
NASA TECHNICAL NOTE

OS
r*js
o

NASA TN 0-7204

DESIGN AND EVALUATION

OF AN OPTICAL FINE-POINTING

CONTROL SYSTEM FOR TELESCOPES

UTILIZING A DIGITAL STAR SENSOR

V

by Aaron J. Ostroff and K. C. Romanczyk ,<°r~
\

Langley Research Center

Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1973



1. Report No.
NASA TN D-7204

2. Government Accession No.

4. Title and Subtitle
DESIGN AND EVALUATION OF AN OPTICAL FINE -POINTING

CONTROL SYSTEM FOR TELESCOPES UTILIZING A DIGITAL

STAR SENSOR
7. Author(s)

Aaron J. Ostroff and K. C. Romanczyk

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, Va. 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date
July 1973

6. Performing Organization Code

8. Performing Organization Report No.

L-8677

10. Work Unit No.

188-78-57-07

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Note
14. Sponsoring Agency Code

15. Supplementary Notes ty[Ost of the material presented in this paper is included in a thesis by the
first author, entitled "Design of a Star Image~ReguTating System Utilizing a" Digital Sensor j"
submitted in partial satisfaction of the requirements for the degree of Master of Science ,
George Washington University, Washington, D.C., February 1971.

16. Abstract .

One of the most significant problems associated with the development of large orbiting
astronomical telescopes is that of maintaining the very precise pointing accuracy required.
A proposed solution to this problem utilizes dual-level pointing control. The primary con-
trol system maintains the telescope structure attitude stabilized within a coarse -pointing
limit while the fine -pointing system optically stabilizes all star images within the field of
view to the desired accuracy. In order to demonstrate the feasibility of optically stabilizing
the star images to the desired accuracy a regulating system has been designed and evaluated.
The control system utilizes a digital star sensor and an optical star image motion compensator,
both of which have been developed for this application. These components have been analyzed
mathematically, analytical models have been developed, and hardware has been built and tested.

The system design approach uses a continuous -data network to establish approximate
loop gains, break points, and compensation. The objective of the continuous -data analysis,
using the familiar s -plane techniques, is to establish a compensatory network that will enable
the discrete control system to perform approximately as specified. By using z -transform
theory the behavior of the discrete system with this compensation is checked and, if necessary,
modifications are made. Next, system dynamic and steady -state performance is tested on an
analog computer for the gains and compensation established from the analysis. The simulation
includes a measurement of system performance while guiding on a 10th magnitude star.
Finally, experimental results, including both static and dynamic checks, are shown for the
representative design using actual components.

A discussion and evaluation of an adaptive control technique that is applied to the control
loop to improve system accuracy is included.

17. Key Words (Suggested by Author(s))

Telescope
Fine pointing
Control

19. Security dassif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

20. Security Classif. (of this page)

Unclassified

21. No. of Pages 22. Price*

65 . $3.00

For sale by the National Technical Information Service, Springfield, Virginia 22151



CONTENTS

Page

SUMMARY 1

INTRODUCTION 2

SYMBOLS . . . . 4

GENERAL SYSTEM DESCRIPTION 9

COMPONENT OPERATION AND MATHEMATICAL MODELS 12

Star Sensor 12
Description of operation 12 "

Mathematical model 13
Image Motion Compensator 16 '*

Description of operation 16
Mathematical model 19

Direct-Current Torque-Motor Equations and Modeling of Rate Loop 20

DESIGN ANALYSIS 24
Continuous-Data Approximation 25
Discrete-Data System 28

ANALOG COMPUTER ANALYSIS . . . 35

HARDWARE RESULTS 39

CONCLUDING REMARKS 50

APPENDIX A - DERIVATION OF MATHEMATICAL MODEL FOR

STAR SENSOR 52

APPENDIX B - DERIVATION OF CHARACTERISTIC EQUATION AND

APPLICATION OF FINAL-VALUE THEOREM TO CONTROL SYSTEM 56

REFERENCES 62

ni



DESIGN AND EVALUATION OF AN OPTICAL

FINE-POINTING CONTROL SYSTEM FOR TELESCOPES

UTILIZING A DIGITAL STAR SENSOR*

By Aaron J. Ostroff and K. C. Romanczyk
Langley Research Center

SUMMARY

One of the most significant problems associated with the development of large
orbiting astronomical telescopes is that of maintaining the very precise pointing accuracy^
required. A proposed solution to this problem utilizes dual-level pointing control. The
primary control system maintains the telescope structure attitude stabilized within a
coarse-pointing limit while the fine-pointing system optically stabilizes all star images
within the field of view to the desired accuracy. In order to demonstrate the feasibility
of optically stabilizing the star images to the desired accuracy a regulating system has
been designed and evaluated. The control system utilizes a digital star sensor and an
optical star image motion compensator, both of which have been developed for this appli-
cation. These components have been analyzed mathematically, analytical models have
been developed, and hardware has been built and tested.

The system design approach uses a continuous-data network to establish approxi-
mate loop gains, break points, and compensation. The objective of the continuous-data
analysis, using the familiar s-plane techniques, is to establish a compensatory network
that will enable the discrete control system to perform approximately as specified. By
using z-transform theory the behavior of the discrete system with this compensation is
checked and, if necessary, modifications are made. Next, system dynamic and steady-
state performance is tested on an analog computer for the gains and compensation estab-
lished from the analysis. The simulation includes a measurement of system performance
while guiding on a 10th magnitude star. Finally, experimental results, including both
static and dynamic checks, are shown for the representative design using actual
components.

>

A discussion and evaluation of an adaptive control technique that is applied to the
control loop to improve system accuracy is included.

*Most of the material presented in this paper is included in a thesis by the first
author, entitled "Design of a Star Image Regulating System Utilizing a Digital Sensor,"
submitted in partial satisfaction of the requirements for the degree of Master of Science,
George Washington University, Washington, D.C., February 1971.



INTRODUCTION

The relationship of man to the universe has been an intriguing question for many
years. Increasingly powerful telescopes, the largest of which is the 5-meter (200-inch)
Hale telescope at Mount Palomar, have been constructed for the purpose of studying the
planets, the stars, and the universe. Recently, small orbiting telescopes have been
developed and flown. An orbiting telescope has the advantage that the collected light does
not pass through the earth's atmosphere. The atmosphere absorbs, scatters, or refracts
a large part of the incident radiation. The earth's atmosphere is opaque to radiation
shorter than 0.3 x 10~6 meter and longer than 30 x 10~6 meter and has many gaps in the
transmission range. Even in the transmission range, large ground-based telescopes are
limited by scintillation, which causes a sharp stellar image to diffuse and merge with the
background.

During the past several years, the National Aeronautics and Space Administration
(NASA) has been investigating problems associated with large orbiting astronomical
telescopes on the order of 3 meters (120 inches) in diameter. A telescope of 3-meter
aperture above the earth's atmosphere would have 10 times the resolving power of the
5-meter telescope on Mount Palomar (refs. 1 and 2). An artist's conception of a 3-meter
diffraction-limited telescope attached to a manned space station is shown in figure 1.

Major studies for large orbiting telescopes commenced in the early sixties and
included such areas as astronomy, telescope configurations and design, hardware design,
active optics, and telescope pointing (refs. 3 to 14). One significant problem is that of
maintaining the very precise pointing accuracy required of the telescope. This control
must be achieved while guiding on very dim stars - on the order of +10 magnitude - and
while the telescope is subjected to environmental and crew motion disturbances.

Several candidate suspension systems, such as a zero-gravity magnetic suspension
system, the Apollo Telescope Mount bearing system, and a soft-gimbaled spring suspen-
sion system, have been investigated as a means of isolating the telescope from the crew
motion disturbances. For any of the suspension systems the range of expected masses
and moments of inertia of the telescope indicate that extremely high gains and control
torques are required to obtain high-pointing accuracy.

A dual-level control system is one means of alleviating this problem. By using
this approach, the telescope structure is controlled within a coarse-pointing limit by the
primary attitude control system. A fine-pointing control system, which utilizes small
optics internal to the telescope structure, then stabilizes all star images within the field
of view to the desired, accuracy. This technique allows a significant reduction in the
requirement of controlling the entire telescope structure. Furthermore, because of the
relatively small inertia of the internal optics, the fine-pointing control system may have
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a high bandwidth without requiring large control torques and without the likelihood of
exciting structural vibrations in the telescope.

The feasibility of operating a fine-pointing control system for a representative
telescope within the stability limits of a coarse-pointing control system is demonstrated
in this paper. In order to obtain the requisite accuracy and dynamic range, a digital
star sensor is included in the design. The section on the star sensor includes a descrip-
tion of the component, the utilization of a mathematical model which is derived in appen-
dix A, and the selection of suitable parameter values with an illustration of a typical
example. Star image motion compensation is achieved by utilizing a pair of movable flat
mirrors. This paper includes a description of the star image motion compensator and
the development of a mathematical model to describe this component. The design
approach uses a continuous-data approximation to develop compensation that will make
the discrete system perform approximately as specified. The discrete system is eval-
uated by using z-transform theory, and then dynamic and steady-state performance is
analyzed by using an analog computer. Experimental results, including static and
dynamic checks, are shown for the representative design using actual hardware. Included
in the section on hardware results is a discussion and evaluation of an adaptive control
technique that is applied to the control system to improve system accuracy.

SYMBOLS

a exponential function

B total equivalent viscous damping, newton-meter-seconds&' radian

b exponential function

Ca,.. .,Ci residues

c exponential function

Dp viscous damping of image motion compensator, newton-meter-seconds
* , radian

Ea excitation voltage from torque-motor amplifier, volts

EJ.J back electromotive force (emf) voltage, volts

Ee error voltage in rate loop,.volts



Ej tachometer feedback voltage, volts

E^ output voltage from zero-order hold, volts

Er input voltage to rate loop, volts

Es ' continuous output voltage from sensor, volts

Es* sampled output voltage from sensor, volts

f focal length, meters

Gc transfer function of compensation

GhO transfer function of zero-order hold

Gj combined transfer function of rate loop and mirror system

69 transfer function of sensor

63 transfer function of all terms except sensor

I excitation current for torque motor, amperes

i sample number (1, 2, 3, 4)

JT total load inertia, newton-meter-seconds2
radian

Jm inertia of motor, newton-meter-seconds2
radian

JD inertia of image motion compensator, newton-meter-secondS2v radian

j complex operator

K general gain constant

Ka gain of torque-motor amplifier, volts/volt

KK back emf gain constant, volt-seconds
^ radian



Kc gain of compensator, volts/volt

Kf gain relating star image displacement to input disturbance, meters/radian

Km mirror gain constant relating star image displacement to mirror rotation,
meters/radian

Kr gain of tachometer, volt-seconds1 & radian

Ks gain of sensor, volts/meter-second

Kt torque-motor sensitivity constant, newton-meters/ampere

Ky velocity-error constant, second'*

L torque-motor winding inductance, henrys

m number of terms in expansion

nij rate of change of star image position on focal plane, meters/second

ms slope of sweep signal, meters/second

NI sensor output number for steady-state case

NI' sensor output number for velocity input

ANi error in measured number

n ratio of torque-motor angular rotation to mirror angular rotation

P distance between mirrors when they are both at an angle of 45°
to optic axis, meters

R torque-motor winding resistance, ohms

Rm ratio of sweep signal slope to time rate of change of star image position

S0»• • • > S5 dummy variables



s Laplace operator, second"

T sampling period, seconds

Tm torque generated by motor, newton-meters

Tr restraining torque produced by load, newton-meters

t time, seconds

ta time of first steady-state detection pulse, seconds

tjj time when steady-state input, velocity input, and sweep signal intersect,
seconds

tc time when velocity input and sweep signal intersect, seconds

t(j time of second steady-state detection pulse, seconds

tpt..' time between first two pulses in train, seconds

tgjtg' time between second two pulses in train, seconds

Ata time interval between first pulse generated by velocity input and first pulse
generated by steady-state input, seconds

Atjj time interval between second pulse generated by steady-state input and
second pulse generated by velocity input, seconds

Xa peak amplitude of sweep signal, meters

Xjj amplitude of steady-state star image, meters

Xc amplitude of star moving with constant velocity at time tc, meters

X(j star image displacement caused by telescope angular rotation, meters

Xe star image position on optical focal plane, meters



Xp star image displacement caused by mirror rotation, meters

X,Y,Z orthogonal coordinate system

AXfo measured-position error, meters

z z-transform operator

a mirror rotation angle, radians

|3C phase shift of open-loop system, radians

/3m phase margin, radians

£ damping ratio

6 angular displacement of torque motor, radians

0 angular velocity of torque motor, radians/second

T time constant of star sensor model, seconds

0 telescope angular displacement, radians

(f> magnitude of velocity input disturbance, radians/second

oj radian frequency, radians/second

d)c crossover radian frequency, radians/second

Co, damped natural frequency, radians/second

u)g sampling radian frequency, radians/second

Wj numerator break frequency of compensator, radians/second

oj_ denominator break frequency of compensator, radians/second



y3

J4

break frequency of rate loop, radians/second

break frequency of star sensor, radians/second

Superscript:

pulse transfer function

Abbreviation:

Z.O.H. zero-order hold

GENERAL SYSTEM DESCRIPTION

As pointed out in the introduction, a dual-level control system is one means of pro-
viding the necessary pointing accuracy and stability for a large orbiting telescope. One
conceptual technique for dual-level control is shown in figure 2.

Coarse-pointing system

Disturbance
torque j

Telescope
Attitude

Actuator Computer

Experiment
pointing

Fine—pointing
control
system

Figure 2.- Block diagram of dual-level control concept.

For the coarse-pointing system, a coarse star sensor provides attitude information
for the attitude actuator. The actuator could be either an inertia wheel or a control
moment gyro; the latter would be preferred for very large inertia bodies. The actuator
provides a control torque to counteract the disturbance torque, thereby stabilizing the
telescope structure within a coarse limit. The fine-pointing control system operates
within the coarse-pointing limits to maintain all star images within the telescope field of
view stabilized on the optical focal plane. In general, the fine-pointing control system
includes a star sensor, controller, and plant - optical image motion compensator for
this system - as shown in figure 3. In this figure, the variation in attitude of the vehicle
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Disturbance

Desired _|_
star position-

(zero)
Controller Plant

Star
position sensor

Figure }.- Block diagram of generalized star image regulating technique.

while under control of the coarse-pointing system is shown as a disturbance input to the
star image position in the focal plane.

In order to make the regulating system design specific, illustrative examples are
presented in this paper. Table 1 contains system specifications that are used for the
design. Other numbers are presented where applicable.

TABLE 1.-SYSTEM SPECIFICATIONS

Telescope aperture 3.05 m (120 in.)
f-number '. 100
Telescope focal length 305 m (12 000 in.)
Coarse-pointing accuracy 9.7 x 10~6 rad (2 arc sec)
Worst case input disturbance:

Sine wave:
Amplitude ; . . . . . 2.91 x 10~7 rad (0.06 arc sec)
Frequency 0.5 Hz

Velocity 0.92 x 10'6 rad/sec
Fine-pointing accuracy goal . 4.85 x 10~° rad (0.01 arc sec)
Sampling period of digital sensor 0.01 sec
Desired fine-pointing system bandwidth 5 to 10 Hz
Guide-star magnitude +10

A careful review of the literature (refs. 3 to 14) has indicated that these numbers are
representative of the present problem; hence they will serve as a good basis for design.

Since the regulating system can be only as accurate as the star sensor, questions
arise as to the type of transducer and measuring technique that might be used. Most
available, sensors work on some variation of the principle of physically dividing the focal
plane in the vicinity of a star image into quadrants. When a star image is exactly cen-
tered in this region, all quadrants will have equal intensities. Any angular motion of the
optical system will result in unequal intensities providing the basis for a highly sensitive
analog nulling device. An obvious penalty of such a method is a very small linear range.
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A technique for sensing star position was desired that is digital for ease of processing
and computing, is capable of measuring errors rapidly, has a wide field of view that is
easily adjustable, is linear over the complete range, has a simple measuring technique,
and has the accuracy required for this application. In order to meet these requirements,
a scanning technique that uses an image dissector tube as the transducer has been devel-
oped (ref. 15). Position information generated by the sensor is in the form of a digital
number that represents the magnitude and direction of the star image displacement along
the focal plane. At various time intervals, the digital number is shifted to an output
register for use by the remaining portion of the control system. A more complete
description of the operation of the star sensor, for the purpose of developing a mathemat-
ical model, is included subsequently.

The purpose of the optical portion of an image motion compensator is to provide a
method for a control system to maintain a star image fixed on the focal plane despite
small motions of the telescope axis. One technique that has been successfully employed
is the transfer lens used in Stratoscope II (ref. 16). The main deficiency of this method
is the residual aberrations caused by the lens.

Another technique involves the placement of a single flat mirror in the optical path.
By rotating the mirror as the telescope moves, the image can be maintained fixed.
Because the focal plane is effectively tied to the flat mirror, the focal plane must rotate
by twice the angle that the mirror rotates through. The effect is twofold: First, the
new focal plane is tilted relative to the original position; and second, the off-axis image
is slightly behind the original focal plane. Therefore, the one-mirror technique can only
control one star image over small angles without changing the focus.

A two-mirror image motion compensator that eliminates the focal plane problem
has been designed and evaluated (ref. 17)-. The technique has the advantage that only two
flat optical surfaces are required for two-axis control. An additional advantage is the
ability to control all star images within the field of view simultaneously. A complete
description of the operation and development of a mathematical model of the image motion
compensator is included subsequently herein.

The controller includes a motor for driving the image motion compensator, a
tachometer for damping, and electronics. The electronic system is mainly comprised of
compensation which has been chosen both for stability considerations and for an adequate
velocity-error constant. The compensation electronics also includes a digital-to-analog
converter at the output of the star sensor and a zero-order hold. A direct-current,
limited-motion, brushless, torque motor has been selected as the actuator to drive the
image motion compensator. A mathematical model and description of the motor and rate
loop are included subsequently. The next section describes the operation of each major
component of the system and provides a basis for the development of mathematical models
for the design.

11



COMPONENT OPERATION AND MATHEMATICAL MODELS

Star Sensor

Description of operation.- This section contains a description of the star sensor
used in the control system; the advantages of the sensor were described previously and
are more completely described in reference 15. An image dissector tube is shown
schematically in figure 4(a). A star image is focused on the front face of the tube which
is located in the optical focal plane; this produces photoelectrons which are refocused
onto the electron focal plane. The defining aperture, which is a slit for the single-axis
case, is centered in the electron focal plane. The electron image is scanned vertically
across the slit by passing a sweep signal through the magnetic deflection coils. A tri-
angular sweep signal is plotted in figure 4(b) with the vertical axis representing the elec-
tron image position and the horizontal axis representing time. In this illustration the
star image is off axis; therefore, the path of the electron image is not centered about

•Electron focal plane

Star image

Optical focal
plane

to
o
D.

a
60
n)

O

o
0)

•a

(a) Image dissector tube.

Sweep signal

I Slit aperture |
I
I
I

Time

(t>) Electron image position.

0)
o

a
2
H

S.

tr

^

Time

(c) Transducer output pulses.

Figure k.- Schematic representation of image dissector tube
and plots of sweep signal and output pulses.

12



the slit aperture. When the electron image crosses the slit, an electrical pulse will be
generated. The pulses are shown idealized in figure 4(c). The time interval between
successive pulses is measured by a precise clock reference, and the difference in the
two times (tj and t^\ is proportional to the angular error between the guide star and
telescope. The sign of the resulting digital number indicates direction. Note that other
symmetrical curves can be used for the sweep signal; however, the triangular sweep was
selected because of the linear dependence of error on t^ - t..

Mathematical model. - When the star image position is stationary on the optical
focal plane, the measurement error is theoretically zero. When the image position
changes with time, the star sensor exhibits a time lag, thereby causing a measurement
error. Figure 5(a) contains representative waveforms illustrating the time history for

Constant
velocity

Constant
position

\
Time

Sweep
signal

(a) Focal plane displacements for several waveforms.

J-J

o.
4-1 1
3
O

t-i
0)
u
•o
to

M
FH

i
1

1
1
1

* 1|

\ 1

1

1

i ! 1, t
1 -^ rnj

3
O.

O

(b) Output pulses for constant position.

lJ
0)
o

T3
CO

2
H

\ I
,

|-- tl

1 1

n 2 n

1 Time

(c) Output pulses for constant velocity.

Figure 5.- Representative waveforms for cases of constant position
and constant velocity with output pulses for each case.
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a constant-position star image and for a star image moving with constant velocity. The
lines for constant position and constant velocity represent a distance that is proportional
to the electron voltage ..required to center the electron image. For example, X^ is the.
distance that the steady-state star is displaced in the optical focal plane and, hence, is
proportional to the voltage required to center the electron image in the electron focal
plane. Also, at time %, the star image moving with constant velocity m<j is displaced
by a distance Xfc in the optical focal plane. The sweep signal is shown to scan a dis-
tance Xa along the optical focal plane. The output pulses from the tube for the cases
of constant position and constant velocity are shown in figures 5(b) and 5(c), respectively.

The attitude -measurement error AXjj for a constant-rate star image is derived
in appendix A (eq. (A2 3)) as

(Rm»2; R m
2 »l ) (1)v '

where Rm is defined as

(2)

which is the ratio of the time rate of change of the sweep signal ms to the time rate of
change of the star image position m , on the focal plane. Consequently, for a given Xa,
the measurement error can be kept to an acceptable level by selecting the ratio Rm.
Furthermore, for a worst case m ,, AX^ is directly related to the sweep period. (See
eq. (A19) in app. A.) The peak amplitude Xa of the sweep signal may now be selected.
It must be large enough to cover the complete field of view of the fine -pointing system.
This amplitude can be determined by geometrical means. Since the focal length of the
telescope is constant, the star image displacement X<j along the focal plane is propor-
tional to the angular rotation $ of the telescope with respect to the guide star. For
small angles of 0

(3)

where Kf is a constant equal in magnitude to the focal length of the telescope. The
required value of Xa is determined from equation (3) when $ is set equal to the maxi-
mum angular displacement that is to be controlled.

It is desired to model the digital star sensor for analysis. As indicated in appen-
dix A, the steady-state error of the sensor model to a step of position would be zero
(eq. (Al)); whereas the sensor output should follow a rate input disturbance with a
constant -position error (eq. (1)). As shown in figure 6, the dynamic properties of the
sensor can be modeled by a first-order time lag.

14



to
o

Input
Output

Time

Figure 6.- Input disturbance and sensor output as function of time.

The time lag of the sensor model is defined as r; the position error is AXjr,; and
the slope for both the input disturbance and output signal is m,. From equation (A25)
in appendix A, the time constant is

• ' .T . I • ; : (4)

which relates the time constant to the sweep period of the star sensor. The mathemati-
cal model for the digital star sensor is shown in figure 7.

Xe(s) Ks

s +
2

T .

Es(s) ^ Es*(s)

T Z.O.H.
Eh .

Figure 7--.Mathematical, model of star sensor.

In deriving the mathematical model of the star sensor, the input quantity used was
X<j, which is the component of image motion caused by the telescope attitude motion. In
the intended application, a component of image motion also results from the action of the
image motion compensator. The combined effect of the two motions yields the resultant
star image position Xe on the optical focal plane. This input is converted to a pro-
portional output signal Es through a gain constant Ks. At the end of every sweep
period T, the sensor output is transferred to a zero-order hold. The sampled sensor
output is Es*, and the output from the zero-order hold is Ev.

As an example, a 3.05-meter (120-inch) telescope operating at f/100 has a focal
length of 305 meters, thereby making Ks equal to 305 meters per radian. By using the
fine-p'ointing field of view defined in table 1, 9.7 x 10~6 radian (2 arc sec), the ampli-
tude Xa of the sweep signal must be at least 2.96 millimeters (eq. (3)). By assuming,
as indicated in table 1, a worst case input disturbance of 2.91 x 10~7 radian in amplitude

15



and 0.5-hertz frequency, the maximum rate disturbance is approximately
0.92 x 10~6 radian per second. Based upon this rate disturbance and a focal length of
305 meters, the slope of the image m. moving across the focal plane is 0.28 millimeter
per second. The slope ms is 1.18 meters per second based upon an amplitude of
2.96 millimeters and a period of 0.01 second (eq. (A19) in app. A). From equation (2),
Rm is found to be 4214, thereby justifying the assumption made in equation (1). In the
section entitled "Analog Computer Analysis," sinusoidal disturbance inputs with frequen-
cies up to 20 hertz were simulated. For this extra conservative case, m, is 11.15 mil-
limeters per second and Rm is 106. For either case, with a period T of 0.01 second,
the time constant T becomes 0.005 second (eq. (4)).

Image Motion Compensator

Description of operation.- As indicated in the section entitled "General System
Description," it is desirable to have an image motion compensator which has the capa-
bility of handling two or more star images without altering the focal plane. A device
with these features has been developed for this application and is more completely
described in reference 17. A schematic representation of a two-mirror image motion
compensator is shown in figure 8. In figure 8(a), rays from a star are imaged on the
focal plane after reflecting from two plane parallel mirrors. During actual operation
the telescope will move, thereby causing all star images in the telescope field of view to
be moved on the focal plane. The two mirrors will then be rotated and translated to
bring the star images back to the original position. For ease of experimental evaluation
and discussion, the telescope has been assumed to be stationary and the star image
motion on the focal plane has been analyzed as a function of mirror rotation only. First,
the two mirrors must be maintained parallel to each other as they are rotated so as to
prevent the focal plane from tilting. By doing this, all stars within the field of view will
be imaged on a plane that is parallel to the original focal plane, but the star images will
be changed in focus. Second, the change in focus can be eliminated if the path length
from the top mirror to the focal plane is maintained constant. This can be accomplished
by translating the bottom mirror as it is rotated as shown in figure 8(b). Both mirrors
have been rotated through the same angle, and the image has been translated along the
focal plane. The distance between the two mirrors has been changed, but the total path
length remains constant. It can be shown that the bottom mirror is always tangent to a
parabola and the top mirror rotates on the focus of the parabola.

The hardware used to demonstrate the single-axis technique is shown in figure 9,
which is a complete assembly of the two-mirror system. The two mirrors are mounted
on a common plate to maintain parallelism. One of the two mirrors is mounted on a
linear-motion bearing to vary the distance between the mirrors; the distance is regulated
by a guide mounted on the base below. The guide functions as the directrix of the

16



Incident
illumination

Star

Focal plane

Mirror

(a) Initial alinement.

Altered
position

Original
position

Parabola

(b) Rotated mirror position.

Figure 8.- Schematic representation of image motion compensator.
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Mirrors

Plate

Linear motion bearing

Guide

Shaft

Figure 9.- Image motion compensator.
L-69-2322.1
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parabola, and the shaft, which is the center of rotation of the common plate, serves as
the focus. A more detailed description is given in reference 17.

The previous discussion handles the single-axis case and is sufficient to demon-
strate the feasibility of the technique. This technique can be extended to the requisite
two-axis system with the following changes. The main change is that one of the mirrors
should be tangent to a surface that is a paraboloid of revolution. As shown in figure 10,
motions in the X-Y plane are parabolic, while those in the X-Z plane are circular.
Two mirrors will be sufficient for two-axis control. For the purpose of this study, only
a single-axis case is considered with motion in the X-Y plane, and all displacements
are along the X-axis.

Light
ray

Parabola

Circle.

Figure 10.- Schematic diagram illustrating two-axis technique.

Mathematical model.- The displacement of the star image is a function of the angu-
lar rotation a of the two mirrors. The following equation describes the relationship as

x _ 2P tan a
P 1 + tan a

(a * -45°, 135°) (5)
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(see eq. (3) of ref. 17 where Xp is called IH and P is called p) where Xp is the
star image displacement caused by mirror rotation, and P is the distance between the
two mirrors when they are both at an angle of 45° to the optic axis. For small values
of a, Xp can be approximated by

Xp « Kmo! (6)

where Km is assumed to be a constant equal to 2P. The maximum value of a is
determined by the worst case telescope disturbance - stability of the coarse-pointing
control system — and is proportional to X<j, which is calculated by using equation (3).
The mirrors are rotated in a direction to produce an Xp, which compensates for the
image motion Xd produced by angular motion of the telescope. The relationship is

Xe = X d - X p (7)

where Xe is the resultant star image displacement on the focal plane. Consequently,
once the maximum value of X<j is determined from equation (3), the maximum value
of a. can be determined from equation (6). The model representing equations (3), (6),
and (7) is shown in figure 11.

Kf
Xd

Km
Xp

'Figure 11.- Mathematical model of star image motion compensator.
Transfer function for input disturbance.

As an example, the maximum value of X^, which is equivalent to Xa, has previ-
ously been calculated as 2.96 millimeters (0.117 inch) for 0 of 9.7 x 10~6 radian. The
maximum value of a required to compensate for this displacement is 0.03 radian (1.717°)
for a positive and 0.028 radian for a negative and is based on P equal to 50.8 mil-
limeters (2 inches). Figure 12 contains a plot of Xp as a function of a and is based
upon equation (5). The curve has been plotted over a range of a of ±0.035 radian (±2°).
Comparison with equation (6), where Km is equal to 0.1016 meter per radian, reveals a
peak error of 3 percent over the required angular range.

Direct-Current Torque-Motor Equations and Modeling of Rate Loop

A direct-current, limited-motion, brushless torque motor has been selected as the
actuator to provide the rotational input to the image motion compensator. The torque
motor is suited to this application for the following reasons: It possesses (1) infinite
angular resolution, (2) limited but sufficient angular range, (3) reasonable torque levels,
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Figure 12.- Plot of star image displacement as function of
mirror rotation angle.
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and (4) extremely low friction levels because the only physical contact to the rotor is
through precision bearings. A block diagram for the loop is shown in figure 13, and the
circuit diagram is shown in figure 14. Typical derivations of the transfer function for
this rate loop can be found in many textbooks. (For example, see ref. 18.) For this
reason, only a general description of the loop and a few key equations are presented.

~\ Ee Amplifier

Ef

Ea
Torque

motor
armature

Tacho
e

9 m ».•
e

_i

Turns
ratio ^^J

a

Mirror
system

Figure 13.- Block diagram of rate loop.

Figure 1^.- Circuit diagram of rate loop.

The input voltage Er to the rate loop is a function of the star image displacement
Xe on the optical focal plane. The input voltage is summed with the feedback Ef gen-
erated by the tachometer with gain Kr producing an error signal Ee, which is then
amplified by gain Ka and applied to the stator winding of the motor. The torque Tm

generated by the motor is used to drive the load, which consists of motor inertia Jm

and image motion compensator inertia Jp. Because high-quality bearings have been
selected, viscous damping of the image motion compensator is extremely small compared
with the total damping of the rate loop and is neglected. The Laplace transform transfer
function relating the angular rotation of the motor 6 to the input voltage is

(8)

R T
L J L

s

V Vvs
R

S2 + R S 4- R
S + L S + L

'• Er(s)

(B (
KaKtKr\

^JL ' RJL /_
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where R and L are the resistance and inductance of the torque motor, respectively.
The viscous -damping term B is a function of the winding resistance, torque -motor
sensitivity constant Kj., and torque -motor back emf constant K as

and the total -system inertia JL is

where n is the turns ratio relating 6 to the mirror angle a. Physically, this ratio
is obtained from a mechanical linkage consisting of a combination of solid rods and
precision instrument bearings, thereby eliminating backlash problems associated with
gears.

In the actual design, a torque motor, which has a very small electrical time constant
(L/R) on the order of 0.003 second, has been chosen. For a negligible time constant,
equation (8) reduces to

C-K^x
Er(s)

' (ID

L L

which is the closed-loop transfer function used in the design.

For purpose of illustration, some gain constants used in the actual design are shown
in table 2. By using these gain constants, the transfer function in equation (11) becomes

4200Er(s)
-.
s(s + 128)

where the break frequency is 128 radians per second.

TABLE 2.- GAIN CONSTANTS FOR RATE LOOP

(12)

jr V/V '**a> v /v

1C. N-m/A

R ohms

P, N-m-sec
B' rad
T N-m-sec2
J^' rad '

v V-sec
^r> rad

1000
0.593

10

0.0344

0.0141

0.03
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The mathematical models developed in this section are combined to form a com-
plete control system. In the next section, the open-loop gain, break frequencies, and
compensation are determined.

DESIGN ANALYSIS

Effective utilization of the mathematical models that have been developed requires
the proper selection of gains and break frequencies and the design of compensation. The
worst case input disturbance representing the attitude variation of the telescope is
assumed to be a sine wave with a frequency of 0.5 hertz and an amplitude of 2.91 x 10"'
radian (table 1). In order to insure adequate response of the control system at the maxi-
mum disturbance frequency, the fine-pointing control system should have a bandwidth
approximately 10 times greater than the maximum input frequency; hence, a 5- to
10-hertz bandwidth has been established. Corresponding to the worst case input distur-
bance, the maximum rate disturbance is approximately 0.92 x 10 ~6 radian per second.
The control system.is required to follow these rates with a steady-state position error
less than 4.85 X 10~^ radian while guiding on a +10-magnitude star.

The design approach is first to assume a continuous -data network to establish
approximate loop gains, break points, and required compensation. The main objective of
the continuous-data analysis, using the familiar s-plane techniques, is to obtain a com-
pensatory network which will cause the discrete system to perform approximately as
specified. By using z-transform theory, the behavior of the discrete system with this
compensation is checked and, if necessary, modifications are made. Next, the gains and
compensation established from the analysis are tested in the analog computer simulation,
which includes sensor noise. Finally, the complete control system is experimentally
tested by using actual hardware.

Focal
ength

Kf

+
Xe

>

Star
sensor

Ks

s + 23 T

G2

T """"

Zero-
order
hold

l-e'Ts

s

•

Compen-
sation

Eh
Gc(s)

Er

Rate loop

KaKt/RJL

„ KaKtKr

~

Mirror
Turns transfer
ratio function

9

• .̂

1
s

8
1
n

a

,
XP

Figure 15.- Block diagram representing mathematical model of control system.
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Continuous-Data Approximation

A block diagram representing the mathematical model of the control system is
shown in figure 15. By using block-diagram manipulation techniques (ref. 18), block G2
can be removed from the forward path and inserted in the input path and in the feedback
path. Block G2 can then be transferred through the output junction into the forward
loop on the right of the sampler and into the output path where it appears in inverted form
as 1/G2- For this configuration the open-loop pulse transfer function of the closed-loop
portion of the control system is

f
m=-°°

G2(ju> + jmu>s)J

(13)
where Gh represents the zero -order hold, GC is the compensator, Gj includes
the rate loop and mirror transfer function, G2 is the star sensor, and wg is the
sampling frequency. The transfer function of the zero -order hold is

(14)

Substitution of equation (14) into equation (13) yields

m=-°°

sin

x Gc(j w (15)

Since the required frequency response of the control system must be below 10 hertz
(63 radians per second), which is one-tenth of the basic sampling frequency u>s, the
pulse transfer function can be approximated by the first term of the expansion series
(ref. 19). Furthermore, the sampler and zero -order hold have a magnitude nearly equal
to one and are approximated by a pure time lag of one -half the sampling period T. By
using these approximations, the transfer function becomes

jwT

G G G G * ( j w ) = e 2 G ( j w ) G t i w ) G( j co ) (16)
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A block diagram of the linear continuous-data approximation is shown in figure 16. For
the continuous system, block G£ in the input path and block 1/G2 in the output path

xe

>-

KS

"1

JUT
2

e

Go G,2 no

Gc(s)

KaKtKm

nRJTs /s + B +
 KaKtKr \

L \ JL «L )

Gl

X

Figure 16.- Continuous-system approximation of discrete control system.

cancel. The continuous-data system represents a unity feedback, type-one control sys-
tem. By assuming stability, the steady-state position error for this system can be deter-
mined from the final-value theorem as

lim Xp(t) = lim
t-oo K

 S-0

Kf

G2(s) Gc(s)
(17)

where $(s) represents the input disturbance, Gj^s) has a steady -state gain of one,
and Gc(s) has a steady -state gain of Kc. For a velocity input with magnitude <£o the
steady -state position error is

lim Xe(t) =
Ky

(18)

where Ky is the velocity-error constant, which is

KsKcKaKtKm
(19)

The next step in the preliminary analysis is to determine the break frequency for
the rate loop and choose the compensation. The break frequency for the star sensor has
previously been established as 2/T radians per second. The break frequency for the
rate loop is selected by considering such items as stability and the physical properties of
the torque motor and load. From a stability viewpoint, it is desirable for the break fre-
quency to have a higher frequency than the bandpass frequency. From a practical view-
point, the break frequency should not be too high so as to insure that the assumption of a
negligible torque-motor winding-time constant is valid.
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One other area of interest is to insure adequate phase margin 0m for the control
system. The phase margin is defined as

where 0C is the phase shift of the open-loop system at the crossover frequency. By
assuming a compensator with a first-order break frequency in the numerator and denomi-
nator, the phase shift can be calculated as

.. a .. or , <j) , (>}„ w,,T
0 = tan'1 -£. - tan'1 _£ - tan'1 -£ - tan'1 -£-!-_£_ (21)c wl W2 W3 • W4 2 2

where o>.. and Wg represent the numerator and denominator break frequencies for
the compensator, w, is the break frequency for the rate loop, o^ is the break fre-
quency for the sensor, and o> is the crossover frequency. Each trigonometric term
in equation (21) can be represented by a power series as (ref. 20)

w " • w 3 u 5 ' "

-l£.|.£ + l^l£L\5
 + ... &>ij| (22b)

where i = 1, 2, 3, 4. Since the power series converges rapidly for most values of the
argument, the first-order terms are adequate as

tan"1 ^ * -£• U£ < 1)

, u> .. /w \
— « 2. - i I c > j \

where i = 1, 2, 3, 4. Equation (21) can now be written by using the form of equations (23)
as

d) T I u*\ I w 0 \ o > a)

where the crossover frequency is assumed to be greater than the break frequencies.of the
compensator and is lower than the break frequencies of the rate loop and sensor.
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As in previous sections, an example will be used to establish the design for this
system. The control system is required to follow a rate input disturbance 8O of
0.92 x 10~6 radian per second with a maximum star image position error of
4.85 x 10~^Kf meter (table 1). By using equation (18), the minimum value for Ky is
19 per second. Because the preliminary analysis neglects sensor noise and approxi-
mates the sampler and zero-order hold, a steady-state position error three times better
than required is used. For this safety factor, Ky becomes 57 per second. The sensor
break frequency is determined by the sampling period. For T equal to 0.01 second
(table 1), the break frequency becomes 200 radians per second. The break frequency of
the rate loop must be higher than the bandpass frequency, which is specified to be a maxi-
mum of 10 hertz. A break frequency of 128 radians per second has been selected to
satisfy the requirements outlined previously. A Bode plot of the uncompensated open-
loop system is shown in figure 17. Since an approximate control system is being evalu-
ated, a conservative phase margin of 50° minimum has been chosen; this implies a phase
shift of 130° at unity gain. For the uncompensated case, w.. and Wg are zero, o>
is 57 radians per second, and /3C is therefore determined from equation (24) to be 149°.
The desired phase shift can be obtained by decreasing the crossover frequency to 32 radi-
ans per second, which is the minimum acceptable bandpass of the closed-loop system,
while maintaining Ky at 57 per second. Because the crossover frequency has been
decreased by a factor of 0.56, the attenuation must result from the compensation. For a
first-order compensator, the break frequencies are approximately linearly related to the
attenuation. Thus, the relationship between w.. and w, is

a>2 = 0.56Wj (25)

If this relationship is substituted into equation (24) with 0C equal to -130° and wc

equal to 32 radians per second, u>| becomes approximately 8 radians per second and
u>2 is 4.5 radians per second. A Bode plot for the compensated system is shown in
figure 17.

Thus, by using the indicated compensation, the approximate continuous-data system
has a Ky of 57 per second, an open-loop crossover frequency of 32 radians per second
(3-decibel point is 46 radians per second), and a phase margin of 50°. The next section
provides a check on the general operating characteristics of the system by using
z-transform theory.

Discrete-Data System

The break frequencies established in the continuous-data system can now be checked
by using z-transform theory. The approach used is to transform from the s-plane to the
z-plane, check the stability of the system by plotting the root locus of the characteristic
equation, and evaluate the general operating characteristics at the design gain.
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The block diagram for the sampled-data control system has previously been shown
in figure 15. For convenience, the gain constants are lumped together and designated
as K. The z-transform for the output signal Z(Xp) is derived in appendix B (see
eq. (B8)) as

(26a)
KG2 G3(z)

where

G2(z) = Z

= Z
- e - T s ss)(

s2(s + w2)(6

(26b)

(26c)

and

KG9 G,(z) = Z
£t O

The stability of the control system is determined from the characteristic equation

1 + KG2 G3(z) = 0

From z-transform theory

z = eTs

and equation (26d) reduces to

(26d)

(27)

(28)

KG2 G3(z) =K( l -
s +

(29)

The z-transform in equation (29) can be found by expanding the terms inside of the
brackets by the method of partial fractions, thereby yielding

(30)
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where Ca, C^, Cc, C^, and Cg are the residues. The z-transform for each partial
fraction in equation (30) is shown in appendix B (eq. (B13)). Substitution of these trans-
forms into equation (30) and use of equation (27) results in the characteristic equation

1 +Kd - Z'
CaTz , Cbz Ccz Cdz Cez

(z - 1)2 z - 1 z - e
-OJOT

z - e
-u>4T

= 0 (3D

where the residues are defined in appendix B (eqs. (B18a) to (Bl8e)).

The velocity-error constant can be derived from equation (31) for a stable system
by applying the final-value theorem for z-transforms. The equation for the velocity- .
error constant is derived in appendix B (eq. (B24)) as

Kv = 1 lim [(z - 1)KG2 G3(z)l
T z—I1- -J

Equations (31) and (32) are combined to yield

= KCr,

(32)

(33)

The z-transform root locus of the nonapproximate system has been plotted for
equation (31) by using the numerical values of break frequencies that, were determined
from the continuous -system approximation as follows: (1) o>1 is 8 radians per second;
(2) u>2 is 4.5 radians per second; (3) 0*3 is 128 radians per second; (4) w^ is
200 radians per second; and (5)
teristic equation is

T is 0.01 second. By using these values, the charac-

KG2 G3(z) = 1 + K(2.202 x 10"20

')<;(z + 0.1096)(z + 1.808)(z - 0.923)(z + 3.616 x
(z - 0.135)(z - 0.278)(z - 0.956)(z - 1)

where
(34a)

(34b)

The root-locus plot for equations (34) is shown in figure 18. The crosses in fig-
ure 18 represent the open-loop poles, the circles represent the open-loop zeros, and the
squares are the location of the closed-loop poles for the gains Ky specified in the fig-
ure. Because the root locus is symmetrical about the real axis, only the upper portion
of the z-plane has been plotted. For the selected gain of 57 per second, the damped
natural frequency u>d for the oscillatory poles is approximately 44 radians per second,
and the damping ratio £ is 0.62. Both a>d and £ are shown in figure 18. The con-
trol system becomes unstable when the roots of the characteristic equation leave the unit
circle; the gain at this point is 234 per second.
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Figure 18.- z-transform root locus for system with (s + 8)/(s + 4-5) compensation.

The net effect of the compensation is to add a pole-zero combination of 0.956
and 0.923, respectively. This combination caused the small circular locus shown in fig-
ure 18 and allowed a larger Ky without significantly changing the damped natural fre-
quency or damping ratio as obtained in the uncompensated case. For comparison, the
root locus has been plotted in figure 19 for the uncompensated system. The characteris-
tic equation for this case is

1 + KG G~(z) = 1 + K(l.69 x 10~J2^3
(z + 0.109)(z + 1.79)(z + 4.65 x 1Q13)

(z - 0.135)(z - 0.278)(z - 1)
(35a)

where

Ky = K
25 600 (35b)

As previously pointed out, the mathematical model assumes a constant sampling
period and does not include sensor noise. In view of these facts and the fact that the
compensation has very little effect on the root locus other than an increase in Ky, the
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Figure 19-- z-transform root locus for uncompensated system.

compensation was altered to provide additional flexibility through a wider range of pos-
sible values of Ky. The compensation was changed to (s + 8)/(s + 1.1), which allowed
Ky to be increased by a factor of 4 to 230 per second. The root locus for the final
configuration is shown in figure 20 for the characteristic equation

1 + KG2 G~(z) = 1 + K(6.89 x 10-19) (z + 0.11)(z + 1.826)
(z - 0.135)(z - 0.278)

(z - 0.923)(z + 1.15 X1011)
(z - 0.989)(z - 1)

(36a)

where

K V = 3520
(36b)

The root locus is similar to the one shown in figure 18, except for Ky. At the
operating gain of 230 per second, Wj is approximately 39 radians per second, which is
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Figure 20.- z-transform root locus for system with (s + 8)/(s + l.l) compensation.

slightly less than the u>d of 44 radians per second for the previous compensation.
Furthermore, the control system now becomes unstable at a gain of 880 per second.
For the operating gain of 230 per second, the gain margin is 3.8, as compared with a
gain margin of 4.1 for the previous compensation.

Based upon the root locus shown in figure 20, the control system looks well behaved
and very stable. However, the closed-loop transient response and bandwidth need to be
investigated. As shown in equation (26a), numerator dynamics may have a significant
effect on the closed-loop response. The time-domain response at the sampling instants
can be obtained from the inverse z-transform of equation (26a). Other techniques - such
as the modified z-transform method - are available to obtain the response between
sampling periods. A better method is to use the analog computer because an exact model
of the sensor can be simulated and the output is continuous for all periods of time. The
next section contains the results of the analog computer analysis for the cases of the two
compensators discussed and for cases with and without sensor noise.
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ANALOG COMPUTER ANALYSIS

An analog computer simulation is a typical method used to verify and improve sys-
tem performance. The various component gains and break frequencies determined
from the preceding analysis are used in the simulation, which also includes sensor noise.
The digital sensor, which had been approximated by a first-order time lag, sampler, and
zero-order hold, has been simulated by a combination of electronic switches, integrators,
and digital logic modules to approximate more closely the actual hardware.

The operation of the digital sensor has previously been discussed in the section
entitled "Component Operation and Mathematical Model." To summarize, a triangular
sweep signal scans the electron image across a slit that is centrally located in the elec-
tron focal plane. Each time the electron image crosses the slit, an electrical pulse is
generated. By counting time between successive pulses, the star image position on the
optical focal plane is determined. The electrical pulse generated by the sensor contains
noise, which is a function of the guide-star magnitude (ref. 15). The net effect of this
noise is a time variation in the detected pulses, thereby causing an error in the position
information.

Figure 21 contains a record showing the response of the simulated sensor to a rate
input disturbance that is 0.01 times the rate of the sweep signal. The traces shown in

3.88 x 10~6 rad

3.88 x 10"6 rad

(c) Sweep signal.

Figure 21.- Computer simulation of sensor response to rate input disturbance.
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figures 21(a), 21(b), and 21(c) are the input disturbance, output En from the zero-
order hold, and the sweep signal, respectively. In the control system, the polarity of
En is not reversed as shown in the oscillograph record. Figure 22 shows the output
signal from the simulated sensor for a constant position +10-magnitude star. As in
figure 21, the amplitude is shown in terms of angle rather than voltage. The signal-to-
noise ratio was taken from experimental data (ref. 15).

4.85 X 10"8 rad

Figure 22.- Computer results for output signal from zero-order hold for
stationary +10-magnitude star.

The two compensators (s + 8)/(s + 4.5) and (s + 8)/(s + 1.1) are described in the
section entitled "Design Analysis." For (s + 8)/(s + 4.5), the open-loop gain of the con-
trol system is 57 per second. By using this gain and the associated compensator, the star
image error was measured for the specified rate input disturbance of 0.92 x 10~6 radian
per second. The peak star image position error Xe was equivalent to 2.62 x 10~8

radian with no noise, compared with the design value of 1.6 x 10~8 radian, and approxi-
mately 4.85 x iO~8 radian when guiding on a +10-magnitude star. The reason that the
design factor of 3 (without noise) was not achieved is due to the inherent inaccuracies
in mathematically modeling the sensor.

In order to improve system performance, the compensation was changed to
(s + 8)/(s + 1.1) and the open-loop gain was increased to 230 per second. Figure 23 con-
tains results for the closed-loop system when the input disturbance is a sine wave of
amplitude 0.291 x 10~6 radian and frequency of 0.5 hertz. The record in figures 23(a)
to 23(e) includes the input disturbance, mirror position, mirror rate, star image posi-
tion, and sensor output. The scales for star image position and sensor output have units
of angle rather than linear displacement and voltage. For the specified rate input dis-
turbance of 0.92 x 10~6 radian per second, the star image position error was approxi-
mately 1.16 X 10~8 radian. Figure 24 shows the same variables for the condition of
white noise added to the input disturbance just described. For this case the star image
position error was approximately 2.5 x 10'8 radian. Results from another run made
with noise as the only disturbance show that the star image position error is approxi-
mately 1.07 X 10 ~8 radian. This error is approximately the same as the error caused
by a rate input disturbance and no noise. A comparison of figures 23 and 24 shows that
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î -
tr

~3

- -

-1

•̂7

7=7

77777

=

=77

=
--

".'.

\

=77;

==

77=
-.—
:— :

•or position. -

77777
_--.

X*

~~:
~""7

^

777-

X"

=

=-

~

- -

'

:_

. •-

"

_

~7--~

»\

~

S,

--

"X

: .

S ,̂

_ - -.-

~ry

-=.-
- —
~-

s

~

(c

__._.

^7:

X

)

.—7
_ _

L~

u

-~:
_=

—

ir

=-
-. .

'X.

ro

.=-
_ -

S.

r

-• .

rat
, , i i

—

~

S,

:..

pS
J

~~

._
__

_. -

^

(c

~

~

i)

~-

*\

£

- —
~

V,

ta:

*x.

• i

"".

m

,*/

ig<

7~

7"

X"
«V "V

**« MM X*
^~

S*

- ( € J

'
~

'wy

S<

•

">

;ns

~ -
~~

X.

or

....

H*

c

"

V-"

ut

T. '

^r_i

^p^

-^L

"^j

e.

7.7.

7~"

!SF
777^
=

-̂. .
77=

==•
•"."

'=" '

7.7=

77777

"̂-^s
77=

7-..

--

7.=

HE

T77

7=

LTT?

7=7

.̂

:-:

=7_

-777

-777:

77777

777777

77777

Try

-7

'.-

7777
7777

77777:

77=;
~~l

/.-':

77-77

=^

-=•.

p77H

==

fe
7=7

=77

=•7-

7:-7-

-=.

p=

^Z=

^ :̂

z .̂-

=

_^r

H7

-----

7777;

~.~
.7777

70

r==

771":

77=
7=7-

7777-

=

^IT

^1=:

;—£

^=

—

- —

77"
.-.=

7-77£

"̂

77777

•/•

"

-

--—.

=^

-^

-—

?=

•r.H

~

-"

77=7

77-77.-

77777

=7-;
77=

777=

.-

7=77
77=

77777

=77

— '

=•"

:~

77777

77=

77777:

TTTH

Ssj
>"

"7

77777
7-7777

777777.

-----

77~

^

.~'

-—

=

=77;

=

TTH

=77

— -.
~~

r. .

--

7=7

7-=

=777

=

7777
~

-

-

."I

~?

^=

^

-^

>T|

^5

:T
~"

1 1 1 I I I !

'

>~

=i

:3̂ :H

^

3 f

^ '

IV

77- -

=77

"̂•7-

J0£

— ;

TTl"

7=7

77777

777_.

7777

~~

,it:

7777-

77777

77777

777=

7777;

~

~ .

on

r=-

77777

77777

77777-

~-~
T;"

-

77777

77777

777=

's;
..".;

= -

7F77

T-=7

=3

"."

' —

77=

777777

77777
— --.

^

7=7

777777

77777

^

^TT

1~

IE:

}EH

<1
. *

•;•

]̂ =

77777

77=

777=

77777

=
77=

77=

J=^

7=77

VT;

=^777Z

7=7

77777

77777

_-

77=

^77

:7777\

777.

777=

777=

7— _

~

=

777=

77777

7;:

f̂TT1

77...

=777

"~.

7=7!

=
7777;

~-~

• 7

T^i

_
777=.
777^

=
^^

-

DU

-.
77T
7>H

' =

"

t.

•

-__
'̂.

7^

77=

:-

- 7

7^
"ws,

- --

~

~-
~

7̂--

-=

%,

7=7

.

--
777;
-.--:

=-

S-

-•
777

--7-
=77

-.--.

!•»•
= -

~--~

'._"

==
-"-

^
--'.

/-•

-

7771

—
--
&~^

-.--

- -
^r;

'~

•:<

--7

~-

=T.
r-7r

-j.
i-=

~-
- -

^-~-

--=

77=

V
=7\;

7=77

77-7

=

- -

77777
777=

77777

-̂ ,

-=7
~ -

77777

7777;

---.

TT:

=;
7"

=-

*>

~-~:

\
2.03

t

1
6.24

1

1
4.99

t

1
2.08

1

t
2.42

t

-7

i-4

4.99 x 10' rad/sec

Figure 23-- Computer results of control-system response to sine wave disturbance
with frequency of 0.5 hertz and amplitude of 0.06 arc second.
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z

(a) Input disturbance.

*— _7
2.03 x 10 ' rad

§^=^ 4.99 x 10 rad/sec

(d) Star image position. —

Figure 2^.- Computer results of control-system response to +10-magnitude star
with sine wave disturbance of 0.5 hertz and amplitude of 0.06 arc second.
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the star image position error resulting from noise caused by guiding on a +10-magnitude
star is approximately double the error resulting from a noise-free input disturbance.
Furthermore, for the specified input disturbance, which has a maximum input of
0.92 x 10~6 radian per second and a star magnitude of +10, the peak star image position
error is approximately one-half of the specified maximum error of 4.88 x 10"^ radian.

A frequency-response test for the closed-loop system shows that the bandwidth is
10 hertz and the frequency at the peak amplitude is 5 hertz. The phase shift at the
3-decibel point is approximately 150°. The bandwidth of 10 hertz is within the desired
goal of 5 to 10 hertz. Figure 25 shows the control-system response to a step input dis-
turbance. The peak overshoot in mirror position is approximately 36 percent. The sys-
tem gain was increased to determine the gain that just causes instability. The measured
value of 920 per second checks closely with the calculated value of 880 per second (fig. 20).

With the compensation set at (s + 8)/(s + 1.1), the control system meets all design
specifications. The position error of 2.5 x 10~° radian, when following a rate input dis-
turbance of 0.92 x 10~6 radian per second and guiding on a +10-magnitude star, is approx-
imately twice as good as required. The bandwidth of 10 hertz meets the goal of 5 to
10 hertz. The next section describes the hardware results for a bright star and a
+10-magnitude star. Various oscillograph records are included for comparison with
those obtained in the analog computer simulation.

HARDWARE RESULTS

Various steady-state and dynamic checks have been made on the control system by
using the actual hardware that has been described in previous sections. The digital sen-
sor, shown schematically in figure 4, consists of an image dissector tube, a special pur-
pose digital computer, and other associated electronics. At the end of each sampling
period, the digital number is shifted to a digital-to-analog converter that also performs
the operation of a zero-order hold. The simulated guide star is comprised of a light
source and a pinhole aperture. Light from the simulated star is collected by a
3.81-centimeter lens (ref. 15) that has been specially designed to produce a star image
that has the exact size and motions on the focal plane of the simulated telescope as it has
in a 3-meter-diameter telescope operating at f/100. After passing through the lens, the
light rays reflect from the two mirrors of the image motion compensator before being
focused on the optical focal plane. A photograph of the image motion compensator is
shown in figure 9. Other system components include a torque motor to drive the image
motion compensator, a tachometer to generate rate signals, and electronics.

During typical operation, the control system regulates the star image motion to
compensate for motions between the simulated star and telescope. Because it is imprac-
tical to move either the simulated star or the simulated telescope at the high rates
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(a) Input disturbance.

2.03 x 1<T7 rad

(b) Mirror position.'

6.24 x 10 4 rad

(c) Mirror rate.

-39.98 x 10"° rad/sec

(d) Star image position.

2.08 x 10~7rad

(e) Sensor output.

9.69 x 10"8 rad

Figure 25.- Computer results of control-system response to step input disturbance
with open-loop gain of 230 per second.
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required to check adequately the control system, a different technique is employed. The
input disturbance is simulated by passing a modulated current through the deflection
coils of the tube; the modulated current consists of the reference sweep signal and the
dynamic signal.

When the regulating system locks onto the star image and maintains it at approxi-
mately a null position, the need for a wide field of view in the digital sensor is diminished.
A more important need is the stability of the star image regulating system and the need
to minimize the possible loss of the star image because of noise spikes from the sensor.
Experimental results show that the signal-to-noise ratio of the digital sensor is a func-
tion of the sensor field of view (ref. 15). The reason is that the field of view is directly
proportional to the electrical sweep amplitude in the image dissector tube. A decrease
in the sweep amplitude causes the star image to cross the slit in the tube at a propor-
tionally slower velocity, thereby increasing the signal-to-noise ratio. For example,
decreasing the sensor field of view by a factor of 2 allows the signal-to-noise ratio to be
increased by a factor of 1.4. The net effect of increasing the signal-to-noise ratio is the
same as using a brighter guide star. Note that although the sensor field of view is
decreased, the total usable field of view of the fine-pointing system is maintained because
of the range of the image motion compensator.

An adaptive control technique is used to obtain this improved characteristic of the
digital sensor. A decrease in the field of view of the sensor causes a corresponding
percentage increase in the sensor gain Ks and a similar decrease in the bandwidth of
the sensor output signal pulses (fig. 4(c)). In order to compensate for this change in
bandwidth, the bandpass filter internal to the sensor electronics must be changed propor-
tionally to insure proper signal conditioning. This change should have no effect on the
dynamic response of the control system. In contrast, the control loop must compensate
for the increased sensor gain. The approach used is to decrease the gain of compensa-
tion Kc (fig. 15), thereby maintaining the total-loop gain constant. When the star image
regulating system is used in the dual-level control mode, the gain and filter switchings
are controlled automatically through a computer as a function of the star image posi-
tion Xe, mirror position a, and mirror rate. For the purpose of demonstration, the
results shown in this paper were obtained by manually switching the field of view, filter
bandpass, and compensator gain simultaneously.

Typical dynamic checks include system response to a step input disturbance and
various rate inputs, and a system frequency response utilizing a bright star (+7.85 mag-
nitude) and a +10-magnitude star. The gain constants for the nominal case are shown in
table 3 and refer to the block diagram in figure 15. Several individual gains are different
from those used in the analog simulation; however, the control-system open-loop gain
and break frequencies remain unchanged.
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TABLE 3.- NOMINAL GAIN CONSTANTS

K

• , m/rad
V-sec

•S' m
Kc, V/V

, V/V
j, N-m/A

R, ohms

305

676 000

0.0815
1000

0.593
10

B, N-m-sec 0.0344rad
j N-m-sec2

 (
L' rad

Km, m/rad 0.1015

Kr»
V-sec
rad

n
T, sec

0.03

0.01
4 I-

2 -

-2

o
•H

-6

-8

-10

-12

-14

-16

Hardware

Computer

o.r 0.2 0.5 1 10 20

Frequency, Hz
Figure 26.- Frequency response of control system for hardware and computer simulation.
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The dynamical response of the system was measured while guiding on a
V7.85-magnitude star. Although this star is relatively bright, the .sensor noise prohibits
an exact measurement of star image position. One typical performance check on a con-
trol system is a frequency response. A sine wave input disturbance of approximately
2.91 X 10"^-radian amplitude was simulated over a frequency range of 0.1 to 10 hertz.
A plot of the amplitude ratio as a function of frequency for the hardware and the analog
computer simulation is shown in figure 26. The frequency at the peak amplitude for
both cases is approximately 5 hertz and the bandwidth, approximately 10 hertz. The
peak amplitude is approximately 10 percent higher for the hardware than that obtained
on the computer. Figure 27 shows the response of several system variables to a step
input disturbance of 4.85 x 10~^ radian. The record contains mirror position, mirror
rate, and sensor output as measured at the zero-order hold. The mirror-position over-
shoot of 40 percent compares favorably with the 36-percent overshoot measured on the
computer (fig. 25). The rate transducer shows 60-hertz pickup noise, which is not pres-
ent in the actual system.

One practical difficulty in utilizing the sensor hardware is the inability to measure
directly the star image position on the focal plane. The digital sensor output contains
noise which tends to obscure the oscillograph recording containing the actual star image
position. This difficulty can be minimized by passing the sensor output through a low-
pass filter before recording it. Figure 28 shows results of an unfiltered sensor output
and with low-pass filters of 10, 5, and 1 hertz. The rate input disturbance is shown for
positive and negative going rates of 0.92 x 10"^ radian per second. The unfiltered sen-

Q

sor output has many noise spikes greater than the desired goal of 4.85 x 10~° radian;
whereas the trace for the 10-hertz low-pass filter shows the star image position to be
within specification. Because the control system has a 10-hertz bandwidth, this record
should approximate the actual star image position. The results for the 5-hertz low--pass
filter are approximately twice as good as the previous case. The steady-state position
error can be determined from the trace for the 1-hertz low-pass filter because most of
the noise has been eliminated. Results show that the steady-state position error is
approximately 10 times better than the required goal of 4.85 x 10~8 radian; this checks
closely with the design safety factor of 12. There are a few exceptionally high noise
spikes in all of the records. Because of the dim guide star and high-sweep frequency of
the star sensor, star detection signal pulses may be missed or noise spikes may be
detected in place of an actual signal pulse. The net result is an incorrectly measured
star image position. Note that the mirror position (fig. 28(f)) is still a relatively smooth
curve. Electronic techniques which can reduce the possibility of these noise spikes
are available.
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zzpp}^={^pEpp^=|̂  4.54 x 10"4 rad

(a) Mirror position. i—== — — — = —.

5.95 x 10~2 rad

:^nzp—p=^^j=^=flEpg 2.42 x 10~8 rad

Figure 27-- Control-system response to step input disturbance using hardware.
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5.28 x 10"6 rod
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One technique of measuring system error is to maintain zero input disturbance and
observe the mirror position as a function of sensor noise (fig. 29). For this condition, the
mirror position is an actual measure of star image position. A mirror rotation of
1.455 x 10~4 radian corresponds to a star image error of 4.85 x 10-^ radian. Despite the
fact that the star sensor shows the star image position out of tolerance, the mirror posi-
tion is just within the required limits. Experimental results for the image dissector tube
used in this control loop show that the signal-to-noise ratio is approximately 1.5 times
worse than the ratio that was obtained from tests of a previously used image dissector

7-

— = — r£ — ~ — _v -J f- (a) Mirror position. — |_|~{-r =

:T"T r

mi
= — — — --'-. r.i&zr (b) Mirror rate. ~.

1.16 x 10~4 rad

5.95 xlO rad/sec

2.42 x 10 rad

Figure 29.- System response to noise excitation using hardware.
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(ref. 15) and simulated on the analog computer. In order to measure the effect of the
adaptive control technique, the sensor field of view was decreased by a factor of 8,
thereby increasing the sensor signal-to-noise ratio by a factor of 2.8 (ref. 15). For this
condition, the mirror position is maintained within 0.55 x 10~^ radian, which is reason-
ably close to the predicted value (fig. 30). The sensor output also shows a substantial
improvement in signal-to-noise ratio and indicates a star image position error within

. the desired goal.
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Similar improved results for the adaptive control system are observed by compar-
ing figures 31 and 32, which show system response to a sine wave disturbance of
0.5-hertz frequency and 0.291 x 10~ -radian amplitude. Figure 31 is for the nominal
case; whereas figure 32 is for the adaptive control system. The effect of sensor noise
on mirror position is shown to be decreased for the adaptive control system. Further-
more, for this case, the peak noise at the sensor output is approximately half the ampli-
tude as it is for the nominal case. Another test for a step input disturbance shows
results very similar to those in figure 27 for the nominal case.
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— — (a) Mirror position. I — -: — -'- —
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] (b) Mirror rate. =[^|rrj—JEipEJ—[—

4.53 x 10"4 rad

IT

5.95 x 10" * rad/sec

•T

Figure 32.- System response to sine wave disturbance of 0.5-hertz frequency

and 0.291 x 10"°-radian amplitude using adaptive control technique.
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The results for the adaptive control system demonstrate that by decreasing the
sensor field of view and maintaining the mirror control range constant, the star image
position error is decreased by approximately the square root of the change in the field
of view. As shown in figure 29, the mirror position, representing the star image posi-
tion error, for the nominal case is approximately at the required limit of
1.46 x 10~4 radian as compared with an error of approximately 0.55 x 10~^ radian
(fig. 30) when the .digital sensor field of view is eight times smaller. Dynamically, sys-
tem response is approximately the same for both cases.

CONCLUDING REMARKS

The feasibility of operating a star image regulating system for a representative
telescope within the stability limits of a coarse-pointing control system is demonstrated.
The use of dual-level control permits, utilization of a high bandwidth control system with-
out the likelihood of exciting structural vibrations in the telescope and minimizes the
stringent pointing requirements of the primary control system. The ingredients of the
fine-pointing control system include a digital star sensor, an optical star image motion
compensator, a controller, and compensation. ' '

The heart of the digital sensor is an image dissector tube that operates with a tri-
angular sweep frequency. The peak amplitude of the sweep signal must be large enough
to cover the complete field of view of the fine-pointing system. Mathematical analysis
has shown that the steady-state error to a position input is zero (assuming no noise);
whereas the digital sensor follows a velocity input with a constant-position error. Fur-
thermore, this position error is approximately proportional to the velocity of the star
image across the focal plane. For a given sweep amplitude and a worst case velocity
input disturbance, the position error is directly related to the sampling period. The
digital sensor is modeled as a first-order lag equal to one-half the sampling period fol-
lowed by a sampler and a zero-order, hold.

The advantage of the optical star image motion compensator over other techniques
includes the ability to control two or more star images simultaneously in two axes with
only two plane reflecting mirrors. Analysis has shown that the star image displacement
along the optical focal plane is a function of the distance between the two mirrors and the
mirror rotation angle. For small angles, the.mathematical model of the image motion
compensator is approximated by a pure gain constant.

In order to make the regulating system design specific, realistic performance
specifications have been selected for a representative telescope. In particular, for a
specified sine wave input disturbance of 2.91 X 10~7-radian amplitude and 0.5-hertz fre-
quency, the control system regulates the star image position within the desired goal of

50



4.85 x 10"° radian while guiding on a simulated +10-magnitude star. Furthermore, the
measured bandwidth of 10 hertz is within the desired range of 5 to 10 hertz.

By using adaptive control techniques, the star image position error is shown to be
decreased by approximately the square root of the decrease in the sensor field of view.
Dynamically, system response is approximately the same as for the nominal case. The
controllable range of the star image motion compensator remains unchanged as the sen-
sor field of view is varied. .

' . ̂ i - ' ' . . .
An approximate continuous-data network that was used to establish .system break

points and develop compensation is justified by the good performance characteristics' /
attained from the subsequent z-transform analysis and hardware checks. Measured ...
system responses of the analog computer simulation and the actual system components
to sinusoidal and step input disturbances show close agreement. Although within the
desired goal, the steady-state accuracy of the actual system is slightly degraded from
the accuracy measured oil the analog computer because of the additional noise generated,
by the star sensor. While no attempt was made to optimize system performance, the •
desired goals were attained in a relatively straightforward manner. ; .

Langley Research Center,
National Aeronautics and Space Administration, > • . <

Hampton, Va., April 13, 1973. " < ... •• - ; ;. -
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APPENDIX A

DERIVATION OF MATHEMATICAL MODEL

FOR STAR SENSOR

In this appendix, a mathematical model is developed for the star sensor by first
deriving an expression for the attitude-measurement error of a star image moving with
constant velocity and then deriving an equation for the time constant used in the model.
Representative waveforms for the star images moving with constant position and constant
velocity are shown in figure 5.

For the steady-state case, the star sensor measured output NI .is defined as

Nj = t2 - t! (Al)

where t« is the time between the first and second pulses and t2. is the time between
the second and third pulses. For the constant-velocity case, the star sensor measured
output Nj' is

N!* = t2' - tj' (A2)

where the prime (') represents the dynamic condition. For both cases, the position
error is computed at time t^ when the amplitude is Xjj. Hence, the measurement
should be the same in both cases. The difference between equations (Al) and (A2) is the
difference in the numbers ANj as

ANj = Nj - NI' = Ata + 2Atb (A3)

because

tj' =tl + Ata + Atb (A4)

and

V = *2 - Atb (A5>

because N< is exact. The time intervals Ata and At, are related to the period T
of the sweep signal, the slope ms of the sweep signal, and the slope m, of the star
image for the dynamic case as

Ata = tb - T (A6)

and

= Ata + tc - 1 (A7)
It
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APPENDIX A - Continued

Equating the. displacements of the sweep signal and star image at times tc and
leads to

4X
(A8)

s - d

and

ms -

2Xa
tc = - 2^_ (A9)c ms + md '

where t^ and tc are detection times as shown in figure 5 and Xa is the peak ampli-
tude of the sweep signal. By defining

»!„
Rm = ~ (A10)

where Rm is the ratio of the time rate of change of the sweep signal to the time rate of
change of the star image position on the focal plane, the measurement error can be found
by substituting equations (A6) to (A10) into equation (A3) as

Rm + 2
ANi = 2T — 2L - . (All)

The measurement error in equation (All) is in terms of time and should be con-
verted to a displacement that is equivalent to position error. The following derivation
shows that the peak amplitude Xa can be substituted for the period T to obtain this
conversion. Detection times ta, t^, and t , are determined from figure 5 as

, _xb (A12)
a " 5

- 2 - mT
O

and

t, - T +
X b (A14)

tb-T + m7

By using equations (A12) to (A14)

T 2Xx
t - t - ^ - - <A15>
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and ^'

*2 = tb -id = % + :zr (A16)

From equations (Al), (A15), and (A16)

4Xh
NI = t, - t« = —£ (A17)1 ^ 1 m s

By rearranging equation (A17)

_N i m s xa (A18)

because
4Xa

T = —- -'- . ., : (A19)
III A

o . . . . •

and then .

NiX_
(A20)

Thus, corresponding to equation (A20), the error in the amplitude calculation AX^ is
proportional to the error in the measured number ANj, as

where ANj was previously defined in equation (A3). Substitution of equation (All) into
equation (A21) yields

Rm + 2
(A22).

-1

which can be approximated as

2x / 9 \(Rm » 2; Rm
2 » l] (A23)

x ' •- .

Equation (A23) represents the error in the position measurement for the constant-rate
star image. For a given X2, the measurement error can be kept to an acceptable level
by selecting the ratio Rm. Because the sensor output follows a rate input disturbance
m , with a constant -position error, the dynamic properties of the sensor can be modeled
by a first -order time lag r, as shown in figure 6, the time constant is related to the
position measurement error and slope of the input disturbance as
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(A24)

and by substituting equations (A10), (A19), and (A23) into equation (A24) yields

r = (A25)

which relates the time constant to the sweep period of the star sensor.

To summarize, the derivation of the sensor characteristics utilized star image
position. The computations are arranged to produce an estimate of the star image posi-
tion at every odd-numbered pulse, with the use of that pulse and two previous pulses.
For a star with constant position, the position information is available at the sensor
output at regular intervals of T. For a time-varying star image, there is a slight non-
uniformity in the rate of information from the position sensor. Because the sampling
period variation is small, it is assured negligible for the purpose of design. The digital
sensor is modeled as the previously described first -order lag followed by a zero-order
hold, which is built into the computer. The time constant of the sensor can be varied by
adjusting the sampling period T.
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APPENDIX B

DERIVATION OF CHARACTERISTIC EQUATION AND APPLICATION OF

FINAL-VALUE THEOREM TO CONTROL SYSTEM

A block diagram representing the sampled-data control system is shown in fig-
ure 15. The star image position Xe is related to the input disturbance <j) and the out-
put Xp as

Xe(s) = KftfKs) - Xp(s) (Bl)

and the continuous output of the sensor is

Es(s) = G2(s) Xe(s) . (B2)

where G2 is the transfer function of the sensor. The output Xp is related to the
sampled data signal Es* as

Xp = KG3(s) Es*(s) (B3)

where

G3(s) = Gho(s) Gc(s) G^s) (B4)

and K is the gain constant for the complete system. Substitution of equations (Bl)
and (B3) into equation (B2) yields

Es(s) = K^s) G2(s) - KEs*(s) G2(s) G3(s) (B5)

By taking the pulse transform of equation (B5)

*
Kf0(s) GofSH

Eo*(s) = -^ •— rJ (B6)S 1 + pG2(s) G3(s)] ;

By substituting equation (B6) into equation (B3) and taking the pulse transform, the
sampled output becomes

^,^_K[K t»(8)G2(8J*G3*(8) ^

l + [KG2(s) G3(s)]'
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The z -transform of Xp(t) is

G2(z)| G3(z)
=1— -X ( z ) = (B8)

+ KG2 G3(z)

and the characteristic equation is the denominator of equation (B8) set equal to zero.

The z-transform of the star image position is obtained from equation (Bl) as

Xe(z) = Kj 0(z) - Xp(z) (B9)

where Xp(z) is derived in equation (B8). Each term in equations (B8) and (B9) can be
broken down into the system break frequencies as

G2(z) =

Kf 0(z) = KfZ

G-(z)=(l -

!_
s + c

S + CtJ,

s2te(S + W2)(8 + 0.3)

(BlOa)

(BlOb)

(BlOc)

and

KG2 G3(z) = - z-1)
s +

(BlOd)

where the co. (i = 1, 2, 3, 4) have been defined in the text and the list of symbols.

For a rate input

4>o
0(s) = -£

s^

equations (BlOa) and (BlOb) become

0.

(Bll)

G2(z) = KfZ (B12a)

and

0(z) = KjZ -£ (B12b)
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The z-transform of equations (BlOc), (BlOd), (B12a), and (B12b) can be found by expand-
ing the terms inside of the brackets by the method of partial fractions. The three
z-transforms of interest are obtained from tables (ref. 19) as

z — = Tz

(z -

z - =

(B13a)

(B13b)

s +
z - e

where i = 2, 3, 4.

The resulting partial fractions in the z-domain are

f »• A / \ i fr J. Z

and

where

KG2 G3(z) =

G2(z) = 0Q

- I)

- z"1)
C T z C z c z C z C z

(z -1)2 z - 1 z - a z - b z - c

CfTz

(z -1)2 z - 1 z - c

Ckz

(z -1)2 z - 1 z - a z - b

(B13c)

(B14a)

(B14b)

(B14c)

(B14d)

a = e

b = e •>•

c = e

(B15a)

(B15b)

(B15c)
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and Ca, . . ., C, are the residues. Substitution of equations (B14) and (B15) into equa-
tion (B9) yields

where

and

Xp(z) =
«>Kfz

(z - I ) 2

S0 + Sj(z - 1) -1- S2(z - 1)'' + S3<z - I ) 3 - HS 4 (Z -i)4"
S5

SQ = KT2(z - a)(z - b)(z - c)(Ca -

Sj = T(z - a)(z - b)(z - i

S2 = KT Cc(z - b)(z - c) + Cd(z - a)(z - c) + Ce(z - a)(z - b)

- CfCk(z - b)(z - c) - CfCz(z - a)(z - c)

C C

S3 =

- a)(z - b)(z - c) - ChCi(z - a)(z - b)

- b)(z - c) - C C ( z - a)(z - c) - C C ( z - a)(z -

= Kf-S = K - C C ( z - b) -k h - ajl

= (z - l)(z - a)(z - b)(z - c) + KC aT(z - a)(z - b)(z - c)

Cb(z - l)(z - a)(z - b)(z - c) + Cc(z - l ) ( z - b)(z - c)

d(C(z - l)2(z - a)(z - c) + C(z - l)2(z - a)(z -

The residues Ca, . . ., C, are functions of the break frequencies as

o Wl
'a o)0a).

Cb =
(W2W3W4)

(B16)

(B17a)

(B17b)

(B17c)

(B17d)

(B17e)

(B17f)

(B18a)

(B18b)
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w1 - w-
Cc = - r - i - ^ - (B18C)

- »
(B18d)

Ce = J——* (B18e)
(W

4)T2 ' W4)(W3 - W4)

Cf = -i- (B18f)

C, = -- (B18h)h '•- 2

C =

"'O Q 1 I O
c. = 2 3 U 2 oj_ (B18j)

Ck - - -i - ^ - (B18k)

O) - CD,

C; = - ^ - ^ - (B18Z)

Because the coefficients

Ca = CfCi (B19a)

and

C — P C1 4. P P f R1 QM^ — V^j:l^» T v^Q.1^- yOlt7UJ
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the terms S0 and Sj become

SQ = 0 (B20a)

Sj = T(z - a)(z - b)(z - c) (B20b)

From the final-value theorem for z-transforms (ref. 19)

lim X *(t) = lim(l - z"1)x.(z) (B21)
t-co ^ z-1

provided that (l - z" Jxe(z) has no poles on or outside the unit circle in the z-plane.
Substitution of equation (B16) into equation (B21) yields

/ i\ 0nKf HMz - 1) + S9(z - I)2 + S,(z - I)3 + S4(z - in
limU - z'1)x.(z) = lim -2-iki ± ^ 2 =L (B22)
z-1 z«l z - 1 S5

and by substituting equations (B17) and (B19) into equation (B22) and making use of
equation (Bl4b)

, i\ <^Kf
limU - z~i)xe(z) = lim 2_J (B23)
z~l z-i ±r(z - 1)KG2 G3(z)

By defining

Ky = - lim (z - 1)KG2 G3(z) (B24)

equation (B23) becomes

lim(l - z-1)x (z) = -2^ (B25)
z-1 Ky

Equation (B25) shows that the control system shown in figure 15 follows a rate input
with a steady-state position error; the magnitude of the error is proportional to the mag-
nitude of the angular-velocity input.
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