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AROUSAL FROM SLEEP BY NOISES FROM AIRCRAFT
WITH AND WITHOUT ACOUSTICALLY TREATED NACELLES

J. S. Lukas, D. J. Peeler, and M. E. Dobbs
Stanford Research Institute

I INTRODUCTION

In recent years the National Aeronautics and Space Administration
and some aircraft manufécturers have developed techniques for modifying
jet engine nacelles to reduce the relative intensity of certain fre-
gquencies in the noise generated by those engines. These frequencies,
near 2000 Hz, have been found to be particularly annoying, as is implicit

4 have demonstrated

* -
in the calculation of phons' and PNdB.° Studies®’
that the reduction of the intensities of those frequencies as the re-~
sult of acoustical treatment of aircraft engine nacelles did, in fact,

result in a reduction in subjective annoyance as experienced by awake

persons,

One of the major complaints about aircraft noise is that it inter-
feres with sleep, It is of some importance, therefore, to determine
whether the noise from aircraft with treated nacelles, in addition to
being judged more acceptable by the awake listener, has less disruptive
effect on human sleep than that from aircraft without treated nacelles,
In addition, it is also important to determine which of several general
physical measures now available permit accurate prediction of the effects

of noise of different spectra on sleep,.

*
References are listed at the end of this report.



IT OBJECTIVES

The study reported herein hgd two objectives: (1) to assess the
relative sleep-~arousal effects of noise from jet aircraft with and with-
out acoustically treated engine nacelles, and (2) to make an estimate
as to which of several physical measures of the noise may best predict

those effects.



III METHODS

A, Subjects -

Four'males, ranging in age between 46 and 58 years, were tested,
Three of the fouf had been subjeéts in a similar study aboutvtwo years
previously, and thus were familiar with the .general 1aboratvor_yvprocedures.5
All the subjects had nofmal hearing. They>did not indicate any stroﬁg
biases for or against jet aircraft or the noise they produce. None of
the subjects lived in or near the flight paths to the local airports.
All thought themselves to be reasonably normal sleepers, aﬁd their sleep
during the accommodation nights and the nights withoutlnoise was consis-

tent with the self-assessment.”

B. Stimuli

Two aircraft noises and a burst of pink noise were the stimuli.
The aircraft noises were those generated by two DC-8s while landing,
One aircraft had standard engine nacelles, while the other had acousti-

cally treated nacelles.®

Both noises were recorded outdoors while the aircraft were over-
head and approaching the runway threshold with about 22,241 N (5000 pounds)
of thrust per engine. The outdoor aircraft noisés were passed through
specially designed filters in order to produce noises as would be heard

indoors. These simulated indoor noises were used as stimuli in this study.

Initial calibration of the stimuli was accomplished using a sound
level meter set at dBA, slow. The three stimuli (untreated and treated
aircraft noises and a burst of pink noise) were set to attain peak levels

of 79 dBA in the test chambers, These signals as heard near the location

3



of the subjects' ears then underwent one-third octave band analysis
(using a General Radio Real Time Analyzer, Type 1921, with a one-half
second integration time), and various physical parameters were calculated

by digital computer. (See Ref. 2 for the details of these calculations.)

Presented in Table 1 are various physical measures of the three
stimuli. The numbers presented are averages over several measures in
each room, thereby accounting for slight differences in lével due to
the subjects' locations with respect to the loudspeaker centered about
1.7 m (5-1/2 feet) above their prone heads. Relatively direct meagures
of intensity, such as dBA and dBC were found to be within 0.5 dB of their
mean values; however, measures that take into account energy levels in
particular frequency bands, such as PNdB or PNdB with tone corrections,
showed greater variability because of the standing wave patterns present
in the rooms or at certain locations within the rooms. These were fbund
to-vary a maximﬁm of about 3 dB about the mean, particularly in the case
of the untreated noise with itg relatively intense pure-tone components;

the average variability was about 1 dB, however,

Of particular importance in Table 1 is the divergence between values
such as nominal, peak, and maximum dBA that were the same or similar, and
values such as EPNdB, EPNdBT, and EPNdBTM that spread the stimuli. 4 or
5 dB but also maintained the untreated jet as being the most intense and
the pink noise as being least intense. Note, however, that if the im-
pulsiveness of the pink noise burst is taken into account, the pink

noise is about 7 dB more intense than the untreated jet noise. A brief

discussion of the rationale underlying application of the impulse cor-

<]

rection2’ to the burst of pink noise is warranted therefore.

The high intensity pink noise used in this study rose from a back-
ground.noise level of about 32 dBA (52 dBC) to about 64 dBA within the

first 0.5 s, an additional 9 dBA in the second 0.5 s, and about 3.5 dBA
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in fractions of a second thereafter to a level of 79 dBA maximum, The
low intensity pink noise increased at an equivalent rate, but the maxi-
mum level attained was 18 dB less. Kryter, on the basis of subjective
judgments made of sonic booms (Ref., 6, Figure 174, p. 301) suggests that
the impulse correction be proportional to the difference, in PNL, between
the impulse noise and the higher of thé background noise level or the
threshold of perceived noisiness. This absolute threshold at night,
defined by Kryter, is set at 17 dBA; the background level in our labora-

tory is higher, i,e., 32 dBA,.

The growth in level of the pink noise did not meet the definition
of an impulsive stimulus first proposed by Kryter (a rise of 40 dB or
more within 0.5 s) (Ref, 6, p. 472). However, Kryter (personal communica-
tion) indicates that a more general and proper definition of "impulse"
would have been a '‘change in rms levei at alzgzg greater than 40 dB per
0.5 s," rather than the 40 dB or more per 0.5 s'" he originally specified.
By ‘this new definition our pink noise would be considered as "impulsive."
(See the time history of the pink noise burst in Figure 1 where it is
seen that the pink noise burst goes from 0 to 50 dB iﬁ 0.5 s.) Since
the intensity increase was 32 dBA above the background ambient in the
first 0.5 s (with a rate of increase during the first part of the 0.5-s
interval greater than 40 dBA/0.5 s), an impulse correction of 12 was
added to EPNdBTM in accordance with Figure 174 of Ref. 6. With respect
to the low intensity pink noise, a correction of 5 waé used to account

for an intensity increase of 14 dB above background level in the first

0.5 s.

Both aircraft noises increased relatively smoothly to peaks in 14
or 16 s, maintained that level briefly, and decreased to background
levels in 12 to 16 s. Time courses of the stimuli are illustrated in
Figure 1, where the slight differences in duration between the jet air-
craft noises can be seen. The noise from the jet with untreated nacelles

attained its peak about 2 s before the jet with treated naceiles, and

6



TIME HISTORIES OF THE THREE TEST STIMULI MEASURED
IN A TEST ROOM NEAR THE SUBJECTS' EARS

= = — — S e
+  —
{a) DC-8 WITH UNTREATED ENGINE NACELLES LANDING AT 159.1 m {522 ft} ALTITUDE
————— w1 second
10 dB : S =—
T = . r—
L4 — e
—— I'J hv"\l"l‘wvl\wf A - - “"AMYIR
I i
(b) DC-8 WITH TREATED ENGINE NACELLES LANDING AT 154.4 m (507 ft} ALTITUDE
1 X
{c) PINK NOISE BURST ‘
FIGURE 1



extended about 4 s longer after the peak than did the treated jet noise,
In general, the untreated noise was about 1-1/2 s longer than was the
treated noise, that had a duration of about 25 s. The rapid rise and

decay of the pink noise is also illustrated in Figure 1,

C. Procedure

Two days and nights separated the initial three accommodation nights
and the 14 consecutive control and test nights (see Ref. 7 for a diagram
and description of this sequence). Although three of the four subjecté
were relatively-familiér with sleeping in the laboratory, it was thought
advisable to accommodate all the subjects, thereby precluding the pos-
sibility of invalidating the results obtained in the first several nights

of tests.

The first two nights of the 14 were considered control nights, as
were the 9th, 10th, and 14th. During these nights the subjects were

permitted to sleep without interruption by noise,

During the test nights (nights 3 to 8 and 11 to 13, inclusively),
each of the three noises was presented at two intensities, and the in-
tensity for any trial was determined at random. The random presentation
of stimuli had one restriction: ' that each stimulus at each of fﬂe two
intensities be presented at least once a nigﬁt. Stimuli were presented

on a different schedule each night.

Our laboratory consists of two identical test rooms, and each con-
tains two beds. Each subjept was‘assigned a bed at the beginning of the
Study; and slept in that bed throughdut.~ On the first night in the
laboratofy, the purpose of the study was explained briefly, and after

*
they were in bed, the subjects were told to use the "awake' switch if

* ’ . ’ :
The awake switches were affixed to the headboards of each bed, within
easy reach of the subjects,



they should awaken for any reason. This instruction was repeated on
the first of the 14 consecuti&e nights in the laboratory. 1In addition,
each night after the subjects were in bed, the electroencephalograph
was calibrated, and a general check made of the system, the subjects
were asked to push their awake switches as if to test the.operation of
the switches. With the exception of a general admonition to sleep well,
the subjects were given no further instructions, They were not told
when or how many noises would be or had been presented. Any questions

in this regard were answered vaguely.

The first stimulus in either room occurred only after both subjeéts
in a particular room had attained sleep stage 2, at least. Neither
pair of subjects consistently attained sleep stage 2 sooner or later
than the other pair. Generally, the subjects were in bed by 10:30 p.m.,
and the first stimulus was presented about an hour later. Stimuli sub-
sequent to the first occurred once every 40 minutes, on the average,
but not more frequently than once every 20 minutes, Twelve stimulus
presentations were scheduled each night, but because of differences in
responses to .noise and the sleep characteristics of the subjects, only
8 to 11 stimuli could be presented. The average number of stimuli each

night was about 9.

D. Scoring the Electroencephalogram

In addition to behavioral awakening (use of the awake switch) elec-
troencephalographic responses were obtained. The electroencephalograms
(EEG) from standard electrode placements recommended by Rechtschaffen
and Kales® and as used in earlier studies®;® were monitored continuously
throughout the night (from about 10:30 p.m., until about 5:30 a.m.) in

order to determine the stage of sleep and the effects of noise thereon.



Electrode placements were:

e An EEG from a right or left (Cé or C4) central electrode
monopolar with respect to the contralateral mastoid (A7 or
Ag) . '

¢ Two electrodes proximal to the outer canthi of each eye,
and both monopolar with respect to a single reference
electrode just above the nasion., These electrodes are
used to record the eye movements required to indicate
sleep stage REM (rapid eye movements). V

* 'Bipolar electrodes on the lower chin, one to two cm to the

right and left of the midline, A The myographic activity
recorded is used to assist in scoring sleep stage REM.

Four categories were used to score the responses of subjects to the
stimuli. The first three categories are scores obtained by examination
of the EEG; the fourth category was used only if the subject pressed his
awake switch, The criteria used to assign these scores are shown in

Table 2.

E. Confrol Trials

As previously noted,. the laboratory in which the study was conducted
consists of two identical test rooms, each with its own loudspeaker sys- -
tem, electroencephalograph, and other electronic and mechanical hardware,
In addition, the rooms are acoustically isolated so that a stimulus pre-
sented in one room is not easily detectable in the other. With this
laboratory arrangement, test trials can aiternate with control trials
in any givén room, For exaﬁple, if the first stimulus for thg night
were presehfed to Rooh 1, then that period (dﬁriné'stimulation in Room 1)
was consideféd a éontrol triai for suﬁjects in Rooh 2. The next stimulus,
wﬁiéh was uéually identical to thét just presented in Room.l, waé pre-
sented.in Room 2, aﬁd the period during which the stimulus was presgnp
in Room 2 was considered a control trial for the subjects of Room 1.

This process of alternating test and control trials in any given room

10



Table 2

CRITERIA FOR VISUALLY SCORING THE ELECTRQENCEPHALOGRAMS

Score Response Required

0 No change in EEG. This category also. includes "K.complexes,"
brief bursts of Alpha (about 10 Hz activity), ‘spindles, and
eye movements, as appropriate for the subject's sléep stage.*

1 Sleep'stagé change of one or two steps, but without arousal,
The change must occur within 30 s of stimulation and continue
for at least an additional 40 s. '

2 Arousal'of at least 10 s duration, but withouf use of . the
"awake'" switch. Typically such a record shows brief bursts of
Aipha, 10 or more s of low-amplitude Beta (20-40 Hz) "activity,
and gross body movements,

3 Awake response, in which the subject, after'arousdl;'will move
about and use the "awake'” switch. Usually the response occurs
within one minute of stimulus termination, :

"y complexes,' Alpha, spindles, and eye movements occur normally in
the EEG in some sleep stages. If such activity were scored as a re-
sponse, the subjects in those stages would appear to be overly sensi-
tive to stimulation as compared to stages in which the activity does
not normally occur, )

was continued throughout the night and resulted in an approximately
equal number of test and control trials for each subject on any given

night during which stimuli were presented,

As can be seen in Table 3, the subjects changed sleep stage in only
nine instances (about three percent of the 320 control trials). A
single subject was aroused (a score of two) once during his control trials,
and none of the subjects were behaviorally awakened. It may be concluded,
therefore, that thé results described below are primarily responses to
the stimuli and do not reflect spontaneous or normally occurring changes

during sleep,

11



Table 3

RESPONSE FREQUENCIES DURING -CONTROL TRIALS
(Numbers in parentheses are percentages)

~

Test Number of Number
‘Room Control of Test
Number Trials 0 1 2 3 | Trials
1 158 152 5 1 o| 166*
(96.2) | (3.2).1(.6)
2 162 158 4 0 4] 159
(97.5) | (2.5)

During some test trials the control subjects may have
been still awake from their previous test trial or were
moving before and during stimulus occurrence. Such
instances were not counted as control trials. Hence,
the numbers of test and control trials are not equal.

12



IV RESULTS

Our previous studyS indicated that the subjects' responses typically
were distributed within normal limits. Since three of the four subjects
were those used in a previous study,5 it is assumed that the responses
of the subjects in this study would be similarly distributed, although
their small numbér precludes a reasonable statistical test of the assump-
tion., In light of this assumption and the small number of test trials
for some sdbjects in REM and Delta sleep stages, the responses are sum-

med across subjects.

A, Effects of Stimulus Intensity

A comparison of the response frequencies to the three stimuli at
each of the nominal intensitiés is présented in Table 4., With respect
to the frequency of beha?ioral awakening (response score of 3) it is
of some importance to observe that an increase of 18 dBA in the intensity
of the stimuli resulted in very different changes in the response fre-
quencies., For example, the untreated jet noise at 61 dBA elicited an
awakening in about 24 percent of the trials, but when that noise was
increased to 79 dBA about 49 percent of the trials resulted in awakenings.
For the treated jet noise, an 18 dBA increase of intensity resulted in
a sﬁaller increase in the frequency of awakening, from about 17% for
61 dBA to 26.5% for the noise at 79 dBA. However, the most pronounced
change was observed in response to the pink noise, in which case the
18 dBA change in intensity increased the frequency of behavioral awaken-

ing about eight times, that-is from 6.3 to 50 percent,

13




Table 4

AT TWO INTENSITIES EACH

RESPONSE FREQUENCIES TO THREE STIMULT

(Numbers in parentheses are percentages)

Nominal
Intensity ' Responses 9
(dBA) 0 1 2 3 X
79 16 3 9 27
(29.1) (5.5) | (16.4) | (49.0) *
16.3
Untreated Jet o1 30 1 1 11 6.37
(65.2) (8.7) (2.2) | (23.9)
79 15 6 4 9
44,0 17.6 11.7 .
Treated Jet ( ) | ¢ ) | € ) | (26.5) 7.56‘r
- 61 51 6 : 3 12
(70.8) (8.3) (4.2) (16.7)
79 11 7 17 35
. 15.7 10.0 24.3 50.0 F
Pink Noise ¢ ) |« ) | ( ) | ¢ ) 35.36
61 30 6 9 3
' (62.5) | (12.5) | (18.7) | (6.3)

3 df (degrees of freedom); p < 0.001.
'3 df, 0.10:>p >0.05, not significant.

+ , .
3 df, p < 0.001.

Tﬁe lack of avstatistically significant difference (at the p = 0.05
level) in the casé of the treated jet noise is attributedAto éohe lack
of power in the chi-square test,‘since it will be noted that the responses
to tﬁe treated jet noise changed in the same direction as they did to the
other stimuli. Namely, the frequency of behavioral awakenings and
arousals (Reéponse 2) increased, while the frequency of O responses de-

creased as a result of an 18-dBA increase in stimulus intensity. It is

14



suggested therefore, that the changes in response frequencies resulting
from changes in intensity of the treated jet noise may be functionally

significant,

In Table 5 the responses of the subjects to the three stimuli when
all had equivalent nominal intensitieé are compared., It is clear that
the subjects responded differently to the three stimuli despite their
dBA intensity equivalence, It may be of practical significance to ob-
serve that at an intensity of 79 dBA, the trgated jet noise resulted

in significantly fewer awakening and arousal résponses than did the

Table 5

COMPARISON OF THE RESPONSE FREQUENCIES
TO STIMULI OF NOMINALLY EQUIVALENT INTENSITY
(Numbers in parentheses are percentages)

Nominal
Intensity Response 9
(dBA) Stimulus : 0 1 2 3 X
Untreated Jet | 16 3 9 27
(29.1) (5.5) | (16.4) | (49.0)
F
79 Treated Jet 15 6 4 9 15.71
(44.0) | (17.6) [(11.7) | (26.5)
Pink Noise 11 7 17 35
(15.7) | (10.0) | (24.3) | (50.0)
Untreated Jet 30 4 1 11
(65.2) (8.7) (2.2) [ (23.9)
: 3
61 Treated Jet 51 6 12 16.08T
(70.8) (8.3) (4.2) | (16.7)
Pink Noise 30 6 9 3
(62.5) | (12.5) | (18.7) (6.3)

%
6 df, 0.02 >p >0.01.

1-
6 df, 0.02 >p >0.01,.
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untreated jet noise and the burst of pink noise. At low intensity (61
dBA), the treated jet again resulted in fewer awakening responses than
did the untreated jet, although the frequency of arousal (Response 2)

was somewhat greater for the treated jet noise,.

Estimating the extent to which nacelle treatment may ameliorate
the disruptive effects of aircraft noise on sleeﬁ is of practical impor-
tance, Since the functional significance of more frequent than normal
changes in sleep stage (Response 1) or arousals (Response 2) and awaken-
ings (Response 3) is not known, it is not unreasonable to describe that
disruption conservatively, Consistent with this reasoning, the fre-
quency of zero responses (i.e,, no disruption) is plotted in Figure 2
against the nominal intensities of the treated and untreated jet air-
craft noise. 1In Figure 2 it will be seen that the treated jet noise at
an intensity of 75 dBA disrupted sleep to about the same degree as did
the untreated jet at about 68.5 dBA. In other words, at equivalent dBA
intensities the treated jet has less of a disruptive effect on sleep
than does the jet aircraft without acoustically treated nacelles. Paren-
thetically, it should be noted that whereas the treated jet noise dis-
rupted sleep less than did the untreated jet by an amount equivalent to
about 6.5 dBA, in another study3 the treated jet was judged by awake

people as being about "4 dBA" less annoying than was the untreated jet

noise,

B. Responses During the Different Sleep Stages

Earlier studies éuggest that there is little difference between
sleep stages 2 and REM in responsiveness for meaningful stimuli. 1In
addition, the subjects were behaviorally awakened more frequently or
were awakened at lower stimulus intensities during sleep stages 2 and
REM than they were during sleep stage Delta (a combination of stages

3 and 4), and particularly during sleep stage 4,1°,%!
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The results of the present study appear to be in partial agreement
with those reported earlier, In Table 6 the response frequencies ob-
tained during sleep stage REM are combined with those obtained during
sleep stage 2. It will be seen, therein, that in five of the six com-
parisons, awakening was more frequent during sleep stages 2 and REM than
it was during sleep stages 3 and 4. The only exception was in response
to the high intensity treated jet noise, Since that particular instance
is atypical, and there is no a priori reason to expect greater responsive-
ness, particularly to treated jet noiée during stages 3. and 4, it is
suggested that the exceptional result ma& be spurious. Thus, it may be
concluded that generally there will be fewer awakening responses to
stimuli of comparable intensities duriné sleep stages 3 and 4 than during
stages 2 and REM, although the differences may not attain statistical

significance,

C. Adaptation to the Noises

Because of the small number of certain categories of responses to
the stimuli at the two intensities sfudied (see Table 6, for example),
the responses for a given stimulus were summed across the two intensities
to develop the response frequencies shown in Table 7. Although it is
.possible that if a relatively large number of low intensity stimuli
were presented iﬁ the later test nights, a bias toward showing adaptation
would exist (a large number of high intensityvstimuli in later nights
would reverse the bias), the schedule for stimulus presentation used in

this study precluded such biases.

It will be seen in Table 7 that a trend indicating adaptation--
defined as a reduction in the frequency of three responses and an in-
érease in the frequency of 0 responses--was found in the case of the
treated jet noises and the pink noise, but not in the case of the un-

treated jet noise. It may be of some interest to note that for the
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Table 6

RESPONSE FREQUENCIES TO THREE STIMULI
' DURING THE SLEEP STAGES
(Numbers in parentheses are percentages)

Stimulus and
Nominal
Intensity Sleep Response 5
(in dBA) Stage "0 1 2 A 3 X
~ 2 and |- 14 3 . 7 24
Untreated Jet | REM (29.1) (6.3) | ¢14.6) | (50.0) 123
79 3 and 4 2 | o [ 2 3
' (28.6) ' (28.6) | (42.8)
4 2 and | 12 1 3 4
Treated Jet REM (60.0) (5.0) | (15,0) | (20,0) 8 38*
79 3.and 4| = 3 5 1 5 :
T (21.4) [(35.7) | (7.1) | (35.7)
N 2 and . 8 - 6 12 29
Pink Noise REM (14.5) [(10.9) | (21.8) | (52.7) L 46
79 3 and 4 3 1 ) 6 '
' (20.0)- | (6.7) | (33.3) | (40.0)
2 and 22 " 2. 1 10
Untreated Jet | REM 62.9) | (5.7)7| (2.9) | (28.6) | ¥
61 3 and 4 8 2 0 1 .
(72.7) |(18.2) (9.1)
2 and 41 3 3 11
Treated Jet REM (70.7) | (5.2) | (5.2) |(19.0) | = .
61 3 and 4 10 3 0 1 )
(71.4) |(21.4) (7.1)
2 and 28 4 8 3
Pink Noise REM (65.1) | (9.3) | (18.6) | (7.0) |, . ¥
61 3 and 4 2 2 1 0 :
(40.0) |(40.0) | (20.0)

*
3 df, 0.05 >p >0.025, all other chi-squares are not
significant.

1—
Because the expected frequencies in 20 percent of the cells were
less than one, Responses 2 and 3 were combined to calculate the

chi—square.12
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Table 7

RESPONSE FREQUENCIES TO THREE STIMULI
DURING COMBINATIONS OF TEST NIGHTS INDICATING ADAPTATION
(Numbers in parentheses are percentages)

Test Responses

Stimulus . Nights 0 1 2 3

1, 2, 3 14 5 3 11
(42.4) | (15.2) (9.1) | (33.3)

Untreated Jet 4 8, 6 L9 0 3 13
(54.3) (8.6) | (37.1)

7, 8, 9 12 2 4 - 15
(36.4) (6.1) | (12.1) | (45.5)

Nights 1, 2, 3 versus 4, 5, 6 - X2

significant.

Nights 1, 2, 3 versus 7, 8, 9 - X2

significant,.

= 5.870, 3 df, not

2.199, 3 df, not

1, 2, 3 14 2. 1 6
(60.9) (8.7 (4.3) | (26.1)

Treated Jet 4,5, 6 25 3 0 3
(80.6) (9.7) (9.7)

7, 8, 9 18 7 6 6
(48.6) | (18.9) | (16.2) | (16.2)

Nights 1, 2, 3 versus 4, 5, 6 - X = 3,799, 2 df
not significant.

(Responses 2 and 3 combined),

2

Nights 1, 2, 3 versus 7, 8, 9 - X2 = 3,789, 3 df, not

significant.

1, 2, 3 12 2 12 16
(28.6) | (4.8) [ (28.6) | (38.1)

4, 5, -6 15 6 5 13

ink Noise R

Pin (38.5) | (15.4) | (12.8) | (33.3)

7, 8, 9 13 6 7 10
(36.1) | (16.7) | (19.4) | (27.8)

Nights 1, 2, 3 versus 4, 5, 6 - X2 = 5,422, 3 df, not

significant,

Nights 1, 2, 3 versus 7, 8, 9 - X2

significant.

20
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treated jet noise, the degree of adaptation shown when test nights 4, 5,
and 6 were compared with test nights 1, 2, and 3 was reduced after sleep-
ing two nights in the quiet. Such wés not the case with respect to the
pink noise, With respect to the untreated jet noise, the results sug-
gest an increasing degree of responsiveness to the stimuli, However,

the differences observed were not statistically significant,.

D. Predictive Power of the Different Physical Measures

There were essentially no differences in the EEG that permit dis-
crimination between behavioral awakening (Response 3) and arousal (Re-
sponse 2), as will be shown in a subsequent section. Indeed, some of
the subjects stated that at times they were awakened by some particular
stimulus but did not have enough "ambition" or “the energy' to turn over
and push the awake switch., Consequently, the frequency of Responses 2
and 3 is combined in the second row of Table 8 and in the third row,
for purposes of comparison, the frequency of behavioral awakening (Re-

sponse 3) alone was used to calculate the correlations,

Presented in Table 8 are the correlations between the different
response frequencies (summed across subjects as shown‘in Tables 4 and 5)
obtained at each of the six levels of the various physical measures,
Before describing these results, it is advisable to consider the meaning
or functional significance of these correlations. Plotted in Figure 3,
as an example, are the data points used to calculate the correlations
using EPNABTM and EPNdBTM-ic as the physicél measures. It will be
seen that when the impulse correction is'included in the measure of the
‘pink noise, those data points (indicated by a dot enclosed in a circle)
are shifted beyond (that is, to the right of) the points corresponding
to the untreated jet noise, and are more nearly consistent with their

relative frequency as compared to the frequency of responses to the
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treated and untreated jet noises. Movement of those two points resulted
in a change of 0.15 (from 0.78 to 0.93) in the correlation coefficient.
The fact that the movement of only two intensity values caused a rela-
tively large shift in the correlation coefficient, indicates the extreme
sensitivity of these coefficients due largely to the small number of
values used in the calculations. Consequently, these correlations should
be interpreted cautiously, and the results should be considered tentative

until verified with much larger samples of subjects and varieties of noise.

That the various physical measures are on the average more highly
correlated with the frequency of O responses than with the frequency of
behavioral awakening or the combination of Responses 2 and 3 is demon-
strated in Table 8., The magnitude of the coefficients suggests that
addition of the impulse correction improved the predictive power of - the
physical measures whether the response of interest is zero or a combina-
tion of Responses 2 and 3. But the improvement is not as apparent when

behavioral awakening (Response 3) is considered alone.

‘0f interest, perhaps, is the seemingly slight loss of predictive
power when stimulus duration (EPNdB) or tonal characteristics (EPNAdBT)
are compared to more simple.measures such as Max dBA or Max PNdB. It
seems reasonable to expect that as more information is.included in the
physical descriptor of the stimulus, the predictive power of the descrip-
tor should increase. Thus it would be expected that EPNdB should have a
higher correlation than Max PNdB, and that EPNdBT shouid be more highly
correlated with the responses than was EPNdB. Such was not the case
although the differences, ranging between 0,01 and 0.1l correlation units,

are relatively small; but with certain comparisons the differences are
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statisticallyvsignificant.* On the other hand, perhaps it is not unrea-
sonable to suppose that while the duration or tonal qualities of a noise
when one is awake will contribute to its annoyance value, disruption of
sleep could be solely related to the maximum inten;ity of the noise or

the rate of change of that level.

E. Analysis of the Physiological (EEG) Frequency Components

1. Similarity of EEG Activity During Arousal
and Behavioral Awakening

Some evidence suggesting an artificial distinction between
the arousal response and behavioral awakening (Responses 2 and 3, re-
spectively) was noted in Part D above, The general similarity of the EEG
ﬁatterns observed during arousal and behavioral awakening, as illustrated
in Figure 4, provides additional evidence that the distinction between
those-responses may be afbitrary and dependent largely upon the motivation
of the particular subject. It is important to note that the responses
(and the sleep stages) described in Figure 4 a;d subsequent figures
and tables were obtained by scbring the EEG signals visually (according
to the criteria of Table 2) long before the amplitudes in the differeht
frequency bands were measured by computer, Hence, these figures show

how closely the visually scored responses correspond to the electrical

activity of the brain as measured by computer,

For example, the difference of 0,11 units between EPNdB-FAA and Max
dBA for the 0 response is significant at p = 0.05 (Hotelling's test)!®
as is the difference of 0.06 units between the correlation for Max dBA
and EPNdB with Response 0; but a difference of 0.03 between Max PNdB
and EPNdB for Response 3 is not statistically significant,

25



AMPLITUDE — microvolts

60

8
I

[N
o

N AROUSAL
(RESPONSE 2)
\ L
N —=
20 ™\~ BEHAVIORAL
F AWAKENING
(RESPONSE 3)
\
10 — —
0 I l l 25
DELTA THETA ALPHA BETA EMG
0-3.1 3.4-6.2 78-123 203406 >10
EEG FREQUENCY, (FILTER RANGES TO 3 d8 DOWNPOINTS) — Hz
FIGURE 4 SLEEP EEG FREQUENCY AMPLITUDES WITH RESPONSES OF

AROUSAL AND BEHAVIORAL AWAKENING TO AUDITORY
STIMUL! OF DIFFERENT INTENSITIES (EMG LEVEL IS
INCLUDED FOR CONVENIENCE)

26



Statistically, the mean amplitudes* of the signals in each of
the four frequency bands during arousal and behavioral awakening were
not found to be different. These results are presented in Table 9. For
the purposes of subsequent sections of this report, therefore, no dis;
‘tinction will be made between arousal (Respdnse 2) and behavioral awaken-

ing (Response 3).

2. Baseline EEG Frequency Levels in the Sleep Stages

Illustrated in Figure 5‘are the relative amplitudes of the
various EEG freqﬁency components, as well as the submental EMG, obtained
during the five sleep stages and while the subject was awake but lying
in bed. Each data point in this figure is an average, across subjects,
of at least 30 measures (each an average over one minute) selected ran-
domly throughout the control nights; the data points for sleep stage 2
that ére more common than the other stages is an average of some 120

measures.

It will be noted in the figure that, as might be expected8
the EMG level progressively decreased as the subjects shifted from being
awake fo sleep state REM and, on the average, the EEG levels while awake
are higher than they are in the four sleep stages., Delta activity has

the highest amplitude in the four sleep stages, while average Alpha

*The sleep stage scoring system, described in detail in Ref. 14 was
modified for these studies to print out the average amplitude of the
signal in each of the four frequency bands as well as the average EMG
level every 20 s. During each 20 s epoch, the amplitude of each of
the five bands was sampled 400 times; this sampling constitutes the
basis of the average amplitude measures pfesented herein.
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Table 9

MEAN AMPLITUDES OF SIGNAL IN DIFFERENT FREQUENCY BANDS
DURING THE AROUSAL AND BEHAVIORAL AWAKENING RESPONSES

Response t
Arousal (2) Behavioral Awakening (3) | (Response 2
Frequency Meanl' Standard Mean + Standard Versus
Band (in pv) nT Deviation | (in pv) n Deviation | Response 3)
Delta 38.0 17 9.6 . 31.4 13 7.0 0.514
Theta 23.1 17 4.7 20.3 13 4,2 0.448
Alpha 23.6 17 3.8 24.6 13 3.5 0.191
Beta 19.8 17 6.5 19.7 13 4.9 0.012
EMG 48.4 16 18.7 52.6 _ 12 12.1 0.189

The measurement epoch of 20-s duration began coincidentally with onset
of the stimulus. The aircraft noise had durations of 25 to 27 s, or
about 6 s longer than the 20-s measurement epoch. Therefore the two
20-s epochs during which the aircraft noises were present were used in
_this measurement., Although the pink noise had a 4-s duration, for con-
sistency the same measurement period, i.e.,, 40 s, was used to assess
the effect of pink noise,

The average amplitude of the responses during each of the three sleep
stages (2, Delta and REM) to each of the stimuli was calculated separately,
and these averages were used to calculate the averages shown in this table,

levels are slightly higher than those of Delta while the subject is

awake but lying in bed. In sleep stage Delta the levels of Delta ac-
tivity clearly are most prominent. The fact that Theta levels are not
higher than Delta levels during sleep stage 1 perhaps may simply reflect
its definition as a low amplitude mixed frequency stage during which
Theta activity may be more prominent than are the other, interspersed,
frequencies, Although a visual EEG signal may be prominent, its relative

prominence does not necessarily mean its average amplitude is higher
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than that of other frequencies. During sleep stage Delta, in contrast,
the 1/2 to 3 Hz (so-called Delta) activity is not only prominent, but

also has relatively high amplitudes.

3. EEG Frequency Levels in Response to the Stimuli

Illustrated in Figures: 6, 7, and 8 are the average changes in
the different frequency bands as a function of the type of response,
i.e., no response (Type 0), a change of stage (Response Type 1), and
behavioral awakening and arousal (Responses 2 and 3, combined). Figure
6 illustrgtes the changes resulting from stimuii during sleep stage 2;
Figure 7 shows the changes during sleep stage Delta, and Figure 8 shows
the changes during sleep stage REM. These results clearly indicate that
with respect to the EEG frequency components only small and unsystematic
changes occur if Responses 0 and 1 are compared with prestimulus levels.
Only behavioral .awakening and‘arousal are associated with a significant
change in the EEG frequency distribution, and that change may be described
as a general shift upward in level of all the frequency components, par-
ticularly during sleeﬁ stages 2 and REM. During sleep stage Delta, Re-
sponses 2 and 3 do not aﬁpear to be correlated with changes in the Delta

or Theta levels, but only with increases in Alpha and Beta,

It is apparent in these figures that the most systematic change
is the progressive shift upward of the submental EMG level with each
response type. If Figure 4 is referred to, it will Be seen that the
EMG level during behavioral awakening (Response 3) was slightly higher,

but not significantly, than it was during Response 2 (arousal).

It will also be noted in Figures 6, 7, and 8, that during
each of the three sleep stages Response Type 0 (no re;ponse) was asso-
ciated with a slight shift upward in all the frequency bands, as well
as the EMG, as compared to the average level during the minute juét

preceding onset of the stimulus,.
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4, EEG Frequency Levels in Response to Spebific Stimuli

The results presented above suggest that, at least insofar
as the EEG frequency data are concerned, there is little reason to dis-
tinguish between Responses 0 and 1. In addition, because of the some-
times small number of instances of a particular response occurring to
a particular stimulus while the subjects are in a given sleep stage,
for the subsequent analysis the EEG frequency levels during Responses 0

and 1 will be combined.

" Presented in Table 10 are the mean levels in the EEG frequency
bands and the EMG during the three sleep stages observed during the
minﬁte just preceding stimulus presentation. It will be noted that
these levels are approximately the same as those observed during the
control nights (illustrated in Figure 5). That only the Beta frequency
band did not show statistically significant mean differencés between
the three sleep stages should be noted. The mean levels presented in
Table 10 are the basis of comparison for the effects of the various

stimuli.

In Figures 9, 1O,Iand 11, the average levels of the EEG and
EMG responses to the stimuli are compared with the baseline levels ob-
tained during the three sleep stages during which the stimuli occurred.
It will be seen that there are few apparent consistent differences
between the baseline EEG levels and Responses O and 1 regardless of the
type of stimulus or its leQel. The possible éxceptions are‘slight in-
creases in the average level of Beta and increases of slightly greater

magnitude in the EMG level,

With respect to the responses of arousal and behavioral awaken-
ing, however, the frequency pattern may be characterized by comparatively
large increases in the levels of Alpha, Beta, and EMG. If the stimuli

occurred while the subjects were in sleep stages 2 or REM (Figures 8
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and 10), there is also an apparent increase in the level of Delta activity,
In addition, the combined 2 and 3 responses to the Qarious stimuli appear
to be more widely distributed than are the 0 and 1 responses; however,
there is no systematic pattern apparent for the three types of stimuli.

In general, these results indicate that the EEG changes observed are

not dependent upon the type of stimulus (with or without treated nacelles,
for example); rather that if a given response occurs, its electrical

characteristics are similar regardless of stimulus type.
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V DISCUSSION

Thé réé@lts of é;previoué study9 were interpreted as indiééting
the reiative iﬁpoftance of béhavioral awakening in the assessment of
the éffeéts of noise onféleep. The results presented herein indicate
the same thing, but on the grounds of absolute Voltage changes obsérved
through computer analysis rather than on the grounds of the more common
manual (visual) scoring of the EEG record. There appeared to be little
difference in the computer averaged voltages between responses scored
visually as O and 1 (no response and a change of sleep stage, respec-
tively) and the pattern of electrical activity measured by computer just
prior to those responses, In contrast, responses scored visually as 2
and 3 (arousal and behavioral awakening, respectively) generally were

associated with much larger changes in the computer averages.

One EEG change which tends to be relatively consistent however,
even for responses scored O and 1 visually, is the slight increase in
the level of Beta activity found in the computer output., This increase
in Beta activity may account for the small average increases in ''cortical

15 although on the basis

desynchronization" reported by LeVere, et al.,
of their reports it is difficult to discern exactly what electrical param-
eters may account for the changes they reported. Be that as it may,

there is some question about the significance of small changes in Beta

level (or of changes of less than one sleep stage as reported by LeVere,

et al,) upon the physiological or psychological well-being of humans.

That the physiological or functional significance of the electrical
- patterns emanating from the brain are only poorly understood is a gener-

ally held belief., The results of this study tend to confirm the belief.

40



Although the responses of the subjects to the noise can be classified
by visual inspection of the record, the present data indicate there is
little correlation between that visual analysis and its underlying elec-
trical activity, at least in terms of the so-called Délta, Theta, Alpha,

and Beta components as they were averaged in this study,

This generally low correlation cannot be accounted for by unreli-
ability in visual scoring since scoring reliability typically ranges
from about 75 to 95 percent,14)16)17 and have been at the upper levels

particularly after the standardized scoring manual® was introduced.

It may be that the "'skirts' (see the 3-dB downpoints shown in Figure
4) of the filters used to distinguish among Delta, Theta, Alpha, and
Beta activity, were relatively wide, thus allowing a-relatively intense,
single frequency in a particular band to stimulate the adjacent bands.
However, it is equally true that greatest output will be found in the
filter tuned to that frequency (providing, of course, that the frequency
of interest is not at the point at which two skirts coincide); and if
a particular sleep stage is defined by some electrical activity, in the
aggregate that stage should show peaks in the defining frequency band,

as illustrated in Figure 5.

Alternatively, the integration times for fhe filtered outputs used
in this study may be inconsistent with tﬁe way humans score the EEG,
If, for example, while a subject was in sleep stage 2, the response to
a noise included (1) an increase in the EMG level, (2) several seconds
of Theta activity, and (3) other "'mixed frequency' activity, the human
scorer may note a stage change of one step, i,e,, to sleep stage 1.
However, the electronic system used in this study would average that
relatively brief change with all of the other activity occurring during
40 seconds. It seems unlikely, at least under the conditions described,

that the electronic system would produce an average which reflects the
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important transitional characteristics of the written EEG record that
can be seen by the human eye. In contrast, Responses 2 and 3 (arousal
and behavioral awakening), which in the written EEG are characterized
by high-amplitude mixed-frequency activity of durations exceeding 40 s,
were clearly discernible in the computer output from the baseline levels
of any sleep stage. This observation supports the argument that a 40 s
integration time is too long to detect the low amplitude and transitory

changes that characterize changes of sleep stage,
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VI CONCLUDING REMARKS

Because of the small number of subjects and types of noises studied,

the conclusions presented below should be considered tentative at this

time.

(1)

(2)

These tests indicate that for equivalent sleep disrup-
tion (i.e.,, no electroencephalographic response) the
level of the noise from the untreated jet engine must
be about 6 dBA less than the noise from the treated
engine, Inasmuch as the landing noise from the treated
aircraft is about 10 dBA less (estimated from Ref. 3)
than that of the untreated aircraft performing the same
operation, the treated aircraft should cause much less
(perhaps 1/2) disturbance to sleep under similar land-
ing operations than would the untreated aircraft,

Predictions of the effects of noise on sleep appear
to attain the highest accuracy when the physical
descriptor of that noise includes information about
the "impulsive' characteristics of that noise as well
as its more long-term spectral content.
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