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FORTRAN PROGRAM FOR CALCULATING VELOCITIES AND STREAMLINES
ON THE HUB-SHROUD MID-CHANNEL FLOW SURFACE OF AN
' AXIAL- OR MIXED-FLOW TURBOMACHINE
~ 1- USER'S MANUAL

by Theodore Katsanis and William D. McNally |

Lewis Research Center

SUMMARY

A FORTRAN-IV computer program has been developed which obiains a subsonic or
transonic, nonviscous flow solution on the hub-shroud mid-channel flow surface of a
turbomachine. The flow must be essentially subsonic, but there may be locally super-
sonic flow. The solution is for two-dimensional, adiabatic shock-free flow. The blade
row may be fixed or rotating, and may be twisted and leaned. The flow may be axial or
mixed, up to approximately 45° from axial. Upstream and downstream flow conditions
can vary from hub to shroud, and provision is made for an approximate correction for
loss of stagnation pressure. :

The basic analysis is based on the stream function and consists of the solution of
the simultaneous, nonlinear, finite-difference equations of the stream function. This
basic solution, however, is limited to strictly subsonic flow. When there is locally
supersonic flow, a transonic solution must be obtained. The transonic solution is ob-
tained by a combination of a finite-difference stream-function solution and a velbcity—
gradient solution. The finite-differénce solution at a reduced mass flow provides infor-
mation which is used to obtain a velocity-gradient solution at the full mass flow.

The program input consists of blade and flow-channel geometry, upstream and
downstream flow conditions from hub to shroud, and mass flow. The output includes
streamline coordinates, flow angles, and velocities on the mid-channel flow surface; in-
cidence and deviation angles at the blade leading and trailing edges; and approximations
to the blade surface velocities. The output may also include input information for a
blade-to-blade flow analysis program.

The program is reported in two volumes, with partI as the user's manual and
part II as the programmer's manual. This report, part I, contains all the information
necessary to use the program as is. It explains the equations involved and the method of
solution and gives a numerical example to illustrate the use of the program. Part II in-
cludes the complete program listing and a detailed program procedure.




INTRODUCTION

The design of blades for compressors and turbines ideally requires analysis methods
for unsteady, rotational, three-di\mensional, viscous flow through a turbomachine.
Clearly, such solutions are impossible at the present time, even on the largest and fast-
est computers. The usual approach at present is to analyze only steady flows and to
separate inviscid solutions from viscous solutions. Three-dimensional inviscid solutions
are just beginning to be contemplated for coming generations of computers. So at pres-
ent, inviscid analyses usually involve a combination of several two-dimensional solutions
on intersecting families of stream surfaces to obtain what is called a quasi-three-
dimensional solution. ,

Since there are several choices of two-dimensional surfaces to analyze, and many
ways of combining them, there are many approaches to obtaining a quasi-three-
dimensional solution. Most two-dimensional solutions are either on a blade-to-blade
surface of revolution (Wu's 8, surface, ref. 1) or on the meridional or mid-channel
stream surface between two blades (Wu's Sy surface). However, when three-
dimensional effects are most important, significant information can often be obtained
from a solution on a passage cross-sectional surface (normal to the fldw). This is
called a channel solution (see fig. 1).

Blade -.
Flow
N ~ Mid-channel
:'I surface S,
Orthogonal

Blade ol channel
surface —

|
L Blade-to-blade
surface Sy

CD-11362-01

Figure 1. - Two-dimensional analysis surfaces in a turbomachine.




In this report a solution to the equations of flow on the meridional 82 surface is
carried out. This solution surface is chosen when the turbomachine under consideration
has significant variation in flow properties in the hub-shroud direction. A solution on
the meridional surface will show this variation. The solution can be obtained either by
the quasi-orthogonal method, which solves the velocity-gradient equation from hub to
shroud on the meridional flow plane (ref. 2), or by a finite-difference method, which
solves a finite-difference equation for stream function on the same flow plane. The
quasi-orthogonal method is efficient in many cases and can obtain solutions into the tran-
sonic regime. However, there is difficulty in obtaining a solution when aspect ratios
are above 1. Difficulties are also encountered with curved passages and low-hub-tip-
ratio blades. For such cases, the most promising method is the finite~difference solu-
tion, but this solution is limited to completely subsonic flows.

* Two finite-difference programs for flow on the mid-channel surface of a turbo-
machine have been reported in the literature (refs. 3 and 4). Since both are finite-
difference methods, they are necessarily limited to subsonic flow cases. Marsh's
method (ref. 3), termed the matrix throughflow method, closely follows the development
given by Wu in reference 1. However, the computer program was not included in refer-
ence 3, nor is it available to the general user. Davis' program is provided in refer-
ence 4 but is limited to certain families of compressor blades and flow surfaces.

The method described in this report uses both the finite-difference and the quasi-
orthogonal (velocity gradient) methods, combined in a way which takes maximum advan-
tage of both. The finite-difference method is used to obtain a subsonic-flow solution:
The velocity-gradient method is then used if necessary to extend the range of solutions
into the transonic regime.

A computer program, MERIDL, has been written to perform these calculations.
This program is written for axial- or mixed-flow turbomachines, both compressors and
turbines, to approximately 45° from axial. Upstream and downstream flow conditions
can vary from hub to shround. The solution is for compressible, shock-free flow, or
incompressible flow. Provision is made for an approximate correction for loss of stag-
nation pressure through the blade row. The blade row may be either fixed or rotating
and may be twisted and leaned. The blades can have high aspect ratio and arbitrary
thickness distribution.

The solution obtained by this program also provides the information necessary for -
a more detailed blade shape analysis on blade-to-blade surfaces (fig. 1). A useful pro-
gram for this purpose is TSONIC (ref. 5). Information needed to prepare all the input
for TSONIC is calculated and printed by MERIDL.

The MERIDL program has been implemented on the NASA Lewis time-sharing
IBM-TSS/360-67 computer. For the numerical example of this report, storage of vari-
ables required 60 000 words for a 21 X 41 grid of 861 points. Variable storage could be




easily reduced by equivalencing of variables or by using a coarser mesh. Storage for
the program code is 18 000 words. This storage could be reduced by overlay of code.
Run times for the program range from 3 to 15 minutes on IBM 360-67 equipment, de-
pending upon the mesh size used and the compressibility of the flow.

The MERIDL program is reported in two volumes, with part I as the user's manual
and part II (ref. 6) as the programmer's manual. This report, part I, contains all the
information necessary to use the program as is. It explains the method of solution, de-
scribes the input and output, gives a numerical example to illustrate the use of the pro-
gram, and derives the equations used (in the appendixes). Part II includes a complete
program listing, detailed program procedure, and appendixes which derive special nu-
merical techniques used.

METHOD OF ANALYSIS

BASIC ASSUMPTIONS

It is desired to determine the flow distribution through a stationary or rotating cas-
cade of blades on a mid-channel hub-shroud stream surface. The following simplifying
assumptions are used in deriving the equations and in obtaining a solution:

(1) The flow relative to the blade is steady.

(2) The fluid is a perfect gas with constant specific heat Cp.

(3) The fluid is a nonviscous gas.

(4) There is no heat transfer.

(5) The mid-channel surface is a stream surface which has the same shape as the
blade mean camber surface, except near the leading and trailing edges, where an arbi-
trary correction is made to match the free-stream flow.

(6) The only forces are those due to momentum and pressure gradient.

(7) The velocity varies linearly between blade surfaces.

(8) The relative stagnation pressure loss is known through the blade row.

The flow may be axial or mixed, to about 45° from axial. There may be a variation
of whirl, stagnation pressure, and stagnation temperature from hub to shroud, both up-
stream and downstream of the blade row. The blade row may be either fixed or rotating,
with leaned and twisted blades. Within the given assumptions, no terms are omitted
from the equations.




SOLUTION BY COMBINATION OF METHODS

A flow analysis on the meridional flow surface can be obtained either by the velocity-
gradient method or by the finite-difference method. The finite-difference method is
limited to subsonic flow, whereas the velocity-gradient method is limited to relatively
low-aspect-ratio blades. The most accurate solution is obtained by the finite-difference
technique, so that this method is used where possible (i.e., for subsonic flow). With
locally supersonic flow, the finite-difference solution is first obtained at a reduced mass
flow for which the flow field is completely subsonic. The streamline curvatures and flow
angles throughout the passage which are obtained from this solution provide the informa-
tion necessary to obtain an approximate velocity-gradient solution at full mass flow, re-
gardless of aspect ratio.

SUBSONIC STREAM-FUNCTION SOLUTION

The stream-function equation is a partial differential equation on a mid-channel hub-
shroud stream surface (see assumption 5). This equation is in one unknown (the stream
function) as a function of two variables, r and z (see fig. 2). This is equation (A1) and
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w Wm + WS Figure 3. - Solution region.

Figure 2. - Cylindrical coordinate system and velocity components.



is derived from Wu's equation (eq. (107a), ref. 1) for the stream function on what he
calls an S2 surface. Equation (Al) is nonlinear but can be solved iteratively by the
finite-difference method when the flow is completely subsonic.

A finite region (as indicated in fig. 3) is considered for the solution of equation (Al).
It is assumed that the upstream and downstream boundaries are sufficiently far from
the blade so as to have a negligible effect on the solution. Equation (A1) is elliptic for
subsonic flow. Therefore, when the flow is entirely subsonic, equation (A1) can be
solved when proper boundary conditions are specified on the entire boundary of the re-
gion. These conditions are the values of the stream function on all four boundaries.
The stream function has the value 0 on the hub and 1 at the shroud. .The value of the
stream function on the upstream and downstream boundaries can be calculated if the
sfagnation pressure, stagnation temperature, and whirl distribution from hub to shroud
are specified upstream and downstream of the blade.

The numerical solution of equation (A1) is obtained by the finite-difference method.
A grid must be used for the finite-difference equations. The type of grid that was
chosen is an orthogonal mesh which is generated by the program. The method used to
generate the grid follows that reported in reference 7. The space between the hub and
the shroud is divided into equal increments along several radial lines. Spline curves
are then fit through the resulting points to obtain the streamwise orthogonals (see fig. 4).

31— Normal
orthogonals

-~ Streamwise
=0 orthogonals

Figure 4. - Orthogonal finite-difference mesh on the
solution region.

The normal orthogonals are obtained by a predictor-corrector technique. This tech-
nique is analogous to the second-order Runge-Kutta method for solving ordinary differ-
ential equations, known also as the improved Euler method or Heun's method (ref. 8).
The orthogonal mesh coordinates are s and t. The s-coordinate is in the streamwise
direction and the t-coordinate is normal to this, as indicated in figure 4. With the
mesh determined, the finite-difference equations can be derived. The finite-difference
equations on the orthogonal mesh are given in part II of this report.

The finite-difference equations are nonlinear since the original equation (A1) is




nonlinear. These equations can be solved iteratively. On the first iteration an initial
density is assumed; this linearizes some of the terms. The remaining nonlinear terms
are omitted for the first iteration so that the finite-difference equations are entirely
linearized. These linearized equations are then solved to obtain the first approximate
solution for stream function. This solution provides information used to obtain a better
. estimate of the density and an estimate of the other nonlinear terms. The equations
are then solved again to obtain an improved solution. This process is repeated, and

by iteration a final converged solution can be obtained if the flow is subsonic.

For each step of this iteration the linearized finite-difference equations must be
solved. The method used to solve the equations is successive overrelaxation (ref. 9)
with an optimum overrelaxation factor. Since this is also an iterative method, we have
two levels of iteration, The overrelaxation is performed in the "'inner iteration,'' and
the corrections to the nonlinear terms are made in the ''outer iteration. "

After the stream function is obtained, the velocity distribution is obtained by nu-
merical partial differentiation of the stream function and by using equations (A5)
and (A6). The details of the numerical procedure and programming technique are de-
scribed in part II. -

TRANSONIC VELOCITY-GRADIENT APPROXIMATE SOLUTION

For the case where there is locally supersonic flow, equation (Al) is no longer el-
liptic in the entire region but is hyperbolic in the region of supersonic flow (ref. 10).
This changes the boundary conditions and means that there will probably be shock losses
in going from supersonic to subsonic flow. The finite-difference method cannot be used
with locally supersonic flow. However, an approximate solution can be obtained by
getting a reduced-flow solution with the finite-difference method and extending this to the
full flow by using the velocity-gradient method. This technique is described in refer-
ence 5. .

The velocity-gradient equations are equations (A7) to (A11). Equation (A7) is solved
as an initial-value problem, where the velocity W is specified at the hub for any given
vertical mesh line running from hub to tip. By finding several solutions for varying
values of W at the hub, a solution satisfying the specified mass flow (eq. (A12)) will be
found. When equation (A7) has been solved, subject to giving the correct mass flow, for
every hub-shroud mesh line in the region, the entire velocity distribution at full mass
flow has been obtained,.



BLADE SURFACE VELOCITIES

The solution which is obtained by either the finite-difference or velocity-gradient
method is for the mid-channel surface between the blades. Of greater interest are the
blade surface velocities. These can be estimated since the blade loading is dependent
on the rate of change of whirl. By assuming a linear variation of velocity between blade
surfaces, equation (A13) can be derived for calculating the blade surface velocities.

APPLICATION OF PROGRAM

“The program can be used both for analysis and as a design tool. When used for de-
sign, other programs should be used with this program. For axial compressors, refer-
ence 11 describes a program that will give blade mean-camber-line coordinates and
thicknesses for an axial compressor blade. This blade design can be checked by using
the MERIDL program to analyze the flow distribution in detail. Usually, changes must
be made to the blade design to achieve a desirable flow distribution. These changes may
involve more than just the blade shape; for example, hub and shroud profile, inlet and
outlet whirl distribution, and loss distribution may have to be changed. Of course, the
accuracy of the MERIDL solution depends on the accuracy of the boundary conditions
used.

When a reasonable flow pattern is achieved by the MERIDL flow analysis on the mid-
channel flow plane, more detailed blade surface velocities can be obtained on blade-to-
blade planes by flow analyses on various blade elements from hub to shroud. A useful
program for this purpose is TSONIC (ref. 5). Most of the information required to com-
pute input for TSONIC is calculated and printed directly by MERIDL. The section
Printed Output explains how to obtain and use this output from MERIDL. Further
changes in blade shape or whirl distribution may be considered at this time. Refer-
ence 12 (Ch. VII) gives information on incidence and deviation for good design and for
off-design conditions.

For cases when the flow is well guided in the channel but has large variations, both
blade to blade and hub to shroud, the CHANEL program (ref. 13) is useful. The
CHANEL program obtains a solution on a channel cross-section surface. The CHANEL
‘program is particularly useful for calculating choking mass flow through a blade row.

DESCRIPTION OF INPUT AND OUTPUT

The principal block of input required by the program is a geometrical description of
the blade row to be analyzed, given in the form of blade sections from hub to shroud.
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Each blade section is described by a set of z-, r-, 6-, and normal-thickness coordi-
nates on any general, smooth surface of revolution. There does not have to be any
geometrical relation between analogous points on adjacent blade sections. Other inputs
include upstream and downstream flow conditions, a geometric description of hub and
shroud, appropriate gas constants, operating conditions such as mass flow and rotational
speed, and a description of the finite-difference solution mesh. Requests are also given

for various blocks of output data.

’

Output is given at any or all of three principal geometric locations: (1) on all mesh
points of the orthogonal solution mesh, (2) along user-designated streamlines through
the blade row, or (3) along straight lines from hub to shroud (station lines) located either
inside or outside the blades or at the blade leading or trailing edges. In each of these
locations, output consists mainly of z- and r-coordinates of orthogonal mesh lines or
streamlines, stream function, relative velocities and velocity components, flow angles,
and streamline curvature. Along streamlines and station lines which lie within the
blades, estimates are also given of the blade surface velocities. Other desired output
may be easily obtained by user modification of the program.

INPUT

Figure 5 shows the input variables as they are punched on the data cards. The first
input data card is for a title, which serves for problem identification. Any information
may be put in the 80 columns of this card.

All the numbers on the three input cards beginning with MBI, LSFR, and IMESH are
integers (no decimal point)-in a five-column field (see fig. 5). These must all be right-
adjusted. The input variables on all other data cards are real numbers (punch decimal
point) in 10-column fields.

Figure 5 indicates that several options exist for the statement of upstream and
downstream flow conditions, First, the user can specify either whirl or absolute tangen-
tial velocity (LAMIN or VTHIN, and LAMOUT or VTHOUT). Whirl must be given as a
function of stream function (SFIN and SFOUT). Tangential velocity is usually given as a
function of radius (RADIN and RADOUT). And finally, on the downstream boundary,
either absolute total pressure or absolute total pressure loss may be given (PROP or
LOSOUT).

Input variables are both geometric and nongeometric. The geometric input variables
are shown in figures 6 to 10. Further information concerning the input variables is
given in the section Special Instructions for Preparing Input, pages 19 to 24.
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Figure 5, - Input form,
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figure 6. - Input variables - hub, shroud, and blade sections,
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Figure 7. - Input variables - upstream and downstream flow variables.
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Figure 8. - Input variables - orthogonal mesh.
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Figure 9. - Input variables - locating streamlines and station lines for output.



ZBL

4

>

Figure 10. - Input variables - blade section. RBL must be given for each ZBL, THBL
location (see fig. 6).

~Input Dictionary

The input variables are described in terms of a consistent set of metric units: new-
tons, kilograms, meters, joules, kelvins, and seconds. The program, however, will
run with input in any consistent set of units.

The input variables are the following:

GAM Specific-heat ratio, y
AR Gas constant, J/(kg)(K).
MSFL Total mass flow through entire circumferential annulus of machine, kg/sec

OMEGA Rotational speed, w, rad/sec. Note that w is negative if rotation is in op-
posite direction of that shown in fig. 2.

REDFAC Factor by which mass flow (MSFL) must be reduced in order to assure sub-
sonic flow throughout flow passage. REDFAC may be left blank, in which
case a value of 1.0 will be used. See section (k), p. 24.

VELTOL Convergence tolerance on maximum velocity change in each outer iteration,
over all mesh points, for reduced mass flow. VELTOL may be left blank,
and a value of 0. 01 will be used by the program. Whatever value is given
is multiplied by the minimum of FNEW and DNEW before it is printed and
subsequently used by the program. A value of 0.001 for VELTOL is a
tight tolerance, 0.01 is a medium tolerance, and 0.1 is a loose tolerance.

13




FNEW Damping factor on calculation of . Fr from outer iteration to outer iteration.
A value of 0.5 is suggested for FNEW. FNEW may be left blank, in which
case the program will use a value of 0.5. 3ee section (b), p. 20.

DNEW Damping factor on calculation of a(rVB)/ar within blade row from iteration
to iteration. DNEW may be left blank, and the program will use a value of
0.5. DNEW does not have to be equal to FNEW. See section (b), p. 20.

MBI Number of vertical mesh lines from left boundary of orthogonal mesh
(ZOMIN) to point of first mesh size change (ZOMBI). See fig. 8 and sec-
tion (d), p. 21.

MBO Total number of vertical mesh lines from left boundary of orthogonal mesh
(ZOMIN) to point of second mesh size change (ZOMBO). See fig. 8 and
section (d), p. 21. '

MM Total number of vertical mesh lines from left to right boundaries of orthog-
onal mesh (ZOMIN to ZOMOUT), maximum of 100. See fig. 8 and sec-
tion (d), p. 21. '

MHT Total number of horizontal mesh spaces from hub to shroud of orthogonal

mesh, maximum of 100. See fig. 8 and section (d), p. 21.
NBL Number of blades in total circumference of blade row.

NHUB Number of spline points given in ZHUB and RHUB arrays, maximum of 50.
See fig. 6 and section-(c), p. 20.

NTIP Nuniber of spline points given in ZTIP and RTIP arrays, maximum of 50.
See fig. 6 and section (c), p. 20.

NIN Number of data points given in upstream arrays of flow properties (SFIN,
RADIN, TIP, PRIP, LAMIN, VTHIN), maximum of 50. See fig. 7 and
section (e), p. 21.

NOUT Number of data points given in downstream arrays of flow properties (SFOUT,
RADOUT, PROP, LOSOUT, LAMOUT, VTHOUT), maximum of 50. See
fig. 7 and section (e), p. 21.

NBLPL Number of blade planes or blade sections on which data (ZBL, RBL, THBL,
TNBL) are given to describe mean flow surface and blade thickness, max-
imum of 50. See fig. 6 and section (f), p. 22.

NPPP Number of data points per blade section or blade plane in ZBL, RBL, THBL,
~and TNBL arrays, maximum of 50. See fig. 10 and section (f), p. 22.
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NOSTAT

NSL

LSFR

LTPL

LAMVT

ZOMIN

ZOMBI

ZOMBO

Z0OMOUT

ZHUB

RHUB

ZTIP

RTIP

Number of hub-~shroud stations (located by coordinates in ZHST and ZTST)
at which output is desired, maximum of 50. See fig. 9 and section (h),
p. 23. NOSTAT may be left blank, in which case no input cards should be
included for ZHST and ZTST arrays.

Number of streamlines from hub to shroud (designated by values in FLFR)
at which output is desired, maximum of 50. See fig. 9. NSL may be left
blank, in which case no cards should be included for FLFR array. If N3L
is left blank, the program will set it equal to 11 and print requested stream-
line output on 11 streamlines which vary by 10 percent of total flow (i. e.,
0, 10, 20, . . ., 100 percent).

Integer (0 or 1) indicating whether upstream and downstream flow conditions
are given as a function of stream function (0) or radius (1). If
LAMVT = 0, LSFR must equal 0.

Integer (0 or 1) indicating whether downstream total pressure (0) or frac-
tional loss of stagnation pressure (1) is given as input.

Integer (0 or 1) indicating whether upstream and downstream whirl (0) or
tangential velocity (1) is given as input.

z-Coordinate of intersection of left boundary of orthogonal mesh with hub
profile, m. See figs. 6 and 8 and section (d), p. 21.

z-Coordinate of intersection of vertical mesh line with hub profile where
first change in mesh spacing occurs (MBI), m. See figs. 6 and 8 and
section (d); p. 21.

z-Coordinate of intersection of vertical mesh line with hub profile where
second change in mesh spacing occurs (MBO), m. See figs. 6 and 8 and
section (d), p. 21.

z-Coordinate of intersection of right boundary of orthogonal mesh (MM) with
hub profile, m. See figs. 6 and 8 and section (d), p. 21.

Array of z~coordinates of input points defining hub or bottom boundary of
flow channel, m. See fig. 6 and section (c), p. 20.

Array of r-coordinates of input points defining hub or bottom boundary of
flow channel, m. See fig. 6 and section (c), p. 20.

Array of z-coordinates of input points defining shroud or top boundary of
flow channel, m. See fig. 6 and section (c), p." 20.

Array of r-coordinates of input points defining shroud or top boundary of
flow channel, m. See fig. 6 and section (c), p. 20.
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ZHIN
ZTIN

SFIN

RADIN

TIP

PRIP

LAMIN

VTHIN

ZHOUT
ZTOUT

SFOUT

RADOUT

PROP
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z-Coordinate of intersection with hub profile of line on which upstream flow
conditions are given, m. See fig. 7 and section (e), p. 21.

z-Coordinate of intersection with shroud profile of line on which upstream
flow conditions are given, m. See fig. 7 and section (e), p. 21.

Array of values of stream function for input points from hub to shroud along
line on which upstream flow conditions are given. See fig. 7 and sec-
tion (e), p. 21.

Array of r-coordinates of input points along line from hub to shroud on which
upstream flow conditions are given, m. See fig. 7 and section (e), p. 21.

Array of absolute total temperatures T; at input points along line from hub
to shroud on which upstream flow conditions are given, K. See fig. 7 and
section (e), p. 21,

Array of absolute total pressures p{ at input points along line from hub
to shroud on which upstream flow conditions are given, N/m2. See fig. 1

and section (e), p. 21.
Array of values of absolute whirl (rVe) at input points along line from hub

to shroud on which upstream flow conditions are given, m / sec. See

fig. 7 and section-(e), p. 21.
Array of values of absolute tangential velocity <V9)' at input points along
i

line from hub to shroud on which upstream flow conditions are given,

m/sec. See fig. 7 and section (e), p. 21.

z-Coordinate of intersection with hub profile of line on which downstream
flow conditions are given, m. See fig. 7 and section (e), p. 21.

z-Coordinate of intersection with shroud profile of line on which downstream
flow conditions are given, m. See fig. 7 and section (e), p. 21.

Array of values of stream function for input points from hub to shroud along
line on which downstream flow conditions are given.
tion (e), p. 21.

See fig. 7T and sec-

Array of r-coordinates of 4input points along line from hub to shroud on
which downstream flow conditions are given, m. See fig. 7 and sec-
tion (e), p. 21.

Array of absolute total pressures pz) at input points along line from hub to

shroud on which downstream flow conditions are given, N/mz. See fig. 1

and section (e), p. 21.




~ LOSOUT

LAMOUT

VTHOUT

ZBL

THBL

TNBL

ZHST

ZTST

Array of fraction of absolute total pressure loss (p0 id po)/po id at input
points along line from hub to shroud on which downstream flow conditions
are given. See fig. T and section (e), p. 21,

Array of values of absolute whirl (rV9> at input points along line from hub

to shroud on which downstream flow condltlons are given, m /sec See
fig. 7 and section (e), p. 21.
Array of values of absolute tangential velocity (Ve) at input points along

o}
line from hub to shroud on which downstream flow conditions are given,

" m/sec. See fig. 7 and section (e), p. 21.

Two-dimensional array of z-coordinates of points describing mean blade sur-
face, m. See fig. 10 and section (f), p. 22. This surface is described by
a series (from 2 to 50) of blade sections from hub to shroud. The hub sec-
tion is given first, followed by successive sections up to the shroud.

Two-dimensional array of r-coordinates, corresponding to ZBL, of points
describing mean blade surface, m. See fig. 6 and section (f), p. 22.

Two-dimensional array of §-coordinates, corresponding to ZBL, of points
describing mean blade surface, rad, See fig. 10 and section (f), p. 22.
Theta is positive in direction of positive rotation (see fig. 2). The
origin of #-coordinates can be anywhere around the circumference,

Two-dimensional array of blade normal thicknesses, corresponding to ZBL,
RBL coordinates, m. See fig. 10 and section (f), p. 22, TNBL is
thickness on a surface of revolution and is normal to blade mean camber
line. It is not the thickness at a constant value of z-coordinate from suc-
tion surface to pressure surface (see fig. 10). Thickness from either a
conical blade section or a cylindrical blade section can be used for TNBL;
it makes little difference. This input is used only to calculate local blade
blockage and usually has a minor effect-on computed results,

Array of z-coordinates of intersections of hub-shroud output station lines
with hub profile, m. See fig. 9 and section (h), p. 23. No input cards
should be given for ZHST and ZTST if user does not wish output on hub-
shroud station lines (i. e., NOSTAT = 0).

Array of z-coordinates of intersections of hub-shroud output station lines
with shroud profile, m. See fig. 9 and section (h), p. 23.
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FLFR Array of values of stream function designating stream lines along which out-
put is to be printed. See fig. 9 and section (h), p. 23. If no cards are
given for FLFR array (i.e., NSL = 0), the program will automatically
assign the following 11 values to FLFR: 0.0, 0.1, 0.2, ..., 0.9, 1.0.

The remaining seven integer variables, beginning with IMESH, are used to indicate
what output is desired. The program reduces the input mass flow by REDFAC and
solves the resulting problem iteratively with a stream-function analysis. The results of
this analysis are then used with full mass flow to obtain a transonic analysis by velocity-
gradient methods. OQutput can be obtained after each reduced mass-flow iteration and
also after the final transonic solution.

For all these variables except ISUPER, the integer given indicates the multiple of
outer iterations at which the user wishes the oufput associated with the variables to be
printed or plotted. A zero in any of these indicates that the output associated with that
variable is to be omitted. A 1 will print or plot the output on every iteration. A 3,
for example, would give the output on every third iteration. Any nonzero integer will
cause output to be given on the first and last iterations and after the transonic solution,
in addition to the output called for at other iterations. A large integer will obviously
give only the first iteration and the final converged iteration. Care should be used not to
call for more output than is really useful. The following list gives the output associated
with each of these variables:

IMESH Major output at every mesh point of the orthogonal mesh (i.e., mesh point
indices and coordinates, stream-function value, relative velocity compo-
nents and total relative velocity, critical velocity ratio, and flow angles).
This output is usually not requested, except for debugging purposes,
since output called for by ISLINE or ISTATL is preferable in most cases.

ISLINE Major output along streamlines (indicated by values in FLFR)'at each point
where streamlines are crossed by vertical mesh lines of the orthogonal
mesh. Output includes z, r, and m streamline coordinates, relative.
velocity components and total relative velocity, critical velocity ratio,
flow angles, and streamline curvature. Where the streamline passes
within the blade region, an estimate of suction- and pressure-surface
velocities is also printed.

ISTATL Major output along station lines from hub to shroud (at locations specified by
ZHST and ZTST arrays and at values of stream function specified by FLFR
array). Output corresponds to that given for ISLINE with the addition that
FLFR stream-function values are printed.

18




IPLOT Plotting indicator requesting output to be plotted on microfilm. Any nonzero
value in IPLOT will cause the input data and generated orthogonal mesh to
be plotted. Also, at each outer iteration which is a multiple of IPLOT,
streamlines will be plotted, and meridional and surface velocities will be
plotted for each streamline value. These will also be plotted after the
final transonic solution.

ISUPER Integer (0 or 1) indicating which solution (subsonic or supersonic) of the
velocity-gradient equation is desired. If ISUPER = 0, only the subsonic
solution will be printed. If ISUPER = 1, both subsonic and supersonic
solutions will be printed.

ITSON Integer indicating when information is desired for use in calculating input for
the TSONIC program (ref. 5). If ITSON = 0, no information will be given
for TSONIC. Otherwise, information will be listed with other output.
Usually, the user only wants TSONIC data after subsonic convergence is
reached. Using a high value for ITSON (i.e., >20) will achieve this result.

IDEBUG  Integer indicating whether additional debug output is desired. If IDEBUG = 0,
no extra output is printed. I IDEBUG > 0, the coefficients of the finite-
difference equations, as well as 21 arrays of debug output on the orthogonal
mesh are printed. Fourteen of these arrays change and are reprinted after
each outer interation of the reduced-mass-flow solution which is a multiple
of IDEBUG.

Special Instructions for Preparing Input

It is unusual to have no errors in input to MERIDL the first time any new data set is
run. Therefore, input should be checked thoroughly before it is submitted. Errors are
commonly made for the following reasons: inconsistent units; improper sign on w, Ve,
or whirl; input for arrays not agreeing with the input bounds for those arrays; and up-
stream and downstream input not being of the form specified by LSFR, LTPL, and
LAMVT. Also geometrical input into the hub and shroud arrays and the blade geometry
arrays should be smooth enough that the hub, shroud, and blade sections will be fit well
with cubic spline curves (see section (g), p. 22). These input geometrical arrays are
all plotted on microfilm by the program after spline fitting is completed; the microfilm
output will indicate whether or not the input was smooth. All output should be checked,
especially from a new input data set, to see if it is reasonable.

(a) Units of measurement. - The International System of Units (ref. 14) is used
throughout this report. However, the program does not use’any constants which depend
on the system of units being used. Therefore, any consistent set of units may be used
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in preparing input for the program. For example, if force, length, temperature, and
time are chosen independently, mass units are obtained from Force = Mass X Accelera-
tion. The gas constant R must then have the units of (Force X Length)/(Mass X Tem-
perature). Density is mass per unit volume, and mass flow is mass per unit time.
Output then gives velocity in the chosen units of length per unit time. Since any con-
sistent set of units can be employed, the output is not labeled with any units.

(b) Damping factors FNEW and DNEW. - The input variables FNEW and DNEW are
used as damping factors on the Fr and 8(rV9)/ar terms of equation (Al). During each
outer iteration of the subsonic or finite-difference portion of the program, new values
for Fr and a(rVG)/ar are calculated. The calculated changes to these terms are often

so large that if the full change was accepted on each iteration the solution would diverge.
Using values of FNEW and DNEW less than 1.0 allows only a portion of these changes

to be used. The value of FNEW or DNEW is the fraction of the predicted change in

FrA or d(rv 9) /or to be added to the previous values of these variables. Therefore,

if Fr or a(rVQ)/ar do not converge, FNEW or DNEW should be reduced. However,
this will reduce the rate of convergence so that caution should be used that FNEW and
DNEW are not made too small. Because of the reduced rate of convergence, VELTOL
is automatically reduced to obtain the same accuracy as when FNEW and DNEW are 1.0.

Limited experience has shown that for subsonic flows, where the gradients of flow
variables are not large, converged solutions can be obtained with FNEW and DNEW equal
to 1.0. For most practical flows, however, this is not the case and some damping is re-
quired. Values of FNEW and DNEW in the range of 0.5 are most commonly used, al-
though at times values as low as 0. 2 have been used. (Note that FNEW and DNEW do not
have to be equal to each other.)

The user will have to gain experience with FNEW and DNEW before he can use them
‘effectively to maximize rates of convergence. Maximum, minimum, and change values
for F r and a(rva)/ or (DVTHDR) are printed with the output on each iteration. The
maximum relative change in velocity at any point is also printed; it should gradually ap-
proach VELTOL for convergence. By observing these values, the user can learn the ef-
fects of changes in FNEW and DNEW for different runs of the program.

(c) Hub and shroud flow channel geometry. - The hub and shroud geometry are spec-
ified in the ZHUB, RHUB and ZTIP, RTIP arrays. Both of these curves must have the
same z-origin (usually the blade leading edge at the hub). These two arrays must extend
far enough upstream of the blade leading edge and far enough downstream of the blade

trailing edge to cover the upstream and downstream boundaries of the orthogonal mesh,
as well as the upstream and downstream input stations where streamflow data are given.
If they do not extend this far, they will be linearly extrapolated and an incorrect flow
channel may result. Relatively few points are needed to describe these smooth surfaces

20




(5 to 10 is a typical range for NHUB and NTIP) in order to have the program calculate
smooth, accurate spline fits of these surfaces (see fig. 6).

If the user knows the amount of the boundary-layer blockage along the hub and shroud
profiles, he should revise the hub and shroud arrays to include this blockage effect. In
this situation the output will represent a more realistic flow condition.

(d) Orthogonal mesh. - The number of orthogonal mesh lines is specified by MBI,
MBO, MM, and MHT; and the positioning of the mesh is specified by ZOMIN, ZOMBI,
ZOMBO, and ZOMOUT. These four z-coordinates, all located on the hub, must use the
same z-origin as all other geometrical input. The ZOMBI and ZOMBO locations are
usually close to the leading and trailing edges of the blade at the hub, although they do
not have to correspond to these locations exactly (see fig. 8). Mesh-size spacing in the
horizontal direction is established by the relation between the four z-coordinates (ZOMIN,

etc.) and the numbers of mesh spaces requested. For instance, MBO - MBI evenly
spaced mesh spaces along the hub will be located in the distance given by ZOMBO -
ZOMBI. Mesh spacing in the vertical direction is determined by locating MHT spaces

in the hub-shroud distance. Usually, none of the vertical mesh linés follow the blade
leading- or trailing-edge lines since the blade edges are not usually orthogonal to the
hub or the shroudb(see fig. 8). So some vertical mesh lines will pass in or out of the
blade region as they progress from hub to shroud. A suggested number of mesh lines
between ZOMBI and ZOMBO is 15 to 30 in order to cover the blade adequately, depending
on blade geometry.

(e) Upstream and downstream flow conditions. - Upstream flow conditions are given
in the SFIN (or RADIN), TIP, PRIP, and LAMIN (or VTHIN) arrays, which are all of
length NIN. Downstream conditions are given in the SFOUT (or RADOUT), PROP (or
. LOSOUT), and LAMOUT (or VTHOUT) arrays, which are all of length NOUT. Upstream
and downstream flow conditions are used, along with the assumption of conservation of

angulaf momentum along streamlines, to establish boundary values on the upstream and
downstream boundaries of the orthogonal mesh.

Ordinarily, the upstream and downstream flow conditions are given as a function of
stream function (SFIN and SFOUT). In this case these input values apply at all points
along streamlines upstream or downstream of the blade; and the ZHIN, ZTIN and
ZHOUT, ZTOUT inputs are superfluous. Values of zero can be supplied for ZHIN and
ZTIN and for ZHOUT and ZTOUT, or blank cards can be used in place of these variables.

.On the other hand, if input is given as a function of radius (RADIN and RADOUT), legit-
imate values must be supplied for ZHIN, ZTIN and ZHOUT, ZTOUT. In this case the
upstream conditions are given on a straight line which passes through the two points
given by ZHIN on the hub and ZTIN on the shroud. Downstream conditions are given on

a straight line which passes through ZHOUT on the hub and ZTOUT on the shroud. These
lines may lie anywhere in the regions from the blade edges upstream and downstream to
the boundaries of the orthogonal mesh (see figs. 7 and 8).
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The arrays of upstream and downstream input do not necessarily have to extend all
the way from hub to shroud or lie on radial lines. They will be linearly extrapolated to
the hub and shroud if necessary by the program, should the user only give data in a por-
tion of the flow channel. ’

(f) Mean blade surface and thickness coordinates. - The blade shape is described
from hub to shroud by the arrays ZBL, RBL, THBL, and TNBL, all of which are two-
dimensional (see figs. 6 and 10). Each of these arrays has NBLPL blade sections or
planes, with NPPP points in each of these planes. When giving data to each of these
four arrays, start each new plane of data (NPPP points) at the beginning of a new card.
All the ZBL data for all the planes are given, followed by all the RBL data, etc. The
origin for z-coordinates for ZBL should be the same as that used for all other

z-coordinate input arrays.

The input 6-coordinates in THBL are of the blade mean camber surface and not the
mid-channel flow surface. The program, however, obtains a solution on the mid-channel
flow surface. It obtains that flow surface by smoothly fairing the inlet and outlet flow
angles onto the input blade surface at an appropriate distance back on the blades from the
leading and trailing edges. This distance is a function of solidity (see appendix F).

The input blade thicknesses in TNBL are normal to the blade-section mean camber
line and lie on a surface of revolution cutting through the blade (see figs. 6 and 10). So,
in general, these thicknesses lie on a curved line whose ends are at different radii and
are almost, but not quite, normal to the blade surfaces (see fig. 10). Because these
thicknesses are used only for calculating blockage, it makes little difference whether
they are obtained from a conical blade section or from a cylindrical section.

The first blade section given at the hub or the last one at the blade tip (in the ZBL,
RBL, THBL, and TNBL arrays) does not necessarily have to conform to the hub or
shroud profile. It can be given within the flow region, crossing the boundary, or com-
pletely outside of the boundary (see fig. 6). Extrapolation or interpolation will be used
when necessary to obtain blade data where the blades meet the hub and shroud profiles.

The user should attempt to give smooth data for the z-, r-, 6-, and thickness ar-
rays describing the blade. The program makes use of spline fits of these curves to com-
pute gradients which are used throughout the program. The microfilm plots of the blade
sections given as output will indicate whether input data for these arrays were accept-
able.

(g) How to specify points for spline curves. - All the input arrays are fit with cubic

spline curves for the purposes of interpolating, calculating derivatives, integrating, or
any other required calculation. A cubic spline curve is a piecewise cubic polynomial
which expresses mathematically the shape taken by an idealized spline passing through
the given points. Reference 15 describes the method used for determining the equation
of the spline curve. Using this method, smooth curves can be specified accurately with
a few points, usually not more than four or five. Curves with uneven places, dips, or
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highly variable curvatures require more points and are more difficult to fit properly.
As a guide, enough points should be specified so that a physical spline passing through
these points would accurately follow the curve. The minimum number of points to follow
the curve should be used, since the closer the spline points are, the greater the effect
of an inaccuracy in a coordinate.

(h) Requests for output data. - The seven variables IMESH, ISLINE, ISTATL,
IPLOT, ISUPER, iTSON, and IDEBUG all request different portions of output from the
program. The optional arrays ZHST, ZTST, and FLFR are also used in this regard.
The user should be careful to request only the output needed. Usually, only one of the
three major types of output (at the mesh points (IMESH), along streamlines (ISLINE), or
along hub-shroud stations (ISTATL)) is needed, since ISLINE and ISTATL output are ob-
tained from calculated mesh-point data by interpolation (see fig. 11). Most likely,
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(o) Streamline output - where streamlines
cross vertical orthogonals
0O Station-line output - where streamlines

Cross user-designated station lines

Streamlines and station lines
————— Grthogonal mesh fines

Figure 11. - Location of three major types of output.

streamline output (ISLINE) or station-line output (ISTATL) would be chosen. The fre-
quency at which output is requested is also significant; this is controlled by the values
given to IMESH, ISLINE, and ISTATL. :

ZHST and ZTST are given only if ISTATL output is requested. In this case, output
will be given along straight lines from hub to shroud which connect corresponding points
in the ZHST and ZTST arrays. Through the values in these arrays, the user can con-
trol exactly the locations at which his output is given. These lines do not have to be
radial. Typically, output is requested (through ZHST and ZTST) at several upstream
and downstream locations, at the blade leading and trailing edges, and at several sta-
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tions within the blade at percentages of chord from the leading to the trailing edge. To
obtain output at the leading and trailing edges, the values in ZHST and ZTST should
correspond (within a tolerance of 1 percent of local chord) to the intersection points of
the leading and trailing edges with the hub and shroud.

FLFR need be given only if the user wishes to specify the values of streamline along
which he wishes output (when ISLINE or ISTATL are used). If the user does not specify
otherwise (using FLFR), the program will automatically give output at 10-percent
streamlines.

(i) Incompressible flow. - Incompressible-flow cases execute as well on MERIDL
as compressible-flow cases. In fact, they should converge in two or three iterations.
No sbecial input is required for an incompressible case, except that REDFAC should be

set to 1. 0 to avoid the transonic solution which would be redundant and less accurate.
(j) Straight infinite cascade. - The program is primarily designed for circular,

stationary, or rotating blade rows; but the input can be adopted to apply to a straight

infinite cascade as well. Since the radius for such a cascade would be infinite, an arti-

ficial convention must be adopted. The user should pick a large average radius for his
cascade, in the neighborhood of r = 1000. Then, since the blade pitch P is known,

an approximate number of blades to use can be calculated from NBL = (27r)/P. This
value must be rounded to an integer for use in the input. With this value of NBL and a
large mean radius, all the r-coordinate arrays of input (RHUB, RTIP, RADIN, RADOUT,
and RBL) can be established about the mean radius, and a value of MSFL can be calcu-
lated. Using this artificial input at large radius, the program will obtain a solution
using a pitch which varies very slightly from hub to shroud and, therefore, simulates
almost exactly a straight infinite cascade.

(k) Choosing a value for REDFAC. - If possible REDFAC should be 1.0. However,
if there is locally supersonic flow, REDFAC must be less than 1.0, usually between
0.5 and 0.95. For the best accuracy the largest possible value of REDFAC should be
used (see the section NUMERICAL EXAMPLE). When REDFAC is 1.0, the full mass
flow will be used in the finite-difference solution for the stream function, and no tran-

sonic velocity-gradient calculation will be made.

OUTPUT

There are four different types of output generated by the MERIDL program:

(1) Main output - controlled by the variables IMESH, ISLINE, ISTATIL, and ISUPER
(2) Debug output - controlled by IDEBUG

(3) TSONIC information - controlled by ITSON

(4) Plotted output - controlled by IPLOT
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Most of this output is optional and is controlled by the final input card, as already de-
scribed.

The output requested by the variables IMESH, ISLINE, and ISTATL is essentially
the same for any of the three variables but is given at different locations for the conven-
ience of the user. IMESH output is given at the orthogonal mesh points along horizontal
mesh lines, as indicated in figure 11. ISLINE output is given along streamlines where
the streamlines are intersected by the vertical orthogonal mesh lines (fig. 11). ISTATL
output is given from hub to shroud along station lines (fig. 11) where these lines are
intersected by the streamlines.

In the following sections, output is presented from the problem solved in the section
NUMERICAL EXAMPLE. Since the complete output would be lengthy, only the first few
lines of each section of output are reproduced here. In many instances, output labels
are simply internal variable names. .

The following three sections discuss the different sections of printed output, the
plotted output, and all possible error messages.

Printed Output

Table I presents the printed output from the numerical example. Each section of
" this output has been numbered to correspond to the following description:

(1) The first output is a listing of the input data. Variable names are used as labels,
and the output corresponds to the input form (fig. 5). This output is listed for every run,
regardless of the values given to IMESH, etc. '

(2) This output corresponds to IDEBUG. It has three principal sections, as the out-
put indicates. The constant quantities are listed only once; while the coefficients of the
matrix equation and the changing quantities are listed in between outer iterations, as
called for by the value in IDEBUG. The output giving the changing quantities contains
two different sets of variables. (All the IDEBUG variables are described more thor-
oughly in part II of this report.)

(3) This output indicates the calculated value of overrelaxation factor, ORF, to be
used in the successive overrelaxation solution of the finite-difference equations. This
matrix equation for the stream function u is solved iteratively (this is referred to as
the "'inner iteration'') during each of the ''outer iterations'' of the reduced-mass-flow
solution. This output, ORF, is given automatically on each run of the program.

(4) This output indicates the maximum value, the minimum value, and the maximum
change in the values of DVTHDR (B(rVe)/ar) and FR (Fr) calculated for each outer itera-
tion of the reduced-mass-flow solution. The two quantities (a(rve)/ar) and F. are
critical to the convergence of the reduced-mass-flow solution, and the input variables
DNEW and FNEW are used to control the percentage of the calculated changes of these
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variables to be used in each subsequent iteration of the reduced-mass-flow solution.
These maximum, minimum, and change values indicate to the user how a(rVQ)/ar and
F. are converging and give clues as to how to change DNEW and FNEW if convergence
cannot be obtained.

[ (5) This output corresponds to IMESH for one of the iterations of the reduced-mass-
flow solution. The output is given along each horizontal mesh line at each mesh point.
Typically, there are from 10 to 30 of these horizontal mesh lines, with 30 to 50 points
in each. The output given at each mesh point includes the following: z- and r-
coordinates of the point; stream function u; meridional velocity Wm; relative tangen-
tial velocity We; relative velocity W; critical velocity ratio W/Wcr; meridional flow
angle ¢; relative flow angle B; and mesh angle ¢. )

(6) This output corresponds to ISLINE for one of the iterations of the reduced-mass-
flow solution. This output is given along each streamline, corresponding to a given
stream-function value. The points along the streamline correspond to where it is inter-
sected by the vertical mesh lines. The origin for the m-coordinate is chosen so that
m =0 when z =0. The output given at each streamline point includes the following:

z-, r-, and m-coordinates of the point; meridional velocity Wm; relative tangential
velocity WG;' relative velocity W; critical velocity ratio W/Wcr; meridional flow
angle a; relative flow angle B; streamline curvature l/rc; and within the blade-to-
blade passage, the estimated suction-surface and pressure-surface velocities.

() This output corresponds to ISTATL for one of the iterations of the reduced-
mass-flow solution. Instead of output being given along horizontal mesh lines (IMESH)
or streamlines (ISLINE), it is now given in the other direction, along lines from hub to
shrdud. . This output is given along each of the station lines specified by the input
ZHST, ZTST arrays. Output is given at each point where these station lines are crossed
by the streamlines (the values in the FLFR array). The output given at each point is
identical to the output given for ISLINE, with-the addition of the stream function u.

(8) This output corresponds to ITSON. This is a listing of the information required
to prepare input for the TSONIC blade-to-blade analysis program of reference 5. This
information is printed in such a way that it corresponds to the input form for TSONIC,
which is shown in figure 12. (The definitions of all the input variables for TSONIC are
given in the TSONIC report, ref. 5.) The TSONIC program was run for both the hub
and tip blade sections of the compressor blade used in the numerical example of this
report. The input numbers shown in figure 12 are those computed for use with the
TSONIC run at the hub.

Much of the information printed by MERIDL has to be corrected slightly before it
can be used-.as input for TSONIC. However, the final three arrays - MR, RMSP, and.
BESP - can be used as they are printed, unless the user wishes to reduce the number
of points in them. The user should recall that the MERIDL program takes into account
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1 sl wfu she ala s w0 ksl wla wla 60 |61 nln w®
TITLE
STREAMLINE NUMBER 1 -- STREAM FUNCTION - 0. 0000
GAM AR TIP RHOIP WIFL OMEGA ORF
1.4 281.053 2815 L2534 | 0.0519
BETAI BETAO CHORDF STGRF
32.41 -9.36 113432 05548
REDFAC DENTOL :
1.0 001
MBI | MBO [iii NBBI
0| % 0| =2
RIL RO1 BETI SPLNOL
001326 000975 30.5 -28.5 10,
MSP1 ARRAY
0. 012468 024787 037071 049327 | 061562 | .07381 | 085089
098190
THSP1 ARRAY
0. 046740 .0778% 10027 66 | 12137 w3l | .2
09409
RIZ RO2 BETI2 BETO2 SPLNO?
001326 00975 1.5 -10.0 10.
MSP2 ARRAY
0. 012468 024787 037071 049327 | 061562 | .073781 | 08998
098190
THSP2 ARRAY
0. 01222 03188 04734 058% | 06554 06835 | 06699
06158
MR ARRAY
RMSP ARRAY
BESP ARRAY
BLDAT|AANDK| ERSOR | STRFN | SLCRD [INTVL | SURVL
ol ol o 2| 2f 3

Figure 12, - TSONIC input form. Data shown are for numerical example at the hub, [nputs used for MR, RMSP,
and BESP are the same as the data printed in item 8 of table I, p. 33.



a loss in total pressure through the blade rows. TSONIC does not do this. Therefore,
to ensure compatability between the programs, the BESP array calculated by MERIDL
is reduced to reflect this loss in total pressure, both through the blade row and down-
stream, before it is printed as input for TSONIC.

The BESP array is calculated to correspond to the given mass flow, WTFL. Any
value could be used for WTFL if BESP is chosen accordingly. The value calculated by
MERIDL is 1 percent of the mass flow between two blades.

Figures 13 and 14 indicate how the blade geometry information has to be corrected
by the user before it can serve as input for TSONIC. First of all, the THSP1 and THSP2
arrays will usuaily have to be corrected to the proper origin. As figure 13 indicates,
the origin for the §-coordinates is at the center of the leading-edge radius for TSONIC
but at the mean camber line in MERIDL.

.08

I

.07

05—

Origin for TSONIC
03— coordinates

~~ ~ Origin MERIDL
_output coordinates

‘“Mean camber line

Angular coordinate, 8, rad (from MERIDL)

| | ! ! | | | | | J
0 .002 .004 .006 .008 .010 .012 .04 .016 .018 .020
Meridional streamline distance, m, meters

Figure 13. - Blade leading edge showing origin of coordinates for MERIDL
output and for TSONIC input.

A layout (fig. 14) should be made to determine the remaining geometric input. To
assist in making this layout, some additional coordinates are printed out. These addi-
tional coordinates are tangential distances (r6) from a reference plane near the leading
or trailing edge, against the m-coordinate. When these are plotted at the same scale,
the leading- or trailing-edge radius can be plotted and measured. This will give RI1,
RI2, ROl, and RO2. Usually, RIl is the same as RI2 and RO1 is the same as RO2.

The layout, figure 14, indicates how the leading-edge radius should be measured,
In addition, the tangent angles, BETI1 and BETI2, can be measured from the layout.
Finally, the layout, figure 14, should be used to obtain the correction for the THSP1
and THSP2 arrays. Figure 14 shows a tangential offset of 0. 00052 meter. This is con-
verted to radians by dividing by the local radius of 0.1537 to obtain a correction of
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014 —

O Points plotted from MERIDL output

012—

.010—

meters

.008—

L0061

.00 —

Tangential coordinate from MERIDL, rx,

~ RadiuS,
/0032 m

0.00052 meter - 92|

’

.57 S DR S D U N N BN S N
f‘ 0 .002 .004 .006 .008 .010 .012 .014 .06 .018 .00

Meridional streamline distance, m, meters

Figure 14, .- Layout of blade leading edge at hub for numerical example.

0.00338 radians. Therefore, 0.00338 was subtracted from all THSP1 and THSP2 co-
ordinates. At the trailing edge, the 6-coordinate at the center of the trailing-edge
radius is calculated from a similar layout. For this case, the trailing-edge 6-
coordinate is 0.05886. Then 0.00338 is subtracted to obtain 0.05548. This is the cor-
rect value to use for STGR. One further change should be made in the blade coordinates.
The spacing between the MSP coordinates should be no closer than the original ZBL
input for the blade shape. In this case, the ZBL coordinates were as much as 0.0011
apart along the hub. Therefore, only every other point in the MSP and THSP arrays
should be used. In other cases, only every third or fourth point may be used. Also,
be sure that the first spline point after the tangent point is no cles er than the original
ZBL input. Finally, be sure to change SPLNO1 and SPLNO2 when you do not use all the
points, .

After all the geometrical input is obtained, all that remains is to choose the mesh-
point numbers MBI, MBO, MM, and NBBI, as described in reference 5. The user
may also wish to change some of the other input variables (ORF, REDFAC, DENTOL,
and BLDAT to SURVL, for instance) since MERIDL only prints suggested values.

The input used for the numerical example at the hub is shown in figure 12, except
for the MR, RMS3P, and BESP arrays. These three arrays were not changed from the
output printed by MERIDL,

When running the TSONIC program, minor changes to the blade geometry and tan-
gent angles are often required to obtain a smooth blade surface and a desirable velocity
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distribution. Changes of this type normally would not require the MERIDL program to .
be rerun.

(9) This output consists of blocked and unblocked incidence and deviation angles at
the blade leading and trailing edges where each of the horizontal mesh lines intersects
the blade. The blocked incidence or deviation is based on the velocity diagram within
the blade (subscript bf in fig. 15), whereas the unblocked is based on the free-stream
(fs) velocity diagrams. This output is printed after each iteration in which output is
given for either IMESH, ISLINE, or ISTATL. These angles are defined as shown in
figure 15, For the blocked angles, the flow direction is corrected for blockage before
the incidence and deviation are calculated.

(W)
bt

Figure 15. - Definition of incidence arigles._

(10) This output indicates the maximum relative change in relative velocity W at
any point on the orthogonal mesh during an iteration of the reduced-mass-flow solution.
When this value becomes less than the input value of VELTOL, the reduced-mass-flow
solution is considered converged.

(11) This output is analogous to outputs (5), (6), (7), and (8) for the variables IMESH,
ISLINE, ISTATL, and ITSON but is given after the transonic velocity-gradient solution.
Two solutions can be obtained by the velocity-gradient method, the larger or ''super-
sonic' and the smaller or '"subsonic.'" The input variable ISUPER controls which of
these is obtained. The solution listed here is the smaller (i.e., the '"subsonic'' solu-
tion). If REDFAC = 1.0, no velocity-gradient solution will be obtained or printed.
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Plotted Output

Since the printed output from a MERIDL run can be quite large, microfilm plots are
made to enable the user to quickly check the quality of both his input and output data.
The coding which generates these plots uses NASA Lewis in-house plot routines and
would have to be recoded for operation on another facility. The principal sections of in-
put data plotted are the upstream and downstream distributions of flow properties; the
input blade sections; and the hub, shroud, and blade leading- and trailing-edge geometry.
The amount of plotting of output data is controlled by the variable IPLOT. The plotted
output data begin with the generated orthogonal mesh. Then for each outer iteration of
the solution (indicated by IPLOT) and for the transonic solutions, streamlines are plotted,
as well as mid-channel flow plane and blade surface velocities along each streamline
from hub to shroud. The user should carefully check the plots of his input data to ensure
that the program's spline fits of this data are smooth.

Selected examples of some of the microfilm plots generated by the numerical ex-
ample are presented in figure 16. The description of these plots follows:

(1) Figures 16(a) to (e) present the input upstream and downstream flow conditions.
These quantities (T{; pi; A or (V6>i; p, or total pressure loss; (rve)o or (Ve)(‘) are

all plotted against either stream function or radius, whichever was used as input.

(2) Figures 16(f) and (g) indicate hub and shroud blade sections plotted from input
data supplied by the user. All blade sections given as input are plotted.

(3) Figure 16(h) shows the hub and shroud channel geometry and the blade leading
and trailing edges.

(4) Figure 16(i) shows the generated orthogonal mesh.

(5) Figure 16(j) shows the streamline pattern for the final iteration of the reduced-
mass-flow solution. ‘

(6) Figures 16(k) and (Z) show meridional velocities and blade surface velocities for
the hub and shroud blade sections for the same iteration. A similar plot is made along
each of the streamlines from hub to shroud.

Streamline and velocity plots similar to figures 16(j), (k), and (l) are repeated after
each iteration of the finite-difference stream-function solution and also after the velocity-
gradient solution.
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(a) Inlet absolute total temperature.

Figure 16. - Microfilm plots of input and output.
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Figure 16. - Continued.
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(c) Inlet absolute tangential velocity.

Figure 16. - Continued.
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Figure 16. - Continued.
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Figure 16. - Continued.
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(f) Input blade sections from ZBL, RBL, THBL, and TNBL. Blade
section 1.

Figure 16. - Continued.
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section 11.

Figure 16. - Continued.
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(h) Hub, shroud, and blade boundaries in meridional plane.

Figure 16. - Continued.
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R DIRECTION
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Z DIRECTION
(i) Orthogonal mesh in meridional plane.

Figure 16. - Continued.



R DIRECTION

Z DIRECTION
(j) Streamline plot in meridional plane.

Figure 16. - Continued.
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(k) Meridional and surface relative velocities. Streamline 1; normal-

ized stream function, 0.

Figure 16. - Continued.
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Figure 16. - Concluded.
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Error Messages
A number of error messages have been incorporated into the program. These error

messages are listed here. Suggestions for finding and correcting the cause of the error
are given.

MM, MHT, NHUB, NTIP, NIN, NOUT, NBLPL, NPPP, NOSTAT,
NSL, LSFR, LTPL, OR LAMVT IS TOO LARGE OR TOO SMALL

The input dictionary gives the maximum and minimum value for all these input variables.

LININT CANNOT FIND INTERPOLATED VALUE

This message should occur only with erroneous geometry input.

PASSAGE IS CHOKED AT THE INLET (OUTLET) WITH A MASS

FLOW OF X. XXXX
This message is printed if the choking mass flow at the upstream (downstream) bound-
ary of the mesh region is less than the input mass flow (MSFL). Usually, the mass flow
must be reduced, or there is an error in the input upstream (downstream) flow condi-
tions. Also check hub and shroud coordinates at boundary.

INLET (OUTLET) BOUNDARY CONDITIONS CANNOT BE OBTAINED

This message is printed if the upstream (downstream) boundary conditions cannot be

satisfied after 100 iterations. This may be caused by a severe variation of some up-
stream (downstream) flow condition. Carefully check all input.

PROGRAM STOPPED IN NEWRHO DUE TO EXCESSIVE STREAM FUNCTION
GRADIENT

This is usually caused by having supersonic flow in some region of the reduced-mass-
flow solution. Try a smaller value for REDFAC.
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UPSTREAM WHIRL OR TANGENTIAL VELOCITY IS TOO LARGE

This message is printed if the upstream whirl gives a tangential velocity so large as to
result in a negative relative stagnation temperature. The upstream whirl or tangential
velocity given as input should be corrected.

A VELOCITY GRADIENT SOLUTION CANNOT BE OBTAINED FOR VERTICAL
ORTHOGONAL MESH LINE I = XX

ANY SUBSEQUENT OUTPUT FOR THAT MESH LINE MAY BE IN ERROR

If there is a probllem in obtaining the approximate transonic solution for any particular
mesh line, the attempt will be halted after 100 iterations, and this message will be
printed. The problem may be caused by complex geometry or large gradients in up-
stream or downstream flow conditions. Sometimes a finer mesh will help.

MSFL EXCEEDS CHOKING MASS FLOW FOR VERTICAL ORTHOGONAL MESH
LINEI = XX )

CHOKING MASS FLOW = X. XXXX

This message is printed if the choking mass flow calculated by subroutine TVELCY is
less than the input mass flow (MSFL). The following message will be printed after all
vertical lines have been checked.

CHOKING MASS FLOW IS LESS THAN THE INPUT MASS FLOW
INPUT MASS FLOW = X. XXXX
MINIMUM CHOKING MASS FLOW = X. XXXX

A SOLUTION CAN BE OBTAINED ONLY IF INPUT MASS FLOW IS LESS
THAN THIS MINIMUM CHOKING MASS FLOW

If the previous message was printed for any vertical mesh line, then this message will

be printed at the end to give the minimum choking mass flow, which is the choking mass
flow for the blade row.
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INRSCT HAS FAILED TO CONVERGE IN 20 ITERATIONS
TOLERANCE = X. XXXX
DISTANCE BETWEEN LAST TWO INTERSECTION POINTS = X. XXXX

Subroutine INRSCT finds the intersection coordinates of mesh lines and streamlines with
the blade leading or trailing edge by an iterative method. If the tolerance cannot be met
after 20 iterations, the message is printed. If the distance between the last two inter-
section points is only slightly larger than the tolerance, a satisfactory solution will be
obtained, with some loss of accuracy. If the distance is excessive, there is probably
some error in the geometry input.

ROOT HAS FAILED TO LOCATE A ROOT IN THE INTERVAL (A, B) IN
20 ITERATIONS

ROOT ARGUMENTS -- A = X.XXXX B = X. XXXX
Y = X. XXXX TOLERY = X. XXXX

X FX DFX INF
X. XXXX x.xicxx X, XXXX }i

Subroutine ROOT is called by subroutine MESHO to find the intersection between straight
lines and spline curves in the process of generating the orthogonal mesh. If this mes-
sage is printed, it is probably because the tolerance could not be met, although the
problem may be caused by erroneous geometry input.

NUMERICAL EXAMPLE

An example of an axial-flow compressor rotor is used to illustrate the use of the
program and to show the type of results which can be obtained. Flow is analyzed on the
mid-channel flow surface of an axial-flow rotor designed with the computer program of
reference 11. The design pressure ratio is 1. 275, the inlet hub-tip radius ratio, 0.5;
the aspect ratio, 1.5; the tip solidity, 1.0; andthe tip relative Mach number at the inlet,
0.9. Although tip relative Mach number is near sonic, there are no locally supersonic
regions on the meridional flow surface.

The input for this example is shown in table II. The number of mesh points used
was 861: 41 in the axial direction, and 21 in the radial direction, The printed output
presented earlier is from this example.
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Figure 18. - Mid-channel velocities for axial-flow compressor example.



64

Relative velocity, W, meters /Aec

400+—

380[—

3601—

0

320

300

280

260

240

220

200

180

160

— — TSONIC

MERIDL(REDFAC = 0.99999)

I | | |

140
0

.4 06 .08 .10 .12 O
m-coordinate, meters

(a) Hub section, (b) Tip section.

Figure 19. - Blade surface velocities for axial-flow compréssor example.




This rotor was run twice, with values of reduction factor (REDFAC) equal to 0. 99999
and 0.70. This was done in order to test the effect of reduction factor and also the ac-
curacy of the velocity-gradient method in comparison with the finite-difference method.
Since both cases have REDFAC < 1.0, both the subsonic (finite difference) and the
transonic (velocity gradient) solutions will be obtained in each of them. (If
REDFAC = 1.0, only the finite-difference solution is obtained.)

The first case (REDFAC = 0. 99999) permits a comparison to be made between the
approximate velocity-gradient method (used to obtain transonic solutions) and the more
exact finite-difference stream-function solution (used for subsonic solutions) Since
the reduction factor is 0.99999 (<1.0), both solutions will be obtained, but the answers
should be very close if the methods compare well, .

The second case (REDFAC = 0.70) permits a comparison of reduction-factor effect.
Since the finite-difference solution is now obtained at only 70 percent of the mass flow
and rotational speed (see appendix E), the results for the full-mass-flow velocity-
gradient solution will be less accurate than when a higher reduction factor was used.

Figure 17 shows the streamline plots for the final finite-difference iteration for both
the REDFAC = 0. 99999 and REDFAC = 0.70 solutions. The differences in streamline
location are small, but program printout of streamline curvatures shows that these cur-
vatures differ significantly. This illustrates the point that as high a value of REDFAC
should be used as possible. '

This fact is further illustrated in figure 18, which shows mid-channel flow surface
velocities for both reduction factors and both types of solution, the finite difference and
the velocity gradient. On all parts of this figure, the solid line represents velocities
from the final finite-difference iteration of the REDFAC = 0. 99999 solution. This solu-
tion is mathematically most accurate.

Figure 19 shows a comparison of blade surface velocities estimated from the
MERIDL program (see appendix G) and calculated from the TSONIC program (ref. 5).
The TSONIC velocities are more accurate for the design blade shape.

Lewis Research Center,
National Aeronautics and Space ‘Administration,
Cleveland, Ohio, October 16, 1972,
501-24.
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APPENDIX A

GOVERNING EQUATIONS

The coordinate system is shown in figure 2. Since 6 is a functionof r and z on
a meridional stream surface, 8 can be eliminated so that the two independent variables
are r and z. ) . _

For the subsonic solution, the stream function is used. The stream function u
used herein is related to the stream function { defined in reference 1 by ¥ = uw.
With this substitution in equation (107a) of reference 1, we obtain in appendix B the
basic differential equation which must be satisfied by the stream function under the
given assumptions:

2 2 ' W, 3(xV,)
u+au—l@--<lVB+le> Vu+er—9 9+§W2+§+Fr =0
oz arz r or B p sz r or
(A1)
where
g=-1 (R 3" _1 3l w’r (A2)
2Cp p' or T'or TV
¢ = wlr - BT 9p" (A3)
p" ar
F. 99 13p (A4)
ar p a0

Equations (A1) to (A4) are derived from Wu's equation in appendix B. Note that all
the partials in equations (A1) to (A4) are on the stream surface except for 3p/36 in
equation (A4), which is at constant z and r.

The derivatives of the stream function satisfy the equations

rBpW
Qu_. r (A5)
0z w
rBpwW
o, 2 (A6)
or w
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For the final transonic solution the velocity-gradient method is used. The stream-
line curvatures and flow angles needed for the velocity-gradient equation are obtained

first from a reduced-flow subsonic-stream-function solution.
The velocity-gradient equation is

aw = (aW+b+-c—,+dcosB)dt+3+Wf
W w

(A7)

The coefficients, a, b, ¢, and d, are given by different experessions in the blade region,
in the upstream region, and in the downstream region. These coefficients are given as

follows:

Blade-region coefficients:

\
2 .2
q = COS B cos(a - @) _ sin Bcosﬁ+sinasinﬁcosﬁﬁ
r r
c
aw,_ aw, .\ a9
b = cos B sin(a - ¢) ~ 2w sin B cos ¢ + r cos B[— + 2w sin a]— > (A8)

dm : dm ot

c=0

d=0 _
Upstream-region coefficients:
~
Q= cos(a - ¢)
Te
b=0
2 2 2 (A9)
c=-(Awr\A-owr cos(a-go)+ur-'—cosqo g
r2 r, by
dw
d=—2 gin(a - Q)
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Downstream-region coefficients:

R

2

i

Y

(rVG) + Wr

c=- o cos(a - ¢) + —2— —cos ¢

2 r : T

(A10)

daw
d = —2 sin(a - @) J
dm

Finally, in all three regions, we have

e=C_T!-wdr+Cdr - BT gpr
p 1 p p"
(A11)
_ Rdp'" _dT"

2C p" 2T
pp

f

Equations (A7) to (Al1) are derived in appendix C. Equation (A7) is solved as an
initial-value problem, where the initial value of W is specified at the hub for any given
t-line running from hub to tip. By finding several solutions for varying values of W at

"the hub, a solution satisfying continuity will be found; that is, the solution will satisfy

T
t
[ pW rBcos(a - ¢)cos Bdr = w (A12)
h

When equation (A7) has been solved, subject to satisfying equation (A12), for every hub-
to-tip mesh line in the region, the entire velocity distribution is obtained.

The solution obtained by either the finite-difference or velocity-gradient method is
for the mid-channel surface between the blades. Of greater interest are the blade sur-
face velocities. These can be estimated since the blade loading depends on the rate of
cﬁange of whirl. By assuming a linear variation of velocity between blade surfaces,
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velocities can be calculated. In appendix G the following equation for calculating blade

surface velocities is derived:

d(rVe)
W, =W_..-=cosp
l mid 9 dm
- d(rvy,)
B )
W, = .. +=cos B
tr mid 2 dm

(A13)
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APPENDIX B

DERIVATION OF STREAM-FUNCTION EQUATION

Wu derives the following equation (eq. (107a), ref. 1) for the stream function on a
meridional stream surface:

2 2 . 2|w, arv,)
Q+M_l_@£_ lVB+le Vw+(r§p) _6 e-a_I.{.T.a_S+F =0
32 op2 TOr \B p apjor|{r or  or ar T ®1)
: B1

The partial derivatives here all refer to the rate of change on the meridional stream
surface. Wu used a bold partial derivative sign to indicate this, but it is not necessary
here since we consider the equation only on the stream surface. The quantity B is
proportional to the blade-to-blade stream surface thickness. Since the variation in
local stream sheet thickness is not known, the overall blade-to-blade spacing is used.
The quantity B is a function or z and r, so that we can use

B(z,r) = etr(z, r) - Bl(z, r) (B2)

where Otp and 6, are the 6-coordinates of the trailing and leading blade surfaces.
Equation (B1) is a nonlinear partial differential equation. The solution can be ob-
tained by solving a linearized form and then making corrections to the nonlinear terms
to improve the solution. After several iterations, the true solution to the nonlinear
equation is obtained. The equation can be put in a linear form by expressing dy/or
in the denominator in terms of Wz and using velocities and densities from the previous
iteration. For the first iteration, the nonlinear terms are omitted.
First, the stream function will be normalized to be 0 at the hub and 1 at the tip.
This is done by letting

Y = uw (B3)

where -u is the normalized.stream function. Then

rBpwW
Qu__ r (B4)
0Z w
rBpW .
ou_ z (B5)
or w

70



By using equations (B3) and (B5), equation (B1l) can be written

2 2 ~ W, o(rv,)
Q+a—3-l@-<lVB+le>-Vu+r§9—ﬁ 9-£+T§+Fr =0
2 2 ror B P wW_ | r or or or
0z or z (B6)
Rothalpy 1 is defined by
I= CpTi - WA (B7)

The entropy change ds can be calculated from

ds=c 9T _Rdp

Since the entropy of a particle at actual flow velocity is the same as the entropy of
the particle at stagnation conditions (either absolute or relative), we can also use °

ds = c 9T" _Rdp" (B8)
P T' pn i

This takes less calculation than using static values..
Equation (97) of reference 1 gives F. (the radial component of the vector F) as

Fr=__1_l§Enr (B9)
ngrp a6

Note that 9p/df is at constant r and z, and not on the stream surface as the other
partials are. The unit normal vector n to the stream surface is normal to any curve
on the stream surface, so that

n.dr+ngrdf+n,dz=0 (B10)

In particular, at constant z, we have

e r(ﬁ) (B11)
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where r(06/90r) is the tangent of the blade lean angle at constant z.

Using equation (B11)
in equation (B9), we get

F, -3613p (B12)
or p 28

The static temperature T is calculated from the velocity W by

2 ' 2
2Cp

When W is zero, equation (B13) gives the relative stagnation temperature, T''.

Equations (Al) to (A4) are obtained from equations (B6), (B7), (B8), (B12), and
(B13).

STREAM-FUNCTION EQUATION IN s- AND t-COORDINATES

The solution of equation (A1) is obtained by using finite-difference methods on an
orthogonal mesh. The orthogonal mesh coordinates are s in the throughflow direction

and t in the hub-to-tip direction. The derivatives of the stream function in the s and
t directions are related to the velocity components by

du_ _rBp
as_ w Wt

(B14)
_a_u_rBQW

Since s and t coordinates are used in solving equation (Al), the partials must be
expressed as partials with respect to s and t.

This is done by using the chain rule:

3 _23s, 33t

or dJsdr otor

=singo—+cos¢-Zi
ds ot
and
-a—=cos<p—a—-singoa—
0z os ot
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Now, apply this to the second partial of u to obtain

2
Ou  0u_0o"u 9d"u 3Judp 0udyp

2 8t2 ds ot ot os

(B15)
z2 orl s

In the program sin¢ and cos ¢ are stored, so that it is more convenient to calculate
the partials of ¢ by '

9¢ __1 3(sing)
ds cos @ 0s

(B16)
o _ 1. d(sin @)
ot cos g ot

The s,t orthogonal coordinate system is in the same length units as z" and r. In this
case, the gradient can be expressed directly in s and t coordinates, that is,

VB- vu=9B2 3B (B17)
- ds ds ot ot
Finally, putting all this together, we have
82u 82u ou | sin 13B 10 1 3(sin @)
gu ,ou_ougsing 105 1P _ ¢
aSZ atz os| r Bods pds cosg ot
_@cosg+l@+lgg+ 1 3(sin @)
ot r Bo podt cosg os
Bo |Wo ArVy) a(rVe) 9
+—-3—singo + COS @ + EW +§+Fr =0 (B18)
wWZ r as

where £, {, and F are as defined in equations (A2), (A3), and (A4)

CALCULATING F. AND PARTIALS OF (rVg)

In equation (B18), F. and the partials of rV, must be calculated differently out-
side the blade and within the blade. Within the blade, the partials of rVe are calculated
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by a finite-difference approximation using the previous iteration. For the first iteration,
the partials are assumed to be zero. Outside the blade, the partials are calculated from
the input whirl distribution. From the input, the whirl is specified (or can be estimated)
as a function of the stream function u. Hence, upstream of the blade,

Vo) o _arou_ar PPV (B19)
or or dudr du w
Similarly, downstream of the blade,
d(rV
a(rvy) ( 9) rBpW,
%) - [o] z (Bzo)

or du w

The Fr is caused by the radial pressure gradient induced by the blade lean. We
can calculate Fr from equation (B12). The blade-to-blade pressure gradient ap/d6
can be calculated from the blade loading by assuming constant entropy blade to blade,
so that

dp = pCp dT (B21)
From equation (B13) we get

P _wW (B22)

a0 08

since Tj, A, and r are all constant from blade to blade.
Now, substitute this in equation (B12) to get

’ F o=-28wW (B23)
ar 90 ‘

The blade-to-blade velocity gradient is calculated from dWe/dm, as explained in ap-

pendix G, by using equation (G2). Outside the blade, there is no blade-to-blade pres-
sure gradient. Hence,

F =0 (B24)
outside the blade.
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APPENDIX C

DERIVATION OF VELOCITY-GRADIENT EQUATIONS

The general velocity-gradient equation is an expression for the value of the direc-
tional derivative of the relative velocity. The velocity-gradient equation is derived
from Newton's three-dimensional force equation. In this program the velocity-gradient
equation is used in two ways. One way is to obtain the flow distribution at the upstream
and downstream boundaries to establish the boundary conditions for equation (A1). The
second way is to determine the approximate velocity distribution when there is locally
supersonic velocity on the meridional mid-channel stream surface.

VELOCITY-GRADIENT EQUATION FOR DETERMINING BOUNDARY CONDITIONS
The general velocity-gradient equation can be written

T!
d_w=a(_1£+bg.§+cg_9.+ic *l_w_d_)\__*_T_(_iE (C1)

dq dq dg dg w\ Pdg dg dq

where
W cos o coszB w sinZB : dWm W
a= : - + sin @ cos 8 - 2w sin 8
by r
c
2, .. dw
b=-Wc°S’Bsma‘+cosa_cosB m L (C2)
by dm
c
dW9
¢ =W sin a sin B cos 8+ r cos B|——= + 2w sin «
dm

</

This is the same as equation (B13) and (B14) of reference 2, but with the additional
term, T(ds/dq), to allow for variation in entropy.

Qutside the blade row, ¢ = 0. This follows from the fact that d(rVe)/dm =0 in
this region. Using this identity and the relation WG = VB - wr, we can derive the ex-
pression

dw W, + 2wr
0 = - 6 sin o
dm r
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When this is substituted in the expression for c, we find that ¢ = 0.
It is reasonable to assume that the boundary is normal to the flow along the upstream
and downstream boundaries. Then q =n and

dr _ cos «o
dn
(C3)
dz =-sin «
dn
When this is substituted in equations (C1) and (C2), we obtain
- ' .

d_W_=Wcos23_Wsin2[3cos 2 - 2w cos asinB+l C -d—E- &, pds (C4)
dn r r w\ Pdn dn dn

Cc

This equation is the basic velocity-gradient equation along a meridional streamline nor-
mal. At the upstream boundary (or any place upstream of the blade) A, T}, and p; are
specified as a function of the stream function. Also, along the boundary, o is assumed
to be known, since it is assumed that the boundary is normal to the streamlines. The
angle B, however, is not known directly. Therefore, in equation (C4), we desire to
eliminate B8 infavor of X, r, and W. This can easily be done since

Wy=2-or (C5)
r .
and
Wy
sin = — (Ce6)
w
Then cos B8 is obtained from
cos2,8 =1- sinZB (cm

The entropy change, ds/dn, can be calculated from the differential form of the
second law of thermodynamics:

dn T dn pdn
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Since the entropy of a particle at actual flow velocity is the same as the entropy at stag-
nation conditions, we can also use

ds _\P /i _ R"i (C8

The meridional-plane streamline curvature 1/r c is assumed to vary linearly from hub
to tip.

By substituting equations (C5) to (C8) in equation (C4) we obtain the velocity-gradient
equation in the form used in the computer program for the upstream boundary:

dw = <aW + R)dn ¥ l(ca + ¢ 1) (C9)
w w Ti
where
-
a-= L
Te
7\-wr2 A-owr Ccos a 2
b=- + (A +wr®)
r2 r, r
> (C10)
c, = Cp dTi - wdx
!
B _ _ i
¢ = (Cp R)dTi — dpi
Py J

Similarly, we can obtain a velocity-gradient equation for the downstream boundary.
Here we use downstream conditions for temperature, density, and whirl, so that the
downstream velocity-gradient equation is equation (C9) with coefficients given by
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a =
T'e
(rV9> - wr (rVe) - wr2
b=- 0 0 +L058 a [(rVe) + wrz]
r2 r, r o

> (C11)
¢y = C,dTy - w d(rVa)o
= (C.. -~ R)dT" " E’d '
) P 0 o | Po ' J
VELOCITY-GRADIENT EQUATION FOR CALCULATING
APPROXIMATE TRANSONIC VELOCITIES

We start with the general velocity-gradient equations (C1) and (C2). These equa-
tions will be applied along vertical mesh lines in the t-direction, so that q =t. (See
appendix B for a description of the orthogonal mesh.) Then

dr _ cos @
dq
(C12)
d_z =-s8ing
dq
Note that, by using equation (C12),
sin(a - ¢) = sin agﬁ+ cos a.%
dq dq
(C13)

cos(a -~ ¢) = cos af.g£ - sin a%
dq dq

Using equations (C12) and (C13) in equations (C1) and (C2), we can get
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2 w .2
AW _ W cos”B cos(a = @) | ¢o5 g M sin(a - ¢) - WsinB | 2w sin glcos ¢ + ¢
dt r, dm r dt
dT!
slfc Lo R, pds (C14)
w\P at dt dt

We can express T ds in terms of the relative velocity W and relative stagnation
conditions. We use

2
T .-W (C15)
2
Cp
By using equations (B8) and (C15), we get
2
Tds=C_dr" - BRI gpr , W2 (RAp" o dT (C16)
p p" Cp Zp" p o™
Now we can write the velocity-gradient equation (C14) as
AW = (aW + b) dt + = + Wi (C17)
w
where
2 2 )
q = COsBcos(a-g)_ sin“fcosg oo asinBcosB%
r r
c
dWm | dwe de
b =cos B sin(a - ¢) - 2w sin B cos ¢ + r cos B| — + 2w sin @] —
dm dm dt
> (C18)
e=C_dT! - wdr +C_dT" - BT gy
p 1 p p"
R f=RdE" -dTl'
chpn 2T )

Equations (C17) and (C18) can be used directly within the blade row. However,
outside the blade row, the angle B is not known directly, so that we desire to eliminate
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B in favor of A, r, and W, as was done on the upstream boundary. For this, we use
equations (C5) to (C7). Also, ¢ =0 in equation (C2) outside the blade as was shown
previously. With these substitutions, equation (C14) becomes

dw = (aW+£+d cos /3)dt+£+Wf (C19)
w w
where
~
a‘=cos(cv- @)
Te
2 2 2
c = - A-wr”)A - wr cos(a-<p)+k+wr cos ¢
r2 r, r
d = —2 sin(a - @)
dm 4 (C20)

e=Cp,dT} - @ d\ + C, dT"" - BT gpre
pl'

f--dT"" , Rdp"
9 chp"

9 2
cos B = 1-<ﬂ>
rw : P

Downstream of the blade, outlet whirl and absolute stagnation temperature and pres-
sure should be used. Hence, in equation (C20), T;, 1s used instead of T}, Py is used

instead of p}, and (rV 0 is used instead of A. Equations (A7) to (A11) are obtained
0
directly from equations (C17) to (C20).
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APPENDIX D

LOSS CORRECTIONS

An approximate loss correction is made by reducing the relative stagnation pressure
used in the program. This loss in stagnation pressure is specified by the input either
directly or by specifying outlet stagnation pressure. These quantities may vary from
hub to tip. If the outlet stagnation pressure is given as input, the fractional loss of
stagnation pressure is calculated. So, in all cases, the fractional loss of stagnation
pressure at the outlet is known from hub to tip. This loss is assumed to be zero up-
stream of the blade, then to vary linearly from leading edge to trailing edge within the
blade, and to be constant downstream of the blade.

For the case where the downstream stagnation pressure is given as input, the frac-
tional loss of stagnation pressure is calculated. First, the outlet total temperature T;)
is calculated from the change in whirl along a streamline,

T “’[("Ve)o -] on
CP

Then the ratio of actual to ideal stagnation pressure is calculated from

-1)
p' p' /T! ')’/(')’
ip‘ ) p; \T,/
O/ideal ! 0 ‘

Within the blade, the loss is distributed linearly from zero at the leading edge to the
fraction given or calculated at the blade trailing edge. The loss fraction is the same
whether it is expressed in terms of relative or absolute stagnation pressures. That is,

pv t _ pv (DS)
p{aeal pideal

When this ratio is known, the density can be calculated, since

1/( '1) 1"
p=pi{= g S (D4)

i
Ti piaeal
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Equation (D4) is derived as equation (B6) in reference 13. The value of p"/pi:ieal varies
at each point of the region but does not change after the initial calculation. The value

of p is used in checking continuity by means of equation (A12). Therefore,. in the pro-
gram, the loss correction is made by reducing the tangential blade space B at each
mesh point.
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. APPENDIX E

DEFINING REDUCED-MASS-FLOW PROBLEM

When the mid-channel meridional-plane solution has locally supersonic flow, the
solution cannot be obtained directly by solving the stream-function equation (eq. (Al)).
However, an approximate solution can be obtained by getting a reduced-flow solution and
extending this to the full-flow solution by the velocity-gradient method. This full-flow
solution depends strongly on the reduced-flow solution, so that it is important to estab-
lish the conditions which will give the most suitable stream-function solution. With a
reduced mass flow, if both the inlet and outlet whirl and the rotational speed are reduced
in the same ratio as the mass flow, a similar flow will result. That is, the reduced-
flow streamlines will have approximately the same angles and curvatures as the full-
flow streamlines throughout the flow field.

Another consideration is the boundary conditions at the upstream and downstream
boundaries. Again, the flow distribution will be similar to the reduced mass flow if the -
mass flow, inlet and outlet whirl, and rotational speed are all reduced by the same
ratio.

In summary, then, for the reduced-mass-flow solution, the mass flow, inlet and
outlet whirl, and rotational speed are all reduced in the same ratio. This reduction
factor is specified in the input by REDFAC, as explained in the section INPUT.
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APPENDIX F

INCIDENCE AND DEVIATION CORRECTIONS

The solution region is divided into three subregions: upstream, within the blade,
and downstream. These three regions should match each other, that is, there should
be no difference in the tangential momentum of a particle on either side of the lines at
the leading and trailing edges. If there were no incidence or deviation, this condition
would be satisfied automatically by using the actual blade shape in the blade region.
Since there is almost always incidence and deviation, the mean flow will not follow the
blade surface near the leading and trailing edges. Because of this, an empirical correc-
tion is made to the blade shape near the leading and trailing edges.

The blade shape correction is made for a distance from the leading or trailing edge.
This distance varies between 1/6 and 1/2 of the blade chord, depending on solidity.

The solidity is defined to be the ratio of the true blade chord along a streamline to the.
blade-to-blade distance. When there is a change in radius, the solidity differs at lead-
ing and trailing edges. ¥or calculation purposes in the program the true blade chord
along an s-coordinate line is used instead of that along a streamline. For a solidity of 2
or more, the distance is 1/6 of the chord; and for a solidity of 1/2 or less, the distance
is 1/2 of the blade chord. The distance varies linearly with solidity between these
limits. The correction is made to the blade angle so that tangential momentum is con-
tinuous at the blade leading or trailing edge, and then the angle correction is linearly
decreased over the prescribed distance within the blade. '

The free-stream flow angle is not known in advance at the blade leading edge.
Therefore, an iterative procedure is used to make the blade shape correction. On the
first iteration, no blade shape correction is made. After the first iteration, an approxi-
mate solution is obtained, and the flow angle B is calculated throughout the region.
From the requirement of continuous tangential momentum,

(We)fs ) (We)bf

From continuity,

<Wm>fs N?;TL ) (WmB)bf

Hence, since tan g = WG/Wm
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tan B = tan st<§5—2—@> | (F1)
m

It is assumed that the s-coordinate is close to a streamline. Therefore, only 96/0s
will be changed, and 096/0t will not be changed. We can express B in terms of the
partials of 6 by

dm ds

tan B =r 4 _ r[(ég) cos(a - @) + keld sin(a - go)]
ot
bf
When this is solved for (36/ as)bf, we obtain

tan :
Pot -9 sin(a - @)

3s/y¢ cos(a - ¢)

Equations (F1) and (F2) are used to calculate (36/ ds)y,; at the blade leading and
trailing edges. The difference (36/ as)bf - (08/ as)b is then varied linearly within the
blade for the specified distance. The calculations for these blade shape corrections are
done by subroutine INDEV.
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APPENDIX G

BLADE SURFACE VELOCITIES AND BLADE-TO-BLADE AVERAGE DENSITIES

The blade surface velocities can be calculated once a meridional mid-surface solu-
tion is obtained. The blade-to-blade velocity gradient oW/20 depends on dWe/dm. To
obtain the desired relation, we use the velocity-gradient equations (C1) and (C2). In
this case, g = 6 and dr/dg =dz/d9 = 0. Also, it is assumed that T!, %, and the en-
tropy s are constant in the blade-to-blade direction. With this, equations (C1) and (C2)
become

ow dw,
— =Wsin o sinfcos8+rcos B — + 2w sin & (G1)
a0 dm

Using the fact that Ve = W9 + wr and We = W sin 8, we can rewrite equation (G1) as

d(rv,)
gﬂ =cos B 4

00 dm

(G2)

Since only a mid-channel solution is obtained, we assume that cos 8 and d(rVe)/dm
are constant from blade to blade. This means that W varies linearly from blade to
blade. (This may be in considerable error near the leading or trailing edge.) With this
assumption, then

W, + W
W _ L tr

y = (G3)
mid 9

Integrating (G2) from blade to blade (from 6 = 6, to 6= etr) and using (G3), we obtain

d(rVvy,)
Wir = wmid + Deosp 2
2 dm
, (G4)
d(rvy)
W, =Wmid_BcosB 6
2 dm
J

Note that equation (G4) is very close to that developed by Stanitz (eqs. (16) and (17),
ref, 16).
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Equation (G4) is used in subroutine BLDVEL to obtain blade surface velocities from
the mid-channel meridional solution.

It is desirable to consider the blade-to-blade variation in density to satisfy continu-
ity for the blade passage. Equation (G4) gives information we need to do this. Since the
mid-channel solution is considered to be representative of all meridional-plane stream
surfaces, we can consider the solution to be based on average blade-to-blade conditions.
This means that in equation (B14) average blade-to-blade velocity and density should be
used. Equation (B14) becomes

@ = - @(pwt>

0s w av
(G5)
ot w av
If we use Simpson's rule to calculate the average value, we obtain
P W +4p . W 1+ Py W
(pws) - l"s,1 mid"'s, mid = "tr s, ir (G6)
av 6

The velocity component WS can be expressed in terms of the velocity and flow angles by
W, =W cos g8 cos(a - @) : (G7)

This relation holds also on the blade surfaces, since the flow angles are assumed to be
constant in the blade-to-blade (8) direction, so that

Ws,l =W, cos B cos(a - ¢)
(G8)

w = W, cos B cos(a - ¢)

s, tr

By using equations (G3), (G4), and (G8) in equation (G6), we can express (pWS) as
av

p; - P '
(pWs) = pavws + 4t cos B cos(a - qo)(Wl - Wtr) . (G9)

av 12

where the subscript mid is omitted from Ws, and
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_ Pt 4pmid + Py
Pay = 6

When a solution of equation (Al) is obtained, all quantities in equation (G9) can be esti-
mated from the previous iteration, except for Wg. So we solve for W g in equation (G9)
and use equation (G5) to obtain

Ju
W —
W =9t _ (0, - pypcos B cos(a - @)W, - W,.) 10)
S
rBp,y 12p,y

This is the equation used in subroutine NEWRHO to calculate Ws from du/dt. On the
first iteration, Pay = p{ is used, and the second term is omitted. After this, the val-
ues of Pmid> Ptr» P1> Wy, Wtr’ cos B, and cos(a - ¢) from the previous iteration are
used.

In a parallel manner, we can derive the equation for Wt:

ou
w— . '
Woe._ 05 (pl - ptr)cos B8 sin(a - q))(Wl_ - Wtr) (G11)
L =
rBp,y 120,y
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APPENDIX H

SYMBOLS

coefficient in velocity-gradient equations (A7) and (C1)
tangential space between blades, rad

coefficient in velocity-gradient equations (A7) and (C1)
specific heat at constant pressure, J/(kg)(K)
coefficient in velocity-gradient equations (A7) and (C1)
coefficiient in velocity-gradient equation (A7)
coefficient in velocity-gradient equation (A7)

vector normal to mid-channel stream surface and proportional to tangential pres-
sure gradient, N/kg

coefficient in velocity-gradient equation (AT)

rothalpy, CpT{ - WA, metersz/sec2

meridional streamline distance, meters

unit vector normal to mid-channel stream surface

pressure, N/meters2

distance along an arbitrary space curve, meters

gas constant, J/(kg)(K)

radius from axis of rotation, meters

radius of curvature of meridional streamline, meters
entropy, J/(kg)(K)

distance along orthogonal mesh lines in throughflow direction, meters
temperature, K

distance along orthogonal mesh lines in direction across flow
normalized stream function

absolute fluid velocity, meters/sec

fluid velocity relative to blade, meters/sec

mass flow, kg/sec

axial coordinate, meters
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o angle between meridional streamline and axis of rotation, rad; see fig. 2
B angle between relative velocity vector and meridional plane, rad; see fig. 2
Y specific-heat ratio |
¢ coefficient in stream-function equation, defined in eq. (A3)
0 relative angular coordinate, rad; see fig. 2
X prerotation, (rVe)‘, metersz/ sec
i
£ coefficient in stream-function equation, defined in eq. (A2)
P density, kg/meter3
Q@ angle between s-coordinate line and axis of rotation, rad; see fig. 4
Y stream function, kg/sec
w rotational speed, rad/sec; see fig. 2
Subscripts£
av  average blade-to-blade value
b blade
bf blade flow
cr critical
s free stream
h hub
i inlet
l blade surface facing direction of positive rotation
m component in direction of meridional streamline
mid mid-channel blade to blade
o] outlet
r component in radial direction
S component in the s-direction
t tip, or component in the t-direction
tr blade surface facing direction of negative rotation
z component in axial direction
8 component in tangential direction
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Superscripts:

1

T

absolute stagnation condition

relative stagnation condition
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11.

12.

13.

14.
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