N7%-27/70

NASA CONTRACTOR NASA CR-2263

REPORT

NASA CR-2263

THE RADIATION FROM
APERTURES IN CURVED SURFACES -

by P. H. Pathak and R. G. Kouyoumjian

Prepared by

THE OHIO STATE UNIVERSITY
ELECTROSCIENCE LABORATORY
Columbus, Ohio 43212

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <+ WASHINGTON, D. C. o JULY 1973



1. Report No. _ 2. Government Accession No. 3. Recipient’s Catalog No.
NASA (R-2263
4, Title and Subtitle 5.[ Repoh Date
" July 1973

THE RADIATION FROM APERTURES IN CURVED SURFACES 6. Performing Organization Code

7. Author(s) ’ : 8. Performing Organization Repori No.

P. H. Pathak and R. G. Kouyoumjian

10. Work Unit No.

9. Performing Organization Name and Address

The Ohio State University .
FlectroScience Laboratory 11. Contract or Grant No.
 Columbus, Ohio U3212 : NGR 36-008-1k4k

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor

National Aeronautics and Space Administration

Washington, D.C. 20546 14. SDOHS_OFing Agency Code

15." Supplementary Notes

16. Abstract

In this report the geometrical theory of diffraction is extended to treat the radiation from
apertures or slots in convex, perfectly-conducting surfaces. It is assumed that the tangential
electric field in the aperture is known so that an equivalent, infinitesimal source can be defined
at each point in the aperture. BSurface rays emanate from this source which is a caustic of the
of the ray system. A launching coefficient is introduced to describe the excitation of the
surface ray modes., 1If the field radiated from the surface is desired, the ordinary diffraction
coefficients are used to determine the field of the rays shed tangentially from the surface rays.
The field of the surface ray modes is not the field on the surfacej; hence if the mutual coupling
between slots is of interest, a second coefficient related to the launching coefficient must be
employed. In the region adjacent to the shadow boundary, the component of the field directly
mdiated from the source is represented by Fock-type functions. In the illuminated region the
incident radiation from the source (this does not include the diffracted field components) is
treated by geometrical optics. This extension of the geometrical theory of diffraction is applied
to calculate the gadiation from slots on elliptic cylinders,spheres and spheroids.

17. Key Words (Suggested by Author(s)) ' 18. Distribution Statement
Aircraft antennas, diffraction theory
analysis, computerized antenna design. Unclassified

19. Security Classif. (of this report) ) . 20. Security Classif. {(of this page) 21. No. of Pages 22, Price”
Unclassified Unclassified 79 $3.00

.For sate by the National Technical Information Service, Springfield, Virginia 22151




II.

ITI.

Iv.

V.
Appehdix
I.
II,

ITI.

REFERENCES

TABLE OF CONTENTS

INTRODUCTION

THE GTD FORMULATION

THE PARAMETERS AND TRANSITION FUNCTIONS
PATTERN CALCULATIONS

CONCLUSTIONS

DETERMINATION OF THE LAUNCHING COEFFICIENTS
THE FIELDS IN THE TRANSITION REGION

THE FIELDS AT AN AXIAL
CAUSTIC OF THE DIFFRACTED RAYS

iii

Page

14
26
45

46

63

71
76



I.  INTRODUCTION

The radiation from slots and slot arrays in smooth, curved surfaces
is pertinent to the design of flush-mounted antennas for high-speed
aircraft and spacecraft. In this report the geometrical theory of
diffraction (referred to simply as the GTD henceforth) is extended to
treat the radiation from apertures in convex, perfectly~conducting
surfaces. The GTD was introduced by Keller[1] as a systematic extension
of classical geometrical optics to describe the diffraction phenomenon
in terms of rays. Diffracted rays, similar to the ordinary rays of
geometrical optics, are introduced to describe the propagation.of the
diffracted field; these diffracted rays are determined by an extension
of Fermat's principle. Within the shadow region the geometrical optics
fields are zero, and the diffracted rays alone account for the field.
Diffracted rays are produced whenever an incident ray strikes a smooth
surface at grazing incidence, or strikes an edge, corner, or a tip of
a scattering object. At sufficiently high frequencies the excitation of
the diffracted field is a local phenomenon; the diffracted field is related
to the incident field by one or more diffraction coefficients, which are
functions of the boundary conditions and the local geometry at the
point of diffraction. Conservation of power in a strip of rays on the
surface is employed to deduce the behavior of the surface ray field; this
introduces attenuation constants as parameters. . Expressions for the dif-
fraction coefficients and attenuation constants are found from asymptotic
high frequency solutions to pertinent canonical problems or by boundary
layer techniques. Away from the diffracting surface the behavior of the
diffracted field along its ray path is the same as that of the geometrical
optics field. The GTD is a high frequency approximation, which is asymptotic
in the sense that the accuracy of the approximation generally improves as
the frequency increases.

‘Surface diffracted rays are also produced by apertures or slots
in smooth curved surfaces; however, the excitation of these surface
diffracted rays cannot be described by the curved surface diffraction
coefficients alone as we do for the problem of scattering by a smooth,
curved surface. It is therefore necessary to extend the GTD technique
to treat the excitation of surface diffracted rays by apertures; we
have achieved this extension by introducing launching coefficients
which relate the excitation of the surface diffracted rays to the aperture
distribution. If the field radiated from the surface is desired, the
ordinary curved surface diffraction coefficients are used to determine
the field of the rays shed tangentially from the surface rays; this
field accounts for the radiation field in the shadow zone of the
slot (aperture) in a smooth curved surface. In the region adjacent to
the shadow boundary (which divides the region of space surrounding the
antenna geometry into the illuminated region and the shadow region), the
component of the field directly radiated from the source is represented
by Fock-type functions. In the illuminated region the incident radiation
from the source (this does not include the diffracted field components
which may be present if the curved surface is closed) is treated by



geometrical optics. Usually, these solutions blend smoothly so that a
continuous total field is obtained in the entire region of space
surrounding the curved surface.

Qur reason for using the GTD method stems from the significant
advantages to be gained; namely

a) it is simple to use, and yields accurate results;

b) it provides some physical insight into the radiation
and scattering mechanisms involved;

c) it can be used to treat problems for which exact
analytical solutions are not available; and

d) it can be extended in a straightforward manner to

~ treat the mutual coupling between apertures.

The extension mentioned in d) is achieved by introducing an attachment
coefficient (related to the launching coefficient) which converts the
field of the surface diffracted rays to the surface current (the field
associated with the surface diffracted rays is not the field on the
surface). This extension will be the subject of a later report. Even
though the GTD is valid for high frequencies, it is surprisingly
accurate in a number of cases for lower frequencies; the latter is
shown to be true. for some of the examples presented in this report.
Also we note that as a ray optical technique the GTD is consistent with
the reciprocity principle for electromagnetic fields.

Sensiper[2] and Wait[3] have given asymptotic high frequency
solutions for the radiation from slots in conducting circular cylinders. -
Belkina and Weinstein[4] have obtained asymptotic high frequency results
for the radiation from slots in conducting spheres. However, none of
these earlier results[2,3,4] were cast into the GTD form, and hence their
solutions could not be directly extended to treat the radiation from slots
in arbitrary convex conducting surfaces. One could use Fock theory
and reciprocity to find the radiation field of apertures[5]; however,
this method cannot be extended to determine the mutual coupling between
‘apertures. Furthermore, the results given in [5] are not as accurate
. as the ones presented here. Balanis and Peters[6] have analyzed the
radiation from slots in conducting cylinders by using the GTD; their
approach is different from ours and is based on an approximate combination
of wedge diffraction theory and surface ray theory. However, their results
do not yield a continuous pattern across the shadow boundary unless they
include higher order multiple diffraction between edges. Even with this
included, the pattern still has some error near the shadow boundary,
although it is continuous.

Section II describes our extension of the GTD to analyze the
radiation from apertures in arbitrary convex conducting surfaces.
Expressions for the parameters and special functions involved are given
in Section III. Applications of the theory to treat the radiation from
slots in elliptic cylinders, spheres and spheroids are presented in



Section IV, where the numerical results obtained are compared with
calculations based on rigorous solutions and with measurements.

II. THE GTD FORMULATION

The following development, based on the GTD, is heuristic.
Physical arguments are used; ray trajectories are deduced from a
generalized Fermat's principle, the variation of the field amplitude
along a ray path is found from power conservation in a tube (or strip)
of rays, and the diffraction and excitation of waves are treated as
local phenomena. The validity of the GTD has been established through
its application to a wide variety of antenna and scattering problems,
and its present application is tested on certain canonical problems,
which also yield the unknown parameters of the GTD solution.

Consider the radiation from a slot or aperture in a curved,
perfectly-conducting surface where the external medium is free space.
The electric field at a point Q' in the aperture is E(Q'); it is assumed
that the tangential component of this field is known. The magnetic surface
current associated with the aperture electric field is ~

M K (Q') = E(Q') x n’

in which n' is the outward directed unit normal vector to the aperture
surface at Q'. The infinitesimal magnetic current moment

() Q") = K,(Q')da

radiating in the presence of the perfectly-conducting surface, which
covers the aperture as well, is the equivalent source of the electric
field dE(P) at P in the region exterior to the surface; here da is an
area element at Q'. It will be shown how the geometrical theory of
diffraction may_be used to calculate the incremental field dE(P). The
electric field E(P) is then found by integrating over the aperture A
shown in Fig, 1. '

Fig. 1. The equivalent source in the aperture A,
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According to geometrical optics the region exterior to a perfectly-
conducting surface with a magnetic current moment at Q' is divided into
an illuminated region and a shadow region by a plane tangent to the
surface at Q'. This plane is referred to as the shadow boundary. A
portion of these two regions adjacent to the shadow boundary is a
transition region. The angular extent of the transition region is of
the order (kp ) -1/3 in radians; pq is the radius of curvature of the
surface at Q' in the direction of the field point. The three regions are
depicted in Fig. 2. We will describe how the high-frequency far-zone
field may be calculated in the three regions. Let us begin with the
field point Py in the shadow region (see Fig. 5).

A.  Shadow Region

The equivalent magnetic current moment K da' at Q' excites waves
which propagate along ray paths to the field po1nt P; according to the
generalized Fermat's principle proposed by Keller, the distance between
Q' and P is an extremum (generally a minimum) on a ray path. With the.
field point at P3 in the shadow region, see Fig, 2, it is evident that
a part of the ray path which minimizes the distance between Q' and P3
must lie on the perfectly-conducting surface, where it is a geodesic.
In the case of simple surfaces such as the spherical surface, the
~ cylindrical surface, the conical surface and the plane surface the
geodesics are known and they are easy to describe; otherwise they can
be found from the differential equations for the geodesic paths, which
is a formidable but straightforward exercise; see Reference [25].

Now let us consider the behavior of the field associated with the
surface ray (which we will henceforth refer to as the surface ray field):

il

-kt
(3) a(t) = A(t)e ° )

-in which A(t) is real, t is the distance along the surface ray, ¢¢ is

" the phase ‘at t=0, and a time dependence of eJwt is assumed and sup-
pressed. As it propagates along a geodesic on the curved syrface, the
energy flux associated with this field is proportional to AZdn, where
dn is the infinitesimal distance between adjacent surface rays. It is
assumed that the energy flux between adjacent surface rays is conserved,
It follows from the generalized Fermat's principle that the surface ray
sheds rays tangentially as it propagates; thus energy is continuously
lost from the surface ray field, and it is attenuated. This may be
expressed as

(4) S (A%dn) = - 20(A%n),

where o is the attenuation constant. The above equation is readily
integrated between to and t to give the surface ray field
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t
[k (tty)+[ "alt)dt']

dn(t ) tO

(5) a(t) = a(t)) _TTXTJ- .

This expression must be modified when there is a caustic due to a
point source on the surface at Q', where t=0. For tg small dn(ty) =
todyg, where dyo is the angle between adjacent surface rays, see Fig. 3.

anlto
VYo

Q
\/‘o
Fig. 3. The surface ray configuration close to a point source.

Moreover, a(t) must be independent of ty; hence 1lim a(to)]E;'ex1sts
as ty»0 and we define it to be C'. It Folloms then that

t
G Lkt s J o (t)dt']
(6) a(t) = ' lwe ° .

The constant C' is proportional to the strength of the source at Q'. To
facilitate the discussion Qf the vector source dpy it is desirable to
introduce the unit vector n which is normal to the convex surface at

Q and the unit vector t which is tangent to the surface ray at Q, see
Fig. 4. A similar pair of unit vectors n' t! may be defined at Q'.

In addition, the unit vectors b=-nxt and b' -n'xt' are defined at Q and
Q', respect1ve]y. For the sake of simplicity, the following development
is restricted to surface rays with zero torsion.

The source dp, may be resolved into components parallel and
perpendicular to twe surface ray of interest at Q'. For surface rays
with zero torsion, it is assumed that these two components induce surface
ray fields which propagate independently of each other along the

geodesic arc between Q' and Q. First let us consider the surface ray
field excited by the component of the source b . Pms which is
perpendicular to the surface ray. (6' = b when the tors1on vanishes).

From canonical problems, it is found that b . dpm excites an infinity
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Fig. 4. Diffraction from a source Q' on a convex surface,

of surface ray modes, and that the electric field of each of these modes
is perpendicular to the surface. It follows from Eq. (6) that this
electric field

e+ [F QM)
o Gy Lkt + fo an(t!)dt’]
(1 A dE0) = gle ,

where cx'h is the attenuation constant of the pth mode for the hard
boundary condition, where the normal derivative of the field vanishes
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at the surface.* The superscript h on a quantity denotes that it is
associated with the hard boundary condition. The point Q is at a
distance t from 8' measured along the surface ray. The constant Cé is
proportional to b . dpp. The constant of proportionality is C LD, "where
Lh is referred toas a launching coefficient and C is a convenieﬁtly
chosen constant which is independent of p, so

. r h 1 " N 1
(8) ¢y = CLp(Q') b - i (@)

We can now find the electri¢ field of the pth mode diffracted
from Q toward P3; this field is n directed. From Fig. 4 it is apparent
that the convex surface is the locus of one of the caustics of the
diffracted rays. The other caustic is at a distance of p from the
surface, as shown in the figure. From the geometrical theory of dif-
fraction '

A = - | -Jjks
(9) n . dEp(P3) Kp’ ETEE)' e R

where s is the distance between Q and P3 and «p is a constant pro-
portional to n - dE;(Q). In this case the constant of proportionality
is Keller's diffraction coefficient for the high-frequency diffraction
by a curved surface; hence

(1)« = 0h(@) A - dER(Q).

In the present development we are interested in the far-zone
field where s >> p. Combining the results of Eqs. (7), (8), (9), and
(10) and summing over the modes of the surface ray field, the electric
field at P3 due to the component of dp, perpendicular to the surface
ray is

. _ " _ e-jks
(1) R dE(P) = C B - dpp(Q') F(Q',Q) &
in which
. t h
R -[jkt+J0ap(t')dt']
' _ 0 1 ;

where dy = dn/p is the angle between adjacent rays at Q.

*This approximation of the hard-boundary condition for electromagnetic
"waves is adequate for the present discussion. A more complete treat-
ment is given in Section IIIA.



Next Tet us consjder the surface ray field excited by the com-
ponent of the source t' . dpy parallel to the surface ray of interest.
This electric field is again perpendicular to the surface ray, but also
tangent to the surface. In this case it is clear that the surface ray
field does not represent the actual field at the boundary, since it
must vanish there. The precise nature of this field in the boundary
layer is unimportant, because the field is merely a convenient artifice
to relate the field at Q to the source. The surface ray field does
not appear in the final expression for the field at P3.

Following the development used to treat the b'-component of the
source, one obtains

. _ R _ -Jjks
(13) b . dE(Py) = Cc T - dp (") G(Q',Q) &

as the b component of the electric field at P3, where

t
- -[jkt+J oS(t)dt']
Vo 0P
08 6@ =gt [ BN e
. p=0

in which a , » and D are the attenuation constant, launching coef-
ficient and d1¥fract1on coefficient of the pth mode for the soft boundary
condition, where the field vanishes at the surface.

{ {
One may combine Eqs. (11) and (13) to obtain the far-zone field
at P3 due to the magnetic current moment dp at Q'

- A A -Jks
(15) . dE(P4) = C dp,(Q') - [Bn F(Q',Q) + t' B 6(Q",Q)] T~

The attenuation constants, launching coefficients and diffraction
coefficients which appear in the expressions for F and G are found
from the asymptotic solution of canonical problems. The constant
C also may be found from these solutions. The preceding discussion
does not take into account the effect of surface ray fields which have
encircled a closed surface ¢ times. The inclusion of these fields is
straightforward; one only needs to sum a power series in g, where the
phase jumps at any caustics which have been crossed in an encirclement
are taken into account. Since this phase jump equals =/2 each time
the caustic is crossed, it is easily taken into account by introducing
a factor of j. Usually the contribution from the multiply-encircling
waves is insignificant, unless the closed ray path is a few wavelengths
or less. Also, in the case of a closed smooth surface there is generally
diffraction from two points toward the field point; these are shown as
points Q1 and 02 in Fig. 5.

9
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If the field point occurs at a caustic of the diffracted rays,
so that infinitely many diffracted rays pass through P3, the geometrical
theory of diffraction solution fails. However, it may be supplemented
by an appropriate integral representat1on of the field, where the
geometrical theory of diffraction is used to determine the equivalent
sources of the integral representation. This is described in Appendix III.

B. Transition Region

The series representations for F and G in Egqs. (12) and (14) are
rapidly convergent when the field point is deep in the shadow region.
Usually only the first few terms are required to achieve reasonable
accuracy, when the radii of curvature of the surface are larger than
a wavelength or so. However as P3 moves toward the transition region
more terms must be added to maintain accuracy. As the field point
moves into the transition region, the point Q approaches close to Q'
and it is no longer desirable to treat the excitation, propagation and
diffraction of the different surface ray modes separately. As a result,
the series representations for the functions F and G are replaced by
integral representations, and these functions are found to be pro-
portional to the Fock functions used to describe "creeping waves" in
the asymptotic theory of plane wave diffraction by curved surfaces.
From the viewpoint of reciprocity this result is to be expected; more
will be said about this later.

Also as Q approaches Q', one notes that

dy
2571,

dy

The ray confwgurat1on for a closed surface is shown in Fig. 5.
The field of the ray Q'P» is calculated from the integral representations
of F and G; on the other hand, ray Q'QiP2 is seen to have a considerable
excursion on the surface and so the field of this ray is better calculated
using Eqs. (12) and (14).

C. Illuminated Region

If the field point is at P] in the illuminated region, the
radiation from the source at Q' propagates along a straight line to Pj.
According to geometrical optics, the electric field at P71 due to the
magnetic current moment dpm at Q' is

' -Jks
(16) B =& Sxd ()&,

where s is a unit vector directed from Q' to Py, as shown in Fig. 6.
This equation may be written in a form similar to that employed when

IR



the field point is in the shadow and transition regions, see Eq. (15);
we proceed as follows.

Fig. 6. An incident ray in the
illuminated region.

First let us define a plane of incidence which contains S and n',
the unit vector normal to the surface at Q'. The unit vectors associated
with the field, which are normal to the ray Q'Py and parallel and
perpendicular to the plane of incidence are n and b, respectively. The
unit vectors associated with the source, which are tangent to the syrface”
at Q' and parallel and perpendicular to the plane of incidence are t'
and b, respectively.

It follows from Eq. (16) that
-JkS

(17) dE(P;) = C dp_(Q') - [bn2+t b2 cose] —
in which cose = n'-s. From the equation above we see that
(18a,b) F =2 —and G = 2coss

according to geometrical optics. This approximation is found to be
reasonably accurate deep in the illuminated region where

0 <3 - [kog(Q)T -1/3,

It joins smoothly with representations for the transition region, which
are described in the next chapter. A

12



In the case of the closed surface shown in Fig. 5, the fields of
-the rays emanating from Q' and subsequently diffracted from the points
Q1 and Q2 are also included in the calculation of the field at Pj. These
fields would be calculated from Eqs. (12), (14) and (15).

It was noted earlier that ray optical approximations satisfy

“the reciprocity principle. This can be confirmed for the solution just
described. Let H(Q',P) be the magpetic field at Q' on the surface due
to a unit magnetic current moment u at the exterior point P, This
field can be found from an asymptotic solution of the diffraction
problem posed by the perfectly-conducting curved surface. Let H(P,Q')
be the magnetic field at P due to the differential magnetic current
moment dpm at Q'. According to the reciprocity principle,

(19) u - H(P,Q') = F(Q',P) - dp .

It is found that expressions for the u-component of the magnetic field
determined from the above equation are the same as those found from our
application of the geometrical theory of diffraction. This checks the
present development and shows that it is consistent with the reciprocity
principle.

D. Two-Dimensional Geometries

The preceding development is easily modified so that it can be
applied to 2-dimensional geometries involving infinitely long axial
slots in the surfaces of perfectly-conducting cylinders. The tangential
electric field in these slots may be axial E; or transverse Et, or a
linear combination of the two. Thus two types of infinitesimal elementary
sources at Q' are of interest: a line of axial magnetic current

(20) M, (Q') = % t' . dE(Q")dt"

which is an ordinary magnetic line current flowing parallel to the z
axis, or a linear distribution in the z-direction of magnetic current
elements which are transversely directed,

(21) dM,(Q') = b . dE(Q')dt?

Note that b 512 here and dt' is an infinitesima] circumferential distance
at Q'. In each case the upper sign is used if t is directed in the
clockwise sense, the Tower sign is used, if in the counterclockwise
sense.

13



Many 2-dimensional problems of this type have been treated
rigorously, so they may be used to check the accuracy of our GTD
solution. Moreover, where asymptotic solutions exist, they may be
used as canonical problems from which the parameters of the GTD
solution can be found. Also such geometries are of interest, because
their patterns are the same as those of finite axial and circumfer-
ential slots in cylinders, when the patterns are calculated in the
symmetry plane perpendicular to the axis of the cylinder.

The surface rays emanating from the line source excitation are
parallel so

dy

(22) -dw—°= 1

in Eqs. (12) and (14), and the amplitude variation along the ray shed
tangentially from the surface ray to the field point is s-1/2, In
general :

(23) dif = zdM, + t'aM,,-

consequently, the two-dimensional form of Eq. (15) is

-jks

(24) dE(P.,) = ¢ dM-[bnF(Q', t'b 6(Q',Q)] &
3 n Q) + (Q',Q)1 vg_ ’

in which the normalizing constant C may be expected to have a value
different from that in Eq. (15). Both values of C are found from the
solutions of canonical problems, and b = ¥ z as noted earlier.

III. THE PARAMETERS AND TRANSITION FUNCTIONS

Expressions for the diffraction coefficients, attenuation con-
stants and launching coefficients used in Egs. (12) and (14) are
given in this section along with the integral representations for
the functions F and G employed in the transition region. The manner
in which these integral representations transform to the geometrical
cptics field and the residue series used in the illuminated and
shadowed regions is discussed.

A. Diffraction Coefficients and
Attenuation Constants

The diffraction coefficients and attenuation constants depend
on the local geometry of the surface, the wave number k, and the nature
of the surface as described by the boundary conditions. Keller and
Levy[7] have given the first order terms in the expressions for the
diffraction coefficients and attenuation constants. However, before
we present -their results, it is desirable to examine the terms "soft"
and "hard" boundary conditions mentioned in the preceding chapter.

14



This terminology is borrowed from acoustics. A soft boundary
is one where the pressure field vanishes at the surface; it is also
referred to as a Dirichlet boundary. On the other hand, a hard
boundary is one where the normal derivative of the pressure field
vanishes at the surface; this is also referred to as a Neumann boundary.
Two types of surface ray modes have been assumed. For ong type the
electric field is in the binormal direction so that E, = b E,, and
for the other, the magnetic field is in the binormal direction s _
that Hy = b H,, and there is a normally-directed electric field n - Ep.
The binormally directed electric field clearly satisfies a soft or
Dirichlet boundary condition at the surface, whereas the binormally-
directed magnetic field satisfies the boundary condition

oh
oH 1 b -
(25) -a—n- +(}E- -—Aan ) H = 0.

in which hp is the metrical coefficient associated with the unit vector
b. The above boundary condition describes what we will refer to as

a hard EM boundary. At high frequencies the second term is relatively
'small, so that the surface ray magnetic field satisfies a hard or
Neumann boundary condition to a first approximation. Also Eq. (25)
reduces to the hard boundary condition in the case of cylindrical
surfaces where hp = 1. These observations concerning the boundary
conditions are of importance in the paragraphs to follow.

Let pq be the radius of curvature of the surface along which
the surfacé ray is propagating in the plane containing the normal to
the surface and the tangent to the surface ray. As mentioned earlier,
Keller and Levy[7] have used first order asymptotic solutions for the
diffraction of acoustic (scalar) and electromagnetic waves to deduce
the attenuation constants and diffraction coefficients. For these

canonical problems °q = a, a constant. According to Keller and Levy

s T
s _1 (kay1/3 . %6

[DS ]2 _ e-j_.lﬂ7 a]/z
P 220 e (k) O it (-q ) TP

(27)

for the soft surface, and

J'l
= 1 (kay1/3 = V6
_6(2) qe

(28) b

dop

15



T
_J-_.
12 a1/2

(29) [0 T = =7 e
P PO g AT

for the hard surface, where the Miller-type Airy function[11] is given by

Reel

(30) Ai (-x) = %—jo cos (1t%-xt) dt,

(31) Ai(-qp) 0,

(32) Ai'(-qp)

0,

and the prime denotes differentiation w1th respect to the argument of
the function.

Voltmer[9] employing the same canonical problems as Keller and
Levy, obtained attenuation constants and diffraction coefficients of
improved accuracy by retaining higher order terms in the asymptotic
solutions. Voltmer's results are presented in Table I, where it is
seen that the corrections to the attenuation constants and diffraction
coefficients are of order (2/ka)l

The first order approximations given by Eqs. (26) to (29) do not
depend on whether the surface is cylindrical or spherical or on whether
the wave is acoustic or electromagnetic. From Table I it is evident that
this is no longer the case with the more accurate formulas. However
an explanation of these second order differences is best accomplished
after examining the high frequency diffraction by a more general
surface, i.e., a surface of variable curvature along the ray path or
of arbitrary curvature transverse to the ray path.

Keller and Levy[15], Franz and Klante[21], Hong[10] and Voltmer[9]
have considered the high frequency diffraction by general convex
surfaces. Hong has obtained asymptotic solutions to the integral
equations for the plane wave diffraction by a hard acoustic surface
and the plane wave diffraction by a hard EM boundary. Voltmer has
extended this work to soft boundaries, which are the same for acoustic
and EM waves as we have noted. The solutions were carried out to
second order, and they are functions not only of pq, the radius of
curvature of the surface with respect to arc 1engtﬁ along the ray
trajectory, but also pg, Bg and ptp, where the dot denotes a derivative
with respect to arc length along the ray trajectory and pgn is the radius
of curvature of the surface in the direction of the binormal to the
ray. Expressions for the attenuation constants are evident from the
solutions; these are tabulated in columns C and D of Table II. On the
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other hand, complete expressions for the d1ffract1on coefficients can

not be obta1ned from these solutions, because pg is assumed to be zero

at the po1nt of incidence on the surface, where the diffraction coef-
ficient is evaluated. This condition was imposed to simplify the
pertinent integral equations. The best available diffraction coefficients
(more precisely, the diffraction coefficients squared) are given in
Columns A and B of Table II. The 1ncomp1ete portion of the second

order term is indicated by (.--), it is a function of pg and pg.* In
deriving these results it is assumed that pg/ptn > 15 furthermore as in
the last chapter, it is assumed that the surface rays have no torsion.

It is believed that the attenuation constants and diffraction
coefficients listed in Table II are the best available at present and
that they are adequate for most calculations, even though the expressions
for the diffraction coefficient are not complete to second order. The
improved attenuation constants are very important, because of the
sensitivity of numerical calculations to errors in these parameters;
corresponding errors in the diffraction coefficient are clearly less
important to numerical accuracy.

It is interesting to examine the general behavior of the
attenuation constants and diffraction coefficients listed in Tables
I and II. It is noted that all the corrections to the first order
expressions of Keller and Levy are of order (2/kpg) /3, and so their
importance increases with a decrease in the.radiuS of curvature of
the surface with respect to wavelength. All of the formulas in
Table II reduce to those in Table I for the cylindrical and spherical
surface, which is an important check on the asymptotic solution for
the more general convex surface. The distinction between cylindrical
and spherical surfaces in Table I is not required in Table II, because
the term og/4pty takes care of this difference; og = ptn = a for the
sphere, whéreas p¢n is infinite for circumferential rays on the cylinder.
The formulas for the soft acoustic and soft EM surfaces are the same;
this is expected because the boundary conditions are identical. On
the other hand, the formulas for the attenuation constants and dif-
fraction coefficients associated with the hard acoustic and hard EM
surfaces are different, because the boundary conditions at the two
surfaces are different.

B. Launching Coefficients and Constants

The launching coefficients have been defined in Eqs. (8) and (14).
To determine the launching coefficients the radiation from a magnetic
current moment on a perfectly-conducting sphere and the radiation from
magnetic current line sources on cylindrical surfaces have been
analyzed. The asymptotic solution of these canonical problems and

*The pq and p, terms in the diffraction coefficient will be the
subject of a“future investigation.
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their ray optical interpretation is described in Appendix I, where it
is found that for both cylindrical and spherical surfaces

s pam1/2 ,(2) s
(33) Ly = - (3k3) va (ka) D7,
h o pam1/2 4(2) h
I L O £

where vp are the zeroes of the Hankel function in the first equation
and the zeroes of the derivative of the Hankel function in the second
equation. It is apparent that the relationship of the launching
coefficient to the diffraction coefficient does not depend on the
surface curvature transverse to the ray direction. For this reason,
one may assume that : :

2m

T . .
Ji5 q, J
g 9

s <
(35) Lp

N

(3) L) =e ‘2<2nk)‘/2(k§—g)‘/3m(-qp)[1 + (T(%)ZBTE' e’ ]Dg

These expressions for the Taunching coefficients, where Dg and DB are
obtained from Table II, are the best available at present. It would
- be desirable to .solve a canonical problem where the magnetic current
moment or line source is on a surface of variable curvature as a
further check.

From Eqs. (A-26), (A-36) and (A-59) in Appendix I it is found
that the constant ' ‘

: ) 5 for 3-dimensional problems, see Eq. (15)
37a,b C=

for 2-dimensional problems, see Eq. (24) .

Jenc

. We note that C also could have been found from the geometrical optics
expressions, i.e., from Eqs. (16), (17) and (18) for the 3-dimensional
geometries, and from Eqs. (24) and (18) for the 2-dimensional geometries.
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C. Integral Representations for the Transition Region

In the transition region which exists on either side of the
shadow boundary, an integral representation for the field is necessary
because the series representation for the F and G functions becomes
poorly convergent; this integral representation yields a smooth trans-
ition for the radiation field from the shadow region, where the surface
ray modes are employed, to the illuminated region, where the geometrical
optics field is used. As mentioned earlier, the angular extent of
the tr?nsition region on each side of the shadow boundary is of order
(kpg)‘ /3, The expressions for the fields in the transition region
are also deduced from the asymptotic solutions to appropriate canonical
problems as described in Appendix II, and it is pointed out there that
a first order approximation is usually adequate in the transition region.

The integral representations for the field in the transition region
can be expressed in terms of the well-tabulated Fock functions[22]:

1) hard Fock function

_ .l._ e'jTE
(38) g(e) —J;r_ JF]W{(T—)— dr,

2) soft Fock function

1 eJtE

(39 g(g) = — dr,
) g(g) J-_TTJF] W

which are described in Appendix II.

Consider an infinitesimal portion of a surface ray on a perfectly-
conducting surface of variable curvature. It follows from the. work
of Fock[23], Wetze1[24] and Goodrich[5] that the variation of the field
over this ray increment dt, and hence the variation of g(¢) or a(g),
behaves as though the surface were locally that of a cylinder or sphere,
with a radius equal to that of the local radius of curvature in the :
direction of the ray Pg* Hence

(40a,) F =g F or LT F

where
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ko
(@) f = D7

g
which is deduced from Eq. (A~71) after noting that ady = dt.

S

Generalizing F and G as given by Eqs. (A-79) and (A-92) in this
manner for the 2-dimensional case

(42) F = g(g) e Ikt
(43) 6= (e "? Bor(nedkt
g
in which
ity kegqays.,
(44) & -JO o (e

follows from Eq. (41) and t is the distance between Q and Q', see
Fig. 4.

"g, t > 0 when the field point is below the shadow boundary in the
shadow region, and ¢, t < 0 when the field point is above the shadow
boundary in the illuminated region, as shown in Fig. 7. When the
field point is in the illuminated portion of the transition region,
one visualizes the surface ray as traveling from its source at Q' to
Q1, where it sheds tangentially back toward P. The Q' Q7 P ray path
does not obey the generalized Fermat's principle and therefore it is
a pseudo ray system, but it does serve as a useful coordinate system to
calculate the field at P in the illuminated part of the transition
region.

The funbtion’f(t) appearing in Eq. (43), is given by

1 . -'|<ﬁ'-§10

(45) f(t) =<

ﬁl
(—2 )”3jt]—(
\ kpgztj Opg

s 0_<_ﬁl0.5<] .

x
N} © jny

)]/3 dt’

The introduction of f(t) into Eq. (43) gives us -an algorithm for
calculating the field in the transition region; furthermore this fie]d
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joins smoothly with the geometrical optics field deep in the illuminated
region. The accuracy of the algorithm has been confirmed by applying

it to a number of examples. f(t) reduces to Eq. (A-93) for surfaces of
constant curvature, i.e., the cylinder and sphere.

Fig. 7. An equivalent ray system for the field calculation
in the illuminated part of the transition region,

In the case of 3-dimensional geometries
r

’dw s
# EEQ'Q(E)G Jkt » t >0, shadow region
(46) F = ikt
g(gle s, t =<0, illuminated region
\
p
| Yo (2 3173y -kt
T 0—-(-y) g(g)e™**, -t > 0, shadow region
(47) G = 9

2 3 -jkt . . .
- (FE—Tf7)]/ §(e)f(t)e™ ", t <0, illuminated region

L g

where £ is given by Eq. (44), and the factor dyy/dy is defined in Section
I, see Figs. 3 and 4. In Fig. 4 recall that pdy = dn. This factor
measures the change in angle between adjacent surface rays as they
propagate from their source point to the point of diffraction Qq

If dyo/dy > 1 the surface rays converge and if dyg/dy < 1, they a1verge.
dyo/dy is a function of both the ray and surface geometrles, it may be
found by using differential geometry.
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At first glance it may seem strange thatJ dyg/dy is not included
in the expressions for the illuminated region. This may be explained
with the aid of Fig. 7, where it is seen that the surface divergence of
the rays emanating from the source to the point Qp is compensated by
the subsequent convergence of the rays shed from Q] to the field point
P in the far-zone.

Equations. (42), (43), (46) and (47).also may be joined in the
transition region with the corresponding surface ray mode expressions
for F and G, see Eqs. (12) and (14). Noting that the former equations
are a first order asymptotic approximation, whereas the surface ray mode
expressions are approximated roughly to second order here, one would
expect small differences in the values calculated from the two repre-
sentations in their common domain of validity; however these differences
should not exceed a few tenths of a dB in most cases. Deep in the
shadow region the surface ray mode expressions are definitely to be
preferred.

The following summary of formulas is presented for the con-

venience of the reader. It also facilitates the discussion in the
next section.

b = [kog(Q") T3

in which pg(Q') is the curvature of the surface at the source Q' in the
direction of the surface ray.

(a) Three-dimensional problems:

(2) dp, (') = [E(Q") x n'Ida’, ‘
(15) dE(P) = 3K 4p (@') - [Bn F+Ebal E-jks
: 4r pm ~ S .
(b) Two-dimensional problems:
T~ o g
(23) dM = z dMZ +t th,
-keaz- = ~ PSSP
(24) dE(P) = dM« D nF+t'b G]=
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TABLE III

F G

1. Fy as in Eq. (18a) | 61 as in Eq. (i8b)
0<oc< g-- A
2. Fp as in Eq. (46); | Gp as in Eq. (47);
5= A <8 <5+ alalso Eq (44) also Eqs. (44), (45)
3. : F3 as in Eq. (12); G as in Eq. (14);
%-+ A <8 <q-a&lalso Table II and aiso Table II and

Eq. (36) o Ea. (35)

In application to two-dimensional problems

{dq)
0.
dy
& = 0 unless an axial caustic of the diffracted rays is present in
which case one employs Eq. (A-104) in the region = - 6 < 6 <m, where

§ = (ka)-1/3 in this inequality and a is defined in Fig. 5A.
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IV, PATTERN CALCULATIONS

In this Section, the expressions developed in the previous
secions are employed to calculate the radiation from slots in cylinders,
spheres, and spheroids. In dealing with the radiation from slots in
perfectly-conducting cylinders, we formulate the problem in terms of
its equivalent 2-dimensional representation; as noted earlier the
radiation patterns of 2-dimensional, infinitely-long slots in cylinders
are the same as those of the finite axial or circumferential slots
when the patterns are calculated in the symmetry p]ane perpendicular
to the axis of the cylinder. In the case of a slot in a perfectly-
conducting sphero1d the slot dimensions are assumed to be infinitesimal;
however this is not an essential limitation of the method, since an
extended slot can be regarded as a continuous array of infinitesima]
slots. Furthermore, these examples have been chosen so that the surface
rays excited by the slot traverse geodesic paths with zero torsion;*
this restriction is pointed out in the theoretical development of
Section II. The radiation from slots in cylinders is treated first.

The expressions for F and G may be determined with the aid of
Table III on page 25.

A. Radiation from Slots in Cylinders

A perfectly-conducting convex cylinder excited by a magnetic line
source on its surface Q' is depicted in Fig. 8a. Two kinds.of magnetic
line sources My and M{ are considered; they are the equivalent sources
of an infinitesimal axial slot, whose aperture electric field is in the
circumferential and axial directions, respectively. Sources of this
type have been discussed in Sect1on II, Egs. (20) and (21), and in
Appendix I, part 3. » : -

The GTD formulas for the far-Zéne fie]diof this rad1at1ng system
will be given in its shadow, transition and illuminated regions. The
phase center of the field is chosen to be the origin 0 depicted in
Fig. 8.

*The modifications requ1red of the present formu]at1on when the surface
ray possesses torsion (b'#b) is not well understood at this time;
however Eq. (15) may be applied formally to torsional surface rays by
replacing 5 by b' in its first term. In a number of examples it has
been found that the resulting accuracy is acceptable for practical
purposes; however this can not be asserted for the general case without
further work.
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| T (a)

Fig. 8a. Ray geometry associated with a slot on a cylinder when
P is in the shadow region.

(b)

Fig. 8b. Ray geometry associated with a slot on a cylinder when
P is in the transition region.
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Fig. 8c.

Ray geometry associated with a slot on a cylinder when
P is in the illuminated region.

1. Deep shadow region

The contribufions to the far-zone field at P come from the
diffracted rays shed tangentially from the surface at Q7 and Q2 toward
P, with the result that

(48) E_ = Nﬁe_ MZ[F3(Q',Q])eij].§+F3(Q',02)eij2.S]e-ij
27k

Is .
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T A —_ A
-keJZ- . jk?}-s jkrz-s e-jks
(49) E = —— Mt G3(Q :Q] )e + G3(Q' st)e

z 2 ]2k

where the position vectors of Q; and Q) are ?ﬁ and ?é, respectively,
s is a unit vector in the direction of P, and the approximations

\E ’

(50a) S] S =TS,

(50b) Sp S =Ty S,

valid in the far zone have been employed.

The contribution from rays which encircle the cylinder one or
more times before sheding tangentially from Q7 or Q2 can be neglected
for all but the smallest cylinders with the hard boundary condition.
There it can be taken into account by multiplying each term in the
series of Eq. (12) by T

jknT-nJ Nt )dt!
0P

e =
0

(51)

It~18

n
T, -1
(~ -jkT-J al(t')dt"
0P
1 -e

in which T is the circumference of the cylinder. The contributions from
the field of these multiply-encircling rays were found to be negligible
in the calculated patterns shown in this report.

2a. Transition region (shadow part)

Again the contributions to the field at P come from the diffracted
rays shed tangentially from the surface at Q1 and Q, toward P, as shown
in Fig. 8b, but in this case Q1 is so close to Q' that the series of
surface ray modes associated with this surface ray is poorly convergent
and should be replaced by a Fock representation; hence

i

Iz KT, S jkr, s -iks
(52) E = —X& _ [F @',0,)e |+ F.(Q',Q,)e ° J?—
n ZJEFE. zl 2 1 3 2 f;
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T

Iz jKF -8 jkr,+57 -dks
-ke 1 2 e
(53) E_ = M {—G (Q',Q,)e + G,(Q',Q,)e ]-——

2b. Transition region (illuminated part)

The contribution to the field at P comes from the ordinary
diffracted ray shed tangentially from the surface at Qi toward P plus
the contribution of the pseudo diffracted ray shed tangentially from
Q2, as shown in Fig. 8c. The far-zone fields of the two line sources
are given by Egs. (52) and (53), but it should be noted that t in G2
is the arc length Q' Q], which is measured negatively, thus £ too is
negative.

3. ‘Deep in the illuminated region

Referring to Fig. 8c the dominant contribution to the electric
field at P comes from the geometrical optics field, which propagates
along the direct, straight line path between Q' and P. For the two
magnetic current line sources being considered this is

< T
J7 o~ o
(54) £9-0. _ -ke'4 M ejkr'-s g_?ks )
" Tz Is
. Jr
4 -Jjks
(55) Eg.o. - —ke M, (n 8) eJkr s e’

J2k | s .

From the examples we have treated, it has been found that the
geometrical opt1cs field is S0 closely approximated by the field of
the pseudo ray Q' Q] .

i 1 —_
(56) ks @ o) JKPye8 -dks
(56 E! = M_F Q sQ € —_— ’
n ZJZ—nT( z 2 1 Js
i —
ke ¥ 4 . Jkryes  -Jks
(57) EZ = J_ Mt Gz(Q ’Q] )e —S_ ’

30



thdt in mahy instances the above equations can be used in place of
Egs. (54) and (55) throughout the illuminated region.

In add1t1on to the geometrical optics field there are much
weaker contributions from the fields of the diffracted ray shed tan-
gentially from Qp and the diffracted ray shed tangentially from Q
after travers1ng the surface in a clockwise direction from its source
Q'. These diffracted ray contributions are significant only for the
small cylinders excited by the Mz line source (the hard boundary case).
In summary deep in the illuminated region

(58) E Eg°°+—ij-E-M F,(Q',Q,)
n 2J2 3 >12 €

iKT, .S jkry 8 1 _-jks
2 4 FQ,0)e ! ]e

&5

_ 9.0,
(59) £, = E3-0- |

The patterns of axial slots in circular and elliptic cylinders
have been calculated using the preceding formulas. In each case the
electric field in the slot is circumferentially directed. Some patterns
of an infinitesima]]y thin axial slot on circular cylinders of varying
sizes are shown in Fig. 9. These patterns were calculated from Egs.
(48) and (52); it was unnecessary to use the geometrical optics repre-
sentation deep in the illuminated region. In Fig. 9 the GTD patterns
are compared with those calculated from the exact (eigenfunction)
solution, and it is seen that for ka > 3 there are no significant
differences between the patterns based on the GTD solution and the
patterns calculated from the exact solution. Even for a cylinder as
small as two wavelengths in circumference the error in the GTD pattern
is seen to be small.

The pattern of a narrow axial slot in an elliptical cylinder is
shown in Fig. 10. Eqgs. (48), (52), and (56) were employed to calculate
the GTD pattern; the finite width of the slot (0.34 wavelength) is taken
into account by an array of 5 line sources in the aperture. This
pattern is compared with a measured pattern of the same configuration
in a plane perpendicular to the axis of the slot and cy11nder[6] The
agreement between the measured and calculated values is good, since
the discrepancy between the two halves of the measured pattern about
its plane of symmetry is approximately the same as the differences
between the measured and calculated values. This agreement is grati-
fying because it confirms the accuracy of the GTD solution in an
example where the surface curvature is variable.
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RELATIVE AMPLITUDE

EXACT SOLUTION
e o © FOCK REPRESENTATION
o o o SURFACE RAY _MODES

004
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Fig. 9. Radiation patterns of a thin axial slot in a
perfectly conducting circular cylinder.

The GTD patterns of infinitesimal axial slots at positions of
maximum and minimum radii curvature on an elliptic cylinder are shown
in Fig. 11. As one would expect, the level of the pattern in the
shadow region is much lower for case A, where the elliptic cylinder
tends to block the rearward directed radiation more.
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———— CALCULATED
0° = ———~MEASURED

Ka =21.336
Kb= 8.000
W/ =0.339

180° 150°

Fig. 10. Pattern of an axial slot on an
elliptic cylinder.

B. Radiation From Slots in Spheres and Spheroids

In this section the pattern of an infinitesimal slot in a convex,
finite surface of revolution is considered for the case where the slot
is Tocated on the axis of revolution. However, numerical results are
presented for the spheroid and spherical surfaces only.

The equivalent source of an infinitesimal slot is the magnetic
current moment pp, located at the position of the slot and directed
parallel to its axis. A densely packed array of such magnetic current
moments can serve as the equivalent source of slot of finite size;
a]terna%i\)/ely it could be represented as a continuous distribution as
in Eq. (2).
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Now consider the radiatign from an infinitesimal slot, with the
magnetic current moment ppy = xpm, as its equivalent source, located
on the axis of a convex body of revolution at z = z,, as shown in Fig.
12. From the symmetry of the prob]em, it follows that the radiation
pattern can be comp]ete]y specified in terms of the electric field
pattern E (s,8) in the meridional plane parallel to the slot and the
electric field pattern El(s,e) in the meridional plane perpendicular
to the slot; in other words, in terms of the H- and E-plane patterns.

4‘ P

Z /
Ao/
— A /
Pm=%XPm S
Zg
0 3 ¥

Fig. 12. Infinitesimal slot on the axis of a convex
body of revolution.

Introducing the spherical coordinate system (s,0,§) in the far zone

(60) E(s,0,6) = - ¢ E,(s,0)cos¢ - § E (s,8)sin¢.

The GTD solution for the H- and E-plane patterns parallels the analysis
carried out in the preceding section for the patterns of cylinders

excited by the Mt and M magnetic line sources, respectively, with some
differences:

1) the surface divergence ’aa— must be determined,

2) the product of C and the radial dependence of the far-zone
field is -jk e-Jks/4gs,
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3) there may be a caustic on the ray path,

4) there is a caustic of the diffracted rays .at 6 = = for the
configuration shown in Fig. 12,

Figures 8(a,b,c) may be used to illustrate the pertinent ray trajectories
for the body of revolution by considering the closed curve depicted in
each figure to be the cross section of a body of revolution whose axis
passes through the source point Q'. :

1. Deep shadow region

. ik S ikToes 1 -iks
(61)  E, = :%ﬁ-pm[e3(o',o])e T4 6,000,500 ° ] e

s s

KTy es ikT,+87 _-jks
TR CTRR P :li
S s

(62) ‘EJ, - -i: [F (Q"Q])e

except in the region of the axial caustic of the diffracted rays,
m-A<g<w, where Eqs. (A-105), (A-106) are employed.

2. Transition region

krlos

~ + 36,(0',0,)e

iKFyes 7 _-jks
(63) . E, = _4_ I:G Q' sQ'I Je 2 :I &

. S .

E, has the same form as E, except that F replaces G. Also note
the comments in the preceding section concerning the differences in
the ray paths and the calculation of F and G resulting from the field
point being in the shadow or illuminated parts of the transition region.

3. Deep in the illuminated region

. - - ,, : _I. kY‘
(64)  E, = jk P [Z(Z-S)eJkr + §F (Q',Qz)e | 2
jkﬂ@] g_-jks

+ 3F4(0Q" 50 e -
. S .
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Jkrz'S

jkr]-s]

-jks

m

+ 365(0',0;)e

nl
-

where r' = 2 Zge

In eva]uating'F and G the surface divergence factor must be
determined. For the axially-excited bodies of revolution under study
it is a simple exercise of differential geometry to find d¢0/dw;

¢ P

Fig. 13. Diffracted ray geometry.

Referring to Fig. 13

d

lpO
= P
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where pgn is the radius of curvature of the surface in the direction
perpendicular to the ray, y7 = cos~V(n-z), and p is the caustic distance
at the Q], where the diffracted ray sheds tangentially toward P. Since

(66b) P = P taan,

dy

o._ 1
(66C) _‘P— = COSI,U.l .

E,and E, given in Eqs. (61) through (65) may be substituted into
Eq. (605 to calculate the far-zone field at any aspect. The preceding
expression for E, and E, have been used to calculate the patterns of
infinitesimal slots on perfectly-conducting spheres and spheroids. In
Figs. 14 and 15 the patterns in meridional planes parallel and
perpendicular to an infinitesimal slot are shown in Figs. 14 and 15,
where they are compared with exact values calculated by King and Wu[12].
Although King and Wu actually calculated the currents on a perfectly-
conducting sphere illuminated by a plane wave, their results can be
compared directly with ours through the reciprocity principle. The

GTD patterns are seen to agree very well with the rigorously calculated
patterns; as a matter of fact in Fig. 15, they are seen to be in better
agreement with these patterns, than a pattern calculated from a formal
asymptotic solution given by Belkina[4].

The GTD patterns of axially-positioned, infinitesimal slots on
oblate and prolate spheroids are shown in Figs. 16 through 19. No
rigorously calculated or measured patterns were available for com-
parison in these cases; however, the pattern for each spheroid is
compared with the pattern of a slot on sphere with the same radius of
curvature as the spheroid at its axis of revolution, where the slot
is positioned. It is seen that spheres and spheroids with the same
radii of curvature at their slot positions have essentially the same
patterns in the illuminated and transition regions; the significant
differences occur only in the deep shadow regions of their patterns.
Considering the nature of the GTD solution described in Sections II
and III, this result is not entirely unexpected.
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V.  CONCLUSIONS

Keller's geometrical theory of diffraction has been extended so
that the radiation from apertures (slots) in perfectly-conducting
smooth curved surfaces can be treated. Configurations of this type
are of interest in the design of flush-mounted antennas for aircraft
and spacecraft. In extending the GTD, a new parameter has been
introduced, the launching coefficient, which relates the amplitudes
and phases of the -surface ray modes to the equivalent source in the -
aperture. This extension of the GTD has been successfully supplemented
in the transition region and at axial caustics so that the pattern
can be calculated at all aspects.

Although the present formulation is restricted to torsionless
surface rays, it can be formally applied to surface rays with torsion,
see Reference [25]. Examples considered in this reference suggest that
moderate torsion does not result in excessive error in the pattern
calculation. The propagation along surface rays w1th ‘torsion is
currently under study.

Although the calculation of far-zone fields is described here,
the method can be applied to calculate near-zone fields without any
additional assumptions. Furthermore, by introducing a second new
parameter, the attachment coefficient, the GTD can be extended to
determine the tangential magnetic f1e1d at the perfectly-conducting’
surface, so that the mutual coupling between apertures can be calcu-
lated; this will be the subject of a future report.
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APPENDIX I
DETERMINATION OF THE LAUNCHING COEFFICIENTS

The canonical problems chosen to find the launching coefficients
are the radiation from a magnetic current moment on the surface of a
perfectly-conducting sphere. and the radiation from two types of .
magnetic line sources on the surface of a perfectly-conducting cylinder.
In the case of the first problem the asymptotic solutions for the E- and
H-plane patterns are sufficient to determine the launching coefficients
for the hard and soft boundary conditons.

The radiation from a magnetic current moment on the surface of a
perfectly-conducting sphere may be formulated conveniently in terms
-0of a dyadic Green's function. The properties of dyadic Green's functions
have been described by C.T. Tai in Reference [19]; the dyadic Green's
functions for simple geometr1es, including the sphere are also g1ven in
this reference.

Consider a perfect]y-conductfng sphere of radius a, whose center
is at the origin of a spherical coordinate system as shown in Fig. 1A.

Y 4
Em=§pm
R
0 oy
R'=aR'
X N ~—SPHERICAL SURFACE

Fig. 1A. Infinitesimal slot on a sphere.
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The electric field of the magnetic current moment )

= X p.. positioned
on its surface at R' = az, i.e., R' = a, 6 =0, is m

m

o [vx & RURI_
R'=az

(A-1)  E(R) = p,

where

(A-2)  §RLR) = G (RUR) + § (R,

oo -

= om - L dk g 2n+1
(A-3) G, (R',R) = - %;-ngl mgo (2-89) SPyy :+$)| X
|7 A2 v, ) TP (k)] :
{ smn | ﬁmn gmn imn

E (2-60) 2n+l  (n-m)!

= oy dk ©
(A-8) & (R,R) = - 35 ] n(r Y. Tom)T

X [aen B2 ) ) @) + b, TR () W2 (k)J ,

0 omn omn On Omn . omn
(A-52)  a, = - j,(ka)/h?)(ka),
. on
- . ] 2 ]
(-50) by = = [ogiy(ey)] /To 0 {8 )7,
0
(A5c) o, = ka,

41, m=0
(A-5d) & "{é, m#0,

47



(A-5e) R>R'=a.

The time convention used by Tai is e “tut whereas our time convention is
eJut; hence the superscript (1) in his formulas must be replaced by

(2), which denotes a spherical Hankel function of the second kind, also
i in his formulas must be replaced by -j in ours. The spherical vector
wave functions Me and Ne are given in Chapter 11 of Reference [19].

mn
0mn 0

It is readily shown that

(A-6a) X o ﬁ; k) = x e]n (k) = - _n(n+]) [paJn(pa)] ,
Omn a
and
~ (A-6b) X M_; (k) = X » ﬁ:ﬂn(k) ]2- (n+1) J (o ) .

mn
(o]

Substituting the above into Eq. (A-1)

2
—o KPR 2 one
(A-7) ER) = 7= L —(w)

[ogdnlog)] 3pleg)  LognP (o)1 (@)
Pa 'h-n(Z)(pa) Pa eln

[Dajn(pa)]' (2) _(2)
-<j - . h
Jn(pa [pahnz (pa)] n (pa) oln

(k) .

In the far-zone the vector wave functions may be approximated

by
-jkR _
=(2) _ (n+1) e
(A-8a) Me1n = kKR e]n (654)5
-jkR
2 . J A __
(-80)  Th = 3" G Ry (0,0),
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in which

— Pl(cose) . dPl(cose) .
(A-9a) Main = - —sirg—— SiN96 - g5 COSdd,
1 1
. dPn(cose) . Pn(cose) N
(A-gb) RX mo]n = r. sS1n¢o +—§-_|JW—‘ COSo¢d .

Employing Eqs. (A-8) and (A-9) in Eq. (A-7), the electric field
in the far-zone is _

2 . 4!
_ . 3K -IkR = Jp (ka)
pr T -0 S gzt | ()
5 (ka) A® ()| _
AT 3 Meqp(ese) -
J(ka)  3ka) AP a) |, _
- Ea h sz)l(ka) ka R x my1,(050) ’
where
s _ Ik
(A-]]a) Z,(kr) = /-?f-zn+%_(kr),
(A-11b) ié(kr) =krQZ . (kr),

1
"ty

in which Zn+]/2(kr) is a solution of Bessel's differential equation of

order n+1/2 and a is an operator defined by

- 0= Ll L
(h-12) Q= oy o7 * 7
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/

Substituting Eqs. (A-11) and (A-12) into Eq. (A-10)

2 .
Ik gmJkR n _2n+l

(13 K@ v 5t L0 iy

J (ka) 'f
[_ 6 ;o (ka) nty a H(z)(k ) dPn(cose) "
is a) - oy a) [ g7 cos¢¢ +
n+%¥ H 2](ka) n+%- 49 . .
. n+.2_
09 (ka)
- . nty (2) dP_(cose) .
+ 3ka J %(ka) - mHn%(ka 5 S1n¢)6J N
nty :
1
Pn(cose)

where terms involving have been neglected, because the solution

ka sino
for kasin 8 >>1 is of interest.

The re]afionships

(A-14a) %5' Pl(cose) = (-1)™" n{n+1) %E-P;](-cose)

and
(A-14b) 3 (k) = ;— [H“])(kr) ' H(z])(kr):\
n+§ n+§ n+§

are employed in the development to follow..

1. H-plane (¢ = 0) Soft EM boundary
Using Eq. (A-14), it follows from Eq. (A-13) that
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2

_ . k°p -JkR
a15) Eod P g 1 E0"ED T ) -
g
n+s d H(z)(k ) dPn (-cos®8)
—1~7———-— a)r o= .
(ka) n+§- ds

- The Watson transformation facilitates the asymptotic approximation
of Eq. (A-15) and its transformation to a ray optical form suitable for
calculating the field in the shadow region. Accessible descriptions of
the method are given in References [16,20]. Applying the Watson
‘transformation to Eq. (A-15) and evaluating the resulting integral by -
the residues of its integrand at v = Vp?

o i1 «T
kp. -jkR = 9vp7 ~I7 H“)(ka)
(A-16) E. ~n - — & € e .
¢ 2 R p=1 'jZVp p (2)
T+e 3v N (ka%;

~ (2
- Q Hip)(ka) 30

with vy being the complex orders for which H(z)(ka) =0, p=1,2,3"°
For large ka

: -jr
+ ("T“‘)]/3 qp © 3

. T
1,2 +2/3 -J 3]
ka [] + ? (E) qp e

to first order, since qp is real (see Table I) the imaginary part
of vpm1s negative and proportional to (ka/2)1/ 5 It is assumed here
that ka is sufficiently large that

=32v_m\~1
(1 +e P

(A-17) Vo
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can be replaced by one. Furthermore when ka sine >> 1,

_] . <
3p (-cos) —— Ivpm e'Jﬁ' -jvpe =Jv (2“'6)]
[e +je P ’

(A-18) v, —p-1/2 iy - e

PY) nka sine 2

Z

From Keller and Levy[15]

H\(,”(ka) .
(A-19) '-E—JJ—;!-(W) = - (%%)1/2([)2[))2,
v \)p _ ‘

with D°_ the soft diffraction coefficient, which is given by Eq. (27)
after ggymptotically'approximating the Hankel functions to first order.
Also

(a-20) G 1B (ka) = [ 1) (ka),
P P

since H(z)(ka) = 0.
Y
P
If we let

' 3
(A-21a,b) 4y = o - %-and vy = 71~ -8

and make use of Eqs. (A-18), (A-19) and (A-20), Eq. (A-16) becomes

(A-22) E. - dkPm 7 {"n(g—:)]/z H\()z)l(ka)D;}
p

b Gine pel

JkR

ol m
>

~Jv ¥ =Jv u
x-[e p]+je pz]D;
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which is an asymptotic approximation for the electric field in the
shadow region of the H-plane for 6 < n. The D3 are the soft EM .
diffraction coefficients for the sphere given Bn Table I.

Next let us use the GTD method described in Section I to
find Ege By comparing the resulting expression with the asymptotic
approximation, the launching coefficients and the constant C can be
found. Consider the field point P in the shadow region of the H-plane;
according to Keller's generalized Fermat's principle, two surface rays
emanate from the magnetic current moment at R' = az and traverse paths
t] and t2 along merideans to Qi and Q2, where they tangentially shed
the diffracted rays 1 and 2 toward P, as shown in Fig. 2-A. Thus the
total far-zone electric field at P is the sum of the fields contributed
by diffracted rays 1 and 2. It is assumed that ka is sufficiently
large that the contribution from the surface ray which encircles the
sphere one or more times before shedding a diffracted ray toward P
can be neglected. This is consistent with replacing

Jjev_m -1
(1+e P)

by ong in the asymptotic approximation. Since Bﬁ -t = P and
Pm ¢+ b = 0, one obtains

= e_ e .
(A-23) E¢ = Cp, G > + Cp, Gy 5,
with
- Ty -
(A-24a) ty = a(e - 35) = ay,,
- il =
(A-24b)  t, = a(5= - 0) = ay,,
(A-24c¢) Sy =S, = R,
and
(A-24d) ’dw° 1 for both Q. and
- - = or bo an s
dv Jsine 1 2

53



A
SOURCE
el

T

RAY 2 \

Fig. 2A. Ray geometry associated with a source
on a cylinder or sphere.
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" Upon using Eq. (14),

: Cp o -(jk+ad)ay,  -(jk+od)ay,| .-jkR
(A-25) E =—L-— 7 L3 Ds[g P e P2 %
¢ Jsine p=1 PP

where the factor j has been inserted to account for the phase jump
of 7/2 resulting from the caustic on ray path 2. This is the GTD
expression for E _; comparing it with the asymptotic approximation in
Eq. (A-22) ¢ |

(A-26) C = - 3K

o

(A-27) L;' -7 (g—';) | H\()z)'(ka)DS

(A-28) v

i
=~
1
1
N S
R
wn
o
*

The constant C is chosen to make Eq. (15) consistent with Eq. (17).
The formula for o2 has been obtained previously from o h?r canonical
problems, (see Table I). Since vp % ka and ka >> 1, sz (ka) may be
approximated asymptotically in terms of an Airy functioR[9]

. 27
' -z, 2/3 2/3 q, Jz-
(A-29) Hf)s) (ka) ~ - 2e 3(]2<—‘_11) Ai'(-qp){l-(]za—) & e 3 }

and
2/

3
Ai'(-qp)

27
2/3 J=
x[]-(%) %—qpe3]Dg

U |
(h-30) 13 =e P22

where D; is the soft EM diffraction coefficient given in Table I.
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2. E-plane (¢ = %) Hard EM Boundary
From Eqs. (A-13) and (A-14)
2

. k™p -jkR o
= . m e 0 .an 2n+] (1)
(-31)  EnBi gt fy zkg L (0" (ke -
n=1 N+
- ¢ 1 (ka)

Eq. (A-31) resembles Eq. (A-15) and we proceed in the same manner to
a form which can be compared with the GTD solution. Employing the
Watson transformation and the Cauchy residue theorem as in the
preceding case

.
Kp, odkR— = %27 77

| | .
(h-32)  Egrdz 7 Jma L 2er Y X

q H\(,])(ka) @) ]
X - ﬁ — H'\¢/(ka) & P™' _(-coss)
=4 H\()i)(ka) “p % vpt

in which v_-are the complex orders for which

12 (ka) = o.
Vv
p
_ -
(A-33) v = ka + ('g—é‘)‘/3 q, e 3

to first order. Eb is real and defined by the above two equations.
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From Eqs. (A-18) and (A-21), where p in Eq. (A-18) has been
replaced by its approximation given by (A-33)

(A-38)  E, - gk P 7 _“(J'_k)]/2 H\(,Z)(ka)DB}
b - siné p=1] en’. P

=jv. ¢ ~Jjv_ v JkR
[ s T g g

which is the asymptotic approximation for the electric field in the
shadow region of the E-plane for 6 < m. The Dh is the hard EM dif-
fraction coefficient given in Table I. P

The corresponding GTD solution is der1yed in the same manner as
in the preceding section, except that p, « t' = 0 and py « b = py here,
so that we begin with Eq. (12). The GTD expression for the electric
field in the shadow region of the E-plane is

-(jk+a )awz] -jkR
L" p
3]

. h
cp © -(jk+a_)ay
(A-35) . =DM h ph [e P 4e
sine p=1 P P

Comparing it with Eq. (A-34),

= . Jk
(A-36) C=- I,

. 1/2
h . . ik (2) h
(A-37) Lp = -jn (—2-;) H\,p (ka)Dp,
_ _sh

The formula for a like that of ag has been obtained previously, see
ti

Table I.. Asympto%1ca11y approximating H (ka) in terms of an Airy
function

2w
75 1/3
(n-38) W) v 23 A ){1 AN

< T

ka:
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and

(A-39) Lp (an) (EEJ A1(-qp) X
27
2/3 I

[HH ¥

where DB is the hard EM diffraction coefficient given in Table I.

The desired launching coefficients are given by Egs. (A-30) and
(A-39), but before we can extend these results to more general convex
surfaces, it must be determined to what extent they depend on the
spherical surface employed in the canonical problem. To answer this
question the radiation from magnetic line sources on a cy11nder will
be treated next.

3. Cylindrical surfaces

In the two-dimensional source free region exterior to the closed
contour L, which is the cross section of the cylinder here, the scalar
field

(A-40)  u(p) @L [o(5') 2y 65 27) - 657 57) 2 (') Jan

in which G(p,p"') is a Green's function, dn’ is an infinitesimal distance
taken along the outward direction to the contour L, and the direction
of integration is taken in the clockwise sense. The Green's function
satisfies the partial differential equation

(A-a1)  [% + K21 6(5,5") = - 8(n5'),

where v% is the two-dimensional Laplacian operator and p and p' are
the position vectors for the field and source points, respectively.
Eq. (A-40) will be employed to find the electric field radiated by two
types of axial line sources (see Egs. (20) and (21) on a circular
cylinder).

Let a magnetic line current M = z M, be Tocated at o' = a,
' = 0 on the surface of a perfectly-conducting circular cylinder of
radius a. On the surface of the cylinder E¢(a,¢') = Mzs(¢')/a. If

(A-42)  H_(3) = v(®)
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and

(A-43) = 6,(2",5) = 0 for o' = a,

aH, (p")
(A-44)  H_(o) = G (p,0") ~——.— ds'.
Since
oH
(A-45) WZ' =~ Jue E, = - Jue M, s(¢')/a ,

i

- 5 o
(A-46)  E (o) = M, == G (0,xa).

Next let a magnetic line source M = -3'M, be located at o' = a,
¢' = 0 on the surface of a perfect]y-conductiﬁg surface of radius a. _
On the surface of the cylinder E (a,¢ ) = - M &(e')/a. If E_(p) = v(p)
in this case and ¢ Z

(A-47) 6 (ap",p) =

(A-48)  E,(5) =¢{ £,(5) 2 6 (5.5) de',

E,(0) =+ M 2 6 (" ,5')‘_'
=a

X .

The Green's functions G which satisfy Eq. (A-41), the
boundary conditions in Egs. ?A-4§) and (A-47), and the radiation con-
dition are

(1-09)  Gloses 2, 0) = -4 5 o [0 (ka) - omi<D) “Nkﬂ(’w>
»03 A, z-mzo eqldp(ka a—grgjz;;; m (ka o) cosmé

in which Q = %B-for Gh and 1 for Gs’ and
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Employing the Watson transformation and computing the residues of the
integrand again, we transform Eq. (A-49) to a form suitable for an
asymptotic approximation and ray optical interpretation.

(A"'SO) G(p,¢; a, 0) =
0 Y (ka)

o N RURVAE, EIEIREY, VS
% ) P ( H\()z)(ka)Hiz)(kp)[e P ]+e P 2:Ie p2
p=0 3 2) p P
R tkadley
with Vo the zeroes of Q H\()Z)(ka) = 0. -We have used
P
cos v ¢ e-‘]val N e-JVp“’Z -jvp%
(A-51) 3T = —> e .
Y Jemv
p 1-e"p

. m = O _
(A-52a_,b) ‘p'l = ¢ - 7 ‘1’2 - 2 )

-j2mv -1
and approximated (1 - e Py=! by 1 for ka large.

Introducing the definition of the diffraction coefficient |

()
QH, (ka) 172
-~ @ o, 7

(A-53) op

p
%; Q H(Z)(ka)
“p

in which Q = —g; for Dh and 1 for D> » and the asymptotic approximation

op op

—5[ko-(2 1)L
(A-54) Hiz)(kp) N ’-Wi—pe Ik )4],

the electric fields given by Eqs. (A-46) and (A-48) may be determined
in the far-zone for ka large. For the circular cylinder D0 =D.

Thus . P P
-jkM o . 1/2
(A-55) E, = 2y 0% 1P (ka) o]
J8rkj pAl _ Vp N P
=Jv. ¢ =Jv ¢ =JKp
x[e P Tie P 2] Dh &

PJdo
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]

-jkM 2 -
(A-56) E, = J?iﬁ;f L [- (J:) H(i) (ka) D°7 x

?53 that G (o' ,0) may be obtained from Eq. (A-50) by replacin g '
H\<) (ka) if the numerator by 1ts derivative with respect to p, kH( )' (ka).

Referring to Fig. 2A the corresponding GTD express1ons for E, and
E, are readily deduced from Eqs. (12), (14), (22) and (24) 1in ¢
the manner described in the append1x. Thus

sk : “(Gkralan -(kraary o-dko
- 5= CM, Z] Lpr[e ]-7;
and
- -(k+ad)ap;  -(jk+ad)ay,  -jke
1 p'""2q e
(A-58) E,=CM T LD[e P e 1= .
) z ¢ p=1 PP JB_

Comparing Eqs. (A-57), (A-58) with Egqs. (A-55), (A-56), respectively,
it is seen that

ced
(A-59) ¢ = - & ,
J81Tk
) h - . k172 ,(2) h
(A-60) Lp = -Jn(?;) va (ka) Dp,

)

.. 1/2 '
(A-61) 15 = -n 3% w2 (ka) 0.

(2) It is fou g that the second order asymptotic approximations of
(ka) and HZ (ka) are given by Egqs. (A-38) and (A-zg) which 1is
1neerest1ng becBuse the vp are different to order (2/ka) 473 in the
solutions to the hard sphere and hard cylinder problems. Using these
asymptotic approximations together with the cylinder diffraction coef-
ficients listed in Table I, one can obtain the hard and soft launching
coefficients for the cylinder to second order.
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Comparing Eq. (A-60) with Eq. (A-37) and Eq. (A-61) with Eq.
(A-27) and noting the asymptotic behavior of the Hankel function and
its derivative just mentioned, Teads us to conjecture that in the case
of a general convex surface the launching coefficients are given by

Eqs. (35) and (36) in the text.
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APPENDIX II
THE FIELD IN THE TRANSITION REGION

In the transition region adjacent to the shadow boundary, the
representation of the field radiated by the slots described in
Appendix I is poorly convergent, so a different form is needed. It
will be seen that a suitable asymptotic solution can be obtained in
terms of integrals. The first order approximation is usually adequate
for ka>3, and since the added complexity of the second order approxi-
mation is difficult to justify, we will derive only the .first order
approximation. Furthermore, since the first order approximations for
the cy]1nder and the sphere are the same, except for a factor dy,/dy
which is present in the latter case, on]y the cylinder problem w1?1 be
treated here.

The Watson transformation is app11ed to Eq. (A-49) again, but
this time the res?}§1ng express1on is left in the form of an integral.
In the far-zone H is approximated asymptotically as in Eq. (A-54)

so that
(A-62)
& (P10") giko J“’ 1) (ka)i )" (ka)-12) (ka ) (1) (ka)
h ,l 8k Jp 250 J-w H2) (ka)
;'.V 2 =Jv 2m
[e Jv(py+2ne) oo (ot 2)]
(A-63)
68 PI) i : J f‘” (ka)H{?) (ka)-H{)" (k)1 (ka)
Y e J— 220 oo \ - Hm(ka)
~Jv(y,+2n =jv 2n
[e Poleprene) -3l z)]
3n

where Yy = ¢ - /2, and Yo = 5 = ¢, @S in Appendix I.
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From the Wronskian relationship for the two types of Hankel functions,

(a-64) - #{1) (ka) Hgf)(ka) - 12 (k) WD (ka) = A
Using Eq. (A-64) in Eqs. (A-62) and (A-63)
ik o e “v(yt2ne) 3w p+2a)
(A-65) 6, (P/Q') ~ &L 8—]16%% on Lwdv[e " mﬁk‘:) 2
and
P wka J§'E" J_' 190 - HZ) (ka)

Replacing H( )(ka) and H(z) (ka) in (A 65) and (A-66) by their Watson
approx1mat1ons (forvd ka>>1) gives rise to the Fock function representations

for Gh and 3G /ap .

. - g
-jk 1 Jka(ll)-l"'z'nl) ka
(A'67) G (P/Q ) nka (8 K )]/2 -jk Q—Ol:e Jrl_l_(_y d*
-jka(v+2ms) | e"'J'EzT ] o3ko
+e 7 J drj —= -
2 J—jr] wéZTj T 5
and
(A-68)
3G (P/Q") - o [ -jka(y;+2re) ‘J€1T
S 2 -jk 1 E_
557 ey (8ﬂkj)][2 Lo [e (2 ) ( J.I—)J ——(—T dr +
-Jka(w2+2m) 2/3 'jng -jko
te ( (-3Jm) d{] &
e 4|
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with

. 1/3

2 2
(-69) ') (ka) v G 2/:2(1),

2)! -j (2 '
(a-70) w2 () G,
and |

1/3
(A-71) g = (%i) Sy
2 2

Here wz(r) is a Fock-type Airy function related to the Miller-type
Airy function by

_jﬂ. jE
(A-723)  Wy(x) = 2fT e  pi(- e d);

alternatively, it may be defined by

3
(A-72b) W, (1) = 1 J e™22/3 ¢,
; :

I ’n,

, 1 TZ—23/3
(A-72¢) wz(T) = ——-J ze d
T

with the contour of integration T, shown in Fig. 3A.

Introducing the Fock functions

e-JET

(A-73) () = — dr
9(t j?l]_mz -

and
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Fig. 3A. Contours of integration for the Airy and Fock functions.

) vyl
(a-74)  §(e) = 1 jr

. -Jkay -Jkay, | ,-Jko
(A~75) tho-)w-jﬁ{g(g])e V4 gley) e 2}9— |

Jo
and
3G (P/Q") 1/3(., -jkayy o -jkay, | ~Jke
(A-76) —gp-:——m-j C (ﬁ—a) {g(g])e s g(gp)e 2}—’3—
Jo
where ‘
C = -jk(8nkj) /2,

and only the first term 2=0 is retained for large ka. When the Fock
functions are represented by a residue series [16], it is seen that

they become negligible for g¢>>1, which justifies ignoring the higher
order terms in the series.

66



Substituting the preceding expressions into Eqs. (A-46) and
(A-48) the far-zone electric fields for the line sources z MZ and

¢ M¢ are

Jo

. 'jkaw] . 'jkawz e‘jgp
(A-77)  E,_ ~ CM_[g(g)e + g(&,)e
) z 1 2

and

/3| -Jkay
(A-78)  E,~C M¢{;3(§5) [?(a])e '+ 3(ey)e

The above asymptotic representations of E4 and E; may be
interpreted ray optically, as in the preceding appendix. Referring to
Fig. II-A, the first term in each equation is the field of ray 1, and
the second term is the field of ray 2. In the transition region
¥1 = ¢ -n/2 is of order (ka)-1/3, and for large ka assumed here, this
angle is small; on the other hand, y2 % n. Ray 1 traverses only a
short distance yja on the surface before radiating. The field
contribution from ray 2 is more accurately represented by the ex-
pressions of Appendix I, since they are accurate to order 2, and
- this accuracy is important if the ray has traversed a substantial
- distance on the surface between its source and the point of radiation
Q2. However, it is the representation of the field of ray 1 which is
of interest here, so we will not include the contribution from ray 2
in the discussion to follow. :

Comparing Eqs. (A-77) and (A-78) with Eqs. (A-57) and (A-58) and
with Eq. (24) it is seen that

"jkalp]
(A'79) F = 9(51)9
and

1/3 -jkay
(h-80)  6=-3iE)  elg)e .

These integral representations of F and G may be used in place of the
poorly convergent series of surface ray modes in the transition region.
However, the series representations of F and G useful in the shadow
region can be obtained directly from their integral representations,
showing that the two solutions join smoothly to first order. This

will be discussed next.

In the deep shadow £ is large and positive and the Fock integrals
may be replaced by a residue series[16], so that
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>
£qpe -Jkay,
(A-81)  F = E €
p=1 qui(-q )
i
o /3 J'g £qpe -Jkay,
= _ sl e e
(A'82) G J(ka) € z A1'(—q )
p=1
which equal
: h-h '(jk+ag)a¢]
(A-83) F=J)LD e s
P PP
. S.S -(jk"‘oté)&lb-l
(A-84) G=)LXD e .
p [ Y

when the first order approximations for the diffraction coefficients
and attenuation constants, see Egs. (26) through (28), and the first
order approximations for the Taunching coefficients

-its 1/2 5 2/3,:1 s
(A_85) LS = e ]2( (2 ) Ai (-q )D

op 27k) o p’“op
I ST I
(A-86) Lop =e “(2nk) (EEQ A1('qp)Dpp

?re eTp1oyed. The two equations above follow from Eqs. (A-27) and
A-39). '

It is also important that the integral representations of the
field in the transition region join smoothly with the geometrical
optics field, given by Eqs. (18) and (24), in the illuminated region.
Deep in the illuminated region & is large and negative with the result
that the Fock functions may be approximated asymptotically[16].
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. 3
(A-87)  g(£) v 2 I8 /3

.3
(A-88)  g(g) ~ - 23eed% /3 |

Substituting the above expressions into Egs. (A-79) and (A-80)

-jkasinw]
(A-89) Fa2e

-jkasinw1
(A-90) G~ =2 Yy €

in which we have employed ¥y - w]3/6 g_sinw1.

Equation (A-89) is recognized as the geometrical optics form of
F, when one notes that the exponential term gives the phase delay
between the point of radiation Qj and the source located at Q', see
Fig. 4A. As pointed out in Chapter III, in the illuminated part
of the transition region, one visualizes the surface ray as traveling
from the source at Q' to the point of radiation at Q) where it sheds
a ray tangentially toward P as indicated in Figs. 7 and 4A. The
representation of F given in Eq. (A-79) may be used in both the
illuminated and transition regions.

0

Fig. 4A. An equivalent ray system for calculating
the radiation in the illuminated region.
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On the other hand, the asymptotic form of G in Eq. (A-90) does
not join smoothly with the geometrical optics solution,

' , -jkasiny,
(A-91) G~ -2 sinye s

unless one modifies Eq. (A-80) in the following way

1/3; jkay
_ 142 o 1
(A-92) G = - J(EEQ g(g])f(w])e
with
f.w
Sin
1 T
\P] 9 --é-<w].<_0

(A'93) f(w]) = <
1 . ¢1 >0

. .

Equation (A-92) has been justified through its application to
numerous examples; it should be regarded as an algorithm for
calculating G in the transition region so that it joins smoothly
with the geometrical optics field, which is valid deep in the
illuminated region.
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APPENDIX III
DERIVATION OF THE FIELDS AT AN AXIAL CAUSTIC
OF THE DIFFRACTED RAYS

Consider a perfectly-conducting convex surface of revolution
with an infinitesimal slot positioned on its axis of revolution at
Q' as shown in Fig. 5A. There is a caustic of the diffracted rays
on the axis of revolution in the shadow region and the ordinary GTD
solution breaks down here. This appendix describes how the GTD
solution may be supplemented by an integral representation of the
field to obtain a high frequency approximation at the axial caustic.
However, it will be seen that the GTD is used to deduce the
equivalent sources of the integral representation. The field in the
shadow region (excluding the negative z axis) is obtained by a super-
position of the fields associated with the rays shed from only two
points Q7 and Q2 on the surface of revolution, as shown in Fig. A2,
In the vicinity of the caustic (z-axis), the rays arriving at P are
shed from a continuum of points constituting a ring of radius 'a' on
the surface as shown in Fig. 5A; the radial distance 'a' is the maximum
perpendicular distance from the z-axis to the surface.

% AXIS OF

REVOLUTION .
TANGENTIAL

EQUIVALENT

MAGNETIC CURRENT

MOMENT p,, (Q")
AT Q'

CONVEX SURFACE
OF REVOLUTION

Qo
A
n
—
X
A A, A
Lo x=bsm¢'+ncos4)'

TOP VIEW

YY VIV VY
¢P

( CAUSTIC OF DIFFRACTED RAYS)

Fig. 5A. Ray geometry for calculating the field at an axial caustic.
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The equivalent source for the infinitesimal slot at Q' is a
magnetic current moment of strength me at Q' which is oriented along
the slot axis as shown in Fig. 5-A. This equivalent source produces an
electric field at the point, T located at p=a, ¢=¢', z=-25.  This point
is in the near zone of the surface of revolution, but it is several
wavelengths from Qy, the point at which the surface ray sheds toward T.
The GTD result for the electric field at T is

(A-94) E(T) =¢C (nsine'F_ + bcose'G_} dwol £ e-jk’L0
Pm *o ¥ B0’ dn (7 (o%2)) ’

where | Q Q,
R k[ der o[ oheenar
(A-95)  F, = z L) e ¢ e ’
o1
Q0 Q0
-jkj dt’ -f 'a;(t')dt'
(A-96) G, = z Seonse)e el ,
p=1 o
C=-jk/4r ,

and the quantity dn, and the caustic distance, p are defined in
Chapter II. Note that F, and Gy are the same as the F and G
functions without the factor./awo7aw. For the ray shed in the
caustic direction, p»~, so that Eq. (A-94) becomes

-JkE
(A-97)  E(T) 3 [C P {nsing' Fo+ bcos o' G, y L 1 &~

°Ja  [x

The integral representat1ons for the electric fields at T radiated
by electric and magnetic ring currents of strengths I (¢"), and
M (¢"), respectively are

= jk.a 2 a A e-jkr
- n " n n
(A-98)  E(T) % —4ﬂj0 [Z, (rxrxI (6")9") ] =—— do",
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and

. 21 -Jjkr
T k " ny o "
(A-09) E(T) ke jo [P, (6131 S dg"

YI
where

_-1_,
Z, =Yy = uo/eo?

a is the radius of -the ring currents,

r =V/2§+2a2[1-cos(¢'-¢")],

and the subscripts e and m refer to the electric field contributions
from the electrig¢ type and magnetic type ring currents, respectively.
The unit vector r is directed from ¢" on the ring to T. If one
evaluates the above integrals by the method of stationary phase, one
finds that there is a stationary phase point at Qg. The contributions
to the field at T which arise from this stationary point are

_ j%' 'jklo
(A-100) E(T) ~ -b k Z, = I(¢") E=
8rk J %

and

iT ~ikeg
(A-101)  E(T) ~ -7k &= (o") ¢ .

Jark J1,

0

A comparison of Eq. (A-97) with Eq. (A-100) and Eq. (A-101) indicates
that the GTD field at T may be considered to have the equivalent
electric and magnetic ring currents whose strengths I5(¢') and Mo(¢')
respectively are given by

_J’.TL
= ' 4 8n
(A-102) Io(¢') =-Cp, Y0 COS¢ G0 e ()

ka
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and

'y o . -JE 81r]/2
(A-103) M0(¢ )=-C P, Sine F0 e (FE' .

The radiation field in the vicinity of the caustic is therefore the

field radiated by these equivalent ring currents. This technique of
using equivalent currents based on the GTD to describe the fields in

the vicinity of the axial caustic of the diffracted rays has- been used
with success elsewhere in problems involving curved edge diffraction[17,18];
however, unlike the curved edge, the rim indicated in Fig. 5A does not
stay fixed as the observation point moves slightly away from the caustic,
and hence the caustic solution presented here is not expected to be
-accurate at aspects not close to the axial caustic. The expression

for the far-zone electric field due to the ¢' directed electric and
magnetic ring current sources of strengths Io(¢') and Mg(¢') given by
Eqs. (A-102) and (A-103), respectively is expressed in terms of the
radiation integral as .

(A-104)

— : -jks 27 . . . . L o
E(P) & %9__5___ Jo [ZO(Y'XY‘XIO(d)!)cb')+(Y‘XM0(¢")¢')]e‘]ka51necos(¢ ) )dq)'.-

This expression for E(P) in Eq. (A-104) is a general result, and the
integrals involved can be evaluated in closed form; however only the
integrations for the patterns in the X-Z and the Y-Z planes are needed,-
see the discussion connected with Eq. (60) of the text.

X-Z plane (¢=0)

(A-105)
jk jukay /20 . . , .
EIKP) R pn1 (-§—f0 [GO{J(Jkas1ne)-J2(kas1ne)}+F0cose{J0(kas1ne) +
e-jks
+ Jz(kasine)}] S .
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Y-Z plane (4=%)
(A-106)

£,(P) v+ 35 p (J"ka) [Gocose{Jo(kasine)+J2(kas1'ne)}+F'0{J0(kas1'ne) -

-jks
- J (kasine)}]

in which Fy, Gy are given by Eqs. (A-95), (A-96). The Jo(x) and J2(x)
~in Eq. (A-?OS) and Eq. (A-106) are cylindrical Bessel functions of the
first kind with argument x(=kasine); the subscripts indicate the orders
of these functions.

As mentioned before, the above results are valid only when P is
in the vicinity of the ax1a1 caustic. This means that a]thou h the
caustic correction is needed for the angular range n- (ka)-1/3 < ¢ < T,
the above formulas may be sat1sfactory only for a smaller angular
range adjacent to wn. This is part1cu1ar1y true when ka is small.
Work is currently under way to improve these formu]as so that they
are adequate throughout the entire range - (ka)-1/3 < o < .
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