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SUMMARY

Work under this Contract was performed under three major technical

tasks,

Task I was concerned with testing and failure analysis of 40 Ahr
silver-zinc cells with semiflexible, inorganic separators developed at
Astropower Laboratories under Contract NAS 3-10928, After novation of
this contract on 8 December 1970, cell testing was re-established at
SRI. Substantially improved testing equipment and procedures were
developed and used to accumulate a considerable body of cell testing and
failure analysis data over a two-year period under Contracts NAS 3-10928
and NAS 3-15686, These data indicate that the major objective of the
program--development of a heat-sterilizable, sealed silver zinc cell
capable of extended stand and subsequent cycling--was accomplished,
.Specifically, the survival rate of cells in the reconditioning step after
standiﬁgAand their subsequent cycle life were both particularly high if
cells were standing in the discharged condition. Although charged-stand
and float charged;séand are detrimental standing conditions, a high
survi§a1 rate nevertheless appears achievable by storing cells at sub-

ambient temperature,

Cell failure analysis showed shorting by zinc nodules or dendritic
zinc filaments to be the almost exclusive failure modes; shorting by
silver (found deposited in the separators of most cells) was not evident.
Zinc nodule shorting appears to be associated with conditions--such as
extended charged stand or a high average state of charge between cycles--
that tend to result in degradation of separators by dissolved silver
oxide, :Zinc filament shorting is the dominant failure mode of cells

that had uhdérgone extended cycling; this type of shorting was frequently



(but not necessarily) associated with the observation of zinc extruding
through splits in the negative electrode bags. The low incidence of
zinc electrode slumping found in the analysis of failed cells points to
thg potential of Astropower-type electrode-separator composites for

achieving extended cycle life with zinc electrodes in alkaline batteries,

Cell testing and failure analysis yielded useful information also
on the influence ofAthe other variables examined in the test program
including cell design, cycling temperature, and cycling of individual

cells versus batteries of cells,

The conclusions of the cell test program were used to formulate a
series of recommendations for achieving improved silver-zinc cell standing
éhd cycling capabilities, Recommendations include preferred environmental
and electrical conditions for standing, reconditioning and operating cells,
exploration and correction of factors responsible for separator degrada-

tion, and suggestions for improved construction of separators and seals.

T;sk II was concerned with the development of improved rigid and
semiflexible separator formulations for use in alkaline cells, especially
silver-zinc secondaries. The starting point was a number of inorganic
materials (and their chemical modifications) that had shown promise as
separators in preliminary work at Astropower Laboratories, Additional
inorganic materials were selected on the basis of their anticipated
chemical and electrochemical compatibility with the environment in
silver-zinc cells, Relatively straightforward techniques of preparation
were demonstrated for most of the materials that were not commercially

available,

From these inorganic stock materials, rigid ceramic disks of high
quality were prepared in good yields by firing suitably prepared ceramic
o o
powders at temperatures between 1368 K and 1623 K. Semiflexible wafers

were readily made from inorganic stock materials and organic binder
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systems using the procedure disclosed in U,S, Patent 3,625,770 (licensed
to SRI by the McDonnell Douglas Corporation); these wafers had good

uniformity and high surface quality.

Task III was concerned with the characterization of the rigid and
semiflexible separator materials (developed under Task II) by suitable
screening methods, Separator screening tests commonly used (most of
which are described in an Air Force Aero Propulsion Laboratory booklet,

Battery Separator Screening Methods, edited by J. E. Cooper and

A, Fleischer) were réviewed with respect to their probable utility where
applied to largely’inorganic separators, A list of recommended tests
was established and procedures were developed for this systematic
application of selected tests to rigid and semiflexible separator

materials.

Combining tests for zinc dendrite penetration, zinc gassing, and
accelerated degradation in KOH with the determination of resistivity,
porosity, water permeation, pore size distribution, and mechanical
strength, permitted a rather complete and consistent characterization
of rigid formulations in terms of key electrochemical, chemical and
physical separator characteristics, Characterization of semiflexible
separator formulations by the same tests (using appropriately modified
measurements of mechanical properties) was somewhat less complete
because of the inherently inhomogeneous structures of semiflexible
separators and the resulting uncertainties regarding pore tortuosity
and size distribution in these materials. However, together with the
results for rigid formulations the screening test data permitted a
relative ranking of all separator formulations developed under Task II

in terms of their probable utility for silver-zinc cells,

On this basis, more than half of the ihorgahié materials developed

and tested in this program appear to be superior to the baseline material



(Astropower Laboratory designation 3420-25) that has been showing promise
in cell testing (see Task I), The three most promising of these--including
a proprietary formulation that, independent of the ssmewhat arbitrary
quantitative evaluation scheme, scored consistently higher than the
remaining ones--were proposed for further testing and evaluation in

actual cells.

Finally, analysis of the experimental data permitted formulation
of several recommendations for tests, test equipment and procedures that
should result in improved characterization and evaluation of separators

in future development programs,



INTRODUCTION

Silver-zinc batteries, having higher energy densities than other
alkaline batteries, are attractive energy sources for compact power
applications, and especially for space applications. However, limited
cycle and wet-stand life, and problems with achieving sealability, have

been deterrents for some applications.

As demonstrated in a series of silver-zinc battery development
programs Suﬁported by NASA (References Nos. 1-5), the development of
iﬁorganic battery separators represents a Major advance toward the goal
of long-life, hermetically sealed batteries. The usefulness of these
separators continues to be confirmed by the results of the current pro-
gram (NAS 3-15686). Under this program, many sealed silver-zinc cells
(nominally 40 Ahr) are still cycling, more than three years after their
construction and initial testing under a previous contract (NAS 3-10928).
The results obtained in cell cycling and analysis of cells that have

failed are given under Task I of this report.

Preliminary results of internal development programs at the former
Astropower Laboratory of the McDonnell Douglas Corporation suggested
that further improvements in inorganic separators and silver-zinc battery
characteristics were likely to occur through modifications of the

existent technology. Achievement of such improvements was the overall
objective of the current program. The specific objective was to develop
separator formulations with improved characteristics (such as better
chemical compatibility and a negligible rate of gassing when in contact
with zinc) that will permit further increases of stand and cycle life of
alkaline cells, especially silver-zinc cells, Twenty different materials
(including the 3420-09 and 3420-25 reference materials) were prepared and
tested as rigid separators; sixteen of these materials were processed into
semiflexible separators., The materials development and separator-fabrica-
tion efforts are reported below under Task II.
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Although real-time testing in cells will always be required as the
ultimate proof of separator suitability, screening techniques are widely
used in separator development programs to keep time and costs of evaluation
within practical limits. Application of screening tests to the separators
developed was therefore an important aspect of the current program.
Accepted methods of characterizing and screening battery separators are
not sufficiently specific and refined to permit prediction of suitable
separator materials--especially if these are substantially different
from standard materials. Accordingly, a significant effort was expended
to review and, where necessary, modify existing screening techniques for
application to inorganic separators., This review, the systematic appli-
cation of éuitable tests, and the results obtained in these screening

tests, are reported under Task III.

Finally, the report summarizes our conclusions and recommendations
from the three major technical tasks performed under this program. The
most promising separator formulations are identified and recommended for

incorporation into simplified silver-zinc cells-



TASK I - CYCLING AND FAILURE ANALYSIS OF SILVER-ZINC CELLS

The Work Statement for NASA Contract NAS 3-15686 specified that
SRI was to continue the testing of silver-zinc cells fabricated and
placed on various long-term tests under Contract NAS 3-10928. The tests
were to be performed in accordance with the previously established
schedule and continued to cell failure or to the end of the contract.
Failed cells were to be subjected to analysis, and complete failure

analysis data were to be transmitted to the NASA project monitor.

Cycling Regimes, Equipment, and Procedures

*
The cycling regimes employed in this program are shown in Table 1.
The VK-1 regime was applied to cells by the individual test stations

that had been transferred from Astropower Laboratory and repaired, re-
furbished and reassembled at SRI, Similar test stations were used to
apply the VK-3 regime either to individual cells or to batteries,
Regarding the 100% DOD regime, the large manpower effort required for
manually testing the 20 cells that are standing in the charged condition
for one month between 100% discharges had led to the building of a
S5-station automatic test panel under Contract NAS 3-10928, This panel,
after some modifications of its components to increase reliability, is
still used to provide the once-a-month, 100% discharge for the cells

remaining on test under this regime,

k
The codes VK-1,-2, and -3 for the three continuous cycling regimes used
in this program were established at NASA-Lewis to simulate load profiles
anticipated for batteries used in Viking-type missions.

Individual test stations consisted of a DC power supply, electric con-
trol panel, voltage limit switches, and a recorder; each individually
tested cell required one station,

+

The term "battery'" as used in this test program refers to a varying num-
ber of individual cells that are electrically in series and have the
voltage limits for charge and discharge cutoff applied to the entire
battery instead of to individual cells; when a cell in such a battery
fails, it is removed from the circuit and the remaining battery is cycled

with proportionately reduced voltage limits for charge and discharge,
7
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The VK-2 regime is applied to cells by an automatic cell cycling
system developed at our laboratories. Encouraged by the success of the
SRI-built 5-station system for the once-a-month, 100% DOD regime, an
18-station section of this system had been designed and built under

Contract NAS 3-10928, A second, l7-station section was completed under

the current contract in September 1971, The completed system provides
the 35-station cycling capacity that was required to handle the maximum
number of cells to be tested under the VK-2 regime. A set of electrical
schematics for the system was transmitted to the NASA project manager

early in this program.

Some features of this system include constant-current charging of
cells to a settable voltage 1limit (2.000 * 0.003 V for VK-2), followed
by automatic switching of individual cells to a tapered-current charge
at constant voltage also set at 2.000 * 0.003 V for VK-2, Discharge
is through a fixed (but adjustable) load, with automatic switching of
individual cells from discharge to open circuit as soon as a settable
lower voltage limit (1.00 V for all cycling regimes) is reached. During
charge and discharge, individual cell voltages are sampled sequenfially

. - . *
by two independent circuits. Each cell is sampled once every 70 seconds

for 1imit switching, every 210 seconds* for voltage recording. Individual
cell currents can also be measured rapidly and conveniently whenever
desired. To date, this system has performed very reliably and has
provided improved cell testing at greatly reduced requirements for
manpower and capital investment per cell while generating more accurate
and accessible data for all cycling VK-2 cells. The only periodic
maintenance required is replacement of the mechanical stepping switches

in the sampling circuits.

Representative Cycling Behavior and Procedure

Live cells are cycled according to the regimes described in Table 1.
During cycling, continuous or quasi-continuous voltage recordings are
taken for each cell on test. These graphic displays of cell behavior
are examined at least once a day, more frequently if the electric

behavinr of a cell suggests impending failure. In addition, entries of

b3
More often if less than the full 35-cell capacity of the system is used,
9



cell voltage and current are made at prescribed intervals into a tabular

log kept for each cell.

Apparent failure of a cell usually becomes manifest electrically in
one of two ways. The cell voltage during discharge may drop to 1,00V,
suggesting that a cell has lost capacity. A typical course of cell
capacity loss with age is shown in Figure 1, Although this figure refers
specifically to one of the cells on the once-a-month, 100% DOD regime
(where cell capacity is determined routinely for each cycle), the
phenomenon is a general one; it will result in ultimate cell failure
if no other type of failure occurs first., The other major failure mode,
responsible for earlier failure, is a cell's inability to accept and

deliver charge due to presence of an internal short.

Both failure modes show up electrically in the voltage recordings.
To assist in the correct diagnosis of a true cell failure, the recordings
of an apparently failed cell are examined in detail for several cycles
prior to the first failure. We have found that a very useful indicator
of the '"health' of a cell is the height (and sharpness) of the voltage
spike signaling onset of the silver (II) voltage pleateau: with increasing
age many cells develop an increasingly sharp spike.* Other indicators of
impending cell failure are: continuously declining average discharge
voltages over a number (say, 2 to 12) of cycles, rapid voltage fluctua-
tions during charge, rapid decline of open circuit voltage after charge,
irregularities in the voltage-time trace during charge and open circuit
stand, and significant cell heating on charge, discharge, or open
circuit stand. The increasingly rapid voltage rise and several other
indicators of cell aging and impending failure show up in the cycling
curves presented in a group of figures later under Task I (subsection

Cycling Curves), which update the information given in Reference No. 6

for the same set of cells. Features of these cycling curves and their

relation to cell behavior will be examined in the Discussion section below.

*
Although we have not investigated in detail how this phenomenon corre-
lates with the state of health of silver-zinc cells, our observations
suggest that it may offer the basis for development of a diagnostic test.

10
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To establish that a cell failure is indeed real and not caused by
improperly adjusted cycling equipment (which might cause a progressive
charge/discharge imbalance), the following procedure is followed. The
cell is electrically di;connected from the cycling panel. At the next
scheduled charge period, the cell is reconnected and allowed to charge,
and the subsequent discharge period is skipped. The cell is then re-
connected for éhafge and thereafter subjected to normal cycling.
Experience has shown that within relétively few cycles the cell will
tend to fail again. The procedure cited above is again applied; fol-
lowing the third failure, a reformation charge is applied. If the cell
is capable of accepting the reformation charge, it is placed on automatic
cycling again. Experienée has shown that such cells fail again within a
relatively short time, usually after a few days. This procedure has
proved successful in séreening out several artificial failures and re-
turning such cells to normal cydling. Irreversibly failed cells are

taken off cycling tests for subsequent dissection and analysis.

Cell Inventory

Table 2 is a summary, by cycling regimes, of the status of all'cells
originally transferred to SRI under the novated Contract NAS 3;10928 and
continued on test under this program. The breakdown of the total cell
population into test groups sharing a common experimental factor and the
distribution of these groups into subgroups tested on various cycling
regimes are shown in Table 3. This table also includes remarks pertain-
ing to the experimental parameters varied within test groups. The
objectives pursued with these test groups, the definition and composition
of the cell subgroups employed, and the major findings from the cycling

tests are discussed in the following sections.

Cell Testing Results:- Cycling

*' ’ ) o .
Group of 3-Plate Pilot Cells (Cycling Regime: Modified VK-1)

These cells were fabricated to provide design information on

electrode capacities and separator structures that would permit the

* 1
The alternate designation "Longest Test Cell' was also used in this
program. 12



Table 2

INVENTORY AND. STATUS OF CELLS ON TEST

Number of Cells

Cycling Regime 12/31/70 12/31/71 4/30/72 10/31/72

Cycling |{Failed |Cycling |Failed |Cycling |Failed |Cycling |[Failed

VK-1 43 3 30 16 27 19 21 25
VK-2 4 0 25 24 23% 28 17 34
VK -3 16 0 0 16 0 16 0 16

100% DOD (once/monthy
charged stand) 20 0 18 2 16 4 11 9

100% DOD (at irregu-
lar intervals;

charged stand) 3 0 2 1 2 1 2 1
Total,cycling cells 86 75 68 51
Total,fajiled cells 3 59 68 85

vTotalycells on wet
stand 52% 7 5t 5

Total all cells 141 141 141 141

N .
Includes 17 cells on charged stand, 15 cells on float charged stand, and 15 cells

on discharged stand, to be placed on the VK-2 regime early in 1971 after a 21+
month stand time.

tTwo cells were transferred from wet stand to cycling on the VK-2 regime in
January 1972.

13




Table 3

SUMMARY OF CELL TEST GROUPS AND CONDITIONS

No. of
Experimental No. of Faileg
Factor Cells Cells Regime Comments
3-Plate Pilot
Cells 6 6 VK-1 3-plate cells; all negatives bagged; some positives bagged.
Viking 4 (V] VK-2 Standard Design 7; 45 Ahr original capacity.
17 15 Charged stand, 10°-42°C for 21+ months prior to cycling.
15 14 ‘ Float stand at 10°9-320C for 21+ months prior to cycling.
15 5 Discharged stand at 24°C for 21+ months prior to cycling.
4 - Stand Discharged stand
Design 5 3 VK-1 Design 7 (6b/5b ); 24°C
Variation 5 1 Design 6 (4b /4/5b ); 24°C; extra separator layer between the
4 positive bags and 5 negative bags
5 1 Design 8 (6b /4/5b ); 2400; extra separator layer between the
6 positive bags and 5 negative bags
Temperature- 4 4 VK-1 Tested as a battery at 240C
Battery/Cell 2 1 Tested as single cells at024°C All cells of Design 7
4 2 Tested as a battery at 10 C
2 0 Tested as single cells at lOOC
b 3 2 Tested as a battery at 32%
Plate Lock 4 4 VK-3 Design 7, no plate lock, enviro@mentally tested
4 4 Design 7, epoxy plate lock, normal cure; no envirommental test
3 3 Design 7, epoxy plate lock, normal cure; environmental test
4 4 Design 7, epoxy plate lock, normal cure plus 24 hrs at 100 C;
envirommentally tested
1 1 i Design 7, GX film separator, plate lock, normal cure; environ-
mentally tested X
20 9 100% DOD Charged stand, discharged about once per month
1 o] Stand Continuous charged stand since original 3 cycles
Extra 2 1 100% DOD Design 5 (4b+/L/5b_); extra supported separator layer between
bags.
1 0 Design 7; 8 wraps of GX film plus double plate lock
3 (4] Design 5; on 7 Eo 9-month stanc¢ before cycling.
5 3 Design 3 (5b /Gb_); on 7 to 8.5-month stand before cycling.
2 2 Design 2 (5b /6b ); only negatives were bagged.

*
TStatus as of October 31, 1972.

The aesigns used for the cells tested under this program are described in Reference No. 6. As an example
of the design notation, 6b*/5b~ indicates that a cell comprises six bagged positive and five bagged
negative electrodes. The letter (£) indicates presence of an additional layer (usually an asbestos-free
composite of binder and the inorganic material) between each pair of adjacent positive and negative
electrodes. Capital letter (L) indicates that the extra layer consists of the semiflexible separator
material used to fabricate separator bags.

14



design of cells with a full complement of negatives and positives,

Two cells (subgroup HS-15-1) were built with 20 g of silver in the
positive sandwiched between two zinc negatives, All three electrodes were
bagged*, and the cells were'cfcled on a modifiedT VK-1 regime to 21.5% DOD,
Two other cells (subgroup HS-16-1) were of similar construction1F but had
30 g of silver in the positive; these were cycled on a modified VK-1
regime to ~10.5% DOD. The remaining two cells (subgroup HS-16-2) wefe
built with 30 g of silver in the positive, which was covered by a U-wrap
layer of 3420-09 separator material on each face and sandwiched between
two bagged zinc negatives; these cells were cycled on a modified VK-1

regime to 10.5% DOD,

Cycling results for the pilot cell group are shown in Table 4
These data indicate that cycle and wet life were noticeably higher for
the two cells incorporating a bagged silver positive of increased
capacity. Cells with a lower-capacity, bagged positive and those with
a higher-capacity positive covered only by separator sheets had comparable

1life.

Viking Cell Group (Cycling Regime: VK-2)

The primary objective for this test group was to explore the in-
fluence of cell charge status and storage temperature on wet life and
cycle life of cells that (like the cells for a prospective Viking-type
Mars probe) would experience an extended stand period prior to their
use. The standing period originally selected for this test group was
21 months, but several subgroups were standing somewhat longer (up to

25 months).

b 3
The negatives were enclosed in standard 3420-25 bags; the positive was
in a bag of similar construction but of the 3420-09 composition,

1-

By prorating the current down for the lower capacity of 3-plate cells.

Cell HS-16-1-1 had the same separator arrangement as the HS-15-1 subgroup;
cell HS-16-1-2 used the standard separator for all three electrodes.

15



CYCLING RESULTS: 3-PLATE PILOT CELLS¥*

(Status as of October 31, 1972)

Cell subgroup HS-15-1

+Z

Table 4

total cells

No. of cells failed in

%
Range and average#of
Range and average of

Cell subgroup HS-16-1:

No. of cells failed in

Range and average of
Range and average of

Cell subgroup HS-16-2:

cycling

wet life (days)
cycle life (cycles)
total cells

cycling

wet life (days)
cycle life (cycles)

total cells

No. of cells failed in

Range and average of
Range and average of

cycling
wet life (days)
cycle life (cycles)

2

2
984 - 1058
555~ 630

2

2
1230~ 1288
777- 835

2

2
937- 1085
480- 633

[1021]
[ 5927

[1259]
[ 806]

[1011]
[ 556]

*Cycling was on the VK-1 regime, with current prorated down to the
capacity .of 3-plate cells; temperature was nominally 24OC.

?See text for cell design specifications in subgroups.

Average values are in brackets.
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The Viking cell test group contained five categories of cells; two
of these were broken down further into subgroups. All Viking cells were
of standard design (No. 7) and cycled on the VK-2 regime. The first test
category comprised four cells that were placed on cycling without a
standing period, that is, immediately after receiving the three initial

forming and conditioning cycles.

The second category comprised 17 cells that were placed on a 21+
month charged stand (subgroups at 100C, 220C, 3200, and 420C) prior to
cycling. The third category involved 15 cells that were on a 21+ month
float charge stand at 1.88 (£0.02) V (subgroups at IOOC, 22°C, 32°C) prior
to cycling, The fourth category comprised 15 cells * oﬁ a 21+ month dis-
charged stand at room temperature prior to cycling. The fifth category
has four cells that are being held on discharged stand (at room temper-

ature) for 3 to 4 years prior to cycling.

Results from cycling the Viking cells are given in Table 5. Although
the uncertainties and variations associated with the small numbers of
cells per subgroup are considerable, several major trends are apparent.

These may be summarized as follows:

(1) The percentage of cells capable of cycling after extended stand
periods (21 to 25 months) is much higher for cells that were standing in
the discharged condition (73%) than for cells standing in the charged or
float-charged conditions (53% eaih). If the discharged-stand cells with
a previous charged-stand history are eliminated from comparison, the
survival rate of discharged-stand cells is increased to 93%.

(2) Charged-stand and float charged-stand of cells are detrimental
conditions not only for cell survival rates in the reconditioning step
after standing but also for the wet life and cycle life expectancy of
successfully reconditioned cells.

Four of these cells were not virgin cells but had previously been kept
on charged stand at elevated temperatures until their open circuit volt-
age had dropped to 1,65 V, This resulted in the following charged-stand

history:

Cell No. AH-39-3 AH-39~4] AH-39-5 AH-39-6
Standing Temperature (°C) 52 52 62 62
Standing Time (Average) 225 105 70 82

17
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(3) Increasing standing temperature decreases the survival rate
(in the reconditioning step) of charged-stand and float charged-stand
cells*. The effect of standing tempergture is marked: while only one
of the 10 cells standing at 32°C or 42°C survived, 9 out of 10 cells
survived standing at 10°C. Cells standing at 24°C were intermediate,
with 7 out of 10 cells surviving the reconditioning step.

(4) An unexpected finding was that cells surviving charged or
float-charged stand at 10°C had markedly inferior cycle life compared
to the subgroups standing at 24°¢,

Cell Design Variation Group (Cycling Regime: VK-1)

In the performance of work under Contract NAS 3-10928 at the
Astropower Laboratory, a considerable effort was devoted to cell design.
The early designs emphasized potential use over a limited number of deep
cycles, and high rate (pulse) capability of cells. Later designs were
directed more toward achievement of long wet-stand and cycle life for

cells capable of moderate rates of discharge.

The three latest designs (Astropower Laboratory designation:
Designs 6, 7, and 8) were chosen for comparison in long-term cycling
that continued into this program. As mentioned previously, Design 7
of separator between each pair of bagged positives and negatives to pro-
vide increaséd resistance to silver and zinc penetration, Design 6 cells
have two fewer positives but the same number of negatives as Design 7,
giving a somewhai lower nominal cell capacity; Design 8 cells have the same
number of positive and negative plates and nominal capacity as those with

Design 7; this design was regarded as a backup of the standard cell design.,

Five-cell subgroups for each of these designs were put on cycling
on the VK-1 regime. The status of these cells is summarized in Table 6.
Again recognizing the limitations of small number statistics, the main
result bears out the design expectations: the extra separator layer
used in,Designs 6 and 8 appears to delay cell failure in cycling. The
significance of this finding is supported by the essentially identical
life capability of Design 6 and 8 cells, which have ideﬁtical separator

configurations.

*Temperature influence was not investigated for the discharged-stand cell:

For detailed cell design specifications, refer to Reference No. 6.

*
See footnote in Table 3. 19



Table 6

CYCLING RESULTS: CELL DESIGN VARIATION GROUP*

(Status as of October 31, 1972)

+ -
Design 7 (6b_/5b ) subgroup: total cells (in battery) 5
No. of cells still cycling 2
i
Wet 1life, all cycling cells (days) 1171
Cycle life, all cycling cells (cycles) 910
No. of cells failed in cycling 3
Range and average of wet life (days) 477-1112 [858]
Range and average of cycle life (cycles) 348- 851 [641]

+ -
Design 6 (4b /£/5b ) subgroup: total cells (in battery) 5

No. of cells still cycling -~ 4
Wet 1life, all cycling cells (days) 1171
Cycle life, all cycling cells (cycles) 964

No. of cells failed in cycling 1
Wet life, (days) ' ‘ 1077
Cycle life, (cycles) 874

N _ . .

Design 8(6b /4/5b ) subgroup: total cells (in battery) 5

No. of cells still cycling 4
Wet 1ife, all cycling cells (days) 1171
Cycle life, all cycling cells (cycles) 922

No. of cells failed in cycling 1
Wet 1life, (days) 1141
Cycle life, (cycles) : 892

* .
Cycling is on the VK-1 regime, with all cells at laboratory temperature

o
(nominally 24 C).
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Temperature-Battery/Cell Group (Cycling Regime: VK-1)

In the early phase of cell testing under Contract NAS 3-10928 at

the Astropower Laboratory, the storage temperature of charged-stand cells
was found to affect capacity retention of cells in the expected direction--
increasingly better retention with decreasing temperature. An influence

of temperature on cell wet stand and cycle life was suspected but enough
testing information was not obtained to permit any conclusions regarding
temperature as a factor. Similarly, although indications were obtained
that operation of cells as batteries* was detrimental to cell cycle life,

more information on this factor appeared desirable.

Generation of additional information on both factors was the major
objective in testing cells in the so-called Temperature-Battery/Cell
Group. The cycling results obtalned with this group are given in Table 7.

The major trends may be summar1zed as follows:

(1) Operation of cells in batteries appears to reduce cell wet and
cycle life expectancy, presumably because of the additional stresses (excess
voltage and/or overcharge) imposed on the remaining cells if one of the
cells in a battery has lower voltage and charge acceptance during im-
pending failure.

(2) Cycling of cells below room temperature appears to have a
somewhat beneficial effect on wet stand and cycle life, whether cells
are cycled singly or as a battery. However, this conclusion is weakened
by the observation that cells from the 32°C battery group had better
average cycle life than those from the 24°C battery. These findings
must be considered in the light of small number statistics and the fact
that impending failure of a single cell in a battery can impose very high
stresses on all'remaining cells. No comparison is possible for single
cells inasmuch as the 32°C subgroup did not include single cells.

Plate-Lock Cell Group (Cycling Regimes: VK-3 and 100% DOD)

During environmental testing of cells under Contract NAS 3-10928,
.f
it was shown that application of high shock loads to cells caused the

electrode packs to shift partly into the void space under the cell lids.

As defined for this test program; see footnote on p. 7.

For a discussion of this work, see Reference 6.
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Table 7

CYCLING RESULTS: TEMPERATURE-BATTERY/CELL GROUP*

(Status as of October 31, 1972)

o
Subgroup at 10 C: total cells

No., of cells cycled individually
No. of individual cells still cycling
Wet life, each cell (days)
Cycle 1ife, each cell (cycles)

No. of cells cycled as a battery
No. of battery cells still cycling

Wet life (days)
Cycle life (cycles)
No. of battery cells failed in cycling
Range and average of wet life (days)
Range and average of cycle life (cycles)
o
Subgroup at 24 C: total cells

. No., of cells cycled individually
No. of individual cells still cycling

Wet l1life (days)

Cycle life (cycles)
No, of individual cells failed in cycling

Wet life (days)

Cycle life . (cycles)

No. of cells cycled as a battery
No. of battery cells failed in cycling

Range and average of wet life (days)
Range and average of cycle life (cycles)
o
Subgroup at 32 C: total cells

No. of cells cycled as a battery
No. of battery cells still cycling

Wet life (days)

Cycle 1life (cycles)
No. of battery cells failed in cycling

Range and average of wet life (days)

Range and average of cycle life (cycles)

%k
Cycling is on the VK-1 regime,
22

1184
1047

4
2
1184
992
2

757-785[771]
572-598[ 585]

1184
1059

661
541

4
4

554-701[591]

429-576( 466]

3

3

1
1143
- 974

2
837-848[842]
668-679[673]



Although no catastrophic cell failures were caused by environmental
testing and the electrical performance of cells with shifted packs was
satisfactory, an epoxy plate lock and heat sealing of bag tops (to
localize electrodes within bags) were added as design features to one

group of cells. Testing of this group was continued under the current

program.

The breakdown of cells in the Plate-Lock Group into subgroups--
corresponding to the experimental factors examined--is shown in Table 8,
together with the results obtained in cycling these cells, Several trends

are discernible in the test results obtained with cells cycled on the

VK-3 regime:

(1) Plate locking tends to degrade the wet and cycle life of cells;
the effect is not very large but definitely discernible.

(2) Extended curing of the epoxy cement used for plate locking
appears to reduce the degrading effect of plate locking on cell 1life.

(3) Environmental testing does not seem to degrade wet and cycle
life of plate-~locked cells.

Examination of test data for cells cycled on the once-per-month,
100% DOD regime shows the same trends. However, the data provided by
the control group (D) do not yet permit evaluation of the plate-lock
factor inasmuch as two equipment-induced cell failures effectively
reduced this subgroup to a 3-cell group. As more cells fail with time
and cycling, meaningful information also on this factor can be expected

to develop.

Group of Extra Cells (Cycling Regimes: VK-1 and 100% DOD)

In this group, several cells of varying backgrounds were collected,
with cell design as the major experimental factor being tested. The
designs* ranged from the early Design 2 (which had only the zinc negatives
bagged) to a modification of Design 5 which employs bags for all electrodes
plus an extra separator layer between the bagged electrodes. The cycling
résults obtained with this group are'given in Table 9; the major trends

can be summarized as follows:

%k
For details of the cell designs tested in this program, see Reference 6.
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Table 9

*
CYCLING RESULTS: GROUP OF EXTRA CELLS

(Status as of October 31, 1972) °

Design 2 subgroup total cells 2T
No. of cells failed in cycling 2
Average wet life (days) 646
Average cycle life (cycles) 283
Design 3 subgroup total cells 5%
No. of cells still cycling i

Range and average of wet life (days) 1313, 1313 [1313]
Range and average of cycle life (cycles) 909 —968 [939]
- No. of cells failed in cycling 3
Range and average of wet life (days) 996-1159(1084]
Range and average of cycle life (cycles) 636-799(724]
. ##
Design 5 subgroup (VK-1) total cells - 3
No, of cells still cycling 3
Wet life, all cells (days) 1275
Cycle life, all cells (cycles) 913
Design 5 subgroup (100% DOD)’ total cells 2
No. of cells still cycling 1
Wet life (days) 1285
Cycle life (cycles) 151
No. of cells failed in cycling 1
Wet life (days) 884
Cycle life (cycles) 136
Design 7 cell (with SWRI type total cells 1
-GX separator)
No. of cells still cycling 1
Wet life (days) 802
Cycle life (cycles) 38

* Cell cycling is at laboratory temperature (nominally 24°C).

t cells HS-47-2,8 were cycled to failure at Astropower Laboratory.
* Cells were on 7-month stand prior to cycling (2 cells on charged stand,
3 cells on float-charged stand).

One cell each from among charged stand and float-charged stand cells,
## Cells were on 7 to 9 month stand prior to cycling (one cell each on
charged stand, float-charged stand and discharged stand).

25
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(1) As expected, cells of Design 2 (built with fewer separator
layers for a primary-type application) failed much earlier in cycling.
The extra layer of semiflexible separator between the bagged electrodes
of Design 5 appears to improve cycé¢le life over that of Design 3 cells
which had no extra layer.

(2) Although Design 5 zinc negatives have a lower capacity than
those of Design 3, this feature so far has not led to low capacity fail-
ures; because of the rather shallow cycles of the VK-1 regime applied to
these subgroups, nominally low capacity will not become a failure mode
until all capacity has declined to 10-15% of its original value,

* .

(3) A comparison of the limited data for Design 3 and Design 5
cells cycling on the VK-1 regime with the data in Tables 5 and 6 suggests
that a 7 to 9 month wet stand--even in the charged or float-charged con-
ditions--does not degrade wet life and cycle life noticeably,

Cell Performance Versus Cycling Regimes

Wet iife and cycle life data averaged by regime for the cells tested
in this program are given in Table 10, Although such a comparison répre—
sents somewhat of an oversimplification inasmuch as tﬂere are significant
variations (in terms of cell design and/or test parameters) within some

of the groups, several trends are nevertheless apparent:

(1) On the rational basis of total capacity discharged per unit
area of plate over the life of a cell, the Viking cells put on cycling
immediately after their fabrication and formation have the highest cycling
performance of all cell groups. The reduced performance of Viking charged-
stand and float charged-stand cells is again noted, as is the similar
average performance of these cell groups.

(2) Although the average number of cycles to failure was only 408
on the VK-3 regime, the rational cycling performance data (total Ahr per
unit area of plate) for this regime were comparable to, or higher than,
those for the presumably less stressful VK-1 reégime, suggesting that:a
35% depth of discharge may be less detrimehﬁai to cycling performance
than extended standing of cells in a high average state of charge.

*
Although there are differences in design, these differences are not
considered large enough to invalidate a comparison in terms of parameters

other than cell design,
26
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(3) Wet life, by itself, is not a suitable index of cell
performance as noted in columns 2 and 5 of Table 10. These data
indicate that, for similar wet life, the cells undergoing 100% DOD
(with charged stand for a month between cycles) experience a much
more stressful situation than, for example, the cells of the
temperature/battery/cell group undergoing only 10% DOD: the output
of the latter group is about 3-fold greater than the former.

(4) More frequent cycling favors a higher Ahr output over the
life of cells (at least at low depths of discharge) as indicated by
comparisons of columns 1, 3, and 11 which include data for cells
with comparable wet lives and nearly identical depths of discharge.

Cell Testing Results:

Failure Analysis

The work statement for Task I of this program called for analysis
of all cells that were tested to failure in this program. Failed cells
were to be disassembled, the cause of failure to be determined by'
appropriate techniques of examination, and failure analysis data to be

transmitted to the NASA project manager.

In the course of this program, a joint decision with the NASA
project manager was made that analysis of some cells failed in testing
at SRI would be done at NASA-Lewis, Complete data on all failed cells
analyzed at SRI were transmitted to the NASA project manager as appendices

to the Monthly Progress Reports,
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Procedure

The detailed failure analysis procedure used in this program was
adopted in a joint decision with the NASA project manager. Generally,
it follows procedures qsed at NASA-Lewis but certain refinements in
technique and diagnostic tests (such as the catalytic gassing test for
zinc identification) were added at SRI as the work progressed. The

basic procedure was as follows.

(1) A small hole was drilled through the cell 1lid to permif
venting of internal gas pressure.

(2) Saw cuts were made around the cell peripheries (two cuts
‘parallel to, and just below the 1lid, one cut parallel to the electrodes
in the narrow faces of the cell); cutting was stopped just before sever-
ing the cell walls to prevent damage to electrode packs. The top then
was carefully cracked off and the electrode tabs snipped. .

(3) Interplate potential differences were then measured for each
adjacent positive-negative electrode pair. Subsequently, free electro-
lyte (if present) was drained, the case cracked open and the electrode
pack removed (intact if possible) for examination.

(4) Electrodes (still in their bags) were removed one by one. All
bags were thoroughly inspected, and unusual features were examined under
a 20-power binocular microscope.

(5) Suspected metallic shorts anywhere on the negative and positive
bags were probed with an ohmmeter, and metallic deposits were tested for
identity by placing a drop of KOH over them and contacting the deposit
with a platinized platinum wire. Gas evolution (observed under the
microscope) was taken as an indication of zinc; the test can be used to
show absence of silver in macroscopic quantities by allowing the catalytic
dissolution process to go on until all of the zinc is dissolved.

(6) Bagged silver electrodes were then soaked in hot water, and
the electrode plates were pulled from their bags and closely examined.

(7) Because zinc electrode bags tended to adhere tightly to their
electrodes, these bags were slit at their edges and carefully peeled
away from the zinc plates. Zinc electrode faces then were closely
examined and probed for dry and (or) hard areas,

(8) All pertinent observations were then recorded on failure
analysis sheets. _These failure analysis data formed the basis for the

following results.
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Inventory of Failed Cells

Of the 141 cells transferred to SRI in December 1970 as part of the
novation of Contract NAS 3-10928, three were failed. An additional 82
failed between that time and the end of this program on October 31, 1972.
Twenty-eight of these cells were transferred to NASA-Lewis for analysis;
of the remaining 57 cells, 48 were subjected to failure analysis at SRI.
Table 11 shows a complete inventory of failed cells, broken down by
cell-testing groups and subgroups, and indicating whether and where

failure analysis was performed.

At least one failed cell from each of the six test groups--including
every major subgroup--was analyzed at our laboratories. Although there
is still a limited backlog for analysis, conclusions on major failure

modes were possible for all groups from the analyses already performed.

Faults and Failures

In any cell-failure analysis program, the first step toward eventual
 diagnosis4of specific failure modes and suggestion of a possible failure
mééhanism consisfs of a physical and electrical examination of cells for
significant faults. Pragmatically, we can define a significant fault to
be-any deviation from the physical appearance (exterior and interior) or
electrical behavior of new cells which could cause--or contribute to--cell
performance degradation and failure. Some faults are clearly related to
cell failure while others ﬁltimately might have caused cell failure if no
other faults had been present. The major faults and failures found for
the failed cells analyzed in this program are presented below.

Leaks were observed for a large percentage (34 out of 48 total) of
failed cells. Three areas of leakage were noted: arouﬁd terminal posts,.
around the pressure gages installed on some of the cells, and at the
Jjunction of cell lids to their respective cases. Since at least some
cells were cycling after more than two years of continuous or intermit-

*
tent leaking, it is apparent that even readily visible 1leaks do not

*
Using the standard phenolphthaleiﬁy%eak test.



Table 11

INVENTORY OF FAILED CELLS

No. of Cells No. of Cells No. of Cells

Analyzed Transferred in Backlog
Cell Group No. of Cells at SRI to NASA at SRI

3-Plate Pilot 6 5 : 0 1
Viking

Charged Stand - 15. 9 6 0

Float—-charged Stand 14 8 6 0

Discharged Stand 5 3 1 1
Design Variation 5 1 0 4
Temp-Battery Cell

o -

1OOC, Battery 2 1 1 0

240C, Battery 4 4 0 0

24OC, Cell 1 0 1 0

32°C, Battery 2 1 1 0
Plate lLock

VK-3 regime 16 6 10 0

100% DOD regime 9 5 1 3
Extra

Design 2, VK-1 1 1 0 0

Design 3, VK-1 0 0

Design 5, 100% DOD 2 1 1 0
All Groups. 85 48 28 9
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necessarily lead to early cell failure. Loss of electrolyte can be
substantial, however; most failed cells did not contain any free electro-
lyte although, as a rule, they had moist plates and separators. A rough
-estimate based on volume. and porosity of separators and battery plates

in new Design 7 cells shows that these components can absorb about 75 ml
of electrolyte, Aséuming that there was no increase of absorbed electro-
lyte during aging, this suggests that cells found (after opening) to be
without free electrolyte have lost 30% or more of their original electro-
lyte charge of about 110 ml, Inasmuch as the scope of our failure analysis
did not include attempts to quantitatively recover cell elecfrolyfes or
characterize local resistance of separators in failed cells, there is
currently no proof that loss of electrolyte was a factor in reducing wet
and cycle life of the cells tested in this program., However, this péssi-
bility deserves some consideration because continued loss of electrolyte
will eventually cause an increase in cell resistance and,quite probably,
a nonuniform distribution of current and potential over the negative and
positive plates. This condition, in turn, could promote dendrite pene-

tration and capacity loss--two of the observed failure modes,

The importance of reliable seals--and the difficulty to achieve
such seals--was recognized during cell development at Astropower
Laboratory and led to the design of the triple "0"-ring, epoxy-reinforced
seal used for the terminal posts of all cycling cells. The possibility
that this relatively complex seal might still be inadequate had been
anticipated by NASA-Lewis with the introduction of two additional seal
designs; these were tested, together with the standard design, in a
special Terminal Seal Test. The results are shown in Table 12. No
clear superiority of the new NASA seals is evident from these data.

The test may not be vigorous enough to provide a bigger spread between
the inferior and superior terminal posts. More likely, however, these

designs do not differ much in their capability to seal.
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Table 12

TERMINAL SEAL TESTS

No, of Cases No. of Av No. of Days "
Originally Cases that on Test for Av No. of Test Group
on Test Failed Continuing Cases Days to Leak No.
1 1 -— 516 Original
6 1 812 306 1 (4)
6 1 812 284 2 (B)
6 3 756 309 3 (C)
12 2 756 325 4 (D)
*
Test groups and their parameters are described in Reference No. 6.
The other leak area of importance to cell design involved the 1lid-
* ok
to-case seal. Leaks at this seal were unexpected in view of its fabri-

.f-
cation by a specially developed wultrasonic welding technique that was
followed by overpotting welds with epoxy resin. Occurrence of this type

of leak implies failure of the ultrasonic weld and points to the need

for modifications in seal fabrication. It seems possible that--if ex-
cessive pressure was occasionally applied--a thin weld line of highly
viscous plastic resulted that retained residual stresses. This or other
stresses leading to bond failure could probably be removed by an annealing

step.

Although another area of leakage--that of the screw fittings used for
installations of pressure gages--also was frequent, it is not inherently
associated with cell design. The fact that most of the lids with mounted
gages had radial hair line cracks starting at the hole has implications for
engineering applications of the plastic used for cell cases and lids.

For details, see Reference No. 6
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Bag splits were apparent upon disassembly of a majority (26 of 48)
of the failed cells examined at SRI. In all instances of bag splits, the
edges of bagged zinc electrodes were bulging, suggesting that the glued
edge seams of the bags split under the influence of mechanical pressure
exerted by the cycling zinc electrodes. Development of significant
pressures is suggested also by our observation that cracks had formed
in the bulged area of the coating of many zinc electrode bags. The
bulged areas were just beyond the original zinc electrode edges and also
beyond the prbjected edges of the silver electrode; they corresponded
to the small void space that exists around new bagged zinc electrodes
because of the technique used in shaping bags around these electrodes.
Apparently, cycling eventually fills this space; eventually, seams can
part and zinc masses can grow through the gap, leaving the bag around the

silver electrode as the only barrier to zinc penetration on charging.

In every instance where bags had seam plits (even in cells where only
a single bag was split), the free spaces between the tapered bag edges
and the cell case edge and(or) bottom became filled with zinc, a situation
conducive to failure by zinc shorting. In fact, an electric short between
the extruded zinc mass and an adjacent silver electrode was noted in a
number of instances. In others, the electric failure mode had indicated
shorting but no short was found in the failure analysis--either because
shorts were physically broken in disassembly or chemically removed by
zinc dissolution. There is little doubt that bag splits and the associated
extrusion of zinc were important factors in the ultimate failure of several

cells.

Slumping of zinc electrodes--and the associated loss of negative
capacity--tend to be major problems in extended cycling of all types of
alkaline cells using zinc negatives and conventional separators. However,
this fault (often referred to as ''shape change') was found surprisingly
infrequently in cells that failed during this program, thus confirming
earlier observafions* of this favorable characteristic exhibited by

Astropower Laboratory silver-zinc cells.

See reference 6,
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Only one cell among the large group of Viking cells (from the
Discharged Stand subgroup) showed slight slumping. The only other cells
showing noticeable slumping were all from the Temperature-Battery/Cell
group--one each from the cell subgroups cycled as batteries at lOOC, 24OC,
and 3200; the cell with the greatest degree of slumping came from the
battery cycled at 3200. In this connection, it is interesting to note
that, compared tb'cells tested singly, cells cycled;iﬁ-batteries were
quite probably e;posed to more overcharging stresses that might promote

slumping and(or) other types of cell failure,

Erosion (or shedding) of zinc electrqdes was observed in ten of

48 cells analyied--a significant percentage. Zinc electrode slumping--
either in the form of the almost universal "edge' effect discussed above,
or as the more extensive redistribution of active material observed in

a few instances--was invariably accompanied by erosion-type loss of zinc
from some areas of the negative plates. However, not all cases of
erosion were associated with slumping: active material lost from zinc
plates frequently was found in the void spaces exterior to electrode
bags, often with no electrical connection remaining to zinc electrodes.
Although migration of material through splits in bags undoubtedly accounted
for much of this effect, deposits of "mushy' (that is, relatively soft,
microcrystalline) zinc external to bags occasionally were observed to

*
form before obvious. bag splits could be seen.

Erosion of zinc electrodes can cause, or contribute to, capacity
loss of the negative plates, However, a corresponding correlation was
not observed in this program, probably because only very extensive
(>80% to 90%) capacity loss would lead to formal cell failure by low
capacity. Therefore, observation of electrode erosion in our failure
analyses was mainly used diagnostically; whenever erosion was observed,
it indicated that active material had been lost from the zinc electrode
and might be contributing to a failure-inducing, electrically "soft" or

"hard" short,

x
With cells using transparent polysulfone cell cases,
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Zinc penetration and shorting were the faults associated most

frequently with failure of cells in this program, Two physically and
electrically different types of zinc shorts were found. The most fre-
quently encountered type consisted of a single hard nodule of zinc
(usually 1 to 2 mm in diameter); an example is shown in Figure 2, As

a rule, this nodule formed a bridge between a negative and a positive
bag* and made electrical contact with both plates, 'Separation of the
plates in an attempt to further disassemble the cell pack tended to rip
out the nodule from one of the electrodes, leaving a hole in the bags
and, occasionally, a crater in either or both the zinc and the silver
electrodes. This general type of zinc nodule short was usually observed
in cells sﬁbjected to relatively high current, deep discharges such as
those applied in the 100% DOD regime or in the reconditioning cycles

following standing periods.

The second type of zinc short was associated with the development
of several fern-like, dendritic growths of zinc crystals between bags.
Electronic contact of the dendrite structures to one or the other
electrode (usually the zinc negative) could frequently be demonstrated,
but contact to both electrodes could not normally be shown because the
dendrites tended to adhere preferentially to one of the .electrodes upon
separation of the bagged electrodes. This type of zinc shorting is
assumed to occur via relatively fine dendritic filaments penetrating
both separator bags to their electrodes and connecting them with the
fern-like structures. Several attempts to find such filaments with a
low power microscope were unsuccessful, probably because of insufficient
resolution. However, an electric proof of such shorts was frequently
available in that the voltage between electrodes so shorted rose rapidly
after some displacement of the electrode bags with respect to each other,

presumably because this resulted in a breaking of the shorting filament(s).

Shorts of a similar kind are likely to be involved also in connecting
the zinc masses extruded from splits in the negative electrode bags with
the silver positive--another relatively frequently observed fault of

cells failed by shorting.

X
No preferred location of the nodule on bag faces was evident,
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Silver deposition in separators is a recognized problem in secondary

alkaline cells that use silver positives and conventional cellulosic
separators. Besides representing an irreversible loss of positive plate
capacity, the metallic silver deposited in separators by chemical re-
action involving dissolved silver oxide can eventually cause cell

*
failure by shorting.

As shown in Table 13, the failed cells examined in this program
frequently had significant amounts of metallic silver deposited in
finely divided form throughout the separator bags especially on the
silver positives. Although these deposits represent a loss in positive
plate capacity, capacity loss per se was not an important cause of

failure for cells cycling on the regimes used in this testing program.

Regarding the possibility that the silver deposits may have caused
(or contributed to) cell shorting, electrical probing even of obviously
attacked, blackened silver electrode bags did not reveal any metallic
shorts if bags were free from zinc nodules or dendrites. Accordingly,
cell shorting by the metallic silver deposits, formed in semiflexible
separators by the reaction of their partly organic coating with disselved
silver oxide, does not appear to be a failure mode for the cells examined
by us. The silver analysis of electrode bags nevertheless yielded
interestiqg reéults that are discussed further below, together with some

comments regarding formation and effects of silver deposits.

Nominally low capacity without evident or suspected zinc shorts

was the exclusive cause of failure for only five of the 48 cells analyzed

at SRI. To put this finding in perspective, it must be remembered that

*
Silver shorting is particularly important (relative to other failure

modes) in silver-cadmium cells with cellulosic separators.
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these failures all were from the Viking cell group for which '"failure by
low capacity' is defined as the inability to deliver a specified miniﬁum
capacity after the third reconditioning cycle.* This was a more severe
capacity test than those implicit in the VK-1, -2 and -3 continuous cycling
regimes. Aécordingly, many if not all of these low-capacity failures
probably would have cycled on the VK-2 regime applied to Viking cells
passing the recénditioning step. In agreement with the NASA project
manager, this assumption was tested on three low-capacity cells and
confirmed by achieving 232, 319 and 667 cycles, respectively. Inasmuch
as shorting by zinc nodules ér dendrites was the cause of their eventual
failures, these cells were not included in the group of low-capacity

failures.

A substantial number of cells that failed on various cycling regimes
had low capacity in addition to other symptoms of failure. Specifically,
of the sixteen cells showing this second tvoe of low capacity, six had
definite zinc nodule shorts, the remainder gave indications of zinc fila-
ment-type shorts, It is likely, therefore, that the low capacity of these
cells was due, at least in part, to zinc shorts not massive enough to

prevent charging but sufficient to drain away much of the cell charge,

To provide some perspective as to how frequent--and, hence, how
important--the various faults and failures discussed in the foregoing
are for the cells tested and analyzed in this program, a statistical

breakdown is given in Table 14.

* : .

After standing for 21 to 25 months, Viking cells were discharged at 7 A;
low capacity (but not failure) was diagnosed if the delivered capacity
was less than 21 Ahr. Two complete charge-discharge cycles were then

applied; a cell was declared failed if it failed to deliver 21 Ahr plus
a 40-second pulse of 12A with the cell voltage maintained above 1 V .
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Table 14

CELL FAILURE ANALYS%S: STATISTICAL BREAKDOWN
. OF FAULTS AND FAILURES
(for cells failed before October 31, 1972)

Total number of cells analyzed at SRI 48

Faults

LeakS » o o ¢ o o o o o o o o o o o 5 o o o o o s o o & » 34
Split bags « . ¢« v o o ¢« o ¢ o o e ¢ 5 s o s s 4 e s e e« o 26
Zinc nodule shorts (confirmed) . . . . + ¢« &« &+ & & o « « o 28
Zinc dendrite shorts (probable) , . . 4+ o v & o « o o » o 15
Low €CapacCity o o o o o o o o s o o o o o o o o o o o o o & 21
Zinc electrode slumping . . « « ¢« o « o o ... o ¢ o o . 4
Zinc electrode erosion . . « ¢ o 4+ ¢ 4 ¢ ¢ 4 4 4 o s s & o 10

Total Faults e o o+ e 0 e o s s e 6 s s s + e e s o e o 138

Physical and(or) Formal Causes of Cell Failure

Zinc nodule short ., o ¢ & ¢ ¢ o o o o ¢ o o 6 o s o o o » 28
Zinc dendrite or filament short . . . . ¢« . ¢ v ¢« ¢« « « » 15
Nominally iow capacity (Viking standing cells only) . . .

Total FallureS . o o « o o o o o o o s s o o o o« o « o 48

)
Faults may or may not be associated with cell failures; most cells had

several faults,

TThe most probable physical cause of cell failure, based on failure

analysis results.
+
"Failure to pass capacity test in reconditioning procedure.
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Failure Modes: Breakdown by Cell Test Group

The overall failure statistics given above indicate that zinc nodule
and dendrite(filament) shorting together accounted for nearly all failures
in each cell test group. However, there were sufficient systematic dif-
ferences in the fault and failure patterns of cells from different groups
to warrant a breakdown of failure analysis findings; this breakdown by
cell test group is shown in Tables 15 through 21, The major findings

from the analysis of these tables can be summarized as follows:

1, Zinc nodule shorts were the almost exclusive failure mode of cells
subjected to 100% DOD with charged stand between periodic discharges.
This failure mode is also dominant for Viking cells of the charged
and float-charged stand subgroups that failed during stand or early
in subsequent cycling, and for the Temperature-Battery/Cell group.
Inasmuch as several more cells from other groups failed early by
this mode, failure analysis has established zinc nodule shorts as
the major cause for early cell failures. Zinc nodule shorts were
not observed in the few failed cells from the Viking discharged-

stand category, .

2, Shorts associated with presence of dendritic and mossy zinc (and
ascribed to zinc filament penetration) are the dominant failure mode
for those cells from the Viking and other groups that attained at
least several hundred cycles on the VK-1 and VK-2 regimes and are

the -exclusive failure mode for cells cycling on the VK-3 regime,

3. Nominally low cell capacity by the criteria applied to the Viking
cell group was the cause for the five remaining failures; these
included. primarily the four cells from the discharged-stand group
that failed in the reconditioning step. Two of these failures may
not be representative inasmuch as the cells had been subjected to

o
significant periods (3% and 7% months) of charged stand at 52 C
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before being put on the routine 21 to 25 month discharged stand; a
third one showed generally atypical béhavior for this group (see 7.,
below). Our experience strongly suggests that all cells failed due
to nominally low capacity would have been capable of extended cycling

on the VK-2 regime,

The survival rate and cycling capability of charged-stand and float
charged-stand Viking cells in the reconditioning step are greatly

. o
decreased at stand temperatures of 32 C and above,

Bag splits were common in all cell groups with the exception of the
Viking charged-stand and float charged-stand categories and the
Plate-Lock Cell subgroup cycled on 100% DOD, However, no correlation

is apparent between bag splits and a particular failure mode.

All 3-plate cells (lids sealed with RTV silicone adhesive only)
developed leaks, A substantial percentage of the cells in all other
groups also were leaking but no direct correlation is apparent be-

tween cell leakage and a particular failure mode.

Half of the cells showing zinc electrode erosion, and (with one
exception) all cells showing electrode slumping were from batteries
of the Temperature-Battery/Cell group. The exception was a cell
from the Viking discharged-stand category; this cell also had sig-

nificant ercsion--both atypical faults for the Viking cell group.
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Table 16

CELL FAILURE ANALYSIS:

*
VIKING, CHARGED WET STAND CATEGORY

(Status as of 31 October 1972)

Failure Notations

Stand.
Tempera- Cycle Wet Bag
Cell No. ture (°C) Lifel Life(d) Leaks Splits Slumping Erosion
HS8-59-2 10 209 861 - + -
HS-59-3 10 143 813 slight - - -
HS-59~6 24 699 1107 slight - - -
[761] [1140)
HS-59-7 24 0 752 slight - - -
HS-59-8 24 474 994 slight - - -
fe63] [1112]
HS-59-9 24 610 1062 slight + - -
HS-59-10 24 476 994 slight - - -
: [630] [1088]
HS-5%9-12 32 0 722 Heavy - - -
AH-39-1 42 0 698 - + - -

*
Cycling is on

VK-2 regime after 21 to 25 months stand

The cycle and wet life data given in this table refer
this was also the ultimate failure because they could not be made to cycle thereafter.

Zn nodule short between plates,
Zn nodule short between plates.

Za dendrite slow short and low
capacity.

Low capacity and Zn nodule short
and low capacity prior to recon-
dition cycle,

Some Zn dendrites between bags
and low capacity.

Many Zn dentrites and shorting
nodules and low capacity.

Many adherent Zn dendrites be-
tween bags and low capacity.
Coating cracks noted over cemented
areas.

Low capacity before reconditioning.
Could not be reconditioned.

Zn nodule short between plates
low capacity before reconditioning.

at various temperatures.
to the first failure of a cell;

for most cells,
However,

for a number of cycling cells capable of accepting charge but failing to maintain a voltage above

1.0 V during discharge additional cycles were obtained by the following procedure:

(1) a discharge

half-cycle was skipped and the cell returned to its normal cycling regime; (2) the procedure was
repeated after each of the next two failures to maintain 1.0 V during discharge; (3) a reformation

‘ charge was applied after the fourth such failure and the cell put back on cycling; (4) after the next
failure, the cell was permanently removed from cycling. The numbers in brackets represent the ulti-
mate cycle and wet life so achieved.
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Discussion

In judging the significance of the findings of the cell testing
program and their implications, it is well to remember that the large
fluctuations associated with the small number statistics governing the
results of this test program tend to introduce considerable uncertainties,
especially in attempts toward a more detailed analysis. However, as will
be shown, the test program has provided (and continues to provide)

meaningful answers to the most important questions pursued.

Major Testing Objectives and Cell Failure Modes

The major objective of the silver-zinc cell development and testing
program initiated at Astropower Laboratory--and continued with the
remaining testing at SRI--was the demonstration that the use of largely
inorganic separators imparts long stand and cycle life to silver-zinc
cells, Although all cell test groups discussed in previous sections
were designed to contribute information toward this objective, the
Viking cell group has a somewhat special role in that it addresses the
central questions of how extended stand--and the electric/electrochemical
and temperature conditioﬁs of cells during stand--affect cell life. 1In
this connection, the much higher survival rate of cells standing in the
discharged state and their subsequent, better cycle life capability are
key findings. The results of the failure analysis (Table 18) indicate
that failures in this cell test category, whether encountered during
reconditioning or in subsequent cycling, are never due to zinc nodule
shorts--the priméry failure mode associated with early cell failures.

In particular, nominally low capacity was the only apparent fault with
the few cells failing the reconditioning procedure after about two years'
discharged stand, Furthermore, half of these cells had actually been
subjected to lengthy charged stand at elevat;d températures before their

discharged stand period--a procedure that might have contributed to their

51



eventual failure. The successful attempt to cycle one of these cells
suggests that all of the Viking discharged-stand cells could have cycled

on the VK-2 regime,.

In contrast, a significant percentage of the Viking cells standing
on charged and float-charged stand (see Tables 16 and 17) failed by zinc
nodule shorts in the reconditioning cycles or within the first few
hundred cycles thereafter. Inasmuch as formation of zinc nodules at
least during open circuit charged stand appears unlikely, the possibility
must be considered that the shorting nodules were formed predominantly
during the reconditioning cycles. One possible reason why this occurred
only in charged- and float charged-stand cells is that the greater
availability of dissolved silver oxide in charged cells caused a corres-

'pondingly larger attack on the organic phases of the semiflexible separator
bags during the extended stand period. Separators so weakened might not

be able to prevent formation of zinc nodule shorts in the reconditioning
cycles, Silver analysis data in fact suggest* that separators are sig-

1-

nificantly more attacked in charged-stand and float charged-stand cells.

*

See Table 13: compare silver bag analyses for early cell failures
HS-59~6 and -12 (charged stand) and HS-59-26 (float charged stand) with
HS-66~-11A (discharged stand).

A hypothetical failure mechanism may be sketched as follows: zinc
dendrites are growing through a few large pores (or faults) in the zinc
electrode bag. If these dendrites face an intact silver electrode bag,
the probability'for individual zinc dendrites to find a large pore or
fault in that bag is very small, and dendrites tend to grow parallel to,
and between bags instead. If the silver bag has been heavily attacked,
on the other hand, the probability is much increased for at least one

or perhaps a few zinc dendrites to line up with large pores or faults

in the silver bag. Where this occurs, the current density and over-
potential will be increased locally, thus further increasing the tendency
for the zinc dendrite(s) to grow; this effect will increase with in-
creasing penetration and favor growth of the dendrite that has penetrated
farthest toward the silver electrode. The zinc dendrite(s) may also grow
in circumference by mechanically displacing some of the weakened separator
structure. Eventually (possibly even within a few cycles if separators
are sufficiently weakened), a massive zinc nodule short can form and
bridge to the silver positive, causing irreversible cell failure.
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As expected, attack by silver oxide is less in cells standing at a
lower temperature (Table 13, cell HS-59-19); at the same time, the
survival rate and subsequent cycling capability of such cells is in-
creased (Table 5). Increased standing temperature, on the other hand,
is highly detrimental: all except one of the charged-stand or float
charged-stand cells in the 3200 and 42°C subgroups failed in the re-
conditioning step, either by zinc nodule shorts or by low capacity. As
expected, their silver electrode bags had the highest silver content

(for a given wet life) of all separators analyzed,

Another interesting finding is that, to date, there are no failures
among the four Viking cells put on cycling immediately after the initial
formation cycles. In considering possible benefits for cell life of
shallow cycling versus discharged stand, it must be remembered that four
of five failed discharged-stand cells failed due to nominally low
4capacity, with the further qualification that two of these cells had a
non-representative history., Because of the shallow deptﬁ of discharge
of the VK-2 regime, this failure mode will not be observed in the Early
Cycling category of cells until cell capacities will have declined to a
much lower level than 21 Ahr, Thus, a cell failing the reconditioning
step may not yet be failing on the VK-2 regime. Substantially longer
éycling of live cells will be required to decide whether a real difference
exists in the wet life and cycle life capabilities of immediately cycled

cells and cells standing in the discharged condition prior to cycling.

In further scrutiny of the major failure patterns versus group
behavior, it is to be noted that zinc nodule shorts are the exclusive
failure mode of plate-locked cells cycled on the 100% DOD regime,

Nearly all of the wet life of these cells is spent in the charged stand
condition, and the charge-discharge cycling is to 100% completion—4
conditions not unlike those encountered by the charged-stand category of

the Viking cells subjected to the reconditioning cycles. It is suggested
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that the failure mechanisms are correspondingly similar: inability of the
separator--weakened by long wet life in a charged cell--to withstand
penetration by shorting nodules that tend to form in deep cycling. On
the other hand, plate-locked cells failed during cycling on the VK-3
regime did not exhibit any zinc nodule shorts despite the fact that its
35% DOD makes this regime the most stressful of the three continuous
cycling regimes and resulted in a relatively low cell cycle life. The
correspondingly short wet life and small extent of separator degradation

in these cells may be the explanation for this behavior.

The Temperature-Battery/Cell group is the only other test group with

a significant number of failures by zinc nodule shorts. At first glance,
this observation appears to deviate from the pattern because these cells

are cycled continuously on the low-stress VK-1 regime. However, attention
is drawn to the fact that every one of the cells failed by zinc nodule

shorts is from a cell subgroup cycled as a battery. Thus, this type of
failure appears to be associated not only with weakened separators failing
in deep discharges but also under the stresses (such as overcharge and
gassing) that can result for some of the cells in a battery, especially
later in life when cell imbalances have developed, Note also that cells
cycling on the VK-1 regime tend to be in an almost fully charged state

most of their lives--a condition favoring high levels of separator-degrading

silver oxide in the cell electrolyte.

It is noteworthy that failed cells from the Temperature-Battery/Cell
group were significantly inferior to the cells from other groups which
were cycled on the VK-1 regime in other respects also: as a group they
had the lowest wet and cycle lives, showed split bags in every cell,
and included. most of the few incidences of zinc electrode erosion and
slumping. If we attribute these small-sample observations largely to
operation of cells in batteries, the conclusion is that cycle and wet

stand life tend to suffer if cells encounter uncontrolled charge (and
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overcharge), especially later in their wet lives when separators are
likely to be weakened.

The second major failure mode for all cell groups and test conditions--
dominant for cells that did not fail by zinc nodule shorts in their first
800 to 900 days of wet life--is shorting by relatively fine (filament-type)
dendrites, As a rule, this type of short could not be demonstrated di-
recfly with disassembled cells but was inferred from several independent
observations. Its electrical characteristic ranged from that of fairly
massive shorts (probably due to multiple shorting by zinc dendrites) which
tended to prevent cells from being charged at all, to slow shorts that
were usually associated with and at least partially responsible for, low
cell capacity. Several Viking cells with slow shorts were made to
deliver additional cycles by skipping a few discharges, see Tables 15

and 16.

Filament shorts were found quite universally for cells from every
test group and every continuous cycling regime when the failed cell had
achieved typically 400 to 500 or more cycles on the VK-1 and VK-2 regimes,
and about 250 or more cycles on the VK-3 regime, This type of short
apparently forms during continuous cycling at low to moderate rates and
depth of discharge. It is almost always associated with presence of
zinc external to the separator bags, either in the form of mossy zinc
extruded at the seams of split bags, or, in the absence of bag splits,
as zinc dendrites growing along separator surfaces in the narrow space
between negative and positive bags, The latter type was observed in
about one-third of all dendrite shorts, suggesting that zinc dendrite
shorting through separator bags is the most probable ultimate failure

also of cycling cells with intact bags.
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Other Testing Objectives

Turning to the specific objectives pursued with the smaller cell
test groups and subgroups, the cycling results obtained in the Design

Variation and Extra Cell groups show that cycle life and wet life

increase with increasing number of separator layers between positives

and negatives, as expected whenever shorting is the dominant failure
mode. However, since zinc bag splits and extrusion of zinc into the

void spaces around bags were quite common, it is probable that the

extra sheet of separator was less effective in increasing cycle life
than a complete, intact bag would have been., This conclusion is sup-
ported by the test results* obtained in the Three-Plate Pilot Cell group:
Cell HS-16-2-2, which had a separator sheet-covered silver positive and
was found to have a split zinc electrode bag, had the shortest cycle
life among the cells of this group; a similar cell (HS-16-1-1) with a

bagged silver electrode had nearly double the cycle life,

The Plate-Lock group cycling results indicate that plate-locking

tends to reduce cell wet and cycle life although extended cure of the
epoxy cement used in the plate lock appears to alleviate this effect
somewhat, An interesting feature of cells in this group was that the
voltage "spike" for t?e silver (I) - silver (II) transition was absent

in the cyecling curves for two aging cells with normally cured epoxy plate
lock--in sharp contrast to the behavior of nearly all other cells.,

It appears possible that a component (such as an amine) released from

the epoxy may have influenced this silver oxide phase transformation by
adsorption but it is not clear to what extent such adsorption could have

a negative effect on cycle life. Environmental testing appears to have

no effects on the wet and cycle life of plate-locked cells.

*
See Table 15,
1.

See Section on Cycling Curves, below,
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The main finding from testing the Temperature-Battery/Cell group-~-

the inferior performance of cell cycled as batteries--has already been
mentioned above, The temperature factor appears to be less significant
-in comparison, showing only a. slight superiority of cells and batteries
cycled at 100C over those cycled at 24 and 320C, respectively., This is
in contrast to the significant temperature influence on Viking cells
standing on charged- and float charged-stand. A rather speculative
explanation is that the favorable influence of 1OOC during standing and
the apparently negative influence of this temperature on cycling have
compensated each other for the Viking. cells. More information on the

temperature factor on cycle life is clearly desirable,

Bag Splits

This fault deserves special discussion not only since it was found
so frequently in the Astropower-type silver zinc cells tested under this
program but because the suggestion had been made that bag splits may be

a major cause of premature cell failure.

An immediate comment is that bag splits were not in any way related
to zinc nodule shorts, the dominant mode of early cell failure. Bag
splits were observed only in a minority of cells so failed,'and the
mechanism of their failure must involve zinc penetration through pags-f

especially through weakened bags as discussed above.

The extent to which split bags may have shortened the cycle and
wet 1ife of cells failed by filament-type zinc dendrite shorts is more
difficult to assess, Almost all cells on the VK-1 and VK-3 regimes
that failed by this mode also had split bags, and a short from the

extruded zinc mass to the silver electrode was shown or suspected in
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a number of instances. On the other hand, the only three cells cycling
on VK-1 not showing split bags had no more than average cycle and wet
life. Compared to the cell groups cycling on the VK-1 and VK-3 regimes,
Viking standing cells that had passed the reconditioning step and failed
in cycling on the VK-2 regime showed a far smaller incidence of bag splits--
even after eliminating the early (zinc nodule-caused) failures from the
comparison. However, over their entire cycle life these Viking cells as
a group delivered only about 10% more total charge per unit of plate
area than the cells that had failed on the generally similar VK-1 regime.
The failed VK-3 cells, on the other hand, delivered 2;1/2 times more
charge although their bags were invariably split. It appears that split
bags are at most a minor factor in reducing the life of cells on contin-

uous cycling regimes,

The incidence of bag splité also does not appear to correlate
with that of any other faults such as low capacity or leakage, nor with
specific treatments such as heat sterilization, plate-locking, or
environmental testing, However, the small statistical sample available

for some of these correlations should be kept in mind.

As mentioned above, there was much lower incidence of bag splits
in the cycling Viking cells compared fo cycling cells from other groups;
this observation is of interest in relation to causes and possible cures
for:the bag splitting problem, The differences in the cycling regimes
do not provide an explanation of this finding, An obvious possibility,
however, is in the manual cell building process: most Viking cells
analyzed to date are from one series (HS-59) which might have experienced
an uncontrolled difference of a fabrication or materials parameter
favorably affecting bag cementing, Another possibility centers on the
different treatment of cells prior to cycling, According to this
hypothesis, the 2-year stand period (especially on charged- and float

charged-stand) had weakened and softened separators to the point where
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the mechanical stresses exerted by the working zinc electrode in sub-
sequent cycling resulted in straining of the bags rather than transfer of

stresses to the cemented bag seams.

Silver deposition

Silver shorting was not among the established causes for failure of
cells tested in this program. However, the silver analysis* data of
Table 13 can be used to show that the amount of silver found deposited in
the separator bags of failed cells often was a significant fraction of
the silver content of positive electrodes. For example, the silver lost
from silver electrode No., 4 in Cell HS-82-2 is approximately 42.4 mg/cmz,
or about 12% of the silver loading (23 x 103mg/66 cm2 ~ 350 mg/cmz) of a
representative new positive electrode., The largest deposits found in
silver analysis (see Table 13) represent up to 25% of silver electrode
loadings., 1In view of the uncertainties introduced by spot analysis,
and considering that the effective positive capacity is typically only
about 75% of that calculated from silver loading, it appears possible
that silver deposits in semiflexible separators accounted for much of
the irreversible capacity loss experienced by Viking charged-stand and
float charged-stand cells in their 21-to 25-month standing period. This
interpretation does not seem applicable to capacity loss of the failed
discharged-stand cells; however, the capacity lost by some of these
cells may be due in part to their charged-stand history prior to the

routine discharged-stand period,

Analysis was by conventional wet chemical techniques,

The calculation is based on the data given in Table No, 13. It uses the
average of two areas analyzed for silver and zinc bags and assumes that

comparable amounts of silver would have been found in the separators on

.each side of the silver electrode.
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The distribution of silver in the electrode bags offers some clues on
how the deposits might have been formed. First, the deposits were in the
form of black, microdispersed stains in which silver was apparently not
sufficiently contiguous for metallic conductivity, suggesting that attack
took place in many isolated locations. Second, although the degree of
blackness was not a reliable indicator for the amount of silver,* it was
nonetheless apparent that more silver was deposited in the asbestos sup-
port than in the inorganic/organic coating. This finding was somewhat
unexpected because the pseudo-plasticizer--the organic phase thought
susceptible to attack by dissolved silver oxide--is used in the coating
only, A partial explanation might be that silver oxide reacts primarily
with hydrolysis productsT rather than with the plasticizer itself; these
products are somewhat soluble and would tend to migrate toward a sink
constituted by the zone in which the reaction with silver oxide takes
place, Also, reaction of silver oxide with the resin coating of the
asbestos fibers may have contributed to making the silver concentration
larger in the asbestos support than in fhe coating, A third possibility--
silver deposition in separators by a zinc shuttle mechanism**-—does not

appear to be consistent with the experimentally found silver distribution.

Some very darkly stained samples were found to contain less than 2 mg/cmz;
other samples'with a silver analysis of over 10 mg/cm2 showed medium-dark
staining only. -Also, zinc electrode bags stained to the same shade as the
adjacent silver electrode bags showed nevertheless a tenfold lower silver
Tanélysis.

The pseudo-plasticizer is an ester of a polyol and an organic acid;
experience at Astropower Laboratory has shown that the ester undergoes
hydrolysis in strong base,

Although this resin was found to be unreactive in bulk form, it might well
be sufficiently reactive when finely dispersed on the surface of asbestos
fibers,.

*éhis mechanism has been invoked to explain silver track shorting of the
type found occasionally in rigid inorganic separators. It proposes a

" cyclical growth of zinc dendrites during charge, followed during dis-
charge by separation of the dendrite from the zinc electrode and electro-
chemical dissolution of the dendrite in a local cell reaction with silver
oxide, causing deposition of a metallic silver track in the growth path

of a zinc dendrite.
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As mentioned earlier and shown in Table 13, the amount of silver
deposited in separators increased significantly with increasing cell
standing temperature, However, the data are insufficient to estimate
the magnitude of temperature coefficients which could have indicated
which step—-diffusion or the chemical reaction itself--was controlling
the rate of the silver deposition process.

Two other observations are of some interest; both are consistent
with (although not a conclusive proof of) a mass transport-limited
reaction, First, separators from cells cycling on the VK-3 and 100% DOD
regimes had much larger silver deposits than those from cells on VK-1 and
VK-2 regimes, in that order. In explanation, the more extensive volume
changes associated with the deeper 100% DOD and VK-3 cycles would tend
to promote convective mixing and mass transport of silver oxide; this
effect should be smallest for Viking cells (VK-2 regime) since most of
their wet life was spent standing, Second, separators from cells on the
VK-1 regime showed an approximately linear increase of their silver
deposits with cell wet life. Again this behavior would be expected for
a diffusion-limited reaction as long as the rate-controlling concentration
gradient is not changing appreciably.* This condition appears to be met
for the silver oxide concentration gradient: during stand (or averaged
over a number of cycles), the positive plate provides a constant-concen-
tration source, the reaction zone with the plasticizer an approximately
zero-concentration sink of silver oxide, Similar considerations apply
to the alternate possibility--a reaction rate limited by diffusion of
the plasticizer, As more analytical data for failed cells become avail-

able, firmer conclusions should emerge.

*
Near zero concentration of silver oxide in the ''reaction zone" within

a separator would be expected if (1) the reaction itself is faster than
mass transport (the assumption being tested in this model), and (2) only
a small part of the plasticizer has reacted. The latter assumption is
consistent with the findings for cells cycling on the VK-1 regime:
typically, silver deposits were 20 mg/cm whereas complete reaction Qf
the plasticizer should result in a silver deposit of about 150 mg/cm .
(Basis of estimate: complete oxidation of a compound with the approxi-
mate compositibn (CHz)n to carbon dioxide).
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Cycling Curves

For nearly all cells tested in this program, individual cycling
curves of the type shown in Figures 3 through 14 were obtained throughout
the cell life. The primary purpose in recording these curves was to
document the basic cycling information (type of cycle; cycle life) for
each cell* and to judge impending failures-—-and, once they occurred,
their general type--from the electrical behavior of cells. Although
a detailed analysis of the large number of cycling curves obtained is
beyond the scope of this program, some of the features of these curves

will be discussed here.

Figure 3 shows a representative set of curves for a Viking cell
(1691 cycles as of October 31, 1972 , and continuing to cycle) at three
stages of its life. Note the two different cycles of the VK-2 regime
and the fact that the cell began its cycle life with a relatively low
average state of charge (after delivering 21 Ahr in an initial performance
test, see also Ref. 6.) Because of a slight excess charge in each cycle,
the cell's average state of charge gradually increased as shown by the
earlier rise to the silver (II) voltage plateau in cycles 400 and 401.
Th¢ curves for these cycles also begin to show the voltage spike assoc-
iated with the silver (I) oxide--silver (II) oxide transition which is

generally displayed by alkaline cells using silver positives,

As shown in Figure 3, this spike had become higher, and the pre-
ceding voltage rise had become much more rapid as the cell had acquired
about 1700 cycles; these features were shown by most of the cells tested
in this program. In particular, the increasingly rapid voltage rise was

universally observed and could be used as a qualitative indicator for

In a few instances where cells were tested as batteries, only the

battery voltage was recorded but the voltages of individual cells were
then monitored at least occasionally,

Unless a cell already had sufficiently extensive shorting to prevent

charge acceptance.
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the state of health (age) of a cell, Two phenomena are thought to be re-
sponsible for the observed effect, (1) a decrease in effective capacity of
the silver electrode which will effectively increase the relative rate of
charging represented by a constant current, and (2) the development with
cycling of a more uniform silver crystallite size which will lead to a more
uniform state of charge throughout the electrode and, hence, a more

nearly uniform conversion of silver (I) to silver (II) during charging.*
The rate of voltage rise might lend itself as a semiquantitative test of

silver capacity (obtained automatically in each cycle), of value in

determining whether and to what extent cells are positive limited.

Figures 4 through 6 represent updates of similar curves given in
Ref. 6 for several cells, cycled as batteries, in the Design Variation
group. The electrical behavior of a significantly shorted cell is
evident in Figure 4 for cycle 850; as expected, the cell failed in the
next cycle. Note that in cycle 850 the remaining cells forming a battery
with this failing cell will have experienced an average of (2.00-1.68)/4
= 0,08 V above the customary cutoff voltage of 2.00 V per cell. This
and similar events in other battery cell groups represent a very signi-
ficant overcharge condition that may explain the generally inferior

performance of cells cycled in batteries.

Figure 5 shows a cell about to fail (in cycle 872) due to inability
to maintain a voltage above 1.00 V during discharge. This behavior was
often associated with slow shorts. It is apparent fhat shorting is not
yet sufficient to prevent the cell from being charged in cycle 872,
but charge acceptance is degraded as suggested by the relatively late

voltage rise.

"
A fairly uniform, rapid conversion of the lower silver oxide into

silver (II) oxide may also explain the flatness of the silver (II)
plateau during charging, and presence of a significant silver (II)
plateau in discharging aged cells (see Figure 3).
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A significantly shorted cell very close to failure is shown in
Figure 6 (cycle 891); again, this behavior probably has caused overcharge
conditions in the other cells of the battery. The voltage behavior in
the discharge curve of cycle 891 suggests partial cell recovery from a

significant shorting condition.

Figures 7 through 11 show cycling curves for cells from the various
subgroups of the Plate Lock group. Noteworthy features include the
exceptionally high voltage spikes for cells from subgroups A (Figure 7),
C (Figure 10), and D (Figure 11), and their conspicuous absence in
subgroup B cells (Figures 8 and 9). A possible explanation, involving
adsorption of organic compounds leached from the normally cured epoxy
plate locks in subgroup B cells, was advanced above. A minor feature
is apparent in the discharge curves of Figure 8: the cell with SWRI
type GX separator exhibits an increase of the internal resistance between
cycles. 6 and 150, This is in contrast to the behavior of cells with the
standard semiflexible separators which show consistently low levels

*
throughout most of their lives.

Three more sets of cycling curves are shown in Figures 12 through
14. Agaiﬁ, they show typical'features, including a very steep voltage
rise near the end of cell life (Figures 12 and 13.) The late vdltage
rise, declining voltage on the upper silver plateau, and sloping discharge
curve in Figure 13, cycle 537 all suggest impending failure by shqrting;
the exaggerated spike in Figure 14 (cycle 1032) is caused by the switch

to open circuit triggered by the voltage spike.

* .
An estimate of the internal resistance is no longer possible later in

cell 1life When sloping discharge curves begin to indicate shorting or
other faults.,
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TASK II - SEPARATOR RESEARCH AND DEVELOPMENT

The Work Statement for Task II specified exploration of inorganic
formulations to produce chemically stable, nongassing, long-life
separators suitable for alkaline batteries, notably the silver-zinc,
silver-cadmium, and nickel-zinc systems. Primary interest was to be
on development of semiflexible or flexible formulations, but rigid
separators comprising formulations beyond the 3420-09 and 3420-25
composifions also were to be fabricated and characterized. The latter
compositions were to serve as baseline materials for improvement of
rigid and semiflexible separators. Promising formulations were then
to be evaluated in Task III by application of separator screening

techniques.

Other stipulations under Task II included investigation of changes
in separator formulation, determination of the effects of constituent
parts on separator properties, and utilization of fabrication techniques
lending themselves to eventual mass production of separators. However,
in the course of the work, agreement was reached with the NASA Project
Manager that--in the interest of providing clear comparisons with
established inorganic separator materials and concentrating on the
inorganic phase as the major variable--separator fabrication techniques
would be limited to those used previously at Astropower Laboratory in

the fabrication of the 3420-25 separator.

Selection of Inorganic Base Materials

In accordance with the Work Statement, the classes of materials
chosen for study included olivines, zirconias, monticellite, and

titanias. From these basic classes, a total of twenty specific materials

77



were to be obtained--through purchase from commercial sources and(or)
by preparation via suitable chemical modifications of selected class

members--for incorporation into separator formulations.

The rationale in selecting these classes was as follows: Olivines
were included because (1) the olivine-based 3420-09 separator, although
prone to gassing in contact with zinc, appears‘to impart excellent
cycling behavior to silver-zinc cells, and (2) other membérs of the
olivine class can be expected to be nongassing. 'The suitability of
zirconia was established through the success of the zirconia-based
3420-25 separator in cells that were still on test after

26 to 43 months of wet life, Monticellite was included because, as an

iron-free modification of the olivine class, it appeared to have poten-
tial as a nongassing, low-cost separator base material., Finally,
although titania itself is not sufficiently stable in caustic, a
titania-based material was used in all Astropower silver-zinc cells as

* .a part of the successful zinc electrode-separator composite.

Selection and Preparation of Inorganic Separator Stock Materials

The inorganic stock materials initially considered for separator
development are listed in Table 22, together with their code designa-
tions used in this program. As shown in the table, of the 17 materials
actually used, six (codes JC, K, M, N, P, R) were obtained commercially.
These six materials were used as is, and two of them (N', R') were ob-
tained by further diminution of the commercial powders. A total of
11 materials (A, B', ¢', D', E', F', G', HP', L', Q, S') were obtained
by high-temperature synthesis; fivé of these were chemical modifications
made by doping corresponding stock materials with a small amount of an

'inbrganic cation. The doping step was performed on fully reacted
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Table 22

LETTER CODE ASSIGNMENTS TO THE INORGANIC SEPARATOR MATERIALS

Code Used in Separators
Letter Material Rigids Semiflexibles
Olivines
*
A 3420-09* + +
A’ 3420-09 " - +
B’ Synthetic, substituted olivine + +
c' Synthetic, substituted olivine, + +
D' Synthetic, substituted olivine * + +
E' Synthetic, substituted and doped olivine* + +
F' Synthetic, substituted and doped olivine* -+ -
G’ Synthetic, substituted and doped olivine +
W' Natural iron olivine - -
Titanias
H,J,JC Commercial magnesium titanate + +
HP' Synthesized pure magnesium titanate + -
K Commercial calcium titanate + +
L' Doped pure magnesium titanate + +
Zirconias
M C.P. zirconium dioxide (commercial) + +
N Commercial zirconium spinel + -
N' Commercial zirconium spinel + +
P Commercial calcium zirconate + +
Q.,Q", .
Q'-X 3420-25 + +
R Commercial zirconium dioxide, "Zircoa-B" + +
R’ Commercial zirconium dioxide, "Zirgoa-B" + +
s! Doped commercial calcium zirconate + +
Monticellites
T' Monticellite (CaMgSiO,), not used - -
u' Substituted monticellite, not mﬁde - -
A Doped, substituted monticellite , not made - -

*
These are proprietary materials.

The prime (') refers to the fact that a commercial or -as-received material
is further milled for an extended time, or that a synthesized material is
milled for a time such that most of the product is smaller than 5 micro-
meter particle size, and approaching 1-2 micrometer size.
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materials to minimize uncontrolled loss of dopant during the extended
firing times at the high temperatures required for synthesis of most

materials,

The objective in preparing these separator stock materials was to
obtain dry powders of small particle size (generally, less than 5
micrometers*) and adequate purity (preferably at least 95% for purchased
or reacted materials); these became the stock for sintering rigid porous
disks and for compounding the dipping slurries used to make semiflexible

separator sheets.

Inasmuch as absence of the gassing tendency of separators was to
be one of the major criteria for their suitability, the zinc-gassing
test (described in more detail under Task III) was applied routinely as
soon as possible after preparation of each éandidate inorganic stock
material, In practice, the selectioﬁ criteria of anticipated, low
semiconductivity and catalytic activity proved correct to the extent
that all materials developed show little or no gassing when in contact
with zinc. f Experience at Astropower Laboratory with the 3420-09
separator had shown that formulating inorganic stock materials with
binder systems into semiflexible separators further reduces the gassing
tendency, presumably by reducing the extent of contact between zinc-

and binder-coated ceramic particles,

As a result, most or all of the materials developed were expected
to qualify, with respect to freedom from gassing, for incorporation into

rigid and semiflexible separator formulations. The last two columns of

E3
Representative particle size analyses for selected inorganic stock

- materials are shown in Table 23.

Although reproducible gassing rates were observed for all materials
examined in the zihc-gassing test, the rates for many of these were
lower than that of the successful 3420-25 stock material. For several
materials, the gassing rate actually was below that of the zinc powder
blank. 80



Table 23

FISHER SUBSIEVE ANALYSIS ON SELECTED
INORGANIC SEPARATOR STOCK MATERIALS

Sample Code Diameter (Micrometers)
JC 0.87
R 1.90
E' 0.65
B' 1.06
s’ 4.98
R' 0.62
M 1.0
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Table 22 show which of these were actually fabricated into rigid
separator disks, and which materials were incorporated into semiflexible

separators after screening tests had been performed on these disks.

Olivines

Previous research findings have shown that the tendency of
the otherwise very promising 3420-09 separator to gas when in contact
with zinc was caused by the catalytic activity of the iron content in
natural olivine. This finding led to the concebt of iron-free olivines
for nongassing separators. In an internal research program, such
olivines were synthesized and shown to be essentially nongassing. In
addition, techniques for doping of inorganic materials were developed
that appeared to have an inhibiting effect on zinc dendrite penetration
through separators containing such materials. The materials and
techniques developed at Astropower Laboratory formed the basis for much

of the separator development work performed at SRI under this program.

All olivines were synthesized from oxide or carbonate starting
materials of reagent (or, in a few instances, USP) purity. Typically,
dry mixing for 15 to 30 minutes, followed by wet mixing in a ball mill
resulted in a homogeneous mix which was dried and ground to a powder.
Fugitive binders were added in appropriate solvent, followed by drying
and granulation on screens. The granular material was then pressed
into 50x12-mm or 38x12-mm slugs at about 1.38 x 104 N/cm2 (20,000 psi).
Firing in an electric furnace for several hours at selected temperatures
developed the desired ceramic structures. Selection of appropriate
reaction temperatures and times was accomplished by performing pilot
runs on small 9,6-mm diameter pellets in a tube furnace. X-ray diffrac-
tion analyses on the pellets guided the selection of temperature re-
quired for at least 95% conversion to the desired species, None of the

o o
syntheses required temperatures above 1623 K (1350 C).
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The fired feaétion products were broken up in a mortar and milled
in a ball mill to a diémeter below 5 micrometers., Preparation of
3420-09 stock was an exception to these procedures in that this material
was milled for a shorter period of time, in accordance with the standard
procedure developed at Astropower Laboratory. This yielded a separator

stock material with a particle size ranging between 3 - 15 micrometers.

Zirconias

Except for 3420—25-materia1 and the doped calcium zirconate (code S'),

the ofher zirconium compounds came directly from commercial sources,

The zirconium spinel (codes N and N'), apparently a frequently used
materiél in ceramic and glass wares, had a stated nominal composition

of Zr02 39-41%, 8102 20-22%, A1203 18.5-20.5%, and ZnO 17-21%. Nominal
size was stated to be less than 44 micrometers, with 0.5% retained on a
325-mesh screen. The calcium zirconate (code P) had a stated nominal
composition of Zr02 65.0-67.0%, CaO 28.0-30.0%, SiO2 3.0-4.0%, A1203

0.5% max, and TiO2 0.5% max. Particle size range was 0.5 to 3.0 micro-

meters, with less than 0.1% retained on a 325-mesh screen.

Monticellites

Attempts were made to obtain monticellite (CaMgSiO4) from commercial
sources. However, one source of pure monticellite (prepared by the
hydrothermal method) had stopped supplying that material, and another
source could supply only a material of 30% purity (mixed with calcite
and idiocrase). Therefore, synthesis of monticellite was attempted at

our laboratories.

Despite variation of starting materials, firing temperatures, and
reaction times, no material obtained exceeded 90% purity. "~Although the

presence of other phases might not have influenced separator behavior,
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a joint decision was reached with the NASA Project Manager to eliminate
monticellite-based separator stock materials in the interest of concen-

trating program efforts on fully characterized materials.

Titanias

Four titania-derived materials were explored, two of which were
synthesized. Commercial magnesium titanate (codes H, J, and JC) had a

nominal analysis of TiOz 38.0-42. 0%, 8102 9.0-12.0%, Al O_ 4.0-5.0%,

23
and MgO 39.0-43.0%. 99% passed through a 325-mesh screen; particle
size range was stated to be 0.5 to 3.0 micrometers. Commercial calcium
titanate (code K) contained TiOz 55.0-58.0%, 8102 1.0-2,0%, A1203 0.5%

max, and CaO 39,0-41.0%; particle size range was similar to that of the

magnesium titanate.

Although efforts were made to procure chemically pure magnesium
titanate from commercial sources, material of adequate purity could
not be obtained. Therefore, the pure material was successfully
synthesized by firing an intimate mixture of the pure oxides at 15230K

o
(1250 C) for six hours.

Preparation of Rigid Ceramic Disks

The Work Statement for this program specified that all inorganic
sépérator materials developed be tested also in the form of'rigid, porous

ceramic disks of the general type deveioped at Astropower Laboratory.
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Experience had shown that disks with porosities in the range of about

20% to 30% combined adequate conductivity and mechanical strength with
promising performance as separators in silver-zinc cells. This guide-
line and the fabrication techniques used at Astropowér Laboratory were

used in preparing rigid separator disks under this program.

The basic technique for preparing this type of inorganic separator
includes preparation of pressing granulations from inorganic stock
materials and binder systems, pressing of granulations into "green"
disks, and firing of the green disks to obtain rigid, porous sinters of

appropriate porosity. These steps are discussed in the following.

Preparation of Pressing Granulations and Green Disks

sk
With the exception of the reference material 3420-09, all inorganic
separator materials were in the form of fine powders as a result of the

final step in preparing the stock materials,

The stock materials were mixed with a solution of fugitive binders
and (or) lubricants, and the resulting thick pastes were dried under
stirring to form an easily crumbled mass. This method of drying minimized
segregation of the binders. Early preparations using Carbowax 4000 as
combined binder and lubricant resulted in fragile green disks. A water-
soluble resin was substituted for the Carbowax as the binder, and
paraffin was added as lubricant. Increased green sfrength was noted,
and all subsequent pressing granulations used this modified binder/

lubricant system.

From the dried mass, the minus 60 plus 100-mesh fraction was

collected. Use of this relatively narrow size fraction prevented size

b3
This material was available in the form of a spray-dried, coarsely

granular powder already incorporating the binder. Green disks were
pressed directly from this powder.
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segregation and permitted uniform loading of the 25.4-mm-diameter die.
Granulations then were pressed at approximately 6.9 x 103 N/cm
(10,000 psi) to produce compacted green disks. In a few instances
1.38 x 104 N/cm2 (20,000 psi) were applied in an attempt to eliminate

specimens with edge cracks or full cracks after firing.

Firing Procedure and Results

A "Globar''-heated tube furnace was used in firing green disks to
produce rigid, porous ceramic samples. The general procedure was to
conduct a few test firings for each new formulation to establish a time-
temperature relationship that resulted in disks of the desired porosity
range (24 to 29%). Good yields of usable rigid disks were then obtained
by the following procedure. A stack of disks (usually 3 to é) was loaded
on a flat ceramic setter. Starting at the cool end of the tube, the
setter was pushed in@ards about 4 cm every few minutes to gradually warm
the disks, As soon as fumes of the binder were observed, the setter was
allowed to remain in that zone until all the volatile matter had dis-
appeared. Then the setter was advanced in increments of about 2 cm each
and-held for 2 to 3 minutes until the disks reached a temperature within
200—3000K of the peak firing temperature. At that point, the setter
was pushed into the center of the hot zone, and the firing time base
started. After the requisite time at peak firing temperature, the
setter was pushed into a zone that was about 200-3000K cooler. When
the stack and setter had cooled to the lower temperature, the setter
was again pushed to a cooler region, 400-6000K below the firing temper-
ature. Finally the setter was pushed into the cold zone of the tube
(temperature about 420 to 57OOK). After about 5 minutes in this zone
the samples were pulled out, placed on a ceramic slab and cooled to

room temperature.
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Separate firing tubes were used in firing the doped materials to
avoid contamination of undoped materials by traces of the slightly
volatile dopant. The zirconia setters, ground flat to give correspond-
ingly flat disks, were changed with every formulation to avoid possible
contamination from previous firings. In some cases it waé necessary to
add flat ceramic slabs as weights on top of a stack of disks to minimize

warping.

Several materials were prone to warping or cracking, especially
those incorporating the synthetic olivines F' and G'; the commercial
magnesium titanates, H, J, and JC; the modifications of the 3420-25
material Q, Q', and Q'X; and the zircoa-B materials, R and R'. However,
adequately flat disks of the desired porosity ultimately were produced
from every formulation in sufficient numbers to permit performance of
all screening tests selected for Task III. Firing conditions, the
range of porosities obtained, and the yields of disks are summarized in

Table 24.

Preparation of Semiflexible Wafers

- As stated previously, a joint decision had been made with the NASA
Project Manager to concentrate on inorganic materials as the main para-
meter in separator development, at the expense of experimentation with
changed binder/plasticizer formulations. Therefore, the formulation and
preparation technique developed at Astropower Laboratory for the success-
ful 3420-25 semiflexible separator was adopted as the general technology
base for preparing semiflexible separators under this program. However,
the SRI approach differed from standard Astropower Laboratory procedure
in one important respect: The coating formulations were prepared on the

basis of an equal volume (rather than equal weight) percentage of the
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Table 24

. FIRING CONDITIONS FOR RIGID CERAMIC DISKS

No. of
No.of| Time Approx. Preferred Intact
Material] Disks]|Ranges|Temp. Ranges | Temperature| Porosity Disks
Class| Code No.|Fired|(Min) |Explored (°K) Estimated Range (%) Retrieved
(0] A 15 -45- 1470 - 1520 ~ 1500 22,9-27.4 11
L B' 12 -45- 1450 - 1470 ~ 1460 21.0-26.4 12
I (o 25 15-30 1350 - 1450 ~ 1360 0.0-30.8 21
A D' 22 -4 5- 1410 - 1520 ~ 1520 24,5-32.7 14
I E' 24 30-45 1440 - 1470 ~ 1450 18.4-28.2 24
N F' 12 20-45 1340 - 1370 ~ 1370 27.9-31.0 11
E G’ 29 30-45 1520 - 1590 ~ 1590 16.5-31.1 4
S w' 24 30-45 1440 - 1520| not detd. 1.5-23.8 24
T H 25 30-45 1520 - 1670 ~ 1560 0.0-35.0 13
I HP' 9 45— 1350 - 1570 ~ 1350 16.9-25.9 9
T J 17 -45~ 1470 - 1520| not detd. 28.8-38.01} 17
A JC 22 ~-45~- 1520 - 1660 ~ 1520 16.2-28.0 13
N K 11 -45- 1370 - 1510 ~ 1370 0.1-26,2 6
I L' 12 -45- 1350 - 1370 ~ 1370 .3-29.5 S 11
A .
S
z M 21 13-45 1600 - 1670 not detd. 21.3-26.2 8
I ' N 24 30-45 1470 - 1545 ~ 1530 24.4-35.7 21
R' N' 24 -45~- 1500 - 1670 ~ 1620 20.2-40.3 24
c P 14 -45- 1510 - 1590 ~ 1580 24,4-34.0 13
0 Q'X 41 -45- 1470 - 1630 ~ 1520 19.9-30.3 34
N Q 15° -45- 1500 - 1620 ‘~ 1545 13.9-36.7 - 14
I Q' 37 -45- 1490 - 1540 ~ 1540 27.4-34.1 31
A R 42 -45- 1500 - 1620 ~ 1570 25,3-33.9 19
é R' 30 -45- 1470 - 1520 ~ 1510 19.5-32.0 26
s' 11 -45- 1530 - 1570 ~ 1540 18.4-27.3 10
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inorganic material, with the 3420-25 formulation serving as the reference.
It was felt that this procedure provided a bétter comparison of the
materials inasmuch as geometric factors were expected to be more nearly
equal; A cohsequence of this was that the SRI formulation (A') of the
3420-09 baseline haterial differed somewhat from the corresponding

Astropower formulation (A).

Preparation of Coating Slurries

The preparation of the slurries followed established procedures.
All inorganic powders were screened through a 325-mesh screen to remove
tramp material and agglomerates. A slurry was made up from inorganic
material, resinoué binder, plasticizer, and solvent, and mixed in a
ball mill for 15 - 16 hours. This was followed by another screening
through a 325-mesh sieve to remove agglomerates of ceramic material
or undissolved polymer, or chips from the mill-mixing media.
After these steps, a viscosity adjustment was made if necessary, and
the slurries were bottled for subsequent use in the dipping operation.
The compositions and procedures essentially followed those cited in
U.S, Pat. No, 3,625,770, No extraordinary problems were encountered in

the preparation of the slurries.

Coating Procedure

Several procedures had been developed at Astropower Laboratory for
fabrication of semiflexible separators incorporating inorganic materials,
One of the most successful was to coat one side of specially prepared
sheets of fuel cell asbestos with the type of slurry described above.

The silver-zinc cells under test at SRI (Task I) have separators of
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this type; in this particular instance, the coating was formed by

dipping bags, properly sealed at three edges, into the slurry.

Although the basic Astropower procedure did yield useful semiflexible
separators, the manual dipping technique and certain_aspects qf slurry
handling tended to create problems in achieving high quality, uniform.
coatings. To eliminate the influence of the corresponding variability
of separators from the results of this program, a mechanical dipping
machine was built and used at SRI in making semiflexible separators.

After considerable experimentation to determine optimum values for
immersion rate, residence time, and withdrawal rates of separator bags,
coatings of the desired thickness (typically, 100-150 micrometers) could

be made reproducibly.

Provided that the relative humidity was kept below about 60%, these
coatings were free of striations, bubbles, and other defects and had
nearly uniform thickness over the entire'surface of dipped bags. Each
bag yielded two sheets, each sheet in turn six wafers for the screening
tests under Task III. Additional bags were dipped to provide strips for

tensile and flexibility tests.

90



TASK III -~ SEPARATOR EVALUATION BY SCREENING METHODS

The Work Statement for this Contract specified evaluation of the

tests generally used for screening separators in terms of probable

performance . in batteries. The tests to be evaluated included those

*
described in the standard reference book for separator testing, with the

following as a minimum:

(1)
(2)
&)
(4)
(%)
(6)
(M
(8)

Pore size distribution
Absorptivity
Permeability
Resistivity

Wet strength
Compatibility
Oxidation resistance

Silver and zinc penetration.

Tests expected to correlate significantly with separator performance

in battery cells were to be recommended for application to the rigid and

semiflexible separators developed in this program. The results of these

activities are described in the following sections.

% .
The Air Force Screening Test Manual for Silver-Zinc Batteries, edited
by Cooper and Fleischer, Reference 7.
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L3
Evaluation of Separator Screening Tests

In this initial subtask, we were to evaluate the commonly used
separator screening methods and recommend those that appear to_correlate

best with separa;or behavior in silver-zinc cells.

Conclusions and recommendations from our analysis and evaluation of
screening methods as described in the Cooper-Fleischer booklet and used
in various laboratories over approximately the past ten years are given
below for the major characteristics relating to. separator function.

The discussion uses a test sequence different from the listings given
above and in the Work Statement; however, all tests listed, plus ,several

additional ones, are discussed.

Electrical Resistance

Electrical resistance of a battery separator (equilibrated with the
particular battery electrolyte) is a key criterion for separator suita-
bility: thus, its measurement serves as a preliminary screening test.
in practice, DC and AC techniques have been used, apparently With equal
success. The measurement, as a rule, is carried out by a differéntial
technique (with and without the test specimen in the resistance cell).
With some minor variations, the basic approaches and resistivity cells
discussed by Lander and Weaver and by Salkind and Kelley in the standard
reference have been widely used. These techniques are invariably com-
promises in which adequate precision is sought while permitting ready
exchange and rapid measurement of test samples. To achieve acceptable
results, care is necessary in un%formly filling separators with electro-

lyte, reproducibly positioning the sensing electrodes, and controlling

(or determining) the electrolyte temperatures and composition,

*
Screening methods, as used here, are defined broadly to include (1)

techniques used to characterize separators in terms of relevant physical
characteristics (characterization tests), and (2) tests that attempt to
simulate the behavior of separators in actual cells (screening tests).
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After several modifications at SRI, the conventional cell and
technique previously used at Astropower Laboratory gave satisfactory
results in our separator screening program; this is discussed more

fully in later subsections of Task III.

Chemical Stability (Compatibility)

Immersion tests are used routinely in separator development programs
to screen candidate materials with respect to stability to the chemical
environment in actual cells. Several diffzsrent degrading factors, in-
cluding KOH electrolytes of various concentrations, and electrolytes
containing dissolved silver oxide, oxygen, or other oxidizing agents,
have been used. Change of weight or porosity, loss of strength, extent
of depolymerization, amount of metallic silver deposited, and the forma-
tion of degradation products have been used successfully as measures for
the extent of degradation of the various separator materials. Tests
invariably are run at elevated temperatures to accelerate degradation

effects.

A criticism of several past programs is that (1) insufficient
information was obtained on the temperature dependence of degradation,
and (2) excess electrolyte was used in degradation tests. The first of
these shortcomings makes it difficult to extrapolate degradation effects
from elevated to battery operating temperatures. The second precludes
realistic simulation of separator conditions in battery cells, including
possible attainment of ''degradation equilibria' and change of electrolyte
conductivity due to extensive reaction; the latter considerations are
particularly relevant for inorganic separators. These shortcomings were
eliminated from our screening program by carrying out degradation tests
at several temperatures and electrolyte-to-separator volume ratios.
'Furthermore, in addition to weight loss, porosity and resistivity after
KOH immersion were determined as more specific measures of degradation,
with a view to learning more about extent and functional consequences

of separator degradation.
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Mechanical Characteristics

Meéhanical properties such as flexibility, tensile strength, and
dimensional stability bear directly on handling of separators in battery
fabrication and affect their mechanical integrity over the life of a
battery. Although measurements of tensile strength and separator dimen-
sions are performed quite routinely in most separator development programs,
there are no numerical values--or even ranges of such values--that could
serve as acceptability criteria. This is particularly true for develop-
mental silver-zinc cells with noncellulosic membranes. These cells are
essentially built by hand and vary significantly in design, with corres-
pondingly different mechanical requirements for the separators. Never-
theless, characterization of separators in terms of their key mechanical
parameters is of considerable value in any technology-oriented develop-

ment program.

Regarding the materials to be developed in our program, there is a
fundamental mechanical difference between rigid and semiflexible inorganic
separators. For rigid separators, little dimensional change is expected
upon contact with electrolyte, and tensile strength is of little interest.
The relevant characteristic for fabrication of, and use in, batteries is
the modulus of rupture. Semiflexible separators can be characterized in
terms of their dry and wet dimensions and their tensile strength. In
view of the longer-range objective to develop separators of increased
flexibility, a simple but reasonably repeatable test of the degree of

flexibility would be of considerable utility.

Open Porosity (Volume of Open Pores)

Porosity has intrinsic importance as a key separator characteristic,
and also for possible correlations with other indices of separator per-
formance. Porosity data permit (1) calculation of pore tortuosity when

combined with separator resistance data, and (2) determination of "open"

vs. 'closed" pores when combined with determination of apparent

(geometric) and true (bulk) density of separators.
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Inasmuch as open, continuous pores are of prime interest for sepa-
rator function, techniqdes depending on intrusion of a liquid are pre-
ferred for determination of separator porosity. Water impregnation of
evacuated samples is easily performed and should give representative

results for the open porosity of reasonably wettable materials, Mercury

2

intrusion at high pressures [e.g. 4,1 x 104 N/cm® (60,000 psig)] will

give the volume of open pores down to approximately 100 R. Comparison of
water and mercury porosity data can give some indication regarding the
extent of wettability of separator materials and, for wettable specimens,

whether a separator contains an appreciable volume of micropores.

Regarding the materials of our program, the rigid separators ‘appear
to be readily wettable. Accordingly, little or no difference should
exist befween porosities determined by water impregnation (under vacuum)
and by electrolyte aY%sorption, Vacuum impregnation seems preferable
because the possibility of errors caused by trapped gas is eliminated and
a meaningful comparison with mercury porosity data (also obtained with
evacuated samples) appears possible and should indicate whether a
separator has a significant micropore volume. For our semiflexible
separators that are formulated from inorganic materials and organic
binder systems, water intrusion and total intrusion of mercury will give
average values only of the multiphase structure. This increases the

importance of an independent characterization of porous structure.

Average Pore Size and Pore Size Distribution

There is universal agreement that these characteristics must play
a central role in the function and performance of battery separators.
However. a survey of the state of the art shows that there is no firm--
much less quantitative--understanding of how pore size and distribution
(geometric and size) affect separator performance, or what would consti-
tute a preferred set of specifications., This is so partly because
different battery systems often require different functions in a separator.

For example, systems with essentially insoluble reactants and products
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do not require that the separator be permselective; on the other hand,

permeability to gas may be required.

The present understanding of separator functions in silver-zinc
batteries is limited to relatively simple ideas such as desirability of
uniform distribution of pores (to ensure uniform utilization and distri-
butioh of active materials) having very small diameters (to provide
selective retardation of silver oxide and zincate diffusion and suppress
zinc dendrite growth). Quantitative support for these hypotheses is not
available; for example, no attempt seems to have been méde to establish
whether any of the available separator materials offer some degree of
selective retardation. There is also some question whether these simple

ideas apply to all types of separators.

The first step in improving the understanding of the role of pore
size and distribution—--and thus in permitting use of these data to screen
(or even design) suitable separators--is a more complete characterization
of materials. This need has been recognized, and at least six different
techniques have been used over the past 5 to 10 yearé for determination

of separator pore size and(or) pore size distribution, including

Water (or electrolyte) permeability
Mercury porosimetry

Electron microscopy

Gas adsorption

Gas permeability

Liquid phase diffusion .

Water (or eleétrolytez permeability is used quite routinely since

the eduipment is simple to set up and use. Based on the assumption of
iaminar flow, the Hagen-Poiseuille law may be used to calculate an
average pore size from measured permeation rates withnliquids of known
viscosity. In interpreting the results, it should be remembered that
the technique yields the average pore size for hydraulic flow, Although

it is often tacitly assumed that this average also applies for the majorA
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diffusion and migration processes across battery separators, this assump-
tion will be seriously in error whenever the pore size distributiqn is
relatively broad and (or) the separator contains a limited number of
1afger‘pores or pinholes., The hydraulic flow per unit area (flux) in-
creases with the square of pore diameter while the flux of ions (via
migration and diffusion) and molecules (via diffusion) in first approxi-~
mation is independent of pore diameter. As a result, measurement of the
hydraulic permeability tends to exaggerate the influence of larger pores
(or defects). While this actually enhances the value of this technique
for detection of large pores and other flaws (for example, in a quality
control step), additional means of characterizing pore size clearly are

required to permit meaningful interpretation of permeability measurements,

Mercury porosimetry has been used in a few instances to provide

information on average pore size and pore size distribution in separators.

A knowledge of these characteristics is highly desirable because the
presence of an appreciable number of large pores can be expected to signi-
ficantly influence (presumably degrade) separator functions and performance.
Although the technique has some limitations due to uncertainty of the
mercury-separator contact angle and the compressibility of porous organic
materials, mercury porosimetry does produce important information on

porous structures* not readily available from other techniques, and its

use to characterize separators is strongly recommended, especially in
conjunction with other techniques such as measurement of water intrusion

and permeability.

%
This information can include indications regarding unusual pore shapes

(such as ink-bottle pores) available from a more refined analysis of
static and dynamic (hysteresis) porosimetry data,
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Electron microscopy is a powerful technique to obtain detailed

inforﬁation on the structure of porous and microporous materials. It
has been gpplied successfully to characterize pores in several types of
battery separators. High resolution microscopy is required for micro-
pores such as those found in radiation-grafted polyolefins. WheneQer

a resolution of about 200 R is adequate, scanning electron microscopy
is preferable because larger areas and greater depth of field can be
scanned with minimal sample preparation. Since electron microscopy is
the only method among those listed above to give direct evidence of

the basic geometry in porous structures, it complements all other tech-
niques and should be considered indispensable in any more fundamentally

oriented separator development program.

Gas adsorption, gas permeability, and liquid phase diffusion all have

been used with some success to determine pore size distribution and average
pore size in separators. From our review of past work we conclude that
these techniques could have advantages in special situations (for

example, separator quality control tests could be based on gas permeabil-
ity measurements). However, they do not seem to offer sufficient inform-
ation beyond that available from the tests discussed above to justify their

application in programs designed primarily for developing and screening

separator materials,

Penetration by Zinc Dendrites

The most obvious function of separators in silver-zinc cells is to
retard shorting of cells by zinc dendrites, Presumably, this is accom-
plished by the tortuous electrolyte path in porous separators, Another
likely function of separators in reducing the dendrite problem is to
promote a uniform current density distribution (thus minimizing dendrite-
favoring areas of increased overvoltage) and, quite probably, refard
zincate diffusion (thus increasing the effective throwing power of the

electrolyte-electrode system),
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There seems to be general agreement and some experimental evidence
that both concepts point to the need for separators having very small
pore size. However, there is also some evidence that dendrites can
eventually penetrate through pores as small as 10 X . Another separator
function postulated for some materials is the gradual release of
surface-active compounds that can retard dendrite growth. Not surpris-
ingly in view of this complex situation, no model for the dendritistatic
functions of a separator is available that could be used to design
effective separators. Accordingly, extensive screening of candidate

materials is used to empirically select dendritistatic separator materials.

Apparently, the only test for dendritistatic functions used in
separator development programs is the zinc penetration test developed by
Dalin and Solomon, which is described in the Cooper-Fleischer booklet,
Although correlation of test results with separator behavior in cells has
been claimed, quantitative evidence has not been presented, Previous test
experience in inorganic separator screening, although probably not sup-

ported by'sufficient cell tests, was inconclusive: the figures-of-merit
: *
(e.g., in minutes per mil penetration) obtained at Astropower Laboratory

were not outstanding although the separators had very good dendritistatic
properties in cell tests,

Lander comments that one of the reported problems with the zinc
dendrite penetration test as specified in the Cooper-Fleischer booklet
is the buildup of zinc in the back of test samples. This effect is
responsible for mechanically induced or accelerated failure of separators
in the test; he suggests that a cycling test would avoid the problem.
Perhaps a more relevant argument for cycling than this criticism (it
might be argued that this effect, to some extent at least, simulates the
situation in a battery as mossy zinc develops on the negative plate) is
that cycling is the normal mode of battery operation, and that a zinc
penetration test should attempt to simulate this condition. For example,

" inorganic separators with relatively large pores might function not so

much by preventing dendrite penetration into separators as by limiting

*

«Q -~
See Reference 8, 99



penetration through separators because of cyclic growth and dissolution
of- dendrites, This behavior is not simulated in the established zinc

penetration test,

Another criticism of the test as now performed is that a high and
unchanging concentration of zincate ion is present at the separator sur-
face facing away from the zinc electrode. This does'not simulate the
situation in batteries especially during extended overcharge--the condition
most conducive to dendrite growth, For the zinc dendrite penetration test
to be more representative and,hence, more useful, it should be modified by
simulating typical charge-discharge cycles and realistic concentrations

of zincate ion in the cell electrolyte.

Silver Diffusion (Silver Oxide Transport)

Resistance of a separator to silver oxide transport is generally
considered an important criterion for separator suitability, and silver
diffusion tests patterned after the one described in the standard reference
have been used quite routinely to characterize experimental separator
formulations., A wide range--at least from 2.5 x 10-4 g/hr x cm2
(1.6 x 1073 g/hr x in.z) to 2.5 x 1072 g/hr x o (1.6 x 1071 g/hr x in.z)--
has been reported (see, for example, reference 7, p. 114, and reference 9)
for the diffusion of silver oxide through membranes that appear to qualify
as reasonably practical separator materials, This is rather surprising
inasmuch as 2.5 x 10_2 g/hr x cm2 would correspond to a self-discharge
raté of about 6 mA/cm2 (in the order of a C/7 rate). Some doubt may be
expressed whether these data have any significance for separator

*

characterization and screening--either because they might be in error

or because, for very permeable separators, the effective transport rate

* -
Compare, for example, a diffusion rate of 1.6 x 10 1 g/hr x in.z (given

in reference 9) with the upper limit for the diffusional flux R , esti-
. d
mated by using the standard relationship for the diffusive mass transport
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of silver oxide to the zinc negative is controlled by processes other
than diffusion through the separator., Because of this, and also since
silver diffusion rates might be calculated directly from a known(or
estimated) diffusion coefficient and the mass transport characteristics
of the porous structure, there is some question whether measurement of

silver diffusion through candidate separators is worthwhile,

Direct measurement of silver diffusion is, however, useful for
several reasons. The specific barrier property of the separator will
show up if the diffusion measurement is performed in conjunction with
other tests; this is important for conventional cellulosic membranes
which constitute a partial chemical barrier to silver oxide transport.
Equally important, any beneficial specific retardation caused by micro-
porosity and (or) ion exchange properties of new materials would be
discovered in the diffusion measurement. Even if no special barrier
effect is present, an independent characterization of separator mass
transport characteristics is very desirable, especially if the character-

ization test is basically simple,

M PDc
w

R = ° s
d T2h cﬁzxsec

and the following representative values:

rate

Molecular weight of silver oxide Mw = 232 g/mole
Separator porosity P = 40% (high assumption)
Diffusion constant of silver oxide D = 10" "cm“/sec (high assumption)
Concentration of silver oxide e, = 2.5x10" "mole/cm (high
assumption)
Pore tortuosity T = 1.0 (low assumption)
Separator thickness h = 4x10'3cm (reference 9)
-5 -7 :
232x0.4x10 x2,5x10 -8
It follows that (R ) = =3 A~ 6x10 |[——o—
d max 4x10 cm”Xsec

-3 g
~ 1,4x10 Y
x (in xhr)

that is, two orders of magnitude lower than the experimental silver
transport rate given in reference 9,
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Such appears to be the case regarding the diffusion tests described
in the standard reference and used in subsequently published work.,  The
required sensitive analysis for silver usually is done in the diffusion
cell, either polarographically or via counting of a radioactive Agllo
tracer, The latter technique has the advantage that silver deposited
in the separator by chemical reaction with the organic material is
conveniently determined by the same counting apparatus, However, major
criticisms of the tests as used in most of the previous work may be
raised. First, stirring of the ''receiving' compartment is generally
performed to permit chemical analysis. Although no problems would be
anticipated for microporous materials, our experience in other R&D
projects has been that hydraulic flow caused by stirring can introduce
large errors in measuring diffusion rates through membranes that have
pores in the micrometer range, It seems possible* that this effect is
responsible for some of the unusually large silver "diffusion'' rates
reported in the literature, On the other hand, if stirring is omitted

or performed only occasionally, a stagnant diffusion layer will form

*
The possibility that in stirred solutions hydraulic flow may become the

major mode of silver oxide transport (at sufficiently large pore diameters)
can be appreciated by calculating, for example, the differential pressure
across the separator sufficient to cause a hydraulic flux (R ) equal to
ten times the diffusional flux (R ). Using the expression for R from the
footnote on the preceding page, agd deriving the hydraulic flow of a solute

through a separator from the Poiseuille equation, we set

2
PDc M Pr_ OPc M 8Tn
R /R =2 W//, O . QW = —5 = 10 (in cgs units)
h d T%h- 8N1°n r “Ap

-5 2 -2
With representative assumptions (D = 10 em /sec; T = 10 Poise),. the
following pressure differentials are calculated:

r (micrometers) 0.1 0.32 1,0 10.0
— Q
2 4 3 2
AP (dynes/cm ) 8x10 8x10 8x10 8
-3
AP (cm H20) 80 8 0.8 8x10
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next to the separator and lead to lower diffusion rates than those

representative for the separator itself.

Instead of using the accepted measurement techniques, we have
pr0posedkto determine the flux of diffusing silver oxide by its
potentiostatic reduction at a silver sheet or gauze electrode directly
adjacent to the low concentration side of the separator. This approach
would provide well-defined silver oxide concentration gradients and
permit use of a simple measurement technique giving absolute flux data
without further calibration. The proposed technique is particularly
appropriate for materials such as our inorganic separators that are not

expected to react rapidly with silver oxide.

Zinc Diffusion (Zincate Transport)

It is widely accepted that one of the most important functions of
separators in silver-zinc cells is to retard the transport of zincate
and that separators should be characterized in terms of their resistance

to zincate transport.

""A zinc diffusion screening test developed by Lander is described
in the Cooper-Fleischer booklet and has been used in several separator
development programs. Much of what has been said above for the silver
oxide diffusion test also provides the rationale for recommendingT that
separator screening programs include a zincate transport measurement.
This parallelism continues on the experimental side: potentiostatic
reduction of zincate at a heavily amalgamated zinc (or platinum or gold)
electrode directly adjacent to the separator is recommended as a

potentially simpler, faster and more accurate analysis technique.

*
In the interest of concentrating the technical effort on the separator

materials investigation, no work on the proposed or any other technique
for measurement of diffusion rates was performed.

See second footnote on preceding page.
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Recommended Tests

On the basis of the foregoing analysis, a series of tests was
recommended for application to the separators developed in this program,
These tests fall into two groups., The first group contains the tests
considered essential for our separator development and screening prégram;
it also includes the basic measurements required for separator character-
izations., These measurements and tests were applied to the separators
deveioped under Task II. The results are presented and discussed in some
defail in the following sections; procedures and sequences used in the
performance of measurements and tests are described in Appendices A and

B, respectively.

The second group of recommended tests includes techniques for sepa-
rator characterization that are considered very desirable but not essential
for separator screening programs, In the intérest of concentrating gfforts
on investigating the materials parameters of inorganic separators, the
secondary tests were not applied in this program, However, their appli-
cation, possibly together with other advanced techniques of investigation,
is considered essential for any program directed toward an-imprpved under-
standing of the mechanism(s) by which separators for silver-zinc cells

function,

104



Primary separator measurements and tests:

Weighing

Measurement of dimensions and volume
Water intrusion

Electrical resistivity

Degrédafion (chemical compatibility)
Mercury porosimetry

Water permeability

Zinc gassing (inorganic separator stock)
Zinc dendrite penetration

Modulus of rupture (rigids)

Burst strength (semiflexibles)
Tensile strength (semiflexibles)

Bending test (semiflexibles)

Secondary separator measurements and tests

Electron microscopy

Zinc dendrite penetration (during simulated cycling)

Silver oxide transport (preferably by proposed SRI technique)
_Zincate transport (preferably by proposed SRI technique)
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Results and Discussion

In accordance with the Work Statement for this program, candidate
separator materials were first prepared and studied in the form of rigid
ceramic disks., The results obtained in applying screening tests* to
inorganic materials in the form of rigid, porous disks are given in
Tables 25, 26, and 27, After review of these results, sixteen candidate
inorganic materials were selected for preparation and screéning of
semiflexible separator formulations; the test results for semiflexible
separators are given in Table 28, The five separator stock materials
not included represented variations of the other materials, Although
these variations might have resulted in somewhat different properties
for the basic material and its variation in rigid form, the differences
were expected to be negligible after incorporation of the materials in

*
semiflexible separators.

Screening test results for rigid and semiflexible separator samples
are discussed in the following sections, beginning with the discussion
of tests related principally to the function of separators in cells,

Test results related primarily to separator compatibility with the cell

environment are discussed subsequently, Many of these results were
obtained in routine tests but important information was also developed

in supplementary tests.

Resistivity: Rigid Disks

As shown in Tables 25, 26, and 27, the specific volume resistivities
of the rigid disks fell in a rather narrow range. This result is a
direct consequence of selecting disks from a limited range of porosities

(about 24 to 29 vol%) and shows that disks with generally similar

*Materials F' and G' are related to E' both chemically and in terms of
performance as rigids and were therefore deleted from study as semi-
flexibles, Similarly, material HP is a more pure and more costly form
of JC, and was deleted. The three Q materials differed only in source
of fabrication or in particle size, and only Q was retained for study
in the semiflexible formulation,
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porosities also have similar tortuosities. However, the results obtained
in the preliminary Batch 1 test for a group of disks with different
porosities indicate that pore tortuosity is not independent of porosity.
Figure 15 displays this effect, which shows up as a decidedly nonlinear
relationship between conductivity and porosity; the scatter Qf data over
a band may be due (at least in part) tolthe imprecision of the resistance
data of these first studies for which the resistance cell had not yet

been modified (see Appendix A), The relationship expected for a porous
body comprising straight pores (forming a 900 angle with the surface) is
also shown in Figure 15, The experimental data show that the deviation
from this simple model becomes very large at porosities below 15%, and the
curvature of the plot indicates that tortuosity is increasing with
decreasing porosity. Fof‘a given porosity, however, the range of conduct-
ivities is within the experimental uncertainty for all disks tésted.

Thus, although the disks represented ten different materials, no material
‘appears to fall oltside the band of data scatter, suggesting that all-

materials have a similar porous structure,

Preliminary evaluation of the resistance measurement technique with
Batch 1 disks had suggested a better repeatability than that indicated
by the *20% scatter of the experimental data, To investigate this
inconsistency further--especially also the possible role of chemical
attack on seéarator resistance--six disks all of material H but having
different porosities, were selected for a more detéiled study‘of resist-
ance and its possible changes as a result of various treatments applied
to the disks, To examine the chemical factor, the eleétrolyte was
alternated between 45 wt% KOH and O0,1N KC1l; disks were cleaned by Soxhlet

extraction between measurements, The results are shown in Table 29,

In examining the data, the more than proportionate decrease of
conductivity with decreasing porosity is again noted., Further, even

after normalizing the resistance data (using the conductivities of
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45 wt% KOH and 0,1N KC1 measured for the free electrolytes) separator
resistivities depended on the nature of the electrolyte and varied
unsystematically with the stage of the test, Unexpectedly, these
effects were far greater for the 10% porous disks than for the 24%
porous disks, although the precision of resistance data should increase
with inc;easing resistance, that is, decreasing porosity. Thus, the
data do indeed suggest chemical factors as influencing resistance
measurements: such factors should be more noticeable in a more com-
pletely sintered (lower porosity) material with fewer and finef pores
more susceptible to being opened by chemical attack or closed by debris

generated in this attack.

The ratio of the KOH results to those in KCl1 for the 24% disks was
0.92; this result is justification for using the more convenient and
stable KC1 as the electrolyte rather than KOH for resistance measure-

ments for the disks in later batches (which had comparable porosities).
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Resistivity: Semiflexible Wafers

The results of resistance measurements on semiflexible wafers are
given in Table 28; these measurements were made with KOH only because it
was found that semiflexible wafers could not be adequately wetted and
infused with KCl solutions. Both specific volume resistivity (p ) and
specific area resistivity (%r) are presented'for three experimenial
conditioné: after initial contact with 45 wt% KOH, after one week's
soaking, gnd after 48 hours' degradation at 8000. The results of resis-
tivity measurements vary with time, and this variation was systematic and
substantial with semiflexible samples, As shown in Figure 16, a rapid
decrease in resistance to about 75% of the initial value was observed
over 1 to é days., Seven weeks later, the resistance had decreased to
1/2 to 2/3 of the original value and a tendency to level out was apparent,
Although the data do not permit an accuraﬁe extrapolation as to what value
is ultimately approached, the resistance data after the seven-day room-
temperaturé soak in 45 wt% KOH are considered to bé an adequate basis for
choosing resistance values that are representative of semiflexible

separator samples in actual cells,

A second question of considerable importance for adequately
characterizing semiflexible separators in terms of their resistance
concerns the location of the major part of that résistance. Both the
asbestos and the coating can be expected to contribute to resistance, and
a knowledge of the relative contribution is required not only for corre-
lating resistance with other separator properties but ﬁor any future
attempts to optimize separator functions. Accordingly, resistance
contributions were studied, using semiflexible separators made from
material Q. The thickness of the coatinés was varied by using different

numbers of dips into the coating slurry (see Task II). The results are
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given in Figure 17, in which the specific area resistivity is plotted
against total bag thickness for two conditions of measurement: after
initial exposure of samples to 45 wt% KOH, and after seven days of

soaking., The range of results is indicated for each average plotted.
Three tendencies are evident from the curves presented:

(1) Both curves tend to pass through the origin, suggesting that
the contribution to total resistance of the separator is
approximately the same (per unit thickness) for the coating
and the asbestos paper., This finding was surprising as it had
been believed that the coating was the major factor in con-
trolling separator resistance.

~(2) The reduction in resistance resulting from soaking presented
in Figure 17 is again clear, In this case, the resistances
were reduced to 75, 70, and 65% of the original values for the
various thicknesses of 0,03, 0,045 and 0,055 cm (12, 18, and
22 mils, respectively). It also appears that neither the
asbestos nor the coating is unchanged by the KOH; however; the"
resistance change occurs to a greater extent in the coating.

(3) The scatter in results decreases both as a result of soaking
and as the value of resistance increases,
These observations suggest that (1) better cell performance should
be observed about a week after initial activation of the cell, and (2)
the asbestos paper of the separator contributes significantly to cell

resistance and, hence, influences the power capability of the cell.

Porous Structure: Rigid Disks

The porosities of rigid disks, as determined by water intrusion,
are summarized in Table 25‘and presented in Tables 26 gn4.27. As qis-
cussed 'in the section on screening teéts, these porosities agreed within
10% with results obtained by mercufy.iﬁifuéién to pressures as high as
41,300 N/cmz.(Q0,0QO_g§i)., Thigzagreement supports our'general observa-
tion that the rigid disks were easily wetted and completely flooded by

water or electrolyte.
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Mercury intrusion prévides both total void volume and pore size
information,. It was found that all rigid formulations had very similar
mercury intrusion behavior. This behavior is displayed in Fiéure 18,
which is a plot of mercury intrusion against pressure for a disk of
material N', The average pore size indicated for this disk is 0.23 um,
and the pore population falls in the very narrow range between 0.1 and
0;3 um, As explained in Appendix A, the volume intruded at maximum
pressure is a good measure of total void volume if the volume of pores

with diameters below approximately 1 pm is neglected.

From measured values for water (or mercury) intrusion volume, the
resistivity of a porous separator sample, and the free electrolyte

resistivity, a pore tortuosity factor Ta'can be calculated according to

a Wpr N

. * .
Calculated values for this first type of porosity are included in

Tables 26 and 27.

Pore size information may also be independently determined by
water permeation studies; such studies were performed and evaluated for
the rigid disks using the methods and equations given in Appendices A
and C, respectively, The results are presented in Tables 26 and 27,
expressed as average pore diameters calculated from permeétion fates.
The data show that the pore size determined by mercury porosimetry is
in fair agreement with the pore size as determined by water permeation.
However, the pore size determined by mercury porosimetry is always
larger than that determined by water permeation, as predicfed by

tortuosity considerations, Applying the Poiseuille law to a separator

*
Basis for the calculated values of T 1is Eq. (17a), Appendix C, which

already contains the standard. free electrolyte resistivity.
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(thickness h ) having tortuous pores (tortuosity Tb) of true (average)

radius r shows that the expected water flux is
o

2 2
PAPTr PAPY
f = h o

8Th = snth‘

Measurements of water permeability will yield the hydraulic pore

radius rh . Mercury porosimetry, on the other hand, yields the true
r
. o)
pore radius r ; from the equation above it follows that rh = — < ro
o T
b
since by definition Tb 2 1 , Values of this second, independently

%
determined tortuosity factor calculated from measured hydraulic and
porosimetry-derived average pore sizes (diameters or radii) are also

included in Tables 26 and 27.

The data of Tables 26 and 27 show that the tortuosities Ta for the
rigid disks generally fall in the range from 1.3 to 2, Similarly, the
range for Tb is 1 to 2, Excluding a few very large, presumably in-
correct'tortuosities, the Ta value is larger than the Tb value in 14

of the 18 cases in which both values are available,

The fact that Ta tends to be largey than Tb may be due to the
nature of the water permeation test: because this test is very sensitive
to larger pores or pinholes, the presence of even relatively few of
these imperfections in the disks will tend to result in permeation rates
(and, hence, pore sizes) exceeding those expected from the average
geometric pore size., This, in turn, would result in unrepresentatiQely
small values of Tb.* Other possible explanations for the observation
that Ta > Tb include small systematic errors.in the determination of

resistivities and(or) pore sizes (by porosimetry).

To the extent of agreement between the two indices of tortuosity,

and within the precision of the results from which the tortuosity data

%
See (17b), Appendix C.
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are calculated, it may be concluded from Tables 26 and 27 that no single
material or class is distinguished from others on the basis of tortuosity.
This finding is not unexpected, since all disk samples were sintered from
powders of the same range of particle size, The generally similar resis-
tivity and tortuosity results for virgin disks of different chemical
composition also suggest that chemical attack by the test electrolytes

was small at most.

Porous Structure: Semiflexible Wafers

The porous structure of the semiflexible formulations was investi-
gateq using the same tests as for rigids; the results are summarized in
Table 28, One result of the mercury porosimetry test was that the
porosities of all semiflexible formulations lie within a narrow range,
Furthermore the pore size distribution curves were also quite similar
for these materials, However, because mercury porosimetry yields inform-
ation on pore size distribution averaged over a whole sample only, this
technique is necessarily less instruction in characterizing the inhomo-

geneous structures of semiflexible wafers,

The effects on pore size distribution of impregnating and then
coating the asbestos backing are displayed in Figure 19; the curve for
matefial R is represeﬁtative of those obtained for all semiflexible
materials, As expected, the total porosity is decreased by progressive
fébricéfion steps, and the number of large pores (for example, those
with diameters greater than 1 um) is reduced. Interpreted the same way
as for the rigid samples, the mercury porosimetry data for semiflexible
separatoré show that the major population of pores is in the size range

: *
between 0.1 and 1 um,

*As shown in Figure 19 (Material R), the mercury intrusion curves were
almosf flat for pore sizes below 0,1 um; the curves appear to be com-
pletely flat for pore sizes below 0.01 um éccording to mercury porosimetry
up to 41,300 N/cm2(60,000 psi) (performed on some samples by the American
Instrument Company, Silver Spring, Maryland).
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For some impregnated, coated structures (that is, the finished separators),
a small step was noted near the 0.3-pm point on the curve, Although
suggestive of a second pore size population at this level, this finding
was too random in occurrence to reach a firm conclusion regarding its

origin,

For rigid separator disks, the independent determination of average
pore size by means of the water permeation test had yielded repeatable
results that essentially agreed with the mercury porosimetry data, 1In
contrast, water permeation measurements for semiflexible separators were
less repeatable* and yielded pore size data that appeared to be incon-
sistent with the mercury porosimetry results for thelsame materials., As
shown by the data for Dp versus Dm in Table 28, the pore diameters
calculated from the permeation data fall in the decade between 0,1 and

0.01 pm, one decade smaller than the range indicated by mercury

porosimetry,

Because incomplete wetting of the largely hydrophobic, virgin
semiflexible wafers was considered to be one possible explanation for
this inconsistency and other anomalous behavior, a series of supplement-
ary permeation tests was performed., Various wetting agents and different

1"

techniques of impregnating test samples with "wet water' were tried;
finally, a few permeation tests were run with nitrogen to completely

eliminate poor wetting as a cause of the observed nonrepeatabilities

Before collecting routine screening test data, preliminary water permea-
tion tests had been made with wafers of Material R, The results indi-
cated repeatable performance and permeation times, as previously ob-
served for the rigid formulations, However, during the actual screening
tests of all 16 materials, water permeation was found to be unexpectedly
long in half of the samples studied,

By the standards of the repeatable and generally similar water permeation
rates measured for rigid disks, the test behavior of semiflexibles is
considered anomalous in terms of poor repeatability (usually no better
than *40%) and a wide range (up to 100-fold) for different formulations,
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and inconsistencies. Representative results obtained in these tests are

shown below,

Material L’ M P’
Pore size by water, pm 0.015 0.013 0.095
Pore size by Nz, Lm 0.085 0.085 0.25

The use of nitrogen tended to reduce the scatter of the permeation
data and greatly increased the calculated average pore size for each of
these three méterials, suggesting that incomplete wetting was at least
partly responsible for the difficulties encountered in applying the water
perméation test to semiflexible separators, However, the average pore
size obtained from the gas permeation rate was still below that indicated

by mercury porosimetry,

In further search for an explanation of these pore size data, the
tortuosities, Td derived from the porosities (by mercury intrusion) and
resistivities of semiflexible separators may be examined., A representative
average value (calculated from the data in Table 28) is Ta = 2.1 (after
the standard one-week soak of samples in 45% KOH), compared to an average
of Ta = 1,5 for rigid disks (see Table 27), 1If we accept the latter
value (supported by similar Tb values) as representative of all separator
types (whether sintered or polymer-bonded) based on the inorganic powders
of a given pérticle size range, the two values of Ta can be reconciled
by assuming (basis: Eq. (17a), Appendix C) that the pore volume (as
expressed by the porosity P) actually contributing to electrolytic
conduction in semiflexible separators is only (1.5/2.1)2 = 0.5 of the
total pore volume. The pore size distribution curves then suggest (see,

for example, Figure 19, Material R) that only pores with diameters below

0.4 pm are continuous,

On the other hand, the nitrogen permeability data indicate that D
p

is in the range of 0.085 to 0.25 pm, Using an average ''true” tortuosity
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O0f 1.5, these data suggest that D = 7D =~ 0,13 to 0.38 um, in
1 P

approximate agreement with the tentative conclusion stated above,

The fact that pore size distribution curves sometimes show emergence
(after the last coating step) of a second pore size population in the
range of 0.3 to 0.4 um can be taken as an additional indication that the
pore diameter controlling separator resistance and gas permeability may

be in this general size range., By performing mercury porosimetry on one
*
sample from which the asbestos backing had been removed, we found that

the coating itself had a relatively sharp pore size distribution, with

an average pore diameter of 0.3 pm,

Thus, although the question regarding true average pore tortuosities
in semiflexible separators cannot yet be considered resolved, the data

for these materials may be interpreted tentatively to indicate that

® The average pore diameter in semiflexible separators is approxi-
mately 0.3 pm, but only about 50% of the total pore volume is in
continuous pores contributing to conductivity and permeability; an
upper limit for the diameter of these pores is approximately 0.4 um.

® The asbestos backing and the coating have comparatively similar
porosities, resistivities, and diameters of continuous pores; this
explains why a separate pore size population (associated with the
coating only) is not generally observable in mercury porosimetry.
However, the coating is responsible for the observed zinc dendrite
penetration resistance, whereas the asbestos contributes a negli-
gible effect. This suggests that the above tests alone are in-
sufficient to fully characterize the composite semiflexible

_ separator.

® Water permeability is .not suitable for characterizing pore size
in hydrophobic separators but gas permeability appears to give
meaningful information.

The resultant specimen was 0.165 mm thick., The coating thickness for
this sample, recorded during its fabrication, was 0.14 mm; thus, pene-
tration of the slurry into the asbestos appears to have occurred to a
depth of 25 pum or less. The mercury porosimetry results showed the
pofosity to be 35 vol%, and an average pore size of 0.3 pm; pore volume
on either side of the range between 0.6 and 0.1 pum was negligible.
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Zinc Dendrite Penetration: Rigid Disks

With the exception 6f méterial A, the results range between 90 and
300 minutes for the time required to observe shorting due fo zine dendrite
growth, The apparently highly favorable result for matériél A is nét an
artifact: an extended test lasting 25 hours was performed and.the run Was
terminated at that time with no evidence of zinc shorting. However, as
was known from previous studies, the effectiveness of this material in
preventing zinc dendrite shorting is due to its catalytic activity for
the reaction of zinc and water., Inasmuch as this catalytic activity is
necessarily accompanied by hydrogen evolution, the material cannot be

used in sealed cells,

After certain improvements of the test cell (see Appendix A), a
rather uniform zinc dendrite growth over the area of the disk was accom-
plished. A photograph of a representative zinc-dendrite growth is shown
in Figure 20, The surface shown is that facing the zinc cathode. The
uniform penetration is shown as well as the fan-like structﬁre of dendrites
that grew radially outward from the circumference of the fixture. The
dendritic pattern displayed is very similar to the patterns of the
dendrites that were found on the surface of many separator bags in failed
cells (see Task I). Note that, for bofh the cells and the test device,
this pattern is typical for dendrites that have grown perpendicular to

the main current path,

Because initial results had shown considerable scatter, a study of
the repeatability of the zinc dendrite test was made. Five rigid disks
of the same thickness and porosity were chosen of material Q'x. Zinc
dendrite shorting times were found to range within 10 minutes of the
average of 150 minutes, From these results it was concluded that the
zinc dendrite test was adequately repeatable for use with rigid formula-

tions,  The thickness of the disk was made a parameter in additional
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supplementary zinc dendrite studies., For these disks, whose thicknesses
ranged from 0.5 to 2.3 mm, the shorting time was found to vary with
thickness in a nonlinear manner; for example, a three-fold increase in
thickness over the standard value produced a five~fold increase in
shorting time, For this reason, zinc dendrite results are preferably
presented as actual shorting times observed, rather than in the less

informative form of an inverse penetration rate,

The sensitivity of the zinc dendrite test to changes in surface
chemistry or catalysis is demonstrated by another set of supplementary
studies. In this study, four disks were subjected fo the zinc dendrite
test and the shorting times were observed. The zinc in the disks was
removed with Iz-KI complex, and the disks were then cleaned, first with
KI solution and then by Soxhlet extraction., The zinc dendrite test was
repeated,- After this sequence, four new disks were selected and the
sequence of tests and procedures repeated. It was found that the zinc ;
shorting times observed for the second zinc dendrite test (performed
after cleaning) varied from one-half to eight times the shorting time '
for the virgin disks, Since changes in porosity, pore size, or tortuosityi
could not have occurred as a result of these mild treatments, the non- !

repeatability of results suggests that surface chemistry does influence

zinc dendrite results,

Zinc Dendrite Penetration: Semiflexible Wafers

The results of zinc dendrite studies of the semiflexible formulations
are included in Table 28, Although the semiflexible wafers were one-half
as thick as the rigid formulations, the range in average shorting times
is similar, ranging from 90 to 390 min, It is interesting to note that
of the nine materials that had zinc shorting times longer than average
in the rigid formulation, only three are found among the eight materials
similarly above the average for the semiflexibles. In fact, of the 15

materials common to both rigid and semiflexible formulations, the relative
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Table 30

ZINC DENDRITE SHORTING TIMES

(Minutes)
Sample thickness (cm) 0.03 [ 0.045(0,045| 0,055
Number of dips 1 3 3 7
Wafer No, 1 75 270 252 357
Wafer No, 2 115 378 269 479
Wafer No., 3 91 471 92 205
Wafer No, 4 85 285 247 485
Wafer No. 5 107 109 277 -
Average 95 303 227 384

130




positions (i,e.,, above or below average) changed in eight cases. Appar-
ently, the results of the zinc dendrite test are not-~or, at least, are
not only-- dependent on basic composition of the inorganic constituent

in semiflexible separators.

Supplementary tests were made to explore the level of repeatability
of the zinc dendrite test when applied to semiflexible formulations,
Samples of materal Q in different coating thicknesses were studied using
wafers cut from the stock prepared for the supplementary resistivity
studies previously discussed; the results are presented in Table 30,

The two three-dip groups are fairly fepresentative* of the separator
formulations studied in the routine screening tests; these groups differ
only in that resistance measurements had previously been made on the

wafer of the group that averaged 303 minutes,

From the above data it is clear that zinc dendrite time is related
to the thickness of the separator. A plot of the data is presented in
Figure 21. The averages of the three sets of data fall on a straight
line, and extrapolation of the curve passes through the abscissa at a
point roughly equivalent to the thickness of the asbestos backing,
suggesting that the asbestos had little effect in retarding growth of

zinc dendrites,

The zinc dendrite data obtained from the supplementary studies were
statistically evaluated, and no essential difference was found between

the two groups of three-dip results, Because the screening test results

The value found for the five samples of material Q in routine screening
tests is 200 minutes (see Table 28).
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showed somewhat improved repeatability of zinc penetration times compared
to those from supplementary tests, statistical evaluation* was made for
them, The conclusion was that our currently available zinc penetration
data are not sufficient to determine with confidence whether particular
formulations (or inorganic stock materials) confer improved zinc dendrite
penetration resistance to Astropower-type semiflexible separators. For
any given semiflexible formulation, the larger scatter of test data
(compared to that for rigid disks) suggests that the variations from
sample to sample may correspond to real variations in zinc dendrite
penetration resistance, If confirmed, this finding would indicate that
the dendrite test is sensitive to a separator property to which the
resistivity (which does not show .corresponding variations) is not sensi-
tive--for example, to the presence of a few larger pores, pinholes, or
microséopic crapks in the separator coating. More data on test repeata-
bility, and an increased number of test samples for a given formulation
will be required to establish whether test results depend on the materials

parameters,

Considering the potential usefulness of the zinc penetration test
in characterizing a key separator function, and the established importance
of zinc shorting as a failure mode in cells using semiflexible separators
(see Task I), a more extensive study and broader abplication of the zinc
dendrite penetration test in further separator development efforts are

called for,

%)
Statistical statements made here are based on a 95% confidence level,
Data were evaluated by three methods: the Students t test, analysis of
variance (parametric), and Kruskal and Wallis' test (nonparametric),
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KOH Degradation: Rigid Disks

As shown in Table 26, degradation was found to affect porosity,
weight, resistance, and tortuosity, A study of these results’ indicates
that degradation at 3930K (12000) in a 2:1 volume ratio (which approximates
the conditions in cells) is the least degrading of the three conditions
studied, Apparently degradation with excess of electrolyte as used in
most screening programs is a considerably accelerated test, From the
resistance of the disk with the spent electrolyte (see Table 26), it is
clear that the KOH electrolyte also changes composition (toward increased
specific resistivity) as a result of degradation, This finding has

important implications for the use of such separators in batteries,

The degradation process is presumably one of chemical attack,
and, therefore, weight loss should correlate with a loss of material and

should neceésarily result in an increase in porosity according to
AP = (1 - P)L
o

where:
AP is the absolute change in open porosity
Po is the opeh porosity before degradation

L is the relative weight loss.

Experimental data for porosity change versus weight loss are
shown in Figure 22, based on the data of Batch 2. The agreement between
the observed data and the predicted relationship is not particularly good.
In some cases, a highly improbable* 50% error in either measurement would
have to be assumed to explain the observed deviation from the expected
relationship (shown as lines in the figure); point 4 for the E material

at maximum degradation is an example.

%
Our usual repeatability for either porosity or water intrusion ranges

within +£5%., On the other hand, of the 33 data points at least eight
would require corrections greater than 25%.
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Although reasonable repeatability of the water intrusion and

weight loss tests is established, the repeatability of the degradation

test is in question. An example of the uncertainties encountered is

noted by comparing the ratios of the weight losses for five pairs of disks,

made of five different materials and degraded under identical conditions,

o 0
which were 393 K (120 C) and a 100:1 ratio of electrolyte-to-disk volume.

The weight loss ratios were:

Material B' o E' N Q

Ratio of L 0.88 0.75 0.48 0.99 0.98

Most of the departures from the ideal relationship correspond

to points above the theoretical lines; that is, changes in porosity were

observed to be greater than those expected from the weight loss by our

simple model.

This could be the result of opening--via the degradation

process--void volumes that had previously been closed. Points below

theoretical lines, correspondingly, could represent materials whose pores

were closed by the degrading process. This might have been caused by gel

formation of a hydrated magnesium hydroxide or a silicate, or by mechanical

blockage of some pores by loose material formed inside the sample.

The following generalized statements may be made about

degradation:

Weight loss is greater at 393°k (120°C) than at 353°k (80°¢).
Weight loss is dependent on material.

Po?osities increase as a result of degradation.

Resistivities decrease as a result of degradation.

fortuosity is‘unaffected by degradation.

The effects of degradation on pore size were not
significant,
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KOH Degradation: Semiflexible Separators

Degradation was also studied ﬁith the semiflexible formulations,
and the results are presented in Table 28, The mechanical properties of
the semiflexible separators are altered by wetting; for example, the
average tensile strength is reduced to 24% of its dry strength by a
one-week soak in KOH at room temperature. After a one-week rooﬁ tempera-
ture soak in water, the average burst strength is reduced to 38% of its
initial value, which is essentially the reduction observed immediately
after wetting, On the other hand, separator flexibility is increased:
the dry separator tends to crack if bent around a diameter less than
2 cm, but a wetted separator may be bent around a 0,4-cm diameter without
cracking after being wet with KOH for one week. Degradation of the
semiflexible formulations also reduced the average specific resistivity
to 65% of the value taken as representative--the value obtained after
one-week soak, Degradation of the semiflexible formulations also reduced
- the average specific resistivity to 65% of the value taken as reépresenta-

tive--the value obtained after one-week soak,

Based on an average resistance value for degraded wafers, and
assuming the porosity still to be 35%, the tortuosity calculated from
these average values is 1.8; on the other hand, if it is assumed that
the true tortuosity of continuous pores is more nearly 1.5 (see the
section on Porous Structure), it follows that the continuous pore volume
increased from 50% to 100x(1.5/1.8)2 = 69% of the total volume as a

result of degradation--presumably via opening of closed or blind pores.

Zinc Gassing

The zinc gassing test as developed at Astropower and simplified
(see Appendix A) at SRI is used to obtain a comparative measure of the

catalytic activity of inorganic separator materials in promoting the

137



reaction between zinc metal and electrolyte, To minimize this reaction
and the attendant dissolution of zinc and generation of hydrogen, materials
with very low or zero activity are required for separators in sealed
silver-zinc cells, Accordingly, this screening test was applied in the
current program as soon aé possible--essentially in parallel with the
materials and separator development efforts under Task II, From the
results (see Table 25), it is apparent that the gassing rate is signifi-
cant for several materials, including the olivine component A of the
3420-09 separator, which was known to gas strongly. However, more than
haif of the inorganic stock materials had gassing rates below 4 cm3 per
*

24 hours; ten of these had lower gassing rates than the material Q'-x,

the inorganic component of the successful 3420-25 separator,

Accordingly, nearly all of the inorganic stock materials prepared in
this program were considered to qualify, with respect to the criterion of
negligible activity for promoting zinc gassing, for further study in rigid
and semiflexible separator formulations, It should be emphasized, however,
that the catalytic nature of the zinc-electrolyte reaction and its corres-
ponding sensitivity to even minor amounts of catalytic impurities will
require care in the handling and processing of inorganic materials to be
used in separators: 1in supplementary studies of a commercial material,
we found good repeatability (within *10%) for a given lot but a more than
100-fold increase in gassing rate when festing another lot of the same
CP material., Processing separator materials in steel dies also tended to
increase gassing rates, presumably because of the small iron impurity

picked up in the process,

* 3
Gassing rates of less than about 4 c¢m per 24 hours were considered to

represent éssentially zero activity for promoting gassing inasmuch as
zinc powder blanks gave rates from zero to 4 c¢m™ /24 hr, probably because
of uncontrolled variations in trace impurity levels,
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Ranking and Selection of Separator Materials

As shown in the previous sections, the application of screening
tésts permitted characterization of candidate separator materials in terms
of properties that are expected to be important for their function and
compatibility in the cell environment. To accomplish the final objective
of Task IlI--identification and selection of the most promising materials
for further evaluation in cells--judgment was required regarding the
relevancé of specific tests and test results for the projected behavior
of separators in batteries. The procedure used in this judgment stép and

in the subsequent ranking of separator materials was as follows.

(1) For each screening test cons%dered relevant to separator
behavior, a weighting factor was chosen from an arbitrary
scale of zero to ten, with increasing factors corresponding
to increasingly important tests, These tests included zinc
dendrite penetration, zinc gassing, resistivity, weight
loss in degradation, tensile strength (semiflexibles),
flexibility (semiflexibles), and void volume (by mercury
intrusion),

(2) TFor each separator, test results were normalized using
as reference values either a somewhat arbitrary set of
separator properties representing acceptable performance
standards or, alternatively, the test results for the
base line material Q.

*
Normalization was done using the form
T, =x+wf{lit” Rot
i,T
’ Ro,t
where:
Ti ¢ = normalized, weighted result of test t applied to
’ material i
Wt = weighting factor for test t
Ri + = result of test t applied to material i
, .
0.t = reference value for test t
’
A plus sign is used whenever larger values of R, represent the more

desirable property, a negative sign if the reve%ée is true.
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(3) A figure-of-merit was obtained for each material by
summing its normalized, weighted test results according
to -
M, =XT, .
i t i,t
(4) Separator materials were then ranked according to their
figures-of-merit.

The values chosen for the Weighting factors and, to a lesser extent,
those used for the reference properties, will have an influence on the
figures-of-merit, and hence on the ranking of the materials, Inasmuch as
no accepted, quantitative criteria exist for ranking battery separators,
it was considered important to examine how sensitive the ranking of
prospective separator materials was to the values chosen, The weighting
factors and reference results used in developing five independent separator

rankins are listed in Table 31; the resulting rankings are shown in Table 32,

The first ranking was derived by considering only those materials that
had more favorable properties than the reference material Q in at least
five test categories; this was done largely for expediency inasmuch as
this ranking was performed during the last part of the Third Quarterly
Review held at SRI in Oct, 1972, Rankings 2 through 5, on the other hand,
included all materials, with the exception of A and M which were eliminated
from comparison because of excessive gassing and degradation, respectively.
On the basis of these rankings, material S' is clearly the best choice,
independent of the specific weighting factors and reference results
assumed. Material JC is not far behind in all but one of the rankings
and appears to be superior to the remaining materials. Accordingly,
materials S' and JC are recommended without further qualifications for

future evaluations in cells,

Regarding the third choice for continued evaluation,materials B', E',
L', and N' are comparatively close together; considering the limitations
of screening tests and their quantitative evaluation, it is doubtful

whether the differences in the ranking of these materials reflect real,
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RANKING OF SEPARATOR MATERIALS

Table 32

Test
Materia 2 3 4 5
* *
B! 4 4 6 4
c! 9 10 10 10
* *
D! 5 5 7 8
* *
E! 7 6% 2 2
* * *
JC 2 3 7
%
K 5 8 9 9
* *
L! 3 4 5 5
* * * *
N! 4 3 3 3
* *
P 5 7 8 6
Q 6 7 4 8
R 10 11 12 12
R! 8 9 11 11
* % * *
S! 1 1 1 1

%
Materials ranking above Q.
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reproducible differences in their beﬁavior as separators, Therefore, we
have introduced additional considerations in choosing B' as the third
material for a subsequent evaluation study. First, we note (see Table 22)
that material E' is a doped modification of the puré compound B' and thus
will be somewhat more difficult to produce; accordingly, B' is our choice
in this comparison. In choosing between B', L', and N', we note that

L' and N' are from the titania- and zirconia-derived separator classes,
respectively. With the materials JC and S' selected above, these classes
will be represented at least once in the evaluation study. By choosing
the olivine B' instead of L' or N', one representative from each of the
three major chemical classes of inorganic separator materials examined

in this program will undergo further evaluation, This choice is preferred
at a stage of inorganic separator development where the question regarding
possible chemical effects occurring in, and contributing to the functions

of, inorganic separators must still be considered,
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CONCLUSIONS AND RECOMMENDATIONS

Task 1

The results of this cell testing program, continued from Contract
NAS 3-10928, showed that Astropower Laboratory heat-sterilized silver-zinc
cells using a proprietary semiflexible separator were able to survive a
21- to 25-month wet stand and then deliver several hundred shallow charge-
discharge cycles. Thus, the major objective of the silver-zinc cell

development program under Contract NAS 3-10928 has been accomplished.

The survival rate of cells in the reconditioning cycles after stand
and their subsequent cycle life were both particularly high if cells were
sfanding in the discharged condition. Half of the few failures in this cell
group actually had been subjected to lengthy charged stand at elevated
temperature before their routine discharged-stand period--a procedure that
might have contributed to their eventual failure. Experimental evidence
suggests that even those few discharged-stand cells that failed (in re-
conditioning because of nominally low capacity) would have been able to
cycle. Charged-stand and float charged-stand clearly are detrimental to
cell survival rate and cycle life expectancy after standing, but a high
survival rate appears achievable by storing cells at a lower temperature

[ for example, 283°K (10°C)].

Although the limitations of small sample statistics apply to most
of the results relating to the secondary testing objectives, the following
conclusions appear reasonably well established.
1. Additional layers of separators between bags increase cell cycle
life for shallow and deep cycles.

2. Plate-locking electrodes in cells with epoxy cement somewhat
reduces cell wet and cycle life; this effect is reduced if the
epoxy cement is more thoroughly cured. Environmental testing
does not seem to affect cycle and wet life of plate-locked cells.
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3. Operating cells as groups in "batteries’ has a detrimental
effect on cell wet and cycle life, presumably because
individual cells can experience overcharge conditions as
cell imbalances develop with age.

(e} o

4, At least over the range of 283 K to 3150K (10 to 32 C), cell

temperature during cycling does not appear to affect wet and
cycle life significantly.

Cell failure analysis shows shorting by zinc nodules to be the
single major cause for the early cell failures. However, this failure
mode was observed only in cells that had spent an extended period in
the charged state and had undergone at least a few deep discharges or,
very probably, significant overcharge, It appears that zinc nodule
shorts can form under these conditions because semiflexible separators
were extensively attacked by dissolved silver oxide and unable to

withstand zinc penetration,

Cell shorting by filament-type zinc dendrites appears to have been
the élmost exclusive cause of all other cell failures, especially those
encountered after large numbers of cycles; shorting by silver found deposited
in semiflexible separators was not observed. Although many cells had de-
veloped a number of faults (mostly leaks and split separator bags, but also
a few cases of zinc electrode erosion and slumping), none of these faults
correlated significantly with a particular failure mode or the observation
of appreciably reduced cell wet and cycle life. The low incidence of zinc
electrode slumping (with only the cells of one subgroup showing a modest
degree).is noteworthy and points to the potential of Astropower-type
electrode-separator composites for achieving extended cycle life in deep

cycling of alkaline cells with zinc negatives.

The finding and conclusions of the SRI cell testing program lead us

to the following recommendations:
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If Astropower-type silver-zinc cells using the present designs
and semiflexible separators are to be standing for extended
periods, discharged stand should be used. If charged stand

is an operational requirement, the standing temperature should
be 283°K (10°C) or possibly lower,

Deep cycling (such as applied in reconditioning or in 100% DOD
regimes) should be avoided for cells that have experienced
extended periods on charged stand.

The possibility of achieving extended cycle and wet life with
present cells by maintaining cells in a lower average state of
charge should be investigated. Possible approaches (if com-
patible with aniticpated applications) include cell operation
in an "upside-down" cycle, or simply a more rapid charge just
prior to discharge.

The major cause(s) of cell capacity loss in standing and cycling
should be investigated; as part of this effort (or for its own
merit) the possibility of developing a "nondestructive' silver
electrode capacity test based on the rate of voltage rise

should be explored.

Operation of cells in batteries is to be avoided unless
circuitry is provided that allows cells to be removed indi-
vidually from charge and discharge.

The upper voltage limit for cell charging should be reliably
controlled and kept at or slightly below 2,00 V per cell,
Charging circuitry should be used that ''recognizes' the

voltage spike of the silver (I) oxide=-silver (II) oxide phase
transition and disallows its effect on the electronic mechanism
for terminating charging.

The separator constituent mainly responsible for forming
silver deposits should be identified, and the effect of its
elimination on cell behavior and life should be investigated.

Improved techniques (and their automation) for enclosing
electrodes in bags should be devised. This effort should
include the development of better bag seals and the investi-
gation of electrodes with rounded edges that would result in
better current distribution and permit improved conformity of
bags, thus eliminating void spaces within bags.
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9. Improved seals for terminal posts should be designed.

10. Absence of stresses in the ultrasonic weld of cell tops
to cases should be ensured through appropriate modifications
of the current welding procedure. Also, improved adhesion
of the epoxy overcoat should be sought by appropriate surface
preparation techniques such as wet vapor blasting.

11. Unless needed for specific applications, plate locks should
not be used, If needed, plate locks should be made from fully
cured epoxy cements or from chemically neutral, powdered
resins, fusible at temperatures compatible with cell structure,
thereby acting as immobilizing cements.

Task I1I

The experience of preparation of inorganic separator materials
disclosed that relatively easy techniques of synthesis were possible.
The use of oxides or easily decomposable compounts provided the starting
point for synthesis of those materials not available commercially,
Simple procedures of mixing, compacting, firing, milling, and size
fractionation were followed. All syntheses were accomplished at temper-
atures of about 16230K (135000) or below at reasonable times (8 hr or
less at temperature). Purchased materials were available in acceptable

quality.

Rigid, fired ceramic disks of 24-29% porosity, of acceptable quality
for Screening tests were readily prepared from the powdered stocks of
o o
inorganic materials at firing temperatures of 1368-1623 K (1095-1350 C)

in times of 45 minutes or 1less.

Semiflexible wafers (derived from mechanically dipped separator
bags) of high surface quality, suitable for screening tests, were readily
made following the procedures disclosed in U,S, Patent 3,625,770 (licensed
by SRI). The ratié by volum2 of the polymer binder to the inorganic filler

was kept constant in all formulations,
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These conclusions may be reached:

1. The synthesized inorganic stock materials for both rigid and
semiflexible separators can be readily made by firing easily
avai%able stgrting compounds, at temperatures at or below
1623 K (1350 C) in times less than 8 hours at temperature,

2. Fired ceramic separator disks can be made from all powdered
o
formulations at temperatures of 1368 - 1623 K (1095 - 1350°C)y
and firing times of 45 minutes or less,

3. Semiflexible separators can be easily fabricated from all stock

formulations following the procedures of U,S, Patent 3,625,770,

4, The preparation of semiflexible separators by controlled
mechanical dipping yields much higher surface quality than
preparation by hand dipping.

Task III

The work performed on evaluation and application of screening tests
shows that the tests commonly used to screen and characterize conventional
organic separators for alkaline batteries give meaningful results also
when applied--if necessary, with appropriate modifications--to the rigid
and semiflexible separator formulations developed iﬁ this program, Although
there is still some question regarding the significance of a few tests

(especially water permeation and zinc dendrite penetration), results could
be used to construct a table of weighted separator characteristics which,
in turn, permitted selection of the most promising separator formulations

for further study.

Specific conclusions from our evaluation of the tests themselves and
of the test results are given below. Where specific reference to rigid or
semiflexible separators is not made, the conclusions apply to both types.

1. Changes made in the resistance cell and measurement technique

give adequate separator resistance data with increased speed

and convenience,
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Porosity measurements made by the water intrusion and mercury
porosimetry give equivalent results. Mercury porosimetry also
yields readily interpreted pore size distributions for rigid
separator samples. Although more difficult to interpret
because of sample inhomogeneity and compressibility, pore size
distribution data for semiflexible separators are nevertheless
indicative of their structural features.

For rigid separator samples, pore-size determinations made by
water permeation yield smaller diameters than those resulting
from mercury porosimetry. From the difference, a measure of
pore tortuosity is obtained; this measure of tortuosity was
similar to another measure obtained from sample porosities and
resistivities. Applied to semiflexible separator samples, the
water permeation test is poorly reproducible and yields pore
size and tortuosity data that are inconsistent with those
calculated from other test results., Measurement of nitrogen
gas permeability, on the other hand, appears to yield meaning-
ful values of pore size and tortuosity.

The zinc dendrite test appears to yield reproducible zinc
penetration data when applied to rigid separators. On this
basis, the large scatter in the data from application of the
identical test to semiflexible separator samples suggests that
the scatter represents real variations in zinc dendrite pene-
tration resistance.

Degradation tests are useful in characterizing the chemical
resistance and eétimating physical changes of separator
materials in the cell environment. Because of the gfeater
physical and chemical sensitivity of the asbestos backing
compared to that of most inorganic stock materials used in
this program, accelerated tests have to be somewhat milder for
semiflexible wafers than those applied to rigid disks. The
value of degradation tests is considerably increased by using
degradation-induced changes of resistance, porosity (rigids)
and strength (semiflexibles) in addition to (for semiflexibles:
instead of) weight loss as indicator of degradation.

The burst test is a suitable and convenient technique for
measurement of the relative strength of semiflexible formu-
lations; results are consistent with tensile strength
measurements.
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Screening test data obtained for the rigid and semiflexible
separators developed in this program could be used to
eliminate two materials (A and M) from further study due to
excessive zinc gassing and degradation, respectively.

For the twenty rigid formulations examined in detail, the
combination of test results for zinc dendrite penetration,
zinc gassing and accelerated degradation with the data
obtained for resistivity, pore volume and size distribution,
water permeability, and mechanical strength permitted a
rather complete and consistent characterization in terms of
key electrochemical, chemical, and physical characteristics.
Sixteen semiflexible separator formulations were character-
ized in a similar way although their description was somewhat
less complete, due, primarily, to their inherently inhomo-
geneous structure.

Ranking the inorganic separator materials by applying various
sets of weighting factors and reference values to the results
of the screening tests suggested that materials S' and JC
were the most promising candidates for further evaluation.
Material B is the preferred third choice on the basis of
supplementary considerations; materials E', L' and N' also
have substantially better properties than the baseline
material Q.

These conclusions and the other findings of Task III work lead us

to the following major recommendations.

1.

The screening test equipment and procedures as developed

or modified in this program should form the starting point

in future screening tests of inorganic rigid and semiflexible
separators.

Future screening tests should employ a larger number of
separator samples per material and test to increase the
statistical significance of the data.

Because of the potential implications of the observed data
scatter for separator performance in cells, the significance
of zinc dendrite test results for semiflexible separator
samples should be investigated in detail.
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The three semiflexible separator materials, S8', JC, and
B', are recommended for further evaluation in simplified
test cellé; some consideration should also be given to
possible evaluation of materials E', L' and N'.
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APPENDIX A
SCREENING TEST EXPERIENCE AND PROCEDURES

The following is a summary of the procedures used in testing the
separator materials developed in this program. General familiarity with
screening tests--especially those described in the standard reference*—-
is assumed, and the discussion is largely restricted to those parameters
or procedures which are unique to this study. Test experience and pro-
cedures are given for samplé preparation apd the determination of
dimensions and volume, water intrusion, resistivity, chemical degradation,
water permeation, modulus of rupture, zinc gassing, zinc dendrite pene-

tration, porosity and pore size distribution by mercury porosimetry,

burst strength, tensile strength, and flexibility.

Preparation and Weighing

Rigid separator disks were cleaned by Soxhlet extraction prior to
the test sequence (see Appendix B), and again between certain sequential
tests, The Soxhlet extraction is done with water ,preferably overnight
(16 hours), In the procedure, disks are separated from each other
during extraction by use of stainless-steel screen separators (made of
1/4~inch stainless steel screen); three disks are placed on a circular
screen in the Soxhlet extractor, another screen is placed above the
disks, and the procedure is continued until a group of as many as 40
disks are assembled for cleaning., After Soxhlet extraction, the disks
are oven-dried for no less than one hour at IOOOC; drying time and

temperature were not critical to achieving reproducible sample weights,

K
The Air Force Screening Test Manual for silver-zinc batteries, edited
by Cooper and Fleischer, reference 7.

Water is used in all cleaning steps with the exception of the cleaning
step between the MOR and mercury porosimetry tests in which wax (used to
mount disks for cutting) is removed by Soxhlet extraction with toluene.
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Semiflexible wafers cannot be cleaned using this procedure because it
produces irreversible changes of the asbestos support, Wafers are tested
"as is' after the final drying step in their preparation. Inasmuch as
the wafers aré not sufficiently hygroscopic to cause measurable weight
changes upon exposure to the atmosphere, no further treatment before
weighing was required, Rigid and semiflexible separator test samples
were weighed on an analytical balance with a maximum uncertainty of

+0.5 mg. Typically, sample weights were around 800 mg for rigid disks,

and about 200 mg for semiflexible wafers,

Measurement of Dimensions and Volume

As expected, the rigid porous separator disks prepared in this
program did not swell in qontact with electrolyte., Accordingly, the
dimensions of the virgin disks may be used to calculate geometric
volume, apparent density, and other derived separator characterisﬁics.
Although some relaxation of the fibrous backing of semiflexible separators
was observed upon immersion in electrolyte, this effect involved only a
small fraction of the separator Aimensions. Accordingly, the thickness
measured for dry semiflexible wafers was assumed to hold also after

impregnation of the samples with water-or electrolyte.

In the procedure, micrometers are used for thickness and diameter
measurements for rigid disks, Flat-faced anvils are suitable for
diameter measurements; spherical anvils are best for thickness measure-
ments, To allow for slight deviations from the perfect cylindrical
shape, thickness and diameter were measured in four to five places and
the measurements averaged, The diametef of semiflexible wafers is
constant for all samples and equal to that of the close-tolerance punch
and die used to cut wafers from sheets, Thickness measurements of
wafers are done with wafers under a constant compression force, using

a dial indicator equipped with a 2,25 cm-diameter circular anvil and
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operating against a surface plate., Disk and wafer volumes are then

*
calculated wusing Equation (1) of Appendix C,.

Water Intrusion

Determination of the volume of open pores in the separators was
done routinely by determining the weight increase caused by "absorption'
of water. Because rigid and semiflexible separator samples were evacuated
before submersion in water, the technique is more nearly one of intrusion
than of true absorption as described by Shair and Seiger in the standard

reference,

For rigid samples, complete water intrusion was aided by the ready
wettability exhibited by the ceramic surfaces. However, pore volumes
and porosities calculated from water intrusion were invariably 5§ to 10
relative percent lbwer than those determined by mercury porosimetry.

In part, this may be due to removal‘of some intruded water in the wiping
stép; on the other hand, mercury porosimetry tends to give high values,

as discussed below,

Semiflexible separators were not wetted by pure water, Use of
various wetting agents was tried, but poorly reproducible water intrusion
volumes indicated that satisfactory wetting was not achieved with virgin
samples, Inasmuch as the technique was inherently less precise for
semiflexibles because of their larger surface-to-volume ratio, water

intrusion was abandoned in favor of mercury porosimetry. In the procedure,

*Careful measurement of sample volumes with a small mercury pycnometer
gave excellent agreement with calculated volumes. As a consequence,
independent volume measurement could be dropped in favor of calculating
sample volumes from measured dimensions,

.f-

For example, an aqueous solution of 0.005 wt% sodium lauryl sulfate.
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particulate-free and bacteria-free water obtained by filtering deionized
water through a Millipore 0.22-micrometer absolute filter is used. The
disks are placed in a wire basket supported from the top of a vacuum
desiccator and electrolyte or water contained in a beaker is placed in
the bottom of the desiccator, The pressure in the desiccator is reduced
to the vapor pressure of the liquid in the beaker for five minutes,
after which time the disks aré lowered into the liquid. The pressure

is then restored to one atmosphere for five minutes with the disks still
immersed. The disks are removed individually from the liquid as they
are needed for subsequent steps in the test sequence (such as weighing

for water intrusion).

Resistivity

Test apparatus and procedure were based on those given by Salkind
and Kelley in reference 7. Initially, two major problems were encountered
in operating the conductivity cell acquired from Astropower Laboratory.
First, thg pressure required to seal the test specimen between the t&o
resistance half cells tended to crack rigid separator disks, and second,
variation in the extent of compression of sealing gaskets caused non-
reproducible variations in the measured resistance values, The latter
-effect, and variations in electrolyte temperature and composition
(through water and/or carbon dioxide absorption from the atmosphere)
tended to cause significant measurement errors that were amplified by

the fact that the results are obtained as a difference of two measurements.

A series of corrections and improved procedures were introduced in
the early phase of Task III, with the goal to improve precision and
convenience in determining separator resistivities. These included
(1) cell modification from a variable to a fixed spacing of potential-
~ sensing electrodes, (2) gasket modification to limit the current to a

well-defined area of the separator, (3) improved temperature control,
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and (4) frequent standardization of electrolyte conductivities, A
further contribution toward more convenient acquisition of better con-
ductivity data was the decision to routinely use standard 0.1 N KC1 as
the test electrolyte. This became possible after it was established
(for rigid separators) that data obtained under carefully controlled
conditions with KC1 and KOH electrolytes were related by the expected

ratio of their free electrolyte resistivities,

These combined modifications improved the separator resistivity

data from an unsatisfactory uncertainty of £25% to an acceptable £5%,

In carrying out the measurement procedure, the cell may be operated
as a variable-spacing cell as described in Sections 6a and 6b of
Reference 7; Equations (7) and (8) of Appendix C are then used to
calculate resistivity, More precise results are obtained with a fixed-
spacing arrangement of the celi; in which case Equation (10) of Appendix
C . is employed. Changes in specific resistance of the electrolyte--due
to temperature changes and absorption of carbon dioxide and(or) water
absorption from the air--will cause erroneous results unless these changes
are detected and corrections made;* the appropriate correction is pro-
vided for in Equation (10) of Appendix C. Because it is a more stable
electrolyte than concentrated pofassium hydroxide, one-tenth normal
potassium chloride is used for resistance measurements whenever it can
be ascertained that resistivity data are not influenced by specific
interactions between separator materials and the caustic electrolyte.
Equation (10) contains a term normalizing resistance data obtained with

" (o}
0.1 N KC1 to the "standard electrolyte" (45 w/o KOH at 18 C).

*k
This requires measurement of the specific resistivity which is done

with a conventional resistivity cell.
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Degradation (Chemical Compatibility)

Following the recommendations developed in our initial analysis of
screening tests, separator degradation tests were performed at several
temperatures, For rigid formulations, the temperatures usually employed
were 353 and 3930K (80 and 120“C). Two volume ratios were studied, at
the 2:1 and 100:1 levels, wherein the ratio refers to the volume of
electrolyte to the volume of the disk; the 2:1 ratio is more representa-
tive of actual battery environment while the 100:1 ratio is typical of
the ratio commonly employed with screening tests. These conditions were
employed for Batch 2 results, and used to guide the design of procedures

for Batches 3 and 4,

Degradation studies of semifléxible formulations were perforhed
using resistance-as the monitoring index. Exberience of preliminary
" testing showed that 48 hours' exposure to 45 wt% KOH at 353§K (SOAC) was
equivalent in effect to seven or more weeks exposure to electrolyte at
room temperature, Therefore, these conditions were employed in the
testing, Degradation tests at higher temperatures (3933K) [120rC] re-
sulted in severe loss of mechanical integrity (to an extent far greater
than observed in cells), so higher temperature degradation was not per-
formed for the semiflexible formulations.

In the procedure, the sample was vacuum infused with electrolyte as
was done and dgscribed above for water intrusion. The sample was then
placed in the desired volume of electrolyte contained in an inert (TPX)
plastic beaker. The beaker was then enclosed in a glass, screw-cap
bottle and placed in an oven at the desired temperature for the desired
duration of time. After such treatment, the resistance of the sample was
measured. Rigid samples were cleaned by Soxhlet extraction to allow

subsequent tests of any changed physical properties.
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For small volumes of electrolyte (the 2:1 volume ratio studies) the
sample and electrolyte were contained in a small Teflon cup which was
supported above a large volume of electrolyte contained in the TPX beaker.

This was done to assure constancy of electrolyte concentration.

Water Permeation

Measurement of the permeation rate of water or electrolyte through
a porous separator can be used to derive an average value for the
diameter of continuous pores. Because laminar hydraulic flux through
pores increases with the square of pore diameters, the permeation
technique is sensitive to the presence even of very small populations

of larger-than-average pores.

For porous materials with a relatively steep pore size distribution
such as our rigid separator samples, the hydraulic average determined by
the permeation technique should be close to the average pore diameter
derived from mercury porosimetry. This, and generally good fépeatability

(within £3% or less), was in fact observed for rigid separator disks,

Semiflexible separator samples, on the other hand, generally ex-
hibited erratic permeation behavior, with flow rates increasing or
decreasing unsystematically, Approximate values of the hydraulic pore
diameters were typically about one order of magnitude below the averages
from mercury porosimetry, Possible explanations for this discrepancy.,
which include incomplete wetting of samples, are discussed in more detail

in fhe main body of the report.

s

The procedure followed that described by Cooke and Lander in the
standard reference., The permeation apparatus constructed in this pro-
gram comprises a brass housing and a system of vacuum and water lines
and valves attached to it. Rigid disks and semflexible wafers are

mounted in the housing using silicone rubber O-ring seals, and exposing
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a circular area of 19 mm (0.75 inch) diameter to the permeating water
column, A supporting screen, as used by Cooke and Lander, is not needed
for the rigid disks but is required for semiflexible wafers. The screen
is 2,54 cm:(one inch) diameter and is made of 80-mesh stainless steel
screen. (A correction for partial blocking by the screen of the

effective permeation area is unnecessary in these studies.)

The vacuum system is used to evacuate. the permeation assembly
(including the mounted sample) and backfill it with water. Constant
gas pressure is then applied to the water column on the sample inlet
side{ and the_sample outlet side is opened to the atmosphere, A pressure
of 11 N/cm2 (16 psig) resulted in conveniently measured water permeation
rates for most samples. Permeation rates are measured by noting the
passage of the meniscus of water past graduated intervals so that two
identical volumes of 0,167 ml are contained between the three graduations,
Equation (13) of Appendix C is then used to calculate average pore éizes

from permeation data,

Modulus of Rupture--The mechanical strength of rigid formulations

can be-characterizedvby their modulus of rupture (MOR). The basic
procedures and equipment employed to measure MOR are described in an
older Astropower Laboratory Report;* they are based on an ASTM Standard
Method (C-328-56). The Astropower equipment was modified to accept a
0.64 cm (1/4-inch) wide strip cut from the one-inch disks. The modulus
of rupture data obtained with it had a scatter consistent with experience
for this type of test; i.e.,, the uncertainty in measurement was about
+25%. Equation (12) of Appendix C is used to calculate the MOR from

the experimental data; it applies for the 0.64 cm samples placed on

the 15,9 mm (5/8-inch) span used in our work and contains a correction

for the moment arms of the apparatus.

%
Reference 10.
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Zinc Gassing

This test was developed and routinely used at Astropower Laboratories
to characterize inorganic separator materials in terms of their teﬁdency
to promote hydrogen evolution when in contact with zinc and electrolyte.
This test was used as soon as possible under Task II to screen separator
stock materials, Early in that work, we found that gassing rates were
eésentially identical for pellets pressed from zinc powder and separator
stock materials and for an intimate mixture of the powders, Accordingly,

the simpler powder technique was adopted for this program,

In the procedure, two grams of reagent grade zinc powder (particle
size below 5 micrometers) is used as reactant, The powder is mixed
(under noncontaminating conditions) with a weight of material to be
tested given by W = 0,28 x p where W = weight in grams of test material,
p = true density of the test material and the constant 0,28 is the true
volume in cc of the two grams of zinc; the weight W 'will then have
0.28 cc of true volume of test material., The test material must also

be ground to a particle size ~ 1-5 micrometers,

*
The mixed powders are placed in a small reaction bottle together

with 15 cc of 45% KOH. Evolved gas is collected in a graduated cylinder,
Gas volumes are measured at times of 5, 10, 15 min and 1, 2, 6, 24 hrs
after capping the reaction bottle. The gas volumes collected in 24 hrs
served as the basis of comparing the zinc gassing property of the

various separator stock materials.

%
Earlier tests used wafers (2.54 c¢m diam) of the mixed powders compressed

4 2
to~ 1.4 x 10 N/cm (20,000 psi). It was found that even the very small
amounts of iron abraded from the die contributed to increased gas
evolution. The procedure using powders avoided this error and gave

reproducible results, 161



Zinc Dendrite Pénetration

The zinc penetration test plays a special role among separator
screening tests as the only test that attempts to simulate an important
specific separator failure mode., It was therefore an important part of
the screening program applied to the separators developed under Task II
of this work, 1In following the general approach described in Reference
7, we solved .initial problems with cracking of rigid disks, inconvenient
use of thé cells, and zinc shorting aroﬁnd separator edges, Even afté}
these improvements, some question remained regarding the repeatability
of the zinc penetration test. In a series of specifically designed
tests, adequate repeatability was demonstrated* for rigid separator
samples, but zinc penetration rates (in thickness per unit time) were

found to decrease with increasing sample thickness,’

Zinc penetration times (and rates) invariably showed extensive
scatter for semiflexible separators. To obtain reasonably meaningful
and characteristic data, thé test was performed routinely on five
samples for each given semiflexible separator formulation, Even so,
there is some question whether the differences observed for different
materials have statistical significance; this is discussed more fully

in the main body of this report,

The test procedure used in our work closely follows the technique
and procedure described by Dalin and Solomon in Reference 7, One minor
modification in our cell is the use of soft silicone rubber gaskets
on both sides of the separator sample to be tested; this prevents
electrolyte and current leakage and minimizes the danger of breaking
rigid samples, Circular holes in these gaskets are aligned precisely

with the zinc button cathode and define the effective area of the test

*
For example, five disks taken from the same firing all gave zinc pene-

tration times within +7% of the average,
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sample, Equation (14) of Appendix C can be used to normalize the results
for a unit thickness of separators but expressing penetration resistance
as minutes (for a given sample thickness) is preferred because of the
nonlinear relationship between penetration time and separator thickness

observed in our work,

Mercury Porosimetry

Intrusion of the pore volume in separators with mercury at in-
creasing pressures provides information on the size distribution and
(if the maximum pressure available with a given instrument is sufficient

to fill even the smallest pores) the total volume of open pores.

Applied to the rigid and semiflexible separator samples developed
in this program, pore size data determined with the SRI mercury
porosimeter* were generally consistent with the results of other tests,
with the excéption of the initial (that is, the low pressure part) of
the pore size spectrum up to about 35 to 70 N/cmz (50 to 100 psia),
Porosimetry data suggested presence of é significant pore volume in the
corresponding size range, while other tests indicated that no such

volume existed or, at 1easf, contributed to important separator

properties.

For rigid separator samples, this initial volume increment probably
is due to mercury intrusion between sample segments and into surface

roughness and blind pores of the disk segments used as samples in

*
To check on the calibration of the SRI instrument and explore the

presence of micropores, a number of rigid samples were sent to an
outside laboratory for mercury porosimetry up to 41,300 N/cm2(60,000 psi)
corresponding to a pore diameter of about 0,003 micrometers, Good
agreement with SRI results and absence of significant micropore volumes

was noted for all of the materials investigated.
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mercury porosimetry., A similar but somewhat more reproducible effect
with semiflexible samples can be explained on the basis.of the com-
pressibility of these materials, Inasmuch as this apparent pore volume
does not seem to contribute to charge'and mass transport phenomgna,
this volume was disregarded in the analysis of rigid and semiflexible
separator pore size distributions, For example, for semiflexible
separators this was accomplished formally by normalizing intrusion
volumes to zero at about 48 N/cm2 (70 psia); this procedure tended to
result in good agreement between pore size distributions obtained with
different samples of a given material, For rigid samples, the "foot"
of the distribution curve (see, for example, Fig, 18 in the main body
of this report) was disregarded; this improved the agreement with
porosity data obtained by water intrusion (the standard method for

porosity determination of rigids).

In carrying out mercury porosimetry, the standard procedure
recommended by the manufacturer of the SRI instrument EAmerican
Instrument Co,, Silver Spring, Md., Model 5-7121; maximum pressure
1x104N/cm2(15;OOO psi)] is followed and a 6.1 ml penetrometer for solid
samples is used. The instrument has a digitalvreadout of the intruded
mercury volume which is entered in special graph paper supplied by the
instrument manufacturer, Pore size distribution and average pore size
are derived from these plots using the fixed relationship between
intrusion pressure and pore size given on the graph paper. This
relationship is based on a mercury-sample contact angle of 130O which
is a representative value for surfaces (such as our samples) that are

not readily wetted by mercury,
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Burst Strength (Semiflexible Wafers)

A rapid and repeatable test for the strength of semiflexible
separators was developed during this program; the test was particularly
useful to characterize the strength of KOH-wetted wafers which were

difficult to employ in the tensile test (see below),

In carrying out the burst test, the water permeation apparatus
described earlier is used but with the sﬁpporting screen removed. Gas
pressure, increasing at a steady rate of 20,7 N/cmz (30 psig) per minute,
is applied to the water column until the pressure is sufficient to
burst the sample; the instant of burst is detected by a sudden increase
in water flow rate; results are reported directly as obsefved bursf
pressures, Samples may be used dry, wet with water, or wet with
electrolyte. A circular rubber membrane (dental dam) is used to protect
the dry wafer from water on the high-pressure side, The dam creates

a negligible back pressure for the purposes of this test.

Tensile Strength (Semiflexible Wafers)

A specimen of the semiflexible separator 12,7 mm (1/2 inch) wide
and approximately 5 c¢m (2 inch long) is attached to the jaws of a
tensile-testing machine, for example, an Instron tensile tester. The
stress required to part the sample is measured and reported. Equation (18)
of Appendix C is used to calculate the results which are normalized with

respect to sample width but not with respect to sample thickness.

Flexibility (Semiflexible Wafers)

A simple test to characterize the degree of flexibility of semi-
flexible separators was developed in this program. Separator samples

were bent around the decreasing radii of a stepped, plastic mandrel
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until cracking of the separator coating was observed. This quick test

gave repeatable results, both for dry and KOH-wetted samples.

In carrying out the fest, adcmx 1,25 cm sample is cut and bent
around the following radii (in em): 10, 7.5, 5, 3.8, 2,5, 2.2, 1.9,
1.25, 0.64, and 0.3, The smallest diameter for which cracking did not
yet occur is given as a measure of flexibility. A special designation (d)
is used for separators which were sufficiently flexible to be folded over

and pressed gently on the fold without cracking.
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APPENDIX B

SEQUENCE OF SCREENING TESTS

Batch 1

Batch 1 consisted of 118 rigid disks made from eight different
materials. Batch 1 was the first group of separator samples to .which
screening testé were applied. The purpose was primarily evaluation
and refinement of the tests themselves and development of an efficient
test sequence rather than generation of test data; routine test data
for all rigid separator samples were then obtained in Batches 2 fhrough
4, Disk samples were subjected to a sequence consisting of physical
measurements followed by cleaning, resistance tests, a second cleaning,

weighing, and porosimetry.

Batch 2

The test sequence used to obtain Batch 2 results is shown in
‘Figure B-1 which is a copy of the data sheet assigned to a small num-
ﬂbér of disks (usually five to ten) from one firing of a particular
material. As indicated in Figure B-1 by the 'Porosity Screening'
columns, éll disks were screened with respect to correct porosity at
the outset of screening tests. Disks from a given firing that were
found to have porosities in the desired range of about 24% to 29%,
were accepted for property screening in the remaining test sequence.
As indicated by the four columns, four disks of each material were

required, as a minimum, for property screening.

In explanation of the test sequence, consider for example, the

history of a disk from Column 3. This disk was subjected to the
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1"

‘sequence of tests* indicated by "'x'' under the ''Test' column--in the

example, test numbers 1 through 4 and 6 through 10.

Thé abbreviations in Figure B-1l, column 1, denote the following:
(1) Sox = soxhlet extraction as an initial normalizing step, (2)
Wts = weight of the dry disk, (3) H20 Int = water ihtrusion test,
(4) Dim = dimensions, (5) KOH }gg = KOH degradation in 100 to 1 volume
ratio. (as indicated, this was performed at either of two temperatures,

120° or SOOC, depending on whether the disk was a column 1 or a column 2
2

1
volume ratio of 2 to 1 at 120°C,‘(7)'R,KOH = resistance measurement in

- disk), (6) KOH = KOH degradation in a volume of electrolyte to disk
KOH electrolyte (using the spent KOH contained in the degraded disk),
(8) Sox = soxhlet extraction to remove KOH, (9) WtS = weight of the
dry disk, (10) H20 Int = water intrusion to determine the void volume
of the degraded disk (this step was followed by soxhlet extraction
which is not indicated in the flow sheet), (11) R, KCl = resistance
measurement made with 0.1 normal KC1l, (12) Perm = pore size determina-
tion by water permeation, (13) Dif. Zn = zinc diffusion rate determina-
tion, (14) Zn Den = zinc dendrite studies, (15) Dif. Ag = determination
of silver diffusion, (16) MOR = determination of modulus of rupture,
(17) Hg Por = determination of pore size by mercury intrusion porosime-
try, (18) Dis = disposition of disk, where X indicates the disk might
remain intact to serve for further studies, and ¥ indicates that the
disk had passed through destructive tests and no longer existed as an
integral entity. Disks tested in the sequence given in Figure B-1 were
referred to as "'Batch 2 disks.'" Because this sequence was applied to

disks at two different times, two groupings, referred to as Batch 2-A

*Test steps 13 and 15 call for zinc and silver diffusion tests. These
tests were deleted from the required study,
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or Batch 2-B, are distinguished. Disks were given a code -containing
the batch and column numbers. For example, a disk with the code 2-A-3

was tested in Batch 2-A and subjected to the test sequence of Column 3.

Batches 3 and 4

The sequence used for Batch 2 disks was modified and the changed
sequence was used for Batches 3 and 4. This sequence is presented in
Figure B-2. The interpretation of test sequence and coding logic

follows that presented above for Batch 2.

Semiflexible Series A, B, and C

The semiflexible specimens required preliminary study to optimize
tests for this type of sample. Accordingly, a series of preliminary
tests (A, B, and C) were run to ascertain appropfiate test conditions.
In this series the following tests were studied: mercury porosimetry,
water intrusion, KOH degradation, H20 permeability, -Zn dendrite, burst
strength, and tensile strength. Materials Q and R were used in most
of these tests. The modifications in test procedures for semiflexible
formulations indicated in Appendix A resulted from these preliminary

studies.

Semiflexible Series D: Screening Tests of All 16 Materials

Using the information gained in the preliminary series of tesfé,
a écheme for testing samples 6f all sixteen semifléxible formulations
was devised. Thié scheme is described below in the listing of tests
performed; as noted préviously, most tests were applied to fresh sam-

ples rather than sequentially to samples previously used in other tests.
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Physical Measurements
Weight, thickness, width--done after cutting.

Mercury Porosimetry
Done on wafers directly.

Tensile Tests

Used SRI instrument. Run on 1/4-inch wide strips under two
conditions: (1) dry and (2) after one-week soak at room
temperature in 45 wt% KOH.

Flex Tests

Done around mandrel of following diameters, in inches:

4, 3, 2, 1-1/2, 1, 7/8, 3/4, 1/2, 1/4, 1/8. Done, as for
tensile, under two conditions: (1) dry and (2) after
one-week soak at room temperature in 45 wt% KOH.

Specific Resistivity

Three wafers of each material studied under three

successive conditions: (1) immediately after impregnation
with 45 wt% KOH, (2) after one-week soak at room temperature
in 45 wt% KOH, and (3) after 48 hours degradation at 80°C

in 45 wt% KOH.

Burst Tests

Eight wafers of each material studied in groups of two,
under four conditions: (1) dry burst using rubber dam,
(2) wet burst with water, run after permeation, (3) wet
burst with water, run after permeation and one-week soak
in water, and (4) wet burst with KOH, run after specific
resistivity on degraded wafer.

Zinc Dendrite
Run on five wafers of each material. One-week prior soak
in 45 wt% KOH was performed before test.

Permeability

Four wafers of each material studied in groups of two under
two conditions: (1) permeation with filtered, deionized
water, immediately after exposure of the wafer to water and
(2) after one-week's soak at room temperature in water, with
vacuum impregnation at the start and in the middle of the
week before permeation run.
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The above list of tests and numbers of'samples used in each test
indicates that a large number of semiflexible samples were required.
For the sixteen formulations studies, the tests required a total of

256 wafers and 128 strips. The tally is as follows:

® Strips
- Tensile and flex
Two per test x 2 conditions x 2 tests x 16 formulations =
128 strips

® Wafers

- DPermeability
Two per test x 2 conditions x 16 formulations = 64 wafers

- Mercury porosimetry'
Two per test x 16 formulations = 32 wafers

- Undergraded burst A
Two per test x 16 formulations = 32 wafers

- Specific resistivity and KOH degradation
Three per test x 16 formulations = 48 wafers

- Zinc dendrite
Five per test x 16 formulations = 80 wafers
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Appendix C

EQUATIONS AND SYMBOLS FOR EVALUATION OF SCREENING TEST DATA

The
of those
employed

they are

Symbols

= >U

o ©
3 o

=3

> o o o U
W€ o T

=

g 5 5 M

terms, are listed below,

in data reduction.

supplanted by Equations 10 and 11 for subsequent data.

separator sample area,
cell, A equals

in the Batch 2 resistance cell, A équals

and in the permeation apparatus, A equals

area density = weight per unit area

apparent density

diameter of disk

diameter of pore determined by mercury infrusion
diameter of permeation cell

diameterlof pore, determined by water permeation
true density

density of water, taken as 1,000

pressure differential

index of flexibility

weight
thickness of separator

thickness of coating of semiflexible separator

equivalent thickness of disk calculated from water

permeation plus mercury intrusion results
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In the Batch 1 resistance

symbols used for terms representing data, and the dimensions
Following this is a list of equations

Equations 7 and 8 apply to Batch 1 data only;

Value or
Dimension

2
1,072 cm

2
0.90 cm

2
2,85 cm
gms cm-

-3

g cm
inches
micrometers
inches
micrometers

-3
g cm

-3
g cm

lbs in

inches of
diameter

grams
inches

inches

inches



o o
viscosity of water, at 295 K (22 C);
n=9.58 x 10-3 poise

current

current used in zinc dendrite test
percent water intrusion

cell constant; For the laboratory conductivity
cell, K equals

specific area resistivity h g
r

percent weight degradafion by KOH

modulus of rupture

breaking load used in modulus of rupture apparatus
burst pressure

open porosity, by mercury intrusion

open ﬁorosity calculated from Er

open porosity, by water intrusion

specific volume resistivity

specific resistance of eiectrolyte used in test

o o
specific resistivity of 45 wt% KOH at 291 K (18 C);
taken as

normalized specific volume resistivity

specific volume resistivity

normalized zinc dendrite rate
radius of pore

index of breaking strength, normalized for

% inch wide sample. Note: S is reported directly

as the breaking load for a 3-in., wide sample
temperafure

time
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Value or
Dimension

dyne-sec cm

amperes or
milliamperes

milliamperes

wt%h

79.6 cm'1

ohm-cm

wt%

1bs in

g

inches (Hg)
vol %

vol %

vol %
ohm-cm

ohm-cm

2,56 ohm cm
ohm-cm

ohm-cm
min mil

micrometers

grams

sec, min



zinc dendrite shorting time
tortuosity
tortuosity from resistivity and porosity

tortuosity from water permeation and mercury
intrusion

ratio /
Ta Tb
volume

voltage

volume of mercury intruded in mercury porosimetry

voltage from laboratory resistivity cell withoﬁt the

separator, measurements taken during resistance

measurements.

voltage from laboratory resistivity cell with
separator sample

voltage from laboratory resistivity cell without
separator sample and when first filled with
electrolyte.

weight of dry disk or wafer

weight of disk, dry, after soxhlet extraction
wet weight of disk after H20 intrusion:

dry weight of KOH degraded sample
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Value or
Dimension
min
dimensionless

dimensionless

dimensionless

dimensionless
3

cm

mv, or v

v, mv

v, mv

grams
grams
grams

grams



Dimensions of

Equations Result
1. Volume 9 i 3
Vol = 12,90 D h; D and h are in inches cm
2., Percent water intrusion
I = 1000 - W)/W wt%
w w c c

3. Apparent density

-1
D =W (Vol) g cm
a c

4, Apparent true density
-2 -1
D =W /[vol(1 - 10 "P)] g cm
t c w

This equation includes any closed void volume and,
therefore, does not necessarily yield true density.

5. Open porosity, by water
Pw = 100w - WC)/(Vol) vol %
Volume from A-1 above

6. Porosity, by mercury intrusion

1
P = == x 10 vol %

7. Specific volume resistivity
p_ = 1,072 (V_ - V_)/(2.54 Ih)" ohm-cm
r S B
I is a parameter and equals 10 ma.
8. Normalized specific volume resistivity
p = (2.56 p )/2.34 = 1,095 p ohm-cm
r r r

This equation presents our specific resistivities
on the basis of 45 wt% KOH at 291°K, whose p is
defined as 2,56 ohm-cm. The value, 2,34 is the
value determined in our laboratory for 45 wt %
KOH at room temperature.

9, KOH degradation
L = 100 (W - Ww)/W wt%
c d ]
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10,

11.

12,

13.

14,

15.

Dimensions of

Result
Specific volume resistivity, normalized
A V -V
- 2,56 B N S BY/0.902 ohm-cm
p = 5 0 .
E I 2.54h
r o VE
Equation as used for batches subsequent to
Batch 1, The current, I, was maintained at
5 ma, rms, at 60 Hz,
Specific area resistivity
- - . 2
= h
K. Py | ohm-cm
where h must be the same h as used in Eq. 10 above,
Modulus of rupture
-3 -2 -2
M = 2,94 x 10 Ph 1bs in
valid for 0,250-inch wide sample between
5/8-inch span.,
Water permeation
-1/2 .
(a) D = 29,18 h Dd fAP(Ww - Wc)t] micrometers
P 1/2
: 3 Vol
(b) D = 2,258 x10 hD |———mm
P d |ypAP t Vi
where y has been shown to be acceptably
taken as unity, and where Vi is for a
1,00 =-inch diameter wafer
Zinc dendrite, Normalized to minutes per mil at
10 ma/cm
R = 7.894 10_5 t I h-l in/mil
D - . 8¢ X p Ip min/mi
dimensionless

Open porosity ratio, Iw/vi

For each disk, calculate the ratio of Iw (Eq. 2)
to volume of mercury intruded per gram data from
mercury porosimetry. The equation is

100 (I ) (Vol Hg/g) = and yields the ratio in vol %.
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16,

17.

Dimensions of
Result

Pore size ratio. dimensionless

" Determine pore size ratio between water

permeation and mercury porosimetry., Define
mercury pore size as diameter corresponding
to intrusion of one-half of total mercury
intrusion volume. Take ratio of pore sizes:
permeation to mercury intrusion,

Tortuosity, dimensionless
Tortuosity may be calculated from two comparative

sets of data: (a) resistivity and open porosity,

(b) permeability diameter and mercury porosimetry

diameter, ‘

(a) Tortuosity by resistivity and open porosity.

( 2 Pr (from Eq. 10)
Ta) 2.56 Qcm x (Pw/100)‘1

P from Eq. (5)
w

)2 = 5 P x—=— - 3.906 10°%p =
Tad T Prtw ¥ 156 T ° x w Pr

(b) Tortuosity by mercury intrusion and water
permeation,
The effective thickness can be calculated, Let

h

-
™~ n
where hm is thickness calculated using both
water permeation results and mercury porosimetry
results,
Equation 13 (a) is

R -1/2

Dp = 29,18 h D, AP (ww - wc)t]
Let D be the diameter in microns determined
by me?cury porosimetry, and let h be repre-
sented by hm, then

1/2
Dm[AP(Ww—Wc)T]

m 29.18 D
d
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18,

19,

20,

21,

22,

23.

Dimensions of

Result

/2

-1
or, since D 29,18 h D [AP(W =W )]
d w c -

-1/2
and D /
m

29,18 h D [AP(W =W )t]
m d w c

h /h
m/ m p ) b

"
=}
~
o

]
-

Tensile strength, grams
0.25 inches
measured width of sample in inches

S =Px
wherev P is breaking load in grams.

Index of flexibility. inches of
diameter

Open porosity via resistance,

©

N

P = 400 — , where pN = 2,56 Qcm vol%
r -
o .
r
and a tortuosity of 2.0 is assumed.
o P \1/2
rm

100
N

Note: The relationship is Ty =

Zinc dendrite shorting time t

expressed as shorting time in minutes,

Thickness of semiflexible separators h

h = measured thickness of separator,
(usually 0,015 inches).

h = measured thickness of coating
(usually 0,005 inches),.

2
Wafer area density g/cm

D W
A~  area

where area = ﬂ[(1.00)2/ 4] x (2.54)2-.
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