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FOREWORD 

This  document presents the resu l t s  of work performed by 
the Fluid Mechanics Section of the Aeromechanics Department 

of Lockheed's Huntsville Re search gt Engineering Center I 
report  is Volume III of a four-part final report ,  as required to 
fulfill Contract NAS7-761. 
Liquid Propulsion Section of Jet Propulsion Laboratories,  Mr. 
Wolfgang Simon, Technical Manager. 

This  

This work was sponsored by the 

This  document constitutes Volume I11 of the four-part  

final report .  
are : 

The other three volumes, printed separately 

Volume I - "Summary Volume - Method of Character-  
istics Nozzle and Plume Programs,"  LMSC-HREC 

Volume II - "User's danua l  - Method of Cha-sacter- 
is t ics  mot Program. ' LMSC-HREC D162220-11. 
Volume IV - "User's Manrrzl - Variable O/F Method- 
of -Characterist ics P rogram for Nozzle and Plume 
Analyses," LMSC -IiKEC D 162220-IV. 

D 162220 -I. 

-.Z:'JISION NOTICE 

Lockheed Missiles & Space Company, Huntsville Re search 

& Engineering Center Technical Report HREC 7761 - 3  (D162220-111), 
entitled ''Solution of Non-fsoenr - getic Supersonic Flows by Method 

of Characteristics,'" dated J u l y  1371 is revised as indicated below: 

I 

I 

Revision A affects title page and pages ii, iii and 68.  
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SUMMARY 

This is one of a series of reports dealing with the calculation of 
supersonic flow fields by the method of characteristics. This report  deals 

with the theoretical approach to the solution of these flow fields while sub- 
sequent reports will compare the theory with experiment and discuss in 

detail a computer program which was derived to implement :he numerical 
solution of the flow equations. 
of boundary conditions enabling the calculation of nozzles, plumes and many 

other complex flow fields. A user 's  guide for this program is contained i n  
Volume EV, "User's Manual - Variable O/F Method-of-Charackristics Pro- 
gram for Nozzle and Plume Analyses," LAISC-HREC D162220-KV. 

This versatile program has a flexible set  

A complete derivation of the equations of motion for reocting gas 

systems is presented in this report. This derivation clearly illustrates the 
underlying assumptions that were made to a r r ive  a t  the more familiar sys- 

tem of equations which was finally treated. 

this derivation is that, for the reaction assumptions which were made, the 
thermochemistry was shown to be uncoupled from the flow solution and as 

such could be solved separately. In  addition the method of characterist ics 
equations a r e  shown to be formally tke same for ideal, frozen, and equili- 
b r i m  reacting gas mixtures. 

An important consequence of 

I 
I 

The two dimensional and a x i s m e t r i c  characteristic equations a r e  

cast  in finite difference form. These equations' apply only i n  regions of the 
I '  transport properties can be ne$lected. A shock wave solu- 
' I  

and numerical techniques necessary to effect the calcu- 
The shock wave solution then acts a s  a patchifig line 

characteristic 
I 

mesh appiy the local 
fashion i6 a lso  

iii 
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Symbol 
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SYMBOLS AND NOTATIONS 

De s c r iptio n 

time 

volume 

area, chemical symbol 

mass density 

velocity 

diffusion velocity 

reaction coefficient 

mass 

progress variable 

stress  tensor 

unit tensor 

viscous stress  tensor 

body force vector 

hydrostatic pressure 
I 
I 

intertzd energy per'unit mass  

heat flux vector 

enthalpy per unit m 
1; I 

entropy per unit marps ; 
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Symbol 

P 

QG 

xo 

RU 

W 

Y 

R 
2 a 

€ 

M 

j, 

V 
D/Dt 

1 

De s c ription 

Gibbs potential, Mach .qngle 

Gibbs free energy change 

equilibrium progress  variable 

universal  gas constant 

molecular weight 

is entr  apic exponent 

local value R ~ / W ,  

speed of sound squared 

velocity components 

character is t ic  s lope 

position coordinates 

inclination of flow vector with respect to  x axis  

normal  and streamline direction 

equation modifier, turning angle 

shock angle 

Mach number 

error function 

necessary information to  describe point 

operation function ' 

known and partial1 'known character is t ic  
I, 

Nabla 1. ' I  i 
I '  

substantial derivative: 
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De s cr iption 

vector, also denotes averaged quantity 

tensor - dyad 

transpose 

forward 

reverse 

n iteration th 

.th 
I species,  otherwise where defined 

kth reaction 

summation index 

pertaining to the mixture 

equilikium and frozen 

ref ere m e  condition 

non -e quili br I.. I .I 
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Section 1 

INTRODUCTION 

LMSC-HREC D162220-III 

The method of character is t ics  is known to be an accurate means of 

calculating supersonic flow fields. Since the advent of modern high speed 

digital computers, this method has recieved much attention becausc of its 

accuracy and, in  spite of, its complexities. The equations found in this 
report ,  although perhaps different in minor ways, a r e  those which have 

been known and used for half a century. It is felt thoclgh that the manner 
in which these concepts have been combined to resul t  in a useful, flexible 
tool for rapid calculations is unique. 

A completd derivation of the equations of motion for reacting gas' 

This was done so that the conse- mixtures is presented in  this report. 
quences of assumptions necessary to  a r r ive  a t  the simple forms  ulti- 

mately treated can be examined. 
treated it is shown that the thermochemistry can be completely separated 

f rom the flow solution thus greatly simplifying the entire calculational 
procedure. 

Fo r  the special  type6 of reactions 

In spite of the almost universal  application which the method has 
recieved, very few descriptions of the mesh construction techniques 
necessary to  apply this method have been documented. 
of this report  to present this important portion of the theory. 

description of the mesh construction will be atterr.pted in the hope that i t  
will enhance the understanding of this facet of the technique. 

It is the intention 
A functional 

i 
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Section 2 
THE FUNDAMENTAL EQUATIONS F O R  F L O W  

OF REACTING GAS MIXTURES 

2.1 DERIVATION OF EQUATIONS FOR UNSTEADY XONEQUILIBRIUM 
FLOW 

2.1.1 The Continuity Equation 

In a flow sys tem of gaseous mixtures in which chemical reactions 
take place, the principle of conservation of mass of each  chemical species,  

when applied to  a control volume V bounded by a control surface A, m a y  
be written as 

i = l , 2 ,  .... n 

where p .  is the par t ia l  density of the ith species;  Z$ the yrelocity vector of 

the center o! m a s s  of the i specie&, dA the utward differential area 

vector on the control surface A; dV the differential volume element; ap.//St 
the rate  of increase of p. due to ei ther  intcrnal or  external  sources  s t c h  as 
chemical reaction and m a s s  additions; and n is the total number of chemi- 

th 1 

1 

cal  species in  ?he rr-ixture. I 
f ;  

th i I  

above equation simply s t ~ t e s  that, fpr ,the i species, the m a s ?  

control volume plus the rate  of m a s s  produced due to chemi- 

and mas8 addition. 

rease inside the control volume is &pal to  the net  rate of maas 

I I n  the following, we shall ,  however, 
i '  I addition from external aources. ; 

1 
r ' !I 
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z? 
The f i r s t  integral on the right-hand side of Equation ( 2 - 1 )  may be 

/ 
transformed by means of Gauss theorem 

A V 

where B (F, t )  m a y  be any continuous vector field (functions of position 
vector f and time t) defined inside and cn the boundary of the control vol- 

ume V. Also, in the Eulerian coordinate system which we u s e  here,  the 
control volume is not a function of time, and the o rde r  of differentiation 

and integration may be interchanged, i.e., 

Hence, Equation (2-1) becomes 

Since the volume V under consideration is arb i t ra ry ,  the only way for 
Equation (2-2) to be valid for  all V is for the integrand to vanish. We 

the refore have 

1 
i = 1,2,  .... n ' 

i! ' I 
1 

I 1  
have replaced qi by t $. is thy velocity of the center of mas5 

the mass center of the mixture$ i 

ture at (?. t )  and 6f is the diffusion velocity of the ith species w i t h  
1 .  ' 
I, 1 

1 :  

1 1  i i~ 
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z 2  

Equation (2-3) is known a s  thc species continuity equation. It i s  

valid for each,chemical species a t  each internal quantum state .  

however, assume that the various internal modes of motion a re  fully ex-  

cited and a r e  i n  equilibrium with each other. 

approximately the case for the translational and rotatiorial d e g r e r s  o i  f ree-  

dom where the equilibrium value is attained in a few collisizns. 
the vibrational degree of freedom approaches the equiliLciunr state some- 

what more slowly, except at very  high temperatures.  
usually occur a t  high temperatures ,  this approximation is of 'en justified. 

W e  shall, 

It is w e l l  kno\vn tha t  this is 

J n  general, 

As cher iical reac.;ions 

If one sums up the n equations represented by Equation (2-3) a:-d 
utilizes the relationship between the m a s s  density p of the mixture and the 

species density p i 
n 

P = c P i  
i= 1 

the requirement for the diffusion velocity that 

i= 1 i= 1 

and the conservation of total mass for chemical reactions, 

(2-4) 

I 
i= 1 I 

i 
il  ' 

I '  ' 
t V 4 m  = 0 " , ( ?  at  

) has the usual form 
It c Tn ha written 

onservatior, or glJbal 

I I 
4 

7) 

i I 

I 
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(2-  7a) 

by means of Euler 's  derivative 

The species Continuity Equation (2-3) may be written in more can- 

venient forms. 

ducing ?he mass  fraction c.(= P./$), Equation (2-3) becomes 
By makir.G use of the global continuity equation snd intro- 

1 1  

DCi 6Pi 
P X  +vm (Pciq;)  = - at  

The t e r m  on the right-hand side of Equation (2-8) may be put in to  

t e rms  0:' yrQgress  variables of the chemical reactions. 

Supposing tt.;re a r e  r independent reactions occurring in a mixture of 

n species,  then a typical kth reaztion may be rzpresented by the general  
form 

2 q k A i  = O ,  k = 1,2, .... r ( 2 - 9 )  
i= 1 

where Ai iar the chemical symbol for component i and via is the number of 
grams of component i produced per g ram of reactior. !c. Since the masa 
of a reactin system is conserved while the number of moles i n  such a 

system ie  n t, it is more convenient to  use the gram basis ra ther  than the 
mole basis i ou- didcussion of chemical reac.'.ions. 

is negative i i is a reactant Fnd positive ii i is a product of the reaction k. 
The coefficient Vik 

I i 5 
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Lc component i does not participate in reactions k, then the corresponding 
Y is zero. ik 

It follows. obviously from the above description that i f  there is  no 

mass  addition from external sources, 

2 vik = 0,  k = 1 ,2 ,  .... r (2-10) 
i= 1 

Furthermore,  the changes of mass of the components in the system 
as a result of the kth reaction a r e  related by 

d m  -- dkml = - dk? = ---- - - - n ,  k =  1,2,  .... r (2-11) 
2k ynk 

V "Ik 

Now we introduce a progress  variable Xk for the kth reaction and 
define i t  as the grams of reaction occurred per  gram of original reactants. 
As a result  of this definiticn, we have 

dkMi dXk = - 
$km 

(2-12) 

#here m is the total mass of the fluid system. We note that because of 

Equation (2-1 l ) ,  dAk is independent of species i. 

The rate of change of mass of ith species due to a l l  the reactions is 

the re fore, 

i = 1,2,  ...* n 
dmi r - dt = r n C u i k  x, 

k= 1 

dAk 

of n p s s  density 
I 

(2-13) 

6 
t 
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(2- 13a) 

With this relationskip the species coritinuity Equation (2-8) becomes 
- 

DAk 
r Dci 1 - + - v (PCi<) = c Uik Dt Dt P 

(2- 14) 
k= 1 

I t  w i l l  be shown iater that the time rate of change of progress  vari- 
able dX /dt is directly retated to the temperat re and pressure variaticns k 
in the flow field. 

It is worth noting that all the above equations are extremely general  
in their validity. 
equilibrium chemical reactions and irreversible transport  effects such as 
viscosity, conductivity and diffusivity. 

That is, they hold true for all flow systems including non- 

2.1.2 The Momentum Equation 

By applying the principle of conservation of momentum. to  a differen- 
tial element in the flow field, one can dezive, in vector for-?, 

(2-15) 

where qq is a dyadic product of the velocity vector 
the body force exerted on the ith species per  unit mass. 
tensor is sometimes written in the fo rm 

by itself and Ti is 

The s:ress 

I 
5 = - p g + i  (2-16) 

7 
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Here, p is  the hydrostatic pressure usually defined as -(ell t cZ2 t 0~~)/3; 
8 the irtiil tt xisor; and ? t h e  v i s c u u s  p a r t  uf the s t w s s  tensor. 

- - 

Putting Equation (2 - 16) into E q x t i o n  (2 - 15), we have  the well known 

Navier-Stokes equation for compressible fluid flow. 

(2-17) 
i= 1 

In this equation the five te rms  are ,  respectively, the non-stationary and 
convective rate of change of momentum per  unit volume, the net hydro- 

static pressure force and the viscous s t r e s s  force acting on the surface of 
the unit volume, and the body forces per unit volume. 

By using the continuity equation (2 -7), Equation (2- 17) may be 
written a s  

n 
(2-18) 

1 1  
i= 1 

Dt - at P P 

For isotropic, Newtonian fluids, the viscous stress tensor 3 i n  Equations 

(2-17) and (2-18) can be shown to be related to the velocity gradients 

(strain ra tes )  by the following formrrla 

T In which (Vp) denotes the transpose of the tensor Vq, and *l and q2 a r e  
called the first and second coefficient of viscosity of the fluid, respectively. 

These coeffiaients are usually temperature dependent. 

body forces are negligible, as is usually the case for  
and if the viscosity effects are small, then we arrive 

I 

8 
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-. - _  

a t  the familiar Euler equation of motion - 

(2-20)  

We note at this point that chemical reactions do not a l ter  the forms  

of global continuity equation o r  equations of motion. 

2.1.3 The Energy Equation 

The most general  f o r m  of energy equation, according to :he first l aw 

of thermodynamics o r  the law of conservation of energy, can be written as 

(2-21)  
i= 1 

where e is the internal energy per  unit mass of the gas mixture;  q the magni- 
tude of the velocity; and a the conduction heat flux vector. 

Equation (2-21) simply s ta tes  that, based on unit volume of a fluid 
element, the tcitai tale oi increase of intzrnal and kinetic energy due to  local 

and convective changes (the first two terni3) is equal to the heat conducted 
into the volume (the third t e rm)  plus the work done on the fluid element due 

element by the body 

neglected is the energy 
which if necessa&,'  can be added to  the equation 

1 
! 

ic quan ffects (interchange of 

t 
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energy and mass) a r e  not considered i n  E+ation (2 -21 )  as it  has been i m -  

plied by the classical  f i r s t  law of thermodynamics. 

Using Equation (1-16) and introducing the enthalpy per unit m a s s  

h = e t p/p 

Equation (2-21) can be eas i ly  rearranged to give 

(2-22) 

i= 1 

Or, if we subtract  the continuity Ecuation (2-7) f rom Equation (2-22).  we 

obtain 

This is the energy equation in which all the transport  properties - viscosity, 

conductivity and diffusivity, have been taken into consideration. 

I 

2.2.4 The Entropy Equation i 
I 
I 
I 

The p ,?era1 thermodynamics equation with chemical reactions may 
be wri t t s '  as 1 i: i 

I' I 
I 

(2-24) 
P 

I ; 1 ;  
I ! 

tL2 entropy pe r  unit mass of thq mixt 

t r  1 
er mole of the chemical skcies'i. t i  

Tds = d h  - - 1 dp - $ p i d c i  

I i= ' 

I 

I 
and I ( .  the chemical 
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substa 

For a flow system, we can w r i t e  Equation (2 -24 )  in t e r m s  of 

tial derivatives 

(2-25)  

Now, multiplying the momentum Equation (2-18) by q, one gets 

n 
(2-26)  

If this equation i s  subtracted from Equation (2-23) the resul t  is 

(2-27)  

where the symbol : is a double dot product of two second order terms. 
is defined as 

It 

j=l k=l  

Equation (2-27) into Equation' (2'-25), we readily obtain 
I 

n Dc 
I, t 

n ,  ' 
p V * Q t -  1 - 1  cpiq*ii-& Dt 

, i=l , i= 1 P 

I 
I 

1 

i 
that the total of roduction, in energy per  

I 
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- 
unit mass  per uni t  time, is equal to the sum of the indimdual rate of entropy 
production due to viscosity(the second term), conductivity(third t erm) ,  diffusi- 

vity (fourth te rm)  and chemical r eac t ims  (last term).  The four th  terms on the 
right-hand side of Equation (2-28) a r e  all positi-ie quantities. 

sometimes known a s  the dissipation terms.  

-7 

They are 

The last term in Equation (2-28) may, with the help of Equation(2-14), 

be written as 

which, if the diffusion velocity is neglected, becomes 

(2-30) 
i= 1 k= 1 

with 
n 

i=l 

It  is to be noted here  that the Gibbs free-energy change due to kth reaction, 

q( = V & P i  (2-31) 

.3Gk, vanishes for equilibrium chemical reactions. bl 

2.2 THE EQUATION SYSTEMS FOR STEADY NON-EQUILIBRIUM FLOWS 
OF REACTIXG GAS MIXTURES WITHOUT TRANSPORT EFFECTS 

i 
For steady, adiabatic, inviscid and non-diffusive flows, the general  

1 
equations derived in the last section m a y  be requced to relatively simple forms. 

Continuity Equation 

global continriiy equation 
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I 
I 

The species contimity equation (2-14) reduces to 

DXk i =  1 , 2  ..... n 
Dc r - = c Uik M Dt 

k= 1 
( 2  - 3.3) 

In the following we shall show that the variation of progress  variable 

xk with respect  to time is direct ly  relat4.d to  the temperature and pressure  
variations . 

- 
k Following the method of Kirkwood and Crawford [211 we separate X 

into t\'o par t s  

(2-34) 

The parameter  Ao is the equilib-ium value of the progress  variable for  the 
k reaction for the instantaneous local temperature,  p ressure  and com- 

position. 
reaction f rom equilibrium; i.e., i t  is the lag of the kth reaction ir, i t s  attempt 

to maintain equilibrium. 

k th 

The variable & is the measure  of the deviation of the chemical 

The equilibrium value of A* is determined by the condition that the k 
Gibbs free-energy change for  reaction k vanishes, i.e., 

i 

i 
8 

L\Gk = 0 at ' Xk = xk" (2-35) 

or, by Efat ion (2-31) 

Since I 
f= +$ 
. 1rI li 

( 2 - 3 6 )  

i 
! 
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-_ -- 

Equation (2-36) becomes 

(2-38) 

where 

1 '(i), = c i= 1 vik i 

n 

i= I 

a r e  respectively the change of specific entropy and specific volume due to 

k reaction. th 

0 Now if we substitute the species continuity Equation (2-33)for 
= X j  j 

into (2-7) we obtain 

(2-39) 

k = l , 2 ,  .... r 

This equation holds true for flow systems of reacting mixtures under com- 

plete chemical equilibrium. 

2.2.2 

2.2.3 
I 

1 

The Momentum Equation 

Here, we obtain frsm Euler's equation ,of motion (2 -20 ) ,  

(2 -40) 
1 
VP q.vq = - -  

P t  I f 1, 
4 , I t  

I 
e Energy Equation 

Equation (2-23) the gy equation for inviscid, , 
i 
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adiabatic flows with negligible body forces is simply 

h 3  $ q 2  = h = const. 
0 

-HREC D162220-ILI 

(2-41) 

where h is the stagnation enthalpy per  unit m a s s  of the mixture. 

specific enthalpy of the mixture is to be evaluated by 
The local 

0 

n 
h = h . c .  

i= 1 
1 1  

in which hi is the par t ia l  specific enthalpy. 

2.2.4 The Entropy Equatior? 

From Equation (2-28) and (2-30) w e  have simply 

(2 - 4 1 a )  

(2-42) 

where AGk was given by Equation (2-31). 

In the above, we can cor a total of n t r t 4 equations, namely, n 

equations of (2-33),  r equations of ( 2 - 3 9 ) ,  Equations (2-32), (2  40),(2-41)and 
(2-42). Y e t  we have a total number of n + r  t 6 dependent variables,  namely, 

needed. The f i r s t  one has a l ready been implied by the definition of ci, i.e., 
xl. A t , .  . xz, p, T, p ,  h. s, and q. Thus, two more equations are n' c1,c2, .... c 

I ,  

(2 -43)  
i= 1 I 1, ; 

I 1 '  
is provided by the equation of state of t h e  gae mixture 

1 1 

(2 -44)  

I 
) I  
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where R i s  the universal gas constant and Wi the molecular weight of the 
ith species. 

U 

This completes the system of the basic governing equations for any 
reacting flow without transport effects. . 

When the reactions between components of the gas mixture are 
known and the boundary conditions adequately specified, one should be able 
tr solve the non-equilibrium flow system. 
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-_ - _  

Section 3 

FROZEN AND EQUILIBRIUM FLOWS 

3.1 FROZEN FLOW 

Under many circumstances,  chemical reactions m a y  proceed so 
slowly that there is hardly any change in composition of the fluid during the 

time for i 
limit the m #x ture may be considered as having fixed com.position. Such a 

flow field is usually described as a "frozen flow." 

condition, t L  mixture behaves as a single perfect gas. 
tinuity equation d;ee not come into picture while the equation of state becomes 

t raverse  the whole region of flow field of interest. In  the 

Under a frozen f low 

The species con- 

where Wm is the fixed molecular weight of the mixture. 

Under frozen flow assumptions, the basic governing equations for 
steady flow of gas mixture without transport  effects a r e  as  follows: 

Continuity: 

mentum: 

E srgy: i (3-21 

1 
(3 -3 )  

: I  
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Here, h is a function of temperature only. 

Entropy: 

s = constant along a streamline 

State: 

P =  

(3-4)  

(3-5) 

The above equations a r e  the usual gas dynamic equ: 3 for 

inviscid, non-conducting, non-diffusive compressible flow wlrhout 
chemic a 1 r ea  c t ime. 

It should be stated here  that the validity OS Equation (3 -4)  r e s t s  apon 
This means that tiiscontinuities the assumption of zero  transport  effects. 

such as shock waves should, s t r ic t iy  speaking, be excluded, since the 

appearance of shock waves indicotes the existence of transport  phenomena. 
However, experience tells  us that shock waves usually occur i n  z very 
narrow region (in this region viscosity and diffusivity predominate) and we 
can still apply the isentropic c r i te r ia  on each side of the shock waqe but not 
across  it. 

d.2 EQUILIBRIUM FLOW 
I 
I 

i 
Equilibrium flows are defined as flows in which the mixture is at 

chemical equilibrium a t  all instants and everywhere in  the flow field. Phy- 
is approximately the case when t chemical reactions in  the 

so fast  such that the reactions are "completed" in a time 
1 

than the time interval we haw *epson to  be inte-  

I is said to  be "completed" *:hen lherc is no fwthe r  
the co.mpoeition of the 

I 
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In this ca ie ,  the s e t  of go-Jerning equat;?ns may be aga in  sin:;)lified 

to give: 

Global Continuity: 

V * ( P 4 )  = 0 

Momentum: 

E ne r gy: 

he t q2 = hO 

( 3 - 6 )  

( 3 - 8 )  

where h is the local equilibrium value of specific enthalpy. e 

Entropy: 

s = constant alofig streamlines (3 -9 )  

This is a consequence of Equation (2-28)  and the remarks  follouing Ecjuatior 

(2-31). 

as in the case of frozen flow. 
We note that the flow is agbiii isentropic i n  9 shock-free field jus t  

1 
1 

We note at this point thkt chemical reactions do not 5.lter t h e  forms 
I 

of the above equations as compared to frozen flow case. 

i '  ' . '  
(3 -10)  1 

I 
I 

! 



with 

n 

i= 1 
w ($),TI = Y 11 c .  ie /w. i m. e 

( 3  - 1 Oa) 

Here, it should be pointed out that the m i r t x e  of perfec- gases does not 
behave like a p e r f e c t  gas. 

Species Continuity: 

( 3 - 1 1 )  
Dc 
Dt - = 2 vik 

2 c i = 1  
i= 1 

(3-12) 

Chemic a1 Kinetic s : 

k = l , 2 ,  .... r 

i 

4 

I 
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Section 4 

UNCOUPLIXG THE FLOW ASD THERLfODYNA3fICS FOR 
STEADY, FROZEN OR EQUILIBRIUhl FI.9'vVS 

For steady flow equation (3-13) can be written 

0 
Since al l  t e rms  except the gradients of X.,  T , p  a r e  scalar quafitities we may 

write 
I 

Thus the thermochemical behavior dues not depend on the magnitude of the 

velocity,and assuming that it does not depend on the direction,we have 

Examining now the behavior of the thermodynamic system o\-er an infini- 

tisimal step dL . a  

I 

I 
I i  

the above equation does not depend on position or velocity and 
heni-e is ntirely uncoupled from the flow problem. Using t h e  same approart! 

I ,  

on Equati n (3-11) we find; ! f I ! i 
01 

i i i  



LMSC-HHEC D162220-UI 

7 

The thermochemistry equatisns (3-1 1) and ( 3 -  1 5 )  have been completely 
d i \ o r c d  from the flow problem and describe the behavior of a mixture of 

perfect gases under infinitesimal changes in p re s su re  and temperature.  

It is nc  longer necessary  to  use  Equations (4-3) and (1-4) i n  their 
differential form. 

mixtures are well known and many sophisticated computer programs exis t  
to facilitate the soh t ion  of these equations. 

Systems of equations describing the behavior of reacting 

The NASA-Lewis therznochemi- 
ca l  progra J3J was chosen for use  in this study for a variety of reasons and, 
due to the fact that special  features  of this program were utilized i n  simpli-  
fying the subsequent flow field analysis, other thermochemical prDgrarns 

m a y  not be immediately compatibie. This need not, howzver, preclude 

their use. 
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Section 5 

PROPERTIES OF THE WORKING GAS 

Given the initial rezctants, coinbustion pressure,  at:d total energy 
the thermochemistry program chosen for  use in this analysis evaluates, 
among other things, the following quantities: 

T, s, W,,Y 

where Y, the isentropic exponent, is defined by 

y =  (z)s ( 5 - 1 )  

At constant entropy, a series of lower pressures  are then evaluated. Areach 
step the enthalpy of the mixture is c o m p t e d  in addition to the quantities 
listed above. F r o m  the conservation of energy, the thermochemical apaly- 

sis i s  related to  the flow systems by calculating the energy change f r o m  the 
original combustion value. In the flow problem the energy difference is the 
kinetic energy of the gases. A velocity may then be fo.:nd corresponding to 
each pressure.  

irreversible phenomena the cnamber pressure  is decreased and the process  
repeated. 
chemical system i s  constructed. 

In order to describe the effects of shock w;.ves and other 

In this fashion a tabular description of the behavior of the thermo- 
1 

Entropy anC,velocity a r e  chosen to be the 

uantities and specification of thege parameters  is then suffi- 
L i  

i s  ! 

I iquely describe the gas properties. i :  

! ,  

puter economics dictate that the t a b h a r  description occupy as 

as possible. 
1 

1 Because of this an ac u ate interpolation scheme 
i !;8 . Before attempting an e q l a h a t i g  f the iqterpolation scheme 

f local reference condit 
! ,  

io  in,,&qer. Usually, for a n  ideal j 
I i , I  i; L 11 : t 1  
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gas,  rcfcrcnce conditions are ch1)sc.n t o  Se iscntrupic stagcat ion ;-onditio:is 

To ar r ive  at local conditions one need only employ \vel1 kr.o\vn gas dyr  T..: 

equations. For a gas whose isentropic csponent and molecular  *.~:eig?i: is 

varying, however, the situation is more  complicated. A r e f e r e x e  con- 

dition is defined which is produced by iseatropicallg stag3z:ing a n  idea! gas 

whose isentropic exponent and molecular weigh: a r e  ecual to the local mix- 

ture value. The reiereiice temperature  is 

Y - 1  2 T = T + -  
0 2YR ' 

and the reference p res su re  is 

Y - - r-1 
Po =P(+) 

where R = RU/W, 

To interpolate between two velocity values (1, 2; use  

where 

Y = (1-hv)Y1 + hv Y2 

( 5  - 2 )  

(5-3) 

( 5  -4 )  



and to  interpolate between two entropy values use 

w h e n  

R = (l-hs) R1 + hsRz 

S-Sl  
hs = - 

s2-*1 

i’ I 

( 5 - 8 )  

( 5 - 9 )  

(5-10) 

(5-11) 

ing development of the flow equati’ons no further mention is i nature of the thermochemistry of gas. A tabular descriptio? 
rties is assumed to exisit so tbt immaterial whether the 

frosen, or in chemical 
I 
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Section 6 
THE *METHOD OF CHARACTERISTICS SOLL'TION 

6.1 DEVELOPMENT OF THE CHARACTERISTIC EQUATIONS 

The continuity equation or conservation of m a s s  i s ,  in vector form, 

while the conservation of momentum is 

- pvp 1 = vi72 - qx (vxq) 

The thermodynamic relation is 

T d s  = d h - *  
P 

which can be shown to be 

1 TVS = O h -  -0p P (6-3)  

NOW p = p ( P A  8 0  i hat 

I ,  
(6  - 4) 

ervation of energy and momentum, and'the thermodynamic relation, 

I 
( 6 -  5) 

i 
TVs * i i  - t j x & k #  ! 

, . r l  I R  I 
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by the. angle  tan’’@, then 
racter is t ic  l ine)  is 

ne in the r ,  x plane incline 
ssion for this line (norma 

Expansion of (6-1) yields 

( e - 6 )  

which when combined with Equation (6-4) gives 

But since 4 mvs = 0 and i s  defined to be the saeed of sourid we have (..): 

Recalling the definitio. equation (5-1) 

so that 

2 a = YRT 
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But along this line 

and 

then 

and 

-Pg au du 
ax dx 
- = -  

4 / 

(6-10) 

(6-11) 
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Substitution of Equations (6-10) and (6-11) into Equation ( 6 - ? )  yields 

s i rnp li f ic at ion, 

after 

Recalling Equation (6-5) and rearranging yields 

2 -a 
YR v s  = qx(vxq) - 

where, for two dimensional or axisymmetric flow, 

and 

but 

where n is normal to  the streamline and 1 
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and 

so that 

Substituting of the above result into Equation (6-12) yields 

(6-13) 

It i s  desirable to determine whether there exists some fi  for which the 
coefficient of - is zero. m 

Br 

t 
Solving for p yields 
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Lc t 

-. -. 

/' 

Then, after much manipulation, 

(6-14) 

Combinationof (6-13) with (6-14) yields then 

Now 

where t i e  taken along the streamline and d i  is measured along the character- 

Then finglly after much .algebra 

(6-15) 

i 
(6-15) is known as t tion snd describes the I 
in  flow propertiee along 



LMSC -HREC D162220-IU 

These lines are the so-called physical characterist ic lines. 

a r e  tangent to the Mach lines. 
Esaph characterist ics for two dimensional flow. 

existence of the physical dimension causes a coupling of the character is t ics  

SO that Equation (6- 15) cannot truly be re fer red  to a s  hoctograph charac te r -  
istics. 

Locally they 

Equations (6-15) a r e  often calied the hodo- 
In -xisymmetric flow the 

It is interesting to  note that the only reference to  gas properties in the 
derivasion w a s  the use of the definition given in Equation (5-1). 

Examination of the four equations (6-15) and (6-16) reveals that there 
a r e  five unknowp.s. An additional relation is provided by a s s u m i n g  a linear 
variation in entr9py between the known data points. 

6.2 FIXITE DIFFERkNCE SOLUTION OF THE CHARACTERISTIC 
EQUATIONS 

In order to solve the differs rt.ial equations (6-15) atx! ( 6 - ! 6 )  it is f i r s t  

necessary to write the equation8 in  finite diffeience form. 
flow field cer;ain conditions are known which allow some of the equations to 
be discarded. 

At times in the 

These are, of course,  the boundary conditions. 

where t 

A%, 

B barred values are averaaerr ovrir thl i l  

(6-17) 

(6-1E 

where 
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- 
& , 2  = 4 , 2  + % , 2  h , 2  

and d takes on the values 

while 

1 for interior solution 
1 for lower boundary solution 
0 for iipger boundary solution I 
1 for interior s olut ion 
0 f a  lower boundary d o l t .  .e I 

1 for upper boundary solution 

which correspond to the Figures (2a) - ( t c )  given below 

Figure (2a) 
I 

! 

interior Point 

61 = 1 
62 = 1 



L 

1 

LMSC-HREC D16222O-UI 

w - _  

A 

Lower Boundary 

61 = 1 

Figure (2b) 

3 
f l  I 1 l2 1 

2 

Upper Boundary 

6, = 0 

6, = 1 

Figure (3c) 

Notice that for the bouadary condition solutiohs the Equations (6-17) be- 
come the streamline equation when8 is zero! For a solid wall solution 

is known while for a pressure the pressure is 

I 

ti 

will  be discussed. These aka:' 
I !  

i 
b. upperwall t 
a. interior point solutio 

c. upper free b o a  ry 
d. lower wall 
e. lower free bow!;: 

known. 

3 i  
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The cornpatability equations are: 

a. interior point 

b. upper wall 

where 0, is given by the wall equation 

c. upper free boundary 

and qj is found from \he local pressure 

d. lower wall solution 

- 0 1 - 6 3 + G 1 - B 1 + Q l q ,  

2, 93 - 
I '  

where is given by the wall equation 

e. lower pressure boundary 
1 

1 

i 

1 1  i 
and qj i given by the 

, 

1 .  
I !  

(6-19) 

( 6 - 2 0 )  

(6-21) 

(6-22) 

(6-23) 
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where 

and s i s  given by 3 

a. interior paint 

b. and c. upper boundary 

while 

s3 = s1 

d. and e. lower boundary 

= 3  = =2 

I 

(6-25) 

(6-26)  

(6-27) 

(6-28) 

i 
- r , 2  - xl, 2) 

sinji - 
F1, 2 =o=Bj 2; 

v i  

solution is employed to determine the properties at the new 
the first pass of this solution the 'Liarred values are approxi- 

the conditions at the two 1 

81 
t 

(6-29)  



for the first iteration. After the aporopriate 
solved a new estimate of the barred values is 

LhISC-HREC Dl62220 -111 

set  of equations has been 

made. For example, 

The iterative process is continued unti l  the desired convergence is reached. 



LhlSC -HREC D 16222c)-LII 

Section 7 

THE OBLIQUE SHOCK SOLUTION 

7.1 DEVELOPMENT O F  OBLIQUE SEOCK RELATIONS 

Figure 3 i l lustrates a s t ream tube passing through an oblique shock 
wave. 

eous r i se  i n  pressure and temperature. 
the shock wave (in a reacting gas) a non-equilibrium zone \%ill exist followed 
by a return to chemical equilibrium. The following analysis discusses the 

fluid flow properties in such a way that the non-equilibrium process need 
not be specified in order to a r r ive  at  an  exact solution for the gas properties. 

This wave, which is extremely thin, wi l l  cause an  almost instantan- 
For  some distance downstream of 

Consider a control surface as shown in the figure. The conservation 

of mass yields: 

Conservation of momentum gives 

N.E. 
& 

i %.E. 

Since each treamline locall/ undergoes the same process  the las t  two t e r m  

of the abov equation a r e  equal and opposite. Therefore . f 
3% 
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Transforming to the 11s. t s  codrdinate system 

13 = S i r . €  iz -I- COS€ E 

fi = -cos€  IG + sine G 

Figure 3 

- 0  
I n  = - cos (e-6) F s  t sin (e-6) G 

1 ,  : i i  t ,! j ’ 

(7-3) 

Zone 

(7-4) 

i 

39 
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So that, after substitution of ( 3 - 3 )  and (7-4) and setting each component  to 

zero, Equation (7-2) becomes, 

But f rom geometry it can be seen that 

(7- 7) 

After substution of Equation (7-7); (7-1). (7-5) and (7-6) become 

say e, is taken as an independent parameter the 
q ,s )may be found by an  iterative solution. These 2 2  I ,  

formally the Tame as the  ideal gas solution. The 
I 

s only in the variation of p etc., with entropy an velocity. P 
BO 
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It i s  impossible to de t e rn ine  &he locatlon of the new equilibrium shock 

point location without a detailed description of the non-equilibrium reaction 

process.  
cant e r r o r s  a r e  introduced by letting the downstream physical location lie 
on the upstream location. 

It will be assumed therefore that this zone is thin andthat nosignifi- 

It has  been pointed out previously that the character is t ic  equation 

derivation was based on ceglecting t ransport  properties and as such is 
necessarily res t r ic ted to  continuous regions only. 
relations derived here thcn a r e  patching lines between the continuous regions. 

The oblique shock wave 

7.2 ITERATIVE SOLU'TION OF THE OBLIQUE SHOCK RELATIONS 

Rearranging Equation (7-8) yields; 

while squaring both s ides  of Equation ( 7 - 9 )  and substituting the above r e -  
lations yields, after simplification; 

and Equation (7-10) becomes 

In functiona form Equations (7-12) and (7-13) are just 4; 

(7-12) 

(7-13) 

.(7-14) 

41 
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421 

F r o m  calculus 

;! i .; 

I 1 

ds2 dq + -  dG1 = K2 2 a s 2  

ds2 
aG2 dq t- - BG2 

dG2 - 2 a s ,  
(1-15) 

Now 

2 - dG1 = q (')(:) s i n e  2 3  (1nP2) 
as2 92 
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so that 

and 

writing (7-15) in finite difference form: 

(n+l)  (n+l) are set  to z ' G2 Since the root G1 = G2 = 0 is desired, G1 
resulting in 

r 

(7-17) 

(7-18) 

I !  

i 

I 
43 I 

1 
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and 

The iterative solution using Equations (7-19)  and (7-20) is continued until 

the desired convergence of G1 and G is reached. 2 
ple ted by 

The solution is com- 

8 = € - s i n  - 1  v 1  sirv 1 (7-21) 

The first guess to  s ta r t  the solution is an ideal gas solution to  the se t  of 

equations. 
These relations are 

If i t  is indeed an ideal gas under analysis the f i r s t  guess isexact.  

COS€ 
Qt = Q1 cos(c-6) (7-22) 

44 
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Section 8 

EXPANSION CORSER - PRANDTL-MEYER FAN 

In some cases  the flo-.% may be required to negetiate a sharp expansion 
turn. 
possible to conceive of an expansion corner on an axis of symmetry) and 
may be treated with a Prandtl-Meyer expansion. 

The problem becomes t w o  dimensional a t  a sharp corner (it is im- 

dv = q d 6  

- 

Figure 4 

Since a Mach wave will support pressure changes only in a direction 
normal to itself, f5J 
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1 = tanp = du 
d r  
- 

o r  

de  -@Th - 9 

The solution to Equation (8-1) is a straightforward numerical inte- 
gration for the case of a known final velocity (free-boundaA*y case). If the 
turning angle is known, however, and the final velocityis not known, an 
iterative solution is necessary to determine the upper limit. 

In the mesh construction to  be discussed la ter  a fan of rays  must be 

generated to allow a numerical description through a large turning angle. 
The turning angle is subdi-Tided into a number of smail turns, each of which 

is in* grated numerically. .m:.ll turns is a 

Mach wave or characterist ic line emanating from the co. I 

Corresponding to each c,. 

46 



Section 9 
SHOCK NEIGHBORHOOD SOLUTION 

Due to the fact that the shocrc calculation wil l  be employed under 
several different flow conditions a general setup and notation is  used. 
There are six basic types of ca1culatio:is as  shoxAi in Figures (Sa - 5f ). 

Figure Sa - Interior Right-Running Shock Wave 

Shock Wave 

Figure Sb - Interior Left-Running Shock Wave 

47 



LMSC -HREC D162220-111 

Figure 5c -Solid or Free Upper Wall Interac. *.g 
with Left-RUMhg Shock 

Figure 5d - Sclid or Free Lower Wall Interacting 
' with Incident Right-Running S h O C K  Wave i 
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Figure 5e - Solid or Free Upper Wall Interacting with 
Reflected Shock Wave or Attached Shock 
Wave with Insufficient Downstream 
Infor m.a t ion 

Shock Wave. 

Figure 5f - polid or Free Lower W a l l  Interacting with 
PeEected Shock Wave or Attached Shock 
yave  with Insufficient Downst ream 
Information 

49 
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Let 
= 1, -1, -1,1,1, - 1  6, 

&b = lSl ,o,oSID1 

= 1, 1 , 1 , 1 , 0 . 0  6, 

for the six cases, respectively. 

The angle that l i n e  6-8 makes with the axis is 

while the angle that l ine  ? , 9  makes with the axis is 

while the angle of the shock wave is 

For an  initial approximation let (e4 t t4 ) (O)  = 
cal location of r4,x4 which i o  just  the intersection of the shock wave and 

the line 6-8. 

+ €2 and c'ompute the physi- 

i 
A l inear interpoiation between the flow values at points 6 and 8 is used 

to determine the local 'f l  
determined. 

A shock angle is then 
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The oblique shnrk oolutim of section c i s  used to determine the flow 

properties a t  3 ac ross  the shock wave. 

It is now necessary to make a characterist ic cal  .ulation to  determine 

whether the new shock solution is the cor rec t  one. 
physical character is t ic  l ine is drawn f rom point 3 and the intersection of 
this line and line 7-9 is point 5. 

point 9 is not known. An estimate compatible with the shock slope is made 
using a character is t ic  solution. 

Ia order  to do this a 

In the cases shewn i n  Figure 5e and Sf 

For  a f i r s t  approximation to the slope of the line let 

then the character is t ic  line makes the angle 

The doublet r5,x5 m a y  now be found and an interpolation between the pro-  

per t ies  a t  points 7 and 9 yield the estimate of the flow properties at 5. This  
information is used to  improve the estimate of a3 in Equation (9-2). The 
process  is continued until convergence is reached. 
ist ic line passing through point 5 terminates at the shock a t  point 3. 

compatability equation is now solved along this line a measure of the in- 
accuracy of the shock slope wi l l  result. Using all the known information 

concerning points 5 and 3 solve for the flow angle a t  3. 

The physical character-  
If the 

51 
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where 

cot ji 
4 Q =  

sinji   COS^ (s3-ss) 
B =  

It7 

sin6 (x3-xs) 
F =  

c o s ( & 8 p )  

and, of course, the barred values a r e  averages over the step length. 

An error m a y  then be computed; 

but 

and the solution is perturbed until the root is bracketed. 

driven to convergence by the method of false position. 

The solution is 

I 
It should be poibted out here that the use of l i n e a r  interpolation is a 

matter of convenient:! only. It would be possible, but i n  general far from 
practical, to generate by exact means those points which have been approxi- 

mated. 
: I  

52 



LMSC -HREC D162220-111 

Section 10 

MESH CONSTRUCTION FOR INTERNAL F'LOW 

The calculations described previously a r e  point or  sinall rcgion 

Some process  must be de!. cd which successively employs solutions. 

the proper calculation at the proper time in order  to describe the ent i rc  

field. In order  to facilitate a description of the mesh construction process 
let 9 represent the total knowledge of flow properties a t  a point in the field. 

Also let  the expression 

e 

stand for properties a t  a new point which are computed as a function (w of 

(m) other points. Thcre w i l l  be basically six such functional operations 
which stand for input point, interior point, bound- *o* % @B* *Ai' %, *pM* 

a r y  point, attachcd shock point, shock, and Prandt-hfeyer points. 

tion the superscript  (u) will indicate that the operation is to  be performed 

in the presence of an upper boundary while (L) indicates a lower boundary. 

In addi- 

Due to the complexity of handling multiple shock waves, a single 
shock wave restriction will  be imposed. 

chosen to be of the right running family. 
frequently occur in cases of interest. 
the problem is simply inverted. 

This shock wave is arb i t ra r i ly  
This type of problem wi l l  . lost 

If a left running shock wave occurs 

1 
The choice of right running shock waves also dictates that  left running 

characterist ic l ines  bd followed in  the calculation. 

ta in  a minimum of information, i. e., a known character is t ic  line (hereafter 

This allows one to  t e -  

referred to a s  (j)) and a l ine  i n  the process sf b eing ccnrputed (k). 
I r L  

53 
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To begin the problem al l  necessary boundary conditions must, of 

course, be supplicd. 

are designated Wn 
In addition a starting l i n e  containing N points which 

(n = 1, . . . N) must be supplied. 

Figure 6 illustrates a flow field in which there are no discontinuities 

and in  which the mesh construction i s  terminated when the region of interest 

has been computed. 

-/- 

Figure 6 

In region I the left running characteristic lines initiate as input points 

and the mesh construction may be described by; 
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where n var ies  f r o m  1 to N and Oi, 
ith point on the k line. For instance,  in calculating the fourth point on the 

fourth line shown in the figure, line three is known in i t s  entirety and line 

four up to  and including the third point is known. The above se t  of relations 
says that point three on line four and point three on linc three will de te r -  

mine, through the interior point solution, the next point (four) on line four. 

represents  the flow properties a t  the 

For region II we have; 

e. = ) i = 2,. . . (2N-2) (10-2) 
1, k 

As a new line becomes completely defined i t  may be re fer red  to  as j 
and the process continued indefinitely. 

f t  is possible to combine regions ( 1 )  and (2) into a more general  

echeme if a variable iN is defined which takes on the value (1)  i n  region I 
and (0) in region IS. At this t ime the number of points on the j l ine  (i ) 

Ti 
J 

and the number of points on the new line (i ) ate defined. Then; 
'k 

but 
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Obviously iT would have been initialized lo ( -1)  prior to the s t a r t  of thc 

calculation. 
j 
When the line is finished i i s  set  to the current value of i . 

T j Tk 

Thus the process  for computing the entire flow field fc :  such a simpli- 

fied case is described by the set  of expressions (10-3). In general, however, 
discontinuities will a r i s e  so that a more flexible description is necessary. 

If, by some process ,  points were discarded from the (j) and (k) arrays and 

the number of points lost  is is and i a  respectively then (10-3) becomes; 
j k 

but 

where thc tilda over '6. and iak indicates that current values a r e  to be used. 

'C'rass variables are rese t  to zero at the beginning of each new line. 
J 

- Tq 2Lustrate this,imagine that points (1) and (2) have been computed 
m Vv.e t1 and that after point(3) had been computed in the normal fashion 

it was necesscry t a  discard it. The next point to be computed would then 

be (3@) but if for 80-i reason it was necessary to discard point 5 on the 
(j) l ine their the point {3') would not exist. Therefore a point has been 
deletea on each line (1 

/ 

I 
\ 

= 1) and the diagram and the s e t  of equations , 

I I  
( 4 )  indicate that point (j) and point (4) on line (k) would be used 

in the computation of (3) on line (k). Aisq theltotal number of points would 
i ; Iii 
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have decreased correspondingly. 

thing as discarding right running chnractcristic lines. 

Note that  discarding points is the same 

It is now possible to  includc a shock wave into thc logic scheme. 
Since it is a mathematical requircmcnt that characterist ic lines of the same 
family as  the shock a r e  continuously intercepted by it, the ability to discard 

points was necessary. If this was the only mechanism for discarding points 

then the logic process  would be; 

s 

*.. .) 9 (*ik, k' ij, J 

i = iSk- igk  
i = i S k - i g k + 1  

i=  1 

i = t , . . .  i 
'k 

[ lo-5)  

ik  = i - 1  
i j  = i-ti t ls'i + i l i - i  -i6 + t , . . . i  -1 

N 'k 'j 'k k 'k 

i t i  ik = i - 1  
i j  = i -2i  + i + i Tk N 8k aj 

where 

C= iT +2iN - i  - i  
l=k j 'j 'k 

and where i is defined in much the same fashion as i , which is; 
'k I 'k 

' i! 1 

'J I I Iri 
I 

where i is the location of the upstream shock paint o n  the [j) line. 
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Figure 7 i l lustrates the mesh construction when a shock wavc 

is present. 

-Shock wavc 

Figure 7 

In this example iN = 0 ar.d is = 8 so that i = 7, Also iT = 16  80 

j *k j 
that i 

and the shock solution is then employed. In this case the shock solution 
finds that three points of the (k) l ine fall  downstream of the shock (minimum 

is one) while two right running lines (points 10 and 11 on the (j) line) a?so 

are intercepted by the shock wave. 2. 

The set of equations (10-5) then says that the douLle shock point should be 
points 5 and 6 on the (k) line and that the total number of points on the (k) 
line has decreased toil2. Note also that the value of is to  begin the next 
line must be change to 5. 

would normally also be 16. The (k) l ine is computed up t o  point 7 
Tk 

Thus in this example i8 = 2 and i8 
k j 

I 

J .  
I 

i 

? i  
So far no mention of how the shock wav$ begins has been made. 

There are two typos of shock waves copside qd; the attached shock wave 
I , [ I  
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which a r i s e s  due to the flow being forced to negotiate a compression corner 

on the upper boundary, and the envclopc shock. The first of these is easily 

detected from the boundary conditions and is initially of finite strength, The 
second type .is detected by a mathematical discontinuity i n  the m e s h  con- 
struction (crossing of right running lines) and is initially of z e r o  strength 
i.e., a Mach wave. An example of the compression corner solution is given 

in Figure 8. 

Figure 8 

The computation of the (k) line is completed without any pr ior  know- 

ledge that a compression corner  exists. A check is made after the bound- 

a r y  solution and the boundary information hdica tes  that a compression 

corner must be treated. A l inear interpolation is performed between the 

boundary point on line, (j) and the fictitious boucdaty point on line (k) in 

order to  determice thf flow properties at point u. An oblique shock calcu- 

lation is made where the turning angle is known. Using this point and point 

! 
i 

6 (iT -1) a new virtual point [$ is computed. is is se t  to i and the 
k I 1  =k 

shock solution illustrated i n  Figure (5e) of Se tion 6 i s  employed. Thirr 
I , I .  f. 

s9 
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shock solution complctes the (k) line in  the proper fashion. In this example 

= 6 and the ncxt l i n c  is coniputed as previously disc .sped. 

The envelope shock is detected by a crossing of right runninz cha r -  

acter is t ic  lines a s  shown in the figure below. 

J 

Figure 9 

In this example point (5) on the (k) l ine  is found to fall  in a previously 

described region (the region between points (3) and (4) on the (k) line). This 

discontinuity in the solution is interpreted as a shock wave. If the gr id  s ize  

were chosen small enough the shock wave would initially be of zero  strengtk. 
Point (5) on line (j) is chosen to be a point which lies on the shock wave and 

the shock solution i a  t v p l a j e d .  

the normal  fashion o tAe (k) line. Obviously the only difference between 

this situation ar.d t:e tment of a previously deve loped shock wave is t o  

modify the (j) line rukh that it appears to the logic scheme AS though a 

The resul ts  of this solution are s tored in  

4 
shock wave crossed the (j) line at 

When an expansion corner  i a  d on the upper boundary the 
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!ogic schcinc i s  nwdi f i cd  locally. Figurc 10 . iu:;lrntcs thc nlcsh con- 

struction in thc vicinity of such i l  corner. 

7% 5 
/ 

Figure 10 

In this case point (5)  on linc (k) is expected to  be a Soundary point. 

It is discovered however. that an expan 'on corner  must be nego*iated b) 
the (k) line. A point ( 6 )  on the (j) line is found by interpolation. 

Meyer calculation is empioyed and the fan of points is stored in the (j) line 

above (6) .  
creased accordingly and the normal logic scheme wili now compiete the 

new line. The next line iar calculated in the standard fashion. 

A Prandtl-  

The total number of points to  be expected on the (k) line is in- 

An exparlsian co rne t  on a lower wall is .somewhat a more complicated 

situation. Since the talculation no lonker utilizes the input line, the lower 

wall expansion fan m A y be stored in this area. The set of relations,Equa- 
tion (10-5) is modified to  that of Equation (10-6). 

I 

1 
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where 

i e iT t(2- i l )  iN- i6j - i  
'k j 'k 

and where 

i e is t(2-il)iN - 1 
j 

for which il = iN = 1 until all fan points are used up. 
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Section 11 

NON-ISOENERGETIC FLOW TRF-4TMENT 

The bulk of this document is concerned with the discussion of the analysis 
of isoenergetic supersonic flow fields. 

perform the necessary calculations. 
modified to  permit the treatment of non-isoenergetic flowfields. 
treatment is straightfonvard, decisions were made in che form or' 'AL equations 
and coding of the original program which were not the most advantageous 
approach when the non-isoenergetic flow situation was considered. 

the compatibility equation (6-15) would have been written in :he pressure  rather  

than the velocity form. 
expedient way of modifying the computer program w a s  chosen. 

leading to the modified program (consistent \\pith the constraint of minimal impact 

on the cading rather than straightforwardness of sndys i s )  is Fresented in  this 

s ec tion. 

A computer program was written to  
Subsequently the computer program was 

-4lthough this 

h pzrticular, 

In considering the  non-isoenergetic analysis the most 
The development 

To begin, the development of the species continuity (starting with equation 
2-1) could be replzced by atomic conservation equations. Moreover if the 

coaservation of those atoms associated with the fuel and the oxidizer were 
considered then, for  steady state, 

and 

9 .  @fa = 0 (11-1) 

(1 1-2) 

would result. 
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If the weight flow ratio of oxidizer to  fuel (O/F ratio) is denoted by q 

then (11 -1) and (1 1-2) a r e  satisfied if, 

< *  v9 = 0 (1 1 -a) 

and 

0 ( p a  = 0 (1 1-4) 

The assumptions inherent in  arriving at equation (2-40) did not involve 

isoenergetic flow so that the momentum equation remains valid. The enzrgy 
equation (2-41), however, remains valid only along a streamline and must be 
replaced by 

(1 1-5) 

The equations of Section 3 are modified in an obvious fashion while 

Section 4 remains unchanged. In Section 5, however, a new varirble is intro- 

duced into the thermochemistry determination. 
5 is pertinent t o  a single O/F ratio, the gas properties description must bz 
expanded to include a variable O/F. 
be followed for each of two values of the O/F ratio which bracket the desired 

O/F and a l inear  interpolation used to generate the requirbd information. 

Since the discussion of Section 

To do this the discussion of Section 5 m a y  

In Section 6 equations (6-1) and (6-2) a r e  valid but now 

P = P@, s , q )  so that 

(11-6) 

Expanding (11A4) and combining with ( I l - b ) ' s t @  yields (6-7) since ~ * V S  = 
q q = 0.  In equation (6-7), however, it i s  unf, Jrrstood I t t a t  a = (8P/op),,q. 2 

I ,  
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The definition of y culminating in equation (6-8) i s  similarly qualified. 

Since ( 6 - 9 )  is generated by expansion of (6-7)  it remains valid 3s & all the 

steps culminating in equation (6-12). 

To proceed beyond this point a deviation from the pre\.ious approach is 
taken. Expanding the momentum equation (6-2) r2sults in 

(11-7) 

(11-8) 

but from the chain rule 
0 a ax a a r  

an a x a n  ar an - = -- +-- 

where (n,tj are respectively normal and tangential to the streamline. Hence, 

It then follcws that 

and that 
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Notice that the last  t e rm in  (1  1-9) replaces 

as -- 
YRq an 

in the previous derivation. 
the counterpart of (6-15) is easily shown t u  be 

Following the  previous derivation with this in  mind 

- sinfi sin9 g d r  - (e + q d q )  f - 0 (11-10) de + cotp siny c o s g  

- Q  YRT P s in(e+p)  ' 

The above result is the compatibility equation used in the isoenergetic now analysis 

Notice that by continued manipulation the pressure  form oi' the compatibility 

equation w i l l  result. That this form of the -quation is unaltered by the non- ' 

isoenergetic analysis is not surprising since it is cons:ructed entirely based 

on the momentum equation and the global cmtinuity equation (neither of which 
a r e  altered by the non-isoenergetic flow phnomena). 

The numerical solution to  the governing equations is not greatly affected 

by the modification to the Compatibility equation. In equation (6-18) 

1 1 2 
+ Gl, 2 A%, 2 e= -c- 

As1 ,2  T1,2 ( 5 1 , 2  

while in (6,251 

(11-11) 

(11-12) 

Now equations (6-26), (6-27), (6-28) are the finite difference analog to the 
s t r d i n e  equation. In a similar  fdahion we may write 

i t  


