
AEdT) TURBULENCE I.N 
THE SUR E TJNDARY L 



I. REPOKT NO. 2. GOVERNMENT ACCESSION NO. 

NASA CR-2288 
1. TITLE AND S U B T I T L E  

A MODEL O F  WIND SHEAR AND TURBULENCE 
IN THE SURFACE BOUNDARY LAYER 

7. AUTHOR(S) 
James I(. L u e r s  

I *. PERFORMING ORGANlZATlON NAME AND ADDRESS 10. WORK UNIT  NO. 

3. RECIP IENT’S  CATALOG NO. 

5. REPORT DATE 

July 1973 

MI12 
6. PERFORMING ORGANIZATION CCOE 

B.PERFORMING ORGANIZATION REP OR^ 

Unive r s i ty  of Dayton 
R e s e a r c h  Ins t i tu te  
Dayton, Ohio 45469 

2. SPONSORING AGENCY NAME AND ADDRESS 

NASA 
Washington, D. C. 20546 

11 1. CONTRACT OR GRANT NO. 

... 

Cont rac to r  R e p o r t  

14. SPONSORING AGENCY CODE 

NAS 8 - 26 6 00 
13. T Y P E  OF REPOR-i & PERIOD COVERE 

7. KE’r WORDS 

Boundary l a y e r ,  turbulence,  

f r ic t ion  velocity,  su r f ace  rougnees 
wind s h e a r ,  a tmosphe r i c  stabil i ty,  

18. DISTRIBUTION STATEMENT 

02 

15. SUPPLEMENTARY NCTES 

Prepared under the technical monitorship of the Aerospace Environment Division, 
Aero-Astrodynamics Laboratory, NASA-Marshall Space Flight Center. 

,6. ABSTRACT 

A model  of wind and turbulence has  been descr ibed  f o r  t he  sur face  boundary 
layer .  
ihe su r face  p a r a m e t e r s ,  stabil i ty,  and height. The sur face  p a r a m e t e r s  cons idered  
are  Z 

0’ 
z e r o  plane displacement  height. 
Monin-Obukov s tabi l i ty  length,  desc r ibes  the t h e r m a l  effect on the  wind profile.  
The  logar i thmic  wind prof i le  is used t o  descr ibe  the  mean  wind field in  the neut ra l  
boundary l aye r ,  and a logari thmic profile with a s tabi l i ty  defect  is used t o  d e s -  
cribe the  s table  and unstable  a tmosphe r i c  conditions. For the v e r y  stable con- 
ditions,  the  logari thmic wind law does  not hold. 
l a y e r s  of the  a tmosphe re  become disconnected and l a r g e  scale f ron ta l  motions 
are the  predominate  f ac to r  in defining the wind prpfile.  
which r ep resen t  s o m e  typical  wind prof i les  in  the v e r y  s table  condition. The 
Dryden  s p e c t r a l  function was  chosen t o  r ep resen t  the statistical p rope r t i e s  of 
turbulence.  The  p a r a m e t e r s  of the Dryden model,  u and L (scale length),  are  . 

specif ied as functions of stabil i ty,  height, and sur face  conditions fo r  each  
component  of turbulence.  
cr and L are constrained t o  sat isfy a condjtion of loca l  isotropy at l a rge  wave 
numbers .  

The wind s t ruc tu re  in the  sur face  l a y e r  is cons idered  to  be a function of 

the  sur face  roughness  length; u*, the su r face  f r ic t ion  velocity;  and d, the  
The  stabil i ty p a r a m e t e r ,  Z / L ,  where  L is the 

Under  th i s  condition, the 

F igu res  are  presented  

The interrelat ionship between the components of 

I 1 2 1 .  NO. Y2PAGES 19 .  SECURITY CLASSIF. (d thL mPaW 20. SECURITY CLASSIF. (Of tu* p.110) 

Unclassified Unclassified 

22. PRICE 

$3.00 . I I I 
For d e  by National Technical Information Sewice, Springfield, Virginia 22151 



FOREWORD 

The research reported i n  t h i s  document was motivated by the  need 
fo r  a def in i t ion  of low l eve l  wind shear environments f o r  use i n  
s tud ies  r e l a t i v e  t o  the e f fec t  of wind shears on aeronautical  
systems during the  landing f l i g h t  phase. 
ment has received renewed in t e re s t  i n  the  last  few years because of 
t h e  comitment on the  pa r t  of the  aeronautical community t o  develop 
an all-weather automatic landing system. 
models has been proposed, each with i ts  own m e r i t s  and def ic iencies ,  
depending on the intended application. 
is an excellent contribution t o  t h i s  existing"stab1e"of models, and 
w a s  developed f o r  the  assessment of the e f fec ts  of wind shear on 
the  landing f l i g h t  phase of aeronautical  systems. The user is 
cautioned against  se lec t ing  a given model for  a design or operational 
problem without examining t h e  other available models. 

Modeling the  wind envikon- 

A wide var ie ty  of wind 

The model contained herein 
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INTRODUCTION 

An accura t e  and detailed descr ipt ion of the wind and turbulence 

F o r  s t ruc tu re  of the planetary boundary layer  has  many applications. 

example,  a knowledge of wind and turbulence proper t ies  can be used to 

determine flow pa t te rns  and atmospheric  mixing proper t ies  f o r  use  in  

pollution control. 

the  response of l a rge  buildings t o  the wind field; th i s  requi res  a ve r t i ca l  

profile of the wind field. The following d iscuss ion  concerns  the aircraft 

landing problem, par t icular ly  with respec t  t o  STOL a i rc raf t .  

components of th i s  problem a r e  (a) the wake effects of buildings around 

STOL por ts ,  and (b) the effects of a sudden change in  wind magnitude o r  

direct ion during final approach. 

the s t ruc tu re  in conjunction with information about wakes behind buildings 

is needed as input in  o r d e r  to  define the f o r m e r  effect. 

l a t t e r  effect has  resul ted in the formulation of a s t ruc tu ra l  model  of wind 

and turbulence in  a s ta t is t ical ly  s ta t ionary and horizontally homogeneous 

boundary l aye r  which has  been used a s  the wind input to  simulated air- 

craft landings. 

z e r o  wind condition, the types of profiles that  provide hazardous landing 

conditions can  be analyzed. 

In addition, Structural  Engineers  must  now cons ider  

The two 

A ver t ica l  wind profile over  and around 

A study of the 

By observing the deviation in  touchdown point f r o m  a 

GENERAL DISCUSSION 

A model  has  been selected fo r  the mean  wind profile and f o r  the 

s p e c t r a l  charac te r iza t ion  of turbulence in the s ta t is t ical ly  s ta t ionary and 

horizontally homogeneous sur face  boundary layer .  

l aye r ,  only (a) the sur face  conditions, (b)  the stabil i ty conditions, and ( c )  

alt i tude are considered to  influence the wind s t ruc ture .  The horizontal  

In the sur face  boundary 



shear ing s t r e s s  is constant. The wind direct ion is considered constant 

with altitude. Inertial ,  Coriol is ,  and p r e s s u r e  gradient f o r c e s  a re  not 

considered significant in  the sur face  boundary layer .  The sur face  l aye r ,  

in  a s t r i c t  sense ,  extends to  only about ten  meters alt i tude,  but the above 

su r face  l a y e r  assumptions are reasonable  to  a n  alt i tude of near ly  100 

meters. 

SUMMARY O F  MEAN WIND h.4C)EEL 

The mean wind profile that  has  been selected f o r  the su r face  

boundary layer is  a function c?f the  sur face p a r a m e t e r s ,  u* ( sur face  fr ic t ion 

velocity),  Zo (roughness length), and d ( z e r o  plane displacement) ;  the 

stabil i ty p a r a m e t e r  Z / L  (L is the Monin-Obukov s tabi l i ty  length);  and the 

height, Z. The model  defined by these  p a r a m e t e r s  reasonably approxi -  

ma tes  the t r u e  wind profile to  a n  alt i tude of 100 meters. A definition of 

the p a r a m e t e r s  u::, Z o ,  d,  Z / L ,  and a discussion of rationale per t inent  

to  the selection of this  model  is presehted in a l a t e r  section. 

The mean  wind f o r  the sur face  boundary l aye r  is descr ibed  by 

the Logari thmic law 

- u::: z+ zo Z 
u = - [ a n (  ) -t v791 

k z O  

where ,  for  neut ra l  stabil i ty,  

Z 
L 

\y ( - ) = O ;  

fo r  a n  unstable condition, 

with the p a r a m e t e r  a = 18; 
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and fo r  the stable condition, 

Z Z 
Y (  - ) = U - 

L L ’  with the p a r a m e t e r  E = 5.2. 

F o r  the very  s table  condition, the logarithmic wind law does not 

hold. 

become disconnected and l a r g e  sca le  f rontal  motions are the predominate 

f ac to r  in  defining the shape of the profile. 

cussed  later, define typical  types of profiles that  may occur  in  the ve ry  

s table  condition. 

Under strong inversion conditions, the l a y e r s  of the a tmosphere  

F igu res  5 and 6, shown and d i s -  

SUMMARY O F  TURBULENCE SPECTRA 

Deviations in wind velocity having periods of less than t e n  minutes 

are conside red  gusts  o r  turbulence.  

a r e  charac te r ized  by its spectrum. 

problem, the functional representat ion of the turbulence spec t r a  has been 

chosen as the Dryden s p e c t r a l  function. 

spec t r a ,  uu, uv, uw, and Lu, Lv, L,, have been defined as functions of 

stabil i ty,  height, and su r face  conditions. The sur face  roughness pa ra -  

meter, Zo, is not sufficient to explain the t e r r a i n  effect  on the components 

of c and L. 

data  has  been collected t o  categorize the i r  effect. A later sec t ion  d i scusses  

the var ious  sou rces  of data  which served  as a bas is  fo r  choosing this model. 

The s ta t is t ical  p roper t ies  of turbulence 

F o r  the a i r c r a f t  landing simulation 

The p a r a m e t e r s  of the Dryden 

Large  sca le  t e r r a i n  fea tures  are important,  but insufficient 

The express ion  f o r  the ver t ica l  velocity s tandard deviation is 

Z / L  1 / 4  
u = 1.25~::  ( 1 -- 1 
W S 
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where  
Z f o r  - > 0 s = 1 t 5 . 2 -  

Z 
L L -  

Z 
f o r  - < 0 . z - 1 / 4  and 

S = ( 1  - 18 - )  
L L -  

The longitudinal and lateral velocity s tandard  deviations,  u 

defined in terms of the  stabil i ty pa rame te r  B by F i g u r e s  8 and 9,  presented 

and uv, a r e  
U 

late r ,  whe re 
7 

The ver t ical  scale i e c g t h  is delined by 

- 0 .742  

€ 
Lw - Q 

where  

Z fo r  - < O  and . @  = ( 1  - 1 8 - )  - -  Z -1 /4  Z 
€ L - L  L -  

The longitudinal and l a t e r a l  s ca l e  lengths a re  der ived f r o m  the loca l  

isotropic  turbulence relationship 

LU V 
2L 

W 
2L 

The L 

ment  with independently measu red  experimental  data .  

and L defined by this  re la t ionship show genera l ly  good a g r e e -  
W V 

S U R F A C E  BOUNDARY LAYER 

The sur face  boundary l a y e r  is defined 2 c  that  region of the a tmos -  

phere where the shear ing  stress is constant .  The region extends,  in a 

strict sense,  f r o m  the sur face  to  only about ten  meters alt i tude,  but i s  

4 



considered to  extend t o  near ly  100 me te r s .  

l aye r ,  the dec rease  in  stress with altitude is so small as to  make the 

assumption of constant s h e a r  s t r e s s  acceptable f o r  engineerin'g appl ica-  

t ions.  

stabil i ty condition, and alt i tude affect  the wind and turbulence s t ruc ture .  

The following sect ions d iscuss  the pa rame te r s  used to  descr ibe  the s u r -  

face and stabil i ty conditions. 

In the t en -me te r  t o  100-meter  

In the sur face  boundary l aye r  only the sur face  conditions,the 

Surface Conditions 

The sur face  p a r a m e t e r s  used in defining both the mean wind 

velocity profile and the spec t r a l  p roper t ies  of turbulence are the su r face  

roughness length (Zo), the  z e r o  wind reference leve l  (d),  and the s u r -  

face fr ic t ion velocity (u*). 

to  cha rac t e r i ze  the g r o s s  features of the te r ra in .  

es t imated  f o r  uniform type t e r r a ins .  

the d i s s imi l a r  fea tures  influence the wind profile in a manner  that depends 

upon the dis tance f r o m  these  features .  

meter is not appropr ia te  f o r  es t imat ing a wind profile i f  the prof i le  

reflects the effects of nonuniform t e r r a i n  elements.  

some typical values  of roughness length for  var ious types of uniform 

t e r r a i n s .  (See Table 1. ) 

The roughness length Zo is a p a r a m e t e r  used 

It is m o s t  re l iably 

When the t e r r a i n  is nonuniform, 

Thus, a g r o s s  roughness pa ra -  

F ich t l  [ 1 ] gives 

The z e r o  plane re ference  level,  d, is the alt i tude at which, fo r  

a given roughness length, the wind velocity ex t rapola tes  to zero.  (See 

F igu re  1. ) F o r  example,  over  fo re s t  type t e r r a i n  where  the average  

height of the  trees m a y  be 15 meters, the roughness length is Z, = 

0. 5 meter. 

function of altitude. 

The  profile above the trees can be represented  as a logari thmic 

The  z e r o  plane displacement  is determined by 

5 



TABLE 1;k 

TYPICAL VALUES O F  SURFACE ROUGHNESS LENGTH (2,) 
FOR VARIOUS TYPES O F  SURFACES 

Type of Surface 

Mud flats, ice 

Sand 

SzioGt$ sea 

Snow si~.rfzc e 

Mown grass ( 0. O i  m) 

Low grass, steppe 

Fallow field 

High grass  

Palmetto 

Suburbia 

City 

2 0  (n4  

- 3. IO-’ 

2.10“ - 3.  io-” 

l o 4  - 

I O 4  - io-2 

- 4- i0 -2  

2 - 1 0  - 3 . i 0 - 2  

4-  io-2 - io-’ 
io? - 3-10  

3 -3 io - 6.10 

-2 

-1 

I - 2  

I - 4  

*This table was taken f r o m  George  H. Ficht l ,  Reference 1 .  

6 
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extrapolating the wind profile above the t r e e  tops to  the alt i tude at which 

the wind equals  zero.  In modera te  wind f ie lds ,  the z e r o  plane displace-  

ment m a y  be the approximate height of the roughness e lements ,  in  the 

above example,  approximately 15 meters. In s t rong  wind fields,  the z e r o  

plane displacement  tends to dec rease  while in light wind f ie lds ,  it tends 

t o  increase.  

height of the roughness e lements .  

Thus,  f o r  a n  average  guess ,  d can  be taken as the average  

- ;/z 
The su r face  f r ic t i~na!  velocity u::: is defined as u* = [ -uw] , 

where 

fluctuating wind velocity, and ovarhar  der,-,tes a t ime  ave rage  ove r  approxi-  

mately a ten-minute period. 

the mean velocity by i t s  duration. 

averaged over  per iods approximately equal  to  ten minutes  and the fluctu- 

ating velocity is computed as deviations f r o m  the mean. 

spec t r a l  energy ex i s t s  between approximately ten  minutes  and s e v e r a l  

hours ,  t h e r e  should be little difference between a n  ave rage  computed ove r  

ten  minutes and one ove r  a one-hour period. [ 21 Thus ,  i t  is reasonable  

to  define a fluctuating component of velocity as having a period less than 

ten  minutes. 

and u denote the ver t ica l  and longitudinal components of the 

The fluctuating velocity is distinguished f r o m  

In prac t ice ,  the mean  wind is general ly  

Since a gap in 

The fr ic t ional  velocity is a scaling p a r a m e t e r  f o r  the m e a n  wind 

profile. 

the surface fr ic t ion velocity. This  can  be seen  as follows: The c o r r e  - 
lat ion coefficient, = u w / u  u , is a s sumed  to  be constant throughout 

the sur face  boundary l a y e r  (typically,  p = -0. 3 ) .  Thus,  uw = Du u , 

D =  -0. 3 ,  a constant f o r  this  discussion. In neu t r a l  stabil i ty u and u 

That is, the mean  wind profile i n c r e a s e s  in d i r ec t  proport ion to  

- 
- puw u w  

uw u w  

U W 

are  known to va ry  proport ional  to the m e a n  wind velocity. 

u = Au and u = B u .  Thus ,  u* = [ -uw] = Cu, where  C = 

That  i s ,  
- - 1 / 2  - - 

U W 

8 



Thus,  in  neutral  stability, the mean wind is directly proport ional  to  the 

sur face  fr ic t ion velocity. In nonneutral stability, s imi l a r i t y  theory again 

requi res  that u be d i rec t ly  proportional t o  u*. 

Stability P a r a m e t e r s  

The mean wind and turbulence in  the surface l a y e r  depend upon the 

t empera tu re  profile. The t empera tu re  lapse rate, i. e. , the dec rease  in 

t empera tu re  with altitude, m e a s u r e s  the effect of the t empera tu re  profile 

on the wind velocity s t ruc ture .  

is g r e a t e r  than that  assoc ia ted  with a homoentropic a tmosphere  (adiabatic 

lapse  rate) then the t empera tu re  profile adds kinetic energy  t o  the a tmos -  

phere via  posit ive buoyancy forces .  If, on the o ther  hand, the t empera tu re  

If the decrease  of t empera tu re  with altitude 

lapse rate is less than the adiabatic lapse rate,  a downward res tor ing  f o r c e  

abso rbs  energy  f r o m  the atmosphere.  In this c a s e ,  the a tmosphere  is said 

to  be stable.  If the t empera tu re  lapse rate is approximately adiabatic,  the 

a tmosphere  is neutral .  

effect becomes s o  prominent as to  convert  turbulent eddies  into a laminar  

flow. 

by the c r i t i c a l  Richardson number,  Ric. 

longer  exist. 

be dependent on sur face  condition. 

gradient  Richardson number  is Ri  -0 .  20 f 2 3 .  

Richardson number  in terms of lapse rate and the adiabatic lapse  rate is 

Under s t rong inversion conditions, the damping 

This  division between l amina r  and turbulent flow is general ly  defined 

F o r  Ri  > Ri , turbulence can  no 
C 

This  c r i t i ca l  value is not accurately defined and may  even 

An approximate value f o r  the c r i t i ca l  

The express ion  f o r  gradient  

9 



where 

g = gravitational acce lera t ion ,  

r = adiabatic lapse  rate = g/Cp , 
y = t empera tu re  lapse  rate = -?T/;3Z, 

T = t empera ture ,  

C p  = specific heat of dry  air at constant p r e s s u r e ,  

= mean  wind velocity, and 

Z = altitude. 

Equation (1) shows that f o r  neut ra l  stabil i ty RiZO; f o r  a n  unstable a t m o s -  

phere  Ri < 0; and fo r  a s table  a tmosphere  Ri > 0.  The stable a tmosphe re  

is fur ther  subdivided by the critical Richardson number  into s table  f o r  

Ri  < Ri and v e r y  stable f o r  R i > R i  . In the v e r y  stable condition, when 

only laminar  flow ex i s t s ,  the a tmosphere  becomes  disconnected and the 

shape of the wind profile no longer  reflects only the sur face  conditions. 

L a r g e  scale e f f ec t s  such  as a w a r m  front  overrunning a cold f ron t  become 

the dominant fea tures  in  shaping the profile. Physical ly ,  the Richardson 

number r ep resen t s  the ra t io  of the t h e r m a l  to mechanical  production of 

turbulence.  F o r  a s ta t ical ly  stable a tmosphe re ,  r >y,  t h e r m a l  damping 

occur s ,  and the Richardson number  is  positive. F o r  a n  unstable a t m o s -  

phe re ,  y >r, t h e r m a l  convection adds energy  to  the a tmosphere ,  and the 

Richardson number  is negative. F o r  a neut ra l  a tmosphe re ,  t he re  is 

essent ia l ly  n o  t h e r m a l  energy  t r a n s f e r r e d  and the  Richardson number  i s  

approximately zero .  

and universal ly  accepted m e a s u r e  of a tmospher ic  stabil i ty.  

wind profiles, however, the Richardson number  i s  not eas i ly  manipulated 

because of i ts  var iabi l i ty  with alt i tude.  A different  p a r a m e t e r ,  Z / L ,  

where  L i s  the Monin-Obukov s tabi l i ty  length, is a m o r e  convenient 

C C 

The Richardson number  has  become a n  important  

In defining 

10 



stabi l i ty  p a r a m e t e r  f o r  charac te r iz ing  wind profiles.  

stabil i ty length can  be considered independent of altitude in the su r face  

l a y e r  and is defined by 

The Monin-Obukov 

where  8 = potential t empera tu re ,  

H = ver t i ca l  heat  f l u x ,  

p = air density,  and 

k = von Karman  constant. 

The p a r a m e t e r  Z / L  can  be related t o  the Richardson number  through 

dimensional ana lys i s  a rguments  and experiments  show the relationship 

t o  be given by 

Z / L  = Ri  f o r  R i <  0 (Businger 's  hypothesis) - 
and 

Z / L  = R i / l - 5 . 2  Ri  for 0 < Ri  < Ri  . 
C 

The  second expres s ion  above implies Z / L  -+m as Ri  + 1/5.2.  

This  conforms to a c r i t i c a l  Richardson number of approximately 0. 20. 

MEAN WIND PROFILE 

In the sur face  boundary l a y e r  the logarithmic wind law as derived 

f r o m  the Monin-Obukov similarity theory and exper iments  f o r  neut ra l  

(R i -  O), stable ( O <  R i <  Ric), and unstable (Ri  < 0)  conditions is given by 

11 



where  the sur face  p a r a m e t e r s  u*, Z o ,  and d, and the stabil i ty p a r a m e t e r ,  

Z / L  have been previously discussed.  

The von Karman constant,  k, has  numer ica l  value of approximately to. 4. 

Equation (2 )  can  be wr i t ten  in the simplified f o r m  

Z'  is the height above the sur face .  

where  2 is t h e  altitude above the z e r o  plane re ference  level. 

o r  ( 3 )  is useful only f ~ r  f d l y  turbdcnt boiindary l a y e r s  and does not p ro -  

vide a valid representa t  ion of the wind profile under  v e r y  stable conditions. 

Equation ( 2 )  

The function ( Z / L )  is a n  empir ica l ly  der ived universa l  function 

of Z / L .  

profile is valid,  i. e . ,  

F o r  neut ra l  s tabi l i ty  when Z / L  = 0, UJ ( 0 )  = 0, s o  that  the log 

Figure 2 shows neut ra l  wind profiles for var ious  values  of u:: and 

The express ion  f o r  V ( Z / L )  in  unstable and s table  a i r  has  been der ived Zo. 
by many authors  (Webb, Panofsky e t  a l . ,  McVehil, F ich t l  and McVehil, 

Wyngaard and Cote,  Businger  e t  a l . ,  and o the r s  ). [ 2, 3 ,  4, 5, 6 ,  and 7 1  

F o r  the unstable conditions Ur ( Z / L )  has  been calculated by fitting 

to  a n  equation of the f o r m  kZ;Su the nondimensional s h e a r  S = - u>$ ? Z  

-1 /4 
S = ( 1  - a Ri)  (4) 

where  Ri = Z / L  and a is a fi t t ing pa rame te r .  

1 2  
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Figure  2. Neut ra l  Wind Prof i les .  
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P e t e r s o n  and Panofsky [ 31 suggest a value of a = 18; Bus inger  

e t  al. suggest a = 15 wi thavon  Karman k of 0. 35. 

dimensional shea r  (Equation 4)  defines the mean wind a s  

Integration of the non- 

where  
Z Z/L 

' z / L  
- [ 1 - ( 1 - a -  )-1'4} d E. Z L 

0 

Figure  3 shows unstable wind prof i les  f o r  var ious values  of Z 
L. 

u::. a n d  
0) ' 

F o r  a stable a tmosphere ,  the nondimensional s h e a r  has  been d e s -  

c r ibed  by the expression 

Integration of Equation (5)  with respec t  to altitude defines the mean wind 

profile for stable a i r  as 

Pe te r son  and Panofsky suggest a value f o r  u of 10; Businger  e t  al. 

suggest  a = 4. 5 to u = 5. 0 with k = 0. 35; McVehil suggests  a =  7.  0. Webb 

suggests  u = 5. 2 with individual observation showing a s tandard deviation 

of 30 percent  f rom the mean valueof 5. 2. T h e r e  is, in e s sence ,  some  

doubt as to whether the nondimensional s h e a r  is dependent only upon Z/L. 

F o r  o u r  wind s h e a r  model,  the value of Webb, a = 5. 2, has  been selected.  

F igure  4 shows plots of s table  wind prof i les  f o r  var ious  values  of u*, Z 

and L. 
0, 
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Figure  4. Stable W i n d  Prof i les .  
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F o r  the ve ry  stable conditions no analytic express ion  has  been 

found to  r ep resen t  the wind profile. 

determined by l a rge  sca le  motions of a new air c u r r e n t  overrunning a 

static front. Since the flow is l a m i n a r ,  very  little mixing occur s  and 

the overr iding air remains  separa ted  f r o m  the underlying air. 

condition a l so  leads  t o  the possibil i ty of a large change in  wind direct ion 

in  the sur face  layer .  Changes of wind direction in  excess of 45 degrees  

are not uncommon in v e r y  s table  air. [ 81 

of wind prof i les  that  may occur are given in  F igures  5 and 6. 

shows a ca lm below the interface level  2 

is considered constant of magnitude L, depending upon the velocity of 

the overr iding air. can  be as sumed  constant above 2 because the 

boundary effect produced by the ea r th ' s  sur face  is not re levant  and the 

I boundary effect between nonmixing air m a s s e s  of different veloci t ies  is 

where  

The shape of the profile is la rge ly  

This  

A few examples  of the types 

F igu re  5 

Above the in te r face  the wind L' 

L 

negligible. 

the interface occurs .  

the logari thmic wind law below the interface with a constant wind above 

the in t e r f ace .  

neut ra l  o r  stable condition below the interface.  

direct ion are likely t o  occur  with this type profile.  

F igu re  5 a l s o  allows f o r  a variation in the alt i tude Z L 
Figure  6 shows a light wind condition which obeys 

This  situation may  occur  when the a tmosphe re  is in a 

L a r g e  changes in  wind 

TURBULENCE SPECTRA. 

Measuremen t s  of deviations f r o m  the ten-minute to one -hour 

averaged  m e a n  wind are classif ied as turbulence o r  gusts.  

m e a s u r e m e n t s  cannot be charac te r ized  in a de terminis t ic  s ense  and 

hence must be descr ibed  statist ically.  The turbulence s t r u c t u r e  of the 

a tmosphe re  is general ly  specified by its power spec t ra .  

These  gust 

Studies of 
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Figure 6. Very Stable Wind Prof i les .  
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measured  spec t r a  have been fit to  functions s o  that  a functional r e p r e -  

sentation of the spec t r a  is possible.  Some of the m o r e  prominent s p e c t r a l  

density functions are the Dryden, von Karman,  Busch-Panofsky, and 

Fichtl-McVehil spec t r a l  functions. 

are defined i n t e r m s  of the p a r a m e t e r s  u and L. 

deviation of the gust  velocity and L is the integral  scale length of t u r -  

bulence defined as the in tegra l  of the cor re la t ion  function. 

Panofsky function is defined by the pa rame te r s  IT and f 

is the nondimensional frequency at which the spec t rum takes  on its 

maximum value. f is a function of stabil i ty only. The Fich t l -  

McVehil spec t rum is a modification of the Busch-Panofsky spec t rum 

which contains a n  additional p a r a m e t e r  which is dependent upon height. 

Much of the da ta  that  has  been collected has  been f i t  by the Dryden and 

von Karman  functions. 

stabil i ty,  and height has  been analyzed. 

centage of the data  has  the  var ia t ion in  f 

The von Karman  spec t rum differs  f r o m  the Dryden spec t rum p r imar i ly  

in  the iner t ia l  subrange region. In th i s  region loca l  isotropy holds and 

t h e r e  is essent ia l ly  no production o r  dissipation of energy. 

is proport ional  t o  the wave number,  K, t o  the -5/3 power. 

da ta  has  l a rge ly  substantiated the local  isotropy and -5 /3  slope hypothesis. 

The Dryden and von Karman functions 

Sigma is the s tandard  

The Busch-  

where  f 
max' max 

max 

F r o m  th is  data variation in  u and L with t e r r a i n ,  

On only a relatively small p e r -  

with stabil i ty been examined. 
max 

The spec t rum 

Experimental  

The von Karman function has  the desirable  property of being p ro -  

The Dryden function is p ro -  in  the iner t ia l  subrange. 
-5/3 port ional  to  K 

port ional  t o  K in  the ine r t i a l  subrange. Thus,  f r o m  this standpoint, 

the  von Karman  is the m o r e  des i rab le  spec t ra l  density function. 

-2 

F o r  the aircraft landing problem, for  which use  of th i s  model is 

intended, a digi ta l  simulation of turbulence is required.  The von Karman 
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function, being a n  i r r a t iona l  function, i s  m o r e  difficult t o  s imulate  than 

the  rational Dryden function. Fu r the rmore ,  it has  been shown by Fl inn 

[ 93 that in observing a i r  craft response l i t t le  difference can  be seen  

between a Dryden and a von Karman input spec t rum.  

the landing simulation problem, the Dryden spec t rum has  been chosen. 

Consequently, f o r  

The  p a r a m e t e r s  of the Dryden spec t rum u and L are  functions of 

stabil i ty,  sur face  conditions, and altitude. The s tandard deviation of a 

gus t  velocity t ime  his tory f r a z  a riiiiiiing ten-minute to  a one-hour mean  

i s  a common method used to  m e a s u r e  u. 

of u is independent of the spec t r a l  density function beiiig used (e. g. , von 

Karman,  Dryden, etc. ). The same is not always t rue  fo r  the scale length 

pa rame te r ,  L. 

wave numbe r ,  K 

lating K 

Consequently, the determinat ion 

The  sca le  length L is often calculated by observing the 

max’ at which the spec t rum is a maximum and then re-  

to  L through the relationship 
max 

L = 0.146/K 
U max 

and 

L = 0.106/K = L 
V max w 

and 

L = 0.159/K 
U max 

and 

L = 0. 117/K = L 
V max w 

(6)  
f o r  the von Karman spec t rum,  

( 7 )  
f o r  the Dryden spec t rum.  [ 1 0 1  

Since Equations (6 )  and (7)  a re  not identical ,  it  follows that when 

fitting an  exper imenta l  spec t rum with the von Karman  and Dryden functions,  

slightly different values of L would resu l t .  Percentagewise ,  however,  

the difference between the L values  is small compared  to  the uncertainty 
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i n  defining K 

values of L can  be analyzed without regard  to which spec t r a l  function was  

used to  obtain L. 

cedure  such  as by d i r ec t  integration of the correlat ion function; they would 

be independent of the type of spec t r a l  function. 

Thus,  f o r  prac t ica l  considerations,  experimental  max' 

If L values  w e r e  obtained by a n  en t i re ly  different p ro -  

The following sect ions examine the stability, t e r r a i n ,  and height 

dependence of u's and L ' s  obtained f rom exper imenta l  measurements .  

concluded in  the above paragraph,  the cr and L relationships are valid.for 

u se  with both the Dryden and von Karman models. 

As 

Standard Deviation of Gust Velocit ies 

Ver t ica l  Standard Deviation - Similar i ty  theory  predic t s  that  the 

s tandard deviation of the ve r t i ca l  component of gust  velocity normalized 

by the fr ic t ion velocity depends only upon the stabil i ty pa rame te r  Z / L ,  

i.e., 

0- - W = f (Z /L) .  
U* 

The function f as derived by Monin is 

l where  S is the nondimensional s h e a r  defined by Equations (4)  and (5). 

P r a s a d  and Panofsky [ 31 have shown Equation (8) to  provide a good fit 

t o  exper imenta l  data  when c = 1.  25. 

neut ra l  s tabi l i ty  condition 

I 

This  value of c implies  that  f o r  the 
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W - = 1.25,  u:k 

a value that is in good agreement  with what s e v e r a l  o ther  expe r imen te r s  

have observed in neut ra l  stability. [ 3,  11, and 121  

can  be found to represent  the var ia t ion of u 

are in general  agreement  with Equation (8). 

used to define the s tandard deviation of the verticil- gust  -;e!ccity component. 

Figure 7 shows a plot of Equation (8). 

Other express ions  

with stabil i ty,  mos t  of which 

Thus,  Equation (8) will  be 
W 

Loiigiiudinai Standard Deviation - The longitudinal component of 

gust ,  in cont ras t  to  the ver t ica l  component, has  not been found to  obey 

s imi la r i ty  theory.  In par t icu lar ,  the ra t io  u /u* is not a function of 

stabil i ty only, but is a l so  dependent upon l a rge  scale (hi l ls ,  t r e e s ,  

buildings, etc.  ) su r face  t e r r a i n  fea tures .  The surface roughness length, 

Z , does not appear  sufficient to explain the var ia t ion in  t h e  rat io  u /u" 

f r o m  one place to another  in a given stabil i ty condition. 

not aware  of any study that  has  explained the t e r r a i n  effect  on u /u:k. In 

neut ra l  stabil i ty var ious measu remen t s  of the rat io  have provided values  

between 2. 1 and 2. 9. [ 13, 141 

as an  average value f o r  th i s  model  in neut ra l  stability. 

U 

0 U 

The au thor  is 

U 

The value of u /u:k = 2. 5 will  be taken 
U 

The var ia t ion of the rat io  u /u:k with stabil i ty and height has  been 
U 

analyzed by P r a s a d  and Panofsky [ 31 by introducing the stabil i ty p a r a -  

m e t e r  B defined as 

B is related to  Z / L ,  Z , and Z through the express ion  
0 
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where  the p a r a m e t e r s  are as defined previously. P r a s a d  and Panofsky 

show the relationship between u /u:k and B in F igure  8. 

bility, Z / L  = 0, B = 0, and u /u* = 2. 5. 

is small, especial ly  when compared  with the lateral component. Although 

not immediately ohv ims  by exaa i i ia t ion  OI k'igure 8, o ther  p a r a m e t e r s  

constant,  the var ia t ion of u /u* with Z / L  is a l s o  small. Other  invest i -  

gations have found the same type of varirticn ir, cr /i-i:z with stabil i ty and 

height a s  P r a s a d  and Panofsky. Since P r a s a d  and Panofsky 's  work  e n -  

compasses  a wide var ia t ion in stabil i ty conditions and provides mathe - 
mat ica l  express ions  f o r  calculating u 

in  this model. 

In neutral  sta- 

The var ia t ion of u /u" with B 
U 

U U 

,. -. 

U 

U 

it has  been chosen f o r  inclusion 
U Y  

L a t e r a l  Standard Deviation - The l a t e r a l  component s tandard  

deviation of gust  velocity,  l ike the longitudinal component, does not obey 

similarity theory.  The rat io  of u /u:: in neut ra l  stabil i ty has  been found 

to  vary f r o m  1. 3 to  2 .6 ,  depending not only upon su r face  roughness ,  Z 
0' 

but apparently a l so  upon the l a rge  scale t e r r a i n  f ea tu res .  [ 151 The 

author  knows of no mathemat ica l  expres s ion  that  relates u /u:k to  Zo  

and la rge  scale roughness in  neut ra l  stabil i ty.  Hence, a n  approximate 

value of u /u:: = 2. 0 in  neut ra l  stabil i ty will  be used. The var ia t ion of 

u /u:k with stabil i ty i s  much  g r e a t e r  than f o r  the longitudinal components.  

P r a s a d  and Panofsky show the var ia t ion of u /vi:: with B in F igure  9. 

At Z / L  = 0,  B = 0, and u /u::c = 2. 0. Percentagewise ,  the  var ia t ion  of 

u /u:: with stabil i ty i s  l a rge ,  par t icu lar ly  in the unstable condition. 

Other  invest igators  agree  in gene ra l  with P r a s a d  and Panofsky 's  modeL[5] 

V 

V 

V 

V 

V 

V 

V 
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Figure  8. The Ratio u /u* a s  a Function of B a t  Many Sites.  
( F r o m  Panoysky e t  al. [ 3 ] )  
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Figure  9. The rat io  CT /u* as a Function of B a t  Many Si tes .  
( F r o m  PanoVfsky e t  al. [ 3 ] )  
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Turbulence Spec t ra  Scale Length 

Vert ical ,  longitudinal, and l a t e r a l  components of sca le  length 

can  be measu red  independently f r o m  experimental  data. 

however, may demand an  interrelat ionship between the var ious  com-  

ponents. 

it is reasonable to apply the isotropic  constraints  u = u = u and L = u v w  U 

2 L  = 2L In the su r face  boundary l aye r ,  total  isotropy is cer ta in ly  

not valid, but local  isotrsp-y, o r  isoii=opy at high f requencies ,  is a tenable 

assumpti-on. 

Phys ica l  l aws ,  

F o r  example,  in the f r e e  a tmosphere ,  above the boundary l aye r ,  

V W' 

Total  isotropy implies  that the relationship 

holds for  a l l  wave numbers  K. 

that  Equation (10) hold f o r  l a rge  wave numbers;  that  is, as K +m. The 

longitudinal, ver t ica l ,  and l a t e ra l  spec t r a l  functions f o r  the Dryden 

spec t rum a r e  

F o r  local isotropy,  we will  only requi re  

4u 2L 

and 

u u  m =  
u 1 t ( 2 n L  K)L Y 

U 

L [ 1t3(4nL K)'] 
L 

4uw w W m =  
[ 1 t (477 LwK)2] 2 

4u 'L [ 1 t 3 ( 4 ~ L  K)'] 
v v  V 

2 2  P =  
[ 1  t (4r rL  K)  1 V 

V 

Y 

Substituting Equations ( l l ) ,  (12),  and (13) into Equation (10) and lett ing 

K +a, yields the relationship f o r  local isotropy 

2L 2L 
V - W - U 

L 
- - -  - -  

2 2 
cr 0- 

2 
0- 

U W V 
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1 Having a l ready  descr ibed u u and u f o r  the sur face  boundary l aye r ,  u’ w, V 

it is only necessa ry  to specify one component of L and then apply 

Equation (14) to  define the o ther  two components of scale  length. 
t 

I 
Vert ica l  Scale Length - The ver t ica l  component of scale  length 

can  bes t  be descr ibed independent of the local isotropy constraint  f o r  two 

reasons:  

ve r t i ca l  scale length, and (b) the conformance of the ver t ica l  component 

of turbulence to  s imi l a r i t y  theory implies  a l i nea r  relationship of ve r t i ca l  

scale length to  height. 

(a) a l a rge  amount of experimental  data  exists concerning the  

I 

The ve r t i ca l  scale component is affected by the l a rge  sca le  t e r r a i n  

The sur face  roughness length may have some influence on L fea tures .  

but the nonuniformities and l a rge  scale fea tures  predominate. 

air ove r  re la t ively flat t e r r a i n ,  a number of exper imenta l  resu l t s  are 

available.  F igu re  10, extracted f r o m  Teunissen[  1 0 )  , shows r e su l t s  

f r o m  s e v e r a l  invest igators .  Teunissen summar izes  the i r  r e su l t s  and 

W’ 

F o r  neut ra l  

finds the relationship 

L = 0 . 4 z  
W 

t o  provide a reasonable  f i t  to the combined set of data .  Sufficient r e su l t s  

are not avai lable  to  de te rmine  how the proportionality constant of Equation 

(1 5) v a r i e s  o v e r  different types of t e r r a in .  

The var ia t ion  of the ve r t i ca l  sca le  length with stabil i ty has  been 

examined by Busch and Panofsky. [ 31 Busch and Panofsky find that the 

nondimensional frequency at which the normalized spec t rum takes  on its 

maximum value is related to  stabil i ty by the express ion  

= K 
max max 

2 = 0 . 3 2 8 6  ( Z / L )  f 
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I 

where 

mc ( Z / L )  is the dimensionfess dissipation rate. 

F o r  the Dryden spec t rum,  the ver t ica l  sca le  length, L 

to  the wave number where the normalized spec t rum is a maximum by 

is related 
W’ 

the equation 

o r  

L = 0.117/K 
W max 

0.117fZ 

max 
L =  w f  

A substitution of Equation (16) into Equaton (17) gives 

0 .372 
L =  

W @ €  

An analys is  of seve ra l  sets of data by Busch and Panofsky has  provided 

the solid cu rve  shown in F igure  11 (obtained f r o m  Reference 3 )  as r e p r e -  

senting the nondimensional dissipation rate  

been suggested that  postulate a balancing of the dissipation rate with 

o the r  forces .  They a re  

Two hypotheses have 

and 

m = s  
6 

f 

tha t  is , 
(a) dissipation rate equals mechanical energy  production 

and 

(b) dissipat ion rate equals mechanical plus buoyant production. 
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Figure  11 also compares  Busch and Panofsky's cu rve  to Equation 

On the stable side,  

Busch and Panofksy 's  

(18a) and (18b) f o r  S defined by Equations (4)  and (5). 
Z 

nei ther  assumption m = S o r  @ = S - - fits the data. 
6 8 L 

sol id  line is der ived f r o m  McVehil's [ 4 1 nondimensional s h e a r  express ion  

of S = 1 t 10-  and Equation (18b). This  expression f o r  the nondimensional 

s h e a r  is inconsistent with recent  findings by Webb[2] and Bus inge re t  al. 

[ 6 1  

Z 
L 

Consequently, on the s table  s ide we wil l  choose Busch and Panofsky 's  

function 

Z 
L = 1 + 9 -  (19) 

f o r  the dissipation rate because it empir ical ly  fits the data,  while rejecting 

both balancing assumptions (1 8a)  and ( 1  8b). 

On the unstable s ide the dissipation rate appea r s  balanced by the 

sum of the  mechanical  and bouyant energy  production, at least to  Z / L  = 

-0.4. 

The function 

In s t rong instabil i ty sufficient da ta  i s  not available f o r  ana lys i s ,  

Z -1/4 Z 
L 
- Z 

€ L 
@ = S - - =  (1-18L) - 

is used in the mode l to  express the  dissipation rate f o r  the unstable condition. 

The  express ion  f o r  the ver t ica l  scale  length is obtained by sub- 

st i tuting Equations (19) and (20) into Equation (17). This  gives 

Z 
fo r  - > 0 0.37 

l t 9 ; -  
Z L -  L =  

W 

and L 

Z f o r  - < 0. 
L -  

0.37 
L =  Z -1/4 2 - -  W 

(1-18:) 
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In neutral  stabil i ty,  when Z / L  = 0, Equations (21 )  reduce to  L = 
W 

0. 3 7 2  which is  in good ag reemen t  with the proportionali ty constant  of 0 . 4  

recommended by Teunissen. 

Longitudinal Sca le  Length - The longitudinal scale length i s  de-  

rived f r o m  the ver t ica l  and longitudinal s tandard deviations and the 

ver t ica l  scale length using the local  isotropy relationship 

W 
L 2L 

- U - - -  
2 

0- 
2 

0- 
U W 

A comparison c a n  be made in neut ra l  stabil i ty to  de te rmine  how well  the 

values of L der ived from Equation 
U 

surements .  In neut ra l  s tabi l i ty  the . 
L = 2 . 9 6 2  

U 

(14) compare  with exper imenta l  mea- 

solution to  Equation (14) f o r  L gives  
U 

F igure  12, f r o m  Teunissen[  101 , compares  the line L 

var ious exper imenta l  resu l t s .  

a n  excellent f i t ,  i t  does reasonably e x p r e s s  the var ia t ion of L 

stabil i ty,  par t iculary above t h r e e - m e t e r  alt i tude.  

= 2. 9 6 2  with 
U 

Although the line could not be cons idered  

with 
U 

Late ra l  Scale  Length - A s  in the  c a s e  of the longitudinal sca le  

length, the l a t e ra l  scale length is der ived f r o m  the loca l  isotropic  rela- 

t ionship 

2L  

7 -  
V W 

L 
- ,  = 

2 
0- 0- 
V W 
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In neut ra l  stabil i ty,  the solution to the above equation is 

L = 1.892.  (22)  V 

Figure 13 compares  Equation ( 2 2 )  to the relationship found by Fich t l  and 

McVehil in neutral  air between 18 and 150 me te r s .  The slope of the two 

curves d isagrees  considerably even though they pass  through the same 

value at approximately 40 m e t e r s .  Li t t le  o ther  data is available i r o m  

which to draw conclusions. 
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