of finite length 

Most of these assumptions are capable of caus- having "simpleJJ boundary conditions of the type 
ing very large changes in the calculated values given in section 1.8 at  each end. By assuming 
of Q over some ranges of the shell parameters. solution functions which are generalizations of 

Finally, an interesting simplification of an equations (2.20) it is possible to obtain exact 
I altogether different type was suggested by solutions for the frequencies and mode shapes of 

Simmonds (ref. 2.128) to account for the "beam- free vibration for each of the 135 cases, although 
likeJJ (n= 1) vibrations of thin shells and was the amount of computational work required is p demonstrated for the case of shear diaphragm relatively great. The procedure which will be 

I end supports. The shell was represented in turn followed was suggested by Fliigge (ref. 2.31) in 
by a set of Timoshenko beam equations (i.e., 1934, although he did not solve any specific 

I 

4 including shear deformation), a set of modified problem using it. Subsequently, several other 
Euler-Bernoulli beam equations, and a set of researchers (cf., refs. 2.17, 2.32, 2.34, 2.35, 2.40, *#.- modified Timoshenko equations derived so as 2.72,2.73,2.78) have carried the method through 
to include Poisson ratio and normal pressure to its fruition. 

. effects in the computation of overall stress-dis- Suppose that the Donnell-Mushtari thin shell 
placement relations for the beam. A cubic fre- theory is to be used. The equations of motion 
quency equation in Q3 which is identical to that are then determined by the matrix operator 
of membrane shell theory (see sec. 2.3.1) evolved (eq. (2.7)). Periodic behavior with respect to 
from the modified Timoshenko equations. Of time and the circumferential angle B is preserved 
course, as seen in section 2.3.2, membrane theory in the solution functions for u, v, and w, but the 
is very accurate to describe the beam-like mode periodic variation with respect to s in equations 

(2.20) is generalized to an exponential one; i.e., 

u = AeA8 cos nnB cos wt 

v = Be" sin n0 cos ot 

w = CeA8 cos nB cos wt 

where s = x / R ;  A, B, C, and X are undetermined 

ferential waves; and w is the frequency, all as 
before. Substituting equations (2.53) into the 

1 2 3 4 5 6 7 0 9 1 0  equations of motion (eq. 2.3) leads to the same 
RIR set of equations given in matrix form by equa- 

~ G U R E  2.38.-Frequency parameters of an SD-SD shell tion (2.21) except that X2 is replaced by -A2 in 
as predicted by various beam theories. (After ref. the diagonal elements, and is replaced by 
2.128) in the first column of the coefficient matrix. 
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For a nontrivial solution, the determinant of the 
coefficient matrix is set equal to zero, which 
yields an algebraic equation of the fourth degree 
in X 2 :  

where (ref. 2.40) 

and Q2 is the nondimensional frequency param- 
eter given by equation (2.26). 

The characteristic equation (2.54) is also ob- 
tainable from equation (2.35) by substituting 
-A2 for X 2  (in this case, of course, X is not given 
by eq. (2.34)) into the terms of equations (2.36) 
and collecting terms having like powers of X 2  in- 
stead of w2. In this manner characteristic equa- 
tions corresponding to equation (2.35) can be 
obtained for the other shell theories by substi- 
tuting -A2 for h2 in table 2.4. 

For the usual range of parameters and n l l ,  
the roots of equation (2.54) were found by Hu 
and Wah (ref. 2.40) to have the form 

where X I ,  X 2 ,  X 3 ,  and A4 are real, positive num- 
bers. Similar roots were found by Forsberg (ref. 
2.72) for the more complicated characteristic 
equation arising from the Flugge theory. For a 
finite shell there will always be a t  least two roots 
of the form f i X 2 .  For each root the ratios A/C 
and B/C can be found by returning to the origi- 
nal matrix equation in A, B, and C. The general 
solutions for u, v, and w are then expressible in 
terms of eight independent, real constants A1, 
A2, Aa, . . . , Ag as follows (ref. 2.40) : 

u = { A  lqleX18 - Az~le -~1~-  A372 sin X2s 
+A472 cos X ~ s + A ~ e ~ a ~ ( ~ ~  cos k4s 
-774 sin X ~ S )  + A6eXa8(q4 cos h4s 
+ r 3  sin X ~ S )  - A7e-X88(73 cos 
4 - 7 4  sin X4s) + A8e-AaS(1)4 cos X ~ S  

- 7 3  sin X ~ S ]  cos no cos at 

v = { Albex18+ A2Ele-h8+ A3~2 cos X Z S  + A4E2 sin Xzs+ A5eXa8(E3 cos X I S  
- E4 sin X4s) + A6exa8([i cos X4s + E3 sin X4s) + A7e-has([3 cos h4s + E4 sin X4s) - A8ecXss(E4 cos X4s 
- E3 sin X4s) } sin ne cos wt 

w = ( AleXi8+ A2e-X~8+ A3 cos X2s 
+ A4 sin X2s+ A6eb8 cos X4s 
+ A6eXa8 sin X4s+ A7e-A3S cos X4s 
+A8e-Xa8 sin X4sJ cos ne cos wt 

where 

with 
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Note that the procedure followed above is the 
same as would be used to determine the deflected 
mode shapes of statically loaded circular cylindri- 
cal shells having arbitrary end conditions. The 
corresponding characteristic equation is obtained 
in this case simply by setting Q = 0 in equation 
(2.35), with KO and AKo defined as before by 
equations (2.36) and table 2.4. However, for the 
static problem it is found that all of the roots of h 
are complex (ref. 2.131, p. 228), in contrast with 
those (eqs. (2.56)) of the free vibration problem. 

To complete the solution of the free vibration 
problem, four boundary conditions must next 
be applied a t  each end of the shell, s=O and 
s = l/R. Because the boundary conditions must 
be satisfied for all values of 0 and t allowed to 
vary independently this yields a set of eight 
homogeneous, simultaneous, linear, algebraic 
equations in terms of the eight unknown con- 
stants A1, . . . , As. For a nontrivial solution 
the determinant of the coefficient matrix of these 
equations is set equal to zero, which yields the 
frequency parameters Q2. These are the roots of 
the characteristic determinant for each particular 
value of n. If the boundary conditions at  the two 
ends are identical, the eighth order determinant 
can be replaced by two determinants of the 
fourth order by taking the origin of the x coor- 
dinate at the middle section of the cylinder and 
considering separately modes which are sym- 
metric and antisymmetric with respect to the 
middle section. 

Another procedure for the numerical evalua- 
tion of the frequency determinant was suggested 
by FEiigge (ref. 2.131). Briefly, the procedure 
consists of selecting the circumferential wave 
number n and the frequency parameter Q in 
advance and finding the proper length of the 

-. -she11 to give the chosen frequency. 
Vronay and Smith (ref. 2.80) discussed a 

method of applying exact solutions whereby the 
arbitrary constants are not redefined as real con- 
stants, but are left complex, thereby eliminating 
the need to monitor the form of the roots of the 
characteristic equation (2.54) during its solution. 

Yu (ref. 2.32) showed that the characteristic 
equation (2.54) is considerably simplified if one 
can assume 

Ih21<<n2 (2.60) 

This assumption restricts one to longitudi- 
nal wave lengths which are large in comparison 

to the circumferential wave lengths. The 
characteristic equation then simplifies to 

having four roots of the type 

where K is a real number. The ratios A/C and 
B/C in equation (2.53) are thtn 

Reismann (ref. 2.75) showed that the modes 
of vibration of circular cylindrical shells of finite ' 

length, for any of the 136 possible sets of simple 
boundary conditions, are related by the orthog- 
onality condition 

L (u inu jn+  VinVjn+ WbWjn) dx = 0 (2.64) 

provided that Qin#Qjn, where i, j identify sep- 
arate modes for a given value of n and U, V, W 
are the mode shapes such that 

u(x,e,t) = Un(x) cos no cos ~t 

v(x ,B , t )=Vn(x ) s inn~cos~ t  

w(x,e,t) = Wn(x) cos no cos wt  

Gontkevich (refs. 2.126 and 2.127) used the 
Rayleigh-Ritz method with beam functions (see 
sec. 2.4.1 for discussion of this solution method) 
to obtain characteristic equations for the six 
problems having clamped, shear diaphragm, or 
free end conditions at  either or both ends of a 
circular cylindrical shell. The mode shapes used 
are 

u = AmXmJ(x) cos n0 cos o t  

v = B,X,(x) sin n0 cos wt (2.66) 

w = CmXm(x) cos ne cos wt  

where A,, B,, C m  are amplitude coefficients; 
primes are used to indicate differentiation with 
respect to the independent variable x; and 
X,(x) is a beam function which is the mth eigen- 
function of free vibration of a beam having the 



- - 

desired boundary conditions. After employing the Rayleigh-Ritz procedure, a cubic characteristic' - 
equation in Q2 was obtained as follows: 

0 6 -  K2Q4+K1Q2- Ko=O 

where 

where' k = h2/12R2, as before, and where 

and the values of em, 6,) y, are listed in table 
2.21 (ref. 2.127) for the six types of boundary 
conditions. 

Ivanyuta and Finkelshteyn (ref. 2.110) used 
the Donnell-AIushtari shell equations and the 
Bubnov-Galerkin approximate procedure with 
beam functions to arrive at the following general 
formula for frequency parameters for the axi- 
symmetric modes of shells having arbitrary 
boundary conditions : 

where im=#m(~), Xm = Xm(x) are beam functions 
separately chosen so that 

satisfyall of the boundary conditions at  the ends. 
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TABLE 2.21.-Constants for the Characteristic Equation (1.67) 

SD- Clamped- Clamped- Free- m Item SD 
Clamped- 

clamped free free SD 
--- 

0 - - 1.321886 - - 
1 1.0 0.549880 1.471208 2.211601 0.723422 
2 1.0 .746684 1.252875 1.766169 .a56926 
3 1.0 .818051 1.181963 1.545592 .go2022 

1.0 .858553 1.141465 1.424419 .925136 
5 1.0 .a84249 1.115749 1.347244 .939525 

2 2 6 1 > 5 1.0 I-- 1 +- 1 -- 
l + 1  (..+$= ( m )  (m.3- (-+:)= 

0 0.244094 - 
1 - .603337 -0.549879 
2 - .744024 - .744024 
3 - .818169 - .818051 

Ym -6m - 6, 
- .858524 - .a58533 - 6, 

5 - .869100 - .a84249 
2 2 

>5 -I+- -I+- 

( +  (..+$. 
--- 

0 - - 1.875104 - 
1 n- 4.73004 4.69409 4.73004 3.92660 
2 27r 7.853204 7.854757 7.853204 7.06858 
3 3~ 10.995608 10.995541 10.995608 10.2102 
4 em 4 r  14.137166 14.137168 14.137166 13.3518 
5 5s 17.27876 17.27880 17.27876 16.4934 

m. (2m+lIr 
(2m +l) . (2m + 1) . (4m+l) 

2 2 2 4 
. 

SD- 
free 

The function p is an Airy stress function related 
to the stress resultants by 

I t  is clear that because of the independence of 
the beam function and X that this procedure 
allows for more general boundary conditions than 
using equations (2.66). 

2.4.1 Clamped-Clamped 

The boundary conditions for the circular cylin- 
drical shell which is completely clamped (the 
terms "fixed" or "fully fixed" are sometimes used 

in the literature) at  both ends are 

For this problem many authors have used the 
exact method for obtaining frequencies and mode 
shapes which was outlined in section 2.4 (cf., 
refs. 2.32, 2.33, 2.34, 2.35, 2.41, 2.44, 2.45, 2.72, 
2.73, and 2.132 through 2.136). However, partly 
because of the complexity of the exact procedure, 
even more have used the Rayleigh-Rita method 
or an equivalent (cf., refs. 2.4, 2.16, 2.33, 2.34, 
2.42, 2.49, 2.65, 2.78, 2.85, 2.103, 2.107, 2.110, 
2.114,2.126,2.127, and 2.137 through 2.140). The 
Ritz method depends upon selection of a set of 
trial functions and determination of the relative 
amplitudes of the trial functions by minimization 
of a suitable energy functional (refs. 2.141 and 
2.142). The trial functions need only satisfy the 
"essential" or L'geometric" boundary conditions 



(these dealing with generalized displacements) of 
the problem. The additional boundary conditions 
(sometimes called "naturalJ' or "generalized 
forceJ' boundary conditions) are then approached 
in the limit as long as the set of trial functions 
has sufficient completeness. The Rayleigh pro- 
cedure assumes a single trial function (or set 
of trial functions in u, v,  w in this case) and a 
frequency is found by substituting this trial 
function into Rayleigh's Quotient (ref. 2.24) in- 
volving the maximum potential and kinetic ener- 
gies of the system. One procedure equivalent to 
the Rayleigh-Rita method for this problem uses 
Lagrange's equations and the assumed displace- 
ment components to obtain a characteristic 
determinant for the frequencies. Another equiv- 
alent procedure in this case for a given set of 
trial functions is that of Bubnov-Galerkin (cf., 
refs. 2.143, 2.144, 2.145, 2.146, and 2.196). All 
these procedures give upper bounds on the fre- 
quency parameters. Beam functions (see discus- 
sion later in this section) are usually used with 
the Rayleigh-Ritz methods. 

The series method was used in reference 2.147; 
the Southwell method, giving lower bounds on 
frequency parameters, in reference 2.148; Bolo- 
tin's (ref. 2.149) "dynamic edge effect" method in 
reference 2.150; the method of "parallel springs" 
in reference 2.111; finite differences in references 
2.35 and 2.151; and finite elements in reference 
2.132. Experimental results were reported in 
references 2.4, 2.33, 2.34, 2.44, 2.45, 2.85, 2.103, 
2.107,2.117,2.137, 2.139,2.140, 2.152, and 2.153. 
The vibration of a clamped-clamped circular 
cylindrical shell was also discussed in references 
2.68, 2.154, 2.155, and 2.156. 

Warburton (ref. 2.78) used the exact proce- 
dure and gave the characteristic equations for 
symmetric modes which arises from applying the 
boundary conditions (for the Fliigge theory) : 

bl  (tanh 83 cos2 84+coth O3 sin2 e4) cos 
+b2 (tanh O3 tanh 81 
-coth O3 coth 81) sin e4 cos O4 cos e2 
+b3 tanh 81 cos 8~ 
+b4 (coth 83-tanh 03) sin 84 cos e4 sin O2 
+b5 sin 8~ 
+be (tanh 83 sin2 84+coth 83 cos2 84) tanh 81 sin B2 
+b7 (coth 83 - tanh 03) tanh elsin 84 cos 84 cos O2 
= O  (2.75) 

OF SHELLS 

where 

and the X i  are the roots identified in equation 
(2.66). The corresponding equation for the anti- 
symmetric modes is obtained from equation (2.75) 
by making the following interchanges: 

tanh 81dcoth 81 

sin 82- - cos 82 

cos Bz+sin 82 

tanh B3*coth O3 

The coefficients bi which appear in equation 
(2.75) are given by 

with the constants ki related to the amplitude 
ratios by 

kl = B/C, with A, = XI 

k2 = A/C, with A, = XI 1 
k3 = B/C, with A, = A2 

(2.78) 
k4= A/C, with X,=Xz 

k6+ik6=B/C, With hT=X3+iX4 

k7+iks = A/C, with X r = X 3 + i X 4  

and, for v = 0.3, 
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Approximate solutions (to provide initial values 
for iterative solutions) can be found by setting 
the hyperbolic functions in equations (2.75) 
equal to unity, giving 

for symmetric modes. Similarly, for antisym- 
metric modes 

Successive roots taken alternatively from equa- 
tions (2.80) and (2.81) have increments O2 of 
n/2. The solutions of equations (2.75) and (2.76) 
depend only slightly upon the 81 and 83 terms. 

Forsberg (ref. 2.35) used the exact procedure 
and obtained results using the Fliigge and 
Donnell-Mushtari theories, with and without 
tangential inertia. It was found that for the 
axisymmetric (n = 0) mode the frequencies are 
essentially the sam6"as for the S D S D  boundary 
conditions (see sec: 2.3) when the tangential 
inertia is considered, and that the frequency 
differs slightly when it is neglected, as shown 
in figure 2.34. For the beam-type (n= 1) modes, 
however, there is considerable difference be- 
tween the results obtained from the two types 
of boundary conditions, as shown in figure 2.39. 
It is clear from figure 2.39 that the frequency 
increase for clamped ends is almost entirely due 
to the added stiffness resulting from restraining 
the axial displacement u at the ends, rather than 
from restraining the end rotations aw/dx. For 
large values of 1/R the effect of end fixity dis- 
appears in this mode. The effects of neglecting 
tangential inertia in the two theories for the 
clamped boundaries is seen in figure 2.40. En- 
velopes of lowest frequencies according to the 
Fliigge and Donnell-Rtushtari theories, with and 
without tangential inertia, for all n are shown 

LENGTH TO RADIUS RATIO d/R 

FIGURE 2.39.-Effects of SD-SD and clamped-clamped 
ends upon the frequency parameter; beam bending 
mode (n < 1). (After ref. 2.35) 

DONNELL EQ 
0.002 (RADIAL INERTIA ONLY) 

0.001 
0.5 1.0 2 5 10 2 0  5 0  100 

LENGTH TO RADIUS RATIO J / R  

FIGURE 2.40.-Effects of neglecting tangential inertia on 
the frequency parameter for clamped-clamped circular 
cylindrical shells; beam bending mode (n = 1). (After 
ref. 2.35) 
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in figure 2.41. As for the SD-SD supports, in- 
creasing the number of longitudinal half-waves 
m always increases the associated vibration fre- 
quency, as shown in figure 2.42 for n=2, 
R/h = 100. 

Forsberg (ref. 2.72) made some further com- 
parisons between the circular cylindrical shell 
having both ends fixed and one having shear 
diaphragm supports a t  both ends (see sec. 2.3). 
Exact solutions according to the Fliigge theory 
were used in both cases. These comparisons are 
shown in figures 2.43, 2.44, and 2.45. I n  each 
case as the number of axial half-waves m is 
increased the frequency becomes less depen- 
dent upon the type of boundary conditions. 
This statement is, of course, qualitatively ex- 
tendable to changing the shell length rather 
than m. However, for m = l ,  figure 2.43 shows 
that the clamped-clamped frequency is almost 
100 percent higher than the SD-SD frequency 
in the range 5 < l/R < 15. I n  this range the differ- 
ence in minimum frequencies is about 50 percent. 

An interesting three-dimensional plot showing 
the variation of the frequency parameter as a 
function of the parameters n and l/R is depicted 
in figure 2.46 (ref. 2.72) for R/h = 100, v = 0.3, 
and m= 1. Two surfaces are shown on the same 
figure-one for the clamped-clamped shell, the 
other for the SD-SD shell. The difference be- 
tween the surfaces, for Z/R < 1, is primarily due 
to the effect of moment restraint; for l /R>l ,  
the difference is primarily due to the effect of 
axial restraint. The curves for m= 1 givbn pre- 
viously in figures 2.43 through 2.45 are cross 
sections of figure 2.46. Although figure 2.46 is 
only for one longitudinal half-wave m= 1, for 
l/R = 1 there are nine values of n which have 
frequencies less than the minimum value for 
m=2, and for Z/R= 10 there are three values, 
as can be seen in figure 2.44. 

Yu (ref. 2.32) showed that a considerable sim- 
plification of the procedure for finding the eigen- 
values results if one uses the Donne11 equations 
and the assumption that the number of circum- 
ferential waves is large relative to the number 
of axial waves (in particular, if I ~ l ~ < < n ~ ) .  I n  this 
case the characteristic equation determining the 
frequency parameter fl for clamped-clamped cir- 
cular cylindrical shells reduces to 

cos E cosh e-1=0 

FIGURE 2.41.-Effects of lowest frequencies for clamped- 
clamped circular cylindrical shells (n=number of cir- 
cumferential waves). (After ref. 2.35) 

-----. DONNELL THEORY 

0.002 LTANG.IWERTIA N E W  
I I 

LENGTH TO RADIUS RATIO 1 / R  

FIGURE 2.42.-Variation of frequency parameter with 
number of longitudinal half-waves (m); clamped- 
clamped circular cylindrical shell. (After ref. 2.35) 
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FIGURE 2.43.-Comparison of frequency parameters be- 
tween shells having clamped and shear diaphragm 
supports a t  both ends; n =2, m 2 l .  (After ref. 2.72) 

NUMBER OF CIRCUMFERENTIAL WAVES.n 

0 2 4  6 8 1 0 1 2 1 4  
NUMBER OF CIRCUMFERENTIAL WAVES n 

FIGURE 2.45.-Comparison of frequency parameters be- 
tween shells having clamped and shear diaphragm 
supports a t  both ends, l / R  =loo; m 2 l .  (After ref. 
2.72) 

THESE SURFACES ARE BASED ON --- - 
THE FOLLOWING PARAMETERS: CLAMPED-CLAJdPED SUPPORTS 

R/h=IW, v=0.3. m=I 
3 - S.0.-S.D. SUPPORTS 

FIGURE 2.44.-Comparison of frequency parameters be- F1~~~~2.46.-Frequeneypararnetersurfacesforclamped- 
tween shells having clamped and shear diaphragm clamped and SD-SD shells; R/h = 100, v = 0.3, m = 1. 
supports at  both ends; l / R  = 1, 10; m 2  1. (After ref. (After ref. 2.72) 
2.72) 
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where 

and where A is related to the frequency param- 
eter by 

(Yu actually gave 2kn4$ for the term kn4 in eq. 
(2.84), but it was corrected by Koval (ref. 2.33), 
and the correct form can also be seen from eq. 
(2.36) by neglecting A2 with respect to n2.) Equa- 
tion (2.82) is recognized to take the same form as 
the characteristic equation of free vibration for 
a clamped-clamped beam. Successive roots of 
equation (2.52) are 

Substituting these roots into equation (2.84) per- 
mits solution for the corresponding 52. The mode 
shapes are given by 

cosh e - cos e 

[(sinh e - sin E )  (cosh AS - cos AS) 
- (cosh e - cos e) (sinh As -sin As)] I 

cos no cos ot \ (2.86) 

Koval and Cranch (refs. 2.33 and 2.34) used 
equation (2.84) to obtain frequencies of clamped, 
steel shells and compared results with experi- 
ment. Calculations were further simplified by 
neglecting the terms containing Q6 and Q4 in 
equation (2.84) (see the relevant discussion in 
sec. 2.3.5). The resulting frequency formula is 

Numerical results are shown in table 2.22 for 
steel shells 6 in. in diameter, 12 in. long, and 
0.010 in. thick. Theoretical results were calcu- 
lated from equation (2.87). In table 2.22 the 

parameter IA/nI2 is also given, which was as- 
sumed to be much less than unity in the theory 
used. The percent difference between the theo- 
retical and experimental frequencies increases as 
I A/n[ increases. 

Nodal patterns were determined experimen- 
tally by sprinkling a mixture of tiny polyvinyl- 
chloride (PVC) pellets and magnesium stearate 
(in a fine powder form) in a ratio of 10 parts PVC 
to one part magnesium stearate. The stearate 
coated the PVC pellets so that they tended to 
stick to a curved surface and gather at  the nodes. 
I n  this way it was possible to count the number 
of axial and circumferential waves over the top 
180 degrees of the cylinder. One of the nodal pat- 
terns obtained with this technique is shown in 
figure 2.47. Nodal lines over the bottom half of 
the cylinder were detected either by use of a 
medical stethoscope or by lightly running a 
finger over the shell surface. 

In reference 2.33 a comparison was also made 
between the Donnell equations and the Morley 
(ref. 2.14) modification of the Donnell equations. 
When tangential inertia is neglected and Yu's 
assumption (see sec. 2.3.5) is made the Donnell 
frequency formula becomes 

whereas Morley's modification gives 

FIGURE 2.47.-Experimentally observed nodal pattern 
for a clamped-damped circuhr cylindrical shell; m -5, 
n = 11. (After refs. 2.33 snd 2.34) 



TABLE 2.22.-Experimental and Theoretical Frequencies (cps) for a Steel Shell; Z/R = 4, R/h = 300, h = 0.010 in. 

Number of 
axial 

half-waves, 
m 

Experiment 
Equation (2.87) 
Equation (2.88) 
Equation (2.89) 
Equation (2.90) 
Equation (2.98) 

IX/nI2 

I 

I Source 

Experiment 
Equation (2.87) 
Equation (2.88) 
Equation (2.89) 
Equation (2.90) 
Equation (2.98) 

IX/nlZ 

Number of circumferential waves, n 

3 4 5 6 7 8 9 10 11 12 13 14 

Experiment 
Equation (2.87) 
Equation (2.88) 
Equation (2.89) 
Equation (2.90) 
Equation (2.98) 

IX /n I2  

Experiment 
Equation (2.87) 
Equation (2.88) 
Equation (2.89) 
Equation (2.90) 
Equation (2.98) 

IX/nlZ 

Experiment 
Equation (2.87) 
Equation (2.88) 
Equation (2.89) 
Equation (2.90) 
Equation (2.98) 

IX/nl2 

Experimental data obtained from the average of two values. 
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It is clear that if YuJs assumption (X2<<n2) is 
made, then equation (2.88) results. He used this 
formula to compare frequencies with the exper- 
imental results of Koval and Cranch. These 
numerical results are also included in table 2.22. 

Consider now approximate solutions of the 
clamped-clamped circular cylindrical shell prob- 
lem by use of the Rayleigh-Ritz technique or 
equivalent methods. Displacement functions of 
the following form may be assumed: 

u = 2 A,X; (x) cos no cos wt ) 
m I 

w = ~c,x,(x) cos n8 cos wt 
m J 

where A,, B,, C, are amplitude coefficients, 
primes are used to indicate differentiation, and 
X,(x) is a clamped-clamped "beam function"; 
i.e., it represents the mth mode shape of free 
vibration of a clamped-clamped beam according 
to the classical Euler-Bernoulli theory. Obvi- 
ously, equations (2.91) will satisfy the boundary 
condition equations (2.74) exactly. 

Beam functions are widely used also in the 
solution of plate vibration problems (ref. 2.157). 
The clamped-clamped beak function is 

and 

with values of X determined by equations (2.83) with s = x/R and A,= Re,/.! as before, em are the 
and (2.85). The differences between results pre- roots of the equation 
dicted by these theories can be seen in table 2.22. 
It is seen that the frequencies differ little from cosh em cos ern = 1 

each other. However, when compared with the 
results from equation (2.87) in table 2.22, one C O S ~  E ~ - C O S  em 
observes that neglecting tangential inertia for am = 

sinh 6,- sin r, 
(2.94) 

the clamped-clamped shell (as was seen for the 
S D S D  case in sec. 2.3.4) can cause considerable Accurate values of and am are given in table 
difference, particularly for small n. 2.23. A comparison of the clamped-clamped mode 

Weingarten (refs. 2.64 and 2.197) also used the shape with that of the SD-SD case can be seen 
Donnell equations and neglected tangential iner- in figure 2.48 for m = 1. 
tia to obtain the following frequency formula: Two of the advantages of the beam functions 

(1 - 2)x4 have already been suggested above: (1) the 
Q2= k(X2+n2)2+ 

(X2+n2)2 
(2.90) equation of motion and (2) the boundary con- 

TABLE 2.23.-Eigenjunclion Parameters for a 
Clamped-Clamped Beam 

X,(X) = C O S ~  X,S-cos X,S FIGURE 2.48.-Comparison of mode shapes between 
shells having clamped and shear diaphragm supports 

- am(sinh Xms- sin X,s) (2.92) at x =0, I .  (After ref. 2.78) 
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ditions of the beam are exactly satisfied. Be- 
cause the behavior of a longitudinal strip of shell 
between its ends is similar to  that of a beam, 
quite often the beam functions can adequately 
represent the shell displacements by single terms 
of equations (2.91), rather than requiring a series 
of terms. There is one contradiction in using the 
clamped-clamped beam functions as in equations 
(2.91) to represent the shell boundary conditions, 
namely, not only is v = 0, but also N,e = 0. Another 
advantage of the beam functions is the orthogo- 
nality of the integrals of their products and of 
products of certain of their derivatives over the 
interval of interest (0 2 s  1 1). Those integrals 
which do not vanish due to the orthogonality 
of the beam functions have been tabulated in a, 
number of places (cf., refs. 2.127, 2.139, 2.158, 
2.159, and 2.160). 

Arnold and Warburton (ref. 2.4), using their 
theory (see sec. 2.1.1) and only a single term of 
each summation in equation (2.91) arrived a t  the 
following frequency equation for the clamped- 
clamped shell: 

where 

and where 

1 + (- 1) m + l ~ m 2  
ll = 

1 
2 - (2.97) 

1 + (- ~ ) ~ + l ( ~  sin em - a.2 >-" 
and v, k, n, Q, A, e, and a are as used consistently 
elsewhere in this chapter. 

The corresponding characteristic equation 
(2.95) for the Donne11 theory using the clamped- 
clamped beam functions was shown by Kraus 
(ref. 2.138) to be determined by thz coefficients 

with [I, l z ,  and X given in equations (2.97) as 
before. Equations (2.96) and (2.98) should agree 
with each other for terms not multiplied by k. 
However, the first term in KO for one has 
1-v2122, whereas the other has 1 -v lZ2 .  Un- 
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Notes: 
(1) e =Percent error in Rayleigh-Ritz frequency. 
(2) (R =Ratio of frequency of SD-SD shell to clamped-clamped shell. 

TABLE 2.24.-Length Ratios ( l /R)  of Clamped-Clamped Shells for a Given Q2 

Equation (2.75) 

8 X 10-6 

1 x10-~ 

4 x lo-' 

0.003 

0.03 

0.15 

0.0018 

0.0021 

0.003 

0.01 

0.04 

0.17 

and Some 

Item 

1/R 
e 
(R 

l / R  
e 
(R 

l / R  
e 
(R 

1/R 
e 
(R 

l / R  
e 
(R 

l / R  
e 
(R 

l / R  
e 
(R 

l / R  
e 
(R 

l / R  
e 
(R 

l / R  
e 
(R 

l / R  
e 
(R 

1/R 
e 
(R 

n 

4 

from 

R / h  

500 

100 

Comparisons; v = 0.3 

1 

20.5 
.45 
.953 

15.4 
.89 
.876 

8.20 
3.9 

.597 

4.49 
5.9 

.524 

2.10 
8.6 

.654 

1.03 
9.6 

.878 

15.9 
.06 
.994 

8.45 
.58 
.940 

5.87 
1 .8  

.835 

3.35 
4.4 

.654 

1.98 
5.1 

.673 

1.03 
5.4 

.843 

m 

3 

48.1 
.19 
.974 

35.9 
.52 
.932 

19.3 
1.9 

.800 

10.8 
3.5 

.784 

5.35 
6.5 

.866 

2.88 
6.7 

.963 

38.8 
.02 
.997 

20.1 
.31 
.969 

14.0 
1.1 

.916 

8.14 
3.5 

.846 

4.98 
5.9 

.881 

2.78 
5.7 

.959 

5 

75.7 
.13 
.982 

56.5 
.34 
.954 

30.4 
1.2 

.869 

17.1 
2.3 

.861 

8.62 
4.3 

.916 

4.73 
4.5 

.978 

61.6 
.01 
.998 

31.7 
.20 
.979 

22.1 
.71 
.944 

13.0 
2.4 

.901 

8.04 
4.0 

.926 

4.57 
3.8 

.975 



m 
n R/h OP Item 

1 3 5 
- 

l / R  13.2 36.8 60.4 
0.0445 e .04 .02 .01 

(R .999 1.000 1.000 
pp - 

l / R  9.41 25.5 41.6 
0.045 e .08 .04 .03 

(R .997 .999 .999 
-- - 

l / R  5.98 15.6 25.3 
0.047 e .25 .13 .08 

(R .988 .995 .997 
- 20 - 

l / R  3.24 8.25 13.3 
0.06 e 1.1 .80 .52 

(R .931 .970 .980 
- 

l / R  2.43 6.16 9.92 
0.08 e 1.6 1.6 1.1 

(R .876 .948 .967 

l / R  1.14 2.93 4.75 
0.3 e .91 2.5 1.7 

CR .788 .927 .955 
-- - - 

0.021591 l / R  68.4 204 340 
- - - 

0.021595 l / R  2.11 62.3 103 
- - -- 

500 0.02161 l / R  10.5 30.5 50.5 

0.02166 l / R  5.50 15.4 25.3 

0.02210 l / R  2.45 6.42 10.4 
16 

0.53977 l / R  48.7 146 243 

0.53986 l / R  19.8 59.3 98.7 

100 0.5402 l / R  10.0 29.8 49.5 

0.5415 l / R  5.07 15.0 24.9 

0.5505 l / R  2.10 6.06 10.0 

Notes: 
(1) e =Percent error in Rayleigh-Ritz frequency. 
(2) (R =Ratio of frequency of SD-SD shell to clamped-clamped shell. 
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fortunately, the writer has no knowledge of 
another reference source to adjudicate this 
disagreement. 

Numerical results for frequency parameters 
using equations (2.95) and (2.98) were also 
given in reference 2.138 for the shell used by 
Koval and Cranch (as discussed earlier). These 
results are presented for comparison in table 
2.22. Although all the theoretical results given 
in table 2.22 are based upon some form of the 
Donnell-Mushtari shell theory, they differ widely 
particularly for low values of n. 

Warburton (ref. 2.78) compared numerical 
results obtained by using the approximate 
method of reference 2.4 outlined above and the 
exact solution determined by the characteristic 
equation (2.75). These results are listed in table 
2.24 wherein selected values of the square of 
the frequency parameter Q are prescribed and 
the 1/R ratios corresponding to given values of 
m are determined (i.e., the numerical procedure 
suggested by Flugge (ref. 2.31)) from equation 
(2.75). The percentage by which the approxi- 
mate Rayleigh-Rite frequency exceeds the exact 
frequency is also listed in each instance. The 
ratio of the frequency of the S D S D  shell to 

LENGTH TO RADIUS RATIOQ/R 

FIGURE 2.49.-Comparison of frequency parameters b e  
tween the approximate Arnold-Warburton method and 
the exact method using the Fliigge theory. (After ref. 
2.35) 

that of the clamped-clamped shell is also given. 
Poisson's ratio is 0.3. Table 2.24 shows that the 
greatest error for the approximate method occurs 
for relatively thin (large R/h) and short (small 
l/R) shells.This implies a considerable difference 
between the behavior of a thin shell and a beam 
in the vicinity of the fixed edges. As the number 
of axial half-waves m increases, the edge effects 
become less important, the behavior for any 
support conditions approaches that of a SD-SD 
shell, and the Arnold-Warburton approximate 
method becomes better. Correspondingly, as m 
increases the importance of the hyperbolic func- 
tions in equation (2.92) decreases, and the be- 
havior is governed by the sinusoidal terms which 
correspond to SD-SD supports. The error also 
decreases with increasing n; for I/mR>10 and 
n= 16, e50.01 percent (ref. 2.78). 

The approximate solution of Arnold and 
Warburton (ref. 2.4) using beam functions was 
also compared with the exact solution fromlthe 
Flugge theory by Forsberg (ref. 2.35). The re- 
sults are shown in figures 2.49 and 2.50. Here 
too the differences are small, being maxima for 
small m, n, and Z/R. Unlike the Donne11 equa- 

LENGTH TO RADIUS RATIO A? /R 

FIGURE 2.50.-Comparison of frequency parameters be- 
tween the approximate Arnold-Warburton method and 
the exact method using the Fliigge theory; n = 2. (After 
ref. 2.35) 
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Sewall and Naumann (ref. 2.107) also used 
the Rayleigh-Ritz technique with beam func- 
tions and a strain energy functional equivalent 
to that of Arnold and Warburton to obtain low- 
est frequency parameters for clamped-clamped 

FIGURE 2.54.-Lowest frequency parameters for clamped- 
clamped shells; n=4, O<Am<4.0. (After ref. 2.127) 

shells and compared them with experimental 
results. However, they employed eight terms in 
each of the series of the assumed mode shapes 
appearing in equations (2.91) to obtain con- 
vergence of the Ritz procedure. The results are 
shown in figure 2.56 for a 6061-T6 aluminum 
alloy shell having h = 0.0255 in., R = 9.538 in., 
and 1 = 24.00 in. 

Lyons, Russell, and Herrmann (ref. 2.16) used 
the Galerkin procedure to obtain closed form 
approximate frequency formulas for clamped- 
clamped shells. The shell equations used are those 
of Herrmann and Armenakas (ref. 2.15) neglect- 
ing shear deformation and rotary inertia which 
are defined for circular cylindrical shells by the 
the modifying operator (see sec. (2.1.1)) 

Approximate mode shapes of the form 

2rx 
u = A  sin - cosnOcos wt 

1 

sin nO cos wt (2.102) I 
(which ref. 2.157 shows to be less accurate than 
beam functions in representing plate vibration 
modes) were taken. The resulting frequency 
formula is 

where X2 = 21rR/l. 
Ivanyuta and Finkelshtein (ref. 2.114) used 

the Galerkin method with the Donnell-Mushtari 
shell equations and a single set of beam functions 
to arrive at  the following frequency formula: 

FIGURE 2.55.-Lowest frequency parameters for clamped- 
clamped shells; n =5, 0 <&,, <4.0. (After ref. 2.127) 
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and the coefficients C1 and C2 for clamped- 
clamped shells are the roots of the equations 

( i + d C ) 3 - ( 1 - 6 ) 3  
sin xl to  sinh z2t0 

2(1 - c l ) m l  
- cos x1t0 cosh X&O+ 1 = 0 (2.108) 

1 
cos kito cosh k250- - sin klto sinh k2[0 = 1 

dc2- 1 
(2.109) 

- THEORY 

EXPER. 
o m = l  
o m = 2  
A m = 3  

NUMBER OF CIRCUMFERENTIAL WAVES,n 

FIGURE 2.56.-Theoretical and experimental frequencies 
for a clamped-clamped aluminum shell; R Jh =374, 
I/R =2.52, h =0.0255 in. (After ref. 2.107) 

where, in this case, 

Other simplified formulas can be obtained by 
making simplifications in the characteristic equa- 
tion of the type described in section 2.3.5. 

Kondrashov (ref. 2.148) used the Southwell 
method (cf., refs. 2.161 and 2.162) to obtain 
lower bounds for the frequency parameter B. This 
method depends upon finding the frequencies 
from two separate problems, one where the bend- 
ing stiffness is neglected (giving ol), and another 
where membrane effects are neglected (giving w2). 
The frequency w for the combined problem is 
then related to w l  and wz by 

0 2 > ~ ~ 2 + w 2 2  (2.106) 

In  reference 2.148 the Donnell-Mushtari theory 
was used to derive the following formula for com- 
puting the lower bounds on B2: 

where k =  h2/12R2, v is Poisson's ratio, and 
n = number of circumferential waves, as before, 

with to = nl/R and 

Some useful values of C1 and C2 are presented in 
tables 2.25 and 2.26, respectively. I n  using the 
tables it is generally necessary to interpolate 
between values shown for nl/R. The value of 
Poisson's ratio for which the tables apply is not 
given in reference 2.148, but appears to be 0.3. 
The frequency according to the membrane the- 
ory is obtained from equation (2.107) by setting 
k = 0. 

As a check on the accuracy of the lower bound 
formula given in equation (2.107), Kondrashov 
(ref. 2.148) also computed upper bounds for the 
clamped-clamped shell by the Galerkin method 
and the Donnell-Mushtari theory. The same trig- 
onometric trial functions given by equation 
(2.102) were used, yielding the following formula 
for frequency parameters for m = 1 : 

where X z =  2nR/l, as before. Some sample fre- 
quency parameters computed by means of equa- 
tions (2.107) and (2.111) are given in table 2.27 
(from ref. 2.148). 

It is interesting to compare equation (2.108) 
with equation (2.103)) which was arrived at  from 
a different shell theory, and with equation (2.104) 
which was obtained from the same shell theory 
by using beam functions. In table 2.27 one column 
lists values of B computed using beam functions. 



TABLE 2.25.-Values of the Coeflcient CI in Equation (2.107) for Frequencg 
Parameters of Clamped-Clamped Shells 

TABLE 2.27.-Comparison of Frequency Paramelers Obtained from Equations 
(2.107) and (2.1 08), and by Using Beam Functions; R /h  = 200 

1 
nz 

2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
36 
40 
42 
44 
48 
50 

Percent 
difference 
between 

QBF and QLB 

Number of axial half-waves -m 

I 
B 

1 

0.5431 
.3354 
.210 
.I372 
.9230 X 10-I 
.6393 x 10-I 
.4541 X10-I 
.3297 x 10-I 
.2439 X 10-I 
1405 X10-I 
.8563 X1O-z 
.5470 XIO-z 
.3636 X 
.2493X10-z 
. 1768X10-2 
1286 X 
.9539 X 
.7435 X10-8 
. 5564X10-3 
.4350 X 
.2768 X 
1840 X 
1523 X 
1269 X10-8 
.go40 X lo-* 
.770 XlO-' 

n 

2 

0.8250 
.6670 
.5168 
.3932 
.2983 
.2274 
.I750 
.I360 
.lo68 
.6784 X 10-I 
.4464 X10-I 
.3030 X10-I 
.2115 X 10-I 
.1513X10-I 
.I105 X10-I 
.8240 X 
.6246 X 
.4790 X 
. 3762X10-2 
.2980 X 
.I934 X 
.I306 X10-2 
.I070 X 
.9109 XIO-a 
.6541 X 
.599 X10-3 

QLB 
from eq. 
(2.107) 

3 

0.9160 
.8253 
.7205 
.6141 
.5149 
.4275 
.3533 
.2916 
.2410 
.I663 
.I168 
.8357 X 10-I 
.6091 X 10-I 
.4518X10-1 
.3402XlO-I 
.2602 X 10-I 
.2018 X 10-I 
.I610 X10-I 
.1258X10-I 
.lo10 X 10-I 
.6706 X lo-? 
.4607 XIO-z 
.3830 X 
.3257 X 
.2364 X 
.203 X10-2 

4 

0.9511 
.8951 
.8249 
.7465 
.6656 
.5866 
.5125 
.4452 
.3852 
.2872 
.2145 
.I614 
.I226 
.9049X10-1 
.7303 X10-1 
.5729 X 10-1 
.4540 X 10-1 
.3680 ~ 1 0 - I  
.2935 X10-I 
.2390 X 10-1 
.I626 X 10-1 
.I138 x 10-1 
.9500 X 10-1 
.8167 X 
.5997 X 10-8 
.518 X10-2 

QBP 
using beam 
functions 

QT 
from eq. 
(2.111) 

5 

0.9683 
.9310 
.8821 
.8249 
.7625 
.6977 
.6330 
.5705 
.5114 
.4065 
.3207 
.2527 
.I995 
.I583 
.I264 
.lo17 
.8228 X 10-1 
.6650 X10-I 
.5510 X 10-I 
.4556 X 10-1 
.3175 X 10-1 
.2266 X 10-I 
.I950 X 10-1 
1653 X 10-1 
1229 x 10-1 
1067 X 10-I 

Percent 
difference 

QLB between and QT 



TABLE 2.26.-Values of the Coeflcient Cp in Equatiot~ (2.107) for 
Frequency Parameters of Clampecl-Clamped Shells 

TABLE 2.28.-E~peri1ne?ztally Deterazi?zecl Frequencies for a Clanzpecl-Clamped 
Steel Shell; R/h = 19.1, l / R  =8.13, h = 0.101 in. 

I 
nz 

2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
36 
40 
42 
44 
48 
50 

Number of axial half-waves -m 

I 

6.205 
3.145 
2.110 
1.661 
1.431 
1.301 
1.220 
1.176 
1.132 
1.086 
1.061 
1.046 
1.034 
1.028 
1.023 
1.019 
1.016 
1.014 
1.012 
1.010 
1.008 
1.007 
1.006 
1.005 
1.004 
1.003 

2 

16.180 
7.630 
4.640 
3.275 
2.504 
2.105 
1.826 
1.668 
1.508 
1.340 
1.243 
1.182 
1.142 
1.113 
1.092 
1.078 
1.065 
1.056 
1.048 
1.042 
1.033 
1.027 
1.024 
1.021 
1.018 
1.017 

4 

50.800 
23.050 
13.350 
8.860 
6.470 
4.960 
4.010 
3.410 
2.900 
2.300 
2.005 
1.716 
1.557 
1.447 
1.367 
1.305 
1.258 
1.221 
1.192 
1.166 
1.131 
1.106 
1.096 
1.086 
1.073 
1.068 

3 

31.050 
14.250 
8.390 
5.680 
4.212 
3.332 
2.765 
2.435 
2.105 
1.748 
1.538 
1.406 
1.317 
1.253 
1.207 
1.172 
1.146 
1.125 
1.108 
1.094 
1.078 
1.060 
1.054 
1.048 
1.041 
1.038 

5 

75.550 
34.050 
19.540 
12.830 
9.910 
6.990 
5.562 
4.475 
3.891 
2.995 
2.451 
2.100 
1.861 
1.694 
1.568 
1.475 
1.402 
1.344 
1.298 
1.261 
1.204 
1.165 
1.148 
1.136 
1.113 
1.104 
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The single term trigonometric functions used to 0.05 I I I I 

obtain equation (2.108) apparently give closer - AXIAL WAVE 

upper bounds than the beam functions. - 
--- 

I AXIAL WAVES 

Experimental results for a clamped-clamped 
steel shell having 1 = 15.65 in., R = 1.924 in., and II 

h =0.101 in. were given in reference 2.4 and are 0.04 
I\ 
I' 

repeated in table 2.28. 11 I\ 
The lowest root of a cubic characteristic equa- " 

tion in 8' for clamped-clamped shells (cf., eqs. 
(2.84) and (2.95)) is usually much smaller than 2 
the two larger roots. This was also seen in the 0.03 - 
case of S D S D  shells (sec. 2.3). The relative 7 
spacing of the roots is clearly seen in table 2.29 

LT 
(from ref. 2.138) for a particular steel shell x - 

(that used by Koval and Cranch and discussed z 

earlier in this section) having R = 3 in., h = 0.01 E 0, 
in., 1=12 in., using the coefficients given by + 
equations (2.98) in equation (2.95). Table 2.29 $ 
begins with n =  3. It is clear from observing the $ 

- 

trends in the table, as well as the results for 7 
z 

S D S D  shells, that for n =  0, 1, 2 the three p o,o, 
roots can be much closer to each other. As for 
S D S D  shells, it is also seen that the higher fre- 
quencies (at least, beginning with n = 3) increase 
monotonically with an increase either in m or n, 
whereas the lowest frequency find a minimum for 
some particular value of n. I n  table 2.29 the 
minimum occurs at n = 6 for m = 1, and n = 9 for NUMBER OF CIRCUMFERENTIAL WAVES-n 

m=3. As for SDSD this can be FIGURE 2.57.-Distribution of strain energy for a freely- 
explained by consideration of the strain energies vibrating clamped-clamped shell. (After ref. 2.138) 

TABLE 2.29.-Comparison of the Three Roots (Cyclic Frequencies, in cps) of the 
Frequency Equation (Eqs. (2.96) and (2.98)) for a Clamped-Clamped Steel Shell; 
R/h = 300, l/R = 4, h = 0.01 in. 

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1-112 Axial waves (m = 3) 

f l  f 2  f 3  

4,350 30,578 46,524 
3,139 36,021 54,848 
2,342 41,551 64,210 
1,823 47,242 74,170 
1,503 53,096 84,489 
1,338 59,088 95,038 
1,302 65,192 105,742 
1,369 71,386 116,555 
1,512 77,651 127,449 
1,710 83,973 138,402 
1,950 90,340 149,401 
2,224 96,746 160,437 

1/2 Axial wave (in = 1) 

f l  

1,176 
783 
597 
552 . 
611 
736 
902 

1,100 
1,321 
1,568 
1,837 
2,128 

f 2  

27,071 
32,418 
38,118 
44,071 
50,194 
56,436 
62,763 
69,151 
75,586 
82,056 
88,554 
95,074 

f 3  

36,866 
47,318 
58,107 
69,055 
80,092 
91,184 

102,313 
113,467 
124,639 
135,825 
147,022 
158,228 
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associated with bending and stretching of the 
shell (see sec. 2.3.3), as shown in figure 2.57. 
Figure 2.57 also shows that the stretching energy 
is greatly affected by the number of axial half- 
waves m, whereas the bending energy is only 
slightly changed. 

The behavior of the three modes associated 
with the three roots of the characteristic equa- 
tion for given m and n can also be seen in table 
2.30 (from ref. 2.138). Here amplitude ratios 
A/C and B/C (in terms of the displacement 
amplitudes A, B, and C, as used in eqs. (2.91)) 
are given for the same shell described by table 
2.29 and figure 2.57. Ratios are shown for a 
fixed n (n = 6, the minimum frequency for m = 1) 
and various numbers of axial half-waves m. 
From table 2.30 it is clear that the motion for 
the lowest frequency is predominantly radial 
for n=6. For low m, the second frequency is 
primarily axial, but as m is increased, it becomes 
circumferential. 

Kraus (ref. 2.138) also presented an interest- 
ing plot which compares frequencies obtained 
by four anaIytica1 methods and by experiment. 
This plot is shown as figure 2.58. The same shell 
used previously in figure 2.57 and tables 2.29 
and 2.30 is the basis for the figure. The four 
curves derived by analytical methods are 

T ~ L E  2.30.-Amplitude Ralios of the Three 
Modes Associated with Each m and n for 
a Clamped-Clamped Steel Shell; R/h = 300, 
1/R = 4, h = 0.01 in. 

Associated frequency 
Amplitude 

ratio 
f1 f z  f 3  

1 A / c  0.003 37.455 1.296 
B / C  .016 3.379 6.072 

3 A /C .004 9.818 3.376 
BIG .016 3.864 6.694 

5 A /C  .004 6.801 6.290 
B / C  .016 4.756 7.740 

7 A /C .003 5.944 10.053 
B / C  .014 5.964 9.000 

9 A/C .002 5.797 14.515 
B / C  .012 7.532 10.292 

VARIATIONAL PROCEDURE 
W& ASSUMPTBB1 AND LWEARIZATKN OF 
THE CilCRbCTEWSTIC EOUATIGV 4 -- Y U ~  ASSUMPTION AN0 NEGLECW TmGENTlDL INERTIA 

RAYLEIGH's INEXTENSKNAL THEORY 
EXPEIIIMEMAL DATA OF KOML AND CRAXH 

0 2 4 6 8 10 12 14 16 
NUMBER OF CIRCUMFERENTIAL WAVES-n 

FIGURE 2.58.-Comparison of frequencies obtained from 
various analytical .methods and experiment for a 
clamped-clamped shell. (After ref. 2.138) 

(1) The Rayleigh-Ritz type variational pro- 
cedure using the Donnell theory and beam func- 
tions, which resulted in equations (2.98) for the 
coefficients of the characteristic equation (2.95). 

(2) Yu's assumption (X2<<n2) using the Don- 
nell theory, with linearization of the character- 
istic equation, which resulted in equation (2.87). 

(3) Yu's assumption using the Donnell theory, 
with neglect of tangential inertia, which resulted 
in equation (2.88). 

(4) The "inextensional" frequency parameter 
given by (see sec. 2.4.5). 

The experimental data of Koval and Cranch 
reported earlier in this section are used in figure 
2.58. I n  figure 2.58 after the minimum point is 
passed for each m, all of the analytical solutions 
agree very closely with each other and the experi- 
mental data. Before the minimum is reached, 
the variational procedure (which gives theoreti- 
cal upper bounds on the frequencies) gives the 
closest agreement with the experimental data, 
whereas the other solutions become totally in- 



106 VIBRATION O F  SHELLS 

adequate as n is decreased sufficiently. The l/R = 10, m = 1, and n = 4. No difference can be 
effect of neglecting X2 with respect to n2 causes seen in the mode shapes, although some-differ- 
large errors for the lesser values of n. The effect ences occur for the bending moments, particu- 
of neglecting tangential inertia is small for this larly Me. I n  figures 2.60 and 2.61 a thicker shell 
problem. 

The modal characteristics of clamped-clamped 
cylindrical shells are shown in figures 2.59, 2.60, 
and 2.61 (taken from ref. 2.35). I n  figure 2.59 
results for the Fliigge and Donne11 theories are 
compared for a thin shell (R/h=500) having 

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL 

R/h=500 BOUNDARY 
P/R=IO.O i2 = 0.01508 ( FL~~GGE EO) CONDITIONS 

v=0.3 i2 = O.Ol541 (DONNELLEQ) w =O 
n - 4  aw/ax=0 

INPLANE INERTIA INCLUDED u.0 
v - 0  

AT x=O, P 

-0.01 

DONNELL EQS 

-0.2 

FLUGGE AND 

0.2 
DONNELL EQS 

.- 

AXIAL COORDINATE, X/P 

0.008 
0.004 

-0.004 
F~UGGE AND 

-0.008 DONNELL EQS 
-0.012 
-0.016 

FLUGGE EQ 
DONNELL EQ 

-2.0 
-4.0 
-6.0 

-6.0 
-8.0 

DONNELL EQ 

-40.0 
-f2.0 

'x. -t4.0 '.. -16.0 -____-- 
0.4 0.6 0.8 1 .O 

AXIAL COORDINATE ,X/P 

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL 

FREQUENCY PARAMETER 
R/h=20 WlTH INPLANE INERTIA 
P/R=2.O 

BOUNDARY 
- R = 0.31 17 ( FLijGGE EQ) CONDITIONS 

Y =u.5 fi -03188 (DONNELL EQ) awlax=O w=O 
=3 WlTH RADIAL INERTIA ONLY 

R = 0.3273 ( FLUGGE EO) u=o  
v=O R = 0.3346 ( DONNELL EO) AT x=O, 

8 

ALL EQS 

0.2 0.4 0.6 0.8 1.0 
AXIAL COORDINATE.X/P 

INPLANE INERTIA 
-0.04 INCLUDED 

-0.08 FLUGGE AND DONNELL EQS 
-0.12 RADIAL INERTIA ONLY 

12.0 

FLUGGE EQ 

-4.0 

FLUGGE AND 
OONNELLEQS 
RADIAL 
INERTIA ONLY 

-0.02 
-0.04 FLUGGE AND DONNELL EQS 
-0.06 

INPLANE INERTIA INCLUDED 

FiijGGE EQ WlTH AND WITHOUT 
-2.0 
-4.0 DONNELLEO INERTIA 

-6.0 
-8.0 

0.4 0.6 0.8 I 0  

AXIAL COORDINATE ,X/P 

FIGURE 2.59.-Modal characteristics for a clamped- FIGURE 2.60.-Modal characteristics for a clamped- 
clamped shell; R/h =500, l / R  =lo, m =1,  n =4. (After clamped shell; R/h =20, l /R  =2, m = 1 ,  n =3. (After 
ref. 2.35) ref. 2.35) 
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(R/h= 20) is being considered and tangential the mode shapes among the four types of theories 
inertia is both retained and omitted. In  figure (equations) used. slight differences result among 
2.60 a shell of moderate length is taken (l/R = 20) the axial forces N, and bending moments M, 
and n= 3. There is essentially no difference in generated during vibration; however, significant 

differences arise in the circumferential (hoop) 
forces and moments. The forces and moments 

MODAL CIIARACTERISTICS OF CYLINDRICAL SHELL 
FREQUENCY PARAMETER 

R I h - 2 0  WITH INPLANE INERTIA BOUNDARY 
)/R=!O.O fi so05787 (FL~~GGL EO) CONDITlONS 

w.0 n =0.06757 (DONNELLEQ) el*/eK.O 
"2 WlTH RADIAL INERTIA ONLY 

R -0.06491 ( FL~~GGE EO) u.0 
v.0 Q ~0.07575  (DONNELL €0) AT K.O, 

-0.04 O':: 

-0.4 -~.'c''y_" 
- AU EOS ?zzrFLl O 0 0.2 0.4 08 0.8 1.0 

AXIAL COORDINATE X / 1  

DONNELL EQS 
9 WITH AND WITHOUT 5 -as INPLANE INERTIA 

~ ~ i j w  € 0  WITH AND WITHOUT 
MNNELL € 0  INPLANE INERTIA 

0.003 

FLkGE EQ RADIAL I INERTIA ONLY 

, -0.009 

8 -0.012 
F L k E  AND DONNEU EaS 
INPLANE INERTIA INCLUDED 

-3.0 
0 -3.6 
8 -4.2 

0 0.2 0.4 0.6 0.8 1.0 
AXIAL COORDINATE .X/P 

FIGURE 2.61.-Modal characteristics for a clamped- 
clamped shell; R/h =20, l / R  = 10, m =1, n =2. (After 
ref. 2.35) 

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL 

R/h= 5 0 0  fl = 0.07803 ( EXACT 1 BOUNDARY 
P/R=2.0 0 = 0.08118 ( ARN. fi WARE.) CON",Iy 

v ~ 0 . 3  
n a8 aw/ax=o 

u = o  

-0.01 

-0.04 

- 0.08 

-0.12 

0.4 

0 0.2 0.4 0.6 0.8 I .O 
AXIAL COORDINATE,X/P 

0.009 
0.046 EXACT 

z 0.003 
w- oo! 
0 -0.003 
5 -0.006 

-a009 
g -0.012 A R N  6 WARE. \ 
o -0.015 

-0.018 ' \ 

EXACT 

- ARN. G WARB. 

AXIAL COORDINATE .X/P 

FIGURE 2.62.-Comparison of modal characteristics for 
a clamped-clamped shell; R/h =500, l /R  =2, m = 1, 
n =8. (After ref. 2.35) 
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are normalized with respect to  a unit amplitude 
of deflection. I n  figure 2.61 (for n = 2) the differ- 
ences in forces and moments are even more 
pronounced. The differences in modal character- 
istics arising from the Fliigge and Donne11 

MODAL CHARACTERISTICS OF CYLINDRICAL S H E L L  

Wh = 5 0 0  BOUNDARY 
P/R=10.0 fi = 0.01508 ( EXACT) CONDITIONS 

Y ~ 0 . 3  fi -0 .01547  ( ARN. G WARE.) w=O 
n a 4  aw/ax=0 

u=o 
v = o  

AT x=O, P 

--- 

G a 0 4  
ii 2 
n 0 

0 0.2 0 4 0.6 0.8 4 .O 
AXIAL COORDINATE,X/B 

z=- - 

OI 
0 - 0 0 0 2  
U. 

a - 0 0 0 3  'Y ARN & WARE 
0 
o - 0 0 0 4  

- 0 0 0 5  

m 
I 

+- z W 

5 
x 3 

/ 

AXIAL COORDINATE,X/P 

theories, with and without tangential inertia, 
are elaborated further in table 2.31. 

The modal characteristics of the approximate 
solution of Arnold and Warburton (ref. 2.4) 
using the equivalent of the Rayleigh-Rita method 

MODAL CHARACTERISTICS OF CYLINDRICAL S H E L L  

R/h= 5 0 0  BCiJNDARY 
P/R=10.0 fi = 0.06258 (EXACT) COIvClTIONS 

r = O  
~ ' 0 3  fi = 0 .06492  ( ARN. 6 WARB aw,ox=O 
n 2 4  

= 0.04 - ,>; =.. ;-ARN 6 WARB. .--. 
-+ - - 

/' 

- EXACT 

AXIAL COORDINATE ,X/Q 

FIGURE 2.63.-Comparison of modal characteristics for FIGURE 2.64.-Comparison of modal characteristics for 
a clamped-clamped shell; R/h = 500, l /R  = 10, m = 1, a clamped-clamped shell; R/h =500, Z/R = 10, m =3, 
n =4. (After ref. 2.35) n =4. (After ref. 2.35) 
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with beam functions are compared with those of 
the exact (Fliigge) solution in figures 2.62, 2.63, 
and 2.64. As expected, the Arnold-Warburton 
solution gives a better estimate for the eigen- 
values than for the mode shapes and modal 
forces. The Arnold-Warburton solution repre- 
sents reasonably well the forces in the interior 
of the shell, but the sharp changes a t  the bound- 
aries are not even approximated. For R/h= 500, 
l/R = 2, m = 1 (fig. 2.62)) the error in D is about 
4 percent, while the error in the mode shape is 
8 percent (comparing the maximum deviation 
of any point to the maximum amplitude of the 
function) and is clearly visible. The error lies 
in the shape of the modes themselves, rather 
than in the amplitude ratios A/C and B/C.  
This was observed for all values of R/h and l/R 
in reference 2.35. In figure 2.62 it is seen that 

the circumferential (hoop) stress resultant Ne is 
grossly in error. Fortunately, it is relatively small 
over most of the interval 0 5 x 5 l in comparison 
with N,, thereby decreasing its effect. I n  figure 
2.63 the shell is relatively longer (Z/R = 10) and 
the errors due to the edge effects are greatly re- 
duced (except for the hoop forces, Ne). I n  figure 
2.64 the same shell is taken as in figure 2.63, but 
now m = 3. This has the effect of increasing the 
errors in the modal characteristics, but most of 
the error in the mode shapes and generalized 
forces are confined to the half wave nearest the 
boundary. The sharp changes in M, and Me are 
still not predicted, but Ne is approximated more 
closely than was done for the lower mode (fig. 
2.63). Thus, the Arnold-Warburton approach 
using a Rayleigh-Ritz type of method gives good 
results for the frequencies and mode shapes, but 

TABLE 2.31.-Comparison of Modal Characteristics for Clamped-Clamped Shells 
Obtained by Various Analytical Methods 

-- 

a Case 1: R/h=500, l/R = 10, n=4, m-1, v=0.3 
Case 2: R/h=20, Z/R=2, n=3, m=1, v=0.3 

Case 

18 

2'7 

Item 

0 
u max 
v max 

w max 
max 

Nz min 
max 

Ne min 
max 
min 
max 

Me min 

a 
u max 
v max 

w max 
max 

Nz min 
max 

Ne min 
max 

Mz min 
max 
,in 

Amold- 
Warburten 

0.01548 
f .01803 
- .2505 
1 

.OW424 
- .Dl649 

.001000 
- .004g45 

.302 
-4.681 

.0961 
-15.05 

0.3256 
f .03689 
- .3161 
1 

.I190 
- .I702 

.08088 
- .05065 
7.219 

-6.803 
2.121 

-9.286 

Exact solutions Approximate solutions 

Finite differences 

20 points 

0.01689 
+ .01749 
- .2507 
1 

.008903 
- 

.000204 
- .004193 

.378 
-4.674 

.lo9 
-15.05 

0.3105 
f .03447 
- .3196 
1 

.I107 
- .I362 

.06899 
- .03991 
15.14 

. -5.438 
4.502 

-8.878 

50 points 

0.01540 
+ .01794 
- .2507 
1 

.009101 
- .01510 

.000156 
- .004530 

.691 
-4.675 

.203 
-15.05 

0.3117 
f .03477 
- .3195 
1 

.I127 
- .I460 

.06963 
- .04279 
16.37 

-5.466 
4.868 

-8.886 

With tangential inertia No tangential inertia 

Fliigge 

0.01508 
f .01799 
- .2507 
1 

.009127 
- .01504 

.000162 
- .004511 
9.291 

-4.676 
2.783 

-15.05 

0.3117 
f .03482 
- .3195 
1 

.I131 
- .I545 

.06971 
- .06447 
16.63 

-5.471 
4.943 

-8.888 

Fliigge 

0.01555 
-1.01799 
- .2507 
1 

.009130 
- .01504 

.000162 
- .004512 
9.293 

-4.676 
2.784 

-15.05 

0.3273 
+ .03374 
- .3159 
1 

.I131 
- .I506 

.07956 
- .Of3309 
16.57 

-5.468 
4.928 

-8.887 

Donnell 

0.01541 
+ .01799 
- .2507 
1 

.009126 
- .01504 

.000162 
- .004512 
9.278 

-4.966 
2.784 

-16.05 

0.3188 
f .03494 
- .3195 
1 

.I126 
- .I541 

.07144 
- .06513 
16.58 

-5.652 
4.974 

-9.886 

Donne11 

0.01589 
f .01799 
- .2507 
1 

.009129 
- .01505 

.000165 
- .004513 
9.281 

-4.966 
2.784 

-16.05 

0.3345 
f .03381 
- .3158 
1 

.I127 
- .I500 

.08174 
- .06368 
16.53 

-5.648 
4.958 

-9.885 
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is unable to predict internal forces and moments, 
at least with a single beam function as used in 
equations (2.91) and (2.92). If equations (2.91) 
were generalized to be a finite series of beam 
functions, there would still remain the difficulty 
of representing the sharply changing moment 
resultants M,  and Mg near the boundaries. 
Further comparisons among the modal char- 
acteristics obtained by the Arnold-Warburton 
and exact approaches can be seen in table 2.31. 

The clamped-clamped circular cylindrical shell 
was also used as the basis for a finite difference 
convergence study in reference 2.35. The Flugge 
equations of motion, including tangential inertia, 
assumed the same sinusoidal variation with 
respect to 0 and t as in equations (2.91). The 
resulting set of ordinary differential equations 
in the independent variable s (s = x / l )  were then 
cast into finite difference form and applied at  a 
set of equally spaced stations (or grid points) 
in the axial direction. Four steps were taken in 
the convergence study-10, 20, 50, and 100 
equally spaced grid points-yielding eigenvalue 
determinants of the 30th, 60th, 150th, and 300th 
orders. Results for frequency parameters and 
modal characteristics are given in figures 2.65 
through 2.67. In  figures 2.65 through 2.67 the 
word "exact" identifies the exact solution of the 
Fliigge equations by the method described at  
the beginning of this chapter. 

In  figure 2.65 the shell is relatively thiclr 
(R/h = 20) and long (l/mR = 10) ; consequently, 
the solution is very well behaved. With only ten 
grid points, i2 is less than 8 percent above the 
exact value. With twenty points it is within 2 
percent. Not only the mode shapes, but the 
internal force and moment resultants are also 
determined accurately. Only the rapid changes 
in M,  and Me near the boundaries are difficult 
to approximate. The peak stresses at  the bound- 

I 
ary were not adequately determined; even when 
100 grid points were used, the boundary moment 
resultants are less than 90 percent of their exact 
values. 

However, for a shorter shell (l/mR =2) the 
finite difference scheme is much better a t  repre- 
senting the edge effects, as can be seen in table 
2.31. With a 50-point grid the boundary value 
of M,  is within 98 percent of the exact value. 
Here also the frequency for a 20-point grid is 

only 0.4 percent below the exact eigenvalue. In  
this case the shell is short and thick enough so 
that edge effects propagate throughout the shell 
instead of being localized. 

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL 

R/h=20 Q = 0.05787 ( EXACT 1 BOUNDARY 
P/R=lO.O Q = 0.06228 ( I 0  POINTS ) CONDITlONS 

~ ' 0 . 3  Q = 0.05905 ( 20 POINTS ) w=O 
n =2 fi = 0.05805 ( 5 0  POINTS) aw/ax=! 

Q = 0.05794 ( IOQ POINTS 1 U'U 
v = O  

Z 0 W Z  50,100. EXACT 
2 0 
8 -0.04 
H 

20, EXACT 
50, (00, EXACT 

0.2 0.4 0.6 0.8 1.0 
AXIAL COORDINATE,X/2 

2' 0.2 

d 0 
Z , -0.2 
Q 
,X -0.4 EXACT SOLUTION 

AXIAL COORDINATE. X/L? 

FIGURE 2.65.-Comparison of finite difference solution 
with exact (Fliigge) solution for a clamped-clamped 
shell; R/h =20, 1/R = 10, n =2, m = 1. (After ref. 2.35) 
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A much thinner shell (R /h  = 500) is the basis restraint on Ne and the effects of clamping on M ,  
for figure 2.66. The length parameter l/mR is and 148 are highly localized at  the boundary and 
kept at 10, although the value of n was changed causes a 40 percent error in the frequency when 
to n = 4  to have the mode of minimum frequency 10 points are used, and an 11 percent error for 
(see fig. 2.41). I n  this case the effect of axial 20 points. What is particularly striking here in 

comparison with figure 2.65 is that the eigen- 

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL 
MODAL CHARACTERISTICS OF CYLINDRICAL SHELL 

BOUNDARY 

fl =0.01508 (EXACT) CONDITIONS 

R =O.O2101 (IOPOINTS) 
w=o 

-0.01674 (2OPOINTS) aw/ax=O 
R a0.01539 ( 5 0  POINTS) 

u =O 
v=O R = o . a 5 i 7  (~OOPOINTS) AT x=O,P 

R/h=500 R = 0.06258 ( EXACT BOUNDARY 
P/R= 10.0 R * 0.08753 ( I0 PTS ) CONO'T1ONS 

v ~ 0 . 3  R 0 0 0 7 1 3 1  (2OPTS) w =O 
n = 4  R -0.06419 (SOPTS) aw/ax=O 

= 0.06298 ( (00 PTS ) u = o  
v - 0  

AT x=O. 0 

0.04 

0 

-0.04 

--20. EXACT 
50,100, EXACT 

-0.2 

10 PTS 

SO, 100, EXACT 
n a 

50, (00. EXACT 
-1.0 1 

0 0.2 0.4 0.6 0.8 1 .O 
- 
0 0.2 0.4 0.6 0.8 1.0 

AXIAL CO0RDINATE.X /&? AXIAL COORDINATE ,X/P 

Q004p, -0.008 100, EXACT ExAqy 
-G.0!2 2 0  PTS 

AXIAL COORDINATE , X / l  AXIAL COORDINATE ,X/P 

FIGURE 2.66.-Comparison of f in i te d i f f e r e n c e  solution FIGURE 2.67.-Comparison of finite d i f f e r e n c e  solution 
with exact (Flugge) solution for a c l a m p e d - c l a m p e d  with exact (Flugge) solution for a c l a m p e d - c l a m p e d  

shell; R/h = 500, l /R = 10, n =4, m = T. (After ref. 2.35) shell; R/h =500, l /R =lo, n =4, m =3. (After ref. 2.35) 
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functions appear to be equally well represented 
in the two cases (the eigenfunctions converged to 
within 3 percent of the exact value in u and 
within 0.1 percent in v with 20 points used). One 
normally expects better agreement between the 
eigenvalues (frequency parameters) than the 
eigenfunctions (mode shapes); here the error is 
caused by large differences in the higher deriva- 
tives of the eigenfunctions in the vicinity of the 
boundaries. 

In  figure 2.67 a higher axial mode (m = 3) was 
taken for comparison with figure 2.66. It is seen 
that the representation of the mode shapes and 
force and resultants with the 10 and 20 point 
solutions is not as good for the higher mode as it 
was for the lowest one; yet the error in the eigen- 
value has not changed significantly. The reasons 
behind the slow convergence of the eigenvaluesin 
figure 2.67 are discussedin detail inreference 2.35. 

Adelman, Catherines, and Walton (ref. 2.132) 
used the clamped-clamped circular cylindrical 
shell to determine the accuracy of a finite element 
computational procedure. The structural ele- 
ments used to represent the shell were them- 
selves segments of the shell, and each element 
was assumed to follow the Goldenveizer-Novo- 
zhilov shell theory. Within each shell element it 
was assumed that each displacement function u, 
v, w could be expressed as a finite polynomial in 
the axial coordinate, x. That is, 

Three types of polynomial expansions were con- 
sidered, the upper limits of the summations being 

(1) (Nw, Nu, N") = (3, 1, 1) 

Three types of element layouts were used as 
shown in figure 2.68. The first had 10 equally 

spaced elements. The second and third took cog- 
nizance of the rapidly changing higher deriva- 
tives of the displacements in the vicinity of the 
boundaries and used smaller widths of shell ele- 
ments there, as shown in figure 2.68(b) and (c). A 
specific shell having the following geometrical 
and material parameters was used as an example: 
Z=12, R=3, h=0.01, E=30X106, v=0.3, 

= 7.33 x lo-* 
Results for the minimum frequencies obtained 
from the various finite element solutions, com- 
pared with the exact solution procedure (see sec. 
2.4) using the Goldenveizer-Novozhilov theory, 
for three circumferential waves (n = 3) are given 
in table 2.32. The modal characteristics of the 
three finite element solutions using ten equally 
spaced elements are compared with the exact 
solution in figures 2.69 through 2.72. 

Koval (ref. 2.137) discussed the effects of 
asymmetry due to longitudinal seams and devia- 
tions from a circular cross section in the experi- 
mental results obtained for clamped-clamped 
shells. 

( a  (b) (c) 

FIGURE 2.68.-Finite element layouts. (After ref. 2.132) 

3 

2 

I 

0 

- I  

-2 

-3 - EXPANSION (3) AND EXAC 

-4 

-5 

FIGURE 2.69.-Comparison of axial force resultants 
arising from h i t e  element solutions. (After ref. 2.132) 
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TABLE 2.32.-Comparison of Finite Element and 
Exacl Lowest Frequencies for a Clamped- 
Clamped Steel Shell; R/h = 300, 1/R = 4, 200 

FIGURE 2.70.-Comparison of circumferential force 
resultants arising from finite element solutions. (After 
ref. 2.132) 

Type of polynomial 
expansion, eq. (2.110) 

I 
2 
3 
3 
3 

- EXACT --- EXPnNSlON (3) 
--- EXPANSION (2) 
---- EXPANSION (1) I 

Element layout, 
fig. 2.68 

(a) 
(a) 
(a) 
03) 
( 4  

--- 
-- EXPANSION (2) --- EXPANSION (I) 

Approx. w2 

Exact w Z  

1.083 
1.015 
1.002 
1.0001 
1.0001 

FIGURE 2.72.-Comparison of axial moment resultants 
arising from finite element solutions. (After ref. 2.132) 

Clamped-damped circular cylindrical shells 
are also discussed in references 2.59, 2.80, and 
2.163. 

2.4.2 Clamped-Shear Diaphragm 

The boundary conditions for the circular cylin- 
drical shell which is clamped a t  one end and 
supported by shear diaphragms a t  the other are 

Much information is available for this problem 
by considering the longitudinally antisymmetric 
modes of a clamped-clamped shell discussed 
previously in section 2.4.1. That is, for m=2, 
4, 6, . . . , the shear diaphragm boundary con- 
ditions are duplicated a t  the center (x = 1/2) of 
a clamped-clamped shell. I n  particular, m = 2 for 
the clamped-clamped shell corresponds to the 
fundamental mode of the clamped-SD shell, 
while m = 4 corresponds to a higher mode having 
one circumferential "node line" located a t  some 
intermediate value of x (not x=1/4, however). 
For example, fundamental frequency informa- 
tion can be obtained from the curves for m = 2  
in figures 2.42 and 2.50, as well as table 2.22 
simply by considering the 1/R ratio of the 
clamped-SD shell to be one-half of the corre- 

FIGURE 2.71.-Comparison of circumferential moment spending clamped-clamped shell. 
resultants arising from finite element solutions. (After Kondreshov (ref. 2.148) used the Donnell- 
ref. 2.132) Mushtari theory and the Southwell method to 
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obtain lower bounds for 0. The frequency param- 
eters can be calculated from equation (2.107), 
with C1 and C 2  for clamped-SD shells being the 
roots of the equations 

sin z140 cosh x 2 E 0  

-cos Z I E O  sinh Z&O= 0 (2.116) 

- - 

-sin k1E0 cosh kz lo=  0 (2.117) 

with Eo=nl/R, and zl, zz,  k l ,  and k2 are given in 
equations (2.110). Some useful values of C1 and 
C2 are given in tables 2.33 and 2.34. In using the 
tables it is generally necessary to interpolate be- 
tween values shown for n l / R .  The frequency pa- 
rameter according to the membrane theory is 

0.01 1 3 5  - 7 9  11 1 3 1 5  

CIRCUMFERENTIAL HARMC(VIC WAVE NUM8ER.n 

FIGURE 2.73.-Comparison of lowest frequency param- 
eters between clamped-SI) and SD-SD shells; R/h= 
1000, E/R =3, v =0.3, m =I. (After ref. 2.84) 

TABLE 2.33.-Values of the Coeficient C1 i n  Equation (2.107) for Frequency 
Parameters of Clamped-SD Shells 

1 
Number of circumferential nodal circles -m 

"i? 0 1 2 3 4 

2 0.5169 0.8250 0.9156 0.9514 0.9681 
,3 .2982 .6656 .8248 .8951 .9307 
4 .I750 .5124 .7192 .8246 .8819 
5 .lo68 .3853 .6113 .7459 .8245 
6 .6783 X lo-' .2872 .5105 .6647 .7622 
7 .4466 X lo-' .2145 .4215 A .5847 .6966 
8 .3029 X 10-I .I613 .3457 .5094 .6319 
9 .2115 X 10-I .I226 .2828 .4412 .5689 

10 .1512XlO-I 9408 X lo-' .2315 .3803 .5088 
12 .8238 X l W z  .5729 X lo-' .I563 .2807 .4027 
14 .4815X10-z 3634 X lo-' .lo73 .2070 .3156 
16 .2980X10-2 .2391 X lo-' .751 X 10-I .I537 .2468 
18 1934 X lo-¶ 1626 X10-I .5366 X 10-1 .I152 .I933 
20 1305 X10-2 1138 X 10-I .3907 X 10-I .8721 X 10-1 .I521 
22 . 9110X10-a .8168X10-2 .2897 X 10-1 .6686 X 10-I .I204 
24 .6537 X .5996X10-2 .2184 X 10-I .5182 X 10-1 ,9586 X lo-' 
26 .4810 X .4491X10-2 .I671 X10-1 .4063 X 10-1 ,7697 X 10-I 
28 .3613 X loF3 .3426 X .I299 X 10-I .3217 X 10-I .6223 X10-I 
30 .2766X10-a .2653 X 1022 X 10-1 .2577 X 10-1 .5073 X 10-1 
32 .2151 X1O-a .2086 X .8138 X .2082 X 10-1 .4162 X10-1 
36 1357 X .1337X10-2 .5329X10-2 .I396 X 10-1 .2863 X 10-I 
40 .8970X10-4 ,8945 X .3619 X lo-* .9661X10-a .2021 X 10-1 
42 .7400 X lo-' .7417 x 104 3020 X .8123 X 10-2 1713 X 10-1 
44 .6160X10-4 .6199 X10-3 ,2539 X10-2 .6870 X .I461 X 10-1 
48 .4370 X lo-' .4425 X 1829 X .5009 X lo-% 1078 X 10-I 
50 .3720 X lo-' 3 7 7 7 ~  lo-a 1567 X .4311~10-2 .9335 X 10-2 
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Cooper (ref. 2.84) used the clamped-SD shell (1 - v2)Xm4 
9= as a specific example for demonstrating a com- Xm2+n2+ 1.748n2Xm2 

putational procedure for general shells of revo- 
lution. Linearized equations of reference 2.164 
were used in finite difference form. Numerical 
results are shown in figure 2.73, where the lowest 
value of the frequency parameter is plotted for 
each circumferential wave number n for both the 
clamped-SD and the S D S D  shells. The follow- 
ing parameters complete the specification of fig- 
ure 2.73 : R/h = 1000, l/R = 3, v = 0.3, m = 1. The 
clamped-SD shell of figure 2.73 has a minimum 
frequency which is 26 percent greater than that 
of the SD-SD shell. 

Ivanyuta and Finkelshtein (ref. 2.114) used 
the Galerkin method with the Donnell-Mushtari 
shell equations and a single set of beam functions 
to arrive a t  the following frequency formula: 

where 

The modal characteristics of a clamped-SD 
shell are shown in figures 2.74 and 2.75 for 
R/h=20, l/R= 10, n=2, m = l ,  v=0.3 (from 
ref. 2.72). 

Other sources containing limited information 
about the free vibrations of clamped-SD circular 
cylindrical shells include references 2.32, 2.33, 
2.34, 2.42, 2.44, 2.73, 2.139, and 2.165. 

TABLE 2.34.-Values of the Coeficient C2 in  Equation (2.107) for Frequency 
Parameters of Clamped-SD Shells 

I 
nz 

2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
36 
40 
42 
44 
48 
50 

Number of circumferential nodal circles -m 

4 

68.900 
31.150 
17.950 
11.820 
8.133 
6.500 
5.200 
4.309 
3.675 
2.847 
2.351 
2.028 
1.687 
1.664 
1.538 
1.450 
1.382 
1.328 
1.286 
1.249 
1.197 
1.158 
1.144 
1.120 
1.111 
1.100 

0 

4.640 
2.580 
1.828 
1.510 
1.341 
1.243 
1.182 
1.142 
1.112 
1.077 
1.055 
1.041 
1.032 
1.025 
1.021 
1.017 
1.014 
1.013 
1.010 
1.008 
1.006 
1.004 
1.003 
1.002 
1.000 
1.000 

1 

13.330 
6.430 
4.002 
2.900 
2.322 
1.850 
1.714 
1.558 
1.444 
1.303 
1.222 
1.167 
1.071 
1.106 
1.086 
1.072 
1.063 
1.052 
1.044 
1.039 
1.030 
1.025 
1.023 
1.019 
1.017 
1.015 

2 

26.950 
12.480 
7.425 
5.090 
3.822 
3.060 
2.563 
2.228 
1.988 
1.678 
1.495 
1.373 
1.291 
1.237 
1.195 
1.164 
1.139 
1.118 
1.103 
1.092 
1.071 
1.057 
1.051 
1.047 
1.039 
1.036 

3 

45.450 
21.400 
12.067 
8.060 
5.881 
4.595 
3.731 
3.145 
2.732 
2.192 
1.868 
1.665 
1.519 
1.424 
1.345 
1.289 
1.243 
1.211 
1.181 
1.161 
1.126 
1.101 
1.093 
1.078 
1.070 
1.063 



AXIAL COORDINATE x / l  

FIGURE 2.74.-Amplitude ratios for a clamped-SD shell; 
R/h =201 l/R =lo, n =2, v =0.3. (After ref. 2.72) 

FIGURE 2.76.-Lowest frequency parameters for clamped- 
free shells (see table 2.21 for admissible %); n=2. 

0.04 (After ref. 2.127) 

-0.06 
0 0.2 0.4 0 .6  0.8 1.0 

AXIAL COORDINATE x/A 

AXIAL COORDINATE x / l  

FIGURE 2.75.-Axial force and moment resultants for a FIGURE 2.77.-Lowest frequency parameters for clamped- 
clamped-SD shell; R/h =20, l/R=10, n=2, u =0.3. free shells (see table 2.21 for admissible €,,,); n =3. 
(After ref. 2.72) (After ref. 2.127) 
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2.4.3 Clamped-Free 

The boundary conditions for the circular cylin- 
drical shell which is damped at one end and free 
at the other are (see sec. 1.8) 

Lowest frequency parameters were given by 
Gontkevich (refs. 2.126 and 2.127) as shown in 
figures 2.76 through 2.79. The Rayleigh-Rita 
method using beam functions and the Donnell- 
Mushtari shell theory is the basis for the results. 
For the general formula yielding these curves, 
see equations (2.67) and (2.68) in section 2.4. 
Admissible values of E ,  for the abscissas of 
figures 2.76 through 2.79 are available in table 

FIGURE 2.79.-Lowest frequency parameters for clamped- 
free shells (see table 2.21 for admissible ern); n=5.  
(After ref. 2.127) 

2.21. It should be noted that the beam functions 
satisfy the free edge boundary conditions of the 
shell in only an approximate manner. 

Sewall and Naumann (ref. 2.107) also used the 
Rayleigh-Ritz technique with beam functions 
and the Goldenveizer-Novozhilov shell theory to 
obtain lowest frequency parameters for clamped- 
free shells and compared them with experimental 
results. They used seven terms in each of the 
series of the assumed mode shapes (i.e., clamped- 
free beam functions) in equations (2.91) to ob- 
tain convergence of the Ritz procedure. The 
results are shown in figure 2.80 for a 6061-T6 
aluminum alloy shell having h = 0.0255 in., 
R = 9.538 in., and 1 = 24.625 in. Mode shapes of 
the lowest frequencies for m= 1 and m=2 are 
depicted in figure 2.81. 

FIGURE 2.78.-Lowest frequency parameters for clamped- Numerical results were also obtained by Res- 

free shells (see table 2.21 for admissible ern); n =4. nick and Dugundji (ref. 2-85] using an energy 
(After ref. 2.127) method equivalent to Rayleigh-Ritz, beam func- 
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I J 
0 2 4 6 8 10 12 14 16 

NUMBER OF CIRCUMFEREWIAL WAVES.n 

FIGURE 2.80.-Theoretical and experimental frequencies 
for a clamped-free aluminum shell; R/h = 374, l / R  = 
2.58, h =0.0255 in. (After ref. 2.107) 

FIGURE 2.81.-Mode shape for a clamped-free shell. 

tions, and the Sanders shell theory. These are 
shown in table 2.35 and figure 2.82 for a 6061 alu- 
minum shell (E = 9.9X lo6 psi., p = 0.254X 
Ib-sec2/in4, v = 0.3) having R = 2.91 in., 1 = 12.02 
in., and h=0.0070 in. Good agreement between 
theory and experiment was found for n 2 5  for 
m= 1. Below n=5 ,  the experimental results 
tended towards the SD-free results. Larger dis- 
agreement between the theoretical clamped-free 
values and those of the experiment also is ap- 

parent as FZ is increased. These disagreements 
were regarded as resulting from insufficient 
axial constraint at  the boundaries during the 
experiments. I n  figure 2.83 (from ref. 2.85) the 
effect of a small change in thickness is seen, 
particularly for large n. Theoretical frequencies 
are also compared between the clamped-free and 
clamped-clamped shells. 

Weingarten (refs. 2.64, 2.140, and 2.197) ob- 
tained theoretical and experimental frequencies 
for clamped-free shells. Theoretical results were 
based upon the Donne11 theory and used Yu's 
assumption (X2<<n2) (see sec. 2.3.5). Numerical 

TABLE 2.35.-Theoretical and Experimental Fre- 
quencies (cps) for an Aluminum Shell; 
l /R  = 4.13, R/h = 416, h = 0.0070 in. 

Theoretical 

m n Experimental 
Clamped- SD-free 

free 
-- 

2 149 489 21 
3 165 246 60 
4 158 181 115 
5 200 207 186 

0 6 276 280 272 
7 374 378 375 
8 490 494 493 
9 626 627 626 

10 ......... 776 775 
11 ......... 941 940 

-- 
2 ......... 2512 1913 
3 984 1353 987 
4 675 827 596 
5 505 576 429 

1 6 436 476 389 
7 454 479 432 
8 531 549 525 
9 642 661 647 

10 783 799 791 
11 ......... 959 953 

-- 
2 ......... 4968 4544 
3 ......... 3081 2694 
4 ......... 2013. 1712 
5 1223 1401- 1175 

2 6 954 1047 881 
7 803 857 739 
8 745 787 708 
9 773 807 757 

10 873 892 861 
11 ......... 1021 1002 
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NUMBER OF CIRCUMFERENTIAL WAVES-n 

FIGURE 2.82.-Theoretical and experimental frequencies 
(cps) for an aluminum shell; R/h=415, l/R=4.13, 
h =0.0070 in. (After ref. 2.85) 

2 4 6 8 10 12 
NUMBER OF CIRCUMFERENTIAL WAVES - n 

FIGURE 2.83.-Theoretical frequencies for an aluminum 
shell; I =12.02 in. R=2.91 in. (Afier ref. 2.85) 

results are available from figures 2.84 and 2.85 
for a shell made of 1020 steel and having 
R/h=400, l/R=2.23, and h=0.010 in. Addi- 
tional results for a similar shell having R / h  = 100 
and h = 0.040 in. can be seen in figures 2.86 and 
2.87. The effects of imperfect clamping in the 
experimental models are again seen in these 
figures. Overall structural clamping coefficients 
were also obtained experimentally for the models 
in references 2.140 and 2.197. 

0 2 4 6 8 10 12 14 

n(NUM8ER OF CIRCUMFERENTIAL WAVES) 

FIGURE 2.84.-Theoretical and experimental frequencies 
(cps) for a steel shell; R/h =400, l/R =2.23, h =0.010 
in., m =O. (After ref. 2.64) 

FIGURE 2.85.-Theoretical and experimental frequencies 
(cps) for a steel shell, R/h =400, l/R =2.23, h =0.010 
in., m 30. (After ref. 2.64) 
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. . 
n(NUMBER OF CIRCUMFERENTIAL WAVES) 

FIGURE 2.86.-Theoretical and experimental frequencies 
(cps) for a steel shell; R/h = 100, Z/R =2.23, h =0.040 
in., m =O. (After ref. 2.64) 

Extensive numerical results for clamped-free 
shells were obtained by Sharma and Johns (refs. 
2.166, 2.167, and 2.168) using the Ritz method 
in conjunction with the Fliigge shell equations. 
Displacement functions were assumed in the 
form 

u = [Alvt(x) + A2+'(x)] cos ne cos ~ t )  

v =  [Blp(x) +B~+(x)] sin no cos w t  

w = [C~p(x) +C~$(X)] cos no cos at 

where p(x) and +(x) are the clamped-free and 
clamped-SD beam functions, respectively. Tak- 
ing equations (2.121) as they are written leads 
to a sixth degree characteristic determinant; set- 
ting A2 = B2 = C2 = 0 reduces the determinant to 
the third degree. Finally, imposing the condi- 
tions zero hoop (circumferential) and shear strain 
in the median plane leads to the relationships 

FIGURE 2.87.-Theoretical and experimental frequencies 
(cps) for a steel shell, R/h = 100, l /R =2.23, h = 0.040 
in., m>O. (After ref. 2.64) 

FIGURE 2.88.-Frequency parameters for clamped-free 
shells; m = 1, v =0.3, R/h = 100. (After ref. 2.166) 

respectively, and reduces the sixth degree deter- 
minant to one of the second degree. Frequency 
curves obtained using the third degree deter- 
minant are shown in figure 2.88 for m= 1, 
v = 0.3, and R/h = 100. Envelopes for various 
R/h ratios are depicted in figure 2.89. Numerical 
results obtained using the sixth degree (sextic), 
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8 L C 

8 - 
and second degree (quad- 

described above are 
- listed in table 2.36 for the swaying (n = 1) and 

0 /1 .\ 
ovalling (n= 2) modes of long shells (such as b 2 - ( 1 - V J  

B =  (2.126) 
smokestacks). Another study was made in refer- Cz+ (1 - Y) 
ence 2.169 using the Love-Timoshenko theory 

- , which yielded only small differences from the with fo = nz/R> and zl, zz> kl> and k2 are given in 
equations (2.110). Some useful values of C1 and above results. 

, . ~ ~ ~ d ~ ~ ~ h ~ ~  2.148) used the ~ ~ ~ ~ ~ l l -  C d r e  given in tables 2.37 and 2.38. In  using the 
I - Mushtari theory and the Southwell method to it is generally necessary to interpolate 

obtain lower bounds for 9. The frequency parame- between shown for nz/R. The frequency 

ters can be calculated from equation (2.107)) parameter the membrane theory is 

with CI and C2 for clamped-free shells being the 02= (1-v2)C1 (2.118) 
roots-of the equations 

Other sources containing limited information dx sin zllo sinh z2f0 about the free vibrations of clamped-free circular 
1-C1 cylindrical shells include references 2.25, 2.44, 

2.64, 2.103, 2.156, 2.170, 2.171, 2.172, 2.173, 
-- cos zifo cash zrb= 1 (2.123) 

2.174, and 2.175. - - 1-C1 ' I 

Chapter 5 contains additional information for 
, (a-+) sin klfo sinh k2b a clamped-free conical shell having a zero apex '4 F -4 - angle. 

,G 
- (I3 ++) cos kl&j C O S ~  kZfo=2 (2.124) - .,- 5 

2.4.4 Shear Diaphragm-Free I,, #;:% 
. . - - 

U. -.l.. 
# ,  --.r'= The boundary conditions for the circular . . -1 
I -  - 
- .. - 4.0 cylindrical shell which is supported by a shear - 

8 7- .J diaphragm at one end and is free at  the other are , _  ; , , r8 -- - 

8 -  4 Much information is available for this problem . - -d 
by considering the longitudinally antisymmetric 
modes of a free-free shell, which is discussed in 

- .-- 
section 2.4.5. That is. for m=2. 4. 6. . . . . the , , , 

shear diaphragm boundary conditions are dupli- 
cated at the center (x=1/2) of a free-free shell. . . 
In  particular, m=2  for the free-free shell corre- 

L 

sponds to the fundamental mode of the SD-free 
2 

' Tmm 

shell, while m = 4  corresponds to a higher mode r 

having one circumferential "node line? 
Numerical results were obtained for this 

, - " ~ ' d a  , d5 110 Zi0 & I o I& problem by Resnick and Dugundi (ref. 2.85) and - - h 

I C 
NR are shown in table 2.35 and figure 2.82. For 

FIGURE 2.89.-Frequency envelopes for clamped-free additional discussion of this figure and table see 
shells; m = 1, v =0.3. (After ref. 2.166) section 2.4.3. 
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TABLE 2.36.-Frequency Parameters w ~ d ~ ( 1 -  v2)/E X 102 for a Clamped-Free Shell; m = 1, v = 0.3 

I I R /h 
Degree 

of 
char. 50 100 150 200 250 300 
-- 

eq. 
n = l  n = 2  n = l  n = 2  n = l  n = 2  n = l  n = 2  n = l  n = 2  n = l  n = 2  

--- --- ppp 

S 2.0835 1.7081 2.0834 1.0351 2.0834 0.8540 2.0834 0.7808 2.0834 0.7445 2.0834 0.7240 
C 2.2042 1.7226 2.2041 1.0619 2.2041 .8871 2.2040 .a171 2.2040 .7826 2.2040 .7632 
Q 2.4579 1.7528 2.4578 1.1094 2.4578 .9432 2.4578 .a776 2.4578 .8455 2.4578 .a276 --- 
S .9406 1.5867 ,9405 .a351 .9405 .6001 .9405 .4921 .9405 .4331 .9405 .3973 
C .9984 1.5892 .9983 .a415 .9983 .6096 .9983 .5038 .9983 .4464 .9983 .4119 
Q 1.0994 1.5958 1.0993 .a533 1.0993 .6256 1.0993 .5230 1.0993 .4679 1.0993 .4351 ------- 
S .5320 1.5632 .5320 .7953 .5320 .5450 .5320 .4238 .5320 '.3539 .5320 .3095 
C .5655 1.5638 .5654 .7973 .5654 .5482 .5654 .4281 .5654 .3591 .5624 .3154 
Q .6198 1.5660 .6198 .SO13 .6198 .5539 .6198 .4353 .6198 .3677 .6198 .3251 
--------pp--p 

S .3414 1.5560 .3414 .7838 .3414 .5288 .3414 .4030 .3414 .3290 .3414 .2807 
C .3631 1.5561 .3630 .7845 .3630 .5300 .3630 .4048 .3630 .3311 .3630 .2832 
Q .3971 1.5570 .3971 .7861 .3971 .5324 ,3971 .4079 .3971 .3349 .3971 .2876 
p------pp-p-p 

S .2374 1.5531 .2374 .7794 .2374 .5227 .2374 .3952 .2374 .3194 .2374 .2695 
C .2526 1.5531 .2326 .7797 .2526 .5232 .2526 .3960 .2526 .3204 .2526 .2706 
Q .2759 1.5535 .2759 .7805 .2759 .5244 .2759 .3975 .2759 .3223 .2759 .2729 - ~ ~ - - ~ ~ ~ ~ ~ ~ - ~  
S .I746 1.5517 .I746 .7774 ' .I746 .5200 .I746 .3918 .I746 .3152 .I746 .2645 
C .I858 1.5517 .I858 .7775 .I858 .5202 .I858 .a921 .I858 .3156 .I858 .2650 
Q .2028 1.5519 .2028 .7780 .2028 .5209 .2028 .3929 .2028 .3167 .2028 .2663 ~ - - ~ - ~ ~ - - ~ ~ ~ ~  
S .I339 1.5509 .I339 .7764 .I339 .5186 .I339 .3900 .I339 .a131 .I339 .2620 
C .I423 1.5509 .I423 .7764 .I423 .5187 .I423 .3902 .I423 .a133 .I423 .2623 
Q .I553 1.5510 .I553 .7767 .I553 .5191 .I553 .3907 .I553 .3139 .I553 .2630 
- ~ ~ - - ~ ~ ~ ~ ~ ~ ~ ~  

S .lo61 1.5504 .lo61 .7758 .lo61 .5179 .lo61 .3891 .lo61 .3120 .lo61 .2607 
C .I125 1.5504 .I125 .7758 .I125 .5179 .I125 .3891 .I125 .3120 .I125 .2608 
Q .I227 1.5505 .I227 .7760 .I227 .5181 .I227 .3895 .I227 .3124 .I227 .2612 ---- ---- 
S .0863 1.5501 .0862 .7755 .0862 .5174 .0862 .3885 .0862 .3113 .0862 .2599 
C .0912 1.5501 .0912 .7755 .0912 .5174 .0912 .3885 .0912 .3113 .0912 .2599 
Q .0994 1.5501 .0994 .7756 .0994 .5176 .0994 .3887 .0994 .3116 .0994 .2602 

~ _ _ _ ~ ~ - ~ ~ ~ - - ~ ~ -  

S,C,Q 0 1.5492 0 .7746 O .5164 O .3873 O .3098 O .2582 , 
Notes: 

(1) S =sextic. 
(2) C =cubic. 
(3) Q =quadratic. 



I Number of circumferential nodal circles -m 

0 1 2 3 4 

2 0.1830 0.6854 0.8786 0.9355 0.9607 
3 .6857 X10-I .4512 .7512 .8621 .9578 
4 .2934 X 10-I .2851 .6129 .7714 .8541 
5 .I414 X 10-I .I821 .4839 .6739 .7845 
6 .7501 X10-z .I194 .3747 .5778 .7100 
7 .4300 XlO-% .8049 X 10-I .2880 .4883 .6349 
8 .2626 X lo-% .5566 X 10-I .2212 .4088 .5617 
9 1686 X lo-% .3946 X 10-I .I708 .3404 .4928 

10 1129 X lo-% .2858 X 10-1 .I327 .2827 .4302 
12 .5594 X .I586 X 10-I .8626 X lo-' .I951 .a242 
14 .3071 X 1 0 - L  9394 X lo-% .5285 X 10-I .I360 . a 3 3  
16 1819 X .5871 X lo-% .3509 X 10-I .9629 X 10-I .I826 
18 1144 X .3837 X lo-% .NO2 X 10-I .6934 X 10-I .I381 
20 .7540 X .2602 X lo-% .I689 X 10-I .5080 X 10-I .lo54 
22 .5170 X10-' .I823 X10-% . 1218x10-I .3786 X10-1 .8122 X 10-1 
24 .3660 X lo-' .I313 X lo-% .8970 X lo-% .2866 X 10-1 .6323 X 10-' 
26 .2660 X .9685 X ,6734 X lo-% .2202 x 10-1 .4977 x 10-1 
28 .I980 X10-4 -7287 X .5147 X lo-% .I715 X 10-1 .3956 X 10-1 
30 .I500 X .5585 X .3996 X lo-% .I352 X 10-I .3175 X10-1 
32 . 1160X10-4 .4353X10-3 .3144 X10-% .lo78 X10-I .2571 X 10-1 
36 .7200 X .2750 X lo-% .2020 X .7080 X lo-% 1730 X 10-1 
40 .4700 X10-6 .I822 X10-3 .1354X lo-% .4821 X10-% 1200 X 10-1 
42 . 3900X10-6 .I503 XIO-a .I124 X10-% .4027 ~ 1 0 - 2  1010 X 10-1 
44 .3200 Y .I253 X .9395 X .3387 X lo-% .8550X10-5 
48 .220n >: 10-6 .8890 x 10-4 .6717 x 10-3 .2444 x lo-% .6243 x lo-% 
50 190( Y lob6 .7560 X .5734 X 10-3 .2095 X lo-% .5375 X lo-% 
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TABLE 2.38.-Values of the Coeficient Cz in Equation (1.107) for Frequency 
Parameters of Clamped-Free Shells 

2 
Number of circumferential nodal circles -m 

nB 0 1 2 3 4 

2 1.473 5.578 14.70 28.76 47.77 
3 1.208 3.082 7.117 13.36 21.80 
4 1.116 2.200 4.463 7.966 12.710 
5 1.073 1.781 3.232 5.471 8.505 
6 1.049 1.556 2.562 4.115 6.220 
7 1.035 1.408 2.156 3.297 4.842 
8 1.025 1.314 1.891 2.766 3.948 
9 1.019 1.249 1.706 2.400 3.300 

10 1.015 1.203 1.576 2.138 8.895 
12 1.009 1.141 1.403 1.795 2.322 
14 1.006 1.103 1.230 1.587 1.975 
16 1.003 1.079 1.228 1.451 1.749 
l S  1.002 1.062 1.180 1.357 1.594 
20 1.001 1.050 1.146 1.290 1.482 
22 1.0 1.041 1.121 1.240 1.399 
24 1.0 1.034 1.101 1.202 1.335 
26 1.0 1.029 1.086 1.172 1.286 
28 1.0 1.025 1.074 1.148 1.247 
30 1.0 1.022 1.065 1.129 - 1.215 
32 1.0 1.019 1.057 1.113 1.189 
36 1 .0  1.015 1.045 1.090 1.150 
40 1.0 1.012 1.036 1.073 1.121 
42 1.0 1.010 1.033 1.066 1.110 
44 1.0 1.009 1.030 1.060 1.100 
48 1.0 1.008 1.025 1.050 1.084 
50 1.0 1.007 1.023 1.046 1.077 

Additional results were obtained by Wein- 
garten (refs. 2.64 and 2.140) and are shown in 
figures 2.84 through 2.87. For additional dis- 
cussion of these figures see section 2.4.3. 

The free vibration problem for SD-free shells 
is also discussed in references 2.44 and 2.62. 

2.4.5 Free-Free 

The boundary conditions for the completely 
free circular cylindrical shell are 

where, of course, expressions for the generalized 
forces N,, Nzs, M,, M,e, and Q, must be taken 
according to the shell theory being used (see 
sec. 1.5). 

The free-free circular cylindrical shell is an 
appropriate place to discuss the classical and 
well-known inextensional theory of shells. The 
kinematics of deformation of this theory require 
that the middle surface of the shell deforms with- 
out stretching. For a circular cylindrical shell 
this in turn requires that the generators of the 
cylinder remain straight during vibration. 

The inextensional theory was used in an early 
study by Rayleigh (ref. 2.124) in 1881 to describe 
the deformation and vibration of thin shells of 
revolution. Rayleigh claimed that, if the shell 
were sufficiently thin and vibrating in one of its 
lower modes, the middle surface behaves as if it 
is inextensible. This hypothesis was subsequently 
criticized by Love (ref. 2.25) because of its failure 
to satisfy the equations of motion and the neces- 
sary boundary conditions. Rayleigh, undaunted, 
continued by applying the theory to the circular 
cylindrical shell (refs. 2.24 and 2.176). 



modes for circular cylindrical shells. The first set 
is due to Rayleigh and is characterized by the 
displacements 

u=O I 
v = C sin no cos w t  } (2.129) 

w = c cos no cos wt J RAYLEIGH LOVE rn= l 
< , 

and was assumed to be applicable for long shells. INEXTENSIONAL 
Setting the maximum strain energy stored in the 
shell during vibration equal to the maximum FIGURE 2.90.-Mode shapes of a free-free circular 

kinetic energy, Rayleigh obtained cylindrical shell. (&fter ref. 2.107) 

The second set, more applicable to shells of arbi- 
trary length, assumes displacements of the form 

R 
u = -C cos n p  cos w t  

n 

v = ZC sin n p  cos wt I (2.131) 

w = n z C  cos n p  cos wt 1 
where Z is the length coordinate measured from 
the center section of the shell (x = 1/2). Using 
this set of mode shapes, Love (ref. 2.26) obtained 
the following formula for frequency parameters: 

which gives equation (2.130) as a special case as 
1/R+ co. 

References 2.3, 2.62, 2.78, 2.138, 2.173, 2.177, 
2.178, 2.179, and 2.180 also contain discussions 
of the inextensional vibrations of circular cylin- 
drical shells. 

Beam functions for use with equations (2.91) 
the Rayleigh-Ritz or an equivalent technique 
are given by 

with s = x/R and Am= Rern/l as before, ern are the 
roots of equation (2.93), a, is given by equation 
(2.94) and values of E, and cum are given in table 
2.23. The first two mode shapes in equation 
(2.133), denoted as XR(X) and XL(X), are the 
rigid body translation and rotation modes, re- 
spectively, of a free-free beam. In  the beam 
vibration problem they are trivial modes having 
zero frequencies. However, for the circular cylin- 
drical shell they yield the Rayleigh and Love 
inextensional modes, respectively, as discussed 
earlier in this section. The mode shapes of a 
free-free shell in the Rayleigh, Love, and m = 1 
modes are shown in figure 2.90. 

Warburton (ref. 2.78) followed the procedure 
outlined in section 2.4 to obtain an exact solu- 
tion to the Fliigge equations of motion in the 
form of equations (2.53) and satisfied the free- 
free boundary conditions exactly. However, in- 
stead of using the second of the conditions given 
by equation (2.128), which is necessary to be 
consistent in the G ~ ~ C U ~ U S  of variations, the con- 
ditions N,e = 0 was used. After substituting into 
the boundary conditions, the resulting frequency 
equation for the symmetric modes is the one 
given previously as equation (2.75), where 
Ol=Xll/2R, etc., as before, and where equations 
(2.76) are still used to obtain the antisymmetric 
frequency equation. However, the coefficients 
bi which appear in equation (2.75) are now 
given by 



b4 = (1118 - 1325) (111114- 110115) 
I 
I with the constants ki related to the amplitude 

+ (1117 - 1416) ( i i2114 - kolid ! ratios by equations (2.78), and with the ampli- 

bg = (1118- Zsls) (112114- 110116) I tude ratios determined by equations (2.79) for 
v = 0.3. - (111.7- 1415) (billla- llolls) (2.134) In reference 2.78, Warburton compared fre- 

be = (110113 - 19114) (141s- 1317) quency parameters for free-free shells obtained 

where 

l1 = k2a1+vnkl- v+Par12 I 

- (lnZ15- 111113) (1316 - kls) J by using two procedures: 
!12113 - 19116) (1416 - 1217) (1) The exact procedure, using FluggeJs equa- 

tions, as described previously in this section. 
(2) The Rayleigh-Rita procedure, using a sin- 

gle set of free-free beam functions and the Flugge 
strain energy integrand. 

n=2, and l/R=4. The error tends to decrease 

Numerical results are listed in table 2.39 wherein I 
selected values of the square of the frequency 
parameter Cl are prescribed and the Z/R ratios 
corresponding to given values of m are deter- I 

I l5 = a12- vn2+vnkl+alk2 minedfrom &uati&n (2.75). The percentage by 
which the Rayleigh-Ritz frequency exceeds the 

l6 = - ~2~ - vn2+ vnk3 -72k4 I exact frequency is also listed in each instance. I 
I The ratio bf the transverse deflection at one end 17=p2-q2-vn2+k7p-k8q+vnk~ 

of the shell (z=l)  to that at the center section I 
Z8 = - 2pq- klq- kap - vnks ( z  = 1/2) in the corresponding vibration mode is 

also given for the exact solution. It is seen that 
19 = -nk2+ (l+P)klal-Pnal typically the percentage error in il increases as 

llo=nkr- (l+P)karz+Pnw l / R  decreases. However, for n = 2  the frequency 
increases to a maximum and then decreases as 

111 = nks- (1 +PI (k5q+k6p) +Pnq l / R  increases further; this is shown in table 2.39 
,lla= -nk7+(1+B)(ksp--ksq) -Pnp for R/h=500, but was found typical for n=2 

s I- \ n  I .  o with three other values of R/h in reference 2.78. 
6x3 = alY - VA- v)naalt&zal- 

1 1 (2.135) For the range of parameters considered in the in- 
+-(I - v)n2kz+-(3 - v ) n k ~ a ~  vestigation, the maximum error found was ap- 

2 2 proximately 10 percent and occurred for m= 2, 

- .- . .- 
i 1 with increasing n, although for large n ( 2  l2) ,  it is 

--(I - v)n2k4--(3- v)nk3y2 
2 2 essentially independent of n, as shown in the 

table for n=16. It is interesting to note that 
115= -q(3p2-q2)+(2- v)n2q the maximum error in the frequency determined 

- 2 ~ q k ~ - k s @ ~ - q ~ )  by the approximate Rayleigh-Ritz procedure is 
1 

- 4 3  - v)n(ksq+k6p) 
of the same order, and occurs for the same pa- 

2 rameters, as was found in a similar approximate 
1 analysis for clamped-clamped shells (see table 

--(I - v)n2k8 
2 2.24), even though the clamped-clamped beam 

functions satisfy the clamped shell boundary 1 lls=p(p2-3q2) - (2-v)n2p 
. , 

conditions exactly, while the free-free beam func- w 
+kib2-q2) -2pqks tions only approximate the free boundary con- 

1 ditions for a shell. This is in contrast to what is 1 
+;(I - v)n2k1 'L  found in the vibration of rectangular plates (ref. . 

1 
+q(3 - v)n(kbp - k d  

2.157) where the effect of free edges is to increase , 
the error in the approximate frequencies obtained , 





5 1 '  

P 1 - 
it. ' 1 i- - 
r . 

TABLE 2.39.-Length Ratios (1/R) of Free-Free Shells for a Given Q2 from 
Equation (2.75) and Some Comparisons; v = 0.3-Concluded 

m 
n R/h Q2 Item 

1 3 5 

l / R  19.6 45.7 71.9 
0.249 e .12 .06 .04 

Z - .83 .83 - .83 

l / R  7.96 17.0 26.0 
.255 e .31 .19 .12 

Z -1.13 1.13 -1.13 
6 20 

l / R  4.71 9.90 15.1 
.27 e .47 .34 .24 

Z -1.21 1.21 -1.21 

l / R  1.60 3.41 5.23 
.5 e 1.1 1 .2  .95 

Z -1.33 1.29 -1.29 

1/R 71.6 207 343 
.021591 e 0 0 0 

Z - .10 .10 - .10 

l / R  24.3 63.4 107 
.021595 e .02 .01 0 

Z - .33 .33 - .33 

l / R  13.4 33.4 53.4 
500 .02161 e .04 .02 .01 

Z - .61 .61 - .61 

l / R  7.66 17.6 27.5 
.02166 e .10 .05 .03 

Z - .91 .91 - .91 

l / R  3.40 7.37 11.3 
.02210 e .24 .14 .09 

Z -1.21 1.21 -1.21 
16 

l / R  51.4 149 246 
.53977 e 0 0 0 

Z - .ll .I1 - .ll - 
l / R  22.6 62.1 102 

.53986 e .02 .01 0 
Z - .27 .27 - .27 

l / R  12.6 32.4 52.2 
100 .5402 e .05 .02 .01 

Z - .50 .50 - .50 

l / R  7.29 17.2 27.1 
.5415 e .12 .05 .03 

Z - .so .80 - .so -- 
l / R  3.41 7.37 11.3 

.5505 e .29 .16 .ll 
Z -1.08 1.08 -1.08 

Notes: 
(1) e =Percent error in Rayleigh-Ritz frequency. 
(2) Z = w (1) /w (l/2). 
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FIGURE 2.93.-Lowest frequency parameters for free-free A~=S,,,R/~ 

shells (see table 2.21 for admissible em); n =2, O<A,< 
3.5. (After ref. 2.127) FIGURE 2.95.-Lowest frequency parameters for free-free 

shells (see table 2.21 for admissible em) ; n =4, 0 <A, 5 
3.0. (After ref. 2.127) 
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FIGURE 2.94.-hest frequency parameters for free-free FIGURE 2.96.-Lowest frequency parameters for free-free 
shells (see table 2.21 for admissible e,,,), n -3, 0 <Am 5 shells (see table 2.21 for admissible k), n =5, 0 <Am 5 

< 

3.0. (After ref. 2.127) 3.0. (After ref. 2.127) 
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THIN CIRCULAR CYLINDRICAL SHELLS 

Sewall and Naumann (ref. 2.107) also used the 
Rayleigh-Ritz technique with beam functions 
and the Goldenveizer-Novozhilov shell theory to 
obtain lowest frequency parameters for free-free 
shells and compared them with experimental re- 
sults. However, they employed nine terms in 
each of the series of the assumed mode shapes 
appearing in equations (2.91) to obtain conver- 
gence of the Rita procedure, except for the 
modes which are similar to Rayleigh and Love 
inextensional modes. For the latter modes, only 
a single term of the series was required for con- 
vergence over most of the range of n values, 
with the exception of the range 1 0 5 n 1 1 5  for 
the Love-type mode. This rapid convergence of 
the method for the Rayleigh and Love-type 
modes to modes which are, for all practical pur- 
poses, the Rayleigh and Love modes themselves 
(as given by equations (2.129) and (2.131)), is a 
strong indication of the accuracy of these ap- 
proximations. The results are shown in figure 
2.97 for a 6061-T6 aluminum alloy shell having 
h = 0.0255 in., R = 9.538 in., and 1 = 25.125 in. 
In  this figure it is seen that the Rayleigh and 
Love modes have very nearly the same fre- 
quencies. For figure 2.97 the measured frequencies 
for the two inextensional modes were obtained 
with an air shaker; experimental frequencies for 

0 RAYLEIGH 

0 m = l  
A m = P  

0 

the higher modes (m = 1,2) were obtained with an 
electrodynamic shaker. 

Griitzmacher, Kallenbach, and Nellessen (ref. 
2.62) proposed an interesting method of obtain- 
ing frequencies for circular cylindrical shells hav- 
ing arbitrary boundary conditions. The procedure 
consists of using the characteristic equations for 
an SD-SD shell (as given for the various theories 
by eqs. (2.35) and (2.36) and table 2.4) and use 
the appropriate values of X arising in the beam 
functions for the desired boundary conditions 
instead of the X for an S D S D  shell. They dem- 
onstrated this procedure for a free-free shell and 
compared the frequencies obtained with experi- 
mentally measured ones. The Fliigge character- 
istic equation (see table 2.4) is taken in its 
linearized form (neglecting @and Q4 terms). In  
addition the theory of Coupry (refs. 2.12 and 
2.13) is used (a theory which arrives at  a sym- 
metric form of Love's equations of motion in an 

COUPRY THEORY 

0 EXPERIMENT 

NUMBER OF CIRCWFERENTIAL WAVES. n Am=.smR/i 

FIGURE 2.97.-Theoretical and experimental frequencies FIGURE 2.98.-Theoretical and experimentally deter- 
for a freefree aluminum shell; R/h=374, l/R=2.63, mined frequencies parametera for s free-free shell; 
h =0.0255 in., (After ref. 2.107) v =0.35, R/h =2.94, l/R =2.17. (After ref. 2.62) 
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--- COUPRY THEORY 

0 EXPERIMENT 

FIGURE 2.99.-Theoretical and experimentally deter- 
mined frequencies parameters for a free-free shell; 
v =0.35, R/h =17.6, l /R =11.42. (After ref. 2.62) 

e= 

COUPRY THEORY 

o EXPERIMENT 

FIGURE 2.100.-Theoretical and experimentally deter- 
mined frequencies parameters for a free-free shell; 
v =0.35, R/h =8.48, l /R =11.8. (After ref. 2.62) 

+= 
FIGURE 2.101.-Theoretical and experimentally deter- 

mined frequencies parameters for a free-free shell; 
v =0.35, R/h =2.5, l /R =13.3 (After ref. 2.62) 



COUPRY THEORY 

' values of for the figures are available in table of the equations 
2.21. The usefulness of the theoretical results in cos zlto cash z250 

Figure 2.103 used measured frequencies for eight 
- . shells having 

2.55 Rlh544.5 

10.2 5 I/R 5 143 
with to=nl/R, and 21, zz, kl, and k2 are as given -, 

Kondrashov (ref. 2.148) used the Donnell- in equations (2.110). Some useful values of C1 . - 
Mushtari theory and the Southwell method to and Cz are listed in tables 2.40 and 2.41. In  using - L - 
obtain lower bounds for a. The frequency param- these tables it is generally necessary to interpo- 



late between values shown for nl/R. The fre- 
quency parameter according to the membrane 
theory is 

D2=(1-v2)C1 (2.139) 

Experimentally determined frequencies ob- 
tained by Grinsted (ref. 2.181) for R/h = 78.2, 
l/R = 2.4, and h = 0.064 in. (the material is not 
known, but presumably is steel) are shown in 
figure 2.104. 

The modal characteristics of a particular free- 
free shell having R/h= 20, l/R = 8.1, v =0.3, 
m = 1, and n = 0 (axisymmetric) are shown in fig- 
ure 2.105 (from ref. 2.73). The value of D associ- 
ated with these curves is 0.3671 and was obtained 
from the Fliigge theory by the exact method. It 
is interesting to compare the various generalized 
displacements and forces shown in the plots with 
the corresponding plots for an S D S D  shell, 

T A B L ~  2.40.-Values of the Coeficieni CI in 
Equation (g.107) for Frequency Parameters of 
Free-Free Shells 

I Number of circumferential nodal circles (m+l) 

"3 2 3 4 

2 0.8107 0.9065 0.9501 
3 .6199 .8042 .8909 
4 .4327 .6840 .a146 
5 .2863 .5619 .7277 
6 .I860 .4493 .6375 
7 .I216 .3529 .5494 
8 .8096X10-I .2742 .4672 
9 .5522 X 10-1 .2124 .3937 

10 .3859 X10-1 .I646 .a295 
12 .2020X10-1 .lo04 .2291 
14 .I144 X 10-I .6298 X 10-I .I592 
16 .6918X10-2 .4087XlO-I .I117 
18 .4412 X lo-\ 2741 XlO-I .7957 X 10- 
20 .2938 X 10-2 .I894 X 10-I .5759X10-I 
22 .2029 X1W2 .I345 X10-I .4240 X l W 1  
24 .I445 X .9782 X .3174X10-1 
26 .lo56 X .7272 X .2414 X 10-I 
28 .7888 X .5506 X .I864 X 10-I 
30 .6012 X lo-' .4242 X 1458 X 10-I 
32 .4659 X 10-8 .3317 X .1154X10-I 
36 .2923 X .2109 X .7494 X 10- 
40 .I924 X lo-' .I403 X .5054X10-' 
42 .I585 X10d8 . 1160X10-2 .4206 X lo-* 
44 . 1318X10-8 .9677 X10-3 .3526 X lo-* 
48 . 9320X10-4 .6885 X10-8 .2529 X 
50 .7920 X lo-' .5866X .2162 X 

where a radial constraint (w = 0) would be ap- 
plied at  the ends. The SD-SD shell gives sinus- 
oidal variations in all quantities plotted (see secs. 
2.3 and 2.3.2). The only noticeable deviation 
from sinusoidal patterns in figure 2.105 is seen 
in the force distributions. The moment resul- 
tants M, and Me show very slight distortions at  
the boundary. The circumferential (hoop) force 
resultant Ne is not zero a t  the boundary, but is 
very small. The largest distortion from sinusoidal 
behavior is in the shearing force Q,, which would 
yield a cosine curve for the S D S D  shell. 

For n =  1 (beam bending mode) the modal 
characteristics of a free-free shell are shown in 
figures 2.106 and 2.107 for l/R = 5, v = 0.3, m = 1, 
n = 1. The curves fit both R/h = 20 and 500, and 
D = 0.3583 for both thickness ratios, showing the 
importance of overall beam bending behavior 
compared with localized bending through the 
shell wall. Local bending near the free edges is 
seen in figure 2.107. 

Free vibrations of free-free circular cylindrical 
shells are also discussed in references 2.3, 2.7, 
2.44, 2.45, 2.103, 2.134, 2.139, 2.182, 2.183, and 
2.184. 

FIGURE 2.104.-Experimentally observed frequencies for 
a free-free shell; R/h =78.2, l / R  = 2.4, h = 0.064 in. 
(After ref. 2.181) 



TABLE 2.41.-Values of the Coeficient Cz in  Equution (2.107) for Frequency 
Parameters of Free-Free Shells 

1 
Number of circumferential nodal circles (m + 1) 

n- - 
R 

0 1 2 3 4 
-- 

2 2.263 7.170 16.840 32.550 51.200 
3 1.682 3.950 8.230 14.730 23.450 
4 1.423 2.770 5.195 8.830 13.710 
5 1.282 2.191 3.765 6.100 9.210 
6 1.200 1.860 2.975 4.595 6.760 
7 1.148 1.650 2.485 3.685 5.280 
8 1.113 1.507 2.160 3.080 4.300 
9 1.088 1.408 1.932 2.670 3.635 

10 1.071 1.342 1.764 2.365 3.155 
12 1.047 1.236 1.541 1.967 2.521 
14 1.032 1.173 1.404 1.724 2.130 
16 1.021 1.132 1.308 1.557 1.874 
18 1.016 1.103 1.245 1.446 1.698 
20 1.014 1.087 1.202 1.365 1.568 
22 1.011 1.073 1.167 1.302 1.474 
24 1.009 1.061 1.142 1.255 1.400 
26 1.007 1.051 1.122 1.217 1.343 
28 1.006 1.042 1.104 1.187 1.294 
30 1.004 1.037 1.091 1.164 1.257 
32 1.002 1.032 1.078 1.143 1.226 
36 1.001 1.024 1.061 1.112 1.179 
40 1.0 1.020 1.050 1.092 1.146 
42 1.0 1.018 1.043 1.081 1.131 
44 1.0 1.015 1.041 1.076 1.120 
48 1.0 1.012 1.034 1.062 1.100 
50 1.0 1.010 1.030 1.058 1.092 

FIGURE 2.105.-Modal characteristics of a free-free shell; 
R/h=20, l/R=8.1, v=0.3, n=O, m=l .  (After ref. 
2.73) 
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FIGURE 2.106.-Mode shape for a free-free shell;R/h =20 
and 500; l/R =5, v=0.3, m =1, n =l. (After ref. 2.73) 

FIGURE 2.107.-Force and moment resultants for the 
mode shape of figure 2.106. (After ref. 2.73) 

OF SHELLS 

2.4.6 Edges Not Necessarily Clamped, SD, or Free 

Thus far only six cases of circular cylindrical ,, 
shells of finite length having some combination 
of clamped, shear diaphragm, or free edges have 
been considered. The remaining 130 possible 
combinations of simple boundary conditions will 
now be taken up. Remembering the possible 
conditions 

(a) u=O or (b) N,=O (2.140) 1 
MZe 

(b) Nze+R=O (2.141) 

A somewhat more compact notation will now be 
used to aid in labeling future problems: 

Eight symbols will be needed to completely define 
the boundary conditions at  both ends of a shell. 
In  order to have immediate recognition of the 
conditions being considered, the notation given 
in equations (2.140) through (2.144) will be used 
for identification. The complete description of a 
problem will be given by a single set of paren- 
theses in the format shown in the examples below: 

Clamped-free: (u  v w w,, - N, S,e V ,  M,) 

Clamped-SD : (u  v w w,, - N ,  v w M,) 

I n  spite of the vast number (130) of distinct 
problems encompassed by this section, significant 
information is available below for most of them. 

(u  S,e V ,  w,, - u S,e V ,  w,,) shells have the 
same frequencies as (N, v w M, - Nz v w Mz) 
shells (i.e., SDSD).  The displacement functions 
given by equations (2.20) with X = m ~ R / l  are 
simply shifted by ~ / 2  with respect to the longi- 
tudinal coordinate s, giving 



u =A sin Xs cos n8 cos wt Mushtari theory and the Southwell method (cf., 
L- refs. 2.161 and 2.162) to obtain lower bounds for 

v = B cos XS sin n8 cos wt (2'145) the frequency parameter Q. This method depends 
w = C cos Xs cos no cos wt upon finding the frequencies from two separate 

problems, one where the bending stiffness is 
which satisfy the (U S,e '2 w+ - Szs vz ~8,)  neglected, and another where membrane effects 
boundary conditions exactly. Physically stated, are neglected. The sums of the squares of the two 
the boundary conditions for this shell are met a t  frequencies is then known to be less than or equal 
the antinodal section (e.g., x=1/2 for m = l )  of to the square of the actual frequency. The follow- 
an SD-SD shell. All modal characteristics ing formula was derived for computing lower 
of (U 8,s V, W,, - U S,e Vz w,,) shells are similarly bounds on ~ 2 :  

shifted by ~ / 2 .  
Q2 = (1 - ~ ~ ) C l + k n ~ C 2 ~  Because in most cases the modes having the - 

lowest frequencies are predominantly radial in 
nature (A/C, B/C<<l), lines where w = O  are 
usually called "nodal circles." I n  the case of 

- antisymmetric modes (m = 2,4, . . .) of a circular . . 
8 - cylindrical shell having symmetric boundary 

- - conditions, the nodal circle occurring a t  x = 1/2 
- also has v =0, and the shear diaphragm boundary k< ...; - 

, 
conditions are exactly reproduced a t  that section. 

I .  '- Similarly, in the case of symmetric modes 

: (m = 1, 3, . . .) for symmetric boundary condi- 
tions, the complementary (u Sze V, w,,) boundary 
conditions are exactly reproduced a t  x = 1/2. 
This leads to the following two useful statements 
which can be applied to obtain further informa- 
tion from the problems having symmetric (with 

spect to x = 1/2) boundary conditions: 

(1) Frequencies and modal characteristics of 
circular cylindrical shell having shear di* 

phragm (N,v w M,) boundary conditions a t  one 
end and any of the 16 possible sets of boundary 

nditions a t  the other end can be obtained 
- directly from the antisymmetric modes of the 
:: problem having the same boundary conditions 
' - at  both ends. 
- (2) Frequencies and modal characteristics of 

L a circular cylindrical shell having complementary 
- (u S,e V, w,,) boundary conditions a t  one end and 

. any of the 16 possible sets of boundary conditions 
, at  the other end can be obtained directly from 

- the symmetric modes of the problem having the 
- . same boundary conditions at both ends. 

m - 

where k = h2/12R2, v is Poisson's ratio, n = num- 
ber of circumferential waves, and C1 and C2 are 
coefficients depending upon the particular bound- 
ary conditions of the shell. The coefficient C1 
arises from the membrane solution and depends 
only upon the membrane constraints (u, v,  N,, 
S,e). Similarly, Cz is found from the bending solu- 
tion and depends only upon the boundary condi- 
tions involving w, w,,, V,, and M,. There are 
10 distinct membrane problems possible using all 
combinations of boundary conditions. Similarly, 
there are 10 distinct bending problems. When put 
together, these yield the 136 possible, distinct 
shell problems. Although Kondrashov gave ex- 
tensive results, he only considered four sets of 
membrane conditions and six sets of bending 
conditions. Each set of conditions leads to  a 
characteristic equation for the determination of 
either C1 or C2. Four membrane and four bending 
characteristic equations have already been given 
for the clamped-clamped, clamped-SD clamped- 
free, and free-free problems. The remaining two 
bending equations include one for (w M, - w M,) 
boundary conditions given by 

sin kl.$o = 0 (2.147) 

and one for (w M, - V, M,) boundary conditions 
given by - #  .r 

- cos kl50 sinh k2Eo= 0 (2.148) 
Y 

I .  

Thus, for example, the results for the symmetric 
k modes of a (u v w w,, - u v w w,,) shell can be ap- 
,( ' plied to the problem of a (u v w w,, - u S,e V, w,,) 

shell. 
I<ondrashov (ref. 2.148) used the Donnell- 

with Eo=nl/R and kl and k2 given in equations 
(2.110). Roots of equation (2.147) are klEo=?r, 
27r, 3n, . . . . Roots of equation (2.148) are given 
in table 2.42. The types of membrane and bend- 
ing boundary conditions which can be accommo- 
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TABLE 2.42.-Values of the Coeflcient Cz in Equation (2.107) for 
(w M ,  - V ,  M,) Boundary Conditions 

I 
Number of axial half-waves -m 

"R 0 1 2 3 4 

2 1.416 5.190 13.720 27.410 47.700 
3 1.201 2.970 6.760 12.730 20.900 
4 1.114 2.158 4.305 7.665 11.226 
5 1.070 1.764 3.155 5.300 8.250 
6 1.047 1.542 2.521 4.022 6.030 
7 1.033 1.402 2.132 3.238 4.640 
8 1.025 1.312 1.877 2.775 3.878 
9 1.019 1.247 1.698 2.375 3.285 

10 1.015 1.201 1.570 2.120 2.864 
12 1.007 1.140 1.400 1.787 2.305 
14 1.005 1.102 1.296 1.584 1.965 
16 1.000 1.077 1.227 1.447 1.744 
18 1.000 1.061 1.178 1.355 1.590 
20 1.0 1.048 1.147 1.288 1.480 
22 1.0 1.041 1.121 1.240 1.398 
24 1.0 1.033 1.102 1.202 1.334 
26 1.0 1.029 1.086 1.172 1.288 
28 1.0 1.025 1.073 1.148 1.247 
30 1.0 1.021 1.064 1.128 1.214 
32 1.0 1.017 1.056 1.112 1.188 
36 1.0 1.014 1.042 1.086 1.141 
40 1.0 1.012 1.038 1.072 1.122 
42 1.0 1.009 1.032 1.061 1.103 
44 1.0 1.008 1.030 1.059 1.100 
48 1.0 1.007 1.022 1.046 ' 1.083 
50 1.0 1.006 1.018 1.044 1.078 

- 

dated by Kondrashov's results are summarized 
in table 2.43. 

For example, one can find frequency param- 
eters for (u v w Mz - N, Y w w,,) shells by using 
values of C1 and Cz from tables 2.33 and 2.34, 
respectively, in equation (2.146). Thus the lower 
bounds predicted by this method are exactly the 
same as for the clamped-SD case. Both cases 

- have the same separate membrane and bending 
problems. In using the tables care must be exer- 
cised in using numbers of axial half-waves which 
are compatible with the combined boundary con- 
ditions for the shell problem. Of course, the mem- 
brane a n d  bending solutions are not entirely 
compatible in axial wave length to begin with; 
the accuracy of the bounds will be limited par- 
ticularly in those modes where the bending and 
stretching strain energies are of comparable 
magnitude and coupling is significant. 

Forsberg (ref. 272) wrote an excellent paper 

TABLE 2.43.-Sources of Characteristic Equations 
and Their Roo2s for Use in Equation (2.146) 

Boundary Characteristic 
conditions equation 

u v  - u v  eq. (2.108) 
u v  - N,v eq. (2.116) 
u v  -NzN,e  e.q (2.123) 
N, &e - Nz sze eq. (2.136) 

w w,, - w w,, eq. (2.109) 
w w., - w M, eq. (2.117) 
W W , .  - V ,  Mz eq. (2.124) 
vz Mz - V ,  Mz eq. (2.137) 
w M ,  - w M ,  eq. (2.147) 
w M, - V z  M, eq. (2.148) 

Roots 

table 2.25 
table 2.33 
table 2.37 
table 2.40 

table 2.26 
table 2.34 
table 2.38 
table 2.41 
7r, 2T, 37r . . . 
table 2.42 

comparing the significance of types of boundary 
conditions upon free vibration frequencies and 
modal characteristics. The following 10 problems 
were considered in detail. 



2. N , v w M , - u u w M ~  
3. u v w M , - U V W M ,  
4. N, S,e w M,  - N, S,e w Mz 
5 .  u S , e w M , - u S , e w M ,  
6 .  N ~ v ~ w , ~ - N , v w w , ,  

I 7. ?IVW,,-uvww,,  
(clamped-clamped) 

8. N, Sze w  w,, - Nz S,e w  w,, 
9. u Sze w  w,, - U S,e w  w,, 

10. N,  v  w  M,  - u v  w  w,, (SD-clamped) 

Results were obtained by the exact procedure 

inertia terms were retained. 

2.39 and 2.40, where, for the beam bending mode 
(n=l ) ,  relaxation of the w,, condition for the 
clamped-clamped shell (case 7) causes changes in 
fi which are too small to plot. 

The effect of axial constraint at the edge (u  = 0 )  
is illustrated in figure 2.109. Here the frequency 

direct contrast to the previous case, the effect of 
axial constraint is significant even for very long 
shells and all values of R/h. The minimum fre- 
quency for case 3 is about 40 to 60 percent higher 
than that of case 1 throughout most of the region 

tics. From the modal characteristics of clamped- upon envelopes for 0. (After ref. 2.72) 
,L 

membrane forces caused by u=O perpetuate w=M,=O at both ends). In  figure 2.111 all 
' 

throughout the length of the shell. have "clamped" types (i.e., w =w,,=O at both 
Consider next the relation of the circumfer- ends) of boundary conditions. It is clear from - ential restraint u = 0.  The effects of this con- these figures that the effects of v  = 0  are more 



1.0 important for short and thick shells and be- 
come less important than the effects of u =  0 for 

0.5 long shells. As pointed out in reference 2.72 the 
greatest change in frequency due to relaxing 

0.2 
a the condition v = 0 occurs for n = 1. 

0.1 
In another very useful paper (ref. 2.73) Fors- 

berg investigated the accuracy of representing a. 
0.05 shell by a rod for the axisymmetric (n = 0) mode 

and by a beam for the overall bending (n= 1) 

0.02 
mode. Solutions using these beam and rod models 

1.0 were compared with the exact solutions from 
Fliigge's theory. For the n=O and n =  1 modes, 

0.5 the response of the shell is governed almost 
entirely by the membrane behavior. This means 

0.2 that the modal characteristics are essentially 
a independent of the bending stiffness (i.e., inde- 

0.1 pendent of R/h) and those boundary conditions 

0.05 involving the tangential displacements (u, v) or 
the force resultant (N,, S,e) are the ones of 
prime significance. In general the boundary re- 

0.02 
o o straints placed upon w, w,,, M,, and V* have no 

LENGTH TO RADIUS RATIO I/R significant influence on the frequencies; their 

FIQURE 2.110.-Effect of circumferential restraint (v =0) effects on the moment resultants are localized 
upon envelopes for 0;  llSiimple supports." (After ref. to a small  one near the boundary. This permits 
2.72) the beam and rod representations of shell prob- 

lems to be suitable over wide ranges of interest. 
1.0 However, if one is interested in modes having 

r 
0.5 short axial wave lengths (l/mR< 1) the beam 

and rod models may be inadequate. These state- 
ments are elaborated upon below. 

0.2 
a For n=O the equations of motion uncouple, 

0.1 regardless. of the boundary conditions (cf., eqs. 
2.21), yielding a second-order differential equa- 

0.05 tion involving v only and a sixth-order set in- 
volving u and w. The torsional frequency is the 

o 02 same if v = O  at x=O, 1 or if S,e=O at x=0, 1. 

LENGTH TO RADIUS RATIO &R 

FIGURE 2.111.-Effect of circumferential restraint upon 
envelopes for Q; "clamped" ends. (After ref. 2.72) 

Having both ends fixed results (from symmetry) 
in having the middle section (x = 1/2) free, and 
vice versa. If v = 0 at x = 0 and S,e = 0 at x = 1, 
then the effective length of the mode shape is 
twice as long and the frequency is half as great. 
These frequencies are shown in figure 2.112. 

Considering the radial and longitudinal modes 
for n=O, figure 2.112 shows that for small axial 
wave lengths the bending stiffness does make a 
difference in 9; however, for l/mR> 1 the fre- 
quency varies by less than one-half of 1 percent 
(ref. 2.73). The boundary conditions on u do 
have significant influence on Q, even for those 
modes which are predominantly radial. If the 



2.112). The restraints placed on w cause less ferential displacement v becomes gradually larger , 

than 0.5 percent change in 9. In the transition than w up to an l/mR ratio of about 5; for still 
region 1 <l/mR <5 the amplitudes of the radial shorter shells v decreases until, for very short 
and longitudinal displacement components are shells (l/R ~ 0 . 1 ) ~  v is nearly zero and the motion 
nearly equal. This coupling is due entirely to is almost entirely radial. As in the case for n=O, 
the Poisson effect-bending effects are negli- the behavior is governed primarily by the mem- . gible. If v=0, the equations of motion would brane stiffness of the shell and the tangential 
effectively (depending to a small extent upon boundary conditions. Foi  n= 1: v is not uncou- 
the shell theory used) reduce to three uncoupled pled, and its presence in the boundary conditions 

If v = O  at both ends of the shell, then Q is 

of natural frequencies in the axisymmetric mode l/mR <O.1 for R/h = 500) (ref. 2.73). The fre- 
by considering the shell to be a bar for longitu- quency spectrum for beam-type of behavior is 
dinal motions and to be a ring in plane stress for shown in figure 2.113. Three cases are included 
small Z/mR, or plain strain for large l/mR, and for which the shell acts as (1) a free-free beam, 
that these approximations break down in the (2) a simply-supported beam, and (3) a clamped 
transition region 1 < l/mR < 5. beam. The transverse conditions involving w, w,,, 

Generally speaking, regardless of the boundary Vz, M, have no measurable influence on the 
conditions, the lowest of the three frequencies 
arising for n = 1 corresponds to motion which is 

awlax OR M~=O,U=O.V=O 
(HIGHER MODES APPROACH 
"SIMPLE SUPPORTED BEAh4"l 
INDEPENDENT OF R/h 

LENGTH TO RADIUS RATIO X/R 

FIGURE 2.112.-hisymmetric (n =0) frequency parame- FIGURE 2.113.-Frequency spectrum for beam-like (n =1) 
ters for arbitrary boundary condition; m = 1. (After modes of circular cylindrical shells; m = 1. (After ref. 

2.73) 
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frequency spectrum (ref. 2.73). The shell is 
forced to behave as a clamped beam by requiring 
u = 0 at the boundaries. 

Comparison of the shell frequencies with beam 
frequencies is made in figure 2.114 (ref. 2.73) for 
the "simply supported" beam. The simple (Euler- 
Bernoulli beam theory) approximation gives good 
results only for long shells (l/mR >20). This is 
consistent with the usual assumptions of simple 
beam theory regarding limits of the length/depth 
ratio. Inclusion of shear deformation and rotary 
inertia effects (Timoshenko beam theory) greatly 
improves the accuracy of the beam approximation 
and makes it acceptable as low as l/mR =7. It is 
important to note that the shell equations 
automatically include the shear deformation and 
rotary inertia effects of the overall cross sections, 
even though the local effects through the shell 
thickness are neglected in the eighth order shell 
theory. Similar comparisons were made in refer- 
ence 2.73 for the clamped-clamped beam, and 
behavior essentially the same as figure 2.114 was 
found. For an even more sophisticated beam 
model to represent the beam-like modes of a 
shell, see the discussion of the work by Simmonds 
(ref. 2.128) in section 2.3.5. 

LENGTH TO RADIUS RATIO P/R 
\ 

FIGURE 2.114.-Comparison of shell frequencies (n = 1) 
with those of a simple-supported beam; m = l .  (After 
ref. 2.73) 

OF SHELLS 
-.- - -  - -.-- - 

I -" - - , - 3 =-.,--, 
'-- .,- - - - 

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 
LENGTH TO RADIUS RATIO l /R  

FIGURE 2.115.-Effect of the boundary condition v =O 
upon the frequencies; m = 1, n = 1. (After ref. 2.73) 

The importance of the circumferential displace- 
ment v in the n = 1 mode is shown in figure 2.115 
(from ref. 2.73). Two sets of curves are depicted. 
One set has v =O as a boundary condition at both 
ends of the shell; the other set has S,e=O, and 
gives a considerable drop in frequencies except 
for long (l/R>20) shells where beam theory 
becomes applicable. When S,e = 0 on the ends the 
frequency also becomes strongly dependent upon 
the bending stiffness and the boundary condition 
on the slope (w.3 becomes of primary importance. 

Figure 2.116 is a sketch of the deflected shape 
for the case when S,e = 0 at the boundaries. This 
mode involves large shear distortion a t  the 
boundary and relatively little deformation in the 
middle of the shell. By contrast a shell supported 
by shear diaphragms would have a sinusoidal 
mode shape. It should be noted that although 
there is a high shear distortion near the bound- 
aries when the shell is not tangentially restrained, 
this is essentially a distortion of the shell cross 
section rather than a shearing of the shell wall. 
Since the distortion of the shell cross section takes 
place in a region about 75 times as long as the 
shell wall thickness, it is certain that the shear 
effects on the shell wall can be neglected. One 
should also note that the slope w,, near the bound- 
ary is very large compared to the slope computed 
for other mode shapes which have one axial half- 
wave and a unit radial deflection. The amplitude 
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A = 5 R F  
(a) SHELL AT REST 

(b) SHELL AT MAXIMUM AMPLITUDE 
(MOTION GEATLY EXAGGERATED) 

BASIC DATA: R/h =500 O R  = 5 n = I  
u =0.3 53 =0.05844 

THE DEFORMATION OF THE SHELL HAS BEEN GREATLY 
EXAGGERATED IN ORDER TO ILLUSTRATE THE GENERAL 
CHARACTER OF THE MOTION. THE LONGITUDINAL MOTION 
HAS BEEN MAGNIFIED BY A FACTOR OF 2 0  COMPARED 
WITH THE RELATIVE RADIAL DISPLACEMENT. 

FIGURE 2.116.Sketch of deformed shell when S,e = O  at 
boundaries; m = 1, n = 1. (After ref. 2.73) 

of vibration can always be kept small enough so 
that the resulting motion is linear; however, it is 
evident that nonlinear behavior will occur for 
smaller amplitudes for this mode shape than for 
the more usual case. 

To better understand the dynamic behavior of 
a cylindrical shell in the beam-type mode, it is 
necessary to examine the modal displacements 
and modal forces that correspond to the minimum 
frequency. In figures 2.117 and 2.118 (from ref. 
2.73) results are presented for a shell having an 
R/h ratio of 20 and l /R  ratios of 5 and 10. Two 
sets of boundary conditions are considered, SD- 
SD and (N,v V,  M,). There is no noticeable 
difference in the mode shapes and force distribu- 
tion, although the amplitude ratio A/C is dif- 
ferent, and the frequency is extremely close for 
these two sets of boundary conditions. This again 
emphasizes that the behavior when v =O at the 
boundaries is essentially extensional in character. 
The maximum bending stress is less than 7 per- 
cent of the maximum membrane stress. For the 
shell which is not radially restrained, there is a 
slight distortion in the moment diagram which is 
barely noticeable in figure 2.118. As in the axi- 

FIGURE 2.118.-Force and moment resultant9 for the 
mode shapes of figure 2.117. (After ref. 2.73) 

symmetric case the noticeable change in force 
distribution occurs for the shear force V ,  and 
again as in the above case, this change is entirely 
local in character. In figures 2.119 and 2.120 the 

FIGURE 2.117.-Mode shapes for SD-SD and 
(N, v V ,  M ,  - N ,  v V ,  Mz ) shells; R/h = 20 and 500, 
v=0.3, m=l,  n = l .  (After ref. 2.73) b 

. . - w 
- - . - -  m-. 
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VIBRATION OF SHELLS 

FOR ALL CASES FOR R / R =  
R/h  = 500, v=0.3, n=l  5.51 = 0.05844 

AND AT x=O,R l0,Q = 0.03384 
w=M = N  = S  x x xg'O 30, fi = 0.00700 

FIGURE 2.119.-Mode shapes for (N, Be w M, - 
N, Sze w M,) shells in beam bending (n = 1) mode. 
(After ref. 2.73) 

characteristic is reflected not only in the mode 
shape but also in the internal force distribution. 

The higher modes of this shell when S,e=O 
at the boundaries again represent essentially the 
behavior of a free-free beam on shear springs. 
The second mode represents a rigid body rota- 
tion of a beam about its center with weak shear 
springs at the boundary as can be seen in figure 
2.121. The third mode (m = 3) introduces appre- 
ciable flexible deformation of the shell as a beam, 
but is similar to the lowest non-zero mode for a 
free-free shell shown previously in figure 2.106. 
It is clear then that the dependence of the fre- 
quency and force distribution on the bending 
stiffness when S,e = 0 arises only from the high 
shear distortion which occurs near the bound- 
ary, which can be represented as a very weak 
shear spring. 

One of the important quantities used in de- 
termining forced response by modal analysis is 
the generalized mass. The generalized mass is 
defined as 

where the dependence of time has been removed 
and p obviously depends upon n. 

For a simply supported beam having a unit 
o o transverse displacement, one can easily show 

,- -200 
f -001 0.6 

0.4 
0.2 

-002 
-400 3 0 

x /a -0.2 
x/R -0.4 

In1 @/a=* 
(b) R/R= 30 -0.6 ,",",.. " 

1 .o 
0.5 FIGURE 2.120.Axial force and moment resultants for , 

the mode shapes of figure 2.119. (After ref. 2.73) -0.5 
-1.0 

1 .o 
same two cases are shown; the only change is 0.5 
that for this example S,e = O  at the boundaries. 
however, this causes a drastic change in modal -0.5 

character. As the l / R  ratio is reduced, the effects -1.0 
0 0.2 0.4 0.6 0.8 1.0 

of the radial restraint at the boundaries becomes X/L 

more and more localized and, as it becomes 
small, this mode becomes a sim~le lateral riaid 

FOR m = 2 .  Cl=0.08693 
m=3,O=0,3698 - 

end effects' This FIG- 2.121,Higher beam bending (n = 1) mode shapes 
represents essentially a lateral translation of a (, =2, 3) for a (N, B~ M, - N, sZe M,) shell; 
beam on soft shear springs at the boundary. This ~ / h  =500, Z / R  =5, v =0.3. (After ref. 2.73) 



that the generalized mass for all the modes is (w,,) at the boundary was also shown in figures 
equal to one-half and is independent of the l / R  2.39 and 2.40 of section 2.4.1. Ivanyuta and 

unit transverse displacement, the integration is Mushtari shell equations and the Galerkin ap- 
more complicated, but the formula is relatively proximate procedure with a single set of beam 
simple and one finds that for the lowest mode functions to arrive at the following equation for 
the beam equations yield a value of p = 0.39. frequency parameters: 

I 
.., shenko beam theory for shell with a 1/R ratio condition = 0 was not enforced, ahd the SDSD 

greater than about 7. For shorter shells the devi- problem was eventually solved along with the - -- - 
'. beam theory be- statement that the condition "u = 0 is the least 
)r above essential one." As we have seen elsewhere in this 

I holds exactly for higher modes of a freely SUP- section, the condition u = ~  is indeed a very im- 
ported beam (use l/mR in fig. 2.1221, and is portant . .. . 

mped beam. - -- - The The axisymmetric modal characteristics for 

I mnlng iorced response quantltles not Deen comparison with those of the S D S D  shell. It is 
entirely established. -. , x r  \ 'lell has received a interesting to note that 

bluu 111 the literature. In  
7 

(1) The fundamental I 

- "-- m3rsberg (refs. 2-72 nodal circle at  x = 1/2. 

this section, the (2) The curves for u and N. are essentially 
,,,,;,, ,,,+,,;,+ the same as those for the SD-SD shell, except 

LW v.0.3 
I ,,I 1 1 M. from those of the S D S D  shell, the axial 

LENGTH TO RADIUS RATIO I / R  The axisymmetric modal characteristics for . e 
FIGURE 2.122.-Comparison of generalized mass as the lowest frequency of a (Nzww,z-uwMz) shell 

I - 
I 

predicted by beam and shell theory. (After ref. 2.73) (remembering that the circumferential displace- 1 



FIQURE 2.123.-Axiiymmetric (n =0) modal character- 
istics of a (u w Mz - u w Mz) shell compared with an 
SD-SD shell. (After ref. 2.73) 

ment v is uncoupled for n =0) are displayed in 
figure 2.124 (from ref. 2.73). Here the edge effects 
are much more locali~ed than those of figure 2.123 
because the shell is much thinner (R/h = 20, in 
comparison with R/h = 500). The small, but 
abrupt change in Mz near x = 0 is due to the con- 
dition w,, = 0. The larger change near x = .! arises 
from requiring both u and w to be zero at  x = 1. 

The (Nz v w w,, - N, v w w,,) case was used by 
Filippov (ref. 2.97) to demonstrate the solution 
of free vibration problems for circular cylindrical 
shells by the series method. A set of equations of 
motion for the shell attributed to Galerkin was 
used. For R/h=83.3, .!/R=2, P =  1/6, m= 1, 
n=4, a frequency increase of 2.0 percent from 
the SDSD frequency was calculated. 

The (u v w M, - N, S,e V,  M,) shell was used 
to model a storage tank in references 2.185 and 
2.186. Methods for computing frequencies and 
mode shapes were developed according to the 
membrane theory, and procedures for including 
the bending strain energy were subsequently 
added. No specific numerical results were given. 

~~'IGURE 2.124.-Axisymmetric (n=O) modal character- 
istics of a (Nz w w.= - u w M,) shell. (After ref. 2.73) 

2.5 ELASTIC SUPPORTS 

Boundary conditions of elastic supports a t  the 
ends of a circular cylindrical shell are generaliza- 
tions of the simple boundary conditions discussed 
in the previous sections of this chapter. I n  com- 
plete generality, the boundary conditions for this 
case (neglecting damping effects, of course) can 
be written as 
At x=O: 

N,-k~u = O  (2.150a) 



where k ~ ,  . . . , ks are the distributed stiffness 
coefficients associated with the elastic supporting 

-. structure. It is assumed that the supporting struc- 
ture has axisymmetric stiffness with respect to the 

I. - . . axis of the shell; otherwise k ~ ,  . . . , k g  would 
not be constants, but functions of 8. Careful 
attention must be given to the signs of the terms / 7 1 I 
containing the spring constants in equations 
(2.150) if meaningful results are to be obtained. 

////// 

All of the 136 sets of boundary conditions dis- 

w 
cussed previously in this chapter can be obtained 
as special cases of equations (2.150) by simply 
setting the appropriate constants ki equal to 
either zero or infinity. 

C'. . F5 The distinction is carefullv made here that the 
Gtiffness of the support structure must be capable 
of being represented by the distributed spring con- 
stants kl, . . . , ks. Consider a circular cylindri- 

. , 
constraints. (After ref. 2 4) - 

i ca1 shell with a stiffening ring at the end. If it is numerical results were given. , 
: necessary to consider the equations of motion of Arnold and Warburton (ref. 2.4) st1 

the ring simultaneously with the equations of 
motion of shell, with conditions of continuity of 

i generalized.forces and displacements enforced at 2.125(a) shows a cylinder with a solid end, (b) a 
the junction, the ring-shell combination is con- 
sidered herein to be a structure. Vibrations of 
structures containing shells as structural ele- at the ends are negligible. Using the "equivalent 
ments are purposely omitted from this work wave length" concept Arnold and Warburton 
because of the obvious geometrical complexities wrote equation (2.99) as 
and limitless combinations which can arise. ?rR 

The problem of the circular cylindrical shell X e  = (m+c)- I 
(2.151) 

supported elastically is possible of being solved 
exactly in all its generality by the procedure out- 
lined in section 2.4. That is, once the X i  are deter- , . 
mined as the roots of equation (2.54), thereby solid ends they proposed !. - X "%-T I .I -5BW 

I satisfying the equations of motion, the boundary 5 

condition equations (2.150) can then be written, 
yielding an eighth order determinant, the roots 
of which are the frequency parameters. However, 

- 
. in the general determinant arising from equations To study the effect of changing d, and to deter- -- - .? 
- . (2.150) there would be no simplification and its mine c, experiments were conducted on a shell :.T 

> - I  P- expanded form would be extremely lengthy. Brit- having R = 1.924 in., h =0.101 in., 1 =7.81 in. by 
< - .' 

vec (ref. 2.187) followed this procedure for the changing d on one end such that the ratio h/d 
8 9 special case when all the ki are zero except kc and took on the values 0.050, 0.101, 0.202, 0.376, 
I ~ ' ~ , .  ks, and also admitted damping terms into the 0.595, and 1.000. On the other end, SDSD - .  

- moment boundary conditions. In reference 2.187 boundary conditions were duplicated. The results 
. _ _I 



of these experiments are shown by the dashed g 
curves in figure 2.126. In figure 2.126 the per- gzO 
centage difference in frequency from that of the 
SD-SD shell is plotted versus end thickness d. $ l5 

The solid curves are obtained by taking q = 2 in 8 
equation (2.152)) and using 0.15 instead of 0.3 
because the SD boundary condition is the same 
as a nodal circle for the m =2 mode of a shell of 
twice the length having solid ends at x = 0 and I, 
giving 

EQUIVALENT END THICKNESS,d- INCHES 

as the basis for the curves. Of course, d/h-+O is 
equivalent to an SD support at the solid end. 
For two cases, n =4, m = 2 and n =4, m = 3, the 
experimental and theoretical curves are essen- 
tially coincident, and have been shown by a 
single solid curve in figure 2.126. 

Miserentino and Vosteen (ref. 2.188) used 
Arnold and Warburton's "effective wave length" 
concept to compare extensive results obtained 
for clamped-clamped shells with theoretical 
results for S D S D  shells using the Donnell- 
Mushtari theory. 

In  reference 2.4 flanged ends (fig. 2.125) were 
accommodated by a formula giving an equivalent 
thickness for solid ends as follows: 

where q=R2/Rl and dl, R1, RZ are shown in 
figure 2.125. The formula is based upon treating 

0 0.5 1.0 1.5 2.0 
END THICKNESS, d - INCHES 

FIGURE 2.126.-Effect of end thickness on frequency; 
R/h =19.1, 1/R =4.05, h=0.101 in. (After ref. 2.4) 

FIGURE 2.127.-Effect of flange dimensions on frequency; 
R/h=19.1, 1/R=8.13, h=0.101 in. (After ref. 2.4) 

the flange as a circular plate in bending. As 
d1+0, d+O as for an SD support. And as q-+m, 

d+0.82 dl; thus, using equation (2.154) a flange, 
however large, can never give the same degree 
of end restraint as a solid end having the same 
thickness. Experiments were conducted on a steel 
shell having R=1.924 in., h=0.101 in., and 
1 = 15.65 in. having flanges at both ends, and the 
results are shown by the points in figure 2.127. 
The solid curves are based on theoretical results 
using equation 2.154. 

In reference 2.151 an attempt was made to 
simulate an aluminum shell having clamped ends 
by machining integral rings at  each end of an 
aluminum shell. The shell dimensions were 
1=6.00 in., R=4.69 in., h=0.026 in. and the 
rings were each 1 inch long and 1/2 inch thick. 
However, these rings were insufficiently rigid and 
were actually elastic constraints giving the fre- 
quencies shown in figure 2.128. 

Considering the beam bending mode (n= 1) 
of a circular cylindrizal shell, it was pointed out 
in reference 2.73 that the vibration frequencies 
and modal characteristics are strongly influenced 
by the degree of circumferential restraint (i.e., 
the magnitudes of kz and kg) at the boundaries 
(cf. sec. 2.4.6). In reference 2.73 a ring of square 
cross section having a side equal to 8 times the 
shell thickness is necessary to provide enough 
circumferential stiffness to simulate the simple 
boundary condition v = 0. Quantitative results 
are shown in figure 2.129 where a stiffening ring 
of square cross section is added to each end of a 
shell. The width and depth of the ring are denoted 
by H. The other boundary conditions at x = 0 and 
x =I are w = M, = u = 0. The mass of the ring is 
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149 - : 

4000 - nl = NUMBER OF AXIAL HALF -WAVES neglected. The frequency parameter Q is plotted 
versus H / h  between the limiting boundary 

- conditions S,e = 0 and v = 0. 
Circular cylindrical shells with elastic end 

supports are also briefly discussed in references - i  

3 0 0 0  - 2.49, 2.98, and 2.189. 

2.6 ADDED MASS 
'n 
- . r 
a In this section the effects of adding lumped - 
2 2000  mass to a shell will be considered. Information 

for at least the following two typqs of problems - w 
is available : 

(1) 'The rigid ring mass attached to either one 
or both ends of the shell. I n  this case the mass 

- - - EXACT SOLUTION FOR CYLINDER enters through the shell boundary conditions. , - - 
WlTH ELASTIC END RINGS (2) An internal point mass. This is accom- rn c m -  

. '  I --- EXACT SOLUTION FOR CYLINDER ..i 

' _  I - -  . 
- .  WITH FIXED ENDS modated in the equations of motion by a double 

- 
I 

I e EXPERIMENTAL DATA Fourier series solution. . - 
C- .; . . .. - 
r ; >:- , - -  0 1 I I I I I I I 

.- .. An internal rigid ring mass usually implies sep- ' - T: 
arating the shell into two portions and comb&- 
ing them by means of equations of continuity. 

&leal anu expen- 
led and elastically Such a conf?guration is considered herein as a :; 

,,, ", -" : 1.27, E= 101 psi. structure and will not be discussed. ! 
Consider the axisymmetric longitudinal mo- t 

NUMBER OF CIRCUMFERENTIAL WAVES, n 

IGURE 2.128.-Comparison of theore" ' - ' 
mental frequencies for clamped-clamp 

" . l a  

PROVIDE TANGEF 
TlAL ELASTICIT' 

n=l,m=l, v = 0 3  

- 
tion of circular cylindrical shells. The primary 
effect of stiffening rings in these modes is to add 
additional mass to the system, thereby reducing 
the overall frequency. The magnitude of the fre- 
quency reduction depends upon the location of 
the ring; a ring placed at either a longitudinal 

I . . .  or circumferential displacement nodal circle will 

, 1 add no significant m&s to  the system for that 
I I f  mode. 

LASTIC RING 
RESTRAINED TO Forsberg (ref. 2.73) considered the case where 

ring masses ml and mz which are large compared 
to the total mass of the shell M, are attached , 

P = RING'INERTIA 
at the ends of the shell as shown in figure 2.130. 

IS OMITTED If half of the mass of the shell is lumped a t  each ;$ 
end as shown, then the frequency parameter for -..< 

RATIO OF LENGTH OF SIDE .OF RING TO SHELL " THICKNESS H/h 

the spring-mass system shown can then be ob- 
tained from -,P. 

.- - . _ 
- - FIGURE 2.129.-Effect of circumferential stiffening uDon a) SHELL WITH END MASSES b) SPRING - MASS MODEL - - 

frequencies; R/h =20, I/R =7, m =1, n = 1, v -0.3.. FIGURE 2.130.-Modeling of a shell having large 
(After ref. 2.73) end masses. (After ref. 2.73) 



The variation of i2 with l/R according to equa- 
tion (2.155) is plotted by dashed lines in fig- 
ure 2.131 for several values of the total mass 
rnT=ml+m2+M,, for m1=2mz and v=0.3. The 
solid curves represent the lowest frequencies 
arising from solution of the shell vibration prob- 
lem having the boundary conditions 

where mi = -ml at x = 0 and + m ~  a t  x = Z and 
R/h=500. In  figure 2.131 the accurate fre- 
quencies for @ / M a  = 10 are slightly greater than 
those predicted by equation (2.155) for large 
Z/R ratios. 

The modal characteristics obtained from the 
shell equations for the abbve problem are shown 
in figure 2.132. As the ratio of the total mass to 
the shell mass (@/M.) increases, the node for the 
longitudinal displacement gradually approaches 
the one-third point of the shell length. The radial 
displacement gradually increases until it is al- 
most uniform along the length of the shell, except 
for sharp changes near the boundaries. As m/M, 
increases, N, changes from a sinusoidal variation 
to be nearly uniform along the length, and M,  
becomes more localized and sharply changing at 
the boundaries. However, the bending stresses 

FIGURE 2.132.-Modal characteristics for a shell 
having large end masses. (After ref. 2.73) 

are still iess than 60 percent of the membrane 
stress at the boundary. 

Bukhariilov (ref. 2.190) also studied the prob- 
lem of the circular cylindrical shell which con- 
nects two rigid end masses. An exact solution of 
the Donnell-Mushtari equations of motion was 

FIGURE 2.131.-Frequency parameters for a shell 
with unequal end masses. (After ref. 2.73) 

used, along with the boundary conditions given 
by equations (2.156). The characteristic equa- 
tion yielding frequencies of axisymmetric (n=O) 
longitudinal modes was found to be 

where ml and m2 are the rigid masses and M, is 
the mass of the shell, as in figure 2.130. 

The free vibration problem of the circular 
cylindrical shell having end masses was also 
briefly discussed in references 2.191. The problem 
for the shellthaving one end free and the other 
end attached to a rigid mass was formulated in 
reference 2.192, but no results were obtained. 
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The S D S D  shell with a concentrated mass was 
considered in reference 2.193. A number of papers 
and reports exist which deal with stiffened cir- 
cular cylindrical shells, where the stiffness have 
both flexibility and mass. However, such con- 
figurations are considered to be structures and 
will not be included here. 

Some interesting results were given in refer- 
ence 2.166 for the case of the clamped-free shell 
having a single stiffening ring at the free end. 
The stiffening ring was of the same material as 
the shell, therebjr being elastic as well as having 
mass. The increased rigidity of the system, even 
for the elastic ring, usually more than compen- 
sated for the added mass of the ring and increased 
the frequencies in theswaying (n = 1) and ovalling 
(n = 2) modes. This problem was also studied in 
references 2.167, 2.168, and 2.169. 

Closed circular cylindrical shells are frequently 
fabricated by the simple procedure of curling a 
flat sheet about a cylindrical radius. The shells 
are then closed by means of a butt or lap joint 
which lies in the axial direction. This type of 
fabrication can result in significant asymmetry 
in mass or stiffness or both, which causes experi- 
mental results to deviate from expected theoret- 
ical values. This problem is frequently discussed 
in the literature of cylindrical shell vibrations, 
for example, in references 2.29, 2.33, 2.34, 2.37, 
and 2.194. 

2.7 NONCIRCULAR BOUNDARIES 
AND CUTOUTS 

Consider first the case where a closed circular 
cylindrical shell of finite length is cut by two sur- 
faces other than planes perpendicular to its gen- 
erators. No results are known to exist for such a 
problem. 

Brogan, Forsberg, and Smith (ref. 2.151) ana- 
lyzed the interesting problem of the circular 
cylindrical shell having a rectangular cutout 
defined by the boundaries x = 11, x = 12, 8 = f as 
shown in figure 2.133. Because the cutout de- 
stroys the axisymmetry of the shell geometry, an 
analytical solution would require all the Fourier 
components in 8, and the problem would require 
using both space variables x and 8 in uncoupled 
form. Therefore, finite difference solutions were 
employed. An energy approach was used, rather 

FIGURE 2.133.-Circular cylindrical shell 
having a rectangular cutout. 

than taking the equations of motion, giving the 
following advantages : 

(1) Only first and second order finite difference 
approximations are required. 

(2) Boundary conditions are simplified; in 
particular, stress-free edges are natural boundary 
conditions. 

(3) A symmetric matrix system is guaranteed. 

Finite difference meshes using as many as 4209 
degrees of freedom were used, although most of 
the idealizations used 2196 unknowns. The shells 
were intended to be clamped-clamped, but actu- 
ally were supported elastically at  both ends as 
discussed previously in section 2.5 (see fig. 2.128). 

A study was made of six different shell con- 
figurations with cutouts ranging from a 10" arc 
to a 120" arc and having a length of one-tenth 
of the length of the shell. These cutouts were 
centered at the mid-span. The results of the ex- 
perimentally determined frequency spectra are 
given in table 2.44 and are displayed graphically 
in figure 2.134. The results for the zero degree 
cutout (the complete shell) are a repeat of the 
data contained in figure 2.128. In figure 2.134 the 
frequencies have simply been arranged in ascend- 
ing numerical order with the appropriate mode 
shape noted at the right-hand side of the figure. 

For the complete shell, the motion is sinusoidal 
in the circumferential direction and there is no 
difficulty in idertifying the mode shapes. For the 
shell with the cutout it was somewhat surprising 
to find that many of the modes were still reason- 
ably distinct and had a sinusoidal appearance. 



0.11 XIOO 0.11 X22.5" 0.11 X30° 0.11 X60° 0.11 X90° 0.11 X120° 0.31 x 120" 

1182(8,1) 1180(8,1) 1168(S) 1179(S) 1163(8,1) 1150(8,1) 1132(8,1) 1104(8,1) 
1225(7,1) 1222(7,1) 1214(7,1) 1216(7,1) 1208(S) 1201(7,1) 1198(7,1) 1199(7,1) 
1230(9,1) 1228(9,1) 1224 (s) 1224 (S) 1215(9,1) 1210(9,1) 1210(9,1) 
1349(10,1) 1345(10,1) 1343(10,1) 1342(10,1) 1338(10,1) 1335(10,1) 1332(S) 
1362(6,1) 1359(6,1) 1352(S) 1355 (S) 1355(S) 
1528(11,1) 1523(11,1) 1521(11,1) 1521(S) 1518(S) 1512(11,1) 1510(11,1) 1449(11,1) 
1594(5,1) 1598(5,1) 1589 (5,l) 1590(S) 1592(S) 1568(5,1) 1541(5,1) 1533(5,1) 
1750(12,1) 1740(12,1) 1741 (12,l) 1742(12,1) 1740(S) 1735(12,1) 1734(12,1) 1719(12,1) 
1882(4,1) 1919(4,1) 1922(S) 
2011 (13,l) 2003(13,1) 1996(13,1) 2005(S) 2007(S) 2001 (13,l) 2000(13,1) 2030(13,1) 

2068(11,2) 2062(11,2) 2066(11,2) 

2621 (15,l) 2613 (15,l) 2610(AS) 2610(S) 
2649(14,2) 2645(14,2) 2632(14,2) 2630(AS) 2604(14,2) 2550(AS) 2460(AS) 
2785(6,2) 2773(6,2) 2750(AS) 
2930(15,2) 2927(15,2) 2925(AS) 2920(AS) 2870(AS) 2860(AS) 2840(AS) 2840(AS) 
2965(16,1) 2958(16,1) 2948(16,1) 2940(S) 2930 (AS) 2936 (16,l) 2940 (S) 

2991 (12,3) 2990(S) 

3101(13,3) 3094(13,3) 3085(13,3) 3085(S) 3090(S) 3095 (13,3) 3100(S) 
3175(9,3) 3170(9,3) 3170(S) 3155(S) 3160(S) 3155(9,3) 3150(S) 

For the 0.31 cutout, the hole centerline is located at  z =0.61; for all other cases the hole centerline is located at  

(1) Data are given in cycles per second. 
(2) The dominant wave form in the mode shape is identified wherever possible by the notation (n, m) after the value 

for the frequency; when no particular wave form could be distinguished, the axial variation is noted by (S) for a sym- 
etric mode and (AS) for an antisymmetric mode. 

here were, however, a number of modes which downward in the overall frequency spectrum, it 
ere either badly distorted or were too irregular was assumed that the unidentified modes would 

wave form. Such irregular wave forms have been a drastic, shift in frequency. Hence, the data 

In some cases, for certain size cutouts, mode a given mode. For those cases in which the mode 
shapes became irregular while, for larger cutouts, shape could not be identified with a given wave 
the wave form again assumed a distinct "sinus- form (which occurred in about 20 percent of the 
oidal" pattern. Other modes having a specific cases plotted in figure 2.134) the adjacent fre- 
dominant wave form could be traced throughout quencies were selected on the assumption that 
the series of cutouts and a very gradual decrease the change would be gradual with increasing 
in frequency was noted in these cases. Based on angle of cutout. 
these results and based on the gradual shift It is interesting to note the very gradual de- 
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WAVE WAVE degree cutout (i.e., a shell with a ring support 
FORM FORM 

AT 2 += o0 AT 2 .+=120° at one end and free at  the other, having a length, 
(7,2)-+ IRREGULAR 1 = 2.7 in.) is relatively close to that for the com- 

- 2ooop; 

a ;Y!$FULAR 
plete shell. For certain modes this asymptote 

(12,2) has been plotted in figure 2.134 (denoted by a 1( 8 , 2 1 1  112.2) triangle). 

One would expect the greatest effect of the 
V) (l3,l) -+ (13# 
a 

cutout to occur for the axisymmetric (n=O) or - A (4,1 -+(4,1) beam type (n= 1) modes. However, for this shell, 
t 
0 
z these modes were of a sufficiently high frequency 
W 
3 - - -A ( 1 2 ~ 1  )+(l2,l) that they could not be experimentally observed " 
W 
LT in reference 2.151. Indeed, a long shell would 

-A ( 5 , l )  -+ (5,l)  
1500 --A ( l l , l ) - + ( l l , l )  

have to be studied to determine the effect of 
cutouts on these modes. Such modes are of con- 

,. - ( 6,l)-+ (6.1) 
----A (10,l) IRREGULAR 

A VALUE FOR 360- CUTOUT 
o EXPERIMENTAL DATA (? 2 cps) 
n EXPERIMENTAL DATA (f ~OCDS) 

Z+,CIRCUMFERENTIAL ANGLE INCLUDED 
BY CUTOUT (DEGI 

F I G ~ E  2.134.-Experimentally determined frequencies 
for symmetrically located rectangular cutouts. (After 

- ref. 2.151) 

crease in the natural frequency with the increase 
- in cutout angle even though the shell is relatively 

- short (l/R=1.27). As an example, for the 120° 
hole the minimum natural frequency decreased 

- only 4 percent from the value for the complete I$- 
11 

shell. However, the asymptotic value for a 360 

siderable practical interest, and, although not 
included in the work of reference 2.151, deserve 
further investigation. 

Excellent agreement was obtained in reference 
2.151 in the comparison of the finite difference 
results and the experimental data. The finite dif- 
ference results were obtained using a grid having 
11 equally spaced grid points in the axial direc- 
tion and 60 equally spaced intervals in the 0 
direction (2196 degrees of freedom), covering the 
one-quarter of the shell surface bounded by 
0 12 10.51, 0 1 0 5 ~ .  Results are shown in table 
2.45 and in figure 2.135 where six modes have 
been selected for comparison. As seen in figure 
2.135 the analytical and experimental results 
have a maximum discrepancy for n = 5 and n = 13. 
The discrepancy noted in figure 2.135 is a result 
of inability to represent the experimental bound- 
ary conditions exactly. The boundary conditions 
have maximum effect for low values of n for the 

TABLE 2.45.-Comparison of Analytical (Finite Diference) and Experimental 
Frequencies for Shells Having Symmetrically Located Rectangular Cutouts 

Angle of cutout, 29, degrees 
Dominant 
mode shape 

0 30 60 90 120 

n m Exper. Anal. Exper. Anal. Exper. Anal. Exper. Anal. Exper. Anal. 
-- 
8 1 1182 1195 "1179 1183 1163 1171 1150 1162 1132 1145 

10 1 1349 1346 1342 1341 1338 1338 1335 1335 " 1332 1330 
11 1 1528 1513 " 1521 1507 a 1518 1504 1512 1500 1510 1497 
5 1 1594 1646 "1590 1639 "1592 1639 1568 1632 1541 1621 

12 2 2230 2197 "2172 2191 a2190 2155 2172 . . . . 2135 2122 

13 2371 
a 2375 2326 2342 2295 2311 2 2412 2365 "2368 

2327 
2275 

a Experimentally determined mode shape was highly irregular. 
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2+, CIRCUMFERENTIAL ANGLE INCLUDED BY 
CUTOUT (DEG) 

2 0 0 0  

- 
"0' 
0 - 
> 
0 
Z 
W 
3 

FIGURE 2.135.-Comparison of analytical (finite differ- 
ence) and experimental frequencies for symmetrically 
located rectangular cutouts. (After ref. 2.151) 

- 
0 EXPERIMENTAL DATA 

(+ 2cps) 

EXPERIMENTAL DATA 
(+lOcps) 

- - ANALYTICAL RESULTS 
--- SEE TEXT 

present geometry. The discrepancy for n =  13 is 
caused by having only five finite difference sta- 
tions in a circumferential half wave. For a fixed 
grid size, the error will always increase for higher 
n for this reason. 
, Contrary to the experimental data, no increase 
in the frequency for a given dominant wave form 
was noted analytically for any of the modes 
studied. However, both experimentally and ana- 
lytically some of the modes were shown to be 
insensitive to the existence of a cutout, particu- 
larly (n=5, m=1), (n=10, m=1), and (n=11, 
nz= 1). The modes having antisymmetric behav- 
ior in the axial direction (m = 2) appear to be the 
ones most affected by the cutout, as can be seen 
in figure 2.135. 

As has been noted above, certain modes be- 
come difficult to identify for certain sizes of cut- 

8 100. . 
E: 

out. This occurred, in one instance, for the mode 
(13,2) and thus prevented the construction of a 
unique curve for the variation of frequency ver- . 
sus arc width of cutout (shown by the dashed 
line in figure 2.135). For very small cutout angles 
(less than 10") the wave form for the mode n = 13, . 

m = 2  is quite distinct. For very large cutouts 
(for instance; 90") the wave form for this mode 
is also reasonably clear although it is no longer a 
sinusoidal variation. 

Comparisons between experimental and theo- 
retical results were made in reference 2.151 for 
certain of the mode shapes. All results are based 
on a normalization to a maximum radial deflec- 
tion of unity. Figure 2.136 shows the modal char- 
acteristics for n = 8, m = 1 for the 120 degree by 
0.11 cutout. This mode has the minimum natural 
frequency for this shell. This is the only mode 
showing this particular behavior, which looks like 
a damped sinusoidal motion along the circle a t  
x=2.7 in. This general trend was noted for all 
of the (8, 1) modes for cutout angles in excess of 
10". It is interesting to note the nearly linear 

EDGE OF CUTOUT 

a 
E! CIRCUMFERENTIAL COORDIATE, 8 - DEG. 
n EDGE OF CUTOUT 

AXIAL COORDINATE, x - INCHES 

(6- so 
I-" 
2 0  a - 
5 x, 40 
8' 
a a6 
w "  0 
&2 f"x 
0 x 
LL - 4 0  

AXIAL COORDINATE, x - INCHES 

'FIGURE 2.136.-Modal characteristics for the mode 
(n = 8, m = 1) on a shell having a 120" cutout. (After 
ref. 2.151) 



THIN CIRCULAR CYLINDRICAL SHELLS 

axial variation of w for 0 = 0. The correspondence 
between the analytical and experimental results 
in predicting the radial component of the mode 
shape is excellent. The membrane stress resul- 
tants are also shown for several points in the 
shell. Although not shown, the bending stress 
resultants have a similar smooth behavior. No 
stress concentrations were found for this con- 
figuration. The stresses at the edge of the hole 
(0 = 60") were much lower than those shown for 
a point 0.25 inch from the edge (0 = 63O). 

Figure 2.137 shows a comparison between ex- 
perimentally and analytically determined mode 
shapes for n = 11, m = 1 for the 90 degree cutout. 
This mode is typical of many in which the over- 
all wave form is quite distinct and only slightly 
modified by the presence of the hole. The usual 
effect is that the amplitude is slightly larger in 
those regions directly above or below the hole and 
diminishes as one moves away circumferentially 
from the hole although the opposite behavior 
was observed in some cases. The axial variation 
is more strongly affected, in that it remaiss essen- 
tially linear in the region over the hole while 

EDGE OF CUTOUT 

CIRCUMFERENTIAL COORDINATE, 6' - DEG. 
-I 
P 0) E D G E O F  CUTOUT 
c 0 

a - 
0 

9 
-I 

0 0 . 4  0.8 1.2 1.6 2 . 0  2 .4  2.8 5 
AXIAL COORDINATE x - INCHES 

- 
AXIAL COORDINATE, x- INCHES 

becoming sinusoidal in the region away from the 
hole. As in the previous case the stress resultants 
are well behaved throughout the shell. 

Figure 2.138 shows the results for n = 13, m = 2 
for the 90 degree cutout. Here the strongest influ- 
ence is on the axial mode shape. The axial varia- 
tion is approximately linear for 0 < 45" with the 
maximum value reached at the middle of the 
shell. Away from the hole the axial variation is 
essentially sinusoidal with a node point at  the 
middle of the shell as expected for the asymmet- 
ric mode. For the n = 13, m = 1 mode the hole has 
a very small influence on the natural frequency. 
For the m = 2 mode however, the size of the hole 
has a much stronger effect on the natural fre- 
quency. The significant change in the axial wave 
shape is the probable explanation for this. The 
circumferential wave form is also quite distorted 
for this mode shape and is one identified as irreg- 
ular on figure 2.134. There is a good agreement 
between the analytical and experimental results 
in this case. 

Most of the modes observed in the analytical 
and experimental studies had the maximum am- 
plitudes in the portions of the shell directly 

EDGE OF CUTOUT 

CIRCUMFERENTIAL COORDINATE, 8 - DEG. 
3 

CIRCUMFERENTIAL COORDINATE, 9 - DEG. 
EDGE OF CUTOUT 

0 

- I  
0 0.4 0.6 

AXIAL COORDINATE, x - INCHES 

FIGURE 2.137.-Modal characteristics for the mode 
(n = 13, m = 1) on a shell having a 90" cutout. (After FIGURB 2.138.eMode shapes for the mode (n = 13, m = 2) 
ref. 2.151) on a shell having a 90' cutout. (After ref. 2.151) 
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above or below the cutout. However, several 
modes were noted in which the motion was very 
small in regions near the hole, the maximum 
amplitude being reached on the back side of the 
shell away from the cutout. Such a mode is 
shown in figure 2.139. This mode has no strong 
wave form and is one which in the experimental 
program was termed irregular, but based on the 
frequency and on its dominant wave form it ap- 
pears to be associated with the mode which the 
complete shell would be (n = 8, m = 2). In  figure 
2.139 the radial displacement is shown for two 
different values of the axial displacement (x = 1.5 
which is at  the point of maximum amplitude for 
the axial variation and at  point x=2.7 which 
is the upper boundary of the cutout). In  addi- 
tion, the radial displacement is shown for two 
different cutout angles: 30" and 120". The axial 
variation in both cases is essentially a sine wave 
with a node at the midpoint of the shell except 
over the region of the cutout where the radial 
displacement varies linearly from zero at  the 
edge of the shell to a maximum at the cutout. 
This is the same behavior which has been ob- 
served for other modes. 

The final configuration examined in reference 
2.151 was a shell with a cutout having an arc 
width of 120" and a length of 0.3 times the 
length of the shell. This cutout was asymmetri- 
cally located in the axial direction with its cen- 

EDGE OF CUTOUT 

- 
' 0  . 40 80 120 

a CIRCUMFERENTIAL COORDINATE, 8- DEG. 
_I 

ff; EDGE OF CUTOUT 

0 40 80 1 20 160 
CIRCUMFERENTIAL COORDINATE, 8 -DEG. 

FIGURE 2.139.-Analytically determined mode shapes for 
the mode (n=8, m= 2) for two different cutout sizes 
(2q= 30°, 120'). (After ref. 2.151) 

ter a t  x=0.61. The experimentally determined 
frequency spectrum for this configuration is also 
given in table 2.44. The trend is that the fre- 
quency for most of the modes either remains the 
same or drops slightly compared to the value for 
a 120" by 0.11 cutout. However, in several in- 
stances the frequency did increase. 

The analytical studies of this configuration 
were limited because of the increased computer I 
run time required to generate the eigenvalues 
and eigenvectors. The run time is approximately 
five times that for the symmetrically located cut- 
out. However, two modes, (n = 8, m = 1) and 
(n= 7, m = 1), were examined in detail, and the 
results are summarized here. For the (8, 1) mode 
the analysis predicted a frequency of 1128 cps 
compared to an experimentally determined value 
of 1104 cps and for the (7,l) mode the analytically 
determined frequency is 1230 cps compared with 
the experimental value of 1199 cps, the differ- 
ence being about 2 percent. 

The comparison of the mode shapes produced 
analytically andexperimentally for the (8,l) mode 
showed excellent agreement for the radial com- 
ponent of the displacement. The comparison be- 
tween test and theory for the displacement a t  
the edge of the cutout is shown in figure 2.140. 
The results in figure 2.140 also show that the 
motion is much smaller on the lower edge of the 
cutout (x =4.5) than it is at the upper edge of 
the cutout (x = 2.7). The lower portion of the 
shell is in fact barely participating in the motion 
in this mode. The axial variation away from the 
hole is essentially sinusoidal as can be seen in 
the plot for 8= 180". The axial variation of the 
displacement over the hole 8 560" is essentially 
linear, reaching its maximum at the edge of the 
hole. The behavior for this configuration is essen- 
tially identical to that for the (8,l) mode shownin 
figure 2.136. The nonsymmetric axial variation 
is the major difference between these two cases. 
The variation of the stresses for this case showed 
no particular stress concentration arising from 
the hole or any other unusual behavior caused 
by the cutout. It should be noted that a high 
stress concentration is to be expected very lo- 
cally in the corner of any of the cutouts studied 
here and such effects would be noticed if the 
finite difference grid were continually refined to 
predict the stress distribution in the immediate 
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EDGE OF CUTOUT 

0 4 0  SO 120 160 

CIRCUMFERENTIAL COORDINATE , 8  - DEG. 

;i 
LY CIRCUMFERENTIAL COORDINATE, 8 - DEG 

EDGE OF CUTOUT 

0 I 2 1 3  4 ' 5  6 

AXIAL COORDINATE, x " INCHES 

FIGURE 2.140.-Mode shapes for the mode (n = 8, m = 1) 
on a shell having a 120' asymmetrically located cutout. 
(After ref. 2.151) 

vicinity of this sharp corner. The stresses gen- 
erated by this concentration evidentally decay 
very rapidly as one moves away from the vicinity 
of the corner. 

No other work is known which studies the 
effects of cutouts upon the free vibration fre- 
quencies and mode shapes of circular cylindrical 
shells. 

2.8 OPEN CIRCULAR CYLINDRICAL SHELLS 

An open circular cylindrical shell of length 1 
and included angle Bo is shown in figure 2.141. 
The shell boundaries shown in figure 2.141 are a 
special case where the lateral edges are generators 
of the shell and the ends are circle arcs which are 
the intersections of the shell surface with planes 
which are perpendicular to the shell axis. Thus, 
if one were to view the shell from a point in its 
symmetry plane, 8 = 80/2, the boundaries would 
appear as a rectangle. The special configuration 
of figure 2.141 is chosen, of course, because 
virtually all of the results reported in the litera- 

ture are for such boundaries. One exception to 
this (the case where the lateral edges are taken 
to be helices) will be discussed later in this section. 

The equations of motion given previously by 
equations (2.1) through (2.9) apply to open 
circular cylindrical shells as well as to closed 
shells. The general boundary conditions given by 
equations (2.140) through (2.144) are applicable 
to the ends x = 0 and x = s. Along the lateral edges 
8=0 and 8 = 80 the following possible simple 
boundary conditions may arise (see sec. 1.8): 

(a) u=O or 

(a). v=O or 

(a) w=o 

aw 
(a) -=o 

a8 

(b) NeZ=O' (2.158) 

(b) Ne=O (2.159) 

(b) Me=O 

In  addition, at  the corners resulting from the 
intersection of the edges, the following equation 
must be satisfied: 

which has significance if w#O on any two inter- 
secting edges (e,g., a free corner). 

As noted earlier in this chapter there were 136 
possible combinations of the simple boundary 
conditions in equations (2.140) through (2.144) 
yielding distinct problems for closed shells. For 
open shells there exist 136 combinations for each 
combination of equations (2.158) through (2.162)) 
thereby yielding (136) or 18 496 distinct possible 
problems! Nevertheless, it will be seen later in 
this section that the majority of the references 
deal solely with one of these 18 496 sets of 

FIGURE 2.141.-Open circular cylindrical shell. 
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boundary conditions-that is, when all four edges 
are supported by shear diaphragms. 

When the angle eo becomes relatively small in 
comparison with 27r, then the shell is considered 
to be shallow. Otherwise, it is open and deep. 
The phrase "curved plate" frequently found in 
the literature usually identifies a shallow shell. 
For shallow she& the assumption is made that 
the terms containing the transverse shearing 
force resultants are negligibly small compared 
with the other terms in the first two equations 
of motion, equations (1.112a) and (1.112b). 
Because this corresponds to the case when the 
bending moments (from equations (1.115a) and 
(1.115b)) have negligibly small influence upon 
these tangential equations of motion, the result- 
ing theory is sometimes called the "momentless 
theory" or "technical theory" of thin shells (cf., 
ref. 2.19). However, this assumption was also 
used to derive the Donnell-Mushtari equations 
of motion (sec. 1.6.3). Thus, the Donnell- 
Mushtari and shallow shell equations are equiva- 
lent for circular cylindrical shells. 

2.8.1 All Edges Supported by Shear Diaphragms 

From section 1.8 the boundary conditions for 
this case are seen to be 

N,=v=w=M,=O along x=0,1 (2.163a) 

Ne=u=w=Me=O along O=O, 60 (2.163b) 

These boundary conditions are satisfied exactly 
by choosing displacement functions of the form 

u = A cos Xs sin no cos wt 

v = B sin Xs cos nfl cos wt 

w = C sin Xs sin no cos wt 

where s =x/R, as before, X = m ~ R / l  (m = 1, 
2, . . .), and n is not an integer, in general, but 
is given by 

h n=- ( 1 2 . . . (2.165) 
00 

In equation (2.165) k is one more than the num- 
ber of longitudinal node lines along the shell. 

Substituting equations (2.164) into the equa- 
tions of motion (2.3) for a particular shell theory 
yields the same sets of homogeneous equations 
given in section 2.2 such as equations (2.21) for 

the Donnell-Jtushtari theory, and the same 
characteristic equations as given by equations 
(2.35) and (2.36) and table 2.4. 

In the special case where 00 is ?r divided by an 
integer, then the frequencies and mode shapes 
determined by solution function equations (2.164) 
and (2.165) is the same as those for the closed 
shell solution equations (2.20), except for the 
reference plane from which 0 is measured. Thus, 
the results given in section 2.3 for closed shells 
having shear diaphragm supports at both ends 
for n = 1, 2, 3, . . . are applicable to open shells 
having B o = r ,  r/2, n/3, . . . , respectively. I n  
addition, numerical results for values of n which 
are not integers can be obtained from those 
figures of section 2.3 having n as a continuously 
varying parameter (e-g., figs. 2.20,2.21, and 2.22). 
Similarly, results for closed shells of infinite 
length given previously in section 2.2 are directly 
applicable to open shells having 00=7r, 7r/2, 
s/4, . . . . Frequency formulas such as those 
given by table 2.1 for infinite shells and by 
equations (2.42), (2.49), (2.50); and (2.51) and 
tables 2.13 and 2.17 are directly applicable for 
arbitrary angle eo by using n as it is defined in 
equation (2.165). 

The Donnell-Mushtari or shallow shell theory 
is most frequently used to analyze circular 
cylindrical shell panels. It was seen previously in 
section 2.3 that this theory is inaccurate for small - - 

nonzero n (n = 1, 2, 3), particularly for long shells 
(l/R>2). For open shells n can take on even 
smaller non-zero values. For example, from equa- 
tion (2.165) the lowest value (no longitudinal 
node lines) of n for 00 =3n/2 is 2/3. For 00 = 27r 
(n = 1/2) the shell is not closed; i.e., there is no 
continuity of the quantities v, N,e, Qe and dw/aO 
across the longitudinal edges. Furthermore, it is 
possible to have &>2n without significantly 
changing the cylindrical curvature, provided 
h/R<<1. 

No published results are available for 0 < n < 1 
even though the same characteristic equations 
and computer programs used for S D S D  closed 
shells can be used straightforwardly. In section 
2.3.1 frequencies obtained from the various 
theories were compared for several integral values 
of n. The same computer programs were sub- 
sequently used to determine lowest frequency 
parameters for n=1/3, 1/2, and 2/3. These 
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results are shown in tables 2.46 and 2.47, where moderate length/radius ratios (l/mR = 1, 4) the 
the effects of tangential inertia are included. Data three theories agreed closely with each other and 
are given for three of the most widely used shell with results from the three-dimensional elasticity 
theories: Donnell-Mushtari, Fliigge, and mem- theory for both values of R/h and for all n. In 
brane. Thickness ratios (R/h) of 20 and 500, tables 2.46 and 2.47 the agreement among the 
v =0.3, and l/mR =0.1, 0.25, 1,4, 20, and 100 are theories for the nonintegral values of n are also 
chosen to allow direct comparison ~vith n=2, apparent for l/mR = 1, 4. For these values of 
3, . . . by means of tables 2.6, 2.7, and 2.8. l/mR the monotonic behavior of the function 8 

Tables 2.6 and 2.7 showed that for shells having over the closed interval 0 _<n < 1 for all three 

TABLE 2.46.-Lowest Frequency Parameters B = w ~ d p ( 1 -  v2)/E for Deep, Open Shells Supported 
on All Edges by Shear Diaphragms; Tangential Inertia Included; R/h=20, v = 0.3 

l/mR 

0.422183 0.0514333 

1 Mushtari 

TABLE 2.47.-Lowest Frequency Pa~ameters 8 = w ~ d p ( 1 -  v 2 ) / E  fir  Deep, Open Shells Supported 
on All Edges by Shear Diaphragms; Tangential Inertia Included; R/h = 500, v = 0.3 

l/mR 
n Theory 

Donnell- 
1 Mushtari 0.422169 0.0514301 

Membrane .953788 .952986 .935728 .422169 .0514301 
pp-pp 

1 Mushtari 1.11098 .956504 .919707 .381375 .0368056 - 
2 Fliigge 

Membrane 
- 

Donnell- 

3 Flugge 
Membrane 
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theories is also notable. The large errors in the 
membrane theory for low values of n are repro- 
duced, as well as the large errors in the membrane 

t 
and Donnell-Mushtari theories for R/h = 20 and 
large l/mR (100). For l/mR, Q is seen to be non- 
monotonic over 0 I n <  1 for the theories. 

The effects of neglecting tangential inertia for 
the same shells are shown in tables 2.48 and 2.49. 
For closed shells it was seen in tables 2.18 and 
2.19 that neglecting tangential inertia caused a 

maximum change of -9.5 percent in Q for 
n=O (Z/mR =4)  and +42.7 percent for n =  1 
(l/mR = 20). Comparing tables 2.48 and 2.46 
( R / h  = 20), for example, it is interesting to note I 
that neglecting tangential inertia causes only 
positive changes in Q for nonintegral values, and 
that these changes are considerably greater (for 
example, 222 percent increase for n =  1/3, 
l /mR = 100, according to the Fliigge theory). 

Sews11 (ref. 2.198) used the solution functions 

TABLE 2.48.-Lowest Frequency Parameters Q =  w ~ d p ( 1 -  v2)/E for Deep, Open Shells Supported 
on All Edges by Shear Diaphragms; Tangential Inertia Neglected; R / h  = 20, v = 0.3 

l/mR 
n Theory 

0.1 0.25 1 4 20 100 
- 

Donnell- 
1 Mushtari 14.2790 2.47208 0.954256 0.808405 0.173355 0.0085533 
3 Fliigge 14.2747 2.46806 .953555 .go8354 .I73884 .0153958 

Membrane .953845 ,953267 .943319 .go8336 .I73344 .00839890 
- 

Donnell- 
1 Mushtari 14.2810 2.47361 .941768 .678938 .0857841 .00521490 
2 Fliigge 14.2767 2.46956 .940991 .678848 .0864238 .0114806 

Membrane .953711 .952430 .930372 .678822 .0856925 .00375119 

Donnell- 
2 Mushtari - 14.2838 2.47575 .924892 .554664 .0506287 .00676778 
3 Fliigge 14.2795 2.47167 .924007 .554480 .0508296 .00830042 

Membrane .953524 .951261 .912833 .554453 .0501739 .00211369 

TABLE 2.49.-Lowest Frequency Parameters Q = o ~ l / ~ ( l -  v2)/E for Deep, Open Shells Supported on 
All Edges by Shear Diaphragms; Tangential Inertia Neglected; R / h  = 600, v = 0.3 

E/mR 
n Theory 

0.1 0.25 1 4 20 100 

Donnell- 
1 Mushtari - 1.11111 0.957625 0.943337 0.808337 0.173344 ' 0.00839915 
3 Fliigge 1.11102 .957608 .943336 .go8336 .I73345 .00841474 

Membrane .953832 .953268 .943319 .go8336 .I73344 .00839890 
- 

Donnell- 
1 Mushtari 1.11104 .956799 .930391 .678823 .0856926 .00375399 - 
2 

2 - 
3 

Fliigge 
Membrane 

Donnell- 
Mushtari 

Fliigge 
Membrane 

1.11109 
.953697 

1.11093 
1.11084 

.953510 

.956782 

.952431 

.955645 

.955628 

.951262 

.930389 

.930372 

.912852 

.912851 

.912833 

.678822 

.678822 

.554453 

.554453 

.554453 

.0856936 

.0856925 

.0501746 

.0501749 

.0501739 

.00377621 

.00375119 

.00212927 

.OD213793 

.00211368 
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THEORY 
( a )  - 

--- CLAMPED EDGES 
SHEAR DIAPHRAGM 

16 I n EDGES 
EXPERIMENT 

FIGURE 2.142.-Nondimensiond frequency parameters for aluminum cylindrical panels sup- 
ported by shear diaphragms on all edges; I/BoR=1.22. (After ref. 2.198) (a) 00=5.40, 
R/h = 3430. (b) 00 = 5.40J R/h=2000. (c) 00 = 7.2', R/h = 2570. (d) Bo = 7.2", R/h = 1500. 
(el eo = 10.7", R/h = 1715. (f) eo = 10.70J R/h = 1000. 
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THEORY 
18 ( e l  - --- CLAMPED EDGES 

. A SHEAR DIAPHRAGM 
EDGES 

EXPERIMENT 

given by equations (2.164) and (2.165) along with 
the Donnell-Mushtari theory and neglected tan- 
gential inertia to obtain numerical results explic- 
itly for cylindrical panels supported on all edges 
by shear diaphragms. These results are shown in 
figure 2.142 wherein a modified frequency param- 
eter is plotted as a function of nl/mOoR for 
shallow shells having included angles 80 = 5.4", 
7.2", and 10.7". 

The free vibrations of open circular cylindrical 
shells are also discussed in references 2.19, 2.38, 
2.66, and 2.199 through 2.212. 

2.8.2 Lateral Edges Having SD Supports 

Consider next the generalization where an 
open circular cylindrical shell has shear dia- 
phragm supports at  the sides 8=0, 80 (see fig. 
2.141) as defined by boundary condition equa- 
tions (2.163b), but has arbitrary edge conditions 
along x = 0,l. The exact solution procedure out- 
lined in section 2.4 for closed shells having arbi- 
trary edge conditions is also applicable for this 
case. That is, solution functions in the form of 
equations (2.53) can be talien, (interchanging 

sin no for cos no) with n not generally an integer, 
but determined by equation (2.165). The proper 
values of X are then determined from the roots 
of an eighth degree characteristic equation (2.54) 
as before, and the amplitude ratios A/C, B/C 
and the frequency parameters D are determined 
from the equations of motion, as in sec. 2.4. 

Thus a great deal of information is already 
available in the subsequent subsections of section 
2.4 for open shells having n = 1, 2, 3, . . . (i.e., 
B o = r ,  7r/2, 7r/3, . . .) because the longitudinal 
node lines generated are equivalent to shear dia- 
phragm supports along these lines. For example, 
the abundant data available for clamped-clamped 
shells in the figures and tables found in section 
2.4.1 can also be used for cylindrical shell panels 
having clamped ends and lateral edges supported 
by shear diaphragms. n!toreover, simplified fre- 
quency formulas such as equations (2.87), (2.88), 
(2.89), and (2.90) can be applied for values of n 
which are not integers. 

2.8.3 Ends Having SD Supports 

An exact solution of the free vibration problem 
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is also possible for a circular cylindrical shell having its curved edges x = 0,E (see fig. 2.141) supported 
by shear diaphragms and arbitrary fixity conditions along the longitudinal edges. Thus the boundary 
conditions along x=0,1 are given by equations (2.163a). These conditions are satisfied exactly by 
choosing 

u = A cos Xs enO cos wt v = B sin Xs enB cos wt w = C sin As enB cos wt (2.166) 

with s = x/R and X = m ~ R / l  (m = 1,2, . . .). Substituting equations (2.166) into the equations of motion 
gives, for example, for the Donnell-Mushtari theory (cf., eqs. (2.7)) 

J LoJ 
The coefficient matrix in equation (2.167) can 
easily be put into symmetric form simply by 
multiplying the last two equations through by 
negative one. For a nontrivial solution the deter- 
minant of the coefficient matrix in equation 
(2.167) is set equal to zero, thereby yielding an 
eighth degree characteristic equation for the 
proper values of n. The vibration frequencies and 
amplitude ratios A/C and B/C are then deter- 
mined by applying the four boundary conditions - 
which exist at each of the sides 0 = 0 and 0 = 00. 

I n  spite of the straightforwardness of the ap- 
proach outlined above and its obvious parallelism 
to the solution procedure outlined in section 2.4, 77- 
the only work using it known to the writer is that 
by Heki (ref. 2.172). In  that work the solution is 
derived in detail for the Donnell-Mushtari the- 

TABLE 2.50.-Frequency Parameters for a Cylin- 
drical Shell Panel Having Its Straight Edges Free 
and the Others Supported by Shear Diaphragms r 6 T  

Number of 
longitudinal 

half-waves, m 

1 
1 
1 

2 
2 

3 
3 

CROSS-SECTION NODAL PATTERNS 

f : THEORETICAL 
f': EXPERIMENTAL 

Type of 
mode 

Antisym. 
Symmetric 
Antisym. 

Symmetric 
Antisym. 

Symmetric 
Antisym. 

FIGURE 2.143.wMode shapes, nodal patterns, and cyclic 
frequencies (theoretical-f, experimental-f') for a cylin- 
drical shell panel having its straight edges free and the 
others supported by shear diaphragms. (After ref. 
2.172) 

WZP RIP.\/-) 
m W E h  

-- 
0.088 

.220 
2.28 

.I72 

.I82 

.I90 

.228 
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f, 
CPS 

299 

-- 

474 

1530 

840 

860 

1320 

1450 

TABLE 
Straight 

Function 

u 
v 
w 

NzX10-3 
Nse X lo-' 
Ne X lo-' 
Me X 

u 
v 
w 

N,XIO-a 
N,e X lo-' 
NoXIO-~  
MeX10-6 

u 
v 
w 

N,X10-3 
N,e X lo-' 
NeX10-3 
Me X 10-6 

u 
v 
w 

N,  XlO-' 
N,e X 
N e ~ l o - ~  
Mex10-6 

u 
v 
w 

N,  XlO-' 
N,e X loda 
Ne XlO-' 
Me XlO-' 

u 
v 
w 

NzX10-3 
N.9 XlO-' 
NeX10-3 
M o X ~ O - ~  

u 
v 
w 

N,X10-' 
Nag XlO-' 
Ne X 
Me X10-6 

2.51.-Modal 
Edges Free 

Symmetry 
of 

function 

Antisym. 
Symmetric 
Antisym. 
Antisym. 
Symmetric 
Antisym. 
Antisym. 

Symmetric 
Antisym. 
Symmetric 
Symmetric 
Antisym. 
Symmetric 
Symmetric 

Antisym. 
Symmetric 
Antisym. 
Antisym. 
Symmetric 
Antisym. 
Antisym. 

Symmetric 
Antisym. 
Symmetric 
Symmetric 
Antisym. 
Symmetric 
Symmetric 

Ant i sy~ .  
Symmetric 
Antisym. 
Antisym. 
Symmetric 
Antisym. 
Antisym. 

Symmetric 
Antisym. 
Symmetric 
Symmetric 
Antisym. 
Symmetric 
Symmetric 

Antisym. 
Symmetric 
Antisym. 
Antisym. 
Symmetric 
Antisym. 
Antisym. 

Characteristics for a Cylindrical Shell Panel Having Its 
and the Others Supported by Shear Diaphragms 

- 

edge oO, 
0.035 
- .311 
1.559 
- .542 

0 
0 
0 -- 

.041 
- .276 
1.576 
- .638 

0 
0 
0 

.030 

.I79 
1.63 
- .46 

0 
0 
0 

.039 
- .209 
1.555 

- 1.207 
0 
0 
0 

.052 
- .239 
i.543 

-1.615 
0 
0 
0 

.048 
- .200 
1.64 

-2.244 
0 
0 
0 

.061 
- .200 
1.606 

-2.38 
0 
0 
0 

5" 

0.002 
-. 179 
1.273 
- .033 
-.050 

.004 
-.03 

.012 
-. 156 
1.169 
-. 195 
-.054 

.004 

.043 ----- 

.016 

.I87 

.52 
- .25 

.04 
-.07 
1.2 
PP 

.OOO 
- .094 
1.105 
0.004 

-.I83 
.028 
.02 
P 

.005 
- .I22 
1.125 
- .I49 
-.217 

.038 

.08 

- .004 
- .077 
1.11 

.I88 
-.33 

.ll 
- .27 

-.003 
- .079 
1.070 

.07 
-.38 

.ll 
- .26 

Amplitudes 

10" 

-0.014 
- .079 

.979 

.226 
- .037 

.012 

.08 

- .002 
- .072 

.798 

.034 
- .064 

.013 

.366 

-.003 
.I54 

-.28 
- .04 

.05 
-.01 
4.1 

- .012 
- .018 

.671 

.379 
-. 133 

.058 

.49 

- .013 
- .043 

.735 

.437 
-.I59 

.093 

.59 

- .015 
- .004 

.62 

.735 
- . lo  

.21 

.66 

- .013 
- .010 

.576 

.66 
-.I9 

.24 

.98 

of function 

15" 

-0.020 
- .007 

.740 

.314 
- .013 

.015 

.07 

- .007 
- .022 

.440 

.I22 
- .049 

.020 

.778 

- .019 
.071 

-.98 
.30 
.02 

-.02 
6.0 

- .009 
.022 
.281 
.302 

- .027 
.064 

1.04 

- .016 
.004 
.406 
.549 

-.041 
.I21 

1.12 

- .010 
.029 
.22 
.470 
.17 
.19 

1.39 

- .008 
.018 
.I88 
.50 
.07 
.26 

2.02 

8 = 

20" 

_0.017 
.044 
.483 
.273 
.025 
.014 
.09 

- .008 
.003 
.I58 
.I29 

- .031 
.026 

1.185 

- .023 
- .032 

-1.13 
.37 

-.03 
-.02 
6.2 

- .002 
.032 

- .026 
.058 
.036 
.048 

1.45 

- .012 
.027 
.I84 
.420 
.I14 
.lo7 

1.20 

.OOO 

.033 
-.06 
- .001 

.27 

.09 
1.56 

- .002 
.021 

- .024 
.21 
.21 
.20 

2.15 

250 

-0.010 
.072 
.237 
.I56 
.054 
.008 
.07 

- .006 
.007 

- .035 
.lo4 

- .012 
.029 

1.469 

- .015 
-. 116 
-.72 
. .25 
-.07 
-.01 
3.9 

.006 

.021 
- .219 
- .I65 

.041 

.027 
1.66 

- .006 
.036 
.060 
.219 
.203 
.061 
.77 

.008 

.023 
-.21 
- .352 

.21 

.OO 
1.46 

.001 

.014 
- .065 

.04 

.25 

.ll 
1.33 

30°, 
center 

0 
0.081 
0 
0 
.063 
0 
0 

- .006 
0 

- .092 
.lo5 
0 
.030 

1.570 

0 
- .I50 

0 
0 

-.09 
0 
0 

.008 
0 

- .286 
- .247 

0 
.019 

1.72 

0 
.038 
0 
0 
.236 
0 
0 

.011 
0 

- .26 
- .494 

0 
-0.05 

1.41 

0 
.010 
0 
0 
.26 
0 
0 
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ory neglecting tangential inertia and is illustrated 
by the problem where the two longitudinal edges 
B=0, Bo are completely free. Numerical results 
were obtained for a steel shell having the follow- 
ing physical parameters (expressed in the c.g.s. 
system) : p=7.8, R = 10.0, v =0.3, E = 2.1 X 1012, 
1 = 20.0, h = 0.100, 00 = 60". Nondimensional fre- 
quency parameters are given in table 2.50. Modes 
are labeled either symmetric or antisymmetric 
with respect to the line B =  190/2. In  figure 2.143 
the mode shapes are shown, along with theo- 
retical and experimentally measured cyclic fre- 
quencies for the physical parameters given above. 
Modal characteristics associated with each of 
these frequencies are listed in table 2.51. 

2.8.4 Other Boundary Conditions 

Problems involving open circular cylindrical 
shells not having two opposite sides supported 
by shear diaphragms (or the boundary condi- 
tions complementary to SD supports as dis- 
cussed in sec. 2.4.6) are not capable of exact 
solution by analytical methods, and approxi- 
mate techniques must be used. For this purpose 
the Ritz method using beam vibration eigen- 
functions is frequently employed. 

Gontkevich (refs. 2.127 and 2.202) developed 
a method of analysis for open circular cylindrical 
shells which need not be shallow. The Rayleigh- 
Rits method was used along with displacement 
components in the form 

u = AmJrnt(x)@n(B) cos ~t 

v=BrnnXrn(x)0,'(19)coswt 

w = crnnxm(x)On(e) cos wt 

where the Xm(x) are conveational beam func- 
tions and On(B) are the eigenfunctions of free 
vibration of circular beams determined for the 
appropriate boundary conditions at  8 = 0, Bo. In  
references 2.127 and 2.202 a characteristic de- 
terminant is given in a general form for arbi- 
trary boundary conditions. The characteristic 
determinant is 

where, after sorting through several misprints in 
reference 2.127, it appears that 

a33 = @ n + k [ ~ r n ~ @ n + 2 ~ ~ r n ~ Y r n + ~ n ~ ~ n  

+pn4vn+2(1 - ~)~lrn~6rn~~n6n] 
- engz J 

and k=h2/12R2 as before. The straight beam 
eigenfunction constants 6,) yrnJ and prn = arnR/l 
to be used in equations (2.170) were given pre- 
viously in table 2.21. The curved beam constants 
Pnj  6,, yn, t n ,  and On are defined by 

Values of an for circular curved beams are pre- 
sented in figure 2.144. A double subscript is used, 
the first subscript indicating the mode number 
and the second is an edge fixity identifier having 
the following key: 

1. clamped-clamped 
2. free-free 
3. clamped-free 

Thus, for example, (rz8 is identified with the 
second mode of a clamped-free circular beam. 
The clamped-SD and freeSD modes are included 
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FIGURE 2.144.- Eigenfunction constants for curved 
circular beams. (After refs. 2.127 and 2.202) 

within the antisymmetric clamped-clamped and 
free-free modes, respectively. The values of a, 
for SD-SD supports are n, 2n, 3n, . . . . The 
values of a, in figure 2.144 approach those of 
table 2.21 for straight beams as the included 
angle eo approaches zero. The constants 6,) rn, q,, 
and en for the curved beam functions a.re avail- 
able for free-free, clamped-free, and clamped- 
clamped beams in figures 2.145, 2.146, and 
2.147, respectively. Upon substituting the ap- 
propriate constants from these figures and table 
2.21 into the terms of the characteristic de- 
terminant (2.169)) the frequency parameters 
Q2 = u2RZp(l - v2)/E may then be evaluated di- 
rectly as the three roots of the determinant. The 
expanded determinant is, of course, a cubic char- 
acteristic equation in Q2 which takes the form of 
equation (2.35). Usually, one of the three roots 
of the cubic equation (the root associated with 

a transverse bending mode) is much smaller than 
the other two. I n  such cases some of the ap- 
proximate frequency formulas such as equations 
(2.50) and (2.51) can be employed. 

The modal density (number of natural fre- 
quencies per unit frequency interval) for shallow 
shells having arbitrary edge conditions is dis- 
cussed by Bolotin in references 2.149 and 2.195. 

In  reference 2.213 the frequencies of completely 
clamped shallow shells made of aluminum and 
having dimensions 1 = 11-5/8 in., Reo = 9-5/8 in., 
and h = 0.032 in. were calculated using the Ritz 
method and straight beam functions. These 
results are exhibited in table 2.52 for two types 
of analysis. The first used the Donnell-Mushtari 
shell equations with only a single product of 
beam functions and neglected tangential inertia; 
the second used the Sanders equations with three 
beam function products and included tangential 
inertia. For shells having this extent of shallow- 
ness the two approaches give only slightly differ- 
ing results. A similar comparison is made in 
table 2.53 for a set of shallow shells having square 
planforms (from ref. 2.214). Experiments were 
also conducted on these shells and the results are 
shown in tables 2.54 and 2.55. Difficulty was 
encountered in obtaining rigid clamping in the 
test set-ups, which caused a significant decrease 
in the frequencies from the theoretical values for 
clamped shells, particularly for the lowest modes. 
For R = 96 in. and m = n = 1 in table 2.54 the 
clamping was very ineffective in restraining the 
tangential displacements a t  the boundary and 
the measured frequency (150 cps) is essentially the 

TABLE 2.52.-Frequencies of Completely Clamped 
Aluminum Shell Panels (1 = 11-5/8 in., R eo = 

9-5/8 in., h = 0.032 in.); m = I 

Number of 
circum- 
f erential 

half-waves, 
n 

1 
2 
3 
4 
5 

Frequencies, cps, for- 

R =96.0 in. 
. 
Donnell- 
Mushtari 

314.4 
334.1 
479.2 
722.5 

1045 

R =48.0 in. 

314.0 
333.15 
477.7 
720.5 

Donnell- 
Mushtari 

602.7 
531.0 
595.05 
784.7 

1078 

Sanders 

601.9 
529.8 
593.5 
782.8 
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-" 0 77 - 77 1.577 2 77 
2 

(dl 8, 

FIGURE 2.145-Constants for free-free curved beam func- 
tions. (After refs. 2.127 and 2.202) (a) 6,. (b) +yn. 
(c) 'In. (d)en. 
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FIGURE 2.146-Constants for clamped-free curved beam 
functions. (After refs. 2.127 and 2.202) (a) Sn. (b) -m. 
(GI qn. (d) en- 
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TMLE 2.53.-Comparison of Calculated and 
Measured Frequencies (1 = I1 -5/8 in., 
ROO = 9-5/8 in., h = 0.032 in.), cps 

same as the theoretical result for shear diaphragm 
supports all around. The method of clamping 
consisted of a simple lap attachment at the 
boundaries using closely spaced bolts (1/8 in. in 
diameter and spaced 1-1/16 in. on centers in 
ref. 2.213; 3/16 in. in diameter and spaced 1-1/2 
in. on centers in ref. 2.214). 

Theoretical results obtained in a similar manner 
for shells having 1 = 11.0 in., RBo=9.0 in., and 
h = 0.028 in. were compared in reference 2.198 
with experimental results presented in reference 
2.215. Graphs of these results have been exhibited 
earlier as figures 2.142. In  these figures the effects 
of adding an additional clamping strip over the 
tops of the lap attachments is shown by squares 
having additional flags. Sewall (ref. 2.198) also 
gave the following formula for the frequencies of 
completely clamped shallow cylindrical shells 
(using the Donnell-Mushtari theory and neglect- 
ing tangential inertia) when only a single term 
in the products of beam functions is used: 

R2 m. 

96 

48 

where 

iifn=(~nNn(~~nNnRBO-2), and a,, em, en 

m 

--- 
1 
1 2  
1 3  
1 4  
1 5  

2 
3 
4 
5 

--- 
1 1  
1 2  
1 3  
1 4  
1 5  

2 
3 
4 
5 

are the eigenfunction constants for clamped- 
clamped beams as defined by equations (2.93) 
and (2.94) and are listed in table 2.23. 

Webster (ref. 2.199) obtained theoretical 
results for completely clamped shallow shells by 
using Fltigge's shell equations and a variational 
approach. The procedure consisted of applying 
Hamilton's principle subject to the constraints 
supplied by the geometric boundary conditions, 
which are enforced by means of Lagrange multi- 
pliers in the variational problem. The displace- 
ment functions are taken in the form of poly- 
nomials; i.e., 

where A,,, B,,, and Cmn are undetermined 
coefficients. The order of the resultant character- 

-- 

Experiment 

150 
250 
440 
725 

345 
540 
800 

350 
270 
445 
760 

560 
770 
935 

n 

1 

-- 

1 
1 
1 
1 

-- 
1 
1 
1 
1 

Theory 

Shear 
diaphragm 
supports 

146.7 
163.2 
322.8 
554.8 
853.9 

274.3 
373.1 
501.6 
680.1 

277.5 
183.2 
323.4 
551.9 
848.7 

505.1 
622.1 
729.7 
872.3 

Clamped 

314.4 
334.1 
479.2 
722.5 

1045 

356.6 
446.4 
593.0 
769.2 

602.7 
531.0 
595.05 
784.7 

1078 

635.9 
699.9 
808.2 
971.4 
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, TABLE 2.54.-Frequencies of Completelg Clamped Square Aluminum Shell 
Panels (b=RtJO= 17.0 in.); m= 1 

Frequencies, cps, for - 
Number of 

h, circumferential R = 96.0 in. R = 48.0 in. 
in. half-waves, 

n Donnell- Sanders Donnell- 
Mushtari Mwhtari Sanders 

1 299.5 299.0 597.3 596.3 
2 245.9 245.2 484.1 482.55 
3 225.55 225.0 423.7 422.6 

0.020 4 232.3 231.8 393.7 393.0 
5 267.1 266.5 392.9 393.0 
6 326.9 326.2 421.1 420.45 
7 407.7 407.0 476.9 476.2 

1 301.0 300.5 598.1 597.0 
2 253.6 252.9 488.0 486.6 
3 251.6 250.9 438.1 437.0 

0.032 4 292.6 291.8 432.0 431.05 
5 373.4 372.4 471.6 470.6 
6 486.7 485.6 554.3 553.3 
7 627.4 626.3 674.4 673.2 

1 302.4 301.9 598.8 597.75 
2 260.5 259.8 491.65 490.25 
3 273.4 272.6 451.0 449.8 

0.040 4 338.8 337.8 464.5 463.4 
5 449.7 448.5 534.0 532.85 
6 597.4 596.1 653.6 652.3 
7 776.9 775.5 815.2 813.8 

I 

listic determinant to be evaluated by this pro- - - - - - - - - - - - - - -  - - - 3  

cedure is 3MN plus the number of boundarp 
constraint equations. I n  figures 2.148 through 
2.152 the parameter po2(l - v2)Z2R2tJo2/Eh2 for 

I I I I parameter 00l/h for five aspect ratios RtJo/l. lo4/ 
I 

I I  I/ 

%. The notation (m,n) used in figures 2.148 through 
2.152 indicates that the normal displacement w, 1 

respectively. 2 5 10 2 5 log 2 5 to3 
I When Sewall's formula (2.172) is converted to % b h  

the frequency parameter pu2(l - v2)12R2e02~Eh\~ooa~ 2.148.-Fundamental frequency parameter for 
used in figures 2.148 through 2.1521 it is found completely clamped shallow shells; RBO/l = 0.25. (After 
to be independent of 00 for a given R80/l and ref. 2.199) 
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TABLE 2.55.-Comparison of Calculated and Measured Frequencies 
( I  =i7.0 in., RBo=i7.0 in.),  cps; m = l  

R = 96.0 in. 

n Theory 
Experiment 

SD Clamped 

1 167.3 299.5 240 
2 74.6 245.9 
3 74.4 225.55 85 
4 114.7 232.3 129 
5 173.3 267.1 190 
6 246.2 326.9 
7 332.5 407.7 345 

1 168.1 301.0 
2 85.3 253.6 117 
3 111.5 251.6 125 
4 181.9 292.6 229 
5 276.9 373.4 295 
6 393.7 486.7 
7 532.0 627.4 

1 168.9 302.4 
2 94.2 260.5 123 
3 137.1 273.4 197 
4 226.9 338.8 278 
5 346.0 449.7 388 
6 492.1 597.4 
7 665.0 776.9 727 

R = 48.0 in. 

Theory 

SD Clamped 

332.7 597.3 
137.4 484.1 
94.1 423.7 

119.55 393.7 
174.7 392.9 
246.6 421.1 
332.6 476.9 

333.1 598.1 
143.5 488.0 
125.4 438.1 
184.9 432.0 
277.6 471.6 
393.9 554.3 
532.0 674.4 

333.5 598.8 
148.9 491.65 
148.6 451 .O 
229.2 464.5 
346.5 534.0 
492.2 653.6 
664.9 815.2 

-- 

Experiment 

FIGURE 2.149.-Fundamental frequency parameter for 
completely clamped shallow shells; RBo/Z = 0.5. (After 
ref. 2.199) 

FIGURE 2.150.-Fundamental frequency parameter for 
completely clamped shallow shells; RBo/l= 1.0. (After 
ref. 2.199) 



tion. For thick panels having large curvatures, 
these errors have a small effect upon the frequen- 
cies because the stretching strain energy is small 
compared to the bending strain energy. For 
thinner, less shallow panels the stretching energy 
becomes more significant. 

If one considers the nodal patterns of a clamped 
square plate (cf., ref. 2.157)) it is found that some 

w of them have node lines which are not at all 
parallel to the sides of the plate (see ref. 2.157). 
These modes areidentified as (m,n) + (n,m) modes 
because they may be approximated by combina- 
tions of two assumed modes (m,n) and (n,m), 

FIGURE 2.151.-F'undamental frequency parameter for 
which do have nodal lines parallel to the edges. 

completely clamped shallow shells; RBo/l=2.0. (After The patterns of these modes are sensitive to 
ref. 2.199) asymmetry which is introduced by making the 

aspect ratio slightly different from unity. A 
similar effect occurs in shallow shells when asym- 
metry is introduced by virtue of having curva- 
ture in only one direction. Figure 2.153 (from 
ref. 2.199) shows the transformation of the nodal 
patterns of the (3,1), (1,3) modes of a square 
flat plate to (1,3) and (3,l) modes by the intro- 
duction of curvature in one direction. For BOl/h = 8 
the rise of the square curved panel is approxi- 
mately equal to the thickness. It is seen that 
curvatures of this order change the nodal pat- . 
terns considerably. 

Rectangular curved panels, like flat plates, will 
have two modes with equal f~equencies. How- 
ever, for this to occur the two modes must have 

completely clamped shallow shells; R@O/~=~.O.  (After different symmetries with to the and 
6 axes, or both. If the two modes have the same 
type of symmetry (or antisymmetry) then two. 

60l/h, but the solution using the power series modes having nearly the same frequency can 
given by equations (2.173) is not. The results occur. The nodal patterns of these two modes can 
shown in the figures 2.148 through 2.152 are for be quite complex (of., ref. 2.157). In  figures 2.148 
60 = 0.1 rad (5.73'), but as pointed out in refer- 
ence 2.199 they may be used for shallow shells, 
in general, with little error. At 60- 1.0 rad. - PI-' 3 77Y(,,3 

(57.3') the results would be approximately 2 to (1,31-(3,11,/' \\ C ~ - S .  WROXIMATELY 

3 percent less than those for 60 = 0.1 rad. 
Figures 2.148 through 2.152 also show that 

Sewall's equation gives accurate results for small 
values of Oo1/h but becomes inaccurate as Ool/h 
increases because the beam functions do not rep- 

~ = d l l - ? ) ~ ' ~ ' @ ~ / ~ h 2  
resent the true displacements very accurately in 
this range (ref. 2.199). In particular) the repre- 2.JBa.-Effect of curvature upon the nodal pa& 
sentation of the V displacement is poor for modes term of clamped square curved panels; ~o,,/h= 100. . having more than one half-wave in the 6 direc- (After ref. 2.199) 

C 
A 
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through 2.152 the mode changes do all occur with 
changes of symmetry, giving actual crossings of 
frequency curves. 

Lisowski (refs. 2.216 and 2.217) computed the 
first eight frequencies of a completely clamped 
shallow shell of celluloid having dimensions in 
centimeters as shown in figure 2.154. A flexibility 
matrix expressed in terms of the eight interior 
points shown in figure 2.154 was obtained by 
experimental measurement with point loads. Fre- 
quencies were then calculated by treating the 
problem as one having eight transverse degrees 
of freedom associated with the eight mesh points. 
Frequencies in cycles per second and correspond- 
ing mode shapes are shown in figure 2.155. 

The Rayleigh method using the Love-Timo- 
shenko shell equations neglecting tangential 
inertia and a simple mode shape of the form 

was used by Palmer (ref. 2.211) for the com- 
pletely clamped shallow shell. Results for alumi- 
num plates are shown in figure 2.156, where f is 

204t cps 

the cyclic frequency. 
In reference 2'221 the finite technique FIGURE 2.155--Frequencies (cps) and mode shapes of a 

comvletely clamped shallow shell. (After refs. 2.216 

FIGURE 2.156.-Frequencies of a completely clamped 
aluminum shallow shell (fin cps). (After ref. 2.211) 

v is used to calculate the natural frequencies of an 
arch dam of particular dimensions. The structure 
can also be regarded as a clamped-free-clamped- 
free circular cylindrical shell. 

FIGURE 2.154.-Dimensions (in centimeters) of a com- Experimental results for curved cylindrical 
pletely clamped shallow shell of celluloid used for the panels were presented in reference 2.213. The 
results of figure 2.155. (After refs. 2.216 and 2.217) panels were made of 0.032 in. thick 2024-T3 
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FIGURE 2.157.-Experimentally determined frequencies 
for panels having riveted edges. (After ref. 2.213) 

aluminum alloy. The planform dimensions were 
b = 11 in. and 1 = 13 in. (see fig. 2.141). The panels 
were riveted to rigid supporting frames having 
unsupported internal dimensions of 9-% in. by 
11-% in. Results are shown in figures 2.157 for 
R = 48 in., 96 in., and co where it is demonstrated 
that there is little difference in the natural fre- 
quencies between flat and curved panels when 
the node lines are parallel to the longitudinal (x) 
direction. 

2.8.5 Added Concentrated Mass 

Chen (refs. 2.201 and 2.225) analyzed the 
problem of a circular cylindrical shell panel having 
a concentrated mass M attached at its center 
(x = 1/2, 8 = Bo/2 in terms of figure 2.141). All four 
edges of the panel were supported by shear d i e  
phragms. The Donnell-Mushtari shell equations 
were used. The procedure consisted of using an 
infinite set of solution functions in the form of 
equations (2.164) and (2.165) which satisfy the 
boundary conditions exactly, expanding the con- 
centrated inertia load in terms of the same 
functions, and substituting into the equations of 
motion. This procedure yields a characteristic 
determinant of infinite order which can be solved 
to any desired degree of accuracy by successive 
truncation. Detailed numerical results showing 
the rate of convergence of this method are seen 
in table 2.56 for the fundamental frequencies of 
panels having 80=~/6, v=0.3, and a ratio of 
concentrated mass to shell mass (M/phlRBo) of 
1/4. Similar results for higher frequencies of a 
particular panel having 80=~/6, l/R80= 1, and 
R/h = 100 are given in table 2.57. Figure 2.158 

TABLE 2.56.-Convergence of the Fundamental 
Frequency Parameter wldp(1- v3/r2E (Breath- 
ing Mode) of a Cylindrical Panel Carrying a 
Concentrated Mass 

.09 I I 

-CYLINDRICAL PANEL 

Number of 
terms in 

series 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

O8 fi\\ -- FLAT PLATE 1 

FIGURE 2.158.-Variation of the fundamental frequency 
parameters with mass ratio for cylindrical panels 
having a concentrated mass. (After ref. 2.201) 

shows the variation of wldp(l - v2)/r2E with the 
mass ratio for the fundamental frequency. The 
results shown in the figure are obtained by using 

Upper limit on- 

m 

1 
1 
3 
3 
1 
3 
5 
5 
5 
1 
3 
5 

oll/p(l - v 2 )  / = a ~  

n 

1 
3 
1 
3 
5 
5 
1 
3 
5 
7 
7 
7 

Z / R B ~  = I  
R / h  = 100 

0.06101 
.05888 
.05767 
.05710 
.05682 
.05665 
.05644 
.05624 
.05616 
.05608 
.05600 
.05600 

l/RBo =2  
R / h  = 1000 

0.04473 
.02252 
.02245 
.02181 
.02137 
.02137 
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TABLE 2.57 .-Higher Frequency Parameters o l d p ( l  - vZ)/?r2E for a 
Cylindrical Panel Carrying a Concentrated Mass 

Number of axial and longitudinal half waves -m,n 
Number Mode of terms 

l J 1  I l J 3  ( 391 1 3J3 1 l J 5  1 3J5 

six term series of approximations for u, v, and w. constant coefficients. No numerical results are 
Results are given for aspect ratios l/ROo = 1.0,1.5, given. 
and 2.0 and for thickness ratios R/h  = 100 and 
1000. All results are for O0=r/6 and v=0.3. 
For panels having the lower thickness ratio 
(R/h = loo), the fundamental (lowest) frequency 
occurs in the m = n =  1 mode. For R/h= 1000, 
however, it occurs in the m = 1, n =3 mode. For 
purposes of comparison to show the effects of 
shallow shell curvature, figure 2.158 also gives 
the results for the case of a rectangular plate 
having the same dimensions and edge supports. 

2.8.6 Other Boundary Shapes 

Wieckowski (ref. 2.226) presented a procedure 
for the solution of the free vibration of a shell 
having circular cylindrical curvature bounded by 
the edges x = 0, I and two helices. The edge x = 0 
is clamped and all other edges are free, which is 
intended to simulate 'a stream turbine blade. The 
Donnell-Mushtari shell equations are used and 
are transformed into skew coordinates which are 
compatible with the edges of the shell. The pro- 
cedure outlined is tedious and leads to an infinite 
sequence of ordinary differential equations having 
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Chapter 3 

Complicating Effects in Circular Cylindrical Shells 

In the previous chapter the equations of motion 
for circular cylindrical shells were restricted to 
their most simple forms as derived in chapter 1. 
This permitted the study of the effects of dif- 
ferent types of edge constraints, added mass, 
cutouts, and varying geometric and material 
parameters upon natural frequencies and mode 
shapes. I n  this chapter the complicating effects 
of anisotropy, initial stress, variable thickness, 
large deflections, shear deformation and rotary 

- 

inertia, nonhomogeneity, and surrounding media 
will each be considered. Each effect causes com- 
plications of one or more of the following types 
in the differential equations of motion: 

(1) Adding simple terms, thereby somewhat 
changing the forms of analytical solutions and 
increasing their complexity. 

(2) Changing constant coefficients to vari- 
able coefficients, thereby reducing the possibility 
of solution in terms of simple functions. 

(3) Adding nonlinear terms which completely 
change the character of the solutions. 

(4) Increasing the order of the equations. 

In some instances the boundary conditions are 
also changed. In  each instance the type of shell 
considered in chapter 2 is a special case of the 
more generalized analysis which includes a given 
complicating effect. 

greatly reduced the number of solved problems, 
and for many of the subsection titles there are no 
results in the literature to report. Nevertheless, 
the organization described above will be followed 
in each section of this chapter insofar as it is 
appropriate. 

The coordinate notation of chapter 2 as shown 
in figure 2.1 will apply throughout this chapter. 

For a general elastic solid (neglecting couple 
stresses) there are 21 independent elastic con- 
stants relating stresses and strains. In  the case 
of a thin plate or shell, only the stresses a,, ag, 
and rap  (in the notation of chapter 1) and their 
corresponding strains are involved, and the num- 
ber of independent elastic constants is thereby 
reduced to six (cf., the appendix of ref. 3.1). 

However, particularly because of the complex- 
ity arising from having six independent con- 
stants, no numerical results have been found in 
the literature for the vibrations of circular cylin- 
drical shells having general anisotropy. Rather, 
all results given are for the special case of orthot- 
ropy. Equations of motion for a number of theo- 
ries in the case of general anisotropy will be given 
in section 3.1.1. 

For an orthotropic shell the stress-strain equa- 
tions (1.70) are 

A separate section in this chapter will be de- 
voted to each of the complicating effects listed 

1 
e, = -(a, - v ~ u ~ )  

above. From a logical standpoint it is possible to Eu 
organize each section in the same manner as 1 
chapter 2. That is, for example, the section titles eg = -(up - vpa,) 
for sections 2.1, 2.2, . . . ,2.8 could also be used Ef3 

I for subsections 3.1.1,3.1.2, . . . ,3.1.8 of section TUB a,@ = - 
3.1 dealing with the effects of anisotropy, and G 
similarly for each other section of this chapter. 
However, of course, the added complexities have which, when inverted, become 
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1 

i 
will be discussed in the next section), the problem 

uu =- 
1 - vavg 

(Euea + vaEpep) will be included here. In  order 
validity of the equivalent orthotropic analysis a 

1 
up =- (Epep + vsEaeu) 

(3.2) few comparisons will be included, where available, 
1 - v,vp which include both the orthotropic analysis and 

the more accurate, complex structural analysis. 
7.8 = GyUa These comparisons will help in establishing the 

However, the five elastic constants Em, EB, vu, VB, limits of applicability of the equivalent ortho- 
and G are not all independent; symmetry con- tropic shell representation. 
siderations require that No results are available for orthotropic shells 

vaEB= vpE, of infinite length. It would be interesting to 
(3'3) determine the differences arising from various 

thereby reducing the number of independent shell theories in the manner of section 2.2 in cases 
elastic constants to four. of severe orthotropy (e.g., E,).>Ee) for the analyti- 

Equations (3.2) and (3.3) are written in terms cally simple case of plane strain. Similarly, no 
of the ~ r i n c i ~ a l  coordinates of the middle surface results exist for elastic edge supports, added mass, 
of the shell, but they need not be. Indeed, it noncircular boundaries and cutouts, and very 
would be physically realistic to have a circular little for open shells (except the special case where 
cylindrical shell wherein the axes of orthotropy all four sides are supported by shear diaphragms, 
are not coincident with the x and 0 directions. which is included among the vibration modes of a 
Such a situation could arise, for example, in the closed shell supported by shear diaphragms). 
case of a filament-wound shell. Nevertheless, no 
results have been found in the literature except 3.1 .I Equations of Motion 
when the two sets of axes are coincident (in ref. 
3.2 the procedure for transforming the shell equa- Substituting equations (3.2) into the general- 

tions from rotated coordinate axes to the shell ized force resultant integrals of the shell theories 

coordinates is discussed, but no problems are of, for example, Love-Timoshenko, Reissner, 

solved). Naghdi, Berry, Mushtari, and Donnell as given 

One of the most important uses of orthotropic by equations (1.72) through (1.74) (neglecting 

circular cylindrical shell equations is in the z/R, and z/Rp with respect to unity) yields 

representation of a shell which is stiffened 
by longitudinal beam-like elements (stringers) 
and/or circumferential rings. An example of this 
type of construction is shown in figure 3.1 (from 
ref. 3.3). This representation can be accurately 
made for the purpose of determining free vibra- 
tion frequencies and mode shapes (but not stress 
resultants) if the stiffening elements are relatively 
closely spaced. When the distance of separation Mup = Mpa = 0 6 6 7  

is too large, or if the wave length of the vibration where Cu, 6 1 2 ,  C22, and C66 are the extensional 
is too short relative to the stiffener spacing, then stiffness constants defined by 
the structure must be represented as a combina- Eah :I 
tion of shell elements and stiffener elements each Clr=- , C -  

1 - vuvp 
having its own equations of motion and coupled 

vpE:- El to each other by equations of continuity. For the vuE& Clz=- =- (3.6) 
sake of consistency with the rest of this mono- 1-vavp 1-vavp I 

graph, such structures will not be considered. 
However, when the rings and/or stringers can be C86 = Gh 

"smeared out" along the shell to yield a single and DD DD DZ2, and D6. are the flexural stiffness 
equivalent orthotropic shell (by methods that constants defined by 

I 
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Substituting the generalized stress-strain equa- 
tions (3.4) and (3.5) into the equations of motion 
from chapter 1 and using the proper generalized 
strain-displacement equations ultimately gives 
equations of motion in terms of displacements 
which are in the form of equation (2.3). For the 
Donnell-Mushtari theory these equations are for 
circular cylindrical shells : 

FIGURE 3.1.-Typical stiffened circular cylindrical 
shell. (After ref. 3.3) 

where s = x/R and k = h2/12R2 as used in chap- 
ter 2 and a! and /3 in the stiffness constants given 
by equations (3.6) and (3.7) are replaced by x 
and 0, consistent with circular cylindrical shell 
coordinates. It is clear that the isotropic form of 
equations (3.8) is obtained simply by substitut- 
ing E for E, and Eg, v for V, and vg, and E/2(1 +v) 
for G, which then agrees with equation (2.7). 

Nelson, Zapotowski, and Bernstein (ref. 3.4) 
used the Love-Timoshenko strain-displacement 
equations to arrive at  a set of equations of motion 
which can be written as 

where, as before, the subscripts 1 and 2 corre- 
spond to the x and 0 directions, respectively. 
Using equations (3.6) and (3.7) it is seen that the 
above equations are of the same form as equa- 
tions (3.8) except for the addition of terms hav- 
ing Dij's in the numerators. The added terms are 
modifying terms of the same form as found in 
isotropic shell equations. Indeed, if in equation 
(3.9~) the numerator 2D12+ 0 6 6  in one term were 
replaced by ~ ( D I ~ + ~ D ~ ~ ) ,  then the Reissner- 
Naghdi-Berry equations (2.9~) would follow for 
the isotropic case. Equations (3.9) are also of a 
more general form than equations (3.8) because 
they permit separate stretching and bending 
thicknesses h, and h5 in the equations (3.6) and 
(3.7) which then do not, in general, cancel out in 
terms of the type D22/C11. In  the case of stiffened 
shell simulation this distinction is necessary. 

For general anisotropy, equations (3.4) and 
(3.5) are generalized to 
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Nz = Cllex+Clzee+Ci6rze 

Ne = Cize,+Czzee+Cz6rze (3.10) 

Nze = Cisex+Czaee+Cs6rze 

where the Cii and Dij are generali~ed extensional 
and flexural stiffness coefficients arising from the 
three-dimensional form of Hooke's law and the 
force and moment resultant integrals taken over 
the thickness of the shell, and where it is now 
assumed that the coordinate axes used to define 
the elastic constants are parallel to the x and 0 
shell c0ordinatc.s. 

DiGiovanni and Dugundji (ref. 3.2) performed 
a notable service by deriving the general aniso- 
tropic forms of equations of motion according to 
a number of shell theories. These, as for isotropic 
shells (see sec. 2.1. I), can be written in terms of a 
Donneu-Mushtari matrix operator [So-M] and a 
modifying operator [SMOD] as given by eqs. (2.3) 
and (2.5), where the anisotropic form of [SD-M] is 

Lari a32 
where 

Cl6 a2 Clz+Caa a2 C26 a2 al2'azl=--+ - -+-- czz as2 ( Czz )as ae czz ae2 

and the modifying operators are written as 

The coefficients bij for use in equation (3.14) are 
given below (ref. 3.2). . I 

Dza a3 d3 -4- (3.15a) 
D~~ as ae2 ae3 

Goldenveizer-Novozhilov: 

Fliigge-Byre-Lur' ye 
(also Herrmann and Armendkas): 
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FIGURE 3.2.4hell with integral stiffener. 

stiffeners which are integral with the skin as 

Dl1 a3 Dl6 a3 D66 d3 shown in figure 3.2. The stiffener has thickness b31= --,-- -+- - 
D~~ as D~~ as2 ae DZZ as ae2 h, and depth b, and the repeating section is of 

length b, as shown. The following formulas were 
Dza 8 +- - (see comment below) (3.15~) given in reference 3.2 for the calculation of equiva- 
DZZ do lent orthotropic stretching constants (assuming 

Sanders: no stress lag) : 

Note in equations (3.15~) that b13fb31 as taken 
from reference 3.2. Inasmuch as the Fliigge- 
Byrne-LurJye theory has a symmetric set of equa- 
tions of motion for isotropic materials, it is 
recommended that the reader verify the b13 
and b3l coefficients of equations (3.15d) before 
attempting to use them. 

Methods of representing stiffened shells by 
orthotropic analyses will now be briefly con- 
sidered. I n  order to do this the stretching and 
bending stiffnesses of the stiffening elements 
must be properly treated. Consider first the iso- 
tropic shell which is reinforced by longitudinal 

where k ~ =  h,b,/b,h,, i62 = (1 - hw/bs)/(l +hs/hw), 
and v and E are the elastic properties of the skin 
and stiffener, which are assumed to be of the 
same material. The bending constants are 
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where Cis the torsional rigidity of the web, /3 is a 
constant depending upon b, and h, which varies 
from 0.333 to 0.141 and D, is the bending stiffness 
of the unstiffened skin; i.e., D, = EhS3/12(1 - v2). 
For the case of circumferential stiffeners, where 
figure 3.2 still represents a typical repeating sec- 
tion, C11, Czz, Dll, Dz2 are calculated by the 
formulas given above for Czz, CII, Dzz, Dll, 
respectively, and the remaining constants are 
calculated as above. 

I n  reference 3.5 the orthotropic stiffness con- 
stants for the skin-stiffener repeating section 
(shown in figure 3.2) were given as 

where k, is a torsional constant which takes on 
values 0, 0.14, 0.23, 0.33 as b,/h, is 0, 1, 2, oo . 
It appears that the sets of equations (3.16) and 
(3.17) differ considerably from equations (3.18) 
and (3.19). 

Nelson, Zapatowski, and Bernstein (ref. 3.4) 
gave the following formulas for the calculation of 
the equivalent orthotropic stiffness constants for 
a shell stiffened by stringers having the same 
modulus of elasticity as the shell, and rings which 
have a modulus which may be different: 

where 
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and Ap and AL are the cross-sectional areas of 
rings (frames) and stringers (longerons), respec- 
tively; IF and IL are the area moments of inertia 
of frames and longerons about their own cen- 
troidal axes; I L z  and I& are the area moments of 
inertia of the longerons and skins, respectively, 
about the centroidal axis of the skin-longeron 
cross section; I F S  and ISS are the area moments 
of inertia of the frames and skins, respectively, 
about the centroidal axis of the skin-frame cross 
section; h = skin (shell) thickness; Y r  and y~ are 
the distances from the centroidal axes of frames 
and longerons to the underside of the skin; EP 
and E L s  are the moduli of elasticity of the frames 
and longerons '(and skins), respectively; LRz: and 
LRO are the lengths of repeating section in the 
axial and circumferential directions, respectively; 
L R z  is the effective length of repeating section in 
the axial direction (taken as 0.75LR, in ref. 3.4); 
p = 0 if the skin is attached to the longerons but 
not to the frames, and f i=  1 if it is attached to 
both. 

Mikulas and McElman (ref. 3.3) wrote the 
potential energy for a shell stiffened by ribs and 
stringers as shown in figure 3.1. A minimum of 
the total potential was found by allowing the 
variations of the three displacements 6u, 6v, and 
6w to be arbitrary, which yielded the following 
equations of motion : 

EsAs(l -2 )  a2u (1 -v) ( l + ~ )  a2v I -+- -+- - 
~ h d  as2 2 ae2 2 as ae 

aw 2 . ~ , ~ , ( i  -2) a3w 
+v-- -- -0 (3.22a) 

as ~h d~ asa 

E,Ar(l-v2) d2v (1-v) a2v (l+v) a2u I-+- -+- - 
Eha ae2 2 as2 2 as ae 

E,A,(I - v ~ )  aw z,.E,A,(I - v ~ )  a3w -- I-- h a  a, -0 
Eha ae 

(3.22b) 

where E and v are the modulus of elasticity and 
Poisson's ratio, respectively, for the shell; E., As, 
I., z,, and G.J. are the modulus of elasticity, 
cross-sectional area, moment of inertia about the 
centroid, distance to the centroid from the shell 
middle surface, and torsional stiffness, respec- 
tively, of a stringer; E,, A,, I r ,  Zr, and GrJr are 
corresponding constants for a ring; R, dl a, and h 
are dimensions shown in figure 3.1; k = h2/12R2, 
as before; and M is the average smeared-out mass 
per unit area of the stiffened cylinder. It is easy 
to see that equations (3.22) are the Donnell- 
Mushtari equations of motion neglecting tan- 
gential inertia with added terms to account for 
the stringers and rings. In  this case the varia- 
tional procedure smears the stringer and ring 
stiffnesses into the shell orthotropy in contrast 
with structural representation methods depend- 
ing upon physical behavior of the stiffened shell. 

3.1.2 Shear Diaphragm End Conditions 

The closed circular cylindrical shell of ortho- 
tropic material having axes of orthotropy coinci- 
dent with the shell coordinates has the same 
relatively simple, exact, closed form solution for 
the displacement? as in section 2.3 for isotropic 
shells. That is, taking 

u =A cos AS cos no cos wt) 

v = B sin AS sin no cos wt } (3.23) 

w=csinAscosnecos wt J 
where X = mnR/l, satisfies the boundary condition 
equations (2.33) exactly as before, and substitut- 
ing equations (3.23) into the equations of motion 
(e.g., eqs. (3.8)) yields a third order characteristic 
equation for the frequencies as in the case of 
isotropic shells. A small amount of added com- 
plexity then occurs in the coefficients of the 
characteristic equation for the orthotropic case. 
However, probably. the greatest added complica- 
tion to the problem is that instead of having one 
independent ratio of elastic constants (say, v) to 
vary as a parameter, there are three in the ortho- 
tropic case (say, E,/Ee, v,, G/Ee). 

Das (ref. 3.6) used the Donnell-Mushtari 
theory neglecting tangential inertia and the exact 
solution functions given in equations (3.23). 
Correcting a misprint in reference 3.6, one arrives 
at  the following frequency formula: 
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where the coefficients KO and K1 are given by 

DiGiovanni and Dugundji (ref. 3.2) used the 
Goldenveizer-Novozhilov theory with exact mode 
shapes in the form of equations (3.23) to analyze 
a set of orthotropic shells having R/h = 1000 and 
various ratios of orthotropic elastic constants. 
Numerical results for n = O  are shown in figures 
3.3 through 3.6, and for n 2 l  in figures 3.7 
through 3.10. In  figures 3.3 through 3.6 all three 
frequency parameters arising from the solution 
of the characteristic equation in w2 are shown. 
The torsional mode for an orthotropic circular 
cylindrical shell uncouples from the other two 
axisymmetric modes as in the isotropic case. 
Torsional frequency is only slightly affected by 
the stiffness ratio Ee/E,, while the axial frequency 
depends mainly upon the stiffness in the axial 
direction. The torsional frequency parameter is 
simply 

while the torsional frequency of a thin-walled 
circular bar according to St. Venant torsion 
theory is 

wRdp(l-  v,ve)/~, = A  

The other two frequencies shown in figures 3.3 
through 3.6 have as asymptotes the frequency of 
axial vibrations of a bar, 

wRdp(1 -v,ve)/~,=XZ/1--v,Ye (3.28) 

the frequency of radial vibrations of a ring in 
plane strain for long axial wave lengths (small X) 

wRdp(1- v,ve)/Ez = d ~ e / ~ ,  (3.29) 

and a ring in plane stress for short axial wave 
lengths (large X) 

The quantity p&/C shown in figures 3.3 through 
3.6 is an internal pressure parameter which will 
be discussed in section 3.4.4. 

In  figures 3.7 through 3.10 the lowest of the 
three frequencies is shown for each value of n. 
For n = 1 (beam bending mode) and long axial 
wave lengths the frequency parameters are 
asymptotic to those of beams according to the 
Euler-Bernoulli theory; i.e., 

This asymptotic behavior is shown in figure 3.11 
for cases when E,/Ee> 1 and Ee/E,> 1. These 
figures show that for long axial wave lengths the 
circumferential stiffening has negligible effect on 

FIGURE 3.11 .-Frequency parameters for the beam-type 
modes (n =1) of orthotropic shells. (After ref. 3.2) 
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the beam-type frequencies; however, for short 
axial wave lengths circumferential stiffening pro- 
duces a major effect, whereas axial stiffening has 
only a slight effect. 

For n 2 2  the asymptotic values of the three 
frequencies for long axial wave lengths are those 
of the inextensional mode of a ring, 

the axial shear mode, 

and the extensional mode of a ring, 

Figures 3.7 through 3.10 show that the stiffness 
ratio E,/Ee has little effect on the lowest fre- 
quency, which is for a predominantly radial 
mode, for long and intermediate wave lengths 
for E,> Ee. However, for EB > E, the frequency 
shows a marked increase with increasing Ee/E, 
(circumferential stiffening). As for the isotropic 
case, in all orthotropic cases for n 2  2, the value 
of n for which the fundamental (minimum) fre- 
quency occurs increases with increasing A. 

Calculations were also made in reference 3.2 
for circular cylindrical shells having integral 
stiffeners of the type shown in figure 3.2. The 
equivalent "smeared out" orthotropic stretching 
and bending constants were calculated accord- 
ing to equations (3.16) and (3.17). In one case 
integral ring stiffeners were used; in the second 
case the stiffeners were longitudinal stringers. 
For both cases R/h was taken at  1000, and the 
repeating section dimensions are determined by 
the ratios b,/h, = 4, hw/b, = 0.10, and hw/h, = 0.40 
(8 = 0.280). It is important to note that in these 
two cases of integrally stiffened shells the ratios 
of stretching stiffnesses to each other are, in gen- 
eral, different than the ratios of the bending stiff- 
nesses, unlike the unstiffened orthotropic shells 
described in figures 3.3 through 3.11. The two 
cases were chosen, however, so that the ratios of 
bending stiffness Dll/Dzz and Dzz/Dll were both 
24.2 as for two of the unstiffened orthotropic 

shells. Axisymmetric (n = 0) frequency param- 
eters for the ring-stiffened and stringer-stiffened 
shells are shown in figures 3.12 and 3.13, respec- 
tively. Frequency parameters for the n 2  1 modes 
are depicted in figures 3.14 and 3.15. In  these 
figures p* is an average mass density constant 
taking into account both the shell and the 
stiffeners. 

From figures 3.7 and 3.14 it is evident, when 
comparing the two types of circumferential stiff- 
ening, that the frequency of the predominantly 
radial frequency is approximately the same as 
that of the uniform thickness orthotropic cylin- 
der when mR/1<0.5 and n 2 2. For greater values 
of mR/l, the frequency of the stiffened cylinder 
decreases below that of the uniform cylinder for 
all values of n 2  2. However, this decrease dimin- 
ishes with increasing n, so that for very large n, 
the frequencies for both these cylinders (uniform 
and stiffened) again become approximately the 
same. This is because for large values of n and 
mR/l the infiuence of bending is predominant. 
Looking a t  the cases of axial stiffening (cf., figs. 
3.10 and 3.15)) one observes that for n 1 4  fre- 
quencies for both types of cylindrical shells are 
nearly the same for long axial wave lengths; for 
intermediate axial wave lengths the differences 
in the frequencies between the two types be- 
come appreciable; while for short axial wave 
lengths the differences again become small. For 
n = 2  and 3, the frequency of the shell having 
stringers is less than that of the corresponding 
uniform shell for all but large A. 

An interesting study of the effects of changing 
C22/C11 and C66/Cll ratios upon the frequencies 
of uniform orthotropic shells was made by Dong 
(ref. 3.7) using the Donnell-Mushtari theory and 
the exact displacement functions of equations 
(3.23). Numerical results are seen in figures 3.16 
and 3.17 for shells having R=40 in., h=0.4 in., 
and C12/h=0.1 X106 psi. In  figure 3.16 C22/h 
and CCs/h are taken to be 33.0X106 psi. and 
14.5X106 psi., respectively. A family of fre- 
quency envelopes is shown for various C22/C11 
ratios, plotted over a range of l/R. In  figure 3.17 
Cll/h is 33.0X lo6 psi. and Cz2/h is 330X lo6 psi. 
It is apparent in this latter figure that as l/R is 
increased the curves approach each other, indi- 
cating small dependence of w upon the shear 
modulus for large l/R. This is because the vi- 





- 
shell; SD-SD supports, 
C22/C18 = 3300. (After ref. 3 

This is shown by the dotted line in figure 3.17 
for Cs6/C11 = 100. For this mode, n = 1. X 3 3  = C22+kX4Dll+kn4D22+2kX2n2D~2 8 

Hoppmann (refs. 3.8 and 3.9) proposed deter- 
mining the stretching and bending stiffness co- x~~ = - x ~ c ~ ~  - x ~ c ~ ~  
efficients Cij and Dij of integrally stiffened shells 
from static deflection tests on flat plates, and Xla=AC12 

then solving the cylindrical shell free vibration xza=  - n ~ z z - k n 3 ~ z z - k n ~ 2 ~ 1 2  
problem using these coefficients as input data. 
He used Love's strain-displacement equations 
and the exact solution equations (3.23) to arrive A cursory comparison with equations (2.5)) (2.7), 
at a characteristic equation and (2.9a) show that equations (3.36) do not 

agree with the Love-Timoshenko equations in 
An-A Xi2 the isotropic case, nor with any of the other shell 

theories included within equations (2.9). Re- 
A12 X 2 2 - A  1 2 3  = O  (3'35) sults were obtained for aluminum shells having 

A23 133-A an internal diameter of 3.85 in. and a length of 
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15.53 in. The shell thickness was 0.065 in. and 
the stiffeners had a width of 0.125 in., a depth of 
0.210 in., and spacing of 0.75 in. (see figure 3.18). 
The elastic constants as determined by static 
tests were 

cll/h, = 1.4 X 

clz/h, = -0.21 X 

c22/ha =0.83 X 1w6 

c~~/h~=2.11X10-~  

in units of inches and pounds, where h, and ha 
are the stretching and bending thicknesses, re- 
spectively, where in this case the elastic con- 
stants arise from the stress-strain relations for 
stretching 

b,= C ~ I U Z , + C ~ ~ ~ O ~  

€0, = ~izaz,+czza~, 1 (3.38a) 
€20, = C66TzO; 

and bending 
€2, = d i i ~ 2 b + d i ~ ~ ~ b  ) 

GO, = ds67,eb 
 heo ore tical frequencies from equation (3.35) and 
experimentally measured frequencies are given 
in table 3.1 for shells having circumferential 
stiffeners and in table 3.2 for shells having 
longitudinal stiffeners. 

In  table 3.1 theoretical results talten from ref- 
erence 3.4 are also given for Hoppmann's ring- 
stiffened shells. These values were obtained using 
the Love-Timoshenlto equations of motion given 
in equations (3.9) and the method of calculating 
equivalent orthotropic constants given in equa- 
tions (3.20) and (3.21). Hu and Wah (refs. 3.10 
and 3.11) also gave theoretical results for this 
problem as shown in table 3.1. They treated the 
shell segments and rings as discrete elements by 
means of stiffness matrices. Two factors contrib- 
uted to error in the latter calculation : (1) Neglect 
of ring eccentricity and (2) the use of a slightly 
greater length of shell (15.0 in., rather than 

OF SHELLS 

FIGURE 3.18.-Test models of stiffened shells. 
(After ref. 3.8) 

15.53 in.). Finally, results are shown in table 3.1 
taken from reference 3.12 wherein stiffeners were 
smeared out by means of an "effective width" 
and the Arnold-Warburton strain-displacement 
equations were used. 

Sewall and Naumann (ref. 3.13) accomplished 
the smearing out of rings and stringers into the 
shell by means of a Rita procedure using beam 
functions which included the strain energies of 
the rings and stringers and assumed vibration 
modes (eqs. (3.23) in the case of S D S D  sup- 
ports) and used their method to compare results 
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TABLE 3.1 .-Lowest Frequencies (cps) for a Ring-Stiffened 
Shell Supported by Shear Diaphragms 

Meaningless value given in reference 3.4. 

n 

2 

3 

4 

5 

' 

for Hoppmann's ring-stiffened shell. The com- 
parison is shown in figure 3.19. Donnell-type 
strain-displacement relationships were used for 
the shell. 

I n  table 3.2 numerical results are also vailable \ from references 3.14 and 3.15 for Hopp ann's 
stringer-stiff ened shell. Adelman, Catherines, and 
Walton (ref. 3.14) used a finite element approach 
to compare with Hoppmann's exact solution and 
to obtain better accuracy for comparison with 
their method they programmed the accurate solu- 
tion of Hoppmann's exact characteristic equation 
(Hoppmann's theoretical results given in tables 
3.1 and 3.2 carry no more than three significant 
figures and may have been calculated by slide 
rule). The agreement between the exact and 
finite element solutions is clearly outstanding, 

FIGURE 3.19.-Frequencies of a cylindrical shell having 
19 integral stiffening rings and shear diaphragm 
supports. (After ref. 3.13) 

Reference 

3.8 (exper.) 
3.8 (theor.) 
3.4 
3.10 
3.12 

3.8 (exper.) 
3.8 (theor.) 
3.4 
3.10 
3.12 

3.8 (exper.) 
3.8 (theor.) 
3.4 
3.10 
3.12 

3.8 (exper.) 
3.8 (theor.) 
3.4 
3.10 
3.12 

R = 1.959 in 
(49.76rnm) 

(1.65mrnl 

THEORY - 
EXPERIMENT 

rn= 5 v 

I I I 
I 2 3 4  5 6 

NUMBER OF CIRCUMFERENTIAL WAVES,n 

m 

4 

4440 
4860 
4608 
5668 
4960 

5000 
5040 
4933 
5094 
5360 

7800 
8280 
8179 
7296 
8680 

11,400 
13,230 
12,990 
11,079 

........ 

3 

3200 
3330 
3266 
4031 
3500 

4520 
4500 
4472 
4261 
4850 

7520 
8190 
8055 
6957 
8520 

........ 
13,140 
19,946 
10,892 

........ 

1 

1530 
1530 
1529 
1413 
1660 

4080 
4230 
4171 
3537 
4500 

........ 
8100 
7994 
6700 

........ 

. . . . . . . .  
13,050 
12,928 
10,730 

........ 

5 

6200 
6480 
5932 
7188 
6420 

5700 
5760 
5576 
6090 
6070 

7920 
.......... 

8395 
7787 
8950 

.......... 

.......... 
(a) 

11,357 
.......... 

2 

2040 
2100 
2112 
2447 
2270 

4090 
4320 
4234 
3731 
4590 

........ 
8100 
8000 
6772 

........ 

. . . . . . . .  
13,100 
12,930 
10,783 

........ 
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TABLE 3.2.-Lowest Frequencies (cps) for a Stringer-Stiffened 
Shell Supported by  Shear Diaphragms 

especially for the lower values of m. Only 10 
elements in the axial direction were needed for 
this accuracy. Numerical results for other cir- 
cumferential wave numbers n were also given in 
reference 3.14 for the stringer-stiffened shell and 
these are displayed in table 3.3 for the exact o THEORETICAL VALUES 

solution. In  table 3.3 all three frequencies result- o EXPERIMENT FAIREO CURVE (raf.38) 

ing from solution of the cubic characteristic 
equation are tabulated. Note that, unlike for 
isotropic shells, the freqpencies for n = O  and n = 1 
do not increase monotonically with the value 
of m.  A plot of the minimum w2 versus n taken 
from these data is shown in figure 3.20. Figure 3 
3.21 shows the three frequencies arising for n = 2 3 
and 1 1 m < 5 .  

The results of Penzes (ref. 3.15) shown in table 
3.2 were obtained by using HoppmannJs elastic 
constants, the Donnell-Mushtari shell theory 
with Yu's simplifying assumption (see sec. 2.3.5), 

n 

2 

3 

- 

FIGURE 3.20.-Minimum circular frequencies for a 
stringer-stiffened shell supported by shear diaphragms. 
(After ref. 3.14) NUMBER OF CIRCUMFERENTIAL WAVES.n 

4 3.14 (exact) 2167 24 14 3002 3966 5234 
3.14 (fin.el.) 2167 2414 3002 3967 5240 
3.15 2255 2358 2762 3636 5016 

3.8 (exper.) 3460 4080 4120 5130 6100 
3.8 (theor.) 3340 3510 3900 4620 5600 

5 3.14 (exact) 3468 3650 4040 4706 5669 
3.14 (fin.el.) 3468 3650 4040 4707 5675 
3.15 3552 3580 3699 4002 4577 

Reference 

3 .8 (exper.) 
3.8 (theor.) 
3.14 (exact) 
3.14 (fin.el.) 
3.15 

3 .8 (exper .) 
3.8 (theor.) 
3.14 (exact) 
3.14 (&.el.) 
3.15 

3.8 (exper.) 
3.8 (theor.) 

m 

1 
-- 

700 
750 
739 
739 
836 

1270 
1150 
1184 
1184 
1276 

2200 
2100 

2 

.... 
2300 
2229 
2229 
2698 

1830 
1700 
1719 
1719 
1750 

2600 
2350 

3 

.... 
4200 
4234 
4234 
6267 

2640 
2870 
2840 
2840 
3059 

3360 
2970 

4 

.... 
6100 
6299 
6300 
.... 

5490 
4360 
4318 
4319 
5178 

4100 
3960 

5 

.... 
7900 
8206 
8210 
.... 

-- 
6100 
5900 
5962 
5968 
.... 

5200 
5100 
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TABLE 3.3.-Frequency Sets (cps) for a Stringer-Stifened Shell 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Supported by Shear Diaphragms 

1 

1.457 X l o 4  
7.135XlOa 
1.425X104 

1.666 X lo3 
1.331X104 
2.114X104 

7.39OX1O2 
2.354X104 
3.320 X l o 4  

1.184X103 
3.477X104 
4.653X104 

2.167X103 
4.624X104 
6.033 X104 

3.468X1O3 
5.777X104 
7.437X104 

5.O64X1Oa 
6.933XlO4 
8.854X104 

6.951X10a 
8.O89X1O4 
1.028% lo6 

9.129X10a 
9.246X104 
1.171 XI06 

1.16OX1O4 
1.O40X1O6 
1.314X106 

1 .436X104 
1.156X106 
1.458X106 

2 

1.307 X l o 4  
1.592X104 
9.OlOX1O3 

4.863X10a 
1.634 X lo4 
2.363X104 

2.229X103 
2.462X104 
3.561X104 

1.719 X loa  
3.5O8X1O4 
4.862X104 

2 . 4 1 4 ~ 1 0 ~ '  
5 4.625XlO4 

6.213X106 

3.650X103 
5.766X104 
7.593X104 

5.227 X loa  
6.917 X lo4 
8.99OX1O4 

7.108X103 
7.914X104 
1.040X106 

9.284 X 103 
9.229 X l o 4  
1.182X106 

1.175X104 
1.O39X1O6 
1.324X106 

1.451 XI04 
1. 154X106 
1.467X106 

m 

3 

1.4O4X1O4 
2.227XlO4 
1.352X l o 4  

7.920X10a 
2.824X104 
1.894X104 

4.234X103 
2.617X104 
3.933X104 

2.840X10a 
3.576X104 
5.178X104 

3.O02X1O3 
4.647X104 
6.487X104 

4.040X10a 
5.765X104 
7.833X104 

5.549 X loa  
6.9O5X1O4 
9.2O3X1O4 

7.401XlOJ 
8.O54X1O4 
1.059X106 

9.563 X 10' 
9.2O8X1O4 
l.199X106 

1.2O2X1O4 
1.O36X1O6 
1.34OX1O6 

1.478X104 
1.152X106 
1.481X106 

4 

1.422X104 
2.946XlO4 
1.802 X lo4  

1.025 X l o 4  
3.41OX1O4 
2.169X104 

6.299 X l o 3  
4.4O1X1O4 
2.816X104 

4.318X103 
3.690 X lo4  
55.75X1O4 

3.966 X l o a  
4.7O3X1O4 
6.833X104 

4.706XlO3 
5.787XlO4 
8.14OX1O4 

6.O79X1Oa 
6.9O6X1O4 
9.479X104 

7.867X103 
8.O43X1O4 
1.O84X1O6 

9.995 X 103 
9.19OX1O4 
1.222 X 106 

1.243X104 
1.034X106 
1.361X106 

1.518X104 
1.150X106 
1.5O0X1O6 

5 

1.44OX1O4 
3.673 X l o 4  
2.252XlO4 

1.183X104 
4.O52X1O4 
2.5O2X1O4 

8.206X10a 
4.933 X104 
3.O64X1O4 

5.962 X lo3  
6.O32X1O4 
3.853XlO4 

5.234X103 
4.8O0X1O4 
7.236X104 

5.669X103 
5.839X104 
8.502 X lo4 

6.858X103 
6.929X104 
9.8O6X1O4 

8.543X108 
8.O47X1O4 
1.114X106 

1.061 X lo4 
9.182X104 
1.249X106 

1.3O1X1O4 
1.O33X1O6 
1.386X106 

1.573X104 
l.148X106 
1.524X106 
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and exact solution functions in the form of 
equations (3.23). 

Using the exact solution functions given by 
equations (3.23) and substituting into the equa- 
tions (3.22) of motion, Mikulas and RIcEIman 
(ref. 3.3) derived the following frequency formula 
to take into account the "smeared out" ortho- 
tropy of stiffening rings and stringers : 

where 

A. = 1 + 2X2($/R) ( S 2 -  V )  
+X4(2,/R) 2(1 + S 2 )  

A, = 1 + 2n2(%/R) ( 1  - v a2) 
+n4(2*/R) 2 ( i  + 62) 2 

A,, =n2X"[s2(1 -v2) + 2 ( 1 + ~ ) ] ( % / R ) ~  
+n4[ l  ~ ~ + 2 6 ~ ( 1 + ~ ) ] ( Z r / R ) ~  
+2n2(1 - v2) (%/R) 
+2n2(1 - v2) ($/R) 
+2n4(1 +v )  2 ( ~ , / ~ )  ( 2 , / ~ )  + 1 - V~ 

A = (1+632+2S2(1+v)(B+fi)  
+ ( I  - V ~ ) [ ~ + S ~ B + ~ ~ ~ B S ' ( ~ + V ) ]  

where X=m?rR/l, as before, 

- EsAa s=- 
E M )  Eha 

and other notation is as used previously in equa- 
tions (3.22).  

Frequencies determined in reference 3.3 for two 
stringer-stiffened shells are shown in figures 3.22 
and 3.23. Dimensions of the stringers used in each 
case are shown on the figures. The eccentricity of 
the stiffeners causes considerable difference in the 
rigidity of the cylinders; for both cases the lowest 
frequency for external stiffening was 35 percent 
greater than for internal stiffening. However, for 
the second case the curves for external and 

107L I I I I 
0 I 2 3 4 5 

I 

NUMBER OF MERlDlONAL WAVES.m 

OF SHELLS 

FIGURE 3.21.-Frequencies (rad/sec)' of a stringer- 
stiffened shell supported by shear diaphragms. 
(After ref. 3.14) 

10"- 

rolo 

n z n n i  -096 in. -- - ---- -. 

- 

INTERNAL 

m= I 
\-/- 

EXTERNAL 
INTERNAL 

NI 
p lo9- 
e 
m e - 
N 
3 

d- 

I I I I I I I 

0 2 4 6 8 1 0 l 2 1 4  

CIRCUMFERENTIAL W E  NUV3ER.n 

FIGURE 3.22.-Frequencies of a stringer-stiffened shell 
supported by shear diaphragms. (After ref. 3.3) 
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internal stiffeners cross for m=2.  It was also 
found in reference 3.3 that a stringer-stiffened 
shell having the same dimensions as in figure 

PROPERTIES 

3.22, except increased stringer depth (0.302 in. 
becomes 0.500 in.), the lowest frequency for 
external stiffening was 64 percent greater than 
for internal stiffening. 

I n  reference 3.13 the effect of additional cir- 
cunzfere?ztial stiffening due to  the presence of 
stringers is quantitatively compared with the 2 ,,,, 
results of figure 3.22. This effect is significant for $ 
both small and large IL, but not in the vicinity of @ 900 

the lowest frequency. The decrease in frequencies 
due to the rotary inertia of a stiffener is also 
evaluated. This effect is significant for large IL. 

I n  figure 3.24 (from refs. 3.3 and 3.16) fre- 
quencies are given for a ring-stiffened shell. This 
configuration was obtained by replacing the 
stringers of figure 3.22 with rings having the same 
cross section and spacing. Comparing figures 3.22 I 2 3 4 5 6 

and 3.24 i t  is seen that the rings give considera- 
bly larger values of fundamental frequency than CIRLUhlFEREVTl'rL \+WE MU SER,n 

play a primary role, but it is important for large IL 

where bending strain energy predominates. 
Hu, Gormley, and Lindholm (ref. 3.17) ex- 

tended the discrete method of references 3.10 and 

dure and compared with those of the "smeared 
out" method of hiTikulas and McElman (ref. 3.3) 
for the ring-stiffened shells shown in figure 3.25. 
Each shell has 12 bays. It is interesting to  note 

CIRCUVFLI'LZ1TI1L i AVE NUVSER, n the marked difference between the two methods 

FIGURE 3.23.-Frequencies of another stringer-stiffened concerning the importance of ring eccentricity. 
shell supported by shear diaphragms. (After ref. 3.3) The method of reference 3.3 shows the effect of 
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I PROPERTIES 

EXTERNAL RlNG 

n f l 7 0 . 3 7 5 "  

L0.015" 

SYMMETRIC RlNG 

RESONANCES, DIFFICULT TI 

IDENTIFY MODE NUMBERS 

. 8  n EXPERIMENTALLY 
INTERNAL 1 

EXPERIMENTAL (rn=l) 
o SYMMETRIC RlNG 
A EXTERNAL RING 

CIRCUMFERENTIAL WAVE NUMBER, n 

FIGURE 3.25.-Comparison of discrete and smeared-out 
analyses for ring-stiffened SD-SD shells. (After ref. 
3.17) 

eccentricity to be very important, whereas the 
method of reference 3.17 shows little effect at  
all. The experimental results tend to support the 
latter analysis. Furthermore, for circumferential 
wave numbers n 2 6  the latter analysis, unlike 
the former, shows a flattening of the frequency 
curve. 

Figure 3.26 shows some interesting relation- 
ships between the frequencies of the ring-stiffened 
shell of figure 3.25 and certain reference frequen- 
cies such as those of the unstiffened shell (no 
ring), those of the short cylindrical shell segment 
between two adjacent rings (assuming S D S D  
supports, and those of the free ring separated 
from its two adjacent shell elements. The fre- 
quencies of the three types of stiffened shells 
(internal, external, and symmetric) obtained 
from the discrete analysis of reference 3.17 are 
too close to be shown distinctly on the scale of 
figure 3.26; therefore, only the frequency curve 
for the symmetric case is shown. The frequency 

curve for the stiffened shell is divided into three 
regions according to abscissa values of the inter- 
section points of: (1) the two frequency curves 
for the unstiffened shell and for the free ring, and 
(2) the two frequency curves for the free ring 
and for the uncoupled short cylindrical shell seg- 
ment. These three regions, shown in figure 3.26, 
are characterized as 

Region I:  The rings contribute more inertia 
effect than stiffness effect, so that the frequency 
of the stiffened shell is lower than that of the 
unstiffened one. 

Region I I :  The rings contribute the dominant 
stiffness, so that the frequency is higher than that 
of the unstiffened shell, but lower than the ring 
frequency. 

Region 111: The ring motion becomes so small 
compared to the shell panel motion between rings 
that the frequency asymptotically approaches 

FIGURE 3.26.-Comparison of ring-stiffened SD-SD 
shell frequencies (cps) with other reference frequencies. 
(After ref. 3.17) 
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FIGURE 3.30.-Frequencies of a stringer-stiffened SDSD 
shell having four single internal stringers. (After ref. 
3.19) 

FIGURE 3.31.-Mode shape where stringers only twist 
(stringers "at rest"). (After ref. 3.19) 

FIGURE 3.32.-Frequencies of a stringer-stiffened SD-SD 
shell having eight single internal stringers. (After ref. 
3.19) 

smeared out orthotropy, while the data points 
are for the discrete analysis. For n = 2,4,6, . . . , 
two different types of modes are possible. For one 
type, the stringers lie on symmetry axes of the 
mode, and the stringers undergo normal displace- 
ment; in the second type of mode the stringers 
lie on axes of antisymmetry and they only twist 
(see figure 3.31) and are "at restJ' with respect to 
displacement. Similar results are presented for 
eight equally spaced stringers in figure 3.32. Fig- 
ures 3.33 and 3.34 show frequencies when doubled 
stringers are used (see figure 3.29(b)). The simple 
sine function assumed in the B direction for an 
exact solution of the "smeaxed out" equivalent 
orthotropic shell problem only approximates the 
true behavior of the shell as can be seen in figure 
3.35. Here the mode shapes for the shell having 
four single stringers are given from discrete ele- 
ment and experimental studies for m = 2, n = 4  
and m= 1, n= 10, where n now identifies the 
number of circumferential approximate half-sine 
waves. 
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SD-SD shell having four equally spaced stringers. (After ref. 3.19) 

Another comparison with the results shown in obtain good numerical convergence. Typical 
figures 3.30 and 3.32 was made by Egle and mode shapes encountered for w are shown in 
Sewall (ref. 3.20) using a "smeared out" ortho- figures 3.38 and 3.39. Comparisons with figure 
tropic approach wherein nzore than a single trig- 3.32 were also made in reference 3.13 for a 
onometric term is used to represent the circumfer- smeared-out, Ritz type of analysis using a single 
ential variation in the mode shapes. The problenl trigonometric term to represent the circumfer- 
is then eventually solved by the Ritz method. ential variation. The results were very close to 
Results using twenty terms are shown in figures the smeared-out results shown in figure 3.32. 
3.36 and 3.37; twenty terms were necessary to Another set of stiffened shell problems which 
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m  =I o 
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m = 3  0 

m i 4  A 
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CIRCUMFERENTIAL WIVE NUMBER. n 

FIGURE 3.36.-Comparison of theoretical "smeared out" 
analysis with experimental results of reference 3.18; 
four stringers. (After ref. 3.20) 

CIRCUMFERENTIAL WAVE NUMBER. n 

FIGURE 3.37.-Comparison of theoretical "smeared out" 
analysis with experimental results of reference 3.18; 
eight stringers. (After ref. 3.20) 

\ TYPICAL STRINGER 
m=l, n - 4 ;  f=loz7cps LOCATION I 

m=Z,n=9.f=255.5 cps I 

WGURE 3.38.-Theoretical circumferential variation in 
mode shapes for a stringer-stiffened SD-SD shell; four 
stringers (After ref. 3.20) 

have received repeated treatment in the litera- 
ture was originally proposed by Gdletly (ref. 
3.21). In  this case external ring stiffeners were 
added, to a steel shell having R =4.082 in. and 
h=0.047 in. The ring spacing was 1.236 in. and 
each shell had 15 bays. The rings were rectan- 
gular in cross section and had dimensions (in 
terms of fig. 3.2) of width, h, =0.086 in. ; depth, 
bw=0.1145 in., 0.2290 in., and 0.3435 in. His 
approach was based upon energy using assumed 
displacement functions which allowed an addi- 
tional term to account for inter-ring warping. 
Comparisons were subsequently made by Geers 
(ref. 3.12) using a continuum approach and by 
Wah and Hu (refs. 3.10 and 3.11) using a dis- 
crete element approach. Results obtained from 
these various methods are summarized in table 
3.4. The frequencies from references 3.10 and 
3.11 are considerably less than those of the three 
other methods, undoubtedly, because of neglect 
of eccentricity of the externally mounted rings. 
The effect of inter-ring displacements deviating 



TABLE 3.4.-Comparison of Frequencies (cps) for Three Ring-Stiffened 
Shells Supported by Shear Diaphragms 

Reference 

Galletly (ref. 3.21) 

5 1430 1514 1457 1124 

0.2290 in. 3 ............. 1008 994 735 
4 ............. 
5 ............. 

cular cylindrical shells supported at  both ends 
by shear diaphragms, particularly in the case of 
representing stiffened shells by "smearedout" or- 
thotropy. In references 3.22 and 3.23 methods 
based upon using the total energy of the stiffened 

closed circular cylindrical shells having one of 
the possible sets of simple boundary conditions 
other than shear diaphragm supports a t  both 
ends. The exact procedure outlined in section 

m=Z,n=13 . f=4757  cps 
1 1 1 1 1 1 1 1 1 1 1  2.4 for solving such problems for isotropic shells 
o 0.1 0 2  0 3  0 4  0 5  0 6  07  0 8  0.9 1.0 is also straightforwardly applicable to the ortho- 

a/ 2~ tropic case when the axes of material orthotropy 

FIGURE 3.39.-Theoretical circumferential variation in are parallel to the axes' However, it was 
mode shapes for a stringer-stiffened SDSD shell; Seen in section 2.4 that the exact procedure is 
eight stringers. (After ref. 3.20) quite complicated even for isotropic shells, re- 

- - 
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RING NUMBER AND DISTANCE ALONG SHELL 

FIGURE 3.40.-Mode shapes of a ring-stiffened circular 
cylindrical shell supported by shear diaphragms. 
(After refs. 3.11 and 3.10) 

quiring the solution of an eighth order deter- 
minant to determine the forms of the solution 
functions for u, v,  w to satisfy the boundary con- 
ditions, and the solution of a subsequent sixth 
order characteristic determinant arising from the 
equations of motion to determine the eigenfre- 
quencies. The added algebraic complexity arising 
in the orthotropic case apparently has deterred 
anyone from extending the exact solution proce- 
dure with this added generality. 

(2.67) where the coefficients are given by equa- 
tions (3.42), and where k=h2/12R2 as before, 
values of 6,,,, y,,, and pm = amR/Z are given by table 
2.22 for the various types of beam functions and, 
in this case, the orthotropic frequency parameter 
Q, replacing Q in equation (2.67) is given by 

The stiffness constants CII, . . . , Css; Dll, 
. . . , Dee are defined in equations (3.6) and 
(3.7) as before. For the clamped-clamped and 
clamped-SD shells equations (3.42) can be simpli- 
fied because 6, = - 7,. For SDSD shells the 
equations are exact and further simplified 
(y, = - y, = 1). The cubic characteristic equation 
can be approximated still further by one of the 
simplifying techniques suggested in section 2.3.5. 

Sewall and Naumann (ref. 3.13) used a 
smeared-out orthotropic representation (see sec. 
3.1.2) for aluminum shells having external and 
internal longitudinal stiffeners as shown in 
figure 3.41. The smearing out procedure gave 
Dz2/D = 1.197, where D is the bending stiffness of 
the unstiffened shell, and v, = D12/D11= 0.346 for 
the equivalent orthotropic constants of the 
stiffened shell. The overall shell dimensions were 
R =9.55 in. and 1 =25-1/8 in. Experimental 
results were also obtained. Cyclic frequencies for 
clamped-clamped boundaries are presented in 
figure 3.42. The frequency differences between 
externally and internally stiffened clamped- 
clamped shells are quite large, particularly in the 
vicinities of lowest frequencies for a given number 
of axial half-waves m. The minimum frequency 
for the externally stiffened clamped-clamped 
shell was 39 percent greater than that of the 
internally-stiffened one. 

Analytical and experimental results for a 
clamped-clamped shell stiffened by a large num- 

The Raleigh-Rita method is particularly well- 
suited to yield approximate solutions for the ImRN~LYSTIFFENm  STIFFENED D(~-Y STIFFENED 

problem of the orthotropic shell having arbi- 
trary edge conditions in the same manner as for 
the isotropic shell. That is, solutions are taken 
in the form of equations (2.66) involving beam 03ml 

functions in the axial direction. Gontkevich (ref. 
3-41] showed that this procedure leads to a cubic FIGURE 3.4l.Structural details of stringer-stiffened 
characteristic equation in the form of equation shells. (After ref. 3.13) 
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EXPERIMENT 

CIRCUMFERENTIAL V4AVE Nll:\3ER,n 

FIGURE 3.43.-Cyclic frequencies for ring-stiffened 
clamped-clamped shells. (After ref. 3.13) 

using the Sanders shell theory, and beam func- 
tions were used for the displacements. Integral 
ring and stringer stiffeners of the type shown in 
the repeating section of figure 3.2 were used. 
Using the Sanders shell theory (see chapter I), 
the generalized stress-strain equations (3.4) and 
(3.5) must be replaced by 

where the coordinates x and 6 for circular cylin- 
drical shells have been used and where Hill Hlz, 
Hzz, He6 are additional coupling coefficients 

SHELLS 

(a)  

-BEAM RING 
STIFFENER 

FIGURE 3.44.Structural details of ring-stiffened cylin- 
drical shells. (After ref. 3.35) (a) Cross-sectional 
details of I-beam ring stiffeners. (b) Arrangement of 
rings. 

which for the cross section shown in figure 3.2 
can be taken as 

in the case of longitudinal stiffeners, for example. 
Numerical results were obtained for aluminum 
shells having dimensions and material properties 
as given in table 3.5. The resulting smeared out 
ratios of equivalent orthotropic stiffness coeffi- 
cients are also listed in table 3.6. Theoretical and 



experimental frequencies for clamped-clamped 
ends are shown in figures 3.46 and 3.47 corre- 
sponding to axial and circumferential external 
stiffening, respectively. In  these figures results 
for shells supported at both ends by shear dia- 
phragms are also presented. The difficulty of 
obtaining adequate clamping in the experimental 
models is seen in these figures. 

It was found in reference 3.5 that the addition 
of axial stiffeners had only a small effect on the 

TABLE 3.5.-Dimensions and Material Properties 
of Integrally Stiffened Shells 

I Tvpe of stiffening 
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FIGURE 3.46.-Comparison of the effects of clamped- 
clamped and SD-SD boundaries upon the frequencies 
of an axilly stiffened shell. (After ref. 3.5) 

t l l , l , , l ~ , , l ~  
0 6 8 10 12 

CIRCUMFERENTIAL WAVE h'L,C3ER,n 

FIGURE 3.47.-Comparison of the effects of clamped- 
clamped and SD-SD boundaries upon the frequencies 
of a circumferentially stiffened shell. (After ref. 3.5) 
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NO ECCENT. ------ 

INSIDE ECCENT. --- 

CIRCUMFERENTIAL WAVE NWBER, n 

FIGURE 3.48.-Eccentricity effects upon the frequencies 
of a clamped-clamped, axially stiffened shell. (After 
ref. 3.5) 
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CIRCUMFERENTIAL MWE NUXER,n 

FIGURE 3.49.-Eccentricity effects upon the frequencies 
of a clamped-clamped, circurnferentially stiffened shell. 
(After ref. 3.5) 
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frequency distribution for the shell. That  is, for shown are theoretical. The external axial stiffeners 
sn = 1 the minimum frequencies are about the generally cause higher frequencies than internal 
same and occur a t  the same value of sz, while for axial stiffeners. This effect is more pronounced 
larger n the axially stiffened shell has somewhat for higher values of nt. Conversely, external cir- 
lozuer frequencies than for the isotropic case. This cumferential stiffeners generally yield lower fre- 
occurs because the vibration modes for large 7z quencies than internal ones. Again, the effect is 
involve Dzz, which is about the same in both more pronounced for higher ?z. For very low 
cases, but the stiffened shell has about twice as values of n, external stiffeners may cause slightly 
much effective mass. For ?n = 3, the axially stiff- higher frequencies for a small region of 77. 

ened shell has somewhat higher frequencies than Theoretical results for Hoppniann's longitu- 
the unstiffened one because of the importance dinally stiffened shell were also computed by 
of Dll. Penzes (ref. 3.15) for clamped-clamped and 

The addition of circumferential stiffeners in- clamped-SD boundary conditions (see earlier dis- 
creased most frequencies of the shell. For all nz cussion of analytical method and test model in 
the minimum frequencies were significantly sec. 3.1.2). Numerical data are compared with 
higher and sharper and occurred a t  lower values the SD-SD case in table 3.7. 
of 72. For nz= 1 and higher values of 7 ~ ,  the In  reference 3.42 the free vibrations of ortho- 
increase in frequency is even greater. However, tropic shells of semi-infinite length and having 
for small sz the circuniferentially stiffened cylin- a free end are examined. The application of 

Theoretical and experimental frequencies for 

stiffeners were 
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FIGURE 3.50.- Cyclic frequencies for stringer-stiffened, 
clampecEfree shells. (After ref. 3.13) 

FIGURE 3.51.-Comparison of the effects of clamped-free 
and SD-free boundaries upon the frequencies of an 
axially stiffened shell. (After ref. 3.5) 
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FIGURE 3.52.-Comparison of the effects of clamped-free 
and SD-free boundaries upon the frequencies of a cir- 
cumferentially stiffened shell. (After ref. 3.5) 

CIRCUMFEFiENTIAL WAVE NUMBER, n 

FIGURE 3.53.-Eccentricity effects upon the frequencies 
of a clamped-free, axially stiffened shell. (After ref. 
3.5) 
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FIGURE 3 . 5 4 . - E c c e n t r i c i t y  e f f e c t s  upon the f r e q u e n c i e s  
of a c l a m p e d - f r e e ,  c i r c u m f e r e n t i a l l y  s t i f f e n e d  shell. 
(After ref. 3.5) 
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FIGURE 3 .55 . -F requenc ies  (cps) of a free-free, ring- 
stiffened c y l i n d r i c a l  s h e l l .  ( A f t e r  r e f .  3.35) 
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FIGURE 3 .56 . -F requenc ies  (cps) of clamped-free and SD- 
sliding support, r i n g - s t i f f e n e d  s h e l l s .  ( A f t e r  ref. 3.35) 

aries (see discussion of clamped-clgmped case 
earlier in this section). Frequency distributions 
are depicted in figures 3.51 and 3.52. The effects 
of eccentricity for clamped-free ends are shown 
in figures 3.53 and 3.54. To observe the effects of 
stiffening in comparison with the unstiffened 
shell, the reader is referred to figure 2.82. 

Theoretical and experimental frequencies for 
the shell of reference 3.35 (see earlier discussion 
in this section) having free-free ends are shown 
in figure 3.55. The discrepancy between theory 
and experiment clearly increases as n increases. 
The results of two analyses are shown, one in- 
cluding all stiffnesses, and the other neglecting 
Clz, D12, and DBB. Results for two other types of 
end conditions are shown in figure 3.56: (1) 
clamped-free and (2) shear diaphragm-sliding. 

Theoretical and experimental frequencies for 
free-free, 'stringer-stiffened shells are shown in 
figure 3.57 (from ref. 3.13) (see fig. 3.41 and 
earlier discussion in .this section for additional 
details). 
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FIGURE 3.57.-Cyclic frequencies for stringer-stiffened, 
free-free shells. (After ref. 3.13) 

3.1 A Open Circular Cylindrical Shells 

No specific numerical results exist for open 
circular cylindrical shells of orthotropic mate- 
rial. However, a significant amount of useful in- 
formation can be gleaned from sections 3.1.2 and 
3.1.3 for those cases where the two lateral edges 
are supported by shear diaphragms, because the 
displacements and force and moment resultants 
which exist at  "node lines" (w = 0) are precisely 
those required for shear diaphragm boundary 
conditions. Thus, as discussed previously for the 
isotropic case (see see. 2.8.1). considerable infor- 
mation can be inferred for open orthotropic shells 
supported on all four edges by shear diaphragms 
from the results given in section 3.1.2. Similarly, 
for open orthotropic shells having their lateral 
edges supported by shear diaphragms and arbi- 
trary edge conditions along the curved edges, 
useful results can be obtained from section 3.1.3 
(similarly discussed for isotropic shells in sec. 
2.8.2). 

3.2 VARIABLE THICKNESS 

Variable thickness in circular cylindrical shells 
often takes the form of a step discontinuity in 
thickness at some point along the length. The 
analysis of such shells requires piecing together 
of shell segments by means of continuity equa- 
tions across the common boundary. These shells, 
are considered to be structures and will not be 
treated here. 

Few references exist which deal with the vi- 
brations of circular cylindrical shells having con- 
tinuously variable wall thickness. This lack of 
treatment is no doubt the result of two types of 
difficulties : 

(1) Mathematical difficulties associated with 
the solution of systems of eighth order partial 
differential equations, and 

(2) The difficulties inherent in manufacturing 
shells of variable thickness. 

The latter of these two difficulties is obvious and 
needs no further discussion. The first difficulty 
has its source in the force and moment resultant 
equations. Returning to chapter 1 and scanning 
equations (1.75), for example, it is seen that the 
force and moment resultant integrals contain 
the shell thickness in the limits of integration. 
This fact in itself poses no difficulty, and equa- 
tions (1.76) are still applicable with the shell 
thickness now being regarded as a variable, 
h=h(x,B), instead of a constant. The difficulty 
arises when equations (1.76) are substituted into 
the equations of motion (e.g., eqs. (1.112) and 
(1.115)j. The process of eliminating Q, and Qe 
(Q, and Qe in the case of the cylindrical shell) 
by substituting equations (1.1.15a) and (1.115b) 
into equations (1.112) yields equations of motion 
wherein terms containing the thickness must be 
differentiated one or two times with respect to 
the shell coordinates, and the thickness must be 
treated as a variable. The resulting set of differ- 
ential equations is essentially untractable, and 
recourse must be made to the approximate ana- 
lytical methods not requiring exact solutions of 
the differential equations (e.g., Ritx, Galerkin, 
Kantorovich, collocation, subdomain, finite dif- 
ferences, numerical integration, finite elements, 
ref. 3.43). Even with these approximate methods, 
the resulting numerical calculations are often 
considerably more complicated for a variable 
thickness shell than for 'one having constant 
thickness. 

Gontkevich (ref. 3.41) purports to have s pro- 
cedure for the solution of problems where the 
thickness varies in the axial direction according to 

h = h0xi (3.47) 

where ho and i are constants. According to refer- 
ence 3.41, the equations of motion for the axi- 



- symmetric problem are solvable in terms of boundaries due to increasing thickness more than 
Bessel functions of nonintegral order for some offsets the added mass and the frequency is 
values of i. A method is then proposed for the significantly increased. 
solution of problems for arbitrary numbers n of Vibrations of circular cylindrical shells of vari- 
circumferential waves where the mode shapes able thickness were also discussed by Federhofer 
are either the eigenfunctions of the axisymmetric (ref. 3.45). 
problem or beam functions. A characteristic de- 

- - terminant is then obtained containing terms 
3.3 LARGE (NONLINEAR) DISPLACEMENTS 

which are complicated integrals having the prod- In the case of plates transverse deflections 
ucts of xi and the beam (or axisymmetric Bessel) which are on the order of the shell thickness or 
functions as integrands. The same procedure is greater cause additional stiffening of the plate 

- also proposed in reference 3.41 for shallow shells. and result in equations of motion which are non- 

- dure was demonstrated on a shell panelsupported However, in spite of slight dis2bgrae'~lents among ' . -- 

between edges)~ h0 is the thickness at  the sYm- such is not the case, however, for circular 
metry axis, and is a constant 'determining the cylindrical shells. .widespread disagreement exists 
degree of thickness varisbility. Numerical results to the shell behaves as a hard spring 
weye obtained for contrete shells having lc =0.5, o, a soft spring, and whether the type of behavior 
1=98.3 in., h0 =0.394 in., E= 2.84X lo6 1b/in2> depends upon the boundary conditions and/or 
pg = 0.0867 lb/ft3, v = 0.12, and various radii (R) the shell being open or 
and width/rise (b/c in fig. 2.141) ratios given in The first investigation of nonlinear vibrations 
table 3.8. For com~arison~ frequencies are also of cylindrical shells was by Reissner 
given in table 3.8 for the constant thickness shell (ref. in 1955. ~h~ shallow shell ( ~ ~ ~ ~ ~ 1 1 -  
(k = 0). Table 3.8 clearly shows that for relatively Mushtari) theory served as a basis for the work 
deep shells (small b/c) the effect of variable thick- and mode shapes having sinusoidal variation in 
ness is negligible; however, for very shallow shells the axial and circumferential directions were 
(large b/c)> the added st%ness Ilear the lateral t&en, $though the time response was not as- 

sumed to be sinusoidal. This led to results which 

Shallowness Variable 

nonlinearity was of the hardening type. 
Evenson (ref. 3.48) attempted to obtain exper- 

- 

3. g imental verification for closed shells of the theo- --- - 
1.94 retical conclusions obtained previously. Instead, 

.98 he found that (1) the nonlinearity was always 
'49 of the softening type and (2) the nonlinearity 

effects were small. From this he concluded that 
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the assumed modes used in the previous theo- 
retical analyses gave rise to circumferential dis- 
placements v which were not single-valued and 
continuous, and that this caused serious error 
in the analyses.  owin in ski (refs. 3.49 and 3.50) 
generalized the solution function to permit satis- 
faction of the continuity condition, but this 
resulted in different boundary conditions satisfied 
at the ends of the shell (v = 0 rather than w = 0). 
This led to hard spring behavior. Cummings (ref. 
3.51) also obtained frequency which increases 
with amplitude. 

Subsequently, Olson (ref. 3.52) observed soft- 
ening nonlinearity in a series of experiments. 
Then, in a later work, Evensen and Fulton (ref. 
3.53) found the nonlinearity to be either harden- 
ing or softening, depending upon the ratio of the 
number of axicl waves to the number of circum- 
ferential waves, although the shear diaphragm 
boundary conditions were not exactly satisfied 
at the shell ends in their analysis. In reference 
3.53 some results were also obtained where for 
large deflections the shell behaves as a soft spring, 
but as the amplitude is increased further, the 
nonlinearity becomes hard. This phenomenon 
was also seen in a recent paper by Leissa and 
Kadi (ref. 3.54). Mayers and Wrenn (refs. 3.55 
and 3.56) used the more complicated shell theory 
of Sanders to arrive at  the conclusion that free 
vibration is nonperiodic and of the hardening 

This confusing state of affairs will be elaborated 
upon in the following subsections. 

3.3.1 Nonlinear Equations of Motion 

The detailed derivations of nonlinear equations 
of motion will not be given here. Only the impor- 
tant differences with )inear theory and the final 
forms of the equations of motion will be summar- 
ized. For additional information it is suggested 
that the reader consult references 3.44,3.46,3.47, 
3.49, 3.50, 3.55, and 3.56. A comprehensive trea- 
tise on nonlinear shell theory also exists in the 
monograph by Mushtari and Galimov (ref. 3.57). 

The middle surface strahs of linear shell theory 
given earlier by equations (1.41) are specialized 
to the cme of circular cylindrical curvature and 
generalized to include the nonlinear stretching 
terms arising from relatively large slopes, giving 

where, for convenience, the shallow shell notation 
is used; i.e., a/ay = (l/R)a/aB. Adding the bend- 
ing strains to equations (3.49) according to the 
Donnell-Mushtari theory, inverting the isotropic 
stress-strain equations, and integrating over the 
thickness gives the following expressions for the 
force resultants (cf., ref. 3.47) : 

where C = Eh/(l - v2) and D = Eh3/12(1 - v q ,  as 
. before. 

Using the Domell-Mushtari equations of 
motion of section 1.6 along with equations (3.50) 
gives (neglecting Bangential inertia) :-? Q. 

a (a4u a%v a2w a 2 ~  - .  
DV4w+ph-=h --+-- - 

at2 ax2 ay2 ag2 ax2 
--  

I 

where q~ is an Airy stress function defined by 
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Another equation is obtained from the equation 
of compatibility of strains for the middle surface. 
From equations (3.49) it is seen to be 

Using equations (3.52) and the stress-strain equa- 
tions for an isotropic material, equation (3.53) 
becomes 

Thus, the governing nonlinear equations for a 
circular cylindrical shell according to the Donnell- 
Mushtari (or shallow shell) theory are given by 
equations (3.51) and (3.54). In the case where 
R = 00 the equations properly reduce to the cor- 
responding ones for a flat plate. In the case of an 

'IRCULAR CYLINDRICAL SHELLS 

theory (see chapter 1) are used to derive a set of 
nonlinear equations of motion in terms of the dis- 
placements u, v, and w. The resulting equations 
are quite lengthy and will not be repeated here; 
they are displayed as equations (21)) (22)) and 
(23) in reference 3.56. 

The nonlinear form of the Morley equations of 
motion for circular cylindrical shells are exhibited 
in reference 3.51. 

3.3.2 infinitely Long Shells 

Evensen (ref. 3.59) showed that in the case of 
plane strain for an infinitely long circular cylin- 
drical shell, the equations of motion reduce to 

orthotropic shell having axes of o r t h o t r o ~ ~  coin- The radial displacement was assumed to take the 
cident with the shell coordinates (LYNX, @my), form 
the equations are generalized to (cf., refs. 3.49 nY 
and 3.50) w(y,t) = An(t) cos -+Ao(t) (3.58) R 

Equation (3.57a) and the continuity condition 

v(y+'27rR,t) = u(y,t) (3.59) 

were exactly satisfied, and equation (3.57b) 
a2w aZp a2w a 2 ~  +---2----- ' 

( 3 . ~ 5 ~ )  , was approximately satisfied by the Galerkin 
ay2 ax2 ax ay ax ay R ax2 procedure. 

adv a 4 ~  If the amplitude Ao(t) of the axisymmetric 3+ --zvz +- - 
2 a  2 E, ay4 ax4 (EE )- mode is taken to be zero, the resulting modal =.a( - a4u )"% -- d4u 1 a2w] equation is -+- -y ax ay ax2 ay2 R ax 

(3.55b) a2an 
-+an+3an3 = 0 
d72 

(3.60) 

The nonlinear, middle surface strain-displace- 
ment relationships of the Sanders theory were where an is the nondimensional amplitude, A&, 
found to be (see refs. 3.56 and 3.58): and T is nondimensional time, writ, with 

av  w 1 aw 2 v aw 
a --+-+- - --- (3.56) Equation (3.60) exhibits a hard spring behavior 
#-ay R 2(ay) R a y 1  and results from considerable stretching of the 

au av  aw aw v aw middle surface of the shell. Its solution is, of 
Cu=--+-+- --- - course, expressible exactly in terms of elliptic 

ay ax ax a9 R ax integrals, but an approximate solution can be 
In reference 3.56 equations (3.56)) along with the written as 
other corresponding equations of the Sanders an(r) = 6 cos W*T (3.62) 
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ferential wave number n as well as the thickness where Ao/h=n(h/R)r, and e, a,, and 7 as de- 
ratio, h/R. It was pointed out in reference 3.59 fined prevmusly. An approximate solution to 
that the corresponding of equations (3.69) as found in reference 3.59 is 
references 3.47 and 3.49 yield 

a,(r) = & cos W*T I (3.70) 
T(T) =Po+Pz cos ~ W * T  

where 
instead of equation (3.60). Clearly while equa- Po = - a2/8 
tion (3.64) also characterires a hard spring, it is (3.71) 
much less strongly nonlinear than equation P2 = -a2/8[1 -0*~/3] 

(3.60). and 

For the case of inextensional vibrations (no I-W*~-- I-- = O  (3.72) 
stretching of the middle surface of the shell), 4 
Ao(t) is related to A,(t) by 

"1 e(03tl-1 
Expanding equation (3.72) gives 

yielding the modal equakion which is the same as equation (3.68) for terms 
up to order e. d2an 1 

-+-ea,,[a:$+("$>'] + an=O (3.66) The conclusions reached in reference 3.59 for 
dr2 2 the infinitely long shell as a result of the fore- 

where going analysis are 

Taking an approximate solution to equation 
(3.66) in the form of equation (3.62) yields 

For small n and small h/R, terms of order e2 
and greater in equation (3.68) can be neglected, 
and a soft spring response is indicated. When the 
length of the shell is taken to approach infinity, 
the analysis of reference 3.60 yields an equation 
identical to equation (3.66) except that the 
coefficient 1/2 in the second term is replaced 
by 3/8. 

Finally, consider the case when A,(t) and 
Ao(t) in equation (3.58) are permitted to be 
independent modes. This yields the two coupled 
modal equations 

(1) The shell vibrates in such a manner that 
the midsurface remains practically inextensible. 

(2) The frequency-amplitude relation is of the 
softening type and depends upon E =  (n2h/R)2. 

(3) A radial contraction involving double- 
frequency (cos 2w*r) motions is indicated and 
has been observed experimentally by Olson (ref. 
3.52). 

(4) Vibration modes that do not permit an 
axisymmetric radial contraction, in addition to 
the primary vibration shape, appear to place an 
unrealistic constraint on the shell. 

Dowel1 and Ventres (ref. 3.61) used the Don- 
nell-type shell equations (3.51) and (3.53) and a 
radial displacement function of the form 

mrx ny 
w(x,y,t) = A,,(t) sin -- 

I 3-i 
mrx ny 

+B,,(t) sin - sin - 
I R 

mrx + A,o(t) sin - 
I 
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A corresponding (p was obtained by integrating 
the compatibility equation (3.54). The equation 
of motion was approximated by the Galerkin 
procedure, yielding three complicated, coupled, 
nonlinear equations involving the amplitudes 
Am,, Bmn, and A,o and their time derivatives. 
These equations were investigated in the limit 
as l/R-+ oo and found to yield a nonlinearity of 
the hardening type (at least for m even). 

3.3.3 Large Deflections of Closed Shells Having 
"Shear Diaphragm" End Conditions 

The term "shear diaphragm" is used with quo- 
tation marks bec~use in the numerous analyses 
which are described below most of them attempt 
to satisfy shear diaphragm boundary conditions 
(eqs. (2.33)), but end up only by approximating 
them. 

Evensen and Fulton (ref. 3.53 and 3.60) used 
the Donnell theory (eqs. (3.51) and (3.54)) and 
the following two-mode approximation for the 
radial displacement : 

n2 mrx 
+43[Amn2(t) +Bmn2(t)l sin2 - I 

(3.75) 

where the bracketed term involving and 
Bmn2 is added to satisfy the continuity condition 
on v. Substituting equation (3.75) into the com- 
patibility equation (3.54) and integrating gives 
the stress function (p as follows: 

qJ(~,y,t) =al(Amn cos &+Bmn sin PY) sin ax 
-az(Amn2 -Bmn2) cos 2py 
- aaAmnBmn sin 2Pg 
+aq(Amn2+Bmn2) (Amn cos PY 
+Bmn sin py) sin 3ax (3.76) 

where a = mrll, p = n/R and 

Although equation (3.75) exactly satisfies the 
shear diaphragm boundary condition w = O  at the 
ends x = 0 and x =I, it will be found upon integra- 
tion of the strain-displacement equations (3.49) 
that u will not be zero at the ends. Similarly, using 
equations (3.50) it is found that N, and M,  are 
not identically zero at the ends. For these quan- 
tities the coefficients of the linear terms in An and 
Bn do vanish at x =0, I, but the terms involving 
An2, AnB,, and Bn2 do not vanish there. Thus, 
the shear diaphragm boundary conditions are 
only approximated. However, the continuity 
condition (3.59) is exactly satisfied. 

Finally, the equation of motion (3.51) is'satis- 
fied approximately by the Galerkin procedure, 
giving rise to the two following coupled, non- 
linear, nondimensionalized equations : 

where S-, = Amn/h, L = Bmn/h, r = wmnt, wmn is the 
linear free vibration frequency, e = (n2h/R)2 as 
before, and y and 6 are defined by 

where 4 is the aspect ratio of the particular mode, 
given by E=mrR/nl. It is interesting to note 
that the nonlinearity of the problem depends 
upon the parameter E; that is, as e approaches 
zero, the problem becomes linear. 

Consider first the solution of equations (3.77) 
for the case when only a single mode is retained 
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in the solution function (equation (3.75)); i.e., 
Amn#O, Bmn =O. The method of averaging was 
used in references 3.53 and 3.60 to obtain the 
following approximate solution: 

~ ~ ( 7 )  =,A cos o * ~  
(3.79) 

{a (7) = 0 

with the frequency-amplitude relationship given 
by 

Numerical results for five values of e ranging 
from 0 to 1.0 are shown in figure 3.58. The solid 
and dashed lines were calculated for values of r 
and 6 corresponding to aspect ratios of [= 1/2 
and 2, respectively. Poisson's ratio was taken as 
v =0.3. 

Both sets of curves in figure 3.58 demonstrate 
that the strength of the nonlinearity is highly 
dependent upon e = (n2h/R)2. The nonlinearity is 
small for vibrations involving very thin cylinders 
and/or small values of n, and conversely. 

The character of the nonlinearity (i.e., whether 
it is hardening or softening) depends strongly 

I I I I I 
;" 

.6 0 - -  .8 1.0 1.2 1.4 1.6 
- ., , - >  NMULINEAR FREQUENCY 

I 8 .  
, LINEAR FREWENCY . '  . 

- 
Fraum 2 . 5 C e q : e n c y  ratio versus amplitude for 

large deflections of a cylindrical shell; v =0.3. (After 
refs. 3.53 and 3.60) 

upon the aspect ratio 4. This result is apparent 
from equations (3.77)' which show that e is a 
multiplying factor in every nonlinear term. The 
effect is illustrated in figure 3.59, which shows 
frequency-amplitude response curves computed 
from equation (3.80) for values of 4 ranging from 
0.1 to 4.0. The solid lines are the results of 
Evensen and Fulton (refs. 3.53 and 3.60) and 
are calculated for e = 1.0 and v =0.3. For com- 
parison purposes, Chu's results (ref. 3.47) (dis- 
cussed later in this section) are shown as dashed 
curves in figure 3.59. The results of references 
3.53 and 3.60 are of the softening type for .!<I 
and of the hardening type for larger values of 4, 
whereas Chu's results are all of the hardening 
type. 

Another fundamental difference between the 
results of Evensen and Fulton and those of Chu 
are that the latter's results possess a symmetric 
dependence on the aspect ratio parameter f ;  i.e., 
Chu's curves for 4=1/2, 1/4,1/8, . . . coincide 
with those for 4=2, 4, 8, . . . , respectively. 
Such a symmetric dependence on 4 seems to 
conflict with the basic geometric nonsymmetry 
of the shell; i.e., the shell has curvature in the 
circumferential direction, but not in the axial 

CHU 

3 

NONLINEAR FREQUENCY 
LINEAR FREQUENCY 

FIGURE 3.59.-Frequency ratios for large deflections of 
a cylindrical shell; v =0.3. (After refs. 3.53 and 3.60) 



- direction. The results of Evensen and Fulton do 
8 .  not display this form of symmetric dependence. 

Another effect which is apparent from the 
curves of figures 3.58 and 3.59 for some values of 
E and 5 is that although the initial response may 

10 - 
. - be of the softening type, as the amplitude con- DRIVEN MODE 

tinues to increase the A 4  term in the numer- - 
la 8 -  ator of equation (3.80) eventually dominates, - 
d resulting in hardening nonlinearity. 3 

Results were also presented in references 3.53 6 - 
and 3.60 for solutions using both the Am, and 5 
Bmn terms in equation (3.75). These are shown in 4 - 
figure 3.60 for a forced motion where the applied 
normal loading q(x,y,t) is chosen so that only one 
mode is directly excited (driven); i.e., 2* - 

nlry msx - ?  ' -wA - q(x, y,t) = Qmn cos - sin - cos at (3.81) 
R 1 0 0.88 0.92 0.96 1.00 1.04 1.08 Y + .  

I1 ; - .  The solid lines in figure 3.60 are the forced re- NONLINEAR FREQUENCY , . - 8 ".. - .  $ 2  sponse curves of the driven mode and the com- LINEAR FREQUENCY I .  

, 8:- 

. panion mode for e=0.01, 5=0.1, and v=0.3. - * ,*.-* z7>&- -. & 
' The free vibration curves are shown dashed and F1Gurm3.61--R 
1 exhibit the same initial soft spring response seen deflections of I 

E=O.l, s=0.01 i previously with a single mode. The corresponding - M. . - 
1 are de~icted in 

COMPA 

SIN 

NlON 
ny - 
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MODE 
SIN 

1lUL111, 

for cir 
slight 
tative 
shown 
3.62. 
curve 

cular cylindrical shells which showed a very 
nonlinearity of the softening type. Quanti- 
>results obtained by Olson (ref. 3.52) are 
I by the circles and dashed lines in figure 
The solid line shown is the free vibration 
calculated from equation (3.80) with the 

values of e, 7, 6 that correspond to Olson's 
experiment (copper shell, h = 0.0044 in., R = 8.00 
in., and 1 = 15-3/8 in., yielding e = 3.025 X 

DRIVEN MODE 5 = 0.1635, v =0.365). The experimental and 
COST SIN? theoretical results are nondimensionalized with; 

. . . _I .; 0. 
respect to the experimental and theoretical 

3 

NONLINEAR FREQUENCY 
LINEAR FREQUENCY 

for moderate amplitudes, is of the softening' " 

type. 
.-- ' 2 

Mayers and Wrenn (refs. 3.55 and 3.56) used .r' 

I - -  FIGURE 3.60.-Forced vibration frequency ratios for large the Donne11 equations and the single mode ' 8 2  
. . . .  . -  

deflections of a cylindrical shell; two mode analysis, (Amn#O, Bmn: 
-' 

L - t=0.1, e=O.OI, ~ = 0 . 3 .  (After refs. 3.53 and 3.60) function given in equation (3.75) to duplicate the - -=B 
' P  
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-Q- EXPERIMENT,FORCED 
2 VIBRATION (OLSON) 
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0 
a39 1.00 1.01 

NONLINEAR FREQUENCY 
LINEAR FREQUENCY 

FIGURE 3.62.-Comparison of theoretical and experi- 
mental nonlinear responses for a cylindrical @hell; 
s =3.025 X10-8, =0.1635, v =0.365. (After refs. 3.53 
and 3.60) 

where x' is measured from the longitudinal sym- 
metry plane of the shell; i.e. ; x' = x - 1/2. Using 
this solution function the resulting motion was 
found to be nonperiodic in time, as shown in 
figure 3.63. In  figure 3.63 the dashed curve repre- 
sents the periodic solution obtained from the 
single mode solution. The deflection function for 
this mode in terms of the shifted coordinate x' is 
given by 

The solid line is the nonperiodic response arising 
from the two mode function used in equation 
(3.82). The interrupted line is the nonperiodic 
response arising from a two mode function of the 
form 

results of Evensen and Fulton (refs. 3.53 and 4mrx' 
3.60) which were presented previously in figures - [ d 3 ( t )  +: ( : ) A I ~ ( ~ ) ]  cos 

3.58 and 3.59. They found this motion to be 
periodic in time. A two-mode solution was also - A3(t) cos - 2mrx' I +"k))a12(t) 8 R  (3.84) 

taken in the form 
Another analysis was conducted in references 

w 3.55 and 3.56 using the Sanders shell theory 
h in order to accommodate small numbers of 

2mrx' + A3(t) cos - circumferential waves n .  In  this case the three 
I components of displacement were taken as 

-2.0 
EQUATION (3.83) 

i3UATION (3.82) 

-- --- EQUATION (3.84) 

PI~URD 3.63.-Comparison of periodic and nonperiodic radial displacements as functions of 
time. (After refs. 3.55 and 3.56) 
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u mrx' ny 
n- = A3(t) sin - cos - 

h I R 
2mrx' 2ny + As(t) sin - 

I cOs R 
2mrx1 + A, (t) sin - 

I 

v mrx' ny 
n-= A&) cos - 

h I 
sin R 
2mrx' 2ny 

+Aii(t) cOS - I 
sin y 

The results of this analysis yielded nonlinearity 
of the hardening type as depicted in figures 3.64 
and 3.65 for n=2 and the aspect ratio 

2mrR -- - 1.0 and 0.50 
In 

respectively. 

(3.85) Cummings (ref. 3.51) developed the nonlinear 
form of the Morley equations and applied the 
Galerkin procedure using a radial displacement 
function 

+ A13(t) sin 2) to arrive at a nonlinear equation of the hard 
spring type (DuEng's equation) : 

1/125 

l/400 

1.00 
0 8.0 ' 1/1000 a 

IG0 SMALLER 

FIGURE 3.64.-Frequency ratios according to the Sanders theory; n =2, 2m~R/ ln  = 1.0. (After 
refs. 3.55 and 3.56) 

FIGURE 3.65.-Frequency ratios according to the Sanders theory; n =2, 2m~R/ ln  =0.50. (After 
refs. 3.55 and 3.56) 



d2A ously as equations (3.55) with the displacement -+klA+kzA3=0 
dt2 (3.87) function 

i.e., where kl and k2 are positive constants. m?rx ny n2 
Chu (ref. 3.47) used the Donnell theory and w(x,y,t) = A  (t) sin - sin -+-A2(t) (3.88) 

I R 8R 
equation (3.86) to arrive at an equation of the 
same form as equation (3.87) differing only by a 
factor of two in kp. Numerical results found in 
reference 3.47 for a shell having R/h= 100 and 
v =0.318 are exhibited in figures 3.66 and 3.67 for 
n = 8 and 10 (circumferential wave numbers), 
respectively. In  these figures the nonlinear/linear 
frequency ratio is plotted versus the amplitude 
ratio A,,/h for a series of aspect ratios, rR/ln. 
Results are also shown for the flat plate. Accord- 

and the Galerkin procedure to obtain numerical 
results for shells having material types as shown 
in table 3.9 (correcting a misprint in ref. 3.49). 
Duffing's equation (3.87) was also obtained from 
this analysis. Frequency ratios versus amplitude 
ratios are shown in figure 3.68 for shells hav- 
ing the types of materials listed in table 3.9, 
R/h = 100, and various values of n and X = m?rR/I. 

A 

Nowinski (refs. 3.49 and 3.50) used the ortho- 
tropic form of the Donnell equations given previ- .30 

ing to this analysis, the nonlinearity is of the T~~~ 3.9.-Pr0pe,.ties of Orthotropic and 
hardening type, as for flat plates, although the 
nonlinearity is not as strong. Isotropic Shells 

---. \ 
FLAT PLATE 

0.4 I I I 
0 0.4 0.8 1.2 1.6 2.0 

Amol( 
h 

As described in section 3.3.3, in reference 3.61 Material 
type a set of three coupled equations of much greater 

complexity than equation (3.87) were derived ortho- 
from the Donnell theory using a three mode tropic 1 
remesentation for w. Ortho- 

FIGURE 3.66.-Comparison of nonlinear response of a 
circular cylindrical shell with a flat plate; n =8. (After 
ref. 3.47) 
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FIGURE 3.67.-Comparison of nonlinear response of a 
circular cylindrical shell with a flat plate; n=10. 
(After ref. 3.47) 
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FIGURE 3.68.-Frequency ratio versus amplitude ratio 
for SD cylindrical shells; RIB = 100, A = m ~ R / l .  (After 
ref. 3.49) 

Large amplitude vibrations of closed circular 
cylindrical shells ostensibly having shear dia- 
phragm end' conditions are also discussed in 
references 3.46 and 3.63 through 3.65. 

3.3.4 Other End Conditions 

Sun'and Lu (ref. 3.65) is the only reference 'in 
the literature purporting to deal with closed 
circular cylindrical shells having end conditions 
other than shear diaphragms. Reference 3.65 
briefly considers (as a special case of a conical 
shell) the instance when the constraint u = O  is 
added to the SD end conditions giving 

at both ends. Shallow shell theory was employed, 
and Hamilton's principle was applied to obtain 
the nonlinear equations of motion. The only 
result obtained in reference 3.65 which has any 
relevance at all to this monograph is the post- 
buckling amplitude frequency relationship of the 
hardening nonlinearity type derived for the case 
of thermal loading. 

Large Deflections of Open 
Cylindrical Shells 

The only results available in the literature for 
the nonlinear motions of cylindrically curved 
shell panels are for the case when the edges are all 
nominally supported by shear diaphragms (i.e., 
the SD boundary conditions are exactly satisfied 
if the nonlinear terms in the functions for v, N,, 
and. M, are neglected in the statement of the 
boundary conditions). 

The earliest results were obtained by Reissner 
(ref. 3.46) using the shallow shell theory (i.e., 
eqs. (3.51) and (3.54)). Solution functions of the 
form 

w(x,y,t) = A(t) sin 

(3.89) 
'Jrx 

q(x,y,t) = B(t) sin - 
I 

were assumed, and a variational procedul;e was 
followed to arrive at the following equation of 
motion : 

A perturbation technique was used to solve equa- 
tion (3.90), yielding the following relationship for 
where wo is the frequency according to linear 
bending theory; i.e., 

and @om is the, freque.ncy according to linear 
membrane theory; i.e., 

A perturbation technique was followed to arrive 
at  the relationship between nonlinear frequency 
w and amplitude A,, as follows: 

From equation (3.93) it is seen that the non- 
linearity increases or decreases the frequency 
depending upon whether wom/wo is less than 'or 
greater than I/&, or 0.45. Also, the nonlinear 
correction effect is strongly dependent upon the 
value of the circumferential wave number n. 

Looking at the amplitude A(t) in equation 
(3.89), it was shown in reference 3.46 to take 
the form (retaining only first order correction 
terms) 



1 
-- cos wt-- cos 2wt (3.94) 

3 6 11 
which takes the shape shown in figure 3.69, along 
with its components. This graph shows that the 
shell does not spend equal time intervals de- 
flected outwards and deflected inwards. Rather, 
more than half of the cycle is spent during the 
inward deflection. Also, the inward deflection is 9 

E > 819 
larger than the outward deflection, the ratio of 
amplitudes being given by . 

Ainward 32n2 h 
= 1 - ( )  (6.V0, 

I 
3r2 R Aoutwi rd  

Equation (3,'90) was also obtained by Cum- 
mings (ref. 3.51) using the shallow shell equa- 
tions and the Galerkin procedure. Integr* it - - --.- - - -,.--.- .- - - - .- 
gives - .. 
: where +(t) = (16n2/r2R) A (t) and E = wh2/wo2. 

Equation (3.96) yields phase-plane diagrams as 
depicted in figure 3.70. 

In  reference 3.51 another approach was also 
' 

taken wherein only the displacement function - +(L) sin 
for w as given in the first of equations (3.89) is 
assumed, and the compatibility equation (3.54) 
is integrated to yield 

- - -  - 
FIGURE 3.70.-Phase plane trajectories for nonlinear 

( s Y + w o 2 [ + ' f  .@+k)] (3.96) vibrations of s cylindrical shell according to Reissner's 
equation. (After ref. 3.51) 

I 

procedure thin gives the 

~t can yield either hard spring or soft spring non- 

cos at I linear response. The corresponding phase plane 
+nn:.,n+....:no -..- a isplayed in figure 3.71. Figure 

r that the oscillations for a very long 
)me less stable as the length of the 
?ases. Comparisons of the assumptions 
ie derivations of equations (3.90) and 

U L U J J G b U U L L G L Y  CVLG Ul 

~ , ( t )  3.71 show6 
panel becc 

- FIGURE 3.69.-Amplitude and its component park as panel incrt 

7- 
- - functions of time during nonlinear vibration. (After made in t1 

k: :.I=. ref. 3.46) (3.98), the Galerkin and perturbation methods 
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dt 
SHORT PANEL I 

MEDIUM PANEL 

*'# 
LONG PANEL dT 

FIGURE 3.71.-Phase plane trajectories according to 
Gumming's equation. (After ref. 3.51) 

FIGURE 3.72.-Frequency ratio versus amplitude ratio; 
Z/R& = 1, RIA =lOM) ,  00 =22.g0, v =0.3. (After ref. 
3.54) 

for their solution, and the stability of the solu- 
tions are investigated further in reference 3.66. 

Leissa and Kadi (ref. 3.54) obtained an equa- 
tion similar to equation (3.98) for shallow shells 
having arbitrary, constant radii of curvature 
(see chapter 10 for further discussion) and 
obtained the amplitude-frequency curve shown 
in figure 3.72 for a cylindrical panel having 
1/RI3o = 1 (square planform, with 00 as depicted in 
figure 2.141), R/h = 1000, 00 = 0.4 radians (22.g0), 
v = 0.3, and m = n = 1. The shell behaves initially 
as a soft spring but, as the amplitude is increased, 
a region of hard spring behavior is eventually 
reached. 

The nonliaear vibrations of circular cylindri- 
cal shell panels are also discussed to a limited 
extent in references 3.67 through 3.70. 

3.4 INITIAL STRESS 

The voluminous results of chapter 2, as well as 
the preceding sections of this chapter, dealt with 
circular cylindrical shells under the assumption 
that the only stresses present in the shells are 
those arising from the vibratory motions them- 
selves. In  many (if not most) practical applica- 
tions, shells are subjected to static loadings 
causing internal stress fields. The presence of such 
stresses affects the vibrational characteristics of 
the shells significantly. 

There is, of course, no limit to the number of 
possible types of initial stress fields which may be 
encountered in practice. However, some of -the 
most important ones are those in which the 
stresses are uniform (not varying with the spatial 
coordinates, x and 13). These loadings can occur, 
for example, for shells acting as axial or torsional 
load transmitting structures, for pressurized 
(internal or external) cylinders, or for shells 
spinning about their longitudinal axes. For this 
reason, as well as because of the relative mathe- 
matical simplicity, .uniform initial stresses (or 
prestresses) have received much attention in the 
published literature. 

Incorporating initial stress effects requires a 
generalization of the equations of motion. These 
changes will be discussed in section 3.4.1. Sub- 
sequent sections give extensive numerical results 
for various types of loadings, particularly those 
yielding uniform prestresses. It will be seen that, 
as usual, because of the relative mathematical 
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simplicity, the vast majority of references deal 
with shells having their boundaries supported by 
shear diaphragms. Straightforward methods for 
handling other edge conditions (including an 
exact procedure) are available but, as will be 
subsequently indicated, have been sparingly ap- 
plied because of the great deal of effort required. 

In the cases involving pressurization, except 
where otherwise indicated, it is assumed that the 
pressure is ['constant directional"; i.e., the direc- 
tion of the pressure does not change as the shell 
deforms during vibration, but remains in its 
initial direction. 

3.4.1 Equations for Circular Cylindrical Shells 

Consider a circular cylindrical shell acted upon 
by a static initial stress or prestress field a:, mei, 
and uzei which is in equilibrium. The initial 
stresses within the shell result from the solution 
of a static problem having prescribed loading 
and/or end conditions. In general the initial stress 
field is not uniform; i.e., a2 =a,'(x,B), etc. During 
vibration the internal stresses in the shell consist 
of the initial stresses and the additional vibratory 
stresses US, me, and axe. The bending stresses in the 
initial loading state are usually neglected, and 
the displacements due to the membrane stresses 
are also usually neglected. These assumptions 
result in uncoupling of the initial and vibratory 
stresses; that is, there is no interaction between 
the prestress displacements and the vibratbry 
stresses. Because the initial stress state is in 
equilibrium, the potential energy of the system 
in this state is taken as the reference level. Thus, 
the internal strain energy of the shell can be 
written as (cf., eq. (1.84)) 

The vibratory stresses uz, ae, axe are related to the 
vibratory strains by HookeJs law as indicated by 
equations (1.70). Next the strain-displacement 
relationships of a given shell theory (see sec. 1.4) 
must be substituted into equation (3.99). How- 
ever, because the initial stresses may be large it 
is necessary to use the second-order, nonlinear 
strain-displacement equations (cf., section 3.3) 

in the second integral of equation (3.99) while 
using only the linear relationships in the first 
integral. This maintains the proper homogeneity 
in the orders of magnitude of the terms in 
the integrands. Because the initial stresses are 
assumed to be membrane in nature (uniform 
through the thickness), it is sufficient to retain 
only the linear terms in the equations relating 
curvature changes to displacements. Applying 
Hamilton's principle (cf., eq. (2.13)) and taking 
the necessary variations with respect to the dis- 
placement components u, v ,  and w then straight- 
forwardly leads to the desired equations of 
motion, which is the linear form of equation (2.3). 
However, in this case the matrix differential 
operator is generalized from equation (2.5) to the 
form 

where [SD-MI and [dhfo~] are the Donnell-Mush- 
tari and modifying operators (depending upon 
the shell theory), respectively, as used previously 
in equation (2.5), lc= h2/12R2, C = Eh/(l-vZ), 
and [&I is a matrix operator containing the addi- 
tional terms which account for the initial stresses. 
The [SD-M] operator for isotropic and anisotropic 
materials is given by equations (2.7) and (3.12), 
respectively. Corresponding [SMOD] operators ap- 
pear as equations (2.9) and (3.14), respectively. 
Any of these operators can be used directly in 
equation (3.100). 

The operators [Si] arising from the nonlinear 
forms of the Donnell-Mushtari, Sanders (ref. 
3.71), Herrmann and Armenhkas (ref. 3.72), and 
Washizu (ref. 3.73) were shown by Sampath (ref. 
3.74) to be as follows for the case where Noi and 
Nzei are not functions of 0 (No =aeih, etc.) : 
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Sanders: 

I 
- 

0 

a 1 a a 1 a ] - ~ e i  a .a 
--[-(N.'+N as 4 " a e  -1 -[-(N,'+N,~)- a s 4  as Nei+NZea$ ae 

[Si] = 
a .a aNzei a2 

0 N 0'- + 2NzeL+ - ae as as [-$(Nzii) - ~ 2 %  

Herrmann- Armendkas and Washizu: 

0 0 

A-No' 

- (A-No3 

where 

and where s = x / R ,  as before. The [ S M o D ]  operator for the Herrmann-Armenhkas theory is the same 
as that of the Flugge theory. The [&?MOD] operator for the Washizu theory is the same as for the Golden- 
veizer-Novozhilov theory (ref. 3.74). 

The initial stress matrix operator for the Fliigge theory in the case of uniform Nzi, Noi, and Nze' 
is (ref. 3.75) 
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The symmetry of the operator in equation (3.102) 
as well as the repetition of terms along the prin- 
cipal diagonal is striking in comparison with 
those given in equations (3.101). 

In  the case of uniform initial stresses the single 
nonvanishing term of the Donnell-Mushtari 
operator (eq. (3.101a)) simplifies to 

It is disturbing to note that this operator is 
unsymmetric, even though the modifying opera- 
tor (2.9b) is symmetric. However, the Washizu 
equations (3.101~)~ which also use the  MOD] of 
the Goldenveizer-Novozhilov theory, are sym- 
metric. As further examples of the great variety 
of shell theories employed in the literature, Fung, 

Sechler, and Kaplan (refs. 3.78 and 3.79) used a 
set of equations of motion consisting of the [ S M ~ D ]  
operator of Timoshenko theory, eq. (2.9a), and 
the same [Si] operator used by Voss, eq. (3.105). 
Mugnier and Schroeter (ref. 3.80) followed a 
derivation similar to that of the Fliigge theory, 
but arrived at a set of equations of motion for 
which both the [SMOD] and [St] operators are 
different from any of those given previously in 
section 2.1.1 or in this section, respectively. 

Reissner (ref. 3.81) derived the equations of 
motion for initially stressed (uniform N,' and 
Noi only) circular cylindrical shells for the mem- 
brane theory. These are obtained by taking k=O 
in equation (3.100) (including where it appears in 
[SD-M] and using for [Si] : 

3.4.2 Uniform Axial Prestress 

A closed circular cylindrical shell having a uni- 
form axial initial stress field is obtained by simply 
loading the ends of the shell with a uniform axial 
stress resultant as shown in figure 3.73. The 

N: = CONSTANT 

FIQURB 3.73.-Circular cylindrical shell subjected 
to uniform axial prestress. 
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resulting internal stress field is then simply given 
by Nz' = constant, Noi = Nzo' = 0, where Nd is 
positive in tension as indicated in the figure. 

Consider first a shell supported at both ends 
by shear diaphragms. The boundary conditions 
for the vibratory force and moment resultants and 
displacement components are given by equations 
(2.33). As in the case of an unloaded shell, dis- 
placement functions taken in the form of equa- 
tions (2.20) satisfy the boundary conditions 
exactly, provided X is taken as X =m?rR/l. For the 
Donnell-Mushtari theory the operator [ S M ~ D ]  is 
null. Substituting the operators from equations 
(2.7) and (3.101a) and the displacement equations 
(2.20) into equation (3.100) yields a set of equa- 
tions for the eigenfrequencies o which is the same 
as equation (2.21) except that the element in the 
third row and third column is now changed to 

v2)/E. Further, let the tan- 
cted, an assumption which 
ecially when the Donnell- 

term given by equation 
equation for the frequency 

KO, AKo, and are given in equation 
6), table 2.1, and equation (2.43)) respec- 

vely. The significance of equation (3.108) is 
that, if tangential inertia is neglected, the numeri- 
cal results for the frequency parameters of circular 
cylindrical shells supported by shear diaphragms 
obtained using the Donnell-Mushtari theory are 
directly applicable to the case where uniform 
axial prestress is present; one simply replaces 02 
by Q2-N,iX2/C (C=Eh/(l-v2), X=rn~R/l). 

The above statement is even capable of fur- 
? - ther generalization. Consider, for example, the 

case when the shell is orthotropic. Then the 
Donnell-Mushtari equations of motion are given 

- by equations (3.8). Again, if tangential inertia <: -1- is neglected, then it is clear that numerical 
_ I  

- - - results for orthotropic shells supported by shear 

RCULAR CYLINDRICAL SHELLS - ' '- 

diaphragms can be used simply by replacing 
w2R2p(l- vZv,)/Ez by w2R2p(l- vZvy)Ez-NziX2/C. 

Clearly, if tangential inertia is neglected the 
same useful simplification can be made for the 
membrane theory in the case of initial axial 
stress. From equation (3.106) it is seen that 
equation (3.108) also applies to membrane theory 
by taking k = 0. 

It is interesting to note that the Fliigge equa- 
tions permit a similar manipulation in the case 
where the tangential inertia terms are retained. 
Looking at the Fliigge initial stress operator given 
by equation (3.102) it is seen that in the case 
where No'= Nzei= 0 that identical terms NZia2/as2 
in each element of the principal diagonal are . - . -  - 
all that remain. Thus, in formulating the char- 
acteristic determinant for the case of the shell 
supported by shear diaphragms by means of 
equations (3.100), (2.7), (2.9d), and (2.20) it is -, 
found that the same determinant arises except 
that Q2 is replaced by O2 - NziX2/C. This fortunate 
circumstance was pointed out by Bozich (ref. 
3.82) and permits the direct utilization of the 
extensive data presented earlier in those tables 
and figures of section 2.3 which result from 
the Fliigge theory. One simply replaces 02 by 
O2 - NSiX2/C wherever it appears. 

Because of the identical mode shapes of free 
vibration and classical, linear buckling for the 
case of shear diaphragm end supports, it is easy 
to show that the frequency w can be expressed as 

w2=wo2 I+- [ (zcd (3.109) 

where wo is frequency in the absence of initial 
stress and (Nzi),, is the critical value of N,' which 
causes buckling. If one were to plot w/wo versus 
Nzi/(Nzi),, according to equation (3.109) it is 
clear that the curve would be a parabola having 
its vertex at Nzi/(Nzi),,= - 1 as shown in figure 
3.74. A positive (tensile) NZ4 stress resultant field 
increases the natural frequency without limit, 
whereas negative (compressive) values of Nzi de- 
crease the frequency until, at w = 0, buckling --. 
ensues. 

Nikulin (ref. 3.83) used the Donnell-Mushtari ' -  

equations including tangential inertia and the ' ' - 

exact displacement functions (2.20) to obtain a 
characteristic equation for the shell supported ., , - r  



FIGURE 3.74.-Frequency ratio versus axial initial stress ratio; shear diaphragm end conditions. 

by shear diaphragms at both ends. The charac- 
teristic equation is 

where KO, KI, and K2 are the Donnell-Mushtari 
coefficients in the absence of initial stress, given 
in equations (2.36). The solution of equation 
(3.110) for its lowest root Q2 was accomplished 
in references 3.83 and 3.84 by the ,commonly 
used device of neglecting the terms containing 
Q6 and Q4 (see sec. 2.3.5) and by neglecting 
k(X2+n2)2 and X2Nxi/C with respect to unity to 
give 

where Qo2 is the frequency parameter in the ab- 
sence of initial stress and Dl is defined by 

using an altogether different shell theory (see the 
discussion in see. 3.4.3). 

Variation of the parameter 81 with R/h and 
n is shown in figure 3.75 for l/R = 2 and v =0.3. 
Numerical results showing the behavior of the 
frequency (cps) with the initial stress and n were 
also given in references 3.83 and 3.84 for shells 
having R/h = 500, h =0.1 cm., E = 2X lo6 dyne/ 
cm2, v = 0.3, m = 1, and p = 8 X dyne.sec2/cm4 
and are presented in figures 3.76 through 3.80 
for l/R = 1/2, 1, 2, and 6. 

FIGURE 3.75.-Variation of the parameter used in It is interesting to note that Nikulin in reference (3.1~2) with ~ , h  and for I,R =2. (After 
3.84 arrived at equations (3.111) and (3.112) by refs. 3.83 and 3.84) . *  
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FIGURE 3.76.-Frequencies (cps) of axially prestressed FIGURE 3.78.-Frequencies (cfis) of axially prestressed 
S D S D  shells for l /R  = 1/2; other dimensions in text. SD-SD shells for I/R = 1 (compressive stress) ; other 
(After refs. 3.83 and 3.84) dimensions in text. (After refs. 3.83 and 3.84) 

FIGURE 3.77--Frequencies (cps) of axially prestressed FIGURE 3.79.-Frequencies (cps) of axially prestressed 
SD-SD shells for I/R = 1 (tensile stress) ; other dimen- SD-SD shells for I/R =2; other dimensions in text. 
sions in text. (After refs. 3.83 and 3.84) (After refs. 3.83 and 3.84) 
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N; 
- X  lo4 Eli 

FIGURE 3.80.-Frequencies (cps) of axially prestressed 
SD-SD shells for l/R =6; other dimensions in text. 
(After refs. 3.83 and 3.84) 

Armenllkas (ref. 3.85) used the exact solution 
(2.20) in the Herrmann-Armenhkas equations to 
obtain numerical results for axially prestressed 
SDSD shells. These are shown in figure 3.81, 
where the frequency parameter ~ h d 2 ~ ( l + v ) / ~  
is plotted versus the axial wave length parameter 
mR/1 for R/h = 1000, v = 0.3, and Nai/C = 0.001. 
Results for no initial stress are also shown for 
comparison. It was found that for modes having 
n # 1 the influence of axial initial stress decreases 
as R/h decreases. For example, in figure 3.82 it 
is seen that the prestress effect is appreciable 
for R/h= 1000, whereas for R/h= 20 (and the 
other parameters the same as for figure 3.82) 
the frequency increase was less than 5 percent. 

FIGURE 3.81.-Comparison of frequencies with and with- 
out axial prestress for an SDSD shell; R/h =1000, 
v =0.3. (After ref. 3.85) 

For beam-like vibrations (n = 1), the effect of 
axial prestress on the predominantly radial 
modes having short axial wavelengths (large 
mR/Z) also decreases as R/h decreases; however, 
for modes having long axial wavelengths, this 
effect is not dependent upon h/R. In the case 

FIGURE 3.82.-Relative effect of axial pre- 
stress (N,i/C = 0.001) on the frequency 
of an SD-SD shell; R/h = 1000, v = 0.3. 
(After ref. 3.85) 



- of thin shells ( R / h  = 1000) vibrating in modes 
having short axial wave lengths, the relative 
effect of initial stress on the frequency is not 
dependent upon n inasmuch as in these modes 

,- the effect of the axial wavelength on w is of 
greater significance than that of the circumfer- 
ential wavelength. As seen in figure 3.82, in the 
other frequency spectrum range, the relative 
effect of axial prestress is negligible for axisym- 
metric (n = 0) modes, but can become large for 
flexural modes. The value of mR/l at which this ~ ( C P S )  

relative effect is a maximum increases as n 
increases. 

Experimental results for a shell subjected to 
compressive axial initial stress were obtained by 
Herrmann and Shaw (ref. 3.86) for a stainless 
steel S D S D  shell having R = 1.50 in, h=0.010 

- - in, and 1 = 29 in. These are shown in figure 3.83 

s calculated from equation (3.156) of 
.4 are also given. To show the change 

s due to the initial stress, figure 3.84 
for the case of no initial stress. 

t, straightforward procedure could 
e followed as for unloaded shells (see sec. 2.4). 
Ivanyuta and Finkelshteyn (ref. 3.87) used 

shtari shell equations and the 

cf., secs. 2.4 and 2.4.1) to arrive 
general formula for the fre- 

, . . . , ts are the integrals of beam func- 
defined by equations (2.71) and 

- permits the evaluation of frequencies for shells 
= having arbitrary edge conditions and axial initial 

Nikulin (ref. 3.84) obtained results for a cir- 
I - cular cylindrical shell clamped at both ends and FIGURE 3.84.-Frequencies for the shell of figure 3.83 

=I- subjected to an initial axial load. The shell di- without initial stress. (After ref. 3.86) 

8 .  

- -. 



mensions used were h = 0.5 mm., 1 = 238 mm., 
R =  118 mm. and the material properties were 
given by 

E = 2 X lo6 dyne/cm2, v = 0.3 

Theoretical and experimental results for fre- 
quencies (cps) versus axial initial stress are com- 
pared in figure 3.85 for various circumferential 
wave numbers n. Similar results were obtained 
for a shell having structural orthotropy (inte- 
gral ring stiffeners) as shown in figure 3.86 for 
H=2.5  mm. These results are given in figure 
3.87. 

Miserentino and Vosteen (ref. 3.88) presented 

FIGURE 3.85.-Theoretical and experimental frequencies 
for an axially prestressed shell having clamped-clamped 
boundaries; dimensions in text. (After ref. 3.84) 

FIGURE 3.86.-Dimensions of shell having structural 
orthotropy. (After ref. 3.84) 

experimental results for a clamped-clamped shell. 
Model 324 described by the physical properties 
listed in table 3.12 (see section 3.4.4) was tested. 

3m 
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FIGUR~ 3.87.-Theoretical and experimental frequencies 
for the orthotropic shell of figure 3.86 subjected to axial 
initial stress. (After ref. 3.84) 

FIGURE 3.88.-Experimentally determined frequency 
parameters for an axially prestressed, clamped-clamped 
shell. (After ref. 3.88) 



- The frequency parameter w2Rzp/E is plotted great deal of the numerical results available in 
,. ,, versus the axial tension parameter NZi/Eh in chapter 2 and elsewhere can be used directly as . - figure 3.88 for m = 1 and various values of n. the right-hand side of equation (3.116). Further- 

Free vibrations of axially prestressed circular more, from equation (3.116) it is clear that the 
cylindrical shells are also discussed in references effect of positive (tensile) circumferential initial 
3.89 through 3.93. stress is to increase the frequency, that negative 

(compressive) Neqecreases the frequency and 
- = 3.4.3 Uniform Circumferential Prestress can lead to zero frequency (buckling), and that 

Uniform circumferential initial stresses can 
L .  arise from either of the following causes: 

(1) Internal or external pressure 
. ,  (2) Constant velocity rotation about the axis 
. of the cylindrical shell. 

- In the former case an internal pressure po causes 
I\ - 
' . 

Y .  
a stress resultant Nei=poR, whereas an exter- 

13 ' :- nal pressure po causes Noi= -poR, where po is 
er. In the case of rotation it is as- 

sumed that the spin frequency w, is small com- 
pared with the vibration frequency, so that 
Coriolis and gyroscopic effects can be ignored. 
Then Ne'=phw,2Ra. Both cases are only truly 
valid for the infinite shell, for the effect of edge 
conditions on a finite lengtH shell would alter the 
uniformity of the static initial stress field. How- 
ever, for thin shells (large R/h) and certain 

d the gross vibrational charac- 
1 (particularly, frequency) are 

and the results contained in 
eaningfully applied. 

same logic which led to the simple formula 
) in the preceding section dealing with axial 

ed to circumferential 
g the case of the circu- 

upported at both ends by 
) employing the Donnell- 

Mushtari shell theory (see section 2.3.1 for infor- 
mation concerning its range of applicability) ; and 

ial inertia leads to the 

. .  . . - 
.n2 Ko+k AKo - a2 -No*- = 

1 -,'. . which is of the same form as equation (3.108). 
The statements made in the preceding section 

, ,  
m .  

k 
dealing with the usefulness of equation (3.108) 

- apply here to equation (3.116) as well. That is, a . L 

the effects of initial stress become more pro- 
nounced with increasing circumferential wave 
number n. 

Another characteristic behavior for circum- 
ferentially prestressed shells can be seen from 
equation (3.116). As seen in chapter 2, unloaded 
shells usually (depending upon h/R, l/R, etc.) 
have fundamental (lowest) frequencies occurring 
at values of n greater than unity (cf., figs. 2.19 
through 2.22). Equation (3.116) shows that the 
effect of tensile Noi is to decrease the value of n at  
which the fundamental frequency of the loaded 
shell occurs, whereas compressive Nei increases 
the circumferential wave number of the funda- 
mental frequency. 

It would appear from equation (3.116) that 
circumferential prestress has no effect upon the 
axisymmetric (n =0) modes. However, it must be 
remembered that the Donnell-Mushtari theory is 
generally not considered applicable for small 
values of n (see sec. 2.3.1) even though acceptable 
results for vibration frequencies of unloaded shells 
having small 1/R ratios are seemingly given. 
Further, looking at the matrix operators for initial 
stresses according to the other theories (eqs. 3.101 
and 3.102) it is seen in each of them that there are 
terms containing Noi which are not multiplied by 
a derivative with respect to 19. Thus, the effect of 
Noi does not vanish in the other theories for n = 0. 

From equation (3.106) it is seen that for the 
membrane theory equation (3.116) is replaced by 

Section 3.4.2 shows that the Fliigge theory 
including tangential inertia permits the direct 
application of results for unloaded shells to prob- 
lems of axially loaded, SD-SD shells. Because of 
the appearance of off-diagonal terms involving 
Noi in equation (3.102) there is no equivalent 
simple replacement for the case of circumferential 
initial stress. 
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Nikulin (ref. 3.84) analyzed S D S D  shells subjected to circufiferential prestress. A shell theory 
was used which resembles the Love-Timoshenko theory except that (1 -~)a~/as~+a2/ae2 is replaced 
by V2 (i.e., v is neglected relative to unity in the first term) in the element of the second row and 
second column of the modifying differential operator given by equation (2.9s). The initial stress 
matrix operator [&I (see eq. (3.100)) corresponding to this theory was found in reference 3.84 to be 
(for uniform initial stresses) 

Tangential inertia was retained. Using the exact 
displacement functions (eq. (2.20) led to the 
following formula for frequency parameters of 
SDSD shells: 

Equation (3.119) is comparable to equation 
(3.111) for axially loaded shells and can be 
rewritten as 

where 
(n2- 1) (A2+n2)" 

"= A4+b(A+n2)4 
(3.121) 

comparable to equation (3.113). Variation of the 
parameter P2 with R/h and n is shown in figure 
3.89 for l/R = 2 and v = 0.3. Again, from equations 
(3.119) and (3.120) it is clear that positive values 
of Noi increase the free vibration frequencies, 
whereas negative values decrease them. It is, in- 
teresting to note that in this case (including t T: gential inertia) the theory used gives the resu 1 
that circumferential initial stress has no effect on 
the vibration frequencies for n = 1 modes (in con- 
trast to n=O modes when the Donnell-Mushtari 
theory is used and tangential inertia is neglected, 
as seen earlier in this section). 

The frequency parameter can also be expressed 
as 

Q"Qo2[1 + Nei/(Nei)cr] (3.122) 

where (Ne3,, is the critical value of circumferen- 
tial initial stress whi9 causes buckling. In figure 
3.90 a plot of the frequency ratio w/wo versus 
Nei/(Nei)c, is g i v d o r  various circumferential 
wave numbers n. The particular shell upon which 
figure 3.90 is based has the following dimensions 
and physical properties: R/h = 500, l/R = 2, 
h=0.1 cm, E =2X106 dyne/cm2, v =0.3, and 
p = 8 X dyne.sec2/cm4. In this case the critical 
buckling load, as can be seen in the figure, occurs 
for n = 9 and has the value 

FIGURE 3.89.-Variation of the parameter 6 2  used in 
equation (3.120) with R/h and n for l / R  = 2. (After 
ref. 3.84) 
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- . - ...L ... 
compared with the case of no initial stress. The effect of the circumferential prestre$ upo; 
According to this plot, internal pressure decreases the lobar-type flexural modes (n = 2,3,4) can be 
the frequency of this mode, whereas constant seen in figures 3.92,3.93, and 3.94. It is clear that 
directional internal pressure increases the fre- internal pressure increases the frequency for these 
quency; this effect becomes negligible for large modes, regardless of whether the pressure is con- 
mR/l (rnR/1>5). However, the effect becomes sidered to be hydrostatic or constant directional. 
very significant for small mR/Z; the frequency The effect is larger for large R/h and forsmall 
can be decreased to zero, indicating that the mR/1. For example, it was found in reference 
shell reaches a condition of instability due to inter- 3.85 that the frequency of a steel shell having 
nal pressure. The critical pressure is Elr2Rh/12, R/h = 1000 and mR/l=0.03 subjected to an inter- 
and is independent of the R/h ratio. The cor- nal hydrostatic pressure of 1 psi and vl73rating in 
responding critical mR/l ratio for Nef/C = 0.001 a mode with n = 2 is approximately 420 times the 
is 0.0102. It must be remembered that this frequency of the unloaded shell! This finding 
phenomenon assumes the absence of axial initial appears to be in contradiction with that of Fung, 
stress. -- % q s r  Sechler, and Kaplan (ref. 3.78), who indicated 

: a  :: 

FI~URE 3.92.-Effect of circum- 
ferential prestress upon the fre- 
quencies of the n r 2  modes of 
an SD-SD shell; R/h=100. 
(qfter ref. 3.85) 

FIGURE 3.93.-Effect of cir- 
cumferential prestress upon 
the frequencies of then 2 2  
modes of an SD-SD shell; 
R/h =20. (After ref. 3.85) 
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FIGURE 3.94.-Relative effect of internal hydrostatic 
ressure (Ne'/C=0.001) upon the frequencies of an 
D S D  shell. (After ref. 3.85) 

at initial~stresses have a significant effect on 
the frequency only for n>3. This discrepancy 
may be because in reference 3.78 results were 
studied ,only for relatively large mR/l. From 

ure 3.94, for example, for mR/l> 0.45 the effect 
circumferential prestress becomes negligible 
n <4 and R/h< 1000. Also from figure 3.94, 
effect of circumferential prestress upon the 
uency depends to a large extent upon n;  this 

effect is larger for modes having values of n close 
to that for which an SDSD shell of length Z/m 

Armenhkas and Herrmann (ref. 3.95) analyzed 
the infinitely long shell subjected to circumferen- 
tial initial stress. Three types of pressures were 
considered as being active during the vibratory 
displacements of the shell wall: 

(1) Constant directional 
(2) Hydrostatic 
(3) Centrally directed. 

The first two types have been discussed above. 
In the third case, during deformation the magni- 
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tude per unit original area remains constant and 
the direction remains toward the center of the 
shell. In all three cases the system of applied 
loads is conservative. The equations of reference 
3.72 are used with exact plane strain displace- 
ment functions (2.24) to arrive at  the following 
characteristic equations for the cases of: 

constant directional pressure 

hydrostatic pressure 

centrally directed pressure 

where C = Eh/(l  - v2) and D = Eh3/12(1 - v2) ,  as 
before, and 
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Ne'= ,poR ( IT -  zhR) (3.128) 

the upper sign in all these equations applying to 
internal pressure, while the lower sign applies to 
external pressurs. 

The lowest roots of equations (3.125), (3.126), 
and (3.127) which correspond to the predorni- 
nantly radial mode are (according to ref. 3.95) 

decreases with external pressure. The relative 
effect becomes very large for very large values of 
R/h, as illustrated in figure 3.95 for n=2. The 
slopes of the curves change at the origin as the 
pressure changes from external to internal; oo is 
the frequency in the absence of initial stress. In 
figure 3.96 fl is plotted versus R/h for n = 2,3 and 
Nei/C = 0, 1/1200. The differences among the 
types of pressure representations decreases as n - 

constant directional pressure, increases; for n =  6, it is negligible. 
Two other interesting types of circumferential 

1 + - + k n v 3 . 1 2 9 )  o2=K 1+- [ Dn2 ( zhR )I initial stress were considered by Armenhkas and 
Herrmann in reference 3.95. This first case arises 
when, for example, during fabrication a circular 

hydrostatic pressure, cylinder is generated from a flat plate by means 

NeiR2 h of circumferential bending moments M g/ which 
02= - 1)(1 f 211+kn2)] (3.130) are residual after joining the lateral edges. The 

frequency of the lowest (radial) mode of the 
centrally directed pressure, infinite shell is 

(3.131) 
where 

k= h2/12R2, as usual, and where terms of order 
of magnitude (Ne'/C)2 and (h/R)2 have been 
neglected in comparison with unity. 

In equations (3.129)) (3.130)) and (3.131) it 
may be observed that the frequency of the radial 
mode increases with initial internal pressure and 

Positive values of Mei (ones causing compressive 
stresses on the inner boundary of the shell) are 
seen to increase the frequency. However, the 
effect is generally small because, for most mate- 
rials the yield stress is reached before M oi becomes 
significant in equation (3.133). 

The second type of circumferential initial stress 
alluded to above is when the internal and external 
boundaries of the infinite shell are subjected to 
oppositely directed uniform, circumferential, sur- 
face shearing forces fi, and f,,, respectively, as 

FIGURE 3.95.-Effects of various 
pressure representations upon 
the frequency ratios of circum- 
ferentially prestressed infinite 
shells: n =2, v =0.3. (After ref. 
3.95) 
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as Yu's assumption, X2/n2<<1 (see sec. 2.3.5 for 
further discussion). For shells supported at both 
ends by shear diaphragms (SDSD shells) the 
resulting formula for the frequency parameter is 

where m= 1,2, . . . . Using the same assump- 
tions reference 3.96 shows that equation (3.135) 
can also be applied to clamped-clamped shells 
provided that the eigenvalues of the clamped- 
clamped beam are used; i.e., m=1.506, 2.500, 
3.500, . . . . Similarly, the SD-free shell is 
governed by the SD-free beam eigenvalues, giving 
m = 1.250, 2.250, 3.250, . . . for use in equation 
(3.135). Reference 3.96 also shows that using the 
Donnell-Mushtari theory and retaining tangential 
inertia leads to the frequency formula 

flat plates, the S D S D  boundary conditions are 
reasonably approximated. 

Sections 3.4.2 and 3.4.3 show that in the case 
of the S D S D  shells, using the Donnell-Mushtari 
theory neglecting tangential inertia gave rise to 
simple formulas (3.108) and (3.116) which permit 
the vibration frequencies obtained for unloaded 
shells to be used directly to determine the fre- 
quencies for shells having either axial or circum- 
ferential uniform prestress. The extension to 
combined axial and circumferential uniform pre- 
stress is obvious, yielding 

~2 .n2 Ko+k AKo 
a2 - ~ , i -  - N~*-- = (3.137) 

C C 

Thus, equation (3.137) can be used for any 
combination of Nzi and Nei along with the right- 
hand sides of equation (3.137) determined for 
unloaded shells. This equation was given by 

QZ = kn"+(1-v3(mTR/1)4+(Nein2)~C (3.136) 
Reissner (ref. 3.102) and by Vlasov (ref. 3.103). n"n91) +[(3 - v)/(l - v)]kn6 

As shown in section 3.4.3, in the case of cir- 
where m is taken for SDSD,  clamped-clamped, 
and SD-free shells as discussed above. It is inter- 
esting to note in both equations (3.135) and 
(3.136) that the effect of circumferential pre- 
stress disappears for axisymmetric (n = 0) modes. 
This is in contrast to the results of Nikulin 
discussed earlier in this section. 

An early (1890) analysis of the circumferen- 
tially stressed cylinder was made by Bryan (ref. 
3.97) as a means of studying a rotating, vibrating 
bell. Rayleigh's inextensional shell theory was 
used. Circular cylindrical shells subjected to 
circumferential initial stresses are also discussed 
in references 3.98 through 3.101. 

3.4.4 Combined Uniform Axial and 
Circumferential Prestress 

The type of initial stress field considered here 
includes both axial and circumferential stresses. 
Thus, sections 3.4.2 and 3.4.3 can be considered 
as special cases of this section. One other impor- 
tant special case occurs in this section, namely, 
when Nei=2Nzi, and Nzei=O. This case occurs 
when a completely enclosed cylindrical tank is 
subjected to uniform internal or external pressure. 
The axial prestress is caused by the pressure 
acting upon the ends of the tank. In the case of a 

cumferential initial stress the presence of the 
off-diagonal terms in the Fliigge theory initial 
stress operator (eq. (3.102)) prevents the simple 
solution form of equation (3.137) for this theory. 
However, Greenspon (refs. 3.24 and 3.25) and 
Bozich (ref. 3.82) pointed out that in many 
practical cases these terms are small in com- 
parison with the terms arising from the other 
two operators required in equation (3.100). In 
such cases the off-diagonal initial stress opera- 
tor terms can be neglected and, consequently, 
retaining tangential inertia terms in the Fliigge 
theory, one can utilize the numerous results 
of section 2.3 simply by replacing Q2 by Q2- 

NziX2/C - Nein2/C. 
Reissner, along with his other numerous signifi- 

cant contributions in the field of shell vibrations, 
studied the effects of initial stress according to 
the membrane theory (ref. 3.102). The shear dia- 
phragm (SD) boundary conditions were satisfied 
at both ends by using the exact displacement 
functions (2.20)) with X = m?rR/l. The initial 
stresses were those due to internal pressure; i.e., 
Nzi = poR/2, Noi= poR. Substituting equations 
(2.20) into the equations of motion determined 
by equations (3.100) and (3.106) gives the char- 
acteristic equation 

tank having ends made of relatively thin, circular, Q6- K2'Q4+Kl'Q2- Ko'=O (3.138) 
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for v = 1/3. (When po = 0, these coefficients are 
the same as equations (2.36) with k=O and 
v = 1/3.) Extensive numerical results were given 0 1  03 05 07 0.9 1.1 

in reference 3.102 for X = 0, n/10, n/4, n/2, 3r/4,  RIP 

n, 3n/2, zn; n = 1, 2, . . . , 6 ;  and 4poR/3Eh=0, FIGURE 3.100.-Frequency parameters for S D S D  shells -a 
1/400, 1/200, 1/100. These are listed in table z:';,".:c? intel 

- 

3.11. All three frequencies arising as roots of r 
equation (3.138) are given in this table. The 
same behavior is also seen in figures 3.99, 3.100, 

FIGURE 3.99.-Frequency parameters for SD-SD shells FIGURE 3,101.-Frequency parameters for SD-SD shells 
subjected to internal pressure po (i.e., Net = 2N,i); subjected to internal pressure po (i.e., No' = 2NSi); 
membrane theory, v =  1/3; n= 2. (After ref. 3.102) membrane theory v = 1/3; n = 6. (After ref. 3.102) 
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TABLE 3.11.-Frequency Parameters w ~ d d p ( l + v ) / E  for SD-SD Shells Subjected to 

( 
1 

an Internal Pressure po i.e., NZi= -Noi ; Membrane Theory; v = - 
d ' >  3 

= mrR/Z 
QoR 
3Eh 0 7r/10 r/4 */2 3r/4 7r 3r/2 2.r 
-- 

0 0.1011 0.5383 0.9771 1.297 1.445 1.552 1.588 
1 1.000 1.115 1.503 2.109 2.686 3.358 4.836 6.370 

2.499 2.4783 2.649 3.386 4.507 5.755 8.368 11.04 
- 

0 .03505 .I927 .5593 .8845 1.115 1.364 1.474 
2 2.000 2.042 2.232 2.709 3.248 3.840 5.173 6.620 

3.873 3.902 4.056 4.606 5.466 6.519 8.900 11.44 
- 

0 .0168 .09896 .3315 .5927 .8228 1.141 1.318 
3 3.000 3.023 3.135 3.477 3.932 4.458 5.661 7.007 

5.477 5.501 5.624 6.056 6.737 7.611 9.720 12.09 
0 - 

0 .009729 .05872 .2109 .4071 .6055 .9325 1.150 
4 4.000 4.015 4.092 4.348 4.721 5.177 6.260 7.504 

+I 
7.141 7.161 7.261 7.611 8.170 8.906 10.76 12.93 

- 
0 .006366 .03854 .I436 .2903 .4527 .7564 .9898 

5 5.000 5.011 5.070 5.271 5.579 5.972 6.943 8.089 
8.832 8.848 8.931 9.223 9.695 10.33 11.96 13.95 

0 .004632 .02716 .lo32 .2149 .3461 .6151 .8461 
6 6.000 6.009 6.056 6.221 6.481 6.821 7.691 8.745 

10.54 10.55 10.62 10.87 11.28 11.82 13.28 15.09 

0 .lo13 .4387 .9781 1.299 1.449 1.561 1.604 
1 1.000 1.115 1.503 2.110 2.686 3.358 4.836 6.370 

2.449 2.478 2.649 3.386 4.507 5.755 8.368 11.04 
-- 

.07746 .08533 .2088 .5668 .8915 1.123 1.377 1.493 
2 2.000 2.042 2.232 2.709 3.248 3.840 5.173 6.620 

3.873 3.902 4.056 4.607 5.466 6.519 8.900 11.44 - 
.I342 .I355 .I683 .3611 .6129 .8408 1.161 1.344 

3 3.000 3.023 3.135 3.477 3.933 4.458 5.662 7.007 
5.477 5.501 5.624 6.056 6.737 7.611 9.720 12.09 

1 - - 
400 .I879 .I884 .I984 .2871 .4553 .7432 .$I657 1.187 

4 4.000 4.015 4.093 4.348 4.721 5.177 6.260 7.504 
7.142 7.161 7.261 7.611 8.170 8.906 10.76 12.93 

- 
.NO2 .2405 .2446 .2847 .3851 .5238 .8107 1.043 

5 5.000 5.011 5.070 5.271 5.579 5.972 6.943 8.089 
8.832 8.848 8.931 9.223 9.695 10.33 11.96 13.95 

.2918 .2920 .2942 .3140 .3711 .4654 .7005 ,9221 
6 6.000 6.009 6.056 6.221 6.481 6.821 7.691 8.745 

10.54 10.55 10.62 10.87 11.28 11.82 . 13.28 15.09 
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TABLE 3.11.-Frequency Parameters w ~ d 2 p ( l  +v ) /E  for SD-SD Shells Subjected to 
1 an Internal Pressure po N,'=-Nei ; Membrane Theory; v=-Concluded 

2 .  ' >  3 

QoR 
3Eh 

-- 

1 - 
200 

10.54 10.55 10.62 10.87 11.28 11.83 13.28 
- 15.09 

- 
0 .lo22 .4399 .9811 1.306 1.461 1.587 1.649 

1 1.000 1.115 1.503 2.110 2.687 3.358 4.836 6.370 
2.449 2.478 2.649 3.022 4.507 5.755 8.368 11.04 

.I549 .I595 .2509 .5888 .9122 1.147 1.414 1.548 
2 2.000 2.042 2.232 2.710 3.249 3.840 5.173 6.620 

3.874 3.903 4.056 4.607 5.466 6.519 8.900 11.44 
- 

.2683 .2694 .2897 .4381 .6697 .8926 1.219 1.418 
3 3.000 3.023 3.135 3.477 3.933 4.458 5.662 7.008 

1 5.478 5.502 5.625 6.056 6.738 7.612 9.720 12.09 
- - 
100 .3757 .3763 .3835 .4429 .5763 .7448 1.059 1.290 

4 4.000 4.015 4.093 4.348 4.721 5.177 6.261 7.504 
7.142 7.161 7.261 7.611 8.171 8.906 10.76 

- 12.93 

.4804 .4808 .4846 .5121 .5835 .6946 .9552 1.187 
5 5.000 5.011 5.070 5.271 5.580 5.972 6.943 8.090 

8.832 8.848 8.931 9.224 9.696 10.33 11.96 
- 13.95 

.5835 .5839 .5865 .6020 .6422 7.121 .go97 1 .I19 
6 6.000 6.009 6.056 6.221 6.481 6.822 7.691 8.746 

10.54 10.55 10.62 10.87 11.28 11.83 13.28 15.09 

1 

2 

3 

- 

4 

5 

6 

X =m~R/1 

0 

0 
1.000 
2.449 

.lo95 
2.000 
3.873 

.I897 
3.000 
5.478 

,2657 
4.000 
7.142 

.3397 
5.000 
8.832 

.4126 
6.000 

r/10 

0.1016 
1.115 
2.478 

.I155 
2.042 
3.902 

.I909 
3.023 
5.501 

.2662 
4.015 
7.161 

.3400 
5.011 ' 
8.848 

.4129 
6.009 

r/4 

0.4391 
1.503 
2.649 

.2237 
2.232 
4.056 

.2165 
3.135 
5.624 

.2743 
4.093 
7.261 

.3438 
5.070 
8.931 

.4152 
6.056 

r/2 

0.9791 
2.110 
3.386 

.5742 
2.709 
4.607 

.3885 
3.477 
6.056 

.a469 
4.348 
7.611 

.3761 
5.271 
9.224 

.4319 
6.221 

3~/4 

1.302 
2.686 
4.507 

.8985 
3.248 
5.466 

.6324 
3.933 
6.737 

.4989 
4.721 
8.170 

.4609 
5.579 
9.695 

.4789 
6.481 

r 

1.453 
3.358 
5.755 

1.131 
3.840 
6.519 

.8584 
4.458 
7.611 

.6788 
5.177 
8.906 

.5863 
5.972 
10.33 

.5599 
6.822 

3r/2 

1.569 
4.836 
8.368 

1.389 
5.173 
8.900 

1.181 
5.662 
9.720 
-- 

.9977 
6.260 
10.76 

.8615 
6.943 
11.96 

.7765 
7.691 

% 

1.619 
6.370 
11.04 

1.512 
6.620 
11.44 

1.369 
7.007 
12.09 

1.222 
7.504 
12.93 

1.093 
8.089 
13.95 

.9922 
8.745 
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and 3.101 where only the lowest of the three 
frequencies is plotted. 

In reference 3.102 comparisons were also made 
with the results arising from simplifications of 
membrane theory. The first results from neglect- 
ing tangential inertia, and yields the formula 

for v = 1/3. The second is from reference 3.104 
and is based on the assumptions that No and the 
shear stress deformability of the shell walls are 
negligible and that axial wave lengths are large 
compared with circumferential wave lengths. 
The second formula is 

for u = 1/3. Comparisons of results obtained from 
equations (3.138)) (3.140)) and (3.141) are made 
in figures 3.102 and 3.103. 

DiGiovanni and Dugundji (ref. 3.2) analyzed 
pressurized (Nei=2N,') S D S D  shells by the 
exact method. The Washizu shell equations were 
used; i.e., operators (3.101~) and (2.9b). The ef- 
fect of internal pressure upon the axisymmetric 
frequency parameters of isotropic shells is shown 
in figure 3.104, where the pressure parameter 
poR/C (with C= Eh/(l - u2)) has a value of 0.001 
and R/h = 1000. The pressure has a significant 
effect upon the frequency only for the predom- 
inantly radial mode for large mR/l and for the 
torsional mode for small mR/l, whereas the axial 
mode is unaffected. 

To grasp the significance of the magnitude of 
the pressure parameter, consider a shell having 
the material properties: E = lo7 and v = 0.3. 
Then the circumferential initial stress is 

aei= 1.1 X 107poR/C psi 

Figures 3.105, 3.106, and 3.107 show the vari- 
ation of the lowest value of 0 with poR/C for 
n> 1 and for shells having three values of axial 
wave length -mR/l= 0.06, 0.5, and 3. Poisson's 
ratio was taken a t  0.3. Comparison of the figures 

FIQURE 3.102.-Comparison of exact, first approximate, FIGURE 3.103.-Comparison of exact; first approximate, 
and second approximate formulas (eqs. (3.138)' (3.140), and second approximate formulas (eqs. (3.138), (3.140), 
and (3.141), respectively) for frequency parameters; and (3.141), respectively) for frequency parameters; 
n =2. (After ref. 3.102) n=6.  (After ref. 3.102) 
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FIGURE 3.104.-Effect of internal pressure (No' = 2N,i) 
upon the axisymmetric (n=O) frequency parameters 
of an S D S D  shell; R/h=1000. (After ref. 3.2) 
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FIGURE 3.105.-Effect of internal pressure (Ne'=2Nzi) 
upon the frequencies ( n 2 l )  of an SD-SD shell; 
mR/l= 0.06. (After ref. 3.2) 
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FIGURE 3.106.-Effect of internal pressure (Noi = 2NSi) 
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upon the frequencies (n 2 1) of an S D S D  shell; 
0.5. (After ref. 3.2) 

. I 

FIGURE 3.107.-Effect of internal pressure (Net = 2N.9 
upon the frequencies ( n r l )  of an S D S D  shell; 
mR/1= 3. (After ref. 3.2) 

shows that the value of n for which the lowest 
frequency begins to vary significantly with the 
internal pressure depends upon the axial wave 
length mR/l. For long shells (mR/1=0.06) there 
is a significant increase of f2 with poR/C when 
n 2  2, for mR/1= 0.5 the increase becomes signifi- 
cant when n25,  and for short shells (mR/l=3) 
when n 2  10. For n'l the frequency is virtually 
independent of pressure, espedially for short 
shells. The two larger frequencies, which cor- 
respond to predominantly tangential motions, 
were little affected by internal pressure. The 
fact that the frequencies of the tangential modes 
are virtually unaffected by initial stresses has 
been pointed out in many references (cf., ref. 
3.85). 

In reference 3.2 pressurized orthotropic shells 
were also analyzed by the same method. Numer- 
ical results for the axisymmetric (n=O) modes 
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of a set of shells have already been included in 
figures 3.3 through 3.6 of section 3.1.2. In these 
figures it is seen that for both circumferential and 
axial stiffening, and all values of stiffness ratios, 
the frequency of the predominantly radial mode is 
slightly increased by the addition of internal 
pressure at large values of mR/I. The frequency 
of the torsional mode increases with pressure for 
small mR/1, whereas the pressure has a negligible 
effect on the frequency of the axial mode 
everywhere. 

For the n= 1 mode ("beam bending"), the ef- 
fect of pressure on the lowest frequency is shown 
in figures 3.108 through 3.112. The direction and 
magnitude of the stiffness ratio E,/Ee varies from 
one figure to the next. For circumferential stiffen- 
ing (Ee/E, > 1) there is a significant increase in D 
for small mR/l. For axial stiffening (Ez/Ee > 1) 
the increase in frequency due to pressure occurs 
for both small and large mR/1. 

For n22, figures 3.108 through 3.112 show 
that the lowest frequency increases significantly 
with internal pressure for all types of stiffening, 
the increase generaIIy diminishing with increas- 
ing mR/l. It is observed that the frequency in- 
crease due to pressure is greater for E,/Ee>l 
than for Ee/E,>l. It was found that the pres- 
sure had a negligible effect on the two higher fre- 
quencies over the entire range of parameters 
encompassed in these figures. 

Fung, Sechler, and Kaplan (refs. 3.78 and 3.79) 
analyzed SDSD shells by means of equations of 
motion (eq. (3.100)) which used equation (2.9a) 
for the [SMOD] operator and equation (3.105) for 
the [&I operator. They found the resulting char- 
acteristic equation to be equation (3.138) where, 
in this case, the coefficients Kz', K:, and KO' are 
given by 

where Kz, KI, KO, AKz, AKI, and AKo are terms 
of the characteristic equation in the absence of 
initial stress as used previously in equation 
(2.35)) a, = Nzi/Eh, fie = Nei/Eh, and 

F r a m  3.108.-Effect of internal pressure (Ne'=2N,') 
upon the frequencies (n> 1) of an orthotropic, SD-SD 
shell; Ee/Ez = 24.2. (After ref. 3.2) 

FIGURE 3.109.-Effect of internal pressure (Ne' = 2N,') 
upon the frequencies (n> l )  of an orthotropic, SD-SD 
shell; Ee/Ez = 5.35. (After ref. 3.2) 
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FIGURE 3.110.-Effect of internal pressure (No' = ZN,') 
upon the frequencies (nk l )  of an isotropic, SD-SD 
shell; Eg/Ez = 1. (After ref. 3.2) 

F I ~ U R E  3.111.-Effect of internal pressure (Ne'=2Nz') 
upon the frequencies ( n 2 l )  of an orthotropic, SD-SD 
shell; E,/Ee = 5.35. (After ref. 3.2) 

FI~URE 3.112.-Effect of internal pressure (Noi - 2N,i) 
upon the frequencies (n 2 1) of an orthotropic, S D S D  
shell; Ez/Ee = 24.2. (After ref. 3.2) 
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l + v  
I 
1 (3.143) were reported in references 3.78 and 3.79 

as =-X2n2(n2 - 1) 
2 I and compared with the results obtained from 

the much more simple Donnell-Mushtari equa- 
3-v  bl =-n4+2X2n2-n2+vX4 tion (3.137). It was found that equation (3.137) 

2 > (3.143) gives frequencies within 7 percent of the more 
- kn2 (A2 + n2) exact values obtained from equation (3.142) for 

5-v  5-2v 0 < X <s at n = 2 over a wide range of pressures. 
b2 = -A4+ -X2n2+ X 2  

2 2 Experiments were also reported in references 
+kX2(X2+n2)2, 3.79 and 3.105 for shells having ends which simu- 

lated SD-SD conditions. Tests were conducted 
Results obtained from equations (3.142) and 

0 0.2 0.4 0.6 0.8 1.0 1.2. 1.4 1.6 1.8 2.0 

INTERNAL PRESSURE p, (psig) - 

FIGURE 3.113-Theoretical and experimental frequencies (cps) for a pressurized 
(Ne'=2N,') SD-SD aluminum shell. (After ref. 3.78) 
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on models made of 24s-H aluminum alloy having 
R=3.5 in.; h=0.001, 0.002, and 0.003 in.; and 
three axial lengths -11, 7, and 3.5 in. Frequen- 
cies observed for the shell having h = 0.001 in. 
and I = 11 in. are plotted as small circles in figure 
3.113. Theoretical results from equation (3.137) 
are plotted as lines. Figure 3.114 is a magnifica- 
tion of the lower left corner of figure 3.113. The 

FIGURE 3.114.-Magnification of the lower left 
corner of figure 3.113. (After ref. 3.78) 

overall bending modes (n = 1) are omitted from 
these plots because the end masses used in the 
experiments affect the frequencies significantly. 
The density of frequencies occurring a t  any given 
pressure is readily apparent from these graphs. 
The actual experimental end conditions were 
somewhere between being shear diaphragm and 
clamped ends. Extensive tabular and graphical 
data are available in reference 3.105 for the other 
experimental shell models described above but, 
as in figures 3.113 and 3.114, no mode shapes are 
identified with the experimental frequency data, 
thus limiting its usefulness and excluding it from 
being reproduced here. 

Herrmann and Armenhkas (ref. 3.72) derived 
a set of shell equations which take into account 
that, as the shell deforms, the direction of the 
internal or external pressure changes, always 
remaining normal to the shell. This is in contrast 
with the assumption that the direction of the pres- 
sure remains the same, (termed "constant direc- 
tional pressureJ' by Herrmann and Armenhkas). 
The equations of motion (2.3) are generalized to 
(ref. 3.85): 

R2 1 
[s] (ui} +,(Mi) +-(AM,) = ( 0 )  (3.144) 

C 

where [S] and (ui) are as in equations (2.3) and 
(3.100); ( AFi} = (AF,, AFe, Aq); AF,, AFe, and Aq 
are the axial, circumferential, and radial com- 
ponents, respectively, of the change of the initial 
shell surface tractions due to deformation, ex- 
pressed per unit undeformed middle surface 
area; C=Eh/(l-v?; the vector {AMi} has 
components 

m 1 = 0  

aw 
AM2= -m,v+m,-+R Ame ae 1 (3.145) 

dv 8 Am, a Ame 
AMa=m,---m,w-R--R- ae as ae 

Am,, Am0 are the axial and circumferential com- 
ponents, respectively, of the change due to 
deformation of the moment induced by the sur- 
face tractions, expressed per unit undeformed 
middle surface area; and m, is the sum of the 
products of the radial component of the initial 
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surface traction and the z-coordinate, evaluated 
at the two surfaces of the shell, expressed per unit 
undeformed middle surface area. The [&MOD] 

operator used by Herrmann and Armerihkas is 
the same as that of Fliigge. 

As shown in reference 3.72 for initial uniform 
lateral pressure PO, 

where the upper signs apply to internal pressure 
and the lower signs apply to external pressure. 
Correspondingly, it is found that 

in the case where the pressure remains normal to 
the shell (hydrostatic pressure), and 

in the case of constant directional pressure. 
Using the exact solution function (2.20) for 

S D S D  ends, substituting into the equations of 
motion (3.144), and neglecting terms (Nei/C) 
and (h/R) with respect to unity yields the follow- 
ing generalization of the characteristic equation 
(2.35) 

96- (K2+k AK2)Q4+(Kl+k AKr)Q2 

where KO,, and KO, refer to the cases wherein 
the circumferential prestress is induced by 
hydrostatic and constant directional pressure, 
respectively. 

Some interesting alternative and simplified 
forms of frequency formulas were presented in 
reference 3.85. It was shown from equation 
(3.149) that the lowest frequency of a shell under 
the inJluence of initial stresses, 81, is related to its 
three frequencies of free vibration in the absence 
of initial stress, ill, i lz ,  il3, by the formula: 

FIGURE 3.115.-Theoretical and experimental frequencies where K1, and K2 are given equations for an SD-SD shell (dimensions given in text) sub- 
(2.36) ; AKO, AKI, and AKZ are the Biezeno- jected to combined initial externd Dressure and axial 
Grarnmel coefficients of table 2.4; and compressive force. (After ref. 3.86) 
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In the case where tangential inertia is neglected 
it was shown that 

where Kr was given previously in equation (2.43). 
For shells vibrating in modes having a large 
number of circumferential waves, l/n2 can be 
disregarded in comparison with unity, giving 

figure 3.115 for an external pressure of 2.0 psi 
and an axial compressive force of 1500 lb. Analyt- 
ical results calculated from equation (3.156) are 
also given. The change in frequencies due to 
the combined initial stresses can be seen by 
comparing figure 3.115 with figure 3.84. 

Values of the parameter B to be used in 
equation (3.124) for the case of pressurized 
(Noi= 2Nzi) S D S D  shells were found by Bleich 
and Baron (ref. 3.94) by an energy approach. 
These values are exhibited in table 3.12 for 
111/R110 and n=1, 2, 3, 4. 

Experimental results were obtained by Got- 
tenberg (ref. 3.106) for pressurized (Noi = 2Nzi) 
stainless steel shells having 

Taking the linearized form of equation (3.149)) 
that is, neglecting the f16 and f14 terms, which is a 
reasonable approximation if one frequency is 
much smaller than the other two, and neglecting 
X2/n2 and kn2 with respect to unity, gives for 
hydrostatic pressure, 

and for constant directional pressure, 

Equations (3.154) and (3.155) are not valid for 
n = 0 and n = 1. In reference 3.86 the A2/n2 terms 
were retained and Xa/n3 and kn2 were discarded 
as compared to unity to arrive at a formula for 
the case of hydrostatic pressure which is more 
accurate than equation (3.154) : 

Experimental results for an SD-SD shell sub- 
jected to combined initial external pressure and 
compressive axial force were given in reference 
3.86 for a stainless steel shell having R = 1.50 in., 
h= 0.010 in., and 1=29 in. These are shown in 

h =0.025 in., R = 3.012 in., and l/R = 31.86 

and simulated SD-SD end conditions. In  figure 
3.116 the variation of frequency (cps) with the 
number of axial nodal circles (m-1) and cir- 
cumferential wave number (n) is depicted. The 
internal pressure used was 53 psig. Experimen- 
tal data are compared with analytical results 
calculated from the formula (eq. (3.137)) of the 
Donnell-Mushtari theory neglecting tangential 
inertia. For n =  1 the Donnell-Mushtari theory 
is grossly inaccurate and an additional curve 
(denoted by an asterisk) is plotted on the basis 

TABLE 3.12.-Values of B for Equation (3.134) 
for Pressurized (Noi = 3Nf) SD-SD Shells 



VUNA'I'lUN UJ!' SHMLLS m 

FIGURE 3.116.-Theoretical and experimental frequencies of an SD-SD shell (dimensions given 
in text) subjected to internal pressure (Ne'=2Nz'). (After ref. 3.106) 

0 10 20 30 40 50 60 70 80 90 

INTERNAL PRESSURE- PSIG 

FIGURE 3.117.-Experimentally meaaured frequency variation with internal pressure 
(Ne"2Nz') for an SD-SD shell (dimensions given in text). (After ref. 3.106) 
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of Timoshenko beam theory. Additional experi- 
mental data are shown in figure 3.117 where the 
frequency variation with internal pressure is 
shown for various n and for m=4. Free vibra- 
tions of circular cylindrical shells supported at 
both ends by shear diaphragms (SD-SD) and 
subjected to combined initial stress are also dis- 
cussed to some extent in references 3.70, 3.77, 
3.80, 3.84, 3.87, 3.91, 3.104, and 3.107 through 
3.115. In most of these works the Donnell- 
Mushtari formula (3.137) neglecting tangential 
inertia is either derived or used. 

The preceding results given in this section 
have all been for shells supported at both ends 
by shear diaphragms (SD-SD). In this case the 
equations of motion and the end conditions are 
exactly satisfied by the simple displacement solu- 
tion function (eq. (2.20)). For other boundary 
conditions the problem is considerably more 
complicated and relatively few results are 
available. 

The method of obtaining exact solutions for 
unloaded shells having arbitrary boundary con- 
ditions was discussed in section 2.4. This pro- 
cedure can also be followed for shells having 
combined axial and circumferential uniform pre- 
stress, as pointed out by Seggelke (ref. 3.116). 
In reference 3.116 the procedure was used to 
obtain frequency parameters for clamped-clamped 
shells. Numerical results are indicated in figure 
3.118. Equations for two theories (Donnell- 
Mushtari and Fliigge) are developed in reference 
3.116, but one cannot tell which theory was used. 
The shell length parameters used to obtain figure 
3.118 are not defined. From other calculations in 
reference 3.116 it is inferred that R/h=500, 
l/R=2, and v=O.  

The effects of replacing the boundary con- 
dition u =  0 by Nz = 0 (relaxing the constraint 
on the axial membrane force developed during 
vibration) are depicted in figures 3.119 and 3.120. 

Note in figures 3.119 and 3.120 that the curves 
are straight lines, indicating a linear relationship 
between Q2 and Nz< This phenomenon was also 
observed in section 3.4.2 in the case of S D S D  
end conditions when either the Donnell-~ushtari 
theory (neglecting tangential inertia) or the 
Flugge theory (including tangential inertia) are 
used. This is because terms containing Nzi in 
the initial stress matrix operators (3.101a) and 

FIGURE 3.118.-Frequency parameters for a clamped- 
clamped shell subjected to combined uniform prestress. 
(After ref. 3.116) 

(3.102) occur only along the principal diagonal 
and NZi enters each principal diagonal term in 
the same way. Thus, for fixed values of Noi (as 
in figs. 3.119 and 3.120) the curves of Q2 versus 
Nzi will be straight lines for all possible bound- 
ary conditions. Follo9ng the same reasoning, 
plots of Q2 versus Noi for fixed values of Nd will 
be straight lines for the Donnell-~ushtari theory 
and curved lines for the Flugge theory. 

Furthermore, it is important to note that if 
the mathematical statement of the boundary 
conditions is the same for prestressed and un- 
stressed shells (as in the case of a clamped- 
clamped shell, where u = v = w = awlax = 0), then 
the exact solution procedure described in sec- 
tion 2.4 will yield the same deflection functions 
(2.53) (i.e., the same values of A) from satisfying 
the eight boundary conditions, independent of 



VIBRATION OF SHELLS 

FIGURE 3.120.-Dependence of f re  
quency pkameter upon circum- 
ferential wave number (n) for 
partially and completely clamped 
shells subjected to combined uni- 
form prestress. (After ref. 3.116) 

A u = v = w = ~ w / J x = ~  the prestress conditions. This permits one, for ---- N x = v = w = d w / J x = O  example, to use equation (3.137) for boundary 
conditions other than SD-SD provided the 
values of X and the right-hand-sides (frequency 

N ' p m l E h z  parameters of unloaded shells) are known. 
=o 4 As discussed in section 2.4, the Ritz method 

0.015 - or its equivalent for this class of problems, the 
Bubnov-Galerkin procedure, is a useful approxi- 
mate technique for finding frequencies and mode 
shapes of circular cylindrical shells having arbi- 
trary boundary conditions. Including the effects 

. 0.010 - of initial stresses is a straightforward and sim- 

w . ple extension to the procedure. Ivanyuta and 
N- 

I - - 
N* 
E 

N 
3 

Finkelshteyn (ref. 2.87) laid out the procedure -. in detail (see sec. 2.4 for details when prestress 
-------2~ ,,=6 

-\ 
is not considered) and demonstrated it for the 

--\\ 
\ 

clamped-clamped shell subjected to internal 
3 -- 0.2 pressure po(Nei = 2N2). 

Koval (ref. 3.117) used the approximate de- 
flection function 

\-- \\fn * 0 
\'I n z e  
\\ 

w = C(cos 8-1s- cos @+IS) cos no cos ot (3.157) 
.-+- 

\ 
I -\ I 0  * 

0 0.5 1.0 
where (mi- l)rR/l, to satisfy the boundary 
conditions for a clamped-clamped shell. The 

N; R.&G&/E~Z Donnell-Mushtari shell theory was used and 

FIGURE 3.119.-Influence of axial constraint (u =0) upon 
Lagrange's equation was written in terms of 

the frequency parameters of a shell subjected to com- the msumed mode- This yielded the following 
bined uniform prektress. (After ref. 3.116) useful frequency formula: 
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where 

p2 = %R/l ,  k = h 2 / 1 2 ~ ~ ,  and C =  E h / ( l  - v2) 

as before. 
Mixson and Heer (refs. 3.114 and 3.115) pre- 

sented experimental results for two clampe& 
clamped circular cylindrical shells subjected to 
internal pressure (Noi= 2NSi). One shell was made 
of 2014-T6 aluminum and had the following 

I THEORY ----- 

FIGURE 3.121.-Frequencies (cps) of a clamped-clamped, 
pressurized (Nos =2NS9 aluminum shell (dimensions 
given in text). (After refs. 3.114 and 3.115) 

dimensions: 1 = 28.6 in., R = 15.0 in., h = 15.0 in. 
Experimental data showing the variation of fre- 
quency with internal pressure po and circumfer- 
ential wave number n are exhibited in figure 
3.121. A similar plot is made in figure 3.122 
for a stainless steel shell having 1=22.0 in., 
R= 12.0 in., and h=0.004 in. I n  both figures 
theoretical results are shown for S D S D  shells 
using the Donnell-Mushtari equation (3.137) 
neglecting tangential inertia. References 3.114 
and 3.115 argue that the experimental data for 
clamped-clamped ends should compare reason- 
ably well with the theoretical results for SD-SD 
ends because the end conditions have only a 
small effect upon the frequencies for values of n 
above the n for minimum frequency. 

THEORY ----- 
I I I 

0 4 12 16 
n - .  . .  

2 0  

FIGURE 3.122.-Frequencies (cps) of a clamped-clamped, 
pressurized (No' =2N,') steel shell (dimensions given in 
text). (After refs. 3.114 and 3.115) 
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Nikulin (ref. 3.84) obtained results for a cir- 
cular cylindrical shell clamped a t  both ends and 
subjected to uniform combined initial stresses. 
The shell dimensions were h=0.5 mm., 1 = 357 
mm., R = 118 mm., and the material properties 
were given by E = 2 X  lo6 dyne/cm2, v=0.3, 
p = 8 X 1W6 dyne.sec2/cm4. Theoretical and ex- 
pe~imental frequencies (cps) are compared in 
figure 3.123 for uzi= 1600 dyne/cm2 with varying 
uei and n. 

Miserentino and Vosteen (ref. 3.88) obtained 
extensive experimental data for clampebclamped 
shells. Geometric and material properties of the 
models used are summarized in table 3.13. Exper- 
imental data for these shells are displayed in 
table 3.14 for various magnitudes of internal 
pressure loading. Because of the type of flange 
attachments used to  clamp the ends the internal 
pressure does not yield Nei=2Nzi but, rather, 
Nei=poR and NZi= O.ll7p0R for the cylinders 
having R = 6 in. and Nz"0.162 for those having 
R = 4 in. As noted in table 3.14, in some instances 
the node lines regularly assumed a particular 
orientation with respect to  the longitudinal 
seams. 

The test results in table 3.14 for shell 324 (the 
one having the smallest R/h ratio) have also been 
plotted in figure 3.124. The square of the fre- 
quency is plotted as a function of internal pres- 
sure for modes having one-half wave length in 
the axial direction (m = 1) and for a range of 
circumferential nodes (n = 2 to 9). Solid straight 
lines representing a least squares fit through the 
data points are also shown. This straight line 
behavior is the type exemplified by the Donnell- 
Mushtari theoretical equation (3.137) for S D S D  
shells 

I n  figure 3.125 the experimental results are 
compared directly with those from equation 
(3.137). The correction formula (2.151) suggested 
by Arnold and Warburton (ref. 2.3) to approxi- 
mate clamped end conditions was used, with c 
taken as 0.3. The nondimensional frequency pa- 
rameter w ~ R ~ ~ / E  is used as the ordinate in this 
plot. The correlation between theoretical and 
experimental results is reasonably good except 
for n=2. However, since the slopes of the two 
lines for n =  2 are approximately the same, the 
error lies in the intercept with the ordinate axis, 

FIGURE 3.123.-Theoretical and experimental frequencies 
for a clamped-clamped shell (dimensions given in text) 
subjected to combined uniform initial stress. (After 
ref. 3.84) 
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FIGURE 3.124.-Experimental results for pressurized 
shell 324, clamped-clamped. (After ref. 3.88) 
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that is to say, with the inaccuracy of the Donnell- 
Mushtari theory for n = 2 for unpressurized shells 
(see sec. 2.3.1). 

In reference 3.16 the effects of combined axial 
and circumferential prestress were included in 
the analysis of circular cylindrical shells having 
rings and stringers which are represented by 
(( smeared-out" orthotropy. The resulting fre- 
quency formula for S D S D  end conditions is 
given by equation (3.39) where the term 

is added to the right-hand-side to account for the 
initial stresses. The vibration of prestressed struc- 
turally orthotropic shells is also discussed in 
reference 3.118. 

The free vibration of orthotropic, circular 
cylindrical, membrane shells were studied by 
Dym (ref. 3.119). 

Other references dealing with free vibrations of 
circular cylindrical shells subjected to uniform 
combined prestress include references 3.64, and 
3.120 through 3.130. 

3.4.5 Uniform Tolrional Prestress 

Material 

17-7 PH stainless steel 
301 stainless steel 
301 stainless steel 
301 stainless steel 

.15242024aluminum 
304 stainless steel 
301 stainless steel 

Applying a torque to each end of a circular 
cylindrical shell as in figure 3.126 yields a static 
initial stress throughout the interior of the shell 
which is essentially N,ei= constant (that is, other 
membrane force resultants and bending moment 
resultants may be induced by the type of end 
constraints, but they are assumed to be negligibly 
small). 

From an analytical viewpoint the case of uni- 

R/h 

324 
601 
645 
666 

1502 
1624 

P 

FIGURE 3.125.-Comparison of theoretical and experi- 
mental frequency parameters for pressurized shell 324, 
clamped-clamped. (After ref. 3.88) 

lb-s2/in4 

0.7149 X 
.7408 
.7408 
.7408 
.2524 
.7408 
.7408 

FIGURE 3.126.-Circular cylindrical shell subjected 
to uniform torsional initial stress. 
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TABLE 3.14.-Experimentally Measured Frequencies (cps) for the Shells of Table 3.13 Having 
Clamped-Clamped Ends 

Shell 

a Nodes lines are on seam welds. 
Node lines are off seam melds. 

Shell 
-- 

601 



- 
Shell 

TABLE 3.14.-Experimentally Measured Frequencies (cps) for the Shells df Table 3.13 
Having Clamped-Clamped Ends-Continued 

Shell 

Node lines are on seam welds. 
Node lines are off seam welda. 

Shell m n fs PO! 
cps ps1 

---- 
2 8 740 5.51 

784 6.31 
830 7.28 
988 10.79 

--- 
9 587 1.99 

659 2.91 
698 3.36 
740 4.01 
784 4.57 
988 7.88 

--- 
10 587 1.32 
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TABLE 3.14.-Experimentally Measured Frequencies (cps) for the Shells of Table 3.13 
Having Clamped-Clamped Ends-Continued 

f, PO! 
cps ps1 -- 
635 8.78 
645 9.10 
675 10.00 
685 10.00 
703 10.90 
714 10.90 
-- 

579 4.00 
597 4.40 
639 5.30 
648 5.40 
656 5.60 
659 5.70 
677 5.95 
673 6.00 
690 6.35 
697 6.45 
701 6.60 
709 6.70 
713 6.80 
736 7.40 
761 8.00 
761 8.00 
766 8.20 
768 8.20 
794 8.70 
821 9.50 
818 9.50 
826 9.60 
820 9.60 
826 9.80 
850 10.40 
-- 

449 1.35 
568 2.90 
580 3.00 
631 3.90 
663 4.30 
684 4.80 
749 5.70 
755 6.00 
777 6.60 
781 6.60 
781 6.70 
850 7.95 
848 8.10 
883 8.70 
888 8.90 
884 9.00 
922 9.60 
915 9.60 
937 10.00 



Shell 
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TABLE 3.14.-Experimentally Measured Frequencies (cps) for the Shells of Table 3.13 
Having Clamped-Clamped Ends-Continued 



- 

Shell 

TABLE 3.14.-Experimentally Measured Frequencies (cps) for the Shells of Table 3.13 
Having Clamped-Clamped Ends-Continued 

Shell 
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perimentally Measured Frequencies (cps)  for the Shells of Table 3.13 
Having Clamped-Clamped Ends-Concluded - 

Shell 

- 

Shell 
- 

1624 

Shell 
PSI 
-- 

0 1624 
1.00 
2.00 
2.00 
3.00 
3.00 
4.00 
5.00 
6.00 
6.00 
7.00 
8.00 
9.00 
9.00 

10.00 
11.00 
12.00 
13.00 
13.00 

.55 
1.00 
1.00 
1.46 
2.00 
2.2 
3.00 
3.5 
4.00 
4.4 
5.00 
5.00 
6.00 
6.00 
6.3 
7.00 
9.00 

10.00 
11.00 
11.00 
13.00 

0.55 
1 .oo 
1.47 
1.94 
2.00 
2.20 
2.56 

,3.00 
3.00 
3.00 
3.50 
4.00 



form torsional prestress is somewhat more com- where Q is the usual nondimensional frequency 
plicated than the cases of uniform axial or parameter given by equation (2.26). 
circumferential stress because the initial stress The standard procedure at  this point is to 
matrix operators (see sec. 3.4.1) contain terms determine the eight roots hi, of equation (3.161) 
having mixed partial derivatives which are of odd and use these values to form the general solutions 
order with respect to 8. Simple solutions using 
displacement functions of the forms given either 8 

by equations (2.20) or (2.53) require even num- u = 2 A Pisee"' cos ~t 
bers of derivatives with respect to 8 in the i = 1  

equations of motion in order to be useful. 8 1 
Koval and Cranch (refs. 3.131 and 3.132) 

generalized the solution procedure by choosing 

u = AeX8eine cos a t  

v = BeX8eine cos w t  
I 

w 3 

.-'I. a *W = Ceh8eine cos 

w = C ~ ~ e ~ i s e i n ~ o s  wwt 

j=1 J 
Substituting these solutions into the eight bound- 

Substituting equations (3.160) into the equa- ary conditions leads to a characteristic determi- 
tions of motion for the Donne&Mushtari theory nant, the three roots of which are the frequencies. 
(see sec. 3.4.1) yields the characteristic equation: This procedure parallels the one oudined in 

section 2.4 for unloaded shells. 
!X?6-~3(2  - (3 - ~ ) n ~ [ ( A / n ) ~ -  11 In  references 3.131 and 3.132 the algebra was 

+2kn4[(A/n) - 1] } somewhat simplified by making Yu's (see sec. 

+Q" (3 - v)n2[1 - ( A / @ ]  +2n2[~2(A/n)2 - 11 2.3.5) assumption, J~/n12<<1. Then equation 
+ (1 - ~ ) n ~ [ ( A / n ) ~ -  112 (3.161) becomes 
+ (3 - v)kn6[1 - (A/n)213} 
- (1 - v )  knS[(A/n)2 - 114 - (1 - v2) (1 - v )  h4 A4-i(cwlN,ei/C)h -a2 = 0 (3.164) 

+i(2NzeiAn/C) ( - 2Q2 - n2Q(3 - V )  [(A/n) - 11 where 

-n4(1 - v)[(A/n)2-1121 (3.161) (1 -v)(l  - vqal = 2 [ 2 d 4 - n 3 ( 3 - v ~  1 

Upon examining equation (3.161) it is seen that it 
is of the same form as the characteristic equation 
(2.35) for unloaded shells for the Donnell-Mush- 
tari theory (i.e., AK2 = AKl= AKo = 0) except 
that 

(1) h2 is replaced by -A2 to account for the 
more general exponential variation in x used in 
equations (3.160) than in equations (2.20). 

(2) An imaginary term is added which ac- 
counts for the torsional prestress. This imaginary 
term is a result of the odd derivative with respect 
to B which occurs in the third equation of motion. 
The amplitude ratios were 

and the amplitude ratios reduce to 
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For a shell supported at both ends by shear A second and more accurate approximation for 
diaphragms (boundary conditions given by eqs. Q2 is the implicit formula 
(2.33)) references 3.131 and 3.132 show that the Cl 
formal solution to the problem of finding the N . & = ~ ( [ ( M ~ - Q ) ( M ~ - Q ) ( M ~ - Q ) ]  
frequency parameters Q is given implicitly by 

4 
-4r(s2+t2)  = alNxti/C (3.167a) + [ - ( M , - Q ) + ~ ( M I - W ] }  9 25 (3.175) 

(r2 - C ; 2 ) 2  -4s2(r2 - E 2 )  = f f z  (3.167b) The second approximate procedure used in 

where al and a2 are defined by equations (3.165) reference 3.131 was based Won assuming an 

and, further, approximate vibration mode shape, formulating 
the expressions for strain energy and kinetic 

2 4  S.1 El cos - - cosh - cos - energy, and applying Lagrange's equations to 
R R R  solve the problem. The assumed mode shapes are 

3r4+2s2E2+E4 S.1 El = -. sinh - sin - (3.168) 
2,9,22/2?,24- t 2  R R 

where 

For large values of S.l/R, equation (3.168) reduces 

In reference 3.131 two approximate procedures 
were also used to obtain results for the SD-SD 
shell. The Donnell-Mushtari equations neglecting 
tangential inertia were used with the Galerkin 
procedure in one case. A deflection function 

w = CV(X)  cos (px +no) ) 
where 

~ ( x )  = sin Xx (3.177) 

with X =m7rR/l and /3 an undetermined parameter 
which varies with Nzei. These displacements 
yield u =v = w =0,  d2w/dx2#0 at the boundaries. 
Applying Lagrange's equations yields the char- 
acteristic equation 

w = cos no a, sin Xs C 

a 
u = A - [ ~ ( x )  ax cos (Bx+nB)]) 

u = Bq(x) sin (px+nO) 1 (3.176) 

00 where 

wm used, where X =m?rR/l. A first approximation 
formula for frequency parameters is 

where 

and 
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Assuming that the parameter P varies linearly 
with Nzei, taking on values 8 =0 when N,ei = 0 
and B=Pw for the limiting case of buckling 
(Qa=O), the roots of equation (3.178) can be 
found. Numerical results for a shell having 
R/h=300, Z/R=4, v=0.3, E=30X106psi., m = l  
and n = 8  are given in figure 3.127 for both the 
second approximation Galerkin procedure and 
the assumed mode energy procedure. 

Nikulin (refs. 3.83 and 3.84) obtained the fol- 
lowing formula for the frequency parameters of 

SDSD shells (see earlier references in this 
chapter) subjected to twisting moment: 

2Nzeihn(h2+n3 2 (1 - ~ ~ ) X ~ + k ( h ~ + n ~ ) ~ - -  
9 2 '  

C 
(h2+n32+n2+(3+2v)X2 

(3.180) 
where X=m?rR/Z and k=  h2/12R2 as before. 
Curves showing the decrease in frequency ratio 
o/wo (wo is the frequency in the absence of initial 
stress) are shown in figure 3.128 for a shell hav- 

0.0025 
znd APPROXIMATION 

\ 
z- @ALEFWN MEwoD\, 

FIGURE 3.127.-Comparison of 
approximate solutions for a 
"freely supported" (u =v =w = 
0, alw/aWo) shell. (After ref. 
3.131) 

= 0.0020 - 
NQ u 
N 

$ 0.0015 - R/h=3oo 

L / R =  4 

v.0.3 
O.OOI0 - 

n = 8  

E =  3 0  X lo6 psi 

0.0005 - ONE AXIAL HALF -WAVE 

FIGURE 3.128.-Frequency ratio versus torsional 
stress ratio for an SD-SD shell; R/h =500, 
l/R=2, m =l. (After ref. 3.84) 

INITIAL SHEAR STRESS. o&,psi 
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ing R/h = 500, E/R = 2, and m = 1. The quantity 
(NZeqw used for the ratio of initial stresses is the 
least value of Nzei at  buckling (i.e., w = 0, which 
occurs for n = 12). 

Koval and Cranch (refs. 3.131 and 3.132) also 
presented numerical results for clamped-clamped 
shells. Following the exact solution procedure 
outlined earlier in this section, it is found that 
the formal solution for frequency parameters is 
contained implicitly in equations (3.165), (3.167), 
and (3.169)) and 

were also used to obtain results ror the clamped- 
clamped shell. The Donnell-Mushtari equations 
neglecting tangential inertia were used with the 
Galerkin procedure to arrive at  the following 
first approximation for a frequency parameter 
formula : 

G+F G-F Nzei 
Q 2 = - - (  2 + H z  (3.184) 

where 

G = ( M I + M ~ ) / ~  1 
rl t1 2q1 3q2 11 [E cos - cos -- cos - = - sinh - sin - (3.181) 
R R  R 5 r  R R 

In  the case of long shells (lZ/R>>l), equation 
(3.181) simplifies to 

The equations were further simplified by neg- 
lecting tangential inertia (see sec. 2.3.4)) giving 

and Mi is defined by equation (3.173). Further- 
more, a second approximation was found from 

(1 - v2)az = Q2n4- kn8 (3.183b) 

in place of equations (3.165). Then equations 
(3.167a), (3.182) and (3.183a) uniquely deter- 1) (3.186) 
mine q and t: for a given N,ei, and the frequency 
is determined from equations (3.167b) and where it is computationally easier to substitute 
(3.183b). A plot' of the frequency parameter Qz into equation (3.186) a value of Q2 lower than 
versus the torsional shear stress  re' is shown in the load-free value and solve directly for the cor- 
figure 3.129 for a shell having R/h = 300,1/R = 4, responding torsional stress. I n  figure 3.130 the 
v =0.3, and E = 30X lo6 psi. first and second approximation Galerkin-type 

I n  reference 3.131 two approximate procedures solutions are compared with the exact solution 

0.016 - - I AXIAL WAVE --- 2AXIAL WAVE 

CLAMPED EDGES 

FIGURE 3.129.-Lowest frequency 
0.002 - parameters for a clamped- 

clamped shell subjected to uni- 
form torsional prestress. (After 

INITIAL SHEAR STRESS.& .psi ref. 3.132) 
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0 .008  CLAMPED ENDS 

0.007 R h  = 3 0 0  
W \ - .OR= 4 

0 .006  
- v-0.3 - 
*Q 0 . 0 0 5  
n 

n =9 
N E= 3OX IOB psi 

0 . 0 0 4  
2 ONE AXIAL HALF -WAVE 

0 .003  

0 .002  (GALERKIN METHOD) 

0.001 

0 2 0 0 0  4 0 0 0  6 0 0 0  8 0 0 0  10.000 12.000 14,000 16,000 

INITIAL SHEAR STRESS. m$,psi 

FIGURE 3.130.-Comparison of exact and approximate 
solutions for a clamped-clamped shell. (After ref. 3.131) 

described earlier for the clamped-clamped shell Kz=AiAz+ArA3+AzAa 
having R/h = 300, Z/R = 4, v = 0.3, E = 30 X lo6 - AsAsf - A5A5'- Ad2 
psi., m = l  and n=9. 

The assumed mode energy approach using 
Lagrange's equations described earlier was also 
used in references 3.131 and 3.132 to analyze 
the clamped-clamped shell. The function (p(x) 
used in equations (3.176) is (in this case) the 
beam function for symmetric modes (odd num- 
bers of axial half-waves) 

(p(x) = cos ax+p cosh a x  (3.187) 

in terms of- a coordinate origin emanating from 
the middle of the shell, where 

ar = m?rR/Z 

m=1.506, 3.500, 5.500, . . . 
p = sin (mr/2)/sinh (m?r/2) 

*3 
= -+c$)n2 

*l 

l - v  *1 
~.=n-(-)- 2 *Z 

41 For axially unsymmetric modes (odd number of = v, A; - 
nodal circles) the corresponding beam function is *z 

~ ( 2 )  = sin an-p sinh I 

where ar and p are as before, and 
+PV+ (- 1)Np21 

m = 2.500, 4.500, 6.500, . . . 
9 2  = 1 + (- 1)N$ 

The resulting characteristic equation (3.178) 
now has the coefficients *3 = (a4+P4)[1+(- 1)Np21 

Ko=l 

Ki=Ai+Az+A3 (3.189) 



COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS 277 

where N is the number of nodal circles (number others do not. It was found in reference 3.131 
of axial half-waves plus one). that the initial torsional stress has a negligible 

In  figure 3.131 comparisons of the lowest fre- effect upon the two higher roots of the frequency 
quencies obtained by the two approximate meth- equation (3.178). 
ods are made with the "exact" values for the Experimental data were also presented by 
shell previously used (R/h= 300, l/R =4, v = 0.3, Koval and Cranch (refs. 3.131 and 3.132) for 
and E = 30 X 106 psi). The frequency for usei= 0 clamped-clamped shells subjected to torsional 
is lower from the energy method (Q=0.00623) prestress. The test specimens were made from 
than the corresponding values given by the steel shim stock 0.010 in. thick and had R/h= 300 
"exact" solution (Q= 0.00635) and by Galerkin l/R = 4 (the same as the shell parameters used 
method (Q = 0.00645) because the energy solu- in the previously discussed theoretical results). 
tion includes tangential inertia, whereas the Numerical data are depicted in figure 3.132. 1 0.W7 - 

0.035 - 
GALERKIN. 2nd APPROXIMATION 

0.004 - 

CLAhlPED ENDS 

Rlh = 300 
8 W R . 4  

0.002 - 
v= 0.3 FIGURE 3.131.-Compari- 

n - 9  son of solutions from 

E = 3 0 X  10' psi 
two approximate meth- 

0.001 - 
ONE PXlAL HALF-WAVE ods with an "exact" 

INITIAL SHEAR  STRESS.^^ ,psi 

FIGURE 3.132.-Theoreti- 
cal and experimental fre- 
quencies (cps) for a 
clamped-clamped shell 
(dimensions given in 
text) subjected to tor- 
sional prestress. (After 
refs. 3.131 and 3.132) 
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Theoretical values plotted are those of the pre- 
viously described "exact" solution and are iden- 
tified by number of axial half-waves and values 
of n. The experimental tests verified the theo- 
retical implications that the axial nodal lines 
folloa helices, the helix angle increasing as the 
torsional prestress is increased. This phenomenon 
is depicted in figure 3.133 wherein the mode 
having one axial half-wave and n= 10 is excited 
under a prestress of a.e'= 4200 psi. 

The assumed mode energy approach using 
Lagrange's equations described earlier was also 
used in references 3.131 and 3.132 to analyze the 
clamped-freely supported shell. The beam func- 
tion o(x) used in equations (3.176) in this case 
is equation (3.188) where cu =mrR/I; m = 1.25, 
2.25,3.25, . . . ; and j~ = sin mn/sinh mn. Again, 
the conditions u = v  = w =0 are satisfied at the 
"freely supportedJJ end, and Mz#O. The charac- 
teristic equation yielding the frequency param- 
eters f12 is again equation (3.178) with terms as 
defined in equation (3.189), except that now 

I -- 
I -  The free vibration of circular cylindrical shells 
C subjected to initial torsional stresses was also 
I 

studied in reference 3.133. 
Additional information for circular cylindrical 

shells subjected to torsional initial stress is avail- 
able as a special case in section 3.4.6. 

3.4.6 Combined Uniform Axial, Circumferential, 
and Torsional Prestress 

In section 2.4 the procedure for using the Rits 
method with beam functions to accommodate 
shells having arbitrary boundary conditions was 
laid out. The resulting cubic characteristic equa- 
tion for the frequency parameter f12 was given 
by equation (2.67), with the coefficients K2, KI, 
Ko as defined by equations (2.68) and (2.69). 
Gontkevich (ref. 3.41) also gave the generaliza- 
tions of these coefficients to account for the 
presence of uniform axial, circumferential, and 

FIGURE 3.133.-Experimental nodal lines for a clamped- 
clamped shell subjected to torsional prestress showing 
helical pattern. (After refs. 3.131 and 3.132) 

torsional initial stresses. The resulting coeffi- 
cients to use in equation (2.67) (after correcting 
apparent typesetting errors) are given in equa- 
tions (3.191), where Kz, K1, KO, am, /.tmJ and 7, are 
as used in equations (2.68). Equations (3,191) 
provide a powerful formula for the solutions of 
numerous problems. However, the reader is cau- 
tioned to use them with care, paying particular 
attention to the signs on the initia.1 stress terms, 
verifying that changes in initial stresses cause 
appropriate changes in frequency parameters. 

In  reference 3.41 the formulas for the coeffi- 
cients of the frequency equation in the case of 
initial stresses were also given for orthotropic 
shells. In this case the coefficients are as given in 
equations (3.192), where Kz, KI, and KO in this 
case are the coefficients for unloaded orthotropic 
shells given by equations (3.42) and, in this case, 

The same caution must be applied for equations 
(3.192) as was mentioned in the previous 
paragraph. 
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Nikulin (refs. 3.83 and 3.84) analyzed SD-SD 
shells subjected to combined uniform axial, cir- 
cumferential, and torsional prestresses (see dis- 
cussion of method in sec. 3.4.3) and arrived at  
the following formula: 

This formula was also given by Prokopev (ref. 
3.134). 

Results for a clamped-clamped shell having 
h=0.5 mm., R=117 mm., l=357 mm., a n d m = l  
and having E =2X106 dyne/cm2, v =0.3, and 
p = 8 X dyne.sec2/cm4 are given in figure 
3.134 (from ref. 3.84) for various combinations 
of initial stresses. Both experimental and the- 
oretical data are shown. 

3.4.7 Nonuniform Initial Stresses 

Consider first the case of a circular cylindrical 
shell subjected to a gross bending moment Mb 
acting at  its ends as shown in figure 3.135. Then 
the axial initial stress is given by 

which is a case of the axial initial stress varying 
circumferentially. The gross bending moment is 
then determined by 

r2x  

Mb= lo ho.'R cos B(R dB) =*R% (3.195). 

(3.192) Weingarten (ref. 3.135) analyzed the generali- 
zation of equation (3.194) which accounts for 
superimposed uniform axial and circumferential 
stresses as well; i.e., 

where ua = P/%Rh, P is axial end load (positive 
in tension), and p is internal pressure. The 
Donnell-Mushtari shell equations neglecting tan- 
gential inertia were used with the Galerkin 
method, with 18 terms of the deflection series 
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FIGURE 3.134--Frequencies (cps) of a clamped-clamped shell (dimensions given in text) subjected to combined uniform 
axial, circumferential, and torsional prestressas. (After ref. 3.84) (a) uZs=1632 dyne/cm2, uzei=488 dyne/cmP. 
@) rei =700 dyne/cm: uSe5=488 dyne/cma. (c) uei =700 dyne/cm2. (d) us+ = 1632 dyne/cm2. (e) uZi = 1632 dyne/cmT 
noi =700 dyne/cm? (f) uzei =488 dyne/cma. (g) All prestresses on abscissa. 

FIGURE 3.135.-Circular cylindrical shell subjected 
to gram bending moment. 

w(x,B,t) = sin - cos wt a, cos n0 (3.197) 
1 " C 

to represent an SDSD shell. Numerical results 
were obtained for an aluminum shell (E = lo6 psi., 
pg = 0.098 lb/in. a, v = 0.33) having R/h = 250, 
R =4 in., and l/R = 1.91. Computed frequencies 
for an external pressure of 2 psi and various 
values of gross bending moment are shown in 
table 3.15 and by the solid curves in figure 3.136. 
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TABLE 3.15.-Theoretical Frequencies (cps) of an SD-SD Shell Subjected 
to Gross Bending Moment (Dimensions in Text) 

a Values did not converge. 
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In  the presentation of these results the bending 
- ,:=-- 0,---- moment is expressed nondimensionally as gb/aa, 

where a, is the value of compressive axial stress 

,, which causes buckling in a long shell; i.e., 

8, = 
Eh 

~d3(1--v3 
(3.198) 

Identification of mode shapes for the shell 
loaded by end moments is difficult. As ub/a, 
increases the circumferential mode shapes become 
irregular and the value of n loses meaning. This 
behavior is shown in figure 3.137 for m= 1 and 
n= 5 and in figure 3.138 for m= 1 and n= 6. 
Because of symmetry about the vertical axis, 
only one-half of the mode shape is shown in fig- 
ures 3.137 and 3.138. In  plotting figure 3.136 i t  

1-9 was found that by taking closely spaced values 
of ub/aa one could obtain smooth frequency curves 

1-8 for Olub/aa<l. The value of n for a given curve 
in figure 3.136 is that value when ub/sa=O. The 
results ahown in figure 3.136 and table 3.15 indi- 
cate that as Mb increases some of the frequencies 
increase, whereas others decrease. 

0. 0.2 0.4 0.6 08 1.0 Experimental data were also presented in ref- 
Ob - - erence 3.135 for the same shell. These are listed 
=a in table 3.16 and are also shown by data points 

FIonRn 3.136.-variation of frequency with gross in figure 3.136. The experimental results in all 
initial bending moment; SD-SD (After ref. 3.135) cases fell above the analytical curves. The differ- 

TABLE 3.16.-Experimental Frequencies (cps) of an SD-SD Shell Subjected 
to Gross Bending Moment (Dimeizsions Given in  Text) 
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I I I I I I I I I I  I t l I I I I I l 1  
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FIGUEE 3.137.-Variation of circumfer- 
ential mode shape with increasing 
bending moment; m = 1, n = 5. (After 
ref. 3.135) 

FIGURE 3.138.-Variation of circumfer- 
ential mode shape with increasing 
bending moment; m =1, n =6. (After 
ref. 3.135) 
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ence was attributed to the difficulty in simulat- 
ing S D S D  end conditions. No experimental 
results were obtained beyond U L , / ~ ~  = 0.355 since 
buckling occurred at ~ b / ~ a  = 0.43. 

The problem of the circular cylindrical shell 
subjected to gross bending moments at its ends 
was also studied both theoretically and experi- 
mentally by Seggelke (ref. 3.136). The theoretical 
analysis was based upon the Donnell-Mushtari 
equations neglecting tang'ential inertia. The 
normal displacement for an S D S D  shell was 

(a, cos ne+b, sin no) 

along with a compatible Airy stress function. The 
a, and b, coefficients were used separately for 
symmetric and antisymmetric modes, respec- 
tively. The Galerkin method was used to solve 
the problem. Numerical results for the frequency 
parameters URGE are plotted versus ubla, and 
ub/E in figures 3.139 and 3.140 for 

E(l-  v ) ~ R ~  =9.16 X10-' and 3.67 X lo-' 
12 

respectively (i.e., R/h = 100 and 500, respectively, 
for v =0.3). The stresses ub and a, are defined by 
equations (3.194) and (3.198), respectively. The 
circumferential wave number n identifies the 
number of circumferential sine waves in the 
unloaded (ub =0)  condition. As seen earlier in 
this section in Weingarten's work, additional 
Fourier components of equation (3.199) are re- 
quired as ub increases. The contribution of the 
other Fourier components to the n = 9 mode can 
be seen in figure 3.141 where the relative magni- 
tudes of the Fourier coefficients are indicated, 
subject to the normalizing condition 

The necessity of using terms other than n = 9  
clearly increases as ub increases as shown in fig- 
ure 3.141. The appearances of the symmetric and 
antisymmetric modes for the lowest frequency 
(n = 9)  for 

FIGURE 3.139.-Frequency parameters for an SD-SD 
shell subjected to gross initial bending moment; 
R/h=100. (After ref. 3.136) 

FIGURE 3.140.-Frequency parameters for an SD-SD 
shell subjected to gross initial bending moment, 
R/h =500. (After ref. 3.136) 



I I 

COMPLICATING EFFECTS I N  CIRCULAR CYLINDRICAL SHELLS 

I 

+=IJXIO-3 

o![v , , , 1 , , , - , , ;=0.912 

FIGURE 3.142.-Circumferential mode shapes of an SD- 
SD shell subjected to bending moment; n =9. (After 
ref. 3.136) 

0 5 6 7 8 9 10 11 12 13 14 15 n 

FIGURE 3.141.-Normalized Fourier coefficients a, of the 
mode shapes of an SDSD shell subjected to bending 

I - -.. 
moment; n =9. (After ref. 3.136) 

R/h = 500 ub/E = 4 X 

h = m~rR/.! = 2 3000 

,,, d,,:,C,d :- C - 0 * A 0  

SDSD shells having lengths of 48.5 mm. and 
48 mm. Both shells had R = 25 mm., h = 0.05 mm., 
and were made of steel ( p  = 8 X kp.sec2/cm4, 

1 
E = 2.1 X 106kp/cm2). The bending moment was ! 

IOM) I varied from 0 to 1.58mkp (a/& =0.63). Figure I 

3.144 shows a similar plot for a third shell of the 
same material and having the same dimensions, 

A A SHELL NO.I(1=48,5mrn ) 
except 1 = 75 mm. I n  this figure the lowest fre- e o SHELL N O . Z ( A = ~ ~ ~ ~ J  

quencies for the first three axial wave numbers 
(m = 1,2,3) are given. Examples of experimen- o 0.4 0.8 1 2  r n k ~  1.6 

tally measured circumferential mode shapes for BENDING MOMENT Mb 

the second (1=48 mm') are shown in figures FIGURE 3.143.-Experimentally measured frequencies of 
3.145, 3.146, and 3.147 [for n=g ,  8, and 11, shells subjected to gmss initial Bending moment 
respectively. Theoretical and experimental fre- (dimensions given in text). (After ref. 3.136) 

Experimental results were also given by Seg- 
gelke (ref. 3.136). Figure 3.143 shows frequency 
(cps) versus bending moment Mb(W8.k~) for two 
- - 
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m = I  

W ( 8 )  A 

0 

' ( @  1 VnV-vAu n8V(:=0.132 

0 

90" 

W(@ 11.+;=0.433 
WGURE 3.146.-Experimentally measured circumferen- 

tial mode shapes for shell no. 2 subjected to bending 

0---• m = l  
moment; n = 8. (After ref. 3.136) 

A - - 4  m.2 

0 0.4 0.8 m.kp 1.2 

BENDING MOMENT Mb 

FIGURE 3.144.-Experimentally measured frequencies of 
a shell subjected to bending moment (dimensions given w(e) 
in text). (After ref. 3.136) 

~yp..~ W ( 8 )  , m = I  
0 2 =0.032 

0 

8 180° FIGURE 3.147.-Experimentally measured circumfer 

tial mode shapes for shell no. 2 subjected to bendin 
moment; n =ll. (After ref. 3.136) 

2 30.232 

0 w ( @ )  ):o: 

quencies for the first shell (1=48.5 mm.) ar 
compared ip figure 3.148. 

Sampath (ref. 3.74) also studied the problem 
of the SDSD shell loaded by overall end mo- 

w(@) ments. The Galerkin method was used with the 
q =a433 Donnell-Mushtari equations, and the deflection 

0 / 3 8 0 '  

function (eq. (3.199)) was assumed. Retaining 
50 terms in the solution series, numerical results 
were obtained for a shell having m = 1, l/R = 4, 
R/h= 1000, and v =0.3. Frequency parametera 

FIGURE 3.145.-Experimentally measured circumferen- 
which have converged to five significant figures 

tial mode shapes for shell no. 2 subjected ;to bending are listed in table 3.17 for various ratios of the 
moment; n =9. (After ref. 3.136) loading parameter u~/u,,, where ub is the magni- 
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tude of the stress causing the gross bending Two other problems having spatially-varying 
moment, as in equation (3.196)) ob = 0, and a,, is initial stresses were investigated in reference 
the lowest buckling stress in the case of uniform 3.74. The first of these is the shell subjected to 
axial loading; i.e., axial stress which varies linearly in the axial 

w direction; i.e., 

The ratio a2/Qo2 versus U ~ / U , ,  is plotted in figure 
3.149, where no2 is the square of the frequency 
parameter in the unloaded case for the same 
circumferential wave number, n. 

In  reference 3.74 an axial stress varying cir- 
cumferentially according to 

a: = a2 cos 2nO (3.202) 

was also investigated. Again, using equation 
(3.197) and the Galerkin procedure yields table 
3.18 and figure 3.150 as complements to table 
3.17 and figure 3.149, respectively, for the same 
shell. Comparing tables 3.17 and 3.18 it is seen 
that the 'significant differences in frequencies 
occur for large loading parameters for n>3. 

v--9 EXPERIMENTAL 

THEORETICAL I I 

BENDING MOMENT Mb 

FIGURE 3.148.-Comparison of experimental and theo- 
retical frequencies for shell no. 1 subjected to bending 
moment. (After ref. 3.136) 

This is the situation which would arise if the 
shell were loaded axially by its own weight and 
supported at one or both of its ends. In the 
other problem the circumferential stress varies 
linearly in the axial direction. 

A few other references deal with nonuniform 
initial stresses. Kessel and Schkck (ref. 3.137) 

1 

FIGURE 3.149.-Variation of the frequency ratio (Q/QO)z 
with loading ratio ub/uc, for an SD-SD shell subjected 
to gross bending (dimensions given in text). (After ref. 
3.74) 

FIGURE 3.150.-Variation of the frequency ratio (Q/QO)~ 
with loading ratio u2/u0, for an SD-SD shell subjected 
to an axial initial stress us' =me cos 28 (dimensions given 
in text). (After ref. 3.74) 



TABLE 3.17.-Frequency Parameters a2 = u2R2p(1 - v2)/E of a n  SD-SD Shell Subjected to Gross Bending Moment 
(Dimensions in Text)  

n 

- 
0 9.1000 X 10-1 9.1000 X 10-1 9.1000 X 10-1 9.1000 X 10-1 9.1000 X 10-1 9.1000 X 10-I 9.1000 X 10-1 9.1000 X 10-1 9.1000 X 10-I 
1 1.3245 X 10-1 1.3245 X 10-1 1.3245 X 10-1 1.3245 X 10-1 1 .3245 X 10-1 1.3245 X 10-1 1 .3245 X 10-I 1.3245 X 10-1 1.3245 X 10-I 
2 1.6246X10-2 1.6246X10-2 1.6247~10-2 1.6247X10-2 1.6248X10-2 1.6248X10-2 1.6248X10-2 1.6249X10-2 1.6250X10-2 
3 3. 7517X10-8 3.7526 X10-8 3.7541 X10-8 3.7552 X10-8 3.7579 X10-8 3.7595X10-8 3.7614X10-8 3.7656X10-8 3.7706 X10-8 
4 1.2770X10-8 1. 2798X10-8 1.2848~10-8 1.2882 X10-8 1.2968X10-8 1.3021 X10-8 1.3079 X10-8 1.3100 X10-8 1.2951 X10-8 
5 5.8234 X 10-4 5.9122 X lo-' 6.0607 x 10-4 6.1367 X 10-4 6.2471 X 10-4 6.2871 X 10-4 6.3193 X 10-4 6.3601 X 10-4 6.3686 X 
6 3.6998 X 10-4 3.8136 X10-4 3.6485 x 3.5243 X 10-4 3.2263 X 10-4 3.0592 X 2.8827 X 2.5072 X 2.1077 X 
7 3.4580 X 10-4 2.8847 X lo-' 2.3606 x 10-4 2.0865 X 1.5231 X 10-4 1.2357 X lo-' 9.4533 X 10-6 3.5726 X 10-6 6.0170 X 
8 4.3087 X 10-4 4.4868 X 10-4 4.6698 X 10-4 4.7222 X 10-4 4.7372 X lo-' 4.7076 X lo-' 4.6600 X lo-& 4.5175 X 4.3318 X lo-' 4 
9 6.0709 X 6.1253 X 10-4 6.2370 x 10-4 6.3374 X 10-4 6.6404 X 10-4 6.8207 X 10-4 7.0081 X 10-4 7.3821 X 7.5605 x 

* 
2 
'2 
8 

TABLE 3.18.-Frequency Parameters Q2=u2R2p(l- 9 ) / E  of a n  SD-SD Shell Subjected to a n  Axial Initial Stress 3 
ud=cr2 cos ,??O (Dimensions in Text)  E 

~ t / ~ c r  

n 
0 0.2 0.4 0.6 0.8 1 .O 1.2 1.4 1.6 

- 
0 9.1OOOXlO-1 9.1000 X 10-1 9.1OOOXlO-1 9.1000 X10-1 9.1000X10-1 9.1000 X10-1 9.1000 X10-1 9.1OOOXlO-1 9.1000 X 10-I 
1 1.3245 X10-1 1.3249 X 10-1 1.3252 X10-1 1.3256 X 10-1 1.3259 X 10-I 1.3263 X 10-1 1.3266 X 10-1 1.3270 X 10-1 1.3273 X 10-I 
2 1.6246 X10-2 1.6246 X 1.6247 X10-2 1.6247 X 1.6248 X 1.6248 X 1.6249 X 1.6250 X 1.6251 X 
3 3.7517 X10-8 3.7525 X 10-8 3.7532 X10-8 3.7550 X10-8 3.7576 X10-8 3.7609 X 10-8 3.7649 X 10-8 3.7697 X 10-8 3.7752 X 
4 1.2770 X 10-8 1.2783 X 1.2820 X 10-8 1.2882 X 10-8 1.2969 X 1.3082 X 10-8 1.3220 X 10-8 1.3385 X 10-8 1.3575 X 
5 5.8234X10+ 5.8592 X lo-' 5.8818 X10-4 5.8453 X10-4 5.7737X10-' 5 .6768X10-4 5.5578XlO-4 5 5.189 X1OU4 5.2614 X lo-' 
6 3. 6998X10-' 3.5289 X lo-4 3.1877 X 10-4 2.7881 X lo-' 2.3557 X 10-4 1.9002 X 10-4 1.4266 X 10-4 9.3846 X 4.3816 X 
7 3.4580 X lo-' 3.3649 X 3.1158 X 2.7656 X lo-& 2.3551 X lo-' 1.9073 X lo-' 1.4349 X 9 9.510 X 10-6 4.4222 X 
8 4.3087 X 4.4397 X lo-' 4.6606 X lo-' 4.8590 X 10-4 5.0091 X 5.1037 X lo-' 5.1420 X 5.1275 X 10-4 5.0656 X 
9 6.0709 X lo-' 6.1059 X lo-' 6.2659 X lo-' 6.5412 X 6.8672 X 7.2105 X 7.5545 X 7.8893 X lo-' 8.2083 X 

@b/ccr 

1.1 1 1.2 0.8 0.6 0.9 0.4 0 0.2 
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considered gyroscropic forces induced by spin 
around the shell axis with simultaneous steady 
precession about a nutation axis. Bushnell (ref. 
3.138) analyzed a shell subjected to constant 
axial stresses and an internal pressure which is 
proportional to the normal displacement w; this 
situation arises, of course, when the shell con- 
tains an elastic core. Thermal initial stresses 
were considered by Buckens (ref. 3.139) and by 
Ong and Herrmann (refs. 3.81, 3.140, and 3.141). 

3.4.8 Open Shells 

The previous sections dealing with the effects 
of initial stresses upon vibration frequencies and 
mode shapes considered in great detail the closed 
circular cylindrical shell. As was found in chapter 
2 in the case of unloaded shells, considerably less 
information is available for open shells, even 
though the number of possible types of boundary 
conditions is far greater. 

Consider the open circular cylindrical panel 
depicted in figure 2.141. As in section 2.8 certain 
information is available for prestressed panels 
having their lateral edges 0= 0 and 0 = 00 sup- 
ported by shear diaphragms with various bound- 
ary conditions along the ends x=O and x =  I. 
This information comes from the modes of closed 
shells having one or more circumferential waves, 
the SD boundary conditions being duplicated at 
node lines of the closed shell. Section 2.8 may be 
reviewed for the technique of utilizing such 
results. 

The case of an open shell supported on all four 
edges by sheer diaphragms and subjected to uni- 
form initial stresses is examined in references 
3.44, 3.103, and 3.142. However, as indicated in 
the preceding paragraph, for these boundary con- 
ditions the same results can be obtained from 
closed shells. Procedures for analyzing open shal- 
low shells subjected to initial stress and having 
arbitrary boundary conditions are laid out in 
references 3.46 and 3.143, but no numerical 
results are given. 

Reissner (ref. 3.46) also included uniform ini- 
tial stress terms in his nonlinear (large deflection) 
analysis of open circular cylindrical shells (see 
section 3.3.5 for further description of approach) 
supported on all edges by shear diaphragms. The 
ratio between nonlinear and linear frequencies is 
given by equation (3.93)) where uO2isnow given by 

3.5 OTHER COMPLICATING EFFECTS IN 
CIRCULAR CYLINDRICAL SHELLS 

In this section three other types of compli- 
cating effects which affect the free vibrations of 
circular cylindrical shells will be reviewed briefly: 

(1) Effects of surrounding media 
(2) Shear deformation and rotary inertia 
(3) Nonhomogeneity. 

A significant amount of literature deals with each 
of these, and a great deal of space could be de- 
voted to each. However, each topic introduces 
considerable complexity into the picture, the in- 
tricate details of which are beyond the scope of 
this monograph. 

The presence of a surrounding medium such 
as air or water introduces coupling of the shell 
equations with the governing field equations of 
the medium. As stated from the beginning of this 
work, coupling of shells with their environment 
(as in the case of structures) has generally been 
omitted. Nevertheless, some of the aspects of 
this topic which carry particular practical value 
will be examined briefly. 

Introducing shear deformation into a shell 
theory results in a completely different theory. 
The order of the system of governing differential 
equations is raised from eight to ten, and the 
number of boundary conditions per edge which 
must be defined increases from four to five. Thus, 
the added complexity in this case is in the theory. 

Nonhomogeneity introduces another set of in- 
dependent physical parameters into the problem. 
For example, in chapter 2 the nondimensional 
frequency parameter il depends upon the I/R 
and R/h ratios, the wave numbers m and n, and 
Poisson's ratio. A nonhomogeneous (or hetero- 
geneous) shell permits variation of the elastic 
constants E and v (in the case of isotropy) in all 
three directions, x, 0, and z, which gives rise to 
a limitless number of material descriptions. In 
practical application, a great deal of current 
interest exists in layered (or laminated) shells- 
each layer is represented by an orthotropic ma- 
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terial. The numbers, thicknesses, and material 
properties of layers here again give rise to limit- 
less configurations. 

For the above reasons only a brief summary of 
some of the most important aspects of each of 
these topics appears herein. However, a sub- 
stantial reference list will be provided for each 
topic to expedite further in-depth study. 

3.5.1 Effects of Surrounding Media 

The numerous theoretical results for the fre- 
quencies and mode shapes of free vibration of 
circular cylindrical shells which are given else- 
where in this chapter, as well as in chapter 2, 
apply when the shell is in a vacuum. Neverthe- 
less, in virtually all practical applications, the 
shell is immersed in a surrounding medium, 
notably air or water, and/or contains a fluid. It 
is clear that vibration of the shell wall requires 
movement of the surrounding fluid, and this 
mass added to the system causes a reduction in 
the frequencies. 

Thus, the shell is coupled with its surrounding 
medium by means of continuity conditions of 
displacement and velocity a t  the interface of the 
shell with the fluid. The shell must satisfy its 
equations of motion (see sec. 2.1) and boundary 
conditions. The fluid must satisfy (for example, 
in the commonly assumed case of a compressible, 
inviscid fluid) the wave equation for its velocity 
potential function and certain regularity condi- 
tions at  the central axis of the shell (r = 0) and/or 
at  a large distance away from the shell (r= 0 0 ) .  

Consideration of the effect of the shell upon the 
fluid leads one into the field of acoustics. This 
work is only concerned with the ef3ect of the 
fluid upon the shell. 

However, before looking into the effects af sur- 
rounding fluids, consider first another significant 
type of surrounding medium-the elastic founda- 
tion. The elastic foundation receives a great deal 
of attention in the study of beams and plates; 
however, it is virtually ignored in the literature 
of shell vibrations, perhaps because i t  is less likely 
to be encountered in practical application. 

The elastic foundation supplies components of 
restoring force which are proportional to the dis- 
placement components in magnitude and oppo- 
sitely directed. Thus, in the matrix equation of 
motion (2.3) the force vector 

must be added to the right hand side, where K,, 
K,, and Kw are nondimensional spring constants 
associated with the u, v,  and w displacements, 
respectively. In  the case of sliding contact, 
Ku=Kv =O. In  general, the terms of equation 
(3.205) would be carried through the solution 
procedure in a straightforward manner. For 
example, the convenient solution form for infinite 
and SD-SD shells given by equations (2.20) 
could still be used; however, the resulting char- 
acteristic determinants (cf., eq. (2.21)) would 
have an added constant term in each of its 
diagonal elements. Furthermore, in three cases 
the added terms would cause no added algebraic 
complexity. These are 

I n  these cases the numerical results of chap- 
ter 2 (except those where tangential inertia 
is neglected) are directly applicable to the 
problem, except that the frequency parameter 
Q2 = w2Rap(l - v2)/E is replaced by 

Two of the earliest studies of the elastic shell 
of infinite length filled with, or surrounded by, 
a fluid were by Rayleigh (ref. 3.144) and Nikolai 
(ref. 3.145). I n  the first reference the shell 
enclosed a compressible fluid. I n  the second 
reference the fluid was assumed to be incom- 
pressible, but the shell could be either filled with 
or immersed in the liquid. 

Gontkevich (ref. 3.146) shows how beam func- 
1- - tions can be used to approximate the mode shapes ' .: 

of a shell having arbitrary end conditions. The -- 
surrounding compressible fluid medium, either - 

inside or outside the shell, is represented by a - 
potential function of a infinite field. Other works 
which study the effects of an infinite fluid field 
upon a circular cylindrical shell include references 
3.24, 3.94, 3.99, 3.121, and 3.147 through 3.162. 

Livanov (ref. 3.110) showed that if the total 
mass of the shell is much greater than that of an 
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enclosed compressible fluid (particularly in the 
case of a gas), then the coupled frequency equa- 
tion of the shell and gas reduces approximately 
to the uncoupled frequency equations for the 
vibrations of a fluid in a rigid cylinder and the vi- 
brations of a pressurized circular cylindrical shell. 

Mnev (refs. 3.163 and 3.164) analyzed the 
problem of a thin, elastic circular cylindrical shell 
immersed in a compressible, inviscid fluid. How- 
ever, the extent of the fluid is limited by a con- 
centric rigid boundary either inside or outside of 
the shell as shown in figure 3.151. The fluid 
surrounding a shell of infinite length is considered 
by means of a suitable potential function. 

The dynamic behavior of liquids in moving 
containers was the subject of a previous NASA 
monograph edited by Abramson (ref. 3.165). 
Chapter 9 of the monograph, by Kana, is devoted 
to the interaction of elastic shells with internal 
liquids and is a summary of relevant literature 
(see also ref. 3.166). References 3.46,3.107,3.113, 
3.115, and 3.167 to 3.186 are summarized therein. 

RIGID BOUNDARY rrl 37r\ 
- - - - -  - - - -- 
- - -  - -  

(a) RIGID INNER BOUNDARY (b) RIGID OUTER 80UNDARY 

FIGURE 3.151.--Shell separated from a rigid 
boundary by a fluid. 

DEPTH 

A comprehensive monograph dealing with the 
vibrations of an elastic shell partially filled with 
a liquid was written by Rapoport (ref. 3.187). 
The work is devoted to the formulation of the 
governing sets of equations and no numerical 
results are presented. 

Abramson, Chu, Kana, and Lindholm (refs. 
3.188 and 3.189) analyzed the bending (n=l)  
and breathing (n 22)  vibrations of full or partially 
full shells, where the surface of the liquid is 
perpendicular to the axis of the shell, as shown in 
figure 3.152. Reference 3.190 is an experimental 
study. An electromechanical analogue to the 
coupling which occurs between transverse shell 
wall vibrations and free surface oscillations of a 
liquid in a partially filled elastic shell is described 
in reference 3.191. Other works which pertain to 
flexible circular cylindrical shells containing+ 
liquids include references 3.64, 3.114, 3.184, and 
3.192 through 3.210. 

Note that although a number of the references 
listed in the preceding two paragraphs deal with 
circular cylindrical tanks which are partially 
filled with a liquid, none consider the case of the 
closed tank having a fluid surface which is parallel 
to the shell axis. 

The nonhomogeneous shell filled with a liquid 
and subjected to internal pressure and axial 
initial compression was studied by Mugnier and 
Schroeter (ref. 3.80). 

If a shell is surrounded by a moving fluid field, 
the problem becomes even more complicated 
leading to, for example, flutter analysis. Such 
problems will not be considered here. 

Another type of surrounding medium which 
is considered completely beyond the scope of this 
work is the magnetic field. In  general, the shell 
equations of motion are affected by nonlinear 
body force and body moment terms and the 
field is affected, in turn, by the motion of the 
shell. 

Other investigations dealing with the free vi- 
brations of circular cylindrical shells surrounded 
by a fluid medium include ~eferences 3.211 
through 3.218. 

3.5.2 Shear Deformation and Rotary Inertia 

FIGURE 3.152.-Circular cylindrical shell partially 
filled with a liquid. 

Consider the motion of the shell element de- 
picted in figure 1.2. The drawing is misleading, 
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for the element has infinitesimal dimensions ds, 
and dss parallel to  the middle surface, whereas 
its dimension in the z-direction is finite, h. In  a 
careful treatment of the six equations of motion, 
components of rotary inertia would be added to 
the three moment equations of motion, in addi- 
tion to the translatory inertia terms which ap- 
pear in the force equations of motion. Lord 
Rayleigh (ref. 3.219) showed, in the case of 
beams, that rotary inertia effects become signifi- 
cant as the length/depth rat.io decreases. Sub- 
sequently, Timoshenko (ref. 3.220) established 
that, for beams having these depths, the effects 
of shear deformation are equally important. The 
incorporation of shear deformation and rotary 
inertia effects into plate vibration problems is 
summarized in reference 3.1. 

To generalize the problem further to the shell, 
one can say that the effects of shear deformation 
and rotary inertia become increasingly signifi- 
cant as the thickness ratios R/h and l/h decrease. 
However, the effects can be significant for rela- 
tively thin (say R/h> 20) or long shells as well, 
as the numbers of circumferential and longi- 
tudinal waves increase. Thus, the effects become 
significant for ehort wave lengths, certainly for 
those of the same order as the thickness, or less. 

Only a brief description of how shear deforma- 
tion and rotary inertia enters into the deriva- 
tion of shell theories will be given below. Shear 
deformation enters through the generalization 
of the strain-displacement equations. Rotary 
inertia enters in the fundamental forms of the 
equations of motion, as described above. 

Not only are the resulting equations of motion 
greater in number (five, rather than three) and 
more complicated, but, as seen below, the nu- 
merical results are more difficult to interpret, 
for there exist five (rather than three) frequencies 
for each circumferential wave number n for 
closed, circularly symmetric cylindrical shells. 

Equations (1.37) for the displacements U, V, 
and W become, for a circular cylindrical shell, 

where JI, and +e are now used to denote the 

changes in the slope of the normal to the middle 
surface, in plaee of 8, and 0s. If shear deforma- 
tion is to be permitted, then the first two of 
equations (1.34) stating the Kirchhoff hypothesis 
(normals remain normal) must be dropped as 
constraining equations. Then #= and $0 are no 
longer related to u, v, and w as in equations 
(1.39), but become additional variables in the 
problem. 

The equations of motion can ultimately be 
written in the form 

where now {ui} is the generalized displacement 
vector containing Jive components, 

instead of the three used in equation (2.4), and 
[S*] is now a matrix differential operator of the 
Jifth order. 

As before, [S*] can be written as the sum of 
two operators; i.e., 

where [d3:-d is the differential operator accord- 
ing to the Donnell-Mushtari theory, generalized 
to take into account shear deformation; [2goD] 
is a modifying operator which alters the Domell- 
Mushtari theory to yield another shear deforma- 
tion shell theory; and k is the thickness parameter 
defined in equation (2.6). The differential oper- 
ator for the Donnell-Mushtari type of shear de- 
formation shell theory (from refs. 3.131 and 
3.221) is 

where 
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where s = x/R, as before, 

and K~ is a shear correction coefficient taken vari- 
ously as 5/6 (ref. 3.221), 0.86 (ref. 3.222), 8/9 
(ref. 3.223)) and r2/12 (ref. 3.224). The coeffi- 
cients all, a22, a12, azl, ala, and a31 are the same 
as those of the eighth-order shell theory given in 
equation (2.7). The rotary inertia terms are 
dearly seen in the coefficients ar4 and ass. 

An example of the modifying operator 

is, for the theory of Naghdi and Cooper (ref. 
3.221) 

These equations reduce to equations (2.9e) if 
shear deformation and rotary inertia are neglected 
(ref. 3.221). 

Similarly, the coefficients of the Herrmann- 
ArmenZlkas (ref. 3.72) for use in equation (3.214) 
are (see also ref. 3.225) 
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The resulting equations of motion of this theory for a nontrivial solution, a characteristic deter- 
reduce to those of Fliigge, Byrne, and Lur'ye minant of the fifth order. Expanding the deter- 
(see eq. (2.9d)) if shear deformation and rotary minant gives a fifth degree polynomial equation 
inertia are neglected. in the nondimensional frequency parameter 

Other tenth order theories incorporating the Q2 = w2RZp(l - v2)/E of the type 
effects of shear deformation and rotary inertia 
include those of Hildebrandt, Reissner, and Q10-KP8+K3Q6-K&4+KlQ2- Ko=O (3.220) 
Thomas (ref. 3.226); Vlasov (ref. 3.227); Herr- 
mann and Mirsky (refs. 3.222, 3.224, and 3.228); 
Yu (ref. 3.229); Lin and Morgan (ref. 3.223); 
Chou (ref. 3.230); Mizoguchi (ref. 3.231); and 
Herrmann and Armenhkas (ref. 3.72) also in- 
cluded the effects of initial stress in their shear 
deformation theory. In  addition, an orthotropic 
theory was developed by Mirsky (ref. 3.232) and 
a nonlinear (large deflection) theory by Yu (ref. 
3.233). 

Consider now the two closely related free vibra- 
tion problems: 

(1) A shell of infinite length 
(2) A shell of finite length, 1, supported at  both 

ends by shear diaphragms. 

As in the case of the eighth order theories (see 
secs. 2.2 and 2.3)) both problems have the same 
exact solution functions for the generalized dis- 
placements in the form 

u = A,, cos Xs cos n0 cos wt 

v = B,, sin Xs sin n0 cos wt 

w = C,, sin As cos ne cos wt (3.217) 

$= = Dm, cos AS cos no cos wt 

$0 = Emn sin As sin n0 cos wt ! 
I n  the case of the shell supported at  both ends by 
shear diaphragms (SD-SD) the boundary condi- 
tions are given by 

Equations (3.218) are exactly satisfied by equa- 
tions (3.217) provided X is taken as 

I n  the case of the infinite shell, circumferential 
"node lines" (v = w =O, u f  0) will occur a t  
intervals of 1. 

Substituting equations (3.217) into the tenth 
order set of equations of motion (3.208) yields, 

This equation will have five real roots, and conse- 
quently five independent mode shapes, for each 
value of circumferential wave number n. 

In  the special case of axisymmetric modes 
(n=O), the five equations of motion become 
uncoupled into two sets (ref. 3.224). One set 
consisting of three equations, describes the 
flexural or radial modes in terms of u, w, and $,. 
The other set corresponds to motions which are 
purely circumferential and involve v and $0. This 
yields a cubic characteristic equation for the first 
set and a quadratic equation for the second set. 

Tang (ref. 3.234) used the shell theory of 
Herrmann and AiIirsky (ref. 3.222) to analyze the 
axisymmetric motions (radial and flexural) of an 
SD -SD shell. Letting n = 0, and substituting the 
solution functions for u, w, and from equations 
(3.217) into the three uncoupled equations of 
motion yields the following characteristic equation 
for the frequency parameter Q (ref. 3.234) : 

with KI as defined previously in equation (3.213). 
Numerical results' were obtained in reference 
3.234 for one shell having R/h=36 and l/R=4 
and another shell having R/h= 10 and l/R =8. 
In  both cases v and K~ were taken as 0.25 and 0.86, 
respectively. The results are displayed in tables 
3.19 and 3.20. In  the tables the frequency 
parameters are also compared with those of 
eighth order theory (neglecting shear deformation 
and rotary inertia in the Herrmann-Mirsky 
theory). Significant differences exist between the 
theories for the lowest frequency (corresponding 
to a predominantly radial mode) as m increases, 
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TABLE 3.19.-Comparison of Frequency Parameters for the Axisymmetric 
Modes of an SD-SD Shell; R /h  = 36, Z/R = 4 (from ref. 3.234) 

TABLE 3.20.-Comparion of Frequehcy Parameters O for the Axisym~netric 
Modes of an SD-SD Shell: R/h  = I  0, 1/R=8 (from ref. 3.234) 

Tenth order theory Eighth order theory 
m 

4* Qz* Q3 * Ql* Qz* 

1 0.3716 1.008 18.76 0.3716 1.008 
2 .7105 1.055 19.40 .7105 1.055 

,8895 1.264 19.43 .8900 1.264 

lid: 
.9299 1.614 19.46 .9308 1.614 
.9446 1.993 19.51 .9461 1.994 
.9558 2.379 19.56 .9580 2.379 

7 .9686 2.768 19.64 .9720 2.768 
8 .9858 3.158 19.71 .9906 3.158 
9 1.009 3.548 19.80 1.016 3.549 

10 1.040 3.939 19.89 1.049 3.939 
11 1.079 4.331 20.00 1.093 4.331 
12 1.128 4.723 20.13 1.147 4.723 
13 1.186 5.114 20.24 1.213 5.115 
14 1.255 5.506 20.36 1.291 5.506 
15 1.334 5.899 20.50 1.381 5.899 
16 1.424 6.290 20.65 1.485 6.291 
17 1.521 6.683 20.80 1.600 6.683 
18 1.629 7.075 20.96 1.728 7.075 
19 1.745 7.468 21.14 1.868 7.468 
20 1.870 7.860 21.31 2.019 7.860 

rn 

1 
2 
3 
4 
5 .9585 3.940 69.93 .9590 3.940 
6 .9675 4.723 69.98 .9685 4.723 
7 .9818 5.505 70.00 .9828 5.505 
8 1.002 6.290 70.15 1.004 6.290 
9 1.031 7.075 70.25 , 1.034 7.075 

10 1.070 7.860 70.35 1.074 7.860 
11 1.121 8.645 70.48 1.126 8.645 
12 1.183 9.430 70.60 1.190 9.430 
13 1.268 10.22 70.58 1.268 10,22 
14 1.346 11.00 70.90 1.360 11.00 
15 1.448 11.79 71.05 1.465 11.79 
16 1.562 12.57 71.23 1.585 12.57 
17 1.688 13.36 71.43 1.718 13.36 
18 1.827 14.14 71.60 1.865 14.14 
19 1.977 14.93 71.83 2.024 14.93 
20 2.138 15.71 72.03 2.196 15.71 

Eighth order theory Tenth order theory 

Ql* 

0.7105 
.9285 
.9460 

1 .9525 

Qz* 

1.055 
1.614 
2.379 
3.158 

n 3  * 

69.78 
69.80 
69.83 
69.88 

Q l  * 

0.7105 
.9285 
.9458 
.9523 

Qz* 

1.055 
1.614 
2.379 
3.158 
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particularly for the smaller R/h value. The second 
frequency corresponds to an axial mode and 
varies negligibly between the theories. The third 
frequency does not exist in the eighth order 
theory. 

Herrmann (ref. 3.235) also obtained results for 
the axisymmetric modes of infinitely long shells. 
Comparisons were made between solutions ob- 
tained from eighth and tenth order shell theories 
and the three-dimensional elasticity theory. For 
the three-dimensional results, the approximate 
solutions of McFadden (ref. 3.236) were used. 
These are, for the radial (breathing or exten- 
sional) mode, 

where 

A and G are the Lam6 elastic constants, 

and for the thickness (or pinching) mode 

r 4(1-2~) 11-1 

The shell theories used were taken from reference 
3.228. Values of w/wc are given in table 3.21 for 
R/h=30, 4, and 1.5. Note that the thin shell 
(i.e., eighth order) theory predicts the breathing 
mode frequencies quite well for R/h as large as 
four, whereas fairly large discrepancies exist be- 
tween values for the thick shell (tenth order) and 

elasticity theories for both the breathing and 
pinching modes. The thin shell theory does not 
recognize the pinching mode. 

Reismann and Medige (ref. 3.237) obtained 
numerical results comparing frequency param- 
eters with and without the inclusion of shear 
deformation and rotary inertia effects. The Herr- 
mann-Armenhkas theory (eqs. (3.216)) was used. 
Data were obtained using v =0.3, ~ ~ = 0 . 8 6 ,  
I/R = 6, and R/h = 5. These results are exhibited 
in figures 3.153, 3.154, and 3.155 for n=0, 1, and 
5, respectively, where the parameter Q/x is 
plotted versus the number of axial half-waves, 
m. The number of roots of the characteristic 
equations are seen by the separate curves in 
these plots for n = &three roots with shear de- 
formation, two without; for n>&five roots 
with shear deformation, three without. 

No numerical results are available in the 
literature which apply tenth order shell theories 
to boundary conditions other than SDSD. How- 
ever, an exact procedure similar to the one out- 
lined in section 2.4 for eighth order theories 

- TENTH ORDER THEORY 

EIGHTH ORDER THEORY 

0 25 50 75 100 
m 

EZQURE 3.153.-Comparison of results for an SD-SD 
shell; R/h =5, l /R =6; n =O. (After ref. 3.237) 



Breathing mode Pinching mode 
R . - 
h Elasticity Tenth order Eighth order Elasticity Tenth order 

theory shell theory shell theory theory shell theory 

30 0.906 0.990 0.904 94.3 104 
4 .911 .985 .904 12.93 13.97 
1 .5  .939 .970 .904 6.07 5.42 
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TABLE 3.22.-Effect of Rotary Inertia Upon the (1) Two layered shells 
Frequencies (cps) of SD-SD Shells (R=d.O73 (2) Sandwich (i.e., three-layered shells), where 
in., 1 = 17.66 in.) the middle layer (core) is considerably thicker 

and less rigid than its surrounding (face) layers 
(3) Multilayered shells, as occur in laminated 

shells using composite materials. 

Rotary inertia 
n m h, in. 

Neglected Included 
-- 

0.125 903 903 
2 1 .I875 1254 1253 

.25 1623 1620 
7- 

.I25 2174 2171 
1 .I875 3251 3242 

3 .25 4330 4308 

2 
.I875 3492 3482 
.25 4595 4571 -- 

1 
. .I25 4123 4113 

.25 8239 8165 

2 .I25 4254 4244 
.25 8459 8381 

4 - 

3 
.I25 4529 4518 
.25 8859 8774 

4 .I25 4990 4977 
.25 9468 9372 

-- 

1 
.I25 6645 6621 
.25 13284 13094 

5 - 

2 
.I25 6760 6735 
.25 13500 13305 

shell having R = 2.073 in. and 1 = 17.56 in. was 
analyzed using the Fliigge eighth order theory. 
Numerical results are presented in table 3.22. 

The effects of shear deformation and rotary 
inertia upon the free vibration frequencies and 
mode shapes of circular cylindrical shells are 
also referred to in references 3.239 through 3.254. 

3.5.3 Nonhomogeneity 

Nonhomogeneity (or heterogeneity) in mate- 
rials can arise in many ways. One of the most 
frequent ways occurs in circular cylindrical shells 
when the shell is made of layers, each layer being 
homogeneous. The possible configurations of such 
combinations of layers is endless, although a 
great deal of attention has been paid to 

The layers can be individually orthotropic, as 
well as isotropic. If the angles of material ortho- 
tropy are not parallel to the shell coordinates, the 
resulting shell equations appear, in general, to be 
anisotropic (more particularly, aelotropic) in 
form. 

In addition to the stepwise heterogeneity dis- 
cussed above, material properties can vary con- 
tinuously through the thickness. Such a case 
arises, for example, when certain materials, such 
as styrofoam, are 'used or when severe thermal 
gradients exist, causing a degradation of material 
properties. Also, material properties can vary in 
the r and 8 directions for the same reasons, 
although no known work in the literature takes 
this into consideration in vibration also. 

One of the effects of heterogeneity is to cause 
additional coupling between bending and stretch- 
ing modes of shells. For example, no coupling 
exists for plates laminated symmetrically with 
respect to their midplanes (if shear deformation 
is neglected) ; however, the coupling does exist in 
a symmetrically laminated shell. 

In  deriving equations of motion for layered 
(particularly sandwich) shells a large number of 
possible alternative assumptions can be made. 
For example, assume that-either the Kirchhoff 
hypothesis or the linear displacements account- 
ing for shear deformation remain valid over the 
entire thickness of the shell. Or it can be assumed 
thht the linear variation exists for each layer, but 
changes from layer to layer. It may be assumed 
that the face layers carry no transverse shear 
strain, or that the core withstands no normal 
stresses, or that the flexural rigidity of the face 
layers about their own middle surfaces are negli- 
gible. Because of this complexity, no attempt will 
be made to sort out the numerous theories which 
exist for layered shells. 

Consider now the development of a Donnell- 
type theory for a layered circular cylindrical 
shell. Assume that the shell consists of N layers, 
the kth layer being typical and having a thickness 
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h k  bounded by the surfaces z=zk and z=zk-~, 
where z is measured from a reference surface 
within the shell (see fig. 3.156). Assume further 1 LAYER 

that each layer is homogeneous and orthotropic. 
Then, the stress-strain relations (3.2) can be REFERENCE 

written for the cylindrical shell coordinates as 

for the kth layer, where 

FIGURE 3.156.-Element of a layered shell. 

-In evaluating the force and moment resultant 

en by (refs. 3.7, 3.255, and 3.256): 

those used in the homogeneous, orthotropic equa- 
tions of motion (eq. (3.8)) and that additional 
cross-coupling terms containing Dij* coefficients 
are also present. 

Other works which develop theories for shells 
having heterogeneous material properties with 
respect to the thickness direction include refer- 
ences 3.24, 3.91, 3.233 (nonlinear), 3.248, 3.257 
through 3.274, and 3.275 (nonlinear). 

Dong (ref. 3.7) analyzed the case of a two- 
layered, SD-SD shell having an isotropic inner 
layer and an orthotropic outer one, thereby 
simulating a layer overwrapped with filaments. 
The data for the layers are given in table 3.23, 
with the interface taken as the reference surface. 

a D,,* a3 The exact solution functions (eq. (2.20)) were 
Sza=Saz=Czz-+- - 

dl3 R doa used in equations (2.3) and (3.229), yielding a 
cubic characteristic equation in u2. A plot of the 

(3.229) frequency parameter W R ~ ~  versus the 
circumferential wave number is shown in figure 
3.157 for a shell having R/h  =25, l / R  =20. In 
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TABLE 3.23.-Data for Two-layered Shell 

FIGURE 3.157.-Frequency spect-rum for a two-layered, 
SD-SD shell. (After ref. 3.7) 

figure 3.158 frequency envelopes (lowest fre- 
quencies) are shown for m = l  and for various 
R/h ratios, plotted versus the Z/R ratio. Figure 
3.158 can be compared with the frequency 
envelopes for homogeneous orthotropic shells 
given previously in figures 3.16 and 3.17. 

In  reference 3.7 it was found that neglecting 
tangential inertia terms in the equations of mo- 
tion increased the frequencies in approximately 
the same ways as for homogeneous shells (see sec. 
2.3.4), although tangential inertia was included 
in the subsequent calculations. 

Other types of boundary conditions were also 
examined in reference 3.7 for two layered shells. 

Layer 

1 
2 

FIGURE 3.158.-Frequency envelopes for two-layered, 
SD-SD shells. (After ref. 3.7) 

All, 
Pal 

2.11X106 
11.0X106 

A+ 
PSI 

6.7OX1O6 
33.OX1O6 

The exact solution procedure outlined in section 
2.4 using equations (2.53) was followed. Numer- 
ical results were obtained for the shell described 
previously in table 3.23 for R/h=100 and 
Z/R = 20 for three sets of edge conditions: 

(1) Both ends supported by shear diaphragms 
(SDSD) 

(2) Both ends clamped (u = v = w = aw/ax = 0) 
(3) One end clamped and the other supported 

with axial restraint (u = v = w = M, =O). 

A zzl 
PSI 

12.0 X106 
33.OX1O6 

The frequency envelopes for these cases ,are 
exhibited in figure 3.159. 

Jones and Whittier (refs. 3.270) made a study 

A e61 

PSI 

2.51X106 
13.2X106 

.h 
m. 

0.20 
.20 

Density 

0 . 5 ~ 0  
1 . 0 ~ 0  
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of the axisymmetric motions of two-layered shells solutions of a Fliigge-type set of shell equations 
whose layers are connected by a thin, massless developed in reference 3.274. 
bond of arbitrary stiffness. Results were compared Baker and Herrmann (ref. 3.257) analyzed 
with those obtained from a theory derived by three layered (sandwich) shells. It was assumed 
Payton (ref. 3.272)) which assumes that the bond that the facing sheets of thickness tl and t2 are 
between the two layers is extremely flexible in very thin relative to the thickness h of the sand- 
shear. The behavior of the shell was shown to be wich, that the elastic moduli of the facing sheets 
highly dependent upon a bond stiffness parameter are much larger than the corresponding moduli 
B defined as of the core and, consequently, that the core 

Gh2 material resists only transverse shear forces and 
B =  

b(Ci+C2) 
(3.231) the facing sheets do not resist tra~sverse shear 

forces. Thus, the theory developed is of the tenth 
where G and b are the shear moduli and thickness, order, including the effects of shear deformation 
respectively, of the bond material; h=h1+h2, the and rotary inertia. Initial stress terms were also 
sum of the thicknesses of the two layers; and C1 included. 
and C2 are the stretching stiffnesses of the two Numerical results and an excellent discussion 
layers (i.e., C; = E;h;/(l- v i3) .  were presented in reference 3.257 for SDSD 

In reference 3-277 the two layered shell was shells all having the following parameters: 
analyzed by three approaches, one based upon 

. the exact three-dimensional elasticity equations, 

where All, A12, and AM are the elastic constants-- 

PINNED- FIXED SUPPORTS 

FIXED-SUPPORTS 
( u = v = w = ~ w / ~ x = ~ )  

r - - I I 
- 000%2 0 5  10 2 ' 0  510 I b o  n b o  5 b  

FIGURE 3.159.-Frequency envelopes for two-layered ered, SDSD shell; dimensions given in text. (After 
shells having various end conditions. (After ref. 3.7) ref. 3.257) 

. 
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n. However, for sandwich cylinders this is not the 
case. 

Also investigated in reference 3.257 was the 

(3.233) effect of transverse shear modulus, 

Ex, and E g ,  are Young's moduli in the x-direction 
and 0-direction, respectively, for a facing sheet; 
G,, and Go, are the transverse shear moduli of the 
core material, i.e., 

and K, and KO are shear coefficients matching the 
cutoff frequency of the thickness-shear vibration 
from the shell theory to  the frequency of the first 
antisymmetric thickness shear mode of the exact 
theory. For the sandwich shells considered here, 
the values of K, and KO are close to unity. Because 
a tenth order shell theory was used, five values of 
the frequency parameter 8 = wdp,h(tl+t2)/~x1 
are shown in figure 3.160 for each value of A. 
Although the modes are numbered in the proper 
order for small values of A, this order is not neces- 
sarily preserved for larger A; for example, for 
X > 28 the third mode has a higher frequency than 
the fourth mode. The value of 8 for A = O  is 
0.0035. 

Figure 3.161 shows the effect of an initial cir- 
cumferential tension, m e  = NB~/E, , (~I+~~)  = 0.001 
on the lowest natural frequency, 8, of a sandwich 
cylinder with a thickness-to-radius ratio of 0.01, 
a shear modulus ratio (r,, r,,) of 0.001, a n d r ~  = 1. 
The number of circumferential waves n consid- 
ered was 0, 1, 2, 3, and 4. The circumferential 
tension does not affect 8 for n=O; it decreases 8 
slightly for n = 1; and increases B considerably 
for n = 2,3, and 4. As the value of A increases, the 
effect of Ned decreases; at A = 100, the initial cir- 
cumferential tension has a negligible effect on 8. 
For A <0.2 and n> 1, the percentage increase in il 
due to the initial tension of Noi decreases as the 
value of n increases. 

If shear deformations are neglected, as in the 
case of monocoque cylinders under initial stress 
(see sec. 3.4)) the effect of initial circumferential 
stress becomes negligible for very large values of 

and initial circumferential tension, 

on 8 for X<0.4, n =  3, 4. The remaining param- 
eters were the same as those shown in figure 
3.161. The increase in 8 due to Ned was approxi- 
mately 8 percent greaterif r,, = 0.0001 rather than 
0.001. The effect of initial circumferential stress 
on the four higher modes was negligible for every 
value of the parameters which was investigated. 

The effect of axial initial stress, N,; on the low- 
est natural frequency is shown in figure 3.162 for 
three values of transverse shear modulus, 
r ,  = r,, = 0.01, 0.001, 0.0001. Curves are shown 
for Rx = NZd/E,,(tl+t2) = 0, 0.005, and -0.005. 
For low values of A, A <  2, the effect of fl, is very 
small. For larger values of A, axial tension in- 
creases the frequency and axial compression 

FIGURE 3.161.-The effect of circumferential prestress 
on the lowest natural frequency of an SD-SD, 3-layer 
shell; dimensions given in text. (After ref. 3.257) 
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FIGURE 3.162.-The effect of longitudinal initial stress 
and the transverse shear modulus on the lowest natural 
frequency of an SD-SD, 3-layer shell. (After ref. 3.257) 

decreases the frequency, as expected. When 
lj; = -0.005 and r ,  = roo = 0.0001, 

indicating that the cylinder is statically unstable 
under a ns = -0.005. The critical buckling pa- 
rameter ns for this case, therefore, is less than 
0.005. As in the case of circumferential initial 
stress, as the transverse shear modulus decreases, 
H decreases and the effect of initial axial stress 
increases. For this particular case, axial com- 
pression has a larger effect than a+al tension of 
the same magnitude. 

At large values of X, the curves with initial 
stress become parallel to the corresponding 
curves without initial stress. If shear deflections 
had been neglected, the effect of initial axial 
stress would be negligible for very large values 
of A. The value of n has very little effect on H if 
X is large; figure 3.162, therefore, would be very 
similar, except near the origin, for other values of 
n. The effect of initial axial stress on the four 
higher modes was found to be negligible in 
reference 3.257. 

The effect of a positive initial moment on the 
natural frequency of an infinitely long cylinder 
(A = 0) was investigated in reference 3.257 for 
r,, = 0.001 and R/h= 30, 100, 1000. Two values 
of n were included for each value of h/R (n= 2 
and n=?rR/h), and the stress due to initial 
moment was uei/Ee, = 6 X The maximum 

effect of the initial moment was a decrease of the 
lowest natural frequency, H, by 0.5 percent. 

If combined initial moment and hoop com- 
pression are considered, it was found that initial 
moments can have a large effect on ii at elastic 
stress levels if the compressive force is very near 
the critical buckling force. The compressive force, 
however, must be so near the critical buckling 
force (within 1 percent) that this case is of little 

\ practical interest. 
A cylinder with h/R = 1/30 and roe = roz =0.0001 

was considered next by Baker and Herrmann 
(ref. 3.257). For very large positive initial mo- 
ments in each direction (a,ilE,, =ae'/Es, = 10-3 
and for very short wavelengths (n = 100, X = 50), 
the initial moment decreased H by 6.5 percent. 
This example was given to show the very large 
values of u/E, n, and X which are necessary to 
cause a noticeable change of H due to initial 
moment. Even though the effect of initial mo- 
ment on the natural frequencies of sandwich 
cylinders appears negligibly small, the effect is 
much larger than for homogeneous isotropic 
cylinders. As in the previous caaes of initial 
stresses, the effect of initial moments on the 
higher modes was negligible. 

The effect of orthotropic facing sheets on the 
first three natural frequencies is shown in figure 
3.163. Figure 3.164 shows only the first natural 
frequency for a wider range of A. The ratios of 
moduli studied were r~ =0.5, 1, and 2; whereas 
h/R = 1/30, n = 2, and ro= =roo = 0.001. For sim- 
plicity, A12/A11 and As6/All were kept constant. 
As expected, values of TE less than 1 decrease the 
natural frequencies, and values of rE greater than 
one increase the natural frequencies. The largest 
effect of varying Y E  on'the third mode occurs at 
X = O  and might be expected because the mode 
shape associated with the third natural frequency 
at X = 0 is mainly a circumferential displacement. 
The second mode is not affected at X = O  because 
the predominant motion is an axial displacement. 
Note that the second natural frequency decreases 
as X increases for the case of r~ =0.5. At X =20, 
the effect of varying has very little effect on 
the second and third natural frequency. The first 
natural frequency is changed considerably by 
orthotropic facings at very low values of X and 
at high values of A. At X = 1, 3i is about the same 
for all three values of r ~ .  The orthotropic facings 
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FIGURE 3.163.-Three lowest natural frequencies for 
SDSD, three-layer shells with orthotropic facing 
sheets. (After ref. 3.257) 

- 0 4 8 12 16 

~,m.lrR 
L 

FIGURE 3.164.-Lowest natural frequency for SDSD, 
three-layer shells with orthotropic facing sheets. (After 
ref. 3.257) 

had very little effect on the fourth and fifth 
modes. 

The lowest natural frequency for a sandwich 
cylinder with facing sheets of unequal thickness 
was investigated in reference 3.257 for 

The facing sheet ratios rh = tJtz = 1, 2,3, 1/2,1/3 
were investigated while the ratios h/R and t/h 
were kept constant. The total depth of the two 
facing sheets (t =t~+tz), therefore, was a constant. 
If X<0.2, the value of ii for rh= 1/2 or 2 was 
approximately 5 percent lower than that of H for 
r,, = 1; whereas the value of H for rh = 1/3 or 3 was 
approximately 12 percent lower than that of ii 
for rh=l. This would be expected because the 
flexural rigidity of the sandwich is smaller if the 
total facing sheet thickness t is not divided equally 
between the two facing sheets. 

As the value of h increases, the effect of rh 
decreased until at  X = 20 the values of H for the 
five rh ratios considered were within 2 percent of 
each other. The second and third modes are 
unaffected by rh. The natural frequencies asso- 
ciated with the fourth and fifth modes (H4, Cis) are 
increased if the facing sheets are unequal, This 
increase is due to the decrease in the rotary 
inertia of the sandwich. The percentage change in 
magnitude of H4 and Qs, due to changing the 
value of rh, is about the same as the percentage 
change in magnitude of 3. At X = 20, the effect of 
rh on H4 and is small. It can be shown that the 
thichess shear frequencies also increase if the 
facing sheets are unequal. 

Kagawa (ref. 3.247) presented a set of equa- 
tions for sandwich (three-layered) shells which 
are generalizations of Mirsky and Herrmann's 
ref. 3.224) formulation for hom~geneous shells 
(i.e., including the shear deformation of the core). 
Exact solutions for SD-SD (or infinite) shells were 
obtained by using equations (3.217). Numerical 
results were given for sandwich shells where the 
isotropic core and face layers were assumed to be 
cellular cellulose acetate and aluminum, respec- 
tively, for which 



P1 El(' -vr2) = 2177, 
cal) face layers and core, respectively. Calcula- 

- = 34.4, 
Ez(1- vi2) tions were made for 0, 1, 2, and 6 circumferential 

Pa 

1 
waves n and R/h =30, 10, and 5, where h is the 

E~(l+vz) = 1683, %=3.27, (3.236) total shell thickness. The numerical results are 
Ez(1- VI) vz depicted in figures 3.165 through 3.170 for 

hz/hl= 5 (core thickness/thickness of each face). 
vl= 0.091 Extensive numerical results for three-layered 

where the subscripts 1 and 2 identify the (identi- shells are also available in references 3.278,3.279, 
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FIGURE 3.165.-Frequency parameters for SDSD, three- 
layer shells; n =O, R/h =30. (After ref. 3.247) 

FIGURE 3.166.-Frequency parameters for SD-SD, three- 
layer shells; n = 1, R/h =30. (After ref. 3.247) 

FIGURE 3.167.-Frequency parameters for SDSD, three- 
layer shells; n =2, R/h=30. (After ref. 3,247) 

FIGURE 3.168.-Frequency parameters for SD-SD, three- 
layer shells; n =6, R/h =30. (After ref. 3.247) 
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and 3.280, including some results for clamped- 
clamped shells in reference 3.280. 

Modi (refs. 3.129 and 3.281) considered iso- 
tropic circular cylindrical shells having con- 
tinuous variation of the material properties 
through the thickness. Equations of motion were 
presented which accounted for arbitrary varia- 
tions of E and v with x. Particular attention was 
given to the case of thermal gradients through 
the thickness. Under this condition assume that 
the gradient is linear, causing a linear variation 
of E with 2, and that v is constant. I t  waa found 
that the frequency parameters in this case do not 
depend explicitly upon the R/h ratio but, instead, 
upon the ratio P5/P1) where 

For the linear variation in E, the ratio P6/P1 

becomes 

where E; and EO are the elastic moduli at  the 
inner and outer radii of the shell, respectively, 
and lc=h2/12R2, as usual. When E is constant, 
PS/Pl becomes l/k2, the usual parameter for 
homogeneous 'circular cylindrical shells. 

Numerical results were obtained in reference 
3.129 for SDSD shells using the exact displace- 
ment functions (eq. (2.20)). In figures 3.171 and 
3.172 the variation in the frequency parameter 
Q*2 with X=rn~R/l is shown for a shell made of 
Inconel-X (which determines v), where 

(a* is the same as Q for constant E), for Ps/P1 
=0.0258 X lo-=. As seen from equation (3.238), 
there is no unique combination of ke or Eo/Ei for 
a particular value of P5/P1; however, Ps/Pl can 
be obtained with an Inconel-X shell, for example, 
if R/h = 1750 with the outside maintained at room 
temperature.and the inside heated to 1800° F. 
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FIGURE 3.171.-Frequency spectrum for large values of X for an SD-SD shell subjected to a 
radial thermal gradient. (After ref. 3.129) 

FIGURE 3.172.-Frequency spectrum for small values of X for an SD-SD shell subjected to a 
radial thermal gradient. (After ref. 3.129) 

One of the effects of increased temperature is a The effects of initial stress (prestress) upon the 
reduction in the stiffness of the shell and, hence, free vibrations of nonhomogeneous shells are 
in its frequencies. Percentage reduction in fre- considered at least in part in references 3.7,3.80, 
quency for the case described above is given in 3.129, 3.257, 3.278, 3.282, and 3.283. 
table 3.24. Variation of the frequency parameter Free vibrations of nonhomogeneous circular 
9*2/(1 - v2) with X at two extreme values of cylindrical shells are also discussed in references 
Ps/PI is plotted in figure 3.173 for n =3. 3.3, 3.276, and 3.284 through 3.302. 
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TABLE 3.24.-Percentage Reduction in Frequency Due to Thermal Gradient in an SD-SD Shell 
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Chapter 4 

Noncircular Cylindrical Shells 

A cylindrical surface is defined by a straight 
line (called the "generatorJ') always moving par- 
allel to itself. In  the special case where the gener- 
ator moves in a circular arc, it generates a 
circular cylindrical surface, for which both radii 
of curvature are both constant. In the general 
case, one of the radii of curvature is variable, 
thereby yielding equations of motion with vari- 
able coefficients. For this reason alone, relatively 
very few results are available in the literature 
for the free vibrations of noncircular cylindrical 
shells. 

4.1 EQUATIONS OF MOTION 

A noncircular cylindrical shell having thick- 
ness h and length I is shown in figure 4.1. The 
longitudinal coordinate is x (as in chapters 2 
and 3), whereas the circumferential coordinate is 
defined either by I3 or S, where S is the arc length 
such that 

dS=r d13 (4.1) 

and r = r(8) is the radius of curvature. 
To obtain the equations of motion (see sec. 1.7) 

the coordinates x and S are used in place of a! and 
/3 in the general equations; correspondingly, 
R,= a, Rs=r, and A=B=l .  The Donnell- 
Mushtari equations (2.3) and (2.7), for example, 
are generalized to (cf., refs. 4.1 and 4.2) 

where V4 = V2V2, and the V2 operator is now given 
by 

The generalization of equations (4.2) correspond- 
ing to the Reissner-Naghdi-Berry theory of chap- 
ter 2 are obtained by adding the terms (cfs., refs. 
4.3 and 4.4) 

- r g s  - r z ]  (4.4a) 

to the left sides of the last two of equations (4.2), 
where the definition of k2 is now generalized from 
that of equation (2.6) to 

FIGURE 4.1.-Coordinates for a 
noncircular cylindrical shell. 

and ro is the average radius of the shell. 
The generalization of equations (4.2) corre- 

sponding to the Donnell equations and the 
Flugge equations are given in reference 4.5 for 
an orthotropic material including nonlinear, large 
deflection terms. The orthotropic linear Donnell 



equations are also given in references 4.6 and It was shown in reference 4.8 that in the case 
4.7 for the case of added initial stress terms to of torsional motion, u = w = 0, and, if u is consid- 
account for external pressure. ered independent of X, the first and third of equa- 

The membrane theory results when h2 is set tions (4.2) are satisfied identically and the second 
equal to zero in equations (4.2). reduced to 

4.2 ELLIPTICAL CYLINDRICAL a2u a2u 
a x 2 - ~  at2 (4.9) 

Consider first the elliptical cylindrical shell 
having a middle surface defined by Then the frequency of torsional motion is not 

influenced by the ellipticity of the cylinder. 
E2 q2 -+-=I Flexural motions of the elliptical cylindrical 
a2 b2 (4'6) shell were studied in reference 4.8 for the case 

when the displacement components are inde- 
as shown in figure 4.2, where a and b are the 
semi-major and semi-minor axes, respectively. 

pendent of S. An energy method was used with 
displacements in the form 

FIQURE 4.2.-Coordinate9 for an elliptic cross section. 

Herrmann and Mirsky (ref. 4.8) analyzed the 
free vibration problem according to the mem- 
brane theory. Consider first the purely lopgi- 
tudinal motion (v= w = O ) .  The motion is then 
governed by the first of equations (4.2) alone. The 
analysis for this case in reference 4.8 was limited 
to shells which are only slightly elliptical; i.e., 

where €<<I. Under this assumption the equation 
of motion can be transformed into a Mathieu 
equation which has an exact solution in terms of 
tabulated functions and that the resulting lowest 
frequency is given by 

where G = E/2(l+ v). The corresponding fre- 
quency for a circular cylindrical shell is 

w2a2p/G = 1 ( R  = a) 

u(x,t) = A  sin Ax cos wt 

u(x,t) = B cos Ax cos wt (4.10) 

w (x,t) = C cos Ax cos ot 

fi 
Thus the square of the lowest longitudinal fre- L 

quency of a slightly elliptic shell is the arithmetic aIauPa 4.3.-fisquency parametw i 2 a b p / j 9  for the 
mean of the frequencies of circular shells h a ~ n g  flexural modes of an elliptic, cylindrical, membrane 
radii a and b, respectively. shell. (After ref. 4.8) 



where ~ = n / t .  Numerical results were obtained 
for a/b = 1.2, ~, 3, and 6. The frequency param- 
eter w2abp/E is shown in figure 4.3 plotted versus 
the length ratio d a b / l .  The frequency parameter 
thus implies a shell of a given cross-sectional area 
nab having a circumference which varies with 
a/b. The ratio l / ab / l  is a generalization of the 
R/Z ratio of the circular cylindrical case. Because 
membrane theory is used, the results do not 
depend upon the thickness ratio, h / G .  

For shells having the same cross-sectional area, 
the mass of the shell obviously increases with the 
ellipticity of the section. However, it is of inter- 
est to find the influence of ellipticity upon a shell 
which was originally circular, but was deformed 
into an ellipse without straining the middle 
surface; i.e., keeping the circumference constant. 
The circumference can be written as 

where K is a number greater than unity depending 
upon a/b. For example, for a/b=3, K =  1.0635. 
For a/b = 19, K = 1.216. The ratios of the squares 

of the frequencies of the two flexural modes to 
those of a circular cylindrical shell having the 
same circumference is shown in figure 4.4 for 
a/b = 3. 

An experimental study of a clamped-free ellip- 
tical cylindrical shell was made by Park et a1 
(ref. 4.9). The specifications of the model tested 
are shown in figure 4.5, as well as the transducer 
locations to measure amplitudes. Typical mode 
shapes are depicted in figure 4.6. The frequency 
spectrum is shown in figure 4.7. Resonant fre- 
quencies were found a t  49.2, 65.5, 123.6, 126.7, 
78.1, 98.5, 133.2, 149.0, 163.3, and 184.4 cps, 
although no well-defined mode shape could be 
determined for the 126.7 cps frequency. A com- 
parison of the frequencies with those of a 
clamped-free circular cylindrical shell having the 
same specifications, except a radius of R = 10 in., 
is shown in figure 4.8. In  making the comparison, 
note that the cross section of the elliptical shell 
is smaller than that of the circular shell. 

Slepov (refs. 4.6 and 4.7) analyzed the problem 
of the elliptical cylindrical shell supported a t  
both ends by shear diaphragms. The shell was 
considered to be orthotropic and loaded by an 
initial external pressure. The Donnell-Mushtari 

TUNSDKER SPACING 

RING 1 = 1-7/16 SKHES 
SING 2 1-7/16 I W E S  

LENGIH I I N G  3 = 1-7/16 I K I S  
MAJOR AXIS 2(1 IKHES RING 4 = 4-5/16 INCHES 
M N M  AXIS I2 IKHES 
SKIN MICKNESS 0.m INCHES 
MTERlAL L O N  CIPOON STEEL 

FI~URE 4.4.-Comparison of flexural mode frequencies for FI~URE 4.5.-Specifications of a clamped-free 
elliptic and circular cylindrical shells. (After ref. 4.8) elliptical cylindrical shell. (After ref. 4.9) 
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FIGURE 4.6.-Typical mode shapes of a clamped-free elliptical cylindrical shell. (After ref. 4.9) 
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So is the circumference of the shell; p is the uni- 
formly distributed external pressure; and a, b 
are the semiaxes of the shell cross section. In 
the case of an isotropic shell, E,= E,= E and 
V, = V, = v in equation (4.14). For the unloaded 
shell, q is zero in equation (4.14). The sandwich 
elliptical shell was also analyzed in reference 4.7. 

4.3 OVAL CYLINDRICAL 

Consider next the oval cylindrical shell defined 
by the equation 

for its cross section, where ro the average radius 
of curvature (the radius of a circle having the 
same circumference) and, as before, S is the arc 
length. The parameter e is then a measure of the 
noncircularity of the cross section. 

The free vibrations of oval shells defined by 
equation (4.17) were studied in a series of reports 
by Klosner and Pohle (refs. 4.4, 4.10, and 4.11). 
The generalization of the Reissner-Naghdi-Berry 
theory including bending terms was used (see 
sec. 4.1). The plane strain problem (u and all 
derivatives with respect to x are zero) was con- 
sidered in reference 4.4. The non-zero displace- 
ments er and w were assumed as doubly infinite 
series in S as follows: 

v = CB. sin PS cos cot 
n = O  I 

w = Cc. cos p s  cos -cot 
n = O  I 

where P= n/ro and w is a perturbed, frequency 
which can be expressed as a power series in the 
parameter s by 

where wo is the frequency of a circular cylindrical 

shell of radius ro. In reference 4.4 equations (4.18) 
were substituted into the equations of motion 
and terms multiplied by coefficients up to the 
order s2 were retained. Numerical results for the 
frequencies of the first five (primarily) exten- 
sional and flexural modes of an infinite shell hav- 
ing an axis ratio of b/a = 1.1 (s = 0.1427) and a 
thickness ratio of ro/h=91.7 are given in table 
4.1. This table lists the percentages by which the 
frequencies of the circular cylindrical shell (hav- 
ing the same average radius ro) are increased. 
Table 4.1 shows that the smdl noncircularity of 
the oval cross section causes only a small change 
in the frequencies. The effect of noncircularity 
on the primarily extensional modes is to stiffen 
the shell due to the increase in strain energy 
which results from coupling of the modes. For 
example, for n=O the circular cylindrical shell 
has a purely radial (v = 0) extensional motion, 
whereas the oval shell has both radial and tan- 
gential components of displacement. For n = 1, 
the flexural mode of the infinitely long circular 
shell corresponds to rigid body translational 
motion having zero frequency, but not in the case 
of the oval shell. For n>  2 the frequencies of the 
flexural modes of the oval shell are less than those 
of the circular shell. Calculations for the plane 
strain case were subsequently carried out in 
reference 4.10 retaining terms up to the order s4. 
The-results obtained changed very little from 
those of table 4.1, thereby validating the rapidity 
of convergence of the perturbation approach. 

In references 4.10 and 4.11 the analysis was 

TABLE 4.1.-Percent Increase in 
Plane Strain Frequencies of an 
Oval Shell in Comparison with . 
a Circular Shell (b/a=1.1, 
ro/h =91.7) 

Type of plane strain mode 

n Predominantly Predominantly 
extensional, % flexural, % 

- 
0 0.255 ............ 
1 .I28 ............ 
2 ,136 0.924 
3 .055 - .I17 
4 .032 - .096 
5 .021 - .064 
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also extended to include the torsional and flexural 
modes having displacements of the form 

u = A sin Ax cos $ 3  cos wt 

v = B cos Ax sin pS cos wt (4.20) 

w = C cos Ax cos ps cos wt 

Numerical results for these modes for the shell 
described previously in table 4.1 are given in 
table 4.2 for various nondimensional half-lengths 
(1) of the longitudinal sine wave. Results are 
given for b/a= 1.4 (e = 0.5), as well as for b/a= 1.1 
(e = 0.1427) and for ro/h = 91.7. The frequencies 
of all modes in table 4.2 increase with noncircu- 
larity and with the wave length. The amplitudes 
of the lower flexural modes were found to vary 

from CIA = -9.510 for 1 = 1 

to CIA = -0.1035 for 1 = 10 

For the higher mode, CIA varied from 0.1052 for 
1=1 to 9.661 for 1=10. For aIl flexural modes, 
B/A = 0. Thus for the lower modes the effect of 
noncircularity should be more significant for the 

TABLE 4.2.mPercent Increase in Torsional and 
Flexural Frequencies of an Oval Shell in Com- 
parison With a Circular Shell (rolh =91.7) 

smaller wave lengths because the deformation is 
primarily dilatational rather than longitudinal 
extensional. The reverse is true for the higher 
modes since the displacements become primarily 
dilatational for the longer wave lengths. 

Sathyamoorthy and Pandalai (ref. 4.5) inves- 
tigated the nonlinear (large deflection) vibrations 
of orthotropic oval shells. The middle surface of 
the shell was defined as in equation (4.17). It was 
shown that the solutions for the plane strain 
modes of an infinitely long shell were the same as 
for oval rings, in both the isotropic and the ortho- 
tropic cases. Results for the plane strain modes 
were obtained according to the inextensional 
theory (i.e., the middle surface deforms without 
stretching; this theory is discussed for circular 
cylindrical shells in section 2.4.5). A mode shape 
for w was taken as 

I 

1 .0  
1.25 
1.5 
1.75 
2 
2 .5  
3.5 
5 
10 

1 .0  
1.25 
1 .5  
1.75 
2 
2 .5  
3 .5  
5 
10 

where, p=n/ro, as before, n22 ,  and the coeffi- 
cients Ao, A,, and B, are undetermined functions 
of time. The nonlinear differential equation is 
approximated by the Galerkin procedure. 

Numerical results for the solution described 
above were presented in reference 4.5 for the 
infinitely long isotropic shell having ro/h = 100 
for three values of the noncircularity parameter: 
6 = 0, 1/2, and 1. The circumferential wave num- 
ber n was taken as 2 and 4 in equation (4.21). 
The nondimensionalized average amplitude A 
(averaged over one cycle of vibration) is plotted 
versus the frequency parameter w r o 2 m  
for n = 2 in figure 4.9, and for n= 4 in figure 4.10. 
The nonlinearity is of the "softening type"; i.e., 
the frequency decreases with increasing ampli- 
tude. It was found that the effect of orthotropy is 
to increase the softening tendency of amplitude- 
frequency curves. For zero amplitude the motion 
corresponds to tlie linear, small displacement 
solution. Values of these linear frequencies are 
summarized in table 4.3. Note from figure 4.9 
that, for n = 2 and a given amplitude, an increase 
in the noncircularity parameter a decreases the 
frequency for small amplitudes, whereas it in- 
creases the frequency for large amplitudes. 

A study of oval shells of finite length having 
the boundary conditions 

b - 
a 

-- 

1.1  

-- 

1 .4  

Type of mode 
- 

% 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

Lower 
flexural, 

% 

1.25 
.81 
.58 
.45 
.36 
.27 
.14 
.06 
.03 

-- 
14.47 
9.60 
6.93 
5.36 
4.38 
3.26 
1.68 

.72 

.38 

Higher 
flexural, 

% 

0.01 
.01 
.02 
.04 
.67 

-.03 
.04 
.14 
.20 

.05 

.10 

.21 

.58 
7.86 
- .51 

.71 
1.74 
2.59 
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FIGURE 4.9.-Amplitude versus frequency for the large 
deflection plane strain vibrations of infinite oval shells; 
ro/h=lOO, n=2. (After ref. 4.5) 

TDLE 4.3.-Frequency Parameters 
w r o 2 m  for the Linear 
(Small Deflection) Plane Strain 
Vibrations of InJinite Oval Shells; 
ro/h = 100 

was also made in reference 4.5. For this case it was 
found that 

(1) The frequency increases with increasing 
noncircularity . 

(2) The amplitude-frequency curves are of the 
softening type. 

FIGURE 4.10.-Amplitude versus frequency for the large 
deflection plane strain vibrations of infinite oval shells; 
ro/h = 100, n =4. (After ref. 4.5) 

The free vibration of oval cylindrical shells 
are also analyzed by a perturbation procedure in 
references 4.12, 4.13, and 4.14. 

4.4 OPEN SHELLS 

An open cylindrical shell was depicted by fig- 
ure 2.141 in chapter 2. In that figure the radius 
of curvature is constant (r = R), the special case 
of the circular cylindrical shell. 

A study of open noncircular cylindrical shells 
was made by Kurt and Boyd (ref. 4.2). The 
shells were assumed to be supported by shear 
diaphragms along their curved edges and to have 
arbitrary boundary conditions along the straight 
edges. The Donnell equations of motion (4.2) were 
used. Displacement functions were assumed to be 
mixed algebraic and trigonometric functions; i.e., 

v= sin AX P n f n - l  cos wt I 
n = l  I 

w = sin Ax C ~ ~ t n - 1  cos wt 
n = l  I 
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where X = mr/l, [ =S/l,, and 1, is the arc length 
of the cylinder in the S direction. It is clear that 
equations (4.23) satisfy the shear diaphragm 
boundary conditions exactly at x = 0 and x =I. 
Substituting equations (4.23) into equations (4.2) 
yields a set of three simultaneous recursion rela- 
tionships among the coefficients A,, B,, and C,. 
If eight of the constants are found from the 
boundary conditions, the remainder are found 
from the recursion equations. 

The procedure described above was applied to 
a class of noncircular cylindrical shell segments 
described by the equation 

^ .  

1, r 
- =-+ct 
r 4 

FIGURE 4.11.-Frequency parameters for a class of 
open, noncircular cylindrical shells. (After ref. 4.2) 

TABLE 4.4.-Frequency Parame- 
ters ~ ~ 1 ~ ~ ~ h ~ / D  for a Class of 
Open, Noncircular Cylindrical 
Shells 

I Tangential inertia 

Included Neglected 

0.0262 
.0276 
.0291 
.0306 
.0322 
.0338 
.0354 

where c is an arbitrary constant. Boundary con- 
ditions along the straight edges were taken to be 

Numerical results for frequency parameters 
w21,2ph3/D (where D = Eh3/12(1 - v2)) were ob- 
tained for 0 5  c10.3, 1/1, = 4, l,/h = 200, m = 1, 
and v = 0.3 are shown in figure 4.11 and table 4.4. 
These results were obtained using 25 as the upper 
limit for n in the summations of equations (4.23). 
Note in figure 4.11 that the square of the fre- 
quency varies essentially linearly with c, with 
or without tangential inertia terms. 

General methods were presented by Oniash- 
vili (ref. 4.15) and Gontkevich (ref. 4.16) for the 
analysis of open noncircular cylindrical shells of 
arbitrary curvature and having arbitrary edge 
conditions. Both methods use the Galerkin pro- 
cedure and beam functions as given previously 
in equations (2.168). However, Oniashvili sug- 
gests using straight beam functions to represent 
the variation in the 0 (or S) direction, while 
Gontkevich recommends using the eigenfunc- 
tions of noncircular curved beams. Gontkevich 
(ref. 4.17) used his procedure to investigate the 
problem of the vibration of a parabolic cylin- 
drical segment immersed in a fluid. 

Mazurkiewicz (ref. 4.18) also developed a pro- 
cedure for shell segments of varying curvature 
and having arbitrary edge conditions. A double 
Fourier series approach is used, leading to an 
infinite characteristic determinate, which must 
be solved by successive truncation to obtain 
convergent frequencies. 
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Chapter 5 

Conical Shells 

A conical shell has a middle surface which is 
generated by a straight line (called the "genera- 
tor") which moves so that one point on the line 
(the vertex) is always fixed. For the practical pur- 
poses of this work, the shell will be limited to finite 
length; that is, the middle surface is generated 
by a line segment of length szJ having one end 
fixed, while the other end generates a curve in 
space (see fig. 5.1). If the generator rotates about 
a fixed axis, so that a constant angle a (vertex 
half-angle) is kept with respect to the fixed axis, 
then the resulting surface of revolution is a circu- 
lar cone. If the generator of a circular cone 
retains constant length as it rotates about the 
axis, its end forms a circle arc, called the base or 
large end of the cone. The base can also be 
regarded as being the intersection of the conical 
surface with a plane. If the plane is perpendicular 
to the axis of the cone, the surface describes a 
right circular cone. Finally, if the cone is bounded 
by two planes (s = s and k = sz in fig. 5.1), then 

FIGURE 5.1.-Right circular conical shell, showing 
conventional force resultants. 

the surface is a frustrum of a cone; otherwise, for 
a shell containing the vertex (i.e., having an 
apex) the term ('complete conical shell" will be 
used here. This chapter is organizationally lim- 
ited to shells having circular conical curvature. 
Furthermore, no results have been found in the 
literature for conical shells having noncircular 
boundaries; thus, the scope of the chapter is 
further limited. 

The class of conical shells described above is a 
simple generalization of circular cylindrical shells.. - 

Put in another way, the cylindrical shells dis- 
cussed in chapters 2 and 3 are the special case 
arising when the vertex half-angle ar is zero. Thus, 
conical shells have all the classifying parameters 
of cylindrical shells described a t  the beginning 
of chapter 2 and in the separate sections of chap- 
ter 3, with a being an additional parameter. 
Thus, the primary organization of chapters 2 and 
3 (i.e., boundary conditions and complicating 
effects) is repeated here, with ar being treated as 
one more geometrical parameter to be considered 
in each problem discussed. 

However, if the reader correlates the following 
sections of this chapter with those of chapters 2 
and 3 the following will be readily noted: 

(1) No specific results exist in the literature 
for open conical shells (see sec. 5.4). 

(2) No information is available for conical 
shells of variable thickness. 

One unfortunate (and unnecessary) complica- 
tion which exists for conical shells is that there is ; 
no significant agreement among authors as to the ' 
proper nondimensional form for expression of the 
frequency parameter. This is due partly to dis- 
agreement on what constitutes the fundamental 
length parameters for a shell. That is, should one 
use sz-sl or 1 (see figs. 5.1 and 5.2) ? Should one 
describe the radius by RI, Rz, fi (the average 
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I 

FIGURE 5.2.-Conical shell,-side view. 

radius, (Rr+ R2)/2), r ~ ,  r2, or P (F = (rl+r2)/2) ? 
Additional choices for frequency parameters arise 
because of the choice of elastic constants. Thus, 
at  least a dozen distinct forms of nondimensional 
frequency have been found in the 
literature and are used in this chapter. 

Finally, it should be mentioned that rudi- 
mentary surveys of the literature of free vibra- 
tions of conical shells are given in references 
5.1, 5.2, and 5.3. 

5.1 EQUATIONS OF MOTION 

The shell coordinates to be used are s and 6 
as shown in figure 5.1. Following the procedure 
outlined in section 1.7 the equa%ions of motion 
are synthesized for a conical shell by using the 
following parameters in tables 1.1 through 1.5 
(see fig. 5.2) : 

R.= m, ~ ~ = r = s  tan a )  

I n  the case of the Donnell-Mushtari theory the 
equations of motion are found to be (cf., refs. 5.4 
and 5.5) 

1 1 aw p(i - v ~ )  a2u 
+- tan a s2 -[vsg-w]=T 

(5.2a) 

[(I+v) 1 -+--- a2u (3-4 1 
2 s sin a as 36 2 s2 sin a ae 

1 a2u -+.- - 
2 as2 s2 sin2 a ae2 

I 

tan a s2 s2 sin2 a a0 

where u, v,  and w are the components of displace- 
ment in the s, 6, and z directions, respectively 
(see fig. 5.2 for true-length views of u and w 
components-v is perpendicular to the plane of 
fig. 5.2), and V4 = V2V2, where 

Equations (5.2) can be put into a form more like 
equations (2.3) and (2.7) for circular cylindrical 
shells by expressing them in terms of the radius 
R = R(s) used in figure 5.2 and equations (5.1). 
That is, equations (5.2) become 
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U+V) a% (3 - V) sin -+- [ ~ r a g a s  2 ae 
(1 - V) a2v a2v (1-V) av -+,+- + [ ~ a s .  ae 2 sin or- as 

cos a v-+sin a u [ : 
where now 

and where the nondimensional length, s = s/R 
has been introduced, and where k=h2/12R2. 
Letting a 4 0  in equations (5.4) and (5.5), it is 
clearly seen that they take the forms for circular 
cylindrical shells, equations (2.7) and (2.8), re- 
spectively. Remember, however, that S in equa- 
tions (5.4) and (5.5) corresponds to s in equations 
(2.7) and (2.8). 

The equations of motion of other shell theories 
(see chapter 1) are obtained by adding certain 
terms to the left-hand sides of equations (5.2) 
or (5.4). For example, the equations of the 
Novozhilov theory result when 

cos a a2w 
-+(I-2~1-7- - 

s2 SIII as ae 
Oos a" ] (5.6b) -(2-v)-- 

s sin CY as2 a0 

cos a a8v cos a a2v - +3-- 
s3 sin3 a ae3 s2 sin a as dB 

cos a a3v 
-(2-I)- -1 (5.6~) 

s sm CY as2 ae 
are added to equations (5.2a), (5.2b), and (5.2c), 
respectively (ref. 5.6, and after correcting some 
obvious errors, ref. 5.7). 

The Fliigge equations for a conical shell are 
given in reference 5.8, p. 399. A different set of 
equations was derived by Pflueger (ref. 5.9) and 
Federhofer (ref. 5.10) which also reduce to the 
circular cylindrical shell equations of Flugge (see 
eqs. (2.9d)) as a+O. 

Looking at  the Donnell-Mushtari equations 
(5.2) and (5.4), note that they are not symmetric. 
That is, if they were written in matrix differential 
operator form as equation (2.7) for cylindrical 
shells, the matrix operator would be unsym- 
metric. The terms (5.6b) and (5.6~) added to 
yield the Novozhilov theory also add to the 
asymmetry of the equations. The Flugge-type 
equations given in references 5.8 and 5.10 also 
contain unsymmetric terms which are multiplied 
by h2/12. Note that the equations of reference 
5.10 were derived by a variational principle. 

For the Donnell-Mushtari theory another for- 
mulation in terms of an Airy stress function 
(see sec. 1.9) is often used. Neglecting tangen- 
tial inertias, the equations of motion and 
compatibility which must be satisfied are, 
respectively 

where D = Eh3/12(1 - v2), as before, V4 = V2V2 for 
a conical shell is given by equation (5.3), V R ~  is 

1 a2 
vR2=- - 

s tan a as" 

the membrane forces are related to the Airy 
stress function by (cf., refs. 5.11 and 5.12) 

=A(! !f-*)J 
s sin a s ae as ae 

the bending moments are related to w by 
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and the transverse shearing forces are determined 
from 

5.2 COMPLETE CONE 

The vast majority of numerical results for the 
free vibrations of conical shells deal with the 
frustrum of a cone; that is, the conical surface 
is cut by two planes located at  distances sl and sz 
from the vertex as shown in figure 5.1. In the 
case of the complete cone, the shell includes the 
vertex and is bounded by a single plane located 
at  S=SZ. 

The complete cone can also be regarded as the 
limiting case of a cone frustrum as sl+O. How- 
ever, two difficulties are encountered in taking 
this limit : 

can exist at  a vertex, but these will not be elabo- 
rated upon here. 

The equations of motion are solved by assum- 
ing displacement functions of the form 

v = z v n ( s )  sin no cos wt (5.14) 
n = l  

= Cwn(s )  cos ne cos ~t 
n=O I 

where u,, v,, and w, are yet undetermined func- 
tions of the meridional coordinate s. If the shell 
itself is axisymmetric (e.g., no cutouts) and has 
axisymmetric boundary conditions, then the 
vibration modes uncouple with respect to 0 and 
the summations can be dropped in equations 
(5.14). 

(1) The solutions of the equations of motion Substituting equations (5.14) into, for example, 
contain singularities a t  s = 0. equations (5.2) yields an eighth order set of 

(2) Care must be exercised in using the proper ordinarg differential equations having variable 
boundary conditions at  s = sl to obtain the correct coefficients which must be integrated in order to 
convergence. determine u,, vn, and wn. However, equations 

The first point will be elaborated upon later in (5.2) show that the variable coefficients which 

this section where methods of solving the equa- arise are all powers of s. This suggests a solution 

tions of motion are discussed. As an example of in terms of power series which, if convergent, 

the second difficulty, consider the problem of will be exact. 

obtaining a free vertex as a limiting case of a cone Using the classical method of Frobenius, solu- 

frustrum. If clamped conditions are applied at  tions for u,, v,, and wn are assumed in the form 

s =sl, the vertex becomes fixed in the limit. If 
free boundary conditions are used, the vertex 
always has a small hole in it as s1+0. The correct 
boundary conditions for a free vertex are (see 
fig. 5.1 for force resultants) 

u sin a-w cos a = O  1 
N, cos a-Q, sin a = 0 J  

whereas, for a completely fixed vertex 

Other possible types of external partial constraint 

Dreher and Leissa (refs. 5.11 and 5.12) also added 
terms of the type w=c/ns in order to improve 
convergence. Substituting equations (5.15) into 
the eighth order set of ordinary differential equa- 
tions arising from equations (5.2) leads to a set 
of recursion equations among the coefficients ai, 
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bi, and ci and a characteristic equation yielding 
eight independent roots j. The ultimate result is 
eight independent constants ai, bi, and s (corre- 
sponding to the eight roots). In  the case of a 
complete shell, four of the constants must be set 
equal to zero to satisfy regularity conditions at  
the apex. For a conical frustrum, four boundary 
conditions are written at  each edge, yielding an 
eighth order characteristic determinant for the 
eigenvalues (frequency parameters). 

5.2.1 Clamped Base 

The boundary conditions at  the clamped base 
are (see figs. 5.1 and 5.2) 

Dreher and Leissa (refs. 5.11 and 5.12) used 
the exact solution procedure described in section 
5.2 involving expansion of the displacements in 

terms of power series to study the axisymmetric 
n = 0 free vibrations. The Donnell-Mushtari shell 
theory was used. Frequency parameters 

were obtained for the first eight axisymmetric 
modes for v =0.3 and over a wide range of the 
stiffness parameter K = 12(1- v2) (r2/h) 2/tan4 a. 
Numerical results are given in table 5.1 and 
figure 5.3 in the case where the vertex is free. 
A representative fundamental (i.e., lowest fre- 
quency) mode shape for wo(s) is shown in figure 
5.4 for K = 1000. 

Note that if the parameters K and O2 are used, 
there is no explicit dependence upon a. That is, 
the values in table 5.1 and figure 5.4 apply to all 
values of a. 

The first solution of the free vibration of the 
clamped conical shell was presented by Feder- 
hofer (ref. 5.10) in 1934. In  that paper the equa- 
tions of motion of Pflueger (see sec. 5.1) were 
given and the difficulties of their solution in series 
were acknowledged. Thus, an approximate Rits 
solution procedure was followed using the simple 
trial functions 

u = A S ~ ( S - S ~ ) ~  cos n0 cos ot 

v = Bs2(s - ~ 2 ) ~  sin n0 cos wt (5.17) 

w = Cs2(s - SZ) cos n0 cos ot I 
Although not mentioned in reference 5.10, equa- 
tions (5.17) clearly satisfy equations (5.13) for a 

I I I l l  I I I I \ I  
0 0 2  0 A 0.6 08 1.0 

DISTANCE ALONG GENERATRX SIS, 

FIGUR~ 5.3.-Frequency parameter fi2 versus stiffness FIGURE 5.4.-Fundamental mode shape for a clamped, 
parameter K for the axisymmetric (n =0) modes of a complete conical shell; K =1000, fi2 =3.574, v =0.3. 
clamped, complete conical shell. (After ref. 5.12) (After ref. 5.12) 



TABLE 5.1 .-Frequency Parameters Q2 = o z r z 2 ~ / E  for the Axisymmetric (n = 0) 
Modes of a Clamped, Complete Conical Shell Having a Free Vertex; v =O.3 

TABLE 5.2.-Frequency Parameters fl*2 = 02Rz2p(l - v2) /E for Clamped Conical 
Shells Having a Fixed Vertex; h2/12Rz2 = 10--6, v = 0.3 

12(1-v2) rz 
3 i d ~ )  

0.1 
.2 
.4 
.6 
.8  

1 
2 
4 
6 
8 

10 
20 
40 
60 
80 

100 
200 
400 
600 
800 

1000 
2000 
4000 
6000 
8000 

10000 
20000 
40000 
60000 
80000 

100000 

n 

deg. 
1 2 3 4 5 

1049.661 
527.844 
266.933 
179.961 
136.474 
p- 

110.380 
58.184 
32.065 
23.341 
18.966 

16.330 
10.986 
8.154 
7.095 
6.498 

6.096 
5.082 
4.317 
3.957 
3.733 

3.574 
3.148 
2.800 
2.625 
2.511 

2.429 
2.200 
2.008 
1.911 
1.848 
1.802 

2 
--- 

15826.797 
7918.076 
3963.715 
2645.594 
1586.533 

1591.096 
800.221 
404.779 
272.961 
207.048 

167.498 
88.373 
48.740 
35.457 
28.757 
p- 

24.688 
16.215 
11.373 
9.453 
8.366 

7.648 
5.950 
4.805 
4.302 
4.000 
- 

3.792 
3.256 
2.845 
2.646 
2.521 
2.431 

3 

79409.734 
39711.992 
19863.121 
13246.830 
9938.685 

7953.797 
3984.021 
1999.131 
1337.498 
1006.680 

808.187 
411.190 
212.654 
146.435 
113.291 

93.373 
53.268 
32.522 
25.098 
21.116 

18.575 
12.872 
9.353 
7.922 
7.102 

6.554 
5.229 
3.302 
3.883 
3.627 
3.449 

Mode 

4 

250241.404 
125130.175 
62574.560 
41722.688 
31296.752 

25041.191 
12530.067 
6274.503 
4189.313 
3146.717 

2521.158 
1270.032 
644.445 
435.891 
331.592 

268.994 
143.621 
80.395 
58.810 
47.674 

40.764 
25.869 
17.208 
13.863 
12.008 

10.801 
7.997 
6.162 
5.379 
4.917 
4.604 

number 

5 
- 

610145.734 
305084.828 
152554.375 
101710.891 
76289.147 

61036.103 
30530.011 
15276.964 
10192.614 
7650.438 

6125.132 
3074.514 
1549.189 
1040.732 
786.489 

633.932 
. 328.704 

175.715 
124.310 
98.282 

82.415 
49.249 
30.785 
23.897 
20.167 

17.780 
12.400 
9.040 

6 

632176.406 
316102.574 
210744.633 
158065.660 

126458.276 
63243.509 
31636.125 
21100.329 
15832.430 

12671.691 
6350.207 
3189.454 
2135.858 
1609.050 

1292.957 
660.693 
344.299 
238.530 
185.378 

153.263 
87.487 
52.127 
39.272 
32.428 

28.107 
18.596 
12.883 

7 

585364.445 
390254.223 
292699.094 

234166.008 
117099.869 
58566.789 
39055.760 
29300.247 

23446.939 
11740.318 
5887.000 
3935.885 
2960.321 

2374.976 
1204.233 
618.675 
423.266 
325.356 

266.425 
147.106 
84.598 
62.330 
50.619 

43.299 
27.471 
18.259 

8 

998330.648 
665565.555 
499184.832 

399354.262 
199696.465 
99867.565 
66591.354 
49953.068 

39970.209 
20004.372 
10021.464 
6693.822 
5029.993 

4031.699 
2035.051 
1036.591 
703.603 
536.952 

436.814 
235.268 
131.544 
95.218 
76.297 

64.554 
39.514 
25.297 
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$xed vertex. Minimizing the functional with 
respect to A, B, and C the resulting characteristic 

7 . . r , 1 1  ,! :- Ll.- I? 

(5.18) 

where 

11 1 - v  
a22 = [SB(T)% tan2 a +?(L>'] 56 cos a 

-Ly&2+k[ i (7 ) f i  84 tanz a] 

FIGURE 5.5.-Frequency parameters Q*a for clamved 

1 
table 5.2 and figure 5.5 is = ~ 2 ~ R Z ~ p ( l  - v2)/E 
(see fig. 5.1 for R2). As for circular cylindrical 
shells, the fundamental frequency does not occur 
for n = 0 but, for this value of k, at n = 3 for all 8. 
In figure 5.6 the frequency parameter is plotted 
versus 8 and tan 8. Amplitude ratios A/C and 
B/C corresponding to the roots for n=O and 
n =  3 are given in table 5.3. For n=O the funda- 
mental mode changes from predominantly trans- 
verse motion to predominantly meridional as 

az3 = -- ( - ) -~c[~(s~) tan2 a 
28 cos a 

TABLE 5.3.-Amplitude Ratios for Clamped Coni- 
+%(l-v)(-ll-)% cos a tan"] (5'19) cal Shells Having a Fixed Vertex; h2/I2R22- 

WUGlG 

yn=O for n=O 

y n = l  for n#O 

and Q2 = u2rZ2p(1- v2)/E and Ic = h2 
: - - I  ----- 1A- -LA- : - -A: -  -..I? c 

/12rZ2. Numer- 
L U ~ I   re^^^^^ U U C Z ~ ~ U ~ U  1u ~eleleuue g.10 for the low- - 
est roots of equation (5.18) are presented in 

15 1 0.07416 I -0.009611 1 0.07996 
table 5.2 and figure 5.5 for shells having a thick- 30 .I684 - .02094 .I584 - 
ness ratio of h 2 / i 2 ~ 2 2  = k/cos2 a = and v = 0.3 45 .3334 - .03241 .2305 
and for = 15", 30°, 45", 60°, 75" (0 = 90"-a, as 60 .8261 - .03703 .2876 

75 3.075 
in figure 5.2). The frequency parameter used in 

1 - 02602 I 3223 



should be less than the exact values because the 
conditions used a t  the apex are less rigid. For 
small vertex angle the exact solution results may 
be inaccurate because of limitations of the 
DonnelEMushtari theory. The numerical inte- 
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gration method obviously yields frequency Kolman (ref. 5.7) used the Novozhilov theory 
parameters which depend upon K and a! explicitly. and showed that the frequency parameters for 

The Ritz method was used by Gontkevich the axisymmetric (n=O) torsional modes of a 
(ref. 5.3) to obtain extensive numerical results clamped shell having a fixed vertex are the roots 
for clamped coliical shells as shown in figures 5.7. of the equation 
The trial functions used were not given, nor was J1(!2) = 0 (5.20) 
it stated whether the vertex was clamped or free, 
and Poisson's ratio is not known. where !2 = wszdzp(1 +v) /E,  and JI is the Bessel 

function of the first kind. That is, !2 is independent 

In  reference 5.5 the "method of parallel 
springs" (which is equivalent to the Southwell 
method) is demonstrated for a conical shell hav- 
ing a clamped base and vertex and having two 
particular sets of dimensions: CY = 30°, sz = 30 cm., 
h =0.33 mm. and0.71 mm., E = 2.05 X lo6 kg/cm2, 
p = 7.95 X kg.sec2/cm4, and v = 0.30. Circular 
frequencies w are shown for the two thicknesses 
in figure 5.8. Experimental data are also shown. 

a 

FIGURE 5.7.-Con~luded. 
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FIGURE 5.8.-Circular frequencies for a conical shell 
having a clamped base and vertex (dimensions given 
in text). (After ref. 5.5) 

5.2.2 Base Supported by a Shear Diaphragm 

The boundary conditions at the base of a 
conical shell supported by a shear diaphragm are 
(see figs. 5.1 and 5.2) 

where M ,  is the meridional moment resultant. 
Strangely, this problem has no known solution in 
the literature of free vibrations. 

Kolman (ref. 5.7) addressed the problem of the 
complete conical shell having a fixed vertex and 
a base supported by hinges. Only axisymmetric 
motion was considered. In  this case the boundary 

, conditions are 
I 

u=w=M,=O at s=sn (5.22) 

I The finite difference method was used to solve 
I the problem. Various solutions were obtained 

using the conventional finite difference repre- 
sentations for derivatives; e.g., 

Results for lowest frequency parameters and 
mode shapes of a shell having s2/h=400 and 
cu =30° are shown in figure 5.9. The three parts of 
the figure correspond to solutions using four, six, 
and eight meridional divisions in the finite dif- 
ference grid. Figure 5.9 also shows that the mode 
shapes change considerably as the number of grid 
subdivisions is increased. The mode shape for the 
third frequency arising from the eight subdivi- 
sion solution is depicted in figure 5.10. The fre- 
quency parameter in this case was found to be 

os22/2p(l+ v)/E = 2.37, whereas for four sub- 
divisions the value found was 3.52. 

In reference 5.7 improved accuracy results were 

FIGURE 5.9.-Lowest axisymmetric frequency parameters 
and mode shapes for a complete, conical shell having a 
fixed vertex and u =w = M. =O at the base. (After ref, 
5.7) 

b 

FIGURE 5.10.-Third axisymmetric frequency parameter 
and mode shape for a complete conical shell having a 
fixed vertex and u =w =Ma =O at the base. (After ref. 
6.7) 

also obtained using second approximation finite 
difference formulas; e.g., 
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A six subdivision solution for the problem compared with figure 5.9. Some results obtained 
described above was obtained using this ap- by this improved method for shells having other 
preach. The resulting frequency parameter and s2/h ratios and semivertex angles a are displayed 
mode shape is shown in figure 5.11, and can be in figure 5.12. As pointed out in reference 5.7 

the free vibration mode shapes differ sharply from 
%.,/-= 2 03 the deflection curves of the same shells loaded by 

uniform static pressure, and that the frequency 
parameters approach the true values from either 
above or below as more subdivisions are used, 
depending upon sz/h and a. 

Miller and Hart (ref. 5.15) obtained results for 
a particular conical shell having ar = 15040f, 

6 h =0.0983 in., and s2 =36.4 in. as a limiting case 
of their studies of eigenvalue densities for SD-SD 

FIGURE 5.11.-Lowest frequency parameter and mode truncated conical shells. Constant values of the shape from a second approximation difference method. 
(After ref. 5.7) frequency parameter Q ~ = o s ~ ~ / P / E  are plotted 

in figure 5.13, where m.lrsz/(s2-sS and n/sin a 
ws, .J2w=2 16 are the nondimensional meridional and circum- 

ferential wave numbers used as coordinates. For 
further discussion of the basis for this figure see : 

FIGURE 5.12.-Lowest axisymmetric frequency parame- 
ters and mode shapes for complete conical shells having FIGURE 5.13.-Frequency parameter curves in k-space 
fixed vertices and u =w =Me -0 at the base. (After for a complete conical shell supported at its base by a 

shear diaphragm. (After ref. 5.15) 
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meot functions used in reference 5.15 satisfy SD 1 aM8e 
conditions at  the vertex and only approximate 

v8=&8+-  s sin a - 80 (5.26) 

the free vertex conditions (5.12). 
and Sue is the shear resultant given by 

5.2.3 Free Base Mae 
S8e=N8e+- 

The boundary conditions for a complete conical s tan a 

shell having a free base are (see figs. 5.1 and 5.2) (see set. 

N8=S8e=V.=M.=0  at s=sz  (5.25) Dreher and Leissa (refs. 5.11 and 5.12) used 
the exact solution procedure described in section 

where V8 is the Kelvin-Kirchhoff shear defined by 5.2 involving expansion of the displacements in 

TABLE 5.5.-Frequency Parameters 3i2 = u2rZ2p/E for the Azisymmetric 
(n = 0 )  Modes of a Completely Free Conical Shell; v =0.3 

Mode number 
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terms of power series to study the axisymmetric 
(n = 0) free vibrations. The Donnell-Mushtari 
shell theory was used. Frequency parameters 
ii2=w2r2zp/E were obtained for the first eight 
axisymmetric modes for v = 0.3 and over a wide 
range of the stiffness parameter 

Numerical results are given in table 5.5 and 
figure 5.14 in the case where the vertex is free. 

Bordoni (ref. 5.16) made experimental meas- 
urement of vibration frequencies on conical shells 
made of paper, as in the case of loudspeaker 
diaphragms. The shells were made with various 
types of seams, as shown in figure 5.15, in order 
to consider the asymmetry of the vibration modes 
due to the lap joint seams. One set of experiments 
was conducted to determine the effect of apex 
angle a upon the frequencies, keeping the shell 
thickness h and base radius R2 constant. The 
results are summarized by figure 5.16; i.e., it was 
found that the frequencies did not vary with the 

FIGURE 5.14.-Frequency parameter 8 2  versus stiffness 
parameter K for the axisymmetric (n=O) modes of a 
completely free conical shell. (After ref. 5.12) 

apex angle. The implication of this statement is 
that the complete conical shell having a fixed 
vertex and a free base undergoes purely inexten- 
sional motion and behaves essentially like a free 
circular plate. This is contrary to the experience 
of McLachlnn (ref. 5.17) who found thefrequency 
of a certain cone to be 5.1 times greater than that 
of a corresponding disk. Bordoni also found that 
the shell frequencies were proportional to the 
thickness h and the ratio (E/p)'I2, and were 

FIGURE 5.15.-Different types of seams. (After ref. 5.16) 

APEX ANGLE .a 

FIGURE 5.16.-Eigenfrequencies of paper cones of same 
radius and thickness, for different apex angles; n =  
number of nodal diameters. (After ref. 5.16) 
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inversely proportional to the square of the base reproduced in table 5.6 for values of q from 1 to 
radius. 50. The mode shapes associated with the first 

The free vibration of a complete conical shell three frequencies for the case q = 10 are shown in 
having a free base was also investigated in refer- figure 5.17, where u/sin a is plotted to show the 
ences 5.3 and 5.18. variation of the displacement with s/sz. The 

torsional modes of a clamped-clamped conical 
5.3 FRUSTUM OF A CONE shell were also studied in reference 5.20 where the 

Consider next the case where the conical shell 
has two boundaries located at s = sl and s = sz, the 
associated radii of the bounding circles being RI 
and Rz, respectively (see fig. 5.1). In  the case of 
circular cylindrical shells (see sec. 2.4), 136 com- 
binations of "simple" boundary conditions yield- 
ing distinct problems exist. However, because for 
conical shells there is symmetry with respect to 
the axial mid-plane (s = (sl+s2)/2), there exist 
(16)z=256 distinct types of problems. As in the 
case of circular cylindrical shells, most of the 
results have been obtained for the nine types 

effects of shear deformation and rotary inertia 
were included (see sec. 5.9.2). 

The meridional axisymmetric modes of 
clamped-clamped conical shells were investigated 
by Keefe (ref. 5.21). I t  was assumed that dur- 
ing meridional motion the cross sections of 
the cone remain plane and that motion occurs 
only in the meridional direction s; i.e., w=O. 
This, of course, is an approximation. The actual 
motion would require coupling between u and 
w displacements. The following characteristic 
equation was derived: 

- - 
arising when each edge is either damped, sup- JO(VQZ) yo(a2) = JO(Q~) Y o(q~z)  (5.30) 
ported by a shear diaphragm, or free. where t = sz/sl= RdRi 

5.3.1 Both Ends Clamped as before, and 

The boundary conditions for the both ends 
clamped problem are given by (see fig. 5.1) 

Garnet, Goldberg, and Salerno (ref. 5.19) con- 
sidered the axisymmetric motions of a clamped- 
damped conical shell and showed that, as in the 
case of a circular cylindrical shell (see sec. 2.2) 
the torsional modes uncouple from the bending 
modes. The Novoshilov (see chapter 1) shell 
equations were used and the torsional oscillations 
were examined in detail. It was shown that the 
frequency parameters are the roots of the char- 
acteristic equation 

where a1 = WSIP/G= 2 ~ ~ 1 ( 1 +  v)P/E 

J1 = Bessel function of the first kind 

Y1 = Bessel function of the second kind 

Note that Ql does not depend upon the semivertex FI,, 5.17.-Torsional mode shapes of a clamped- 
angle a. The first five roots of equation (5.29) are clamped conical shell. (After ref. 5.19) 
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TABLE 5.6.-First Five Roots of Equation (6.29) for the Axzsymmetric 
Torsional Vibrations of a Clamped-Clamped Conical Shell 

kin procedure to obtain approximate solutions 
for the clamped-clamped conical shell. Vibrating 5.3.2 ~ l ~ ~ ~ ~ d - ~ h ~ ~ ~  Diaphragm 
beam functions (see sec. 2.4) were used as trial 
functions for the displacements. Numerical The boundary conditions for this problem are: 
results were produced for a shell having the fol- at  the clamped edge (8 =&), 
lowing parameters : a = 10' and B/h = 30, where 
ii is the average radius (i.e., ii = (Rl+Rz)/2). u=v=w=-=o dw 

as 
(5.31) 

These are shown in figure 5.19 for n =  6. In this 

q 

1.0 
1.1 
1.2 
1 .3  
1.4 
1.5 
1.6 

1.8 

2.0 
2.5 
3.0 
3.5 
4.0 

5 3.389 6.445 9.541 12.657 15.782 

6 3.432 6.482 9.572 12.682 15.802 
8 3.498 6.546 9.626 12.728 15.842 

10 3.547 6.598 9.673 12.770 15.879 
12 3.583 6.639 9.714 12.807 15.913 
14 3.611 6.674 9.749 12.840 15.943 
18 3.634 6.704 9.780 12.870 15.971 
18 3.652 6.728 9.806 12.896 15.997 
20 3.667 6.749 9.830 12.920 16.020 

25 3.696 6.790 9.88 12.97 16.07 
30 3.717 6.820 9.91 13.01 16.11 
35 3.732 6.844 9.94 13.04 , 16.14 
40 3.743 6.861 9.96 13.06 16.17 
45 3.752 6.875 9.98 13.09 16.19 
50 3.760 6.887 9.99 13.10 16.21 

(v - 11% 

First root 

3.1416 
3.1427 
3.1455 
3.1498 
3.1550 
3.1609 
3.1675 

3.182 

3.197 
3.235 
3.271 
3.305 
3.336 

Second root 

6.2832 
6.2837 
6.2852 
6.2873 
6.2900 
6.2931 
6.2965 

6.304 

6.312 
6.335 
6.357 
6.381 
6.403 

Third root 

9.4248 
9.4251 
9.4261 
9.4275 
9.4293 
9.4314 
9.4337 

9.439 

9.444 
9.460 
9.476 
9.493 
9.509 

Fourth root 

12.5664 
12.5666 
12.5674 
12.5684 
12.5698 
12.5713 
12.5731 

12.577 

12.581 
12.593 
12.605 
12.619 
12.631 

Fifth root 

15.7080 
15.7082 
15.7088 
15.7096 
15.7107 
15.7119 
15.7133 

15.716 

15.720 
15.729 
15.739 
15.750 
15.760 
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FIGURE 5.18.-Frequency parameters for the axisym- 
metric meridional motion of a clamped-clamped conical 
shell. (After ref. 5.21) 

FIGURE 5.19.-Frequency parameters for clamped- 
clamped . conical shells; ar = lo0, . R / h  = 30. (After ref. 
5.22) 

and at  the edge supported by a shear diaphragm 
(s = sz), 

N,=v=w= M,=O (5.32) 

This assumes that the smaller radius is clamped 
and the larger one is supported by shear dia- 
phragms. The opposite set of boundary conditions 
(j.e., SD-clamped) is a distinct class of problems. 

The only known work dealing with this prob- 
lem is that of Saunders, Wisniewski, and Paslay 
(ref. 5.26) which used Love's equations and the 
Ritz method to study the case when the smaller 
radius R1 is clamped and the larger one Rz is 
supported by a shear diaphragm. A solution 
function for w was chosen as 

w = C1[x3 - ( ~ x ~ + x ~ ) x ~  
+x1(x1+2xz)x -x12xz] cos no 
+Cz[x4 - ( ~ x ~ ~ + ~ x ~ x ~ + x ~ ~ )  x2 
+ ~ x ~ ( x ~ + x Z ) ~ X  

- X ~ X Z ~ ( ~ X ~ + X Z ) ]  cos no (5.33) 

where x is the axial coordinate, as shown in 
figure 5.2, and XI and x2 are the boundary values 
of x at  the radii R= RI and Rz, respectively. 
This choice of w satisfies the geometric boundary 
conditions involving w in equations (5.31) and 
(5.32). The remaining displacements u and v are 
chosen so that the meridional and circumferential 
strains are zero. The resulting frequency equa- 
tion is quite complicated (although reproduced 
in ref. 5.26). Numerical results were given 
for a shell having a= 14'33', XI=  16.57 in., 
x2=25.63 in., h=0.50 in., and the material 
properties of annealed copper. Frequencies (cps) 

803 L/ I I I I 
2 3 4 5 6 

n 

FIGURE 5.20.-Cyclic ftequencies for a clamped-SD 
shell; dimensions in text. (After ref. 5.26) 
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are shown in figure 5.20 for various numbers of 
circumferential waves n. 

Unlike the case of a clamped-SD circular 
cylindrical shell (see sec, 2.4.2), no information 
can be gleaned from the higher modes of a 
clamped-clamped shell. Nodal circles (i.e., cir- 
cles having the conditions of equation (5.32)) do 
not exist for the conical shell because of the lack 
of symmetry with respect to the plane 

5.3.3 Both Ends Supported by Shear Diaphragms 

The boundary conditions for this problem are 

Assuming solutions for the displacements in the 
form of equations (5.14), the boundary condi- 
tions can be satisfied by various choices of u,, 
u,, and w,, while the equations of motion can be 
approximated by, for example, the Ritz or Galer- 
kin procedures (both procedures are equivalent 
in this problem if the u,, on, wn satisfy. all the 
boundary conditions). Numerous .authors follow 
procedures of this type to obtain approximate 
solutions. In  such cases, the frequency param- 
etsrs obtained are u18per bounds on the true 
frequency parameters. 

Lindholm and Hu (refs. 5.27 and 5.28) did an 
extensive study of the problem. A set of shell 
equations derked by Hu (ref. 5.29) was used 
along with the Galerkin procedure. The shell 
equations included the effects of shear deforma- 
tion and rotary inertia in the meridional direction, 
but neglected these effects in the circumferential 
direction. The resulting theory is supposed to be 
particularly applicable to short shells and small 
circumferential wave numbers (ref. 5.29) and has 
the interesting feature of requiring only an eighth 
order set of equations of motion, rather than a 
tenth order set as in conventional shear deforma- 
tion theory. Although shear deformation and 
rotary inertia are partially accounted for, the 
numerical results obtained in references 5.27 and 
5.28 will be discussed because: (1) the theory is of 
the eighth order, (2) the shells used as numerical 
examples are not particularly short, nor is the 
study limited to small n, and (3) this study serves 
as a basis for comparison with other authors later. 

In references 5.27 and 5.28 the displacement 
components are assumed to take the form 

Ml 

m?rZ 
vn = C B, sin 7 (5.35b) 

mr3 
wn= Ccm sin (5.35~) 

for use in equations (5.14), where 5 and L are 
dimensionless lengths defined by 

In addition the rotation of the normal to the 
middle surface in the direction of s can be pre- 
scribed independently as 

+ ED. cos y)] cos no cos at (5.37) 

in the shell theory used. 
Theoretical and experimental results were 

obtained in references 5.27 and 5.28 for four 
models made of steel shimstock and having 
the geometric parameters shown in table 5.7. 
Poisson's ratio was taken as 0.3. The upper limits 
of the summations used in equations (5.35) and 

TABLE 5.7.-Geometric Parameters for Four 

-- 

Conical Shells 

Model 
number 

1 
2 
3 
4 

a, 
degrees 

14.2 
30.2 
45.1 
60.5 

Rz, 
in. 

6.07 
7.95 
8.96 

10.00 

2 
s, 

2.23 
2.27 
2.25 
2.25 

- h 
R2 

0.00166 
.00127 
.00112 
.00101 
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(5.36) depend upon the accuracy required, but 
typically MI = 4 ,  M'z = 4 ,  M 3  = 5,  M = 6 ,  which 
yields a characteristic determinant of order 21. 
For large values of n (24 to 28))  a determinant of 
order 28 was required. 

Numerical results for the four shell models 
described in table 5.7 are depicted in figures 5.21 
through 5.24. The divergence between experiment 
and theory is ascribed in references 5.27 and 5.28 
to the difficulty in duplicating the theoretical 
boundary conditions and due to the finite trunca- 

tions of the displacement function series. In  
figure 5.23 (a =45.1°) two theoretical curves are 
shown. The dashed curve is for a shell having 
added meridional constraint ( u  = 0) at the bound- 
aries. These figures show that for each axial wave 
number m the minimum frequency occurs for 
some relatively large value of n ( > 5 ) .  This was 
also seen previously in chapter 2 for circular 
cylindrical shells. 

Mode shapes (w displacements) for the four 
shell models are depicted in figures 5.25 through 

EXPERIMENT 0 0 

THEORY - 

a 1 14.2 DEGREES 
re/ 6 ,  - 2.23 

h/Ra = 0.00166 
R p  6.07 IN. 

m AXIAL MWE NUMBER 

o~~~~~~~~~~~~~~~~~~~~~~~ 5 ClRcuMFERENTlAL 10 15 WAVE NUMBER - eo n 2 5  

FIGURE 5.22.-Frequencies 
of an SD-SD conical 
shell; model 2. (After ref. 
5.27) 

FIGURE 5.21.-Frequencies 
of an SD-SD conical 
shell; model 1. (After ref. 
5.27) 

EXPERIMENT 0 0 

THEORY - 

0 = 302  DEGREES 
4e/st = 2.27 

h /R. = 0.00127 
I) -7e. i  IN . . . . - - . . . . 

m = AXIAL MODE NUMBER 

O A 1 " l l ' l l l l l l l l t " l l l l l l l l l l l l  5 10 15 2 0  2 5  
CIRCUMFERENTIAL WAVE NUMBER - n 
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EXPERIMENT 0 0 0 

THEORY { NO MERIDIONAL CONSTRAINT - 
AXIALLY CONSTRAINED -- 

0 

0 . 45.1 OEGREES 
r d r ,  = 2.25 

hlR.. 0.00112 
4- 8.96 IN. 

m = AXIAL MODE NUMBER 

0 . 45.1 OEGREES 
r d r ,  = 2.25 

hlR.. 0.00112 
4- 8.96 IN. 

m = AXIAL MODE NUMBER 

O ! l l " l l l l ' l l . l l l l " l l I 1 l l l l l l l l  5 10 I5 2 0  2 5  
CIRCUMFERENTIAL WAVE NUMBER - n 

FIGURE 5.24.-Frequencies 
of an SD-SD conical 
shell; model 4. (After ref. 
5.27) 

FIGURE 5.23.-Frequencies 
of an SD-SD conical 
shell; model 3. (After ref. 
5.27) 

EXPERIMENT o o 
THEORY - 

h l R *  - 0.00101 
R. - 10.0 IN. 

m * AXIAL MODE NUMBER 

O ~ l ' l l l l l l l l l l l l l l l t t l l l l l I 1 l l l  6 10 15 2 0  25  
CIRCUMFERENTIAL WAVE NUMBER - n 

5.28. The most striking feature of the axial mode 
shape is its strong dependence on the circum- 
ferential wave number n. This is seen in figures 
5.26, 5.27(a), 5.27(b), and 5.28 for m=l,  and 
figure 5.27(c) for m =2. In each case the position 
of maximum displacement (antinode) shifts to- 
wards the large end of the shell (R = RS as n 
increases. The suppression of normal displace- 
ment near the small end of the conical shell at  
large values of n is due to the short distance 
between nodal meridians in this region. The 

curvatures and stresses in this region, however, 
are not necessarily small. 

Observe that for a given mode (n = 8, m = 1) 
the maximum theoretical displacement moves in 
the direction of one end as a changes (as shown in 
figures 5.25,5.26, 5.27(ajJ and 5.28). The negative 
deflections indicated for some of the theoretical 
curves of figures 5.25 through 5.28 are an indic* 
tion of numerical inaccuracy due to a lack of 
terms in the series for w (eq. (5.354). Finally, 
note that the experimental mode shapes found in 
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0.8 
O W 
E' 
-t 4 

g 0.4 
0 Z 

I 

z 
2 0 + 
Y 
Y 

$-0.4 a = 14.2 DEGREES 

s.1 s, = 2.23 
n - CIRCUMFERENTIAL WAVE NUMBER 

m = AXIAL MODE NUMBER -0.8 

FIGURE 5.25.-Mode shapes for an 
SD-SD conical shell; model 1. 
(After ref. 5.27) 

FIGURE 5.26.-M.ode shapes for an -0.2 I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
SD-SD conical shell; model 2. S- s1 

(After ref. 5.27) 
- 

se- S i  
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EXPERIMENT -O- 
THEORY - 

a 45 1 DEGREES 
e e l s , =  2 2 5  

n = CIRCUMFERENTIAL WAVE NUMBER 
m = mIAL MODE NUMBER 

EXPERIMENT -O- 
THEORY - 

o = 45.1 DEGREES 
sl/s, = 2.25 

n = CIRCUMFERENTIAL WAVE NUMBER 
m AXIAL MODE NUMBER 

5 - 5 ,  - 
se- SI 

FIGURE 5.27.-Mode shapes for an 
SD-SD conical shell; model 3. (After 
ref. 5.27) (a) n = 8 ,  n=18; m = l .  (b) 
n=12,  n = l 6 ;  n = 1 .  (c) n=12, n=18; 
m = 2. 

s - s ,  - 
s*-s1 
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1.2 I I I I I I I I FIGURE 5.28.-Mode shapes for an 
SD-SD conical shell; model 4. 

EXPERIMENT -0- 

1.0 - THEORY - 

0 
W N 

i 0.8 - 
a 
H 

' \  
0 z 

the investigations of references 5.27 and 5.28 
always consisted of parallel circles and equispaced 
meridians as predicted by the theory. 

The influence of apex angle a upon the fre- 
quency parameter was also investigated theoreti- 
cally in references 5.27 and 5.28. The full range 
of a from 0" (circular cylindrical shell) to 90" 
(circular flat plate) was considered, as shown in 
figure 5.29. At the extreme angles of 0" and 90°, 
8* increases monotonically with n, while at 
intermediate angles the relationrihip is more 
complicated. 

Herrman and Mirsky (ref. 5.30) also used the 

(After ref. 5.27) 

FIGURE 5.29.-Theoretical frequency 
parameter Q* versus or for an SD-SD 
conical shell. (After ref. 5.27) 

Ritz method to analyze the free vibrations of 
SDSD conical shells. Displacement functions of 
the form 

un = A. sin (F) 

wn = C. cos (F) J 
were assumed (see fig. 5.2), where S is the meridi- 
onal coordinate having its origin at  s = (sl+sz)/2 

n = CIRCUMFERENTIAL WAVE NUMBER 
AXIAL MODE W B E R  = I 

I .  

o r  Ib ;o 3'0' ;o 5'0 $0 ; O w %  
a - DEGREES 
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(i.e., beginning at the midpoint of the generator). are depicted in figures 5.30 through 5.32. The 
The resulting characteristic determinant for the frequencies are independent of h/E. For short 
frequency parameters is given in detail in shells the frequency ratio is decreased to values 
reference 5.30, but it is too lengthy to bear less than unity as a increases, whereas unity is 
repetition here. exceeded for long shells and is strongly dependent 

Numerical results were obtained in reference upon a!. The same type of dependence is seen in 
5.30 for three semivertex angles -a = 5', 10') the curves of figure 5.33, which is for the lowest 
and 15". Two thickness to mean radius ratios frequency of the n = l  ("beam-like") modes. 
(2h/(Rl+Rz)) were considered: 1/30 and 1/100. For the lowest frequencies of the n = 2 modes, 
Other parameters were varied over the intervals w/wo becomes dependent upon the h/R ratio, 
OSn16  and 1_<2Z/(R1+ Rz) 110. Frequency as seen in figure 5.34. A thinner shell is influ- 
data were presented as the ratio of the frequency enced more strongly by a! than a thicker shell. 
of a conical shell o to that of the circular cylin- Figure 3.35 illustrates the influence of n on w/oo 
drical shell wo having the same length 1, thickness as a function of a! for the lowest. mode. Here, 
h, and mean radius 8 = (RI+ Rz)/2. Frequency 1/E = 7 and h/R = 1/100. Finally, figure 5.36 
ratios for the three axisymmetric (n=O) modes shows the influence of a! upon the three modes 

13 - 

- 

L2 - 

- 

I I  - 

I  I  I I 
0 1 2 3 4 5 6 7 8 9 1 0  

Eli i  

FIGURE 5.30.-Ratio of frequency of conical to cylindrical FIGURE 5.32.-Ratio of frequency of 
shell; clamped-clamped BC; n = 0, lowest non-torsional shell; clamped-clamped BC; n = 0, 
frequency. (After ref. 5.30) 

13 - 

- 

12 - 
T C R W L  FREQUENCY 

n=O 

II - 

- 

0 1 2 3 4 5 6 7 8 9 1 0  

P / R  e l R  

FIGURE 5.31.-Ratio of frequency of conica1,to cylindrical FIGURE 5.33.-Ratio of frequency of conical to cylindrical 
shell; clamped-clamped BC; n= 0, torsional frequency. shell; clamped-clamped BC; n= 1, lowest frequency. 
(After ref. 5.30) (After ref. 5.30) 
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LOWEST FREWENCY 

FIGURE 5.34.-Ratio of frequency of conical to cylindrical 
shell; clamped-clamped BC; n=2, lowest frequency. 
(Afterxef. 5.30) 

LOWEST FREQUENCY 

100 

FIGURE 5.35.-Effect of a and n on frequency ratio; 
1/12 =7, 1/R = 1/100. (After ref. 5.30) 

FIGURE 5.36.-Comparison of effects on frequency ratio 
for three modes; n =  3, a = 10". (After ref. 5.30) 

for representative values of n = 3 and a = 10". 
The influence is much stronger for the lowest 
mode and weakest for the highest mode. 

Weingarten (ref. 5.31) also used the Galerkin 
method with the Donnell-Mushtari shell equa- 
tions and assumed displacement functions in 
tha form of power series. Numerical results were 
evaluated and compared with experiment for two 
shells made of 1020 steel and having thicknesses 
of 0.020 in. and 0.040 in. The remaining dimen- 
sions were : a = 20°, RI = 2 in., s2 - sl = 8-3/8 in. 
Theoretical and experimental frequencies for the 
two shell thicknesses and for 1, 2, and 3 axial 
half-waves m are exhibited in figures 5.37 and 
5.38, respectively. In  these figures theoretical 
results are also given for an "equivalentJ' circular 

THEORY EXPERIMENTAL 
CONICAL %ELL SYMBOL MODE , EQUIVALENT CYLINDRICAL Q 

A 2 

NUMBER OF CIRCUMFERENTIAL WAVES (n  

FIGURE 5.37.-Theoretical and experimental frequencies 
for an SD-SD conical shell; h= 0.020 in. (After ref. 
5.31) 

EXPERIMENTAL 
CONICAL SHELL 
EWIVALENT CYLINDRICAL 2 

I 
m=2 

1 0  I I I I I 
2 4 6 8 10 12 14 16 18 

NUMBER OF CIRCUMFERENTIAL WAVES L n ) 

FIGURE 5.38.-Theoretical and experimental frequencies 
for an SD-SD conical shell; h=0.040 in. (After ref. 
5.31) 
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FIGURE 5.39.-Mode shapes of an S D S D  conical 
shell; h = 0.040 in. (After ref. 5.31) 

cylindrical shell; these frequencies are consider- 
ably in error as n becomes large. Typical mode 
shapes for the normalized deflection w are shown 
in figure 5.39 for the thicker shell (h=0.020 in.), 
where the shift of maximum amplitude towards 
the large end of the shell as n increases is clearly 
seen. 

Grigolyuk (ref. 5.32) also used the Ritz 
method with displacement functions of the form 

m?r(s- sl) 
un= AnRP cos 

8 2  - s1 

m ~ ( s  - sl) 
ern = Bn R2 sin I (5.39) 

82 - s1 

m?r(s-sl) 
wn = CnR2 sin 

82-81 

(see figs. 5.1 and 5.2). The resulting frequency 
equation is given in detail.iri reference 5.32 but, 
because of its length it will not be repeated here. 
Frequency parameters 

for the fundamental (lowest) modes of vibration 
are listed in table 5.8 for-various values of a and 
h/Rz. Table 5.9 lists the circumferential wave 
numbers n at which the minimum frequencies of 
table 5.8 occur. All results are for m= 1 and 

v = 0.3. Grigolyuk (ref. 5.32) also suggested that 
S D S D  shells having small conicity ( a 1  15O) can 
be adequately represented for purposes of calcu- 
lation by circular cylindrical shells having radii 
equal to the average radius (i.e., = (R1+R2)/2) 
of the conical shells. However, as was seen earlier 
(figs. 5.30 through 5.36), this is not necessarily 
the case. 

Godzevich (ref. 5.33) used the Donnell-Mush- 
tari shell equations with the Galerkin method 
and displacement functions of the type given by 
equations (5.39) with R2 replaced by unity. An 
explicit equation for frequency parameters of 
SD-SD conical shells was derived: 

where 

+am(l+-?$)['h(l sin a 6 -@13) 

--(I -PI) 
2am I 

and where 81 = sl/sz and am = m?rs2/(s2 - sl). 
Miller and Hart (ref. 5.15) studied the density 

of eigenvalues of the S D S D  conical shell. Eigen- 
value density is essentially the density of the 
frequencies with respect to frequency and is 
therefore an indication of the spacing of the fre- 
quencies in the frequency spectrum. Equations 



TABLE 5.8.-Lowest ~reauencv Parameters o ( s l - s 1 ) d ~ ( 2  - v2) / E  for SD-SD Conical Shells; rn = 1 ,  v = 0.3 

6 = 90 --a, 
degrees 

0.03 1 0.02 1 0.015 



C
O

N
IC

A
L

 
SH

E
L

L
S 



358 VIBRATION OF SHELLS 

(5.40) and (5.41) developed by Godzevich and 
discussed above served as one equation deter- 
mining a "hispace" for the eigenvalues. The two 
coordinates chosen for the k-space were kl and kz, 
defined as 

That is, kl and kz are dimensionless wave num- 
bers in the s and 0 directions. By using the 
nondimensional frequency parameter 

equation (5.40) can be written in terms of the 
parameters kl, kz, and Q4. Curves for constant 
values of Q4 in terms of the kl, kz coordinate 

system for a=16", h=0.0983 in., s~=36.4 in., 
and sl= 7.8 in. are shown in figure 5.40. 

In reference 5.15 comparisons were also made 
between the theoretical frequencies arising from 
equations (5.40) and (5.41) and experimental 
frequencies given earlier in this section. Com- 
parisons with Weingarten's (ref. 5.31) data are 
seen in figures 5.41 and 5.42. Comparisons with 
the results of Lindholm and Hu (refs. 5.27 and 
5.28) are seen in figures 5.43 and 5.44. Note that 
sz-sl was taken as 8.00 in. -for figures 5.41 and 
5.42 in reference 5.15, whereas sz-sl was given 
as 8.375 in. in reference 5.31, as noted previously 
in this section. 

Experimental results for SDSD conical shells 
were also given in references 5.34 and 5.35. 

m7rs 
k . 2  
I sZ-sI FIGURE 5.42.-Comparison of theoretical and experi- 

mental frequencies for an SDSD conical shell; a = 20°, 
FIGURE 5.40.-Frequency parameter curves in k-space ~n=14.14 in., s1=6.14 in., h=0.020 in., 1020 steel. 

for an SDSD conical shell. (After ref. 5.15) (After ref. 5.15) 

FIGURE 5.41.-Comparison of theoretical and experi- 
mental frequencies for an SD-SD conical shell; = 20°, 
82-14.14 in., a-6.14 in., h=0.040 in., 1020 steel. 
(After ref. 5.15) 
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d free at the other has received much treat- 
ment in the literature because of its widespread 
use in such practical designs as loudspeaker cones 
(cf., ref. 5.17, 5.53, and 5.54). This practical 
application also accounts for the fact that the 
majority of the references deal with the instance 
where the small end is the clamped one and the 
large end is free. ~ s s u & ~  this case, the boundary 
conditions are 

aw 
u=v=w=-=0 at s=sl  (5.44a) 

as 
Comparison of theoretical and experi- 
encies for an SD75D conical shell; a = Ns =Sse = vb = = O  at s =s2 (5.44b) 
.7 in., sl=6.94 in., h=0.01 in., steel shim 

(see sec. 5.2.3 for elaboration on free edge bound- 
ary conditions). 

Dreher (ref. 5.11) used the exact solution 

2 0  

I S -  

!l l o -  

- - 
0 5 -  

- TIECAETIW (GCOZEYD1 HXIMUL9I) procedure described in section 5.2 involving 
- expansion of the displacements in terms of power 

series to study the axisymmetric (n=O) free 
vibrations. The Donnell-Mushtari shell theory 
was used. Frequency parameters S-i2 = wzrZzp/E 
were obtained for the first four axisymmetric 
modes for v =0.3 and over a wide range of the 
stiffness parameter K = 12(1- v2)(r2/h) z/tanz a. 
Numerical results for 81/82 =0.1, 0.2,0.3,0.4, and 

0 0 ' ~ ' ~ ' 6 " ' " " " ' " ' 1  8 ° K )  E 14 16 18 217 0.5 are given in figure 5.45 (s = sl is clamped, and 
s = s2 is free). The lowest axisymmetric frequency 

FIGURE 5.44.-Comparison of theoretical and experi- is given in figure 5.46 for 0.1<sl/s210.8. Note 
mental frequencies for an SDSD conical shell; a= that for the choice of stiffness ~arameter K, 
45.1°, sl = 12.7 in., sl ;= 5.61 in., h = 0.01 in., steel shim does not depend explicitly upon a. For compari- 
stock. (After ref. 5.15) son, results were also obtained in reference 5.11 

using Kalnins' (ref. 5.14) numerical integration 

Axisymmetric modes were investigated by scheme for shells of revolution. Differences 

Hartung and Loden (ref. 5.24) using a finite between the values of S-i computed by the two 

element representation. Extensive numerical methods were all found to be less than 1 percent. 

values of frequency parameters were plotted for The power series method was also used by 

a = 5O, 45O, 60°, and 84' with B/h = 20 and 500 Goldberg (ref. 5.55)' for axisymmetric problems. 

(B = (Ri+Rz)/2). Numerical results were found for a particular 

Axisymmetric modes were also examined in clamped-free shell having a = 60°, h = 0.025 in., 

references 5.6 and 5.36. Finite differences were E = 150,000 psi, v = 0.25, p = 3 X 1W6 in. s e ~ ~ / i n . ~ ,  

used in reference 5.25. Considerable information RI = 2 in. (clamped), and Rz = 5 in. (free). The 

on the free vibrations of S D S D  conical shells is first three frequencies and mode shapes obtained 

available in reference 5.37. Other works dealing are exhibited in figure 5.47 where the amplitudes 

with this problem include references 5.3, 5.23, are normalized with respect to the free end merid- 

and 5.38 through 5.52. ional displacement of the shell. These data were 
also subsequently checked by anumerical integra- 

5.3.4 Clamped-Free tion method in references 5.56 and 5.57, yielding 
frequencies of 1072, 1315, and 1611 cps, com- 

The case of a conical shell clamped at one end pared with the frequencies of 1071, 1315, and 



F~aum 5.45.-Frequency parameter H2 versus stiiness parameter K for the axisymmetric (n =0) modes of a clamped- 
free conical shell (After ref. 5.11). (a) ~l/~a=0.1.  (b) sl/sa=0.2. (c) sl/s,=0.3. (d) sl/s2=0.4. (el sl/sz=0.5. 
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FIGURE 5.46.-ksymmetric frequency parameters of 
clamped-free conical shells for various s ~ / s a  ratios. 
(After ref. 5.11) 
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INNER EDGE OUTER EDGE 

FIGURE 5.47.-Lowest three frequencies and mode shapes 
for the axisymmetric (n=O) modes of a clamped-free 
conical shell; a =60°. (After ref. 5.55) (a) f =I071 cps. 
(b) f =I315 cps. (c) f =I610 cps. 

n 
% 2 0  
E 
3 0 

lo 

0 10 LL 

I 
5 

2 0  

INNER EDGE 

3 

INNER EDGE - OUTER EDGE - 
- ,g 2 0  

- 
B 
5 

1071 cps 
0 

- 
1315 cps 

lo - 

u 

0 . -  0 

- n '0- 
(L a 
B 
I 

1 I I I I I 2 0  I I I I I I 

OUTER EDGE 



CONICAL SHELLS 363 

1610 cps given in figure 5.47. Kalnins (ref. 5.14) tensional frequency parameters are determined 
subsequently used his numerical integration separately and are simply added to obtain an 
method to duplicate these frequencies within approximation for the true frequency parameters; 
0.1 percent accuracy. He also duplicated the i.e., 
mode shapes for all practical purposes. as2 = (Qs2)~ + (%')I (5.46) 

The meridional axisymmetric modes of 
clamped-free shells having either the small or where Qs is defined by 

large end clamped were investigated by Keefe 
(ref. 5.21), resulting in the following character- 

p(1- v2) 
= wl(&)dE (5.47) 

istic equation when the small end is fixed 

Jo(qQz) YI(Qz) = J1(Q2) Yo(qQz) (5.45a) 

and when the small end is free 

Jl(qQz) Yo(Qz) = Jo(Qz) Yi(qQz) (5.45b) 

(see discussion in sec. 5.3.1). The first four roots 
of equations (5.45a) and (5.45b) are plotted 
versus the ratio R1/R2 in figures 5.48 and 5.49, 
respectively. 

The axisymmetric free vibrations of clamped- 
free conical shells were also analyzed in references 
5.24, 5.54, 5.58, 5.59, and 5.60. 

The general modes of damped-free shells were 
investigated by Platus (refs. 5.61; 5.62, and 5.63). 
The procedure followed was similar to that of 
Saunders, Wisniewski, and Paslay (ref. 5.26)) 
whereby the extensional (membrane) and inex- 

and (Q5)B and (Q5)r are the corresponding exten- 
sional and inextensional frequency parameters, 
respectively. This approximation is based upon 
the postulate that the kinetic energy is approxi- 
mately the same for the extensional and inex- 
tensional cases (i.e., the mode shapes are 
approximately the same). Hence, because the 
total strain energy is the sum of the exten- 
sional and inextensional components, Rayleigh's 
Quotient yields equation (5.46). 

The inextensional vibrations are characterized 
by the condition that the middle surface strains 
are zero; i.e., 

s=ee=e.e=ees=0 (5.48) 

By choosing displacement functions u,, u,, and 
w, for equations (5.14) in the form 

FIGURE 5.48.-Frequency parameters for the axisymmet- FIGURE 5.4Q.-&equency parameters for the axisymmet- 
ric meridiond motion of a clamped-free (small end ric meridional motion of a clamped-free (Zarge end 
clamped) conical shell. (After ref. d.21) clamped) conical shell. (After ref. 5.21) 



VIBRATION O F  SHELLS 

R1 cos a I 

where X I  is measured from the smaller end of the 
shell as shown in figure 5.2, equations (5.48) are 
satisfied, in addition to the clamped edge condi- 
tion, w=O at x l=0 (ref. 5.61). However, the 
other three boundary conditions of the clamped 
edge given in equations (5.44a) are not satisfied. 
Using equations (5.49), and equating the maxi- 

, mum potential and kinetic energies gives for the 
inextensional frequency (ref. 5.61) 

where 

1 
K3= 1+- tan a (5.51~) 

R1 

As shown in equation (5.50) the inextensional 
frequencies are directly proportional to the shell 
thickness and approximately inversely propor- 
tional to the square of the radius. 

Equation (5.50) was evaluated in reference 
5.61 for a = O O  (cylinder), 15", and 30" and for 
1/R1=2, 4, and 6. The results are presented in 
figure 5.50 in terms of the nondimensional fre- 
quency parameter fh2, where 

The extensional (membrane) vibrations were 
analyzed in reference 5.61 by assuming poly- 
nomial forms for the displacements in terms of 
the coordinate XI, 

to use in equations (5.14), where the Ai, Bi, and 
Ci are undetermined coefficients to be selected by 
the Rita procedure. As shown in figure 5.51 all 
inertia terms were retained and results were 
obtained to complement the previously given 
inextensional results. The dependence of fre- 
quency upon the number of terms N retained in 
each of the polynomials (5.53) is exhibited in 
table 5.10. The value of N was taken at six for 
the results shown in figures 5.51. The coefficients 
of the characteristic determinant resulting from 
taking N = 6 are given in detail in reference 5.63. 

In  reference 5.61 vibration frequencies were 
also obtained experimentally for three clamped- 
free. conical shells and compared with results 
derived from the superposition of extensional and 
inextensional theoretical frequencies, as in equa- 
tion (5.46). These comparisons are made in figure 
5.52. Figure 5.52(a) and (b) illustrate the effect 
of shell thickness on the location of the minimum 
frequency. Because only the shell thickness is 
different between the two figures, the extensional 
frequen6ies are the same, whereas the inexten- 
sional frequencies are 60 percent lower for 
h =0.006 in. This shifts the minimum frequency 
to a higher circumferential wave number n for 
the thinner shell. 

An earlier paper using a procedure similar to 
that of references 5.61, 5.62, and 5.63 was written 
by Saunders, Wisniewski, and Paslay (ref. 5.26). 
However, in the latter reference the assumed 



M I I I I I I I I I I I I  
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

CIRCUMFERENTIAL WAVE NUMBER, n 

FIGURE 5.50.-Inextensional frequency p a r a m e t e r s  for 
clamped-free conical shells. (After ref. 5.61) (a) 1/R1= 
2. (b) l/Rx =4. (c) 1/R1=6.% 

(b) 
I 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

CIRCUMFERENTIAL WAVE NUMBER, n 
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I , , , I I I I , I I , Fran~~5.51.-Extensiond(membme)frequencypa- 
'0-41 2 3 4 5 6 7 8 9 10 1 1  12 rameters for clamped-free conical shells. (After ref. 

(b) n 5.61) (a) ~ / R I  = 2. (b) Z/RI -4. (0) 1/Re =6. 
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FIGURE 5.52.-Comparison of experimental and theo- 
retical cyclic frequencies for a clamped-free conical 
shell. (After ref. 5.61) (a) h = 0.006 in. (b) h = 0.010 in. 
(c) h = 0.026 in. 
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0.16353 0.054484 
.I6202 .053756 
.I6138 .053439 
.I6105 .053361 

5.2357 X lo-' 3.4466 x lo-' 1.0327 X lo-* 
5. 1130X10-4 3.2524 X lo-' ............... 
5.0854 X lo-' 3.2150 X lo-& ............... 
5.0587 XIO-' 3.1909 X lo-' ............... 

1.2158 .3 1436 
1.1118 .27314 

.25627 
1.0533 .24824 

5.4981 X lo-' 4.2593 X 1.9230 X lo-' 
3.2717 X lo-' 1.0826 X lo-' 

............... 5.4093XlO-* 3.1385 X 
5.4001 X lo-' 3.1129X10-4 . . . . . . . . . . . . I . . .  

2.9482 .92050 
2.1900 .61074 

,48824 
1.8105 .43014 

5.5106 X lo-' 7.4946 X lo-' 5.6632 X 
5.4483 X lo-' 3.9215X10-4 2.1094 X 10-4 
5.4261 X lo-' 3.1483 X 1.2701 X lo-' 

............... 5.4162 X lo-' 2.9396 X10-4 

mode shapes were chosen with less sophistication 
and few numerical results were presented for 
clamped-free shells. 

The theoretical methods of references 5.61, 
5.62, and 5.63 were also compared with experi- 
ment by Watkins and Clary (refs. 5.64 and 5.65) 
for clamped-free shells (small end clamped) hav- 
ing a = 3.2", 7.4O, 14.0°, and 24.0"; l/R1= 3.0 (see 
fig. 5.2); h=0.007 in.; and R1=14 in. This com- 
parison is seen in figure 5.53. Comparison with 
theoretical results for an "equivalent" cir- 
cular cylindrical shell (i.e., having a radius 
iE= (R1+R2)/2) is available in figure 5.54. 
Observe here that the equivalent cylindrical shell 
model is highly inaccurate except for very small 
apex half-angl& (i.e., a = 3.2"). 

Weingarten (ref. 5.3 1) made experimental 
investigations of clamped-free conical shells hav- 

ing either the large end or the small end clamped. 
Frequencies for a steel shell having a=20°, 
s~ - sl= 8.25 in., and h = 0.40 in. can be compared 
between the two cases in table 5.11 for longitudi- 
nal half-wave numbers m of 1 and 2, although the 
radius at the small end BI was apparently dif- 
ferent in the two cases, according to reference 
5.31. Comparing the two cases when either the 
large end or the small end is damped, the follow- 
ing observations can be made from table 5.11: 

(1) Clamping the large radius provides more 
constraint (higher frequencies) than clamping the 
small end. 

(2) This difference becomes less important as 
m increases. 

An extensive numerical study of the clamped- 
free (small end clamped) conical shell having an 
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0 L 2 I a 
NUMBER OF CIRCUMFERENTIAL WAVES, n 

FIGURE 5.53.-Comparison of theoretical and experi- 
mental frequency parameters for a clamped-free 
conical shell. (After ref. 5.64) 

O L k  Ib Ih 14 :6 :8 

NUMBER OF CIRCUMFERENTIAL WAVES, n 

FIGURE 5.54.-Comparison o f  calculated ''equivalent 
circular cylindrical shell" frequency parameters with 
experiment for a clamped-free conical shell. (After ref. 
5.64) 

apex half-angle of a=60°, sz-sl=24.3 in., 
h=0.025 in., E = IOX 106 psi., v =0.315, and 
p = 2.54 X lod4 1b.sec2/in4 was made by Adelman, 
Catherines, and Walton (ref. 5.66) using the 
finite element method. The meridional length 
was divided into 10 finite shell elements. Mode 
shapes for each of the three frequencies arising 
for n=2  and m=2, 3, 4, 5, 6 are depicted in 
figures 5.55, 5.56, and 5.57, respectively, where 

TABLE 5.11 .-Experimental Frequencies for a 
Clamped-free Conical Shell (dimensions given 
in text) 

a R1 =2.0 in. 
R1= 2.13 in. 
Two values listed in reference 5.31. -. r - 

7 - 3  

the abscissa is normalized to (s-sl)/(sz-sl) and 
the normalized amplitudes u/um,, v/v,,, and 
w/wm, are plotted. 

The free vibrations of clamped-free conical 
shells were also analyzed by the finite element 
method in reference 5.67. The finite difference 
method was used in references 5.25 and 5.68. 

Various types of boundary conditions repre- 
senting clamped-free edges, but differing slightly 
from those of equations (5.44) are used in the 
free vibration problem in reference 5.69. This 
analysis will be discussed in section 5.3.7. 

Other works dealing with the free vibrations 
of clamped-free conical shells include references 
5.22, 5.23, 5.53, 5.70, 5.71, and 5.72. 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

5.3.5 Shear Diaphragm-Free 

m =2  

The boundary conditions for a conical shell 
supported by a shear diaphragm at the small end 
(for example) and free at the large end are 

m = 1 

Large 
radius 

clamped a 

...... 
2078 
1658 
1814 
2133 
2415 
2695 
3005 

...... 
3775 

Little data exist in the literature dealing with 
the free vibrations of SD-free conical shells. 

This problem has received historical attention 
in the development and the application of the 
inextensional theory. Strutt (ref. 5.72) applied 

Large 
radius 

clamped a 

421 
"459-623 

878 
1096 
1287 
1530 
1829 
2172 
2551 

....... 

Small 
radius 

clamped 

........ 

........ 
1328 
1171 

........ 
1533 
1841 
2192 

........ 

........ 

Small 
radius 

clamped 

........ 
272 
342 
487 
667 
873 

1106 
O 1376-1379 

1681 
........ 
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FIGURE 5.55.-Mode shapes for the lowest frequency of a 
clamped-free conical shell; a =60°, n =2. (After ref. 
5.66) (a) m =2. (b) m =3. (c) m =4. (d) m =5. (e) m =6. 

u,,=31.993 

0 5  0 5  '"[A 

FIGURE 5.56.-Mode shapes for the second frequency of a 
damped-free conical shell; a=60°, n=2. (After ref. 
5.66) (a) m =2. (b) m =3. (c) m =4. (d) m =5. (e) m =6. 
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 FIGURE^ 5.57.-Mode shapes for the highest frequency of a 
clamped-free conical shell; CY =60°, n =2. (After ref. 
5.66) (a) m =2. @) m=4. (c) m =5. (d) m =6. 
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RayleighJs (ref. 5.73) inextensional theory to ob- 
tain theoretical results. At the same time (1933), 
Van Urk and Hut (ref. 5.74) conducted experi- 
ments in a conical shell having the same bound- 
ary conditions. Federhofer (ref. 5.10) also 
analyzed the problem using the inextensional 
theory. 

One of the principal difficulties with the inex- 
tensional theory is that of the two restraint con- 
ditions at  the SD end, only w=O is satisfied, 
whereas v = O  is not satisfied. This can cause 
considerable error in results, particularly for 
small circumferential wave numbers. 

The use of inextensional theory for part of the 
analysis was demonstrated in section 5.3.4. Thus, 
equation (5.50) can be used directly for the 
SD-free shell, particularly for large values of n. 

Van Urk and Hut (ref. 5.74) conducted two 
sets of experiments. For both sets the outer 
radius (Rl= 8.80 cm.) and the apex half-angle 
(a = 57.5") were kept constant. In  the first set 
the inner radius was fixed at R2 = 2.45 cm. and 
frequencies were measured for shell thicknesses 
of h=0.020, 0.0114, 0.0078, 0.0064, and 0.0042 
cm. as shown by the dashed lines in figure 5.58. 

l o ~ ~ l l l l l l l ' l l l  
1 2 3 4 5 6 7 8 9 D l l ~  

CIRCUMFEREWIAL WAVE tW&€R.n 

FIGURE 5.58.-F'requencies for SD-free conical 
shells (dimensions in text). (After ref. 5.74) 

FIGURB 5.59.-Frequencies for SD-free conical 
shells (dimensions in text). (After ref. 5.74) 

The solid lines in figure 5.58 show the calculated 
values of the frequency according to the inex- 
tensional theory. In  the second set of experi- 
ments, h was kept at  0.0114 cm. and results were 
obtained for shells having R1=0, 2.45, 3.9, and 
5.3 cm. These are depicted in figure 5.59. 

Weingarten and Gelman (ref. 5.69) used the 
Sanders shell equatiolis in finite difference form 
and showed the variation in the longitudinal . 

mode shapes with n for the SD-free shell. The 
change in normalized displacements u, v, and w 
as n increases from 2 to 4 is seen in figure 5.60 
for the case when the small end is free and the 
large end is supported by a shear diaphragm. 
The mode shapes for n=2  essentially duplicate :..-, - I 

the inextensional theory. The change in mode , , 
shape for w for l l n l l O  is depicted in figure k 

5.61. Unfortunately, the dimensions of the shells . 1 
upon which figures 5.60 and 5.61 are based are 

I 

not given in reference 5.69. Note that a mode 
shape is shown in figure 5.61 for n= 1, and that 
it corresponds to m = 2. 

Free vibrations of SD-free conical shells are I 

also discussed in reference 5.31. 
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shell, the middle surface of a conical shell having 
both ends free is mathematically capable of 
deforming inextensionally. 

04 
(INEXTENSOWL1 Hu, Gormley, and Lindholm (ref. 5.76) used 

02 the inextensional displacement functions 

SMALL END LARGE END 

un = A sin a cos a 

+n=4 : :: 
Vn= A+B- ncosa  

! 04 (IN€YTENSIW) ( 8",> 
Z 

(5.56) 

02 

w, = A (n2 - sin2 a) + Bn2- 
08- [ 8 2  

Fran~n 6.61.-Normal displacement mode shapes 
for an SD-free conical shell. (After ref. 5.69) 

06 

5.3.6 Free-Free 

The boundary conditions for this case are 

N,=S,e=V,,=IM,=O a t  s=sl,sz (5.55) 

n=2 ONMTENSKYUIV) 

This problem has received long and care- 
ful attention in the literature of shell vibra- 
tions. Rayleigh (refs. 5.73 and 5.75) in 1881 
demonstrated his inextensional shell theory on 
this example. Strutt (ref. 5.72) in 1933 and 
Federhofer (ref. 5.10) in 1938 also analyzed 
this case with the inextensional theory. Sub- 
sequent writers have used inextensional, mem- 
brane, and bending theories to analyze this 
problem, as will be seen below. The inextensional 
theory of shells is particularly applicable for 
this case because, as in the case of the cylindrical 

D is the flexural rigidity (D = Eh3/12(1 - v3), and 

"I  

(see figs. 5.1 and 5.2 for the dimensions used 
above). 

Extensive tabular results were given in refer- 
ence 5.76 for the two roots 812 (which are both 
positive) arising from solving equation (5.57). 
The parameters 81 are repeated in table 5.12. 
The frequency parameter 8 7  depends mainly upon 
sl/s2 and becomes independent of a and n for 
large values of n. However, the inextensional 

04 

to define the longitudinal variation in equations 
- kni4 (5.14). The Rita method was used to arrive at  the 

I , I , , , I !  I I 
0 1  0 2 0 3  04 05 06 07 OB 09 10 characteristic equation 

FREE END H I N G ~  DVD 

(~11~22 - c12~)87*- ( C I I ~ Z Z + C ~ ~ ~ I I  -2c12d12)G2 
FIQURB 5.60.-Comparison of mode shapes for an + (diid22-d12~) = O  (5.57) 

SD-free conical shell. (After ref. 5.69) 
where 812 is the nondimensional frequency 
parameter defined by 
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TABLE 5.12.-Inextensionat Frequency Parameters Q7 (Defined by Eq. (5.58)) for Free-Free Conical Shells-Concluded 

a, degree 

I I 8e 15 , 30 45 I 60 75 I ' .  90 
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theory becomes highly inaccurate for large n. 
The location of the nodal circle (i.e., where 
w =0) for a particular frequency parameter f17 is 
given by (ref. 5.76) 

Calculations for flee-free shells were also made 
by Hu (ref. 5.29) by means of the membrane 
theory. The Galerkin procedure was used with 
solution functions in terms of trigonometric 
functions of s leading to an infinite determinant, 
the elements of which are, given in detail in 
reference 5.29. Extensive results were obtained 
with truncated determinants retaining 11 terms. 
Figure 5.62 shows the dependency of the fre- 
quency parameter Ct"=w~2l/p( l -~~)/E upon 
thebemivertex angle a for axisymmetric modes 
(n = 0) and for sz/sl = 2.0. It was found that, for 
a> 1.5" the frequencies appear as two groups, cor- 

7 

6 

5 

L-LONGITUDINAL 
4 T-TRANSVERSE 

3 

2 

I 

0 
O0 60" 90" 

SEMI-VERTEX ANGLE a 

FIQURE 5.62.-Membrane frequency parameters for axi- 
symmetric (n =0) modes of free-free conical shells; 
ss/sl =2.0. (After ref. 5.29) 

responding to longitudinal and transverse modes, 
with the frequencies of the longitudinal modes 
always being greater than those of the transverse 
modes. However, for a<15" the modes are cou- 
pled. Figure 5.63 describes similar results for 
sz/sl=4.0, for which strong coupling of modes 
occurs for 0 <a<45". 

Note in figures 5.62 and 5.63 that, while the 
frequency parameters of longitudinal modes 
extend to infinity, those of transverse modes are 
spaced in a finite interval shown by the shaded 
region. This result is the limiting case when the 
shell thickness tends to zero, as required for 
membrane theory. For real shells with finite 
bending rigidity, the frequencies of higher trans- 
verse modes are expected to be significantly 
increased. The curves labeled "R" in figures 5.62 
and 5.63 are the so-called "ring modes." For 
this type of mode the entire shell vibrates with- 
out a nodal circle and uniform circumferential 

T-TRMISVF- ( ' / R-RING 

 FIGURE^ 5.63.-Membrane frequency parameters for axi- 
symmetric (n=O) modes of freefree conical shells; 
s2/s1 14.0. (After ref. 5.29) . " ,  
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(or "hoop") stress is the predominant type of 
membrane stress present. 

Dependence of the frequency parameter upon 
the length ratio sz/sl is shown in figure 5.64 for 
a= 15". Extensive results are also available in 
reference 5.29 showing the variation of the mem- 
brane force resultants with s while executing free 
vibration modes. 

Hu, Gormley, and Lindholm (refs. 5.76 and 
5.77) also made experimental measurements of 
frequencies of free-free conical shells made of 
0.010 in. steel shimstock. Data were taken on 
four experimental models as described by table 
5.13. Variation of the frequency with the circum- 

TABLE 5.13.-Dimensions of Four Shell Models 

L- LONGITUDINAL 
T- TRANSVERSE 
R- RING 

Model 
number 

1 
2 
3 
4 

F I G U ~  5.64.wMernbrane frequency parameters for axi- 
symmetric (n =0) modes of free-free conical shells; 
CY = 15O. (After ref. 5.29) 

ferential wave number n is shown by the data 
points of figures 5.65 for the four models. For 
m = 1 the experimental data points form a smooth 
curve which is essentially parabolic in shape. 
However, the curves for m = 2 and m = 3 are more 
complicated in shape. 

In  addition, the following semiempirical for- 
mula for frequency parameters was derived 
in reference 5.76 based upon inextensional 
deformation : 

a, 
degrees 

14.2 
30.2 
45.1 
60.5 

where k = h2/12R12. Frequencies obtained from 
equation (5.61) are also plotted in figures 5.65 as 
solid curves, yielding excellent agreement with 
the experiment. 

Experimental mode shapes for the four models 
of table 5.13 were also measured in references 5.76 
and 5.77. Because the mode shapes for the four 
shells were similar, only the results for model 
2 (a = 45. lo) were presented. Circumferential 
mode shapes were found to vary sinusoidally, as 
predicted by theory. Figure 5.66 and 5.67 show 
the normalized transverse mode shapes along a 
generator for m= 1 and 2, respectively. I n  figure 
5.66 the transverse displacement is essentially 
linear for n = 2 to 10, as assumed by Rayleigh's 
inextensional theory. The nodal circle is near the 
small end of the conical shell for small values of n, 
but gradually shifts towards the middle as n in- 
creases. However, as n increases from 10 to 1 
drastic change in the mode shape occurs. 
generator changes to a curved form with 
creased motion near the smaller end of the shell. 

In  figure 5.67 a similar mapping of mode 
shapes is shown for m = 2. Note that the number 
of nodal circles does not increase from one to two, 
as might be expected. Rather, the mode shapes 
resemble those of figure 5.66, except that the 
nodal circles now occur nearer the large end of 
the shell. Again, in the vicinity of n= 10 to 12 
the generator begins to deviate from a nearly 
straight line into a reverse curve. This transition 
is reflected on the frequency plots of figure 
5.65(c) where the slope of the a*-n curve 
abruptly changes. This indicates that the new 
mode shape formed during this transition has a 
slightly lower energy level than the corresponding 
inextensional modes. 

5 
8, 

2.23 
2,27 
2.25 
2.25 

- h 
RZ 

0.00166 
.00127 
.00112 
.00101 

Rz, 
111. 

6.07 
7.95 
8.96 

10.00 
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FI~URE 5.65.-Experimentally determined frequencies for free-free conical shells. (After ref. 5.77) 
(a) Model 1, a=14.2". (b) Model 2, cu=30.2". (c) Model 3, cu=45.1°. (d) Model 4, a =60.5O. 
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FIQURE 5.66.-Normalized mode shapes for the trans- 
verse displacements of a free-free conical shell; m = 1. 
(After refs. 5.76 and 5.77) 
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FIGURE 5.67.-Normalized inode shapes for the trans- 
verse displacements of a free-free conical shell; m =2. 
(After refs. 5.76 and 5.77) 



In 1964 Watkins and Clary (refs. 5.64 and 
5.65) presented the results of an experimental 
investigation on free-free conical shells which 
were the subject of considerable subsequent dis- 
cussion by other writers. Tests were conducted 
on four stainless steel models, described in table 
5.14, made with 5/32  in. overlapped, spotwelded, 
longitudinal seams. They found that at higher 
frequencies there were a greater number of cir- 
cumferential waves at the larger end than at the 
smaller end. The difference in the number of 
waves increases as the frequencies increased and 
also as the apex angle a! increased. The difference 
ranged from one to five waves for the frequency 
range covered in the investigation, as shown in 
figure 5.68. 

A 0 - 
o m=I 

A D A RESPONSE AT R, 
RESPONSE ATR, - 0 

(b) NUMBER OF CIRCUMFERENTIAL WAVES, n 

TABLE 5.14.-Dimensions of Four Different Shell 
Models (see figs. 6.1 and 6.2) 

0 m=O 
A RESPONSE AT f?, 

Model 
number 

1 
2 
3 
4 D RESPONSE ATR, 

I I I I I I 
0 2 4 6 8 1 0  

(c) NUMBER OFCIRCUMFERENTIAL WAVES, n 

a, 
degrees 

3.2 
7.4 
14.0 
24.0 

0 
- 0 m=l 

A A RESPONSE ATR, 

0 
RESPONSE AT R, 

- 
0 

A 
o m = O  
A RESPONSE AT R, - A 0 
0 RESPONSE ATR, 

A 0 

.hl m. 

0.007 
.007 
.007 
.007 

NUMBER OF CIRCUMFERENTIAL WAVES, n 

FIQURE 5.68.-Experimental frequencies for freefree conical shells. (After ref. 5.64) (a) Model 1, a =3.29 
(b) Model 2, a =7.4". ( 0 )  Model 3, a = 14.0". (d) Model 4, a =24.0°. 

R21 
in. 

14 
14 
14 
14 

I m. 

36 
30 
24 
18 

El, 
in. --- 
12 
10 
8 
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Figure 5.69 shows typical nodal patterns ob- 
served for model 3 with six and eight circum- 
ferential waves at  the smaller and larger ends, 
respectively. Two shakers tended to excite asym- 
metrical nodal patterns, while a nodal pattern 
from a single shaker tended to be symmetric, as 
shown. 

The behavior observed by Watkins and Clary 
was discussed by Hu (ref. 5.78) and by Koval 
(ref. 5.79). Hu thought that the difference in 
circumferential wave number at  the two ends 
was due to the location of the shakers. Koval 

suggested the anamoly might be the result of 
dynamic asymmetries due to the lap joint method 
of model fabrication. This problem received fur- 
ther study by Mixson (refs. 5.80, 5.81, and 5.82) 
who tested five additional shell models, three 
having butt-welded seams and two having lapped 
seams. He found that the location of the shaker 
did indeed cause mixed modes in some cases, but 
that the effect of seams was even moreimportant. 
The method of suspension was also found to be 
significant in determining coupling between the 
modes having different circumferential wave 
numbers. 

Naumann (ref. 5.83) analyzed the free-free 
case using the Ritz method with power series in 
the meridional direction to approximate the 
mode shapes. Results were obtained for shells 
made of aluminum 0.0635 cm thick and having 
cu = 60" and RI /R~  = 1/8. These are depicted in 
figure 5.70, where the inextensional frequenby is 
also shown. Corresponding mode shapes for the 

(a) Asylnnetrical nodal pattern. 

(b)  Symmetrical nodal pattern. CIRCUMFERENTIAL WAVES. n 

FIQURH 5.69.-Typical nodal patterns as viewed along 
the longitudinal axis for model 3. (After ref. 5.64) 

FIGURE 5.70.-Frequencies for free-free conical 
shells; a =60°, RI/R2 = 1/8. (After ref. 5.83) 
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transverse deflection are displayed in figure 5.71. 
Frequencies for other R1/R2 ratios are shown in 
figure 5.72. In reference 5.83 extensive numerical 
results were obtained for the experimental mod- 
els of references 5.64, 5.65, 5.76, 5.77, 5.80, 5.81, 
and 5.82 and the agreement obtained with the 
experimental results given in the above references 
is remarkably good. 

Another comprehensive study of the freevibra- 
tions of free-free conical shells was made by 
Krause (ref. 5.84). Analytical investigations were 
made using the Galerkin procedure with meridi- 
onal variations in the displacement functions 
taken as algebraic polynomials. Extensive com- 
parisons were made with references 5.64 and 
5.77. Of particular interest is the study made of 
the difference in circumferential wave number at  
the two ends found experimentally by Watkins 
and Clary (ref. 5.64) and discussed above. Ref- 
erence 5.84 shows that two analytical curves 

giving reasonably close agreement with the exper- 
imental results of reference 5.64 were obtained; 
however, one curve corresponded to modes hav- 
ing m = 1 and the other to modes having m = 2. 
This is seen, for example, in figure 5.73 which 
corresponds to model 3 (a = 14.0') (compare with 
fig. 5.68(c)). Thus, at a given frequency two 
modes can be excited having different values of 
m and ?z and it is hypothesized that the experi- 
mental results of reference 5.64 represent the 
coupling of two such modes. 

Other numerical results for the free vibrations 
of free-free conical shells were obtained by the 
finite element method in reference 5.66, using 
membrane theory in reference 5.58, and experi- 
mentally in reference 5.15. Axisymmetric merid- 
ional motion according to bar theory was 
hypothesized in reference 5.21. Other relevant 
investigations include references 5.3, 5.24, and 
5.85. 

NORMALIZED SHELL SLANT LENGTH CIRCUMFERENTIAL WAVES, n 

FIQURB 5.71.-Mode shapes for transverse displacements FIGURE 5.72.-Effect of length ratio RI/RI upon the 
of free-free conical shells; (u =60°, RI/Rn = 1/8. (After frequencies of free-free conical shells; a = 60". (After 
ref. 5.83) ref. 5.83) 
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4. u=S,~=W=M,=O 
5. u = v = w = aw/as = 0 (clamped) 

FIQURF, 5.73.-Comparison of analytical and experi- 
mental data for free-free conical shells; a- = 14.0". (After 
ref. 5.84) 
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5.3.7 Other Edge Conditions 

- Variation of frequencies with circumferential 
wave number n is shown in figure 5.74 for shells 

- having the same boundary conditions at each end. 
The numbers on the curves correspond to the 

- cases listed above. In figure 5.75 frequencies are 
shown for shells having the large e n d  free and the 
other boundary supported according to one of the 

- 
five conditions listed. A similar plot is made in 
figure 5.76 for those cases having the small e n d  
free. The dimensions of the shell used for the 
theoretical study were not given in reference 5.69; 

- however, comparison of the 1-1 (SDSD) curve 
with a corresponding curve in reference 5.31 

- 
)ExpER~~ENTAL DATA indicates that the shell had a thickness of 

h=0.040 in., the material was steel, and the 

- other dimensions were: a = 20°, RI = 2 in., 
SZ-sl = 8-3/8 in. 

The effect of circumferential restraint v = 0 
- 

upon the free vibrations of conical shells was 
- 

studied by Seide (ref. 5.49) and Cohen (ref. 5.51). ,. . 
- In reference 5.49 the Donndl equations were 

used, neglecting the effects of tangential inertia. 
; I I I I I 

4 6 8 10 12 Solution functions for the displacements were 

A study of the effect of various types of edge 
constraints upon the free vibration frequencies 
of frustums of conical shells was made by 
Weingarten and Gelman (ref. 5.69). The Sanders 
shell theory was used and sinusoidal variation of 
the displacement functions was assumed in the 
circumferential direction, as in equation (5.14). 
The resulting set of ordinary differential equa- 
tions in u,, v,, and w, was then cast into a finite 
difference format. Numerical studies were made 
on shells having boundaries which are either 
completely free or have various degrees of edge 
constraint as indicated in the five cases below: 

CIRCUMFERENTIAL WAVE NUMEER,n taken as trigonometric terms in the meridional 

1. N,=v=w=M,=O (SD) 
2. u=v=w=M,=O 
3. N,=S,e=w=M,=O 

direction, a id  the Galerkin procedure was used. 
Results were obtained for two shells having 
h =0.020 in. and 0.040 in. The shells were made of 
steel and the other dimensions were: a=20°, 
R1=2.13 in., and Ra=4.86 in. Figure 5.77 show$- 

2 4 6 8 

N(CUMFERENl!AL WAVES 

FIGURE 5.74.-Frequencies for conical shells having 
various types of symmetric edge constraints. (After 
ref. 5.69) 
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WERIMEMAL RESULTS 
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n,MMBER CF ClRURlFERENTldL WAVES 

FIGURE 5.77.-Eff ect of circumferential restraint (v = 0 
or S,e=O) upon frequencies of conical shells having 
N. =w = M. =O at the boundaries; h = 0.020 in. (After 
ref. 5.49) 

2 4 6 8 10 

CIRCUMFERENTIAL WAVES 

FIGURE 5.75.-Frequencies for conical shells having the 
lcrrge end free and various types of constraints on the 
other edge. (After ref. 5.69) 
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FIGURE 5.78.-Effect of circumferential restraint (v =O 
or Sac =0) upon frequencies of conical shells having 

I , I I I N, =w =Mi =O at the boundaries; h =0.040 in. (After 
2 4 6 8 

mawEmmwL WwEs ref. 5.49) 

FIGURE 5.76.-Frequencies for conical shells having the 
s m l l  end free and various types of constraints on the N, = w = M, =O for both cases. Figure 5.78 is the 
other edge. (After ref. 5.69) corresponding set of curves for h = 0.040 in. The 

circumferential restraint is very important. When 
analytical and experimental frequencies for the n is equal to 2, for instance, the frequency for 
0.020 in. thick shell having two types of boundary S,O = 0 is about half of the frequency for v =O. 
conditions-either S,e =O or v =&on both ends For n= 1, the ratio of the two is only about one- 
of the shell. The other boundary conditions are to-four. The normal displacement mode shapes 
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for small values of n are considerably different, TABLE 5.15.-Comparison of Frequencies for 
as can be seen from the curves of figure 5.79. Conical Shells With ancl Without Circumferen- 

Gohen (ref. 5.51) also obtained numerical tial Restraint; h = 0.040 in. 
results for Seide's shell model having h = 0.040 in. 
(described in the preceding paragraph). Results 
for frequencies and mode shapes of the first three 
modes arising for n = 1 and 2 are shown in figures 
5.80 and 5.81, respectively, for the case when 
SSs = 0 on the edges. In  table 5.15 the frequencies 
are compared for the cases when either S,e = O  
or v = O .  The differences are attributed to two 
factors: 

(1) The Donnell-Mushtari shell equations, 
which give poor results for n = l  and 2 (cf., 
chapter 2), were used in reference 5.49. 

(2) Tangential inertia, which is very important 
for n =  1 (cf., chapter 2), was neglected in refer- 
ence 5.49. 

A comparison of the effects of various types of 
boundary conditions was also made by Kolman 
(ref. 5.25). The Novozhilov shell equations were aw 
used and solved by the finite difference method. (1) u=v=w=--=o at  S=SI ,SZ  

as 
Frequencies were obtained for three shells having 
a=30°, 450J and 60° and all having sz/s1=5, (2) u=v=w=M 8 -  -0 at  s=s l  
8 = (R1+R2)/2 =O.Olh, v =0.3, and having the u=v=w=--=o aw at  s =sz 
following types of edge conditions: as 

Minimum frequency parameters 

Boundary 
condition 

S,e=O 

v=o 

and the values of n at  which they occur (in 
parentheses) are displayed in table 5.16. The 
effects of lessening constraint as one moves from 

1 

- 

2 

1 

- 

2 

n=A cases one to five is clearly seen in the table. 
In reference 5.3 a general procedure is exhib- 

ited which accommodates conical shells having 
n =4 n = 8  arbitrary boundary conditions. A characteristic 

equation is obtained by the Ritz method and is 
F ~ a n ~ m  5.79.J@fecb of circumferential restraid (v =O) presented. the of 

upon the normal displacement mode shapes of a conical the characteristic determinant include 17 inte- 
shell. (After ref. 5.49) grals involving the products of displacement 

Difference, % 

42.5 
125.6 

9 . 2  

11.3 
15.9 
5 . 8  

18.8 
31.0 

8.3 

12.8 
4 . 9  
1 .9  

Frequency, cps 

Ref. 5.51 

1091 
1364 
6212 

1279 
2442 
5259 

4624 
4934 
6494 

2433 
5096 
6178 

Ref. 5.49 

1555 
3077 
6781 

1424 
2830 
5566 

5495 
6465 
7032 

2744 
5344 
6295 
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a =I091 cps 
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(a) MERIDIONAL DISTANCE FROM SMALL END ( i d  (a) MERIDIONAL DISTANCE FROM SMALL END (inJ 

(b) MERIDIONAL DISTANCE FROM SMALL END (in) (b) MERIDIONAL DISTANCE FROM SMALL END (in) 

a= 5259cps 

I I I I I I I I 
0 1 2 3 4 5 6 7 8  

(C) MERIDIONAL DISTMX:E FROM SMALL END (in) 

FIGURE 5.80.-Frequencies and mode shapes for conical 
shells having N,=S,e=w=M,=O at both ends; n=1. 
(After ref. 5.51) (a) m = l .  (b) m =2.  (c) m =3. 

a=6212cps 
I I I I I I I J 

0 1 2 3 4 5 6 7 8  
6) MERIDIONAL DISTANCE FROM SMALL END ( in.) 

FI~URH 5.81.-Frequencies and mode shapes for conical 
shells having N. =See =w = M. =O at both ends; n =2. 
(After ref. 5.51) (a) m = 1. (b) m =2.  (c) m -3. 
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tA 4. 
8 - 
-, , A 7,3sL .- .-., TABLE 5.16.-Frequency Parameters Qs = os21/p(1 - v2)/E and the Values at Which 

-L>- s a ,-' 'n ?+~?@.~ - 
k f - , , . They Occur (in Parentheses) for Conical Shells Having Various Boundary Conditions 

1 -  -.- 
iRL - . .- - 

functions and their derivatives. No tabular 5.5 ANISOTROPY 

(Y 

60" 
45" 
30" 

values of the integrals are available, thus the 
results given are of limited usefulness. 

The "method of parallel springsJ' (see sec. 
5.2.1) was outlined in reference 5.5 for conical 
shells having arbitrary boundary conditions. A 
method based upon power series displacement 
functions is discussed in reference 5.86. 

Conical shells having elastic supports or rigid 
attached masses at an end are investigated in 
references 5.58, 5.71, 5.87, 5.88, and 5.89. Other 
literature dealing with conical shells having edge 
conditions not discussed in an earlier section 
includes references 5.27, 5.90, and 5.91. 

5.4 OPEN CONICAL SHELLS 

Type of boundary conditions 

An open conical shell is depicted in figure 5.82. 
Strangely, no references have been found which 
deal explicitly with the free vibrations of such 

- - shells. 

1 

0.2829 (5) 
.3542 (5) 
.a092 (5) 

FIGURH 5.82.-Open conical shell. 

However, useful information for open conical 
shells having lateral edges supported by shear 
diaphragms can be gleaned from the results of the 
previous sections in the same manner as for open 
circular cylindrical shells (see secs. 2.8.1 and 
2.8.2 for details). 

As in the case of circular cylindrical shells, no 
free vibration results are available for conical 
shells composed of materials having properties 
which possess genera1 anisotropy. Rather, the 
few results which are available are for the special 
case of orthotropic materials. 

The equations of motion for orthotropic circu- 
lar conical shells are derived in the same manner 
as those for orthotropic circular cylindrical shells 
(see sec. 3.1.1). That is, the orthotropic force and 
moment resultant equations (3.4) through (3.7) 
are used with the equations of motion and gener- 
alized strain-displacement equations from chap- 

2 

0.2821 (5) 
.3536 (5) 
.4091 (5) 

ter 1, where the shell coordinates ar and P are 
replaced by s and 0 for conical shells, respectively, 
and where A, B, R,, and Rg are given by equa- 
tions (5.1). The resulting sets of equations for the 
various shell theories are quite lengthy and will 
not be repeated here. The detailed equations of 
motion of a Donnell-Mushtari type shell theory 
can be found, for example, in references 5.92, 
5.93, and 5.94. The orthotropic form of the 
Novozhilov equations of motion in terms of 
displacements is found in detail in reference 5.95. 

Weingarten (ref. 5.93 and 5.96) used the 
Donnell-Mushtari theory, displacement func- 
tions in the form of power series, and the Galer- 
kin method to investigate conical shells which 
satisfy the bound$ry conditions 

4 

0.2334 (5) 
.2790 (5) 
.3347 (4) 

3 

0.2744 (5) 
.3494 (5) 
.4071 (5) 

at s = s ~ ,  sz, but the usual shear diaphragm 
boundary conditions of v = N, = 0 are replaced 
by elastic support conditions. Numerical results 
for frequency parameters were obtained for 
shells having orthotropic elastic moduli ratios 
of Ee/E8=0.02 and 50. Comparison was also 
made with an "equivalent" cylindrical shell (i.e., 

5 

0.1850 (4) 
.2280 (4) 
.2613 (4) 
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one having a radius R equal to the average 
radius (Rl+R2)/2 of the conical shell) as seen in 
table 5.17. The parameters of the shell described 
by table 5.17 are: a = 20°, Rl= 2.13 in., s2-s = 8 
in., h =0.02 in., and ve = 0. Note that the fre- 
quency parameter 12w2p(l - v8ve)/h2E8 has dimen- 
sions. Table 5.17 shows that the minimum 
frequency predictions of the equivalent cylin- 
drical shell for both values of Ee/E8 are in good 
agreement with those of the conical shell, but 
that at  either low or high values of n the cylin- 
drical representation is inadequate. Extensive 
results are also given in references 5.93 and 5.96 
for ring-stiffened conical shells and experimental 
data are compared with those computed from 
"equivalent orthotropic" analyses. 

Bacon and Bert (ref. 5.39) showed the effect 
of changing the ratio of orthotropic constants 
Ee/E, upon the minimum frequencies of S D S D  
shells. The Ritz method was used with trig- 
onometric functions assumed for the displace- 
ments. Values of the frequency parameter 
2w2s12p(l - v8ve)/E8 versus Ee/E8 are shown in fig- 
ure 5.83 for shells having: a! = 20°, s2/sl= 2.2840, 
l/i?=2.1490 (E = (Rl+ R2)/2), h/i?=0.00466, and 
v8/(l - v8ve) = 0.3. The analysis included shear de- 
formation and rotary inertia effects, but these are 
negligible for the h/i? ratio under consideration. 

Other works giving some attention to ortho- 
tropic S D S D  shells include references 5.38, 5.52, 
and 5.97. 

Conical shells having circumferential stiffeners 
(rings) and longitudinal stiffeners (stringers) were 

Fr~um 5.83.aEffect of changing Ee/E, upon the mini- 
mum frequency parameters of an orthotropic, SD-SD, 
conical shell (dimensions in text). (After ref. 5.39) 

TABLE 5.17.-Frequency Parameters 12w2p(1- v.ue)/h2E. for Orthotropic Conical 
and Equivalent Cylindrical Shells (Dimensions Given in Text) 

I Number of meridional half-waves, m 

Conical shell 

2 3 

38.05 48.15 
18.83 28.35 
7.61 15.56 
5.07 10.85 
6.42 11.78 

10.07 17.10 
15.97 25.84 

lalent cylindric shell 
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analyzed by Crenwelge and Muster (ref. 5.98) 
using an "equivalent orthotropic" shell model. A 
variant of simple support boundary conditions 
given by 

u=S,e=w=M,=O a t  S=SI, sz (5.63) 

was used in the analysis. Numerical results were 
obtained for three aluminum shells having a = lo0, 
R1=3.42 in., R2=5.25 in., sz-s1=10.50 in., 
h = 0.10 in., and various combinations of integral 
rings and stringers. These results will not be 
repeated here because of the detail required to 
describe the determination of the equivalent 
orthotropic constants from the dimensions of the 
shell, rings, and stringers. Comparison of fre- 
quencies with those obtained from experiment 
and those obtained by an analysis which treats 
the stiffeners as discrete elements is also made in 
reference 5.98. 

The clamped-clamped orthotropic conical shell 
is investigated in reference 5.97. The solution 
of the problem having boundary conditions 
u = v  = w = M, = O  is described in reference 5.99, 
but no numerical results are obtained. Ortho- 
tropic conical shells having elastic support con- 
ditions are discussed in reference 5.100. Other 
investigations dealing with the free vibrations of 
orthotropic conical shells include references 5.3, 
5.20, and 5.101. 

5.6 LARGE DISPLACEMENTS 

The effect of large displacements is to add non- 
linear terms to the relationships between the 
membrane strains and the displacements, as was 
seen in equations (3.49) for circular cylindrical 
shells. For circular conical shells, equations (3.49) 
are generalized to (refs. 5.102 and 5.103) 

where B and Rg are the middle surface parame- 
ters given in equations (5.1). 

However, in contrast with the special case of 
cylindrical shells, very little consideration has 

been given to the nonlinear, large amplitude 
vibrations of conical shells. Sun and Lu (refs. 
5.102 and 5.103) investigated postbuckling vibra- 
tions and found that for the boundary conditions 
used (u = v = w = M, = 0 at  s = sl, sz) the nonlinear 
effect was always of the hardening type. Large 
amplitude free vibrations are also discussed in 
references 5.104 and 5.105. 

5.7 INITIAL STRESS 

For an understanding of how initial stresses 
affect the free vibrations of conical shells, review 
section 3.4 which deals with circular cylindrical 
shells. Most of the discussion in that section is 
also relevant to the more general case of conical 
shells. 

As in the case of cylindrical shells (see sec. 
3.4.1)) the equations of motion for conical shells 
can be adjusted to account for initial stresses by 
the addition of simple terms. For example, for a 
Donnell-Mushtari type theory, equations (5.2a) 
and (5.2b) remain unchanged, while equation 
(5.2~) has the terms 

-2 %) 
s2 sin ae 

(cf., refs. 5.92, 5.96, 5.106, and 5.107) added to 
its left-hand side in the case of uniform initial 
force resultants Nd, Neil and N,ei. The term 
(eq. (5.65)) simplifies to the same form as that 
given by equation (3.103) in the case of a cylindri- 
cal shell (i.e., s sin a=R,  s+co). 

Weingarten (ref. 5.106) investigated the case 
of the conical shell frustum subjected to internal 
and external pressures. In  the case of an internal 
pressure p~ the static initial stress field was given 
in reference 5.106 by (correcting an apparent 
misprint) 

gut = - y::tana} - - 

(5.66) 
. B s  

ge'=p~- - tan a 
h 51 

where R =  (Rl+R2)/2, the mean radius, and 
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N,"uSih, Nei=ae%. However, it must be pointed 
out that the stress distributions given by equa- 
tions (5.66) are not those usually accepted as the 
solution for uniform pressure from membrane 
theory; namely (cf., ref. 5.108, p. 97) 

tan 

(5.67) 
. pos 

,,@% = - 
h 

t a n a  J 
where cl is an arbitrary constant determining 
the distribution of the axial end thrust between 
the boundaries at  s = sl and s = SZ. 

In reference 5.106 the Galerkin method was 
used with displacement functions in the form of 
algebraic polynomials to solve the free vibration 
problem for conical shells having w = M ,  =O at  
x = sl, sz. The remaining two boundary conditions 
involve elastic restraints. A Donnell-Mushtari 
type of shell theory was used (i.e., eq. 5.65). 
Numerical results were obtained for an alumi- 
num conical shell having the following dimen- 
sions: a = 20°, R1= 2.144 in., 1 = 8.00 in., and 
h = 0.020 in. (see figs. 5.1 and 5.2). Experimental 
data were also obtained. These are compared in 
table 5.18 for values of po/p,, =0, -0.446, and 
+0.446, where p,, is the critical pressure for 
buckling. Because p,, corresponds to external 
pressure, it is a negative number, and occurs for 
a circumferential wave number n of 6 for this 
particular shell. Thus, negative values of po/pcr 
correspond to internal pressures, and positive 
values correspond to external pressures. In  table 
5.18 results are presented for mode shapes having 
1, 2, and 3 meridional half-waves m. In some 
places in the table, two experimental values listed 
in reference 5.106 have been replaced by a single 
average value. The lack of agreement between 
theoretical and experimental frequencies in table 
5.18 is attributed in reference 5.106 to 

. . 
I ' . i j  

. -  'I. 
L. 

8 - , ' , 5  

(1) The end conditions of the experiment are 
more rigid than those used in the theoretical 
analysis. 

(2) The typically poor analytical results arise 
from a Donnell-Mushtari type shell theory for 
n53.  

However, the second argument would seem spur- 
ious for the l / E  ratio being considered (see the 

comparison of theories for cylindrical shells in 
sec. 2.3.1). 

The numerical results for m = 1 are also plotted 
in figure 5.84. Experimental data are shown by 
discrete points in the figure. As the internal pres- 
sure increases, the circumferential wave number 
n at which the minimum frequency occurs is 
decreased, as was observed for cylindrical shells 
(see sec. 3.4.3). 

A comparison of analytical mode shapes for 
m = 1 and n = 3,6, and 15 is shown in figure 5.85. 
At large values of n, the shell hardly vibrates in 
the vicinity of its small end. The effects of chang- 
ing the pressure parameter po/pcr are also 
observed from figure 5.85. A comparison of 
experimental and analytical mode shapes for 
m = 1 and n = 3 and 14 is made in figure 5.86. 

Goldberg, Bogdanoff, and Alspaugh (refs. 
5.109 and 5.110) demonstrated their general 
numerical integration computer program on the 
problem of the clamped-clamped conical shell 
subjected to pressure. Unfortunately, these ref- 

FIGURE 6.84.-Variation of frequency (cps) with pressure 
parameter po/p,, for a conical shell. (After ref. 5.106) 
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TABLE 5.18.-Theoretical and Experimental Frequencies (cps) for Conical 
Shells Subjected to Internal or External Initial Pressure 

Po - 
Per 

-0.446 

0 

+O .446 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
14 
16 
17 
18 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

m 

Theor. 

2730 
144 1 
862 
609 
569 
651 
771 
912 

1075 
1260 
1466 
1692 
1937 
2203 
2487 
2791 
3113 

2733 
1459 
924 
740 
759 
868 

1004 
1157 
1330 
1523 
1735 
1966 
2216 
2486 
2773 
3080 
3405 

2745 
1488 
988 
851 
904 

1033 
1183 
1348 
1531 
1731 
1950 
2186 
2441 
2713 
3003 
3312 
3628 

Theor. 

6175 
5289 
4259 
3394 
2766 
2377 
2215 
2245 
2379 
2556 
2766 
3008 
3281 
3584 
3919 
4284 
4681 

6175 
5306 
4277 
3423 
2818 
2461 
2336 
2395 
2548 
2740 
2963 
3216 
2497 
3805 
4138 
4496 
4878 

6204 
5314 
4298 
3461 
2876 
2542 
2439 
2515 
2682 
2885 
3118 
3379 
3669 
3987 
4333 
4709 
5114 

= 1 

Exper. 

...... 
1501 
1163 
944 
840 
880 
985 

1130 
1301 

...... 

...... 
1949 
2204 

...... 

...... 

...... 

...... 
1551 
1486 
1182 
1001 
964 

1032 
1160 
1317 

...... 
1689 

...... 

...... 

...... 

...... 

...... 

...... 

...... 

...... 
1489 
1227 
1082 
1060 
1148 
1290 
1461 
1650 

...... 

...... 

...... 

...... 

...... 

...... 

...... 

...... 

m=2 

Theor. 

5323 
3807 
2685 
1973 
1575 
1430 
1470 
1594 
1749 
1931 
2140 
2375 
2634 
2918 
3226 
3558 
3913 

5335 
3816 
2705 
2020 
1661 
1561 
1629 
1776 
1946 
2142 
2462 
2607 
2875 
3166 
3479 
3813 
4169 

5335 
3830 
2736 
2073 
1745 
1675 
1767 
1924 
2106 
2312 
2540 
2793 
3067 
3363 
3680 
4021 
4383 

m=3 

Exper. 

........ 

... -. ... 

........ 
2996 
2930 
2584 
2452 
2438 
2344 
2601 
2883 
3197 

........ 

........ 

........ 

........ 

........ 

........ 

........ 
3980 
3472 
2969 
2635 
2514 
2543 
2694 
2790 
3078 

........ 

........ 

........ 

......,. 

........ 

........ 

........ 

........ 

........ 

........ 
3000 
2692 
2580 

........ 
2793 

........ 

........ 
2930 
3210 

........ 

........ 

........ 

........ 

Exper. 

3100 
...... 

2708 
2180 
1825 
1658 
1708 
1761 
1927 
2121 
2344 

...... 

...... 

...... 

...... 

...... 

...... 

...... 
3047 
2407 
2195 
1862 
1740 
1781 
1915 
2086 
2293 
2424 

...... 

...... 

...... 

...... 

...... 

...... 

...... 

...... 

...... 
2233 
1932 
1822 
1863 
2009 
2198 
2423 

...... 

...... 

...... 

...... 

...... 

...... 

...... 
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F I G U ~  5.85.-Effect of internal pressure and wave 
number n upon mode shapes of a conical shell. (After 
ref. 5.106) 

where T i  is the initial torque; that is, the pre- 
stress varies with inversely proportionality to the 
meridional distance s measured from the vertex. 

Weingarten (ref. 5.107) obtained theoretical 
and experimental frequencies for a conical shell 

FIGURE 5.87.-Mode shapes for a clamped-clamped, 
pressurized conical shell. (After refs. 5.109 and 5.110) 

FIGURE 5.86.-Comparison of theoretical and experi- =I 
mental mode shapes for a pressurized conical shell; 
po/p,,,= -0.446. (After ref. 5.106) 

2500 

i 
l7 A 

erences do not state whether the pressure is inter- 2 0 0 o y  
k 

nal or external. Nevertheless, mode shapes - I 
15 3 

corresponding to n= 2 are reproduced in figure $ / o O ~ ~ o  2 

5.87 for a shell having 

RI = 5 in., R2 = 10 in., 1 = 8.66 in. 

a = 30°, p = 0.00762 slugs/ina 

h = 0.2 in., E = 30 X lo6 psi, and v = 0.3 

The corresponding frequency is f = 718.4 cps. 
The free vibration of conical shells subjected to 

initial pressure is also discussed in reference 5.23. 
In  the case of torsional loading the static pre- VALUE OF ~ 1 5 ,  

stress varies according to 

. N,ei T i  TS FIGURE 5.88.-Theoretical and experimental frequencies 
7,8*=--=-- (5.68) for a conical shell subjected to torsional prestress. 

h % h ~ ~  - %hs2 sin2 a! (After ref. 5.107) 
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subjected to torsional prestress. The Galerkin 5.8.2 Shear Deformation and Rotary Inertia 
procedure and the same boundary conditions 
described .earlier in this section (ref. 5.106) were The effects of shear deformation and rotary 

used. Calculations were made for an aluminum inertia on cylindrical shells were discussed in 

shell having the following dimensions: a = 20°, section 3.5.2; most of the discussion applies to 

R1=2.14 in., sz-sl=8.76 in., and h=O.O16 in. conical shells as well. However, some additional 

Experimental data were also obtained. The work on conical shells has been done. 

results are shown in figure 5.88. The node lines Garnet and Kempner (refs. 5.36 and 5.114) 

(lines of w=O) lie in a helical pattern, as for analyzed the axisymmetric response by means of 

cylindrical shells loaded in torsion (see sec. 3.4.5). a Ritz' procedure. Comparison was made between 

Free vibrations of shallow conical shells sub- two classical shell theories and two shear deforma- 

jected to initial stress are examined in reference tion theories. One type of formulation used was 

5.105. Other works dealing with conical shells that of Love and others whereby the change of 

under initial stress include references 5.4, 5.86, arc length through the thickness is ignored in 

and 5.111. integrating the force and moment resultant equa- 
tions (see sec. 1.5). Another type used was that 

5.8 OTHER EFFECTS of Naghdi (ref. 5.115) (see also the derivation of 

5.8.1 Effects of Surrounding Media 
Fliigge, Byrne, Lur'ye in sec. 1.5) whereby the 
arc length change is included. Disptacement func- 

Very little has been written about the effects tions were taken in the form of trigonometric 
of surrounding media, such air and water, series, M in equations (3.127), to satisfy shear 
upon the free vibration frequencies and mode diaphragm boundary conditions at  both ends of 
shapes of conical shells. In reference 5.112 conical the shell. 
shells having small apex angle a and partially Comparison of lowest ~ s ~ m m e t r i c  frequency 
filled with a liquid are treated by thin-walled parameters Bg = wsldp(1- v 2 ) / ~  according to the 
beam theory. In  reference .5.113 a method of four theory formulations described above is made 
analysis baaed on the membrane theory of shells in table 5.19 for 
is formulated for conical shells partially filled h/E, and l/E (wh 
with a fluid, but no numerical results are given. (R1+R2)/2). The 

TABLE 5.19.-Comparison of Axisymmetric Frequencg Parameter 
for Conical Shells Having Shear Diaphragm 

(X 

5" 

10" 

15" 

20" 

h 
H 

0.05 

.15 

.20 

.10 

Z 5 

R 

0.25 
.375 
.50 

.30 

.50 
1 .0  

.375 
1.0 

.375 

.50 

Shear deformation and rotary inertia 

Included 

Nsghdi 
formulation 

26.188 
15.261 
12.282 

19.792 
9.393 
5.286 

10.572 
3.450 

5.012 
3.453 

Love 
formulatio 

26.233 
15.296 
12.370 

19.862 
9.454 
5.314 5.329 5.360 

10.630 14.171 14.273 
3.478 3.509 3.541 

5.031 
3.469 

5.429 
3.563 

5.451 
3.580 
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and rotary inertia are significant even for the 
thinnest shell used (h/R = 0.05)~ although vir- 
tually no difference occurs between the fre- 
quencies arising from the Naghdi and Love type 
formulations, whether shear deformation and 
rotary are included or not. However, note that all 
the shells described in table 5.19 are relatively 
short (I/R 5 1). The effects of shear deformation 
and rotary inertia were found in reference 5.36 
to be significant only for the relatively short 
shells. This factor is particularly evident in the 
table for the shell having a = lo0, h/B =0.15, and 
l/R of only 0.30. As further found in reference 
5.36 the effect of rotary inertia by itself is insigni- 
ficant for axisymmetric motions. 

The ratio of the frequency obtained when shear 
deformation is neglected (wo) to that when it is 
included (o) as a function of the semivertex angle 
a is depicted in figure 5.89 for a shell having 
h/B =0.20 and Z/R = 0.50. The ratio decreases as 

FIGURE 5.89.-Ratio of frequencies without and with 
shear deformation; h/R =0.20, 1/12 =0.50. (After ref. 
5.36) 

. . 

I I I I I I 
0 0 02 0 04 0.06 0.08 OK) 

h/R 

FIGURE 5.90.-Influence of thickness parameter h/R upon 
the frequency parameter (shear deformation included). 
(After ref. 5.36) 

a increases. The influence of the thickness 
parameter h/R upon the frequency parameter fig 
when shear deformation is included is shown in 
figure 5.90. 

Hu (ref. 5.29) developed a special type of 
transverse shear theory for conical shells wherein 
the transverse shear deformation in the circum- 
ferential direction alone is neglected. This has the 
significant effect of reducing the order of the 
equations of motion from ten to eight. Numerical 
results obtained by Lindholm and Hu (refs. 5.27 
and 5.28) using this theory have already been 
given in section 5.3.3 because the shells analyzed 
were not short; that _isJ the effects of shear 
deformation were small in the numerical examples 
chosen. 

Jain (ref. 5.20) derived a theory for conical 
shells which included the effects of transverse 
normal stress, as well as shear deformation and 
rotary inertia. Only axisymmetric motions were 
considered. Results were obtained for conical 
shells supported by shear diaphragms at both 
ends. A variational procedure was followedusing 
displacement functions which varied sinusoidally 
in the meridional s direction. Numerical results 
are listed in table 5.20 for a = l O O  and 15"; 
l/B =0.25,0.50, and 1.00; h/R =0.05 to 0.30; and 
. v = 0.3. Frequency parameters 

are given for shear deformation theories with and 
without the added transverse normal stress 
effects. The effects of transverse normal stress 
are significant, especially for thick (h/R = 0.30), 
short (1/R =0.25) shells. Also, for short shells the 
number of terms in the displacement functions 
required for adequate numerical convergence is 
small for small 112, a single term being quite 
adequate for parameter ranges used in the table. 

In  reference 5.20 the axisymmetric torsional 
frequencies of clamped-clamped conical shells 
were also investigated, with and without shear 
deformation and rotary inertia effects being con- 
sidered. The frequency digerences obtained be- 
tween the two cases were found to be negligible. 

The effects of shear deformation and rotary 
inertia considerations upon the free vibrations of 
conical shells were also discussed in references 
5.39 and 5.116. 
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TABLE 5.20.-Comparison of ~ r e i u e n c ~  Parameters w s l d p ( l +  v )  (1 - Bv)/E(I - v)  
Shear 

Number 
of terms 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

for 
Stress 

ff 

10" 

Deformation; Transverse Normal 

Transverse 

Neglected 

12.766 
12.775 

20.758 
20.758 

26.011 
26.010 

29.371 
29.371 

31.576 
31.576 

33.073 
33.073 

5.970 
5.969 

7.635 
7.634 

9.407 
9.407 

10.973 
10.972 

12.271 
12.271 

13.323 
13.323 

4.999 
4.997 

5.123 
5.122 

5.312 
5.311 

5.545 
5.543 

5.801 
5.800 

6.064 
6.063 

Axisymmetric 
Either Neglected 

1 - 
R 

0.25 

.50 

1.00 

normal stress 

Included 

12.449 
12.444 

20.049 
20.046 

24.765 
24.763 

27.640 
27.638 

29.453 
29.452 

30.646 
30.645 

5.527 
5.516 

7.241 
7.233 

8.981 
8.974 

10.459 
10.454 

11.645 
11.640 

12.578 
12.574 

4.525 
4.505 

4.658 
4.639 

4.856 
4.838 

5.096 
5.097 

5.354 
5.338 

5.613 
5.598 

Vibrations Including 
or Included 

h - 
R 

0.05 

.10 

.15 

.20 

.25 

.30 

.05 

.10 

.15 

.20 

.25 

.30 

.05 

.10 

.15 

.20 

.25 

.30 
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TABLE 5.20.-Comparison of Frequency Parameters wsldp(l +v) (1 -dv)/E(l- p) 
for Axisymmetric Vibrations Including Shear Deformation; Transverse Normal 
Stress Either Neglected or Included-Concluded 

1 h Transverse normal stress 
(Y 

- - Number 
R R of terms 

Neglected Included 

0.05 1 8.203 7.991 

.10 1 13.341 12.891 

.15 1 16.761 15.970 
.25 

.20 1 18.967 17.863 

.25 1 20.422 19.064 

.30 1 21.415 19.857 

.05 1 3.844 3.556 

.10 1 4.878 4.622 

.15 1 5.992 5.719 
15" .50 

.20 1 6.986 6.660 

.25 1 7.816 7.420 

.30 1 8.493 8.021 

.05 1 3.161 2.861 

.10 1 3.234 2.940 

.15 1 3.346 3.057 
1.00 

.20 1 3.484 3.200 

.25 1 3.638 3.355 

.30 1 3.797 . 3.512 

5.8.3 Nonhomogeneity 

For a discussion of the meaning of nonhomo- 
geneity in shells and how it arises, refer to 
section 3.5.3. 

An excellent collection of papers dealing with 
the free vibrations of sandwich conical shells has 
been written by Bert, Bacon, Ray, Egle, Siu, 
Soder, Azar, and Wilkins (refs. 5.39, and 5.117 
through 5.123). Shells supported at both ends 

' by shear diaphragms were considered in refer- 
ences 5.39, 5.118, and 5.120 through 5.123. Free- 
free shells were treated in references 5.117, 5.119, 

5.120, and 5.123, and clamped-clamped shells in 
references 5.120 and 5.123. Because of the ex- 
tremely large number of parameters which must 
be used to define a sandwich shell, particularly 
when the face sheets are not isotropic, the 
numerous results in the above references will not 
be reproduced here. 

Reference 5.71 deals with conical shells having 
orthotropic material properties which vary in the 
meridional direction. Other investigations into 
the free vibrations of nonhomogeneous conical 
shells include references 5.104, 5.124, and 5.125. 
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Chapter 6 

Spherical and Other Shells 

The circular cylindrical and conical shells con- 
sidered in chapters 2, 3, and 5 are specid cases 
of a class of shells called "shells of revolution." 

A shell of revolution is characterized by a mid- 
dle surface generated by the rotation of a line 
segment about an axis. If the line segment is 
straight a conical surface is generated. If, further, 
the straight line segment is parallel to the axis, 
the surface is circular cylindrical. As in chapters 
2, 3, and 5 the term "closedJJ is used when the 
generator rotates one full revolution about the 
axis and if the proper continuity conditions are 
satisfied along the junction line. When the gen- 
erator rotates less than one full revolution, an 
open shell results. 

I n  addition to the circular cylindrical and 
conical shells already discussed, many other 
shells of revolution exist which have practical 
application; e.g., spherical, ellipsoidal (or spher- 
oidal), paraboloidal, toroidal, hyperboloidal, and 
ogival. 

The literature of free vibrations of spherical 
shells is vast, whereas for other shells of revolu- 
tion, relatively few results are available in the 
literature. However, a number of methods of 
analysis have been developed for general, closed 
shells of revolution and the necessary computer 
programs have been written and are available. 
These methods are largely of three types: (1) 
finite difference, (2) finite element, or (3) numer- 
ical integration. The methods can accommodate 
thickness variation in the meridional direction 
in a routine manner and are often generalized to 
include complicating effects of the type discussed 
in chapter 3. However, the methods are either 
not applicable or involve a great deal more com- 
putational time in the case of open shells of 
revolution, or if the axisymmetric geometry of 
the problem is otherwise disturbed. 

A surface of revolution is further character- 
ized by the fact that all cross sections perpen- 
dicular to its axis are circles. One generalization, 
therefore, is that class of surfaces for which an 
axis exists so that all perpendicular planes have 
curves of the same form (although not necessar- 
ily circles) at their intersections with the surface. 
The noncircular cylindrical shell described in 
chapter 4 (for which there were few results) is a 
special case for which the curves of the inter- 
secting planes have the same size, as well as the 
same form. Elliptical conical shells (for which 
virtually no free vibration results exists) or gen- 
eral ellipsoidal shells (having elliptical intersee 
tion curves with respect to two perpendicular 
axes) are other examples. Finally, other shells of 
practical value exist (e.g:, hyperbolic paraboloid) 
for which little or no investigation of free 
vibrational behavior has been reported. 

The literature dealing with free vibrations of 
spherical shells is second in siae only to that for 
circular cylindrical shells. The large amount 
written is probably because of two of the same 
reasons which apply for circular cylindrical 
shells : 

(1) The relative mathematical simplicity of 
the equations of motion because of constant radii 
of curvature, Rr= Ra= R, and constant Lam6 
parameters A = B = R. 

(2) The widespread practical usage of this 
type of shell. 

In  the remainder of this chapter bibliographies 
are given for the free vibrations of spherical and 
other shells. The amount of investigation that 
has been carried out for the various curvatures is 
quite clear from the length of the bibliographies. 
No attempt has been made to summarize 
numerical results as in the previous chapters. 
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Appendix 

Solution of the Three Dimensional Equations 
of Motion for Cylinders 

A.l EQUATIONS OF MOTION 

The three dimensional equations of motion in 
terms of circular cylindrical coordinates are read- 
ily available in standard textbooks on the theory 
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z replaced by x, 8, and r, respectively), and sub- u = U(r, 0) cos k cos 
stituting equations (A.2) into equations (A.l) 
yield the equations of motion in terms of dis- 

v = V(r,B) sin Ax cos wt 

placements (refs. A.3 and A.4) : w = W (r, 8) sin Ax cos wt ) 
where X = m / l ,  the boundary conditions 

k q  - my - gz=v=w=O at x=O,Z (A.6) 

a2v 
(A.$ 

are found to be exactly satisfied. 
L~~u+Lzzv  +L23~= 8'- 

at2 
A.3 DISPLACEMENT POTENTIAL FUNCTIONS 

L31u+L32v+Laaw= 8- at2 Mirsky (ref. A.5) suggested the use of displace- 
ment potentials @ and $ in ordei to continue the ; 1 

where 21, 0, w are the displacements in the x, 8, r solution of the equations of motion. The functions - y~ 

-' 

directions, respectively, 62 = 2(l+v) (1 -2v)~/E, and 1L are related to U(r,B), V(r,B) and W(r,B) - . L ' 
by the following expressions and 

\ 

1 

f a2 +2(1- v)- 
ax2 

IlkLw - - 1 a2 p;-+, - Liz=Lal=- - 
r ae ax 

A.4 SOLUTION OF THE EQUATIONS 
OF MOTION 

..-. -,-. 
" ae2 (A'4) equations (A.3) one obtains 

a 
- [ ~ ( ~ - v ) V ~ - ( ~ - ~ V ) X ~ + ~ ~ U ~ - X C ]  

a2 i a i a2 ,,- 
I,.;': 5.- vz=-+--+-- Using the classical theory of shells solution for ar2 r ar r2 ae2 
I <.;' 

a circular cylindrical shell supported by shear . . . .  diaphragms at both ends as a guide, and choosing - ,,&JncoupIing these equations yields 
.%. , 
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At this stage the shell will be assumed to be 
closed; thus 

@(r,B) = f(r) cos n6 (A. 14) 

\E(r,B) =g(r) sin n6 (A.15) 

Substitution of equations (A. 14) and (A. 15) into 
equations (A.ll) and (A.12), one obtains the 
differential equations governing f(r) and g(r) : 

(r)  = 0 

(A. 16) 

where V2 = (a2/ar2+a/r ar -n2/r2). The solution 
of equation (A.16) 

.- - 
f(r) =fi(r) +fi(r)+fa(r) (A. 18) 

where fl(r), f2(r), fa(r) are solutions of the follow- 
ing differential equations 

I (V2+pl2)f1(r) =O (A. 19) 

(V2+p~2)f2(r) = 0 (A.20) 

Vafa(r)=O a (A.21) 
and 

are always real. The solution of equation (A.17) 
is 

g(r) = &I +g2(r) (A.22) 

where gl(r) and g2(r) are solutions of 

- 
v2g2(r) = 0 (A.24) 

Upon substitution of f3(r) cos n6 and gz(r) sin n6 
for 0(r,6) and fP(r,B), respectively, in equations 
(A.9), (A.10), and (A.13) one finds that 

u=v=w=o 

Thus one can discard fa(r) in equation (A.18) and 
g2(r) in equation (A.22), since these functions do 
not contribute to the displacements. Hence, 
equations (A.18) and (A.22) becomes 

g(r)= gl(r) (A.26) 

Equations (A.19), (A.20), and (A.23) are stan- 
dard forms of Bessel's equation, which can be 
written as 

Solution of equation (A.27) depends on the sign 
of p2. If one adopts the notation of Gazis (ref. 
A.6), the general solution may be written as 

V(r) = AnZn(qr) +B,Z,(qr) (A.28) 

where A, and Bn are constants of integration, 
q2 = Ip2l 

Jn and Yn are the Bessel functions of the first 
and second kinds, respectively, and In and K,  
are the modified Bessel functions of the first and 
second kinds, respectively. Using equations 
(A.29) and (A.30), one obtains the following 
expressions for a, \E and Cm 

m = [AmnZ,(qlr) +BmnZn(qlr) +Cm~zn(W') 
+ ~,Z,(q~r)] cos no (A.31) 

where Am,, . . . , Fmn are undetermined coeffi- 
cients, and where q12 = (p121 and qz2 = 1 ~ 2 ~ 1 .  



The proper selection of Zn and Zn for different TABLE A.1.-Bessel Functions To Be Used With 
intervals of the frequency to be used in equations Frequency Intervals 
(A.31)) (A.32)) and (A.33) appear in table A.l 
(ref. A.7). 

Substituting equations (A.31)) (A.32)) and 
(A.33) jnto equations (A.5) and (A.7)) one 
obtains for the displacements 

Function 
Interval 

Zn(qlr) gn(~lr) Zn ( 9 2 ~ )  k ( 9 2 ~ )  

w>a Jn(qlr) Yn(qfl) Jn(9zr) Yn (qzr) 
a >w > b I Kn(qlr) Jn (qzr) Yn (gar) 
w <b In (qlr) Kn(qlr) In ( 9 2 ~ )  Kn ( Q Z ~ )  

pz2 I a=A(E/[ph(l+v)(l--2v)])"P 
--D,,Z,(~~~) cos Ax cos n0 cos wt (A.34) 

X 
b=A(E/[2ph(l+v)])~I~ 

+ F ~ : ~ ]  dr sin AX sin no cos wt (A.35) 

+ F m n ~ n ( q z r )  1 sin AX eos no cos at (A.36) 

A.5 EXPRESSIONS FOR STRESSES 

The stresses are expressed in terms of the functions Zn(qir), Zn(qir), Zn(q2r), and Zn(q2r) b y  
substitution of equations (A.34), (A.35)) and (A.36) into the displacement-strain and stress-strh 
relationships, equations (A.2) and (1.69). The stresses are 

a, = 
1 " (($n(n- 1) + ( ~ ~ - p z ~ ) r ~ l z n ( q i r )  +Iqi~zn+i(qir ) )~rn~+ (5[2n(n- 1) 

(l+v)r2 

-- -- + ( ~ ~ p a ~ ) r ~ Z ~ ( q l r ) I  +qlrZn+l(qlr) Bmn + {in(% - 1) - ~ ~ * r W n ( q ~ r )  +IqzrZn+l(qzr) ) Cmn 1 --- - -- 

+ ([n(n - 1) -pe2r21Zn(qzr) +qzrZn+i@zr) )DmnS[n(n- l)Zn(qzr) -Inq2rZn+i(q~r)IEmn 

+[n(n- l)Z,(qzr) -nqzrZn+l(qzr)]Fmn sin Ax cos no cos wt (A.37) 

-qzr~n+i(qzr) .)1B'rnn} sin Ax sin no cos wt (A.38) 

Ar Ar - 
+~nzn(q~)Emn+-nzn(qzr)F.n  cos AX cos n0 cos wt (A.39) 

2 



APPENDIX 

E v (1 - v)  
as = - ---{[-p1qz+--- (1 +v)r2 (1 -2v) 

(1  --2v) 
h4z]Zn(qlr) -4.. 

v 
('-") h z r " l b ( q i ~ ) ~ m n - p 2 4 ~ - p ~ 2 ~ 2 ~ m n  sin AX cos no cos cot (A.40) + [ ----PI+'+ ---- 

(1  -2v) (1  -2v) 

1 
+-(nhrZn(qzr) -rqzhr2Zn+i(qzr))Fmn cos Ax sin n0 cos wt (A.41) 

2 I 
E -n(n- 1) ---(h4'+pi+?]~n(~ir) v -hlrZn+l(qlr)]~mn 

(1 -2v) 
v - 

-n(n- 1) - ~ ( ~ 2 / . ~ + ~ 1 2 1 . ~ z n ( q l r )  -qlrZn+l(qir) Bmn+[-n(n-l)zn(qzr) 
(1  -2v) I 

- rq2rZn+l(q2r)]Cmn +[ - n(n - l)Zn(qzr) -qzrz,l(q~r)IDmn + [-n(n- l)Zn(qzr) 

+~nqzrZn+l(qzr)]Emn+[- n (n  - l)Zn(qzr) +nq2r~n+l(qz~)]Fmn sin Ax cos n0 cos wt (A.42) 

In equations (A.37) through (A.42) the param- 
eter was introduced to account for the differ- 
ences in the differentiation formulas between the 
different kinds of Bessel functions. The value of 

is 1 when J and Y functions are used and - 1 
when I and K functions are used. 

A.6 FREQUENCY EQUATION 

For free vibration, the stresses must vanish 
on the cylindrical boundaries r = Ri, RO (see fig. 
.A.2). That is 

Substituting equations (A.37), (A.38), and (A.39) 
into equations (A.43) yields six homogeneous 
equations in the unknown coefficients, Am,, . . . , 
Fmn. For a nontrivial solution, the determinant of 
the coefficient matrix is set equal to sero, yielding 
(ref. A.8) 

laijl =O (i, j 1 . . . , 6) (A.44) 

where 
* 

all= [n(n- 1) -pZ2Ro~Zn(qzRo) 
+qzRog,+l(qz Ro) 
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The remaining three rows of the determinant are 
obtained from the first three by substituting Ri 
for Ro. The free vibration frequencies w are the 
roots of equation (A.44). 

Other investigations which are useful in study- 
ing the three-dimensional vibrations of circular 
cylinders include reference A.9. 
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complicating effects (see also Complicating effects, 
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cutouts, 151-156 
deep, 158 
edges not necessarily clamped, SD, or free, 136-146 
effect of boundary conditions, 138-140 
eighth order equations, 32-34 
elsetic supports, 146-149 
extensional equations, 37 
iUed with fluids, 291 
fixed (see clamped-clamped) 
free-free, 124-136 
freely supported (see shear diaphragms) 
fully fixed (see clamped-clamped) 
gyroscopic forces, 289 
helical edges (turbine blade), 176 
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Circular cylindrical-Continued 
infinite length, 37, 43 
infinite length, circumferential prestress, 245-247 
infinite length, large displacements, 221, 223 
infinite length, shear deformation and rotary inertia, 

294 
initiaI stress (see also Initial stress, circular cylindri- 
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membrane equations, 37 
momentless theory (see shallow) 
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220 
open, 157-176 
open, large deflections, 229-231 
open, orthotropic, 218 
open, prestressed, 289 
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SD-free, boundary conditions, 121 
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technical theory (see shallow) 
three-dimensional equations, solution, 413-418 
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335-340 

Clamped base, cone, frustum, 345-347 
Clamped-clamped, circular cylindrical, 87-113 

antisymmetric modes, 88 
beam functions, 94 
bounds for frequencies, 88, 101 
combined uniform prestress, '262.264 278-279 
comparison with SDSD, 90,91 
dynamic edge effect method, 88 
equivalent wavelength, 99 
experimental results, 88 
finite differences, 88 
finite elements, 88 
frequency formulas, 92, 101 
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Clamped-clamped, circular cylindrical-Continued 
modal characteristics, 106-112 
parallel springs method, 88 
series method, 88 
Southwell method, 88 
stiffened, 210-215 
strain energy distribution, 104 
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uniform axial prestress, 239, 240 
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boundary conditions, 117 
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Yu's assumption, 118 
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comparison with SDSD, 114 
frequency formulas, 114, 115 
modal characteristics, 115, 116 
stiffened, 214 216 
uniform torsional prestress, 278 

Complete cone, 331, 334-344 
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initial stress,, 231-289 
moving fluid field, 291 
nonhomogeneous, 298-308 
nonhomogeneous, prestressed, 307 
orthotropy, 185-218 
prestress (see initial stress) 
prestressed, nonhomogeneous, 307 
shear deformation and rotary inertia, 291-298 
smeared out orthotropy, 195-218 
stiffened, 195-218 
surrounding media, 290, 291 

Conical, 331-396 
added mass, 387 
anisotropy, 387 
arbitrary boundary conditions, 387 
circumferential restraint, 384, 385 
complete (see also Complete cone), 331, 334-344 
elastic supports, 387 
equations of motion, 332-334 
frustum (see also Frustum of a cone), 344-387 
large displacements, 389 
nodal circles, 347 
nonhomogeneous, 396 
open, 331,387 
orthotropic, 387-389 
prestressed, 389-393 
shear deformation and rotary inertia, 393-396 
stiffened, 388, 389 
surrounding media, 393 
surveys on, 332 
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Frustum of a cone, 331, 344-387 
attached masses, 387 
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elastic supports, 387 
free-free, 373-383 
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prestressed, 389-392 
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SDSD, 347-359 
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Generalized displacements, 9 
Generalized forces, 9, 10 
Generalized resultants, 10 
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Hamilton's principle, 36 
Hooke's law, 14 

Inertial terms, 26 
Inextensional theory, 74, 124 
Infinitely long, circular cylindrical (see :mder Circular 

cylindrical) 
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comparison of different prestresses, 243 
equations of motion, 232-234 
nonhomogeneous, 307 
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Love's assumptions, 6 
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Moments, 13 
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Quadratic forms, 3 

Ring modes, cone, 376 
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exact solutions, 48 
experimental results, 48 
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inextensional theory, 74 
large deflections, 223-228 
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strain energy, 73 
YU'S assumption, 80 
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first approximation of Love, 6, 7 
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generalized resultants, 10 

Thin shells, definition, 6 
Three-dimensional equations of motion, 413 

Various theories, comparison 
change in twist, middle surface, 12 
circular cylindrical, equations of motion, 32-34 
circular cylindrical, infinite length, 40 
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moment resultants, 21 
strains a t  a point, 11 

YU'S assumption, 80 
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