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LMSC-HREC D162220-I11I

FOREWORD

This document presents the results of work performed by
the Fluid Mechanics Section of the Aeromechanics Department
of Lockheed's Huntsville Research & Engineering Center. This
report is Volume III of a four-part final report, as required to
fulfill Contract NAS7-761. This work was sponsored by the
Liquid Propulsion Section of Jet Propulsion Laboratecries, Mr.
Wolfgang Simon, Technical Manager.

This document constitutes Volume III of the four-part
final report. The other three volumes, printed separately
are:

Volume I — "Summary Volume — Method of Character-

istics Nozzle and Plume Programs,' LMSC-HREC
D162220-1.

Volume II - "Uger's Manual — Method of Cha.acter-
istics Plot Program, ' LMSC-HREC D162220-II.

Volume IV — "User's Manuzl — Variable O/F Method-
of -Characteristics Program for Nozzle and Plume
Analyses,” LMSC-HYRKEC D162220-1IV.

.5 VISION NOTICE

Lockheed Missiles & Space Company, Huntsville Research
& Engincering Center Technical Report HREC 7761-3 (D162220-III),
entitled "Solution o!f Non-Isoene getic Supersonic Fiows by Method

of Characteristics.;" dated July 137] is revised as indicated below:
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SUMMARY

This is one of a series of reports dealing with the calculation of
supersonic flow fields by the method of characteristics. This report deals
with the theoretical approach to the solution of these flow fields while sub-
sequent reports will compare the theory with experiment and discuss in
detail a computer program which was derived to implement the numerical
solution of the flow equations. This versatile program has a flexible set
of boundary conditions enabling the calculation of nozzles, plumes and many
other complex flow fields. A user's guide for this program is contained in
Volume IV, "User's Manual - Variable O/F Method-of-Charactleristics Pro-
gram for Nozzle and Plume Analysées,” LMSC-HREC D162220-IV.

A complete derivation of the equations of motion for resciing gas
systems is presented in this report. This derivation clearly 1llustrates the
underlying assumptions that were made to arrive at the more familiar sys-
tem of equations which was finally treated. An important consequence of
this derivation is that, for the reaction assumptions which were made, the
thermochemistry was shown to be uncoupled from the flow solution and as
such could be solved separately. In addition the method of characteristics
equations are shown to be formally the same for ideal, frozen, and equili-
|
The two dimensional and axisymmetric characteristic eguations are

brium reacting gas mixtures.

cast in finite difference form. These equationé’ apply only in regions of the
flow field where transport properties can be neglected A shock wave solu-
tion is pr¢sented, and numerical techniques necessary to effect the calcu-

lation areldescribed. The shock wave solution thén acts as a patchirg line

: n ;
| b
A discussion of the mesh constmcnon nec s&ary to apply the local

between rpgions in which characteristic rel_atiohé Tpply.

point solufions in the proper fashion 1 also grwté

0
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SYMBOLS AND NOTATIONS

Description
time
volume
area, chemical symbol
mass density
velocity
diffusion velocity
reaction coefficient
mass
progress variable
stress tensor
unit tensor
viscous stress tensor
body force vector
hydrostatic pressure
interral energy per unit mass
heat flux vector [ |
B |
enthalpy per unit m%ss;
entropy per unit‘ mass l
temperature . |

H

mass fraction } i
‘ )
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Description
Gibbs potential, Mach angle

Gibbs free energy change

equilibrium progress variable
universal gas constant

molecular weight

isentropic exponent

local value Ru/ Wm

speed of sound squared

velocity components

characteristic slope

position coordinates

inclination of flow vector with respect to x axis
normal and streamline direction
equation modifier, turning angle

shock angle

Mach number

error function

nacessary informat'ion to describe point

operation function |
P
known and partiall)} known characteristic

Nabla g ‘
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Superscripts Description
- vector, also denotes averaged quantity
= tensor - dyad
T transpose
F forward
R reverse
(n) n™ iteration
Subscripts
i ith species, otherwise where defined
k kth reaction
L summation index
m pertaining to the mixture
e, f equilibrium and frozen
0 reference condition
N.E. non-equilibr w:1
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Section 1
INTRODUCTION

The method of characteristics is known to be an accurate means of
calculating supersonic flow fields. Since the advent of modern high speed
digital computers, this method has recieved much attention becausc of its
accuracy and, in spite of, its complexities. The equations found in this
report, although perhaps different in minor ways, are those which have
been known and used for half a century. It is felt though that the manner
in which these concepts have been combined to result in a useful, flexible

tool for rapid calculations is unique.

A complete“ derivation of the equations of motion for reacting gas’
mixtures is presented in this report. This was done so that the conse-
quences of assumptions necessary to arrive at the simple forms ulti-
mately treated can be examined. For the special types of reactions
treated it is shown that the thermochemistry can be completely separated
from the flow solution thus greatly simplifying the entire calculational
procedure.

In spite of the almost universal application which the method has
recieved, very f~w descriptions of the mesh construction techniques
necessary to apply this method have been documented. It is the intention
of this report to present this important portion of the theory. A functional
description of the mesh construction will be attem.pted in the hope that it
will enhance the understanding of this facet of the technique.
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Section 2

THE FUNDAMENTAL EQUATIONS FOR FLOW
OF REACTING GAS MIXTURES

2.1 DERIVATION OF EQUATIONS FOR UNSTEADY NONEQUILIBRIUM
FLOW

2.1.1 The Continuity Equation

In a flow system of gaseous mixtures in which chemical reactions
take place, the principle of conservation of mass of each chemical species,
when applied to a control volume V bounded by a control surface A, may

be written as
2 = %,
$fffesse - Fon o fff Frow
v A \'4

i=1,2, ... n

where p; is the partial density of the ith species; ﬁl the velocity vector of
the center of mass of the ith species, dA the utward differential area
vector on the control surface A; dV the differential volume element; 8Pi/8t
the rate of increase of Py due to either intcrnal or external sources such as
chemical reaction and mass additions; and n is the total number of chemi-
cal species in the mixture. l |
' ("' . .

Thé¢ above equation simply states that, for the i species, the mass
rate of increase inside the control volume is équ'al to the net rate of mass
flow intojthe control volume plus the rate of mass produced due to chemi-
cal reactjons and mass addition. In the follow'ir:xg, we shall, however,

|

exclude thass addition from external sourées.;
| } i
{ ' 1
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The first integral on the right-hand side of Equation (2-1) m;y be

4
transformed by means of Gauss theorem

_#’5(?.0-«15. = /_/fv-.ét?.t)dv
v

A

where @ (T, t) may be any continuous vector field (functions of position
vector T and time t) defined inside and on the boundary of the control vol-
ume V. Also, in the Eulerian coordinate system which we use here, the
control volume is not a function of time, and the order of differentiation

and integration may be interchanged, i.e.,

7/

& [l oo - w2

\'A

Hence, Equation (2-1) becomes

0

[[[{-;:—i +V-(pi§i)~%] v =0 (2-2)
v

Since the volume V under consideration is arbitrary, the only way for
Equation (2-2) to be valid for all V is for the integrand to vanish. We
therefore have

6p. p.
st tVe [p@ErEm ] - 5 (2-3)

|

i s 1. z, e 000 'n f

!
where we¢ have replaced ﬁi by g + Ei: qis th% velocity of the center of mas:
E !

of the mixture at (¥.t) and ﬁi' is the diffusion velocity of the ith species with

t

respect fo the mass center of the mixture, | - |
b ?

3

|
o
|
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Equation (2-3) is known as the species continuity equation. It is
valid for each chemical species at each internal quantum state. We shall,
however, assume that the various internal modes of motion are fully ex-
cited and are in equilibrium with each other. It is well known that this is
approximately the case for the translational and rotational degrezs of free-
dom where the equilibrium value is attained in a few collisicas. In general,
the vibrational degree of freedom approaches the equilibrium state some-
what more slowly, except at very high temperatures. As cheriical reac:ions

usually occur at high temperatures, this approximation is of‘en justified.
If one sums up the n equations represented by Ecuatioa (2-3) a-rd

utilizes the relationship between the mass density p of the inixture and the

species density P;

n
i=1
the requirement for the diffusion velocity that

Zp a =Z,>i<ﬁi-a) = pg - pg =0, (2-5,

i=1

and the conservation of total mass for chemical reactions,

Sp. ‘
r .

t !
i=1 !

ore readily obtains ! .

[

a

L +7.(07) =0 " | (2-7)

i
Eqpation (2-7) has the usual fotm of masi onservatior or global '
continuity equation. It ¢cn ke written alternati

! it
2

|

yas
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._D.B-f-p!?.q’:O (2-7a)

by means of Euler's derivative

D _ &8 ,=.
Dt -3¢ T3°V

The species continuity Equation (2-3) may be written in more con-
venient forms, By makirg use of the global continuity equation and intro-

ducing *he mass fraction ci(= pi/p), Equation (2-3) becomes

I)ci _, Spi
Py *V*(rc;q) = 5 (2-8)

The term on the right-hand side of Efquation (2-8) may be put into

terms ol progress variables of the chemical reactions.

Supposing tl..re are r independent reactions occurring in a mixture of

n species, then a typical kth reaction may be rcpresented by the general
form

n
ZuikAi =0, k =1,2, .... r (2-9)
i=]

where A, ie the chemical symbol for component i and v, is the aumber of

grams of component i produced per gram of reactior. k. kSince the mass
of a reacting system is conserved while the number of moles in such a
system is nat, it is8 more convenient to use the gram basgis rather than the
mole basis ih ou~ discussion of chemical reac.ions, The coefficient ¥k

is negative if i is a reactant ~nd positivt’; if i is a product of the reaction k.

5
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If component i does not participate in reactions k, then the corresponding

V., is zero.
ik o

It follows, obviously, from the above description that if there is no

mass addition from external sources,

1,2, .... r (2-10)

™

;"#
"
o
=
n

Furthermore, the changes of mass of the components in the system

th .
as a result of the k~ reaction are related by

d, m d d m
_k. 1 = };mz = ee-- = k n, k=1,2,....r ({2-11)
Fix 2k Vnk

. . t .
Now we introduce a progress variable )‘k for the k h reaction and
define it as the grams of reaction occurred per gram of original reactants.

As a result of this definiticn, we have

ki (2-12)

shere m is the total mass of the fluid system. We note that because of

Equation (2-11), dAk is independent of species i.

The rate of change of mass of itlrl species due to all the reactions is

therefore,

dmi T d}.k
4 - m ik Tat i=1,2 ....n (2-13)
k=1

or, in$term of mass density

o



)

LMSC-HREC D162222-1I

dp. r da Sp.
-1 = 1 4 _—k = 1 2-
a "kz_:l ik dt 5t (2-132)

With this relationskip the species continuity Equation (2-8) becomes

Dci 1 , r DAk
ot ty Vel = 2:1 Yik Dt (2-14)
k=

It will be shown later that the time rate of change of progress vari-
able dAk/dt is directly related to the temperat re and pressure variaticas
in the flow field.

It is worth noting that all the ahove equations are extremely general
in their validity. That is, they hold true for all flowsystems including non-
equilibriurm chemical reactions and irreversible transport effects such as

viscosity, conductivity and diffusivity.
2.1.2 The Momentum Equation

By applying the principle of conservation of momentum to a differen-

tial element in the flow field, one can derive, in vector for™,
- n
2(pg) « (03 T) = U5 I -
2l +7 . (077 = T+ g"i‘i (2-15)
1=

where §q is a dyadic product of the velocity vector g by itself and ?i is
the body force exerted on the ith species per unit mass. The stiress

tensor O is sometimes written in the form

F=-pd+7T (2-16)
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Here, p is the hydrostatic pressure usually defined as -(a‘“ + %o + 0'33)/3;

8 the unit tunsor; and T the viscous part of the stress tensor.

Putting Equation (2-16) into Equation (2-15), we have the well known

Navier-Stokes equation for compressible fluid flow,
= n
o2 4y . (pqq) =-Vp+V-F+ D A (2-17)
i=1

In this equation the five terms are, respectively, the non-stationary and
convective rate of change of momentum per unit volume, the net hydro-
static pressure force and the viscous stress force acting on the surface of

the unit volume, and the body forces per unit volume.

By using the continuity equation (2-7), Equation (2-17) may be

written as

qu‘. qQ e C = -

~

Vp+ < V-

@

n
i=1

x-Y

1
p

For isotropic, Newtonian fluids, the viscous stress tensor T in Equations
(2-17) and (2-18) can be shown to be related to the velocity gradients

(strain rates) by the following formula
Feoy (V-5 v, va 0D, (2-19)

In which (Vﬁir denotes the transpose of the tensor V3, and \lfl and ¥, are
called the first and second coefficient of viscosity of the fluid, respectively.

These coeffic%ients are usually temperature dependent.

When the body forces are negligible, as is usually the case for

compressibld flow, and if the viscosity effects are smal{, then we arrive
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at the familiar Euler equation of motion

\4% (2-20)

-

We note at this point that chemical reactions do not alter the forms

of global continuity equation or equations of motion.
2.1.3 The Energy Equation

The most general form of energy equation, according to the first law

of thermodynamics or the law of conservation of energy, can be written as

5‘?; [P(e+%q2)]+V° [pc'a(e*r%qz)]:-v «Q+V:(G Q)

n -
+ Epi T+ - £, (2-21)
i=1

where e is the internal energy per unit mass of the gas mixture; q the magni-

tude of the velocity; and Q the conduction heat flux vector.

Equation (2-21) simply states that, based on unit volume of a fluid
element, the total rale of increase of internal and kinetic energy due to local
and convective changes (the first two term:s) is equal to the heat conducted
into the volume (the third term) plus the work %lone on the fluid element due

to stresses (the fourth ierm) and the work doné on the element by the body
!

i
|
Injwriting Equation (2-21), all that has ﬁeen neglected is the energy

forces (thr last term). !

transferréd due to radiation, which if necepsary,' can be added to the equation
[

as an extga te:m. | P '
. ! V ,
Loy
[4 v [N

Needless to say, the microscopic quan

dffects (interchange of
L
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_

energy and mass) are not considered in E uation (2-21) as it has been im-

plied by the classical first law of thermodynamics.
Using Equation (2-16) and introducing the enthalpy per unit mass
h=e+p/p

£quation {2-21) can be easily rearranged to give
2rmttdry. [pam+zdh] = R+v.F.a-a)

n
- -I -
+ 2 pi(q-l-qi) . f (2-22)
i=1

Or, if we subtract the continuity Ecuation (2-7) from Equation {2-22), we

obtain

Qo
I
o+

!
oL

m-—

9.’

blr-
<]
[

qd-Q +% zpi(ﬁﬂ‘a{) . £ (2-23)
i=1

This is the energy equation in which all the transport properties - viscosity,

conductivity and diffusivity, have been taken into consideration.

2...4 The Entropy Equation {
|
l

The g¢ aeral thermodynamics equatlo with chemical reactions may

be writte, as

Tds =

3|o-

‘ 2

.
dp - p;dc (2-24)
v |

'. .

|
'

and By the chemical
4

whexve s %s tl.: entropy per unit mass ofthe must ,
potentia) fer mole of the chemical specues ,1. fz
!

]
10.
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For a flow system, we can write Equation (2-24) in terms of

substantial derivatives

Ds _Dh 1 Dp —1 -
TH Dt "Dt Z“i Dt (2-23)

If this equation is sutiracted from Equation (2-23) the result is

Dp .

1 R
Dt " p Dt ~ Vg -

‘blt—
~u
’blv-

X 1 e
-+ EZ, (2-27)

where the symbol { is a double dot product of two second order terms. It

is defined as

so,

' i
Now, subgtituting Equation (2-27) into Equationl (2-25), we readily obtain

-

n . n Dc.
Ds . lyigp-lo.dsl SVoar.io 5y 2
T"ﬁ’ - p V pV'Q*p ) :~ .'fi-_ Fl Dt (2'28)

e e
-

This equa lxon states that the total sate of entrop ; roduction, in energy per

1

-1

e —

i
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unit mass per unittime, is equal tothe sum of the individual rate of entropy
production due to viscosity (the second term), conductivity(third term), diffusi- o
vity (fourthterm)and chemical reactions (lastterm). The fourth terms onthe ’
right-hand side of Equation (2-28) are all positive quantities. They are

sometimes known as the dissipation terms.

The last term in Equation (2-28) may, with the help of Equation(2-14),
be written as

n D<:i n r DAk 1 ,
- Z Bi Dt ~ -z;“i ;lvik Bt "p Vo lee, T (2-29)
i=1l = =

n Dec. r DA
i k
-1k B T LA (2-30)
i=] =1
n\
with AGk = 21 vik #5 (2-31)
i=

It is to be noted here that the Gibbs free-energy change due to kth reaction,

AGk, vanishes for equilibrium chemical reactions.

2.2 THE EQUATION SYSTEMS FOR STEADY NON-EQUILIBRIUM FLOWS
OF REACTING GAS MIXTURES WITHOUT TRANSPORT EFFECTS

|

For steady, adiabatic, inviscid and non-diffusive flows, the general

equations derived in the last section may be reduced to relatively simple forms.
" ‘.

2.2.1 THRe Continuity Equation ;:

f!

i
]
l
THe global continuity equation ‘(2-7):bec‘¢‘>in’es !

o
Ve(pd) £ 0
{
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The species continuity equation (2-14) reduces to

Dci r ka
- ° }: Ve T b= b2 n (2-33)

In the following we shall show that the variation of progress variable
M with respect to time is directly relat-d to the temperature and pressure

variations,

Following the method of Kirkwood and Crawford (Z], we separate )‘k

into tvro parts
o
A T A t fk (2-34)

The parameter A;: is the equilik.ium value of the progress variable for the
kth reaction for the instantaneous local temperature, pressure and com-
position. The variable fk is the measure of the deviation of the chemical
reaction from equilibrium; i.e., it is the lag of the kth reaction in its attempt

to maintain equilibrium.

The equilibrium value of :\; is determined by the condition that the

Gibbs free-energy change for reaction k vanishes, i.e.,

v
'
i
!

o ;
Aok = 0 at (xk = A (2-35)
: ! ;
or, by Equation (2-31) ' l
!
T DA, V!
2 ik Bt =§;°. (2-36)
k=1 v ' X |
. ’1 ' n. 1o i
Smce dui = -sidT +iﬁi-dp:+ 313 p dc‘ (2-37{0
‘lz
TR B
L



Equation (2-36) becomes

where

LMSC-HREC D162220-I1I

(2-38)

are respectively the change of specific entropy and specific volume due to

kth reaction.

Now if we substitute the species continuity Equation (2-33)for t\j = )‘;-)

into (2-7) we obtain

i=14=1 j=1

k

(]

DX
iiz lleJ 6c Dt

1,

= As DT

k Dt (2-39)

L

2, cese T

This equation holds true for flow systems of reacting mixtures under com-

plete chemical equilibrium.

Here, we obtain from Euler's equation of motion (2-20),

2.2.2 The Momentum Equation
q.Vq
2.2.3 The Energy Equation

14

|
l ' i

"
i

- - ——

, |
h ’

F Eom Equation (2-23) the steady state e ergy equation for inviscid,

i
!
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adiabatic flows with negligible body forces is simply

h+ -%qz = h_ = const. (2-41)

where ho is the stagnation enthalpy per unit mass of the mixture, The local

specific enthalpy of the mixture is to be evaluated by

h = Zhici (2-41a)

n

i=1
in which hi is the partial specific enthalpy.
2.2.4 The Entropy Equatior

From Equation (2-28) and (2-30) we have simply

} z "
. Vs = -kz:lAGk TS (2-42)

where AGk was given by Equation (2-31).

In the above, we can cov a total of n+r +4 equations, namely, n
equations of (2-33), r equations of (2-39), Equations (2-32),(2 40),(2-41)and
(2-42). Yet we have a total number of n+r +6 dependent variables, namely,
€p+Cpr evnv € Xl' XZ' ceos Xz. p.T.p, h, 8, and f-i Thus, two more equations are
needed. The first one has already been implied by the definition of c,. i.e.,

(Equation (2 -4). n . ! |
doe =1 t i (2-43)
4 1 |
i=1 Lo
b
S
The secorid one is provided by the equation‘of state of the gas mixture
| ' |
| 1]
P =R,PT (2-44)
i l
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~—~

where Ru is the universal gas constant and W.‘ the molecular weight of the

.t .
i species.

This completes the system of the basic governing equations for any

reacting flow without transport effects. .

When the reactions between components of the gas mixture are
known and the boundary conditions adequately specified, one should be able

tc solve the non-equilibrium flow system.
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Section 3

FROZEN AND EQUILIBRIUM FLOWS
3.1 FROZEN FLOW

Under many circumstances, chemical reactions may proceed so
slowly that there is hasdly any change in composition of the fluid during the
time for i traverse the whole region of flow field of interest. In the
limit the ﬁture may be considered as having fixed composition. Such a
flow field is usually described as a '"'frozen flow." Under a frozen flow
condition, th: mixture behaves as a single perfect gas. The species con-

tinuity equation uces not come into picture while the equation of state becomes
P=R,»p 'I‘/Wm
where L is the fixed molecular weight of the mixture.

Under frozen flow assumptions, the basic governing equations for

steady flow of gas mixture without transport effects are as follows:

Continuity:
Velpd) = so | (3-1)
: Wl
Mlomentum: ;
§.V4 = - >, (3-2)
SN |
Ehergy: 1 ‘ 1{' ,
P4
i h+i3a®=nt ) (3-3)

[P
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Here, h is a function of temperature only,

Entropy:
s = constant along a streamline (3-4)
State:
p = R PT/W__ (3-5)
The above equations are the usual gas dynamic equ: 1 for

inviscid, non-conducting, non-diffusive compressible flow without

chemical reactions.

It should be stated here that the validity of Equation (3-4) rests upon
the assumption of zero transport effects. This means that ciscontinuities
such as shock waves should, strictly speaking, be excluded, since the
appearance of shock waves indicates the existence of transport phenomena.
However, experience tells us that shock waves usually occur in ¢ very
narrow region (in this region viscosity and diffusivity predominate) and we
can still apply the isentropic criteria on each side of the shock wave but not

across it.

-.2 EQUILIBRIUM FLOW
|

Equilibrium flows are defined as flows in which the mixture is at
chemical equilibrium at all instants and every[\'rvhere in the flow field. Phy-
sically, Ihis is approximately the case when t%ﬂe chemical reactions in the
mixture proceed so fast such that the reactions are "completed" in a time
interval fnuch smaller than the time interval we hav ‘eason to be inte-
rested in] A reaction is said to be ""completed" \-hen there is no further ;

appreciable change in the composition of the mixture.
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j—

In this case, the set of governing eguations may be again simplified

to give:

Global Continuity:

Ve(pq) = 0 (3-6)
Momentum:
g-vd = -3V (3-7)
Energy:
h_ + % g = h, (3-8)

where he is the local equilibrium value of specific enthalpy.

Entropy:

s = constant along streamlines (3-9)

This is a consequence of Equation (2-28) and the remarks following Equatior
(2-31). We note that the flow is again isentropic in » shock-free field just
as in the case of frozen flow.
|
We note at this point that chemical rea‘ctians de not =lter the torms

of the above equations as compared to frozen flow case.

t

|

Sthte: b
il +

p = RAT/W_ (p,T) (3-10) |

o |
I
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with

n
Vel T) = Z:

cie/wi (3-10a)

-

Here, it should be pointed out that the mixture of perfect gases does not
behave like a perfect gas.

Species Continuity:

Dc. T D:\;:
- 2: Vik

-Bt— = —f)T, ::l,Z,....n (3-11)
k=1
n
2: c; =1 (3-12)
i=1
Chemical Kinetics:
o
EEf wnZ i mpalp v
ik '2j oc, Dt k Dt p/, Dt
i=1 =1 j=1 1

20
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Section 4

UNCOUPLING THE FLOW AND THERMODYNAMICS FOR
STEADY, FROZEN OR EQUILIBRIUM FIDOWS

For steady flow equation (3-13) can be written

r ou .

n n

‘-o o.-' ) \(l)‘-’ = -1
):2 Y; 5, -V - A5, VT + p'kq Vp =0 (4-1)
i=11=1 j=1

Q .
Since all terms except the gradients of I\j, T,p are scalar quantities we may

write

n o r ‘
Q.ZZZ Yik % 1) 6c V/\ As Tld(p) Vp‘ =0

1=1 £=1j=1 "k |

Thus the thermochemical behavior dues not depend on the magnitude of the

velacity,and assuming that it does not depend on the direction,we have

n r o \ A 1 _
tzz v v 13 % vxj-gskmw (-E)kVp - 0 (4-2)

i=1£=1j=1

Examining now the behavior of the thermodynamic system over an infini-
tisimal step dL :
LU Bt “1 o ; 1
YT vy 3, dA] - A5y dT + A(;)kdp =0 (4-3)
izl f=1j=1 ! |

R
Obviously the above equation does not depend on position or velocity and
henie is pntirely uncoupled from the flow problem. Using the same approach
on Equatipn (3-11) we find; " ‘

r N
dci - Z ‘Vik dklo( 210 (4-4)
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The thermochemistry equations (3-11) and (3-13) have been completely
divorced from the flow problem and describe the behavior of a mixture of

perfect gases under infinitesimal changes in pressure and temperature.

It is nc longer necessary to use Equations (4-3) and (4-4) in their
differential form. Systems of equations describing the behavior of reacting
mixtures are well known and many sophisticatea computer programs exist
to facilitate the solution of these equations. The NASA-Lewis thermochemi-
cal progra 3 was chosen for use in this study for a variety of reasons and,
due to the fact that special features of this program were utilized in simpli-
fying the subsequent flow field analysis, other thermochemical programs
may not be immediately compatible. This need not, howsver, preclude

their use.

e ———
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Section S
PROPERTIES OF THE WORKING GAS

Given the initial reactants, combustion pressure, and total energy
the thermochemistry program chosen for use in this analysis evaluates,

among other things, the following quantities:

T, s, W_J)Y
m

where ¥, the isentropic exponent, is defined by

y = Otnp (5-1)
ax(np
s

At constant entropy, a series of lower pressures are then evaluated. A:iecach
step the enthalpy of the mixture is computed in addition to the quantities
listed above. From the conservation of energy, the thermochemical araly-
sis is related to the flow systems by calculating the energy change from the
original combustion value. In the flow problem the energy difference is the
kinetic energy of the gases. A velocity may then be foind corresponding to
each pressure. In order to describe the effects of shock waves and other
irreversible phenomena the chamber pressur§ is decreased and the process
repeated. In this fashion a tabular description of the behavior of the thermo-
chemical system is constructed. Entropy and velocity are chosen to be the
independ¢nt quantities and specification of thege parameters is then suffi-

b
cient to yniquely describe the gas properties. i
oo

i

Cpmputer economics dictate that the tabular description occupy as

little spafe as possible. Because of this an ac;u*ate interpolation scheme

is necesgary. Before attempting an e;u:lanatm f the interpolation scheme

Cidihd
3.

a definitipn of local reference conditjons 13 in drder. Usually, for an ideal i
3



LMSC-HREC Dl162220-11

gas, reference conditions are chosen to be iseatrupic stagnation conditions
To arrive at local conditions one nced only employ well known gas dyr m'c
equations. For a gas whose isentropic exponent and molecular weight is
varying, however, the situation is more complicated. A reference con-
dition is defined which is produced by iseatropically stagnating an ideal gas
whose isentropic exponent and molecular weight are eqgual to the local mix-

ture value. The refevreunce temperature is

A -1 2 -
T*T+3575 94 (5-2)
and the reference pressure is
L
Ty \7-1
P, = P(T) (5-3)
where R = Ru/wm
To interpolate between two velocity values (1, 2) use
R = (1-h) Rl + h\’RZ (5-4)
Y = (1-h) Y, *+h, Y, (5-5)
qlz,. %
T = Tl + Zf’r:Rl - ZfI-T{ (5-6)
N
_ T \éP | (5-7)
P =P T, )i I
| Y
g |
where , ; o !
—q, | '
e T
v qz-ql ' \
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a? qf
2 \
€p = R, © 7R, /[T) - Ty

& = tley/rp)/ = (TV/TY)

and to interpolate between two entropy values use

R = ({1l-hs) R1 +thZ (5-8)
Y = (l-hs) Y +hs Y, (5-9)
., R'Z
P = p;exp hs mﬁ-l- (5-10)
T = (l-hs) Tl + hs TZ {5-11)
where
s-8
hs = _sl
52751
o s,’R-sl/R1 | ;
8§ = —R s./R. :
8,/R,-5; R, ! ‘
.

t
In the foljowing development of the flow equations no further mention is

made of the nature of the thermochemistry of the gas. A tabular description!
of the prpperties is assumed to exist so that 'it id immaterial whether the
) i O
gas is id¢al, frozen, or in chemical {equilibrilp’ ;
HE !

5 '
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Section 6
THE METHOD OF CHARACTERISTICS SOLUTION

6.1 DEVELOPMENT OF THE CHARACTERISTIC EQUAI;IONS
The continuity equation or conservation of mass is, in vector form,
Vg =0 (6-1)
while the conservation of momentum i§

5p = Vd/2 - ax (Vx3) (6-2)

The thermodynamic relation is

Tds = dh-gp2

which can be shown to be

TVs = Vh- 5 (6-3)
Now p = plp.,s) so ‘:hat
_ (g2 28) )
VP = Vp+ .Vs (6 4)
[ORSC)

i
[

i

The congdervation of energy and momentum, and the thermodynamic relation,
combine

to give i

s .
b
z -gx (Vx

TVs .
¥

f (6-5)

]
26.
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Expansion of (6-1) yields
T(pg) = PV+G+3.Vpo = 0 (e-0)

which when combined with Equation (6-4) gives

& e q Qe - op =
el -

1
2
But since g +Vs = 0 and (%% is defined to be the speed of sound we have
s
_ & 2
veq-3%-vi =0 (6-7)
a

Recalling the definitio* equation (5-1)
y = QLHR = B QB = £ az
Olnp | P \9p/, P

so that

a? = YRT (6-8)

Choosing now a cylindrical coordinate system (Figure 1),in which the flow
angle @ is defined to be the angle between the‘ velocity vector and the x axis
and where r is the distance from that axis, a{:d in this system expanding

Equation (6-7), we have for axisymmetric or fwo dimensional flow,{d

|
2 2 t ‘
- u') gu v:lavy L ov lub [av  gu) _
(1-7) 3% +(1 —2-)-6; +T- =3 (a—; l'-é?) =0 (6-9)
SRR
where Ofis 0,1 for two dimensional ?t axis nefric flow respectively. Con-

sider a Bine in the r, x plane mchneq to the x é ig by the angle tan'lﬁ. then

racteristic line) is

the exprgssion for this line (normally calied 4

M




But along this line
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i

_u g L84, [8u, oy
d = Pax+Lar (ax +3ar) dx
and
. (3 4 gy
dv = (ax-*-Bar)dx
then
_a_ll = .dﬂ -Bﬂ
ox dx or (6-10)
and
av _ L (dv_pv i
or B (dx ox (6-11)
q

X!
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——

Substitution of Equations (6-10) and (6-11) into Equation (6-7) yields after

simplification,
1_u2 du, 1l 1-3_2_ dv ,gv _juv,g l_uz ov
2)dx B 2]dx r 2 ;7 or
(6-12)
Jue L1 V_?‘\]a_v = 0
z tg |\l z)f x -
a a

Recalling Equation (6-5) and rearranging yields
& Vs = ax(Vx3d)
YR

where, for two dimensional or axisymmetric flow,

and
2% o ov _ou
YR oOr ox ©or
but
o _ 08 ox  od
on éx én = or'

t
|
where njis normal to the streamline and : ]

8 . -y
onli q
.

e
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i)

and

so that

Substituting of the above result into Equation (6-12) yields

1-“2 §2+l 1-"'2 i!+ﬂ_2.!+l 1-"2 _.....‘12 os
J2jdx "B\ Z)dx " r T[22\ Z/[YRadon
(6-13)
) 2uv uz vz du =0

It is desirable to determine whether there exists some g8 for which the
ou

coefficient of or is zero.
2 2
B 1-% 1+ 2% gy 1- %) = 0
a a a
|
Solving for B yields { L.
_ ! %
f 2
o omi(2 )
a !




Let

u = g cosf
v = q sin@
K"

= sin-l(a/q)

Then, after much manipulation,

B = tan (% p)
Combinationof (6-13) with (6-14) yields then

uz du dv  ov

1-;—2 a‘fcot(e'l'#) lv-a-z- a;'!'— 7+C0t(0+ll) 1- L) 32— 28

Now

= a‘ o8 = &8
ds d'\+at dt = a0 dn

LMSC-HREC D162220-III

(6-14)
Z a2 ods
aZ YRq én

%% sin pd!

where t is taken along the streamline and df is measured along the character-

istic line. But

1
z

2
- : dr - : T
al = 1+(—i ) dx = sec(@+u)dx

Then finally after much algebra '

Equation§(6-15) is known as the com%atability QY

vanatio in flow properties along | ‘
dr
* ta" ‘? i "(

Al

l
i

+

cot siny cos siny 8inf o -
a0 3 STHE aq 3 25 ‘mlérq:;nr ar = 0

t

{at‘on and describes the

; (6-16)

———— =~

(6-15)

I
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-

These lines are the so-called physical characteristic lines. Locally they
are tangent to the Mach lines. Equations (6-15) are often called the hodo-
nraph characteristics for two dimensional flow. In -xisymmetric flow the
existence of the physical dimension causes a coupling of the characteristics
so that Equation (6-15) cannot truly be referred to as hodograph character-
istics.

It is interesting to note that the only reference to gas properties in the

derivacion was the use of the definition given in Equation (5-1).

Examination of the four equations (6-15) and (6-16) reveals that there
are five unknowrs. An additional relation is provided ty assumming a linear

variation in entropy between the known data points.

6.2 FLJITE DIFFERENCE SOLUTION OF THE CHARACTERISTIC
EQUATIONS

In order to solve the differe tial equations (6-15) and {6-16) it is first
necessary to write the equations in finite difference form. At times in the
flow field cer.ain conditions are known which allow some of the equations to

be discarde1. These are, of course, the boundary conditions.

8L ) 2 = tan

o (6-17)

1,2

cotfi sinji, ,cosji
A6 + l.ZAqI’zi 1,2 ‘ 1 ZAsl'z

1,2 =g R A TP
9.2 . N, 2Ry, 2

b2 LT Ar L, = 0 (6-18)

‘ ’

niE

where the barred values are averagés ovdr the qup iength and where
N1

12 |
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ij

and & takes on the values

1 for interior solution
81 = for lower boundary solution
0 for upper boundary solution
while
for interior solution
82 = 0 fci lower boundary aolv - .

for upper boundary solution

which correspond to the Figures (2a) - (2c) given below

943
q;“ interior Point
? 01 : 51 = l
. y a
" z

?
Z '

’ .

Figure (2a)
!

|

.

{



Figure (3c¢)
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l.ower Boundary
51 =1

82=0
93

Upper Boundary
6, =0

5, =1

Notice that for the bouadary condition solutio}xs the Equations (6-17) be-

come the streamline equation when § is zero

!

-

For a solid wall solution

the flow,angle is known while for a pressure 3oqndary the pressure is

known.

:
4

P
!
)
'

(]
Five bagdic cases will be discussed. These a%e‘:'

a.
b.
c.
d.

I '
interior point solution
upper wall { '
upper free boun
lower wall
lower free boun

ry
ry
34

; :

i

PR e~

|
!

i

.i*

i

1
’

|

t
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The compatability equations are:

a. interior point

g = 8t %3 *G TG, "B B, (6-19)
3 Q, + Q2
03 = 02 +Q, (q3 - qz) -G, + B2 (6-20)
b. upper wall
q = -
5 T,
where 83 is given by the wall equation
c. upper free boundary
03 = 02 + Qz(q3 - qz) -G, + Bz (6-22)

and q is found from the local pressure

d. lower wall solution

0, -6,+G,-B, +Q,q
1
q = ——3 -1 1 1 (6-23)

e
3

: |
where @4 is given by the wall equation :

e.! lower pressure boundary a
Oy = 0)- 2 (q5- ‘fl’ y
]

35, ’
‘o

(- B (6-24)

© e e et
P

and q ii given by the local pressure
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where
cot ji
Q=5
g 9,2
o'siué.l 2
G2 = 57— Fi.,2 (6-25)
1,2
a ) sinﬁl'gosﬁl’z(ss-sl’z)
1,2 7 R Yy
Ri.2 M,z
and Sy is given by
a. interior point
F. (s, - s,)
- 1'"2 71
83 T 51t TF. 7 F (6-26)
1 2
b. and c. upper boundary
sy = 8 (6-27)
d. and e. lower boundary
83 = 8, (6-28)
while
sinﬁl 2 (xi- %, Z)
F = e * (6-29)
1,2 cosBl;Zé
co

An iterdtive solution is employed to determine the properties at the new
point. For the first pass of this solution the“hiarred values are approxi-
mated the conditions at the two known fpoiqt' je.-g.,

1

vl

it :

P !

;l.':'

!
'

- - f'
91-91
0 4

36
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for the first iteration. After the apnropriate set of equations has been

solved a new estimate of the barred values is made. For example,

6, +0
. 6,18,
6 = )

The iterative process is continued until the desired convergence is reached.
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Section 7

THE OBLIQUE SHOCK SOLUTION

7.1 DEVELOPMENT OF OBLIQUE SHOCK RELATIONS

Figure 3 illustrates a stream tube passing through an oblique shock
wave. This wave, which is extremely thin, will cause an almost instantan-
eous rise in pressure and temperature. For some distance downstream of
the shock wave (in a reacting gas) a non-equilibrium zone will exist followed
by a retura to chemical equilibrium. The following analysis discusses the
fluid flow properties in such a way that the non-equilibrium process need

not be specified in order to arrive at an exact solution for the gas properties.

Consider a control surface as shown in the figure. The conservation

of mass yields;
P A, -P 9 A =0 (7-1)
Conservation of momentum gives

plAl , Pyh B
-(pl + pl ql)A 10 +— !n + (PZ + pZ qZ)A 19 tan(€-0)

t _/ Pn.g9A - [ Py.pdA = O

ANLE. N.E.

Since each streamline locally undergoes the same process the last two terms

of the abov¢ equation are equal and opposite. Therefore .

z P1A ! , PoA, In'
oy } £ af)A B + g 1‘_‘*("2*"2‘12”‘ B~ e = © (72

TR |

38
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Transforming to the ns, ts coord:nate system

1@ = sin€as + cos€ ts

In = -cosens + sinets (7-3)

Figure 3

and
76’ = sin(e-§) as + cos (€-§) ¥s
In = -cos(e-5) 58 + sin(e-§) &5 (7-4)
[

[ S

b

39
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So that, after substitution of (?-3) and (7-4) and setting each component to

zero, Equation (7-2) becomes,

2 -
pzqzcos(e - S)AZ - plinlcose = 0 (7-5)
(p +p q2 A, s:ne€ +——-——p1Al Cos€ -(p +p qZ)A sin{€-§)
1 17 17 tane€ 2 2 2 2

_PpA,cos(es)

= 7-6
tan(e-§) 0 ( )
But from geometry it can be seen that
AZ = six1(6-5l (7_7)
Ay sine

After substution of Equation (7-7); (7-1),(7-5) and (7-6) become

P, 9, sin(e-§) - P19 sine = 0 (7-8)
2 . 2 .
P, 9, sin(e-§) cos(e-§) - P 9, sin€cose = 0 (7-9)
) .2 2 .
P, + 0, q;’ sin“(e-§) - p, - P, q; sin%€ = 0 (7-10)

The above set of relations contains ¢, 6P Py 9, as unknown quantities, but

! P, = Pls;.q;) 5 P, = p(s,,q,) (7-11)

So that if ong variable, say €, is taken aS an independent parameter the
remaining ugknowns (5, qz.sz) may be found by an iterative solution. These
equatiéns arp, of course, formally the $ame as the ideal gas solution. The

difference ligs only in the variation of p'ressure etc., with eantropy anr velocity.
|

‘ |
{ L
[ ST B

40
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It is impossible to determine the location of the new equilibrium shock

point location without a detailed description of the non-equilibrium reaction
process. It will be assumed therefore that this zone is thin andthat nosignifi-
cant errors are introduced by letting the downstream physical location lie

on the upstream location.

It has been pointed out previously that the characteristic equation
derivation was based on reglecting transport properties and as such is
necessarily restricted to continuous regions only. The oblique shock wave
relations derived here then are patching lines between the continuous regions.

7.2 ITERATIVE SOLUTION OF THE OBLIQUE SHOCK RELATIONS

Rearranging Equation (7-8) yields;

while squaring both sides of Equation (7-9) and substituting the above re-
lations yields, after simplification;

0, \2 3
9, -9 (-ﬁ-l-) sinze + cosze z . 0 (7-12)
2
and Equation (7-10) becomes
P
P, + P, qlZ sin?is{;l- - l} -p; =0 (7-13)
2
' i
In functional] form Equations (7-12) and (7-13) are just
G (s,.9,) = 0
b
1

l
41



From calculus

Now

oG

[

Q
®
[\

aG

dG

p
P, sg-z-(lnpz) (

p
Pz'ég; (tnpy) ( ;

2
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(7-15)

2
zZ2 .2 ]
q, sin€ p, — {fnp (7-16)
) 1 Zaqz( Z)

o)

sin’¢€ P, -é;-;-— (inpz)

Rather than calculate the partial derivatives numerically by perturbing the

functions lnpz, lnpz approximate values for these derivaties will be found

by assuming that locally the gas behaves ideally, that is to say

9R, R,
= =
2

682 h Tq
{

2

oz . X2
os,

ar, o,

= 0

95, 99,
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so that
é(tnp,) _ é&(fnp,) _
2 = 2z .4 (7-17)
) s, 2
and
—— = — (f T e eovm—— -

writing (7-15) in finite difference form:

aG, ™ oG, ()
(n+1) (n) _ 1 (n+l) (n) 1 (n+1) (n)
G -G = da, (qz -9 )* 35, (sz ) )
(n) (n)
3G oG
(n+1) (n) _ 2 (n+l) (n) .2 (n+1) (n)
G' -G = 5 @z "9 )* 3, Gz i) )

Since the root G, = Gz = 0 is desired, Gl(n“), Gz(n+l) are set to zero,

1
resulting in

/

1
8, ~0a; 08, 09,

(n) - (n) (a) 5~ (n)
oG oG oG oG
( 1 2 2 ) (7-19)
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and

: (n (n)
8G oG
(n+1) _  (n) (n) , "1 (n+l)_ (a)} /"1 -
q _— -{Gl + 652(5 s )}/ 54, (7-20)

The iterative solution using Ecuaticns (7-19) and (7-20) is continued until
the desired convergence of ('Iv1 and G2 is reached. The solution is com-
pleted by

-1 P19
$ = € - sin S1n€ (7-21)
P29

The first guess to start the solution is an ideal gas solution to the set of
equations. If it is indeed an ideal gas under analysis the first guess is exact.
These relations are

Y, -1
é= €- tan” ] tane( 21 3 + L ) 2
M

[
]
-
=]
LS

- CO8E .
2= U Tos(e-5) (7-22)
R, 2y, M7 sin% - (7, -1) tan(e-3]
52 5 7 -1 tn Yl+l * hin tan€

44
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Section 8
EXPANSION CORNER - PRANDTL-MEYER FAN

In some cases the flow may be required to negotiate a sharp expansion
turn. The problem becomes two dimensional at a sharp corner (it is im-
possible to conceive of an expansion corner on an axis of symmetry) and

may be treated with a Prandtl-Meyer expansion.

ul [
\L{\ ,
Mach Wave~du=dq

Figure 4

Since a Mach wayve will support pressure changes only in a direction

normal to itself;

dv = qdf

du

dq



R AR L £ T

LMSC-HREC D16222¢-1II

ﬂg = tan =
dr ~ ko= 2
M--1
or
a0 = ¥M%-1 %ﬂ (8-1)

The solution to Equation (8-1) is a straightforward numerical inte-
gration for the case of a known final velocity (free-bounda.y case). If the
turning angle is known, however, and the final velocityis not known, an

iterative solution is necessary to determine the upper limt,

L7
/ Mia %9 _4p - fla,) = 0 (8-2)

In the mesh construction to be discussed later a fan of rays must be
generated to allow a numerical description through a large turning angle.
The turning angle is subdivided into a number of smail turns, each of which
is in* grated numerically. Corresponding to each ¢. ‘mecll turns is a

Mach wave or characteristic line emanating from the cc.

46
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Section 9
SHOCK NEIGHBORHOOD SOLUTION

Due to the fact that the shocxk calculation will be employed under
several different flow conditions a general setup and notation is used.

There are six basic types of calculations as showa in Figures (5a - 5f).

Shock Wave

Figure 5a - Interior Right-Running Shock Wave

Shkock Wave

Figure 5b - Interior Left-Running Shock Wave

47
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Figure 5c - Solid or Free Upper Wall Interac. g
with Left-Running Shock

Figure 5d - Sclid or Free Lower Wall Interacting
i with Incident Right-Running Shock Wave
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Shock Wave

Figure Se - Solid or Free Upper Wall Interacting with
Reflected Shock Wave or Attached Shock
Wave with Insufficient Downstream
Information

Shock Wave -

1,7

Figure 5f - Solid or Free Lower Wall Interacting with
Reflected Shock Wave or Attached Shock
Wave with Insufficient Downstream
Information
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Let
81 = 1,-1,-1,1,1, -1
8b= 1,1,0,0,1,1
Sw = 1,1,1,1,0,0

for the six cases, respectively.

The angle that line 6-8 makes with the axis is
@ = [98 +0.+5:8, (kg t "6)1 /2

while the angle that line 7, 9 makes with the axis is

a; = [09 + 0,458, (kg +“7)}/2

while the angle of the shock wave is

{n)
L l02+ez+(04+e4)n }/2

(9-1)

For an initial approximation let (9 1€ 4)(0) = 02 te, and compute the physi-

cal location of Ty Xy whnich is just the intersection of the shock wave and

the line 6-8. |

|

A linear interpolation between the flow values at points 6 and 8 is used

to determine the local flow properties at poiét 4. A shock angle is then

determingd.

(m) _ (a) | ()
€4 = (6+€) . r#

“.
| !
h ]

SOl

'
L
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The oblique shock <olution of section ¢ is used to determine the flow

properties at 3 across the shock wave.

It is now necessary to make a characteristic cal ulation to determine
whether the new shock solution is the correct one. ILa order to do this a
physical characteristic line is drawn from point 3 and the intersection of
this line and line 7-9 is point 5. In the cases shown in Figure 5e and 5f
point 9 is not known. An estimate compatible with the shock slope is made

using a characteristic solution.

For a first approximation to the slope of the line let

(n,0) _ g (n)
67 = B andrer p ™0 oy )
then the characteristic line makes the angle
\
a}(ntm) = es(nxm) + 63(“-)_ 81 (“ 5(n»m) +p3(n))l/z (9_2)

The doublet g, X May now be found and an interpolation between the pro-
perties at points 7 and 9 yield the estimate of the flow properties at 5. This
information is used to improve the estimate of a, in Equation (9-2). The
process is continued until convergence is reached. The phys.cal character-
istic line passing through point 5 terminates at the shock at point 3. If the
compatability equation is now solved along this line a measure of the in-
accuracy of the shock slope will result. Using all the known information
concerning points 5 and 3 solve for the flow angle at 3.
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where

Q = cot
-]
_ sinf F
G = 0’———P
sinji cos i (s,-s.)
B = 378

RY

sing (x3 -xs)
cos(g-3 i)

and, of course, the barred values are averages over the step length.

An error may then be computed;

(n) _ 4(n) z(n)
E - 03 ’03

but

®) - {(e+e)4“"}

and the solution is perturbed until the root is bracketed. The solution is

driven to convergence by the method of false position.

It should be poihted out here that the use of linear interpolation is a
i
matter of convenience only. It would be possible, but in general far from
practical, to generate by exact means those ;}oints which have been approxi-
mated. ‘ '
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Section 10
MESH CONSTRUCTION FCR INTERNAL FLOW

The calculations described previously are point or small region
solutions. Some process must be def’ cd which successively employs
the proper calculation at the proper time in order to describe the entire
field. In order to facilitate a description of the mesh construction process
let ¢ represent the total knowledge of flow properties at a point in the field.
Also let the expression
= Y9,.¢

PUREEY ¢m)

stand for properties at a new point which are computed as a function §} of
(m) other points. There will be basically six such functional operations

v Y Vg Yo & pr, which stand for input point, interior point, bound-

ary point, attached shock point, shock, and Prandt-Meyer pcinis. In addi-
tion the superscript (u) will indicate that the operation is to be performed

in the presence of an upper boundary while (L) indicates a lower boundary.

Due to the complexity of handling multiple shock waves, a single
shock wave restriction will be imposed. This shock wave is arbitrarily
chosen to be of the right running family. This type of problem will - .ost
frequently occur in cases of interest. If a left running shock wave occurs
the problem is simply inverted.

The choice of riiht running shock waves also dictates that left running
characteristic lines be followed in the calculation. This allows one to re-
tain a minimum of information, i.e., a known characteristic line {(hereafter

referred to as (j)) and a line in the process af i&:ezing ccmputed (k).
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To begin the problem all necessary boundary conditions must, of
course, be supplicd. In addition a starting line containing N points which

are designated t.l{l (n =1, ...N) must be supplied.
Figure 6 illustrates a flow field in which there are no discontinuities

and in which the mesh construction is terminated when the region of interest

has been computed.

- —p
$ regionl
8 y/
r

Figure 6

In region I the left running characteristic lines initiate as input points

and the mesh construction may be described by;

i W@ ) i=1
q»i.k = wl(q>i_l'k,4>i_l’j.)' i= 2...(2n-2) (10-1)

2n-1

4

R - ‘ 1:5_%.!).) i
|
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v:l}:ere n varies from 1 to N and fbi' i Fepresents the flow properties at the

i point on the k line. For instance, in calculating the fourth point on the
fourth line shown in the figure, line three is known in its entirety and line
four up to and including the third point is known, The above set of relations
says that point three on line four and point three on line three will deter-

mine, through the interior point solution, the next point (four) on line four.

For region Il we have;

n
[

L .
IIIB (Ql,j' 4’2. j) i

L By @, ®an,y) 15 2-.-(2N-2) (10-2)

2N-1

u .
V@i ¥, f

As a new line becomes completely defined it may be referred to as j

and the process continued indefinitely.

It is possible to combine regions (1) and (2) into a more general
scheme if a variable iN is defined which takes on the value (1) in region I

and (0) in region II. At this time the number of points on the j line (i.r )

and the number of points on the new line (i, ) are defined. Then;

Ty
inom»n)f(l-iN)w‘g @ ¢ 1=
- ik = i-1
k= Ui %55, 55 = =20 #1 5 &= 2...p -1 (10-3)
K
| ik = )
Ve @i %) 55 - b= g
but
i, <= i
T, T&
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Obviously iT would have been initialized to {-1) prior to the start of the
i
calculation. When the line is finished 1, is set to the current value of i

'I‘j Tk

Thus the process for computing the entire flow ficld fc : such a simpli-
fied casec is described by the set of expressions (10-3). In general, however,
discontinuities will arise so that 2 more flexible description is necessary.
If, by some process, points were discarded from the (j) and (k) arrays and

the number of points lost is ig and iy respectively then (10-3) becomes;
j k

J
i () + (1-iN)ur'g LY i=1
ik = i-1 - . i
d’i.k = 'I,I(élk k' q’u. i ij = i'ZiN“J‘%ﬁSk i=2,.. ’lTkl (10-4)
J
u ik = i-1 L.
- y .. ) . . ~ o~ i=
wB( ik, k 13.3) ij = 1’21N+18.+16 1Tk
J k
but
i <= i, +ei, ~i, -1
Ty T,” N8, 78,

j

where the tilda over isj and isk indicates that current values are to be used.

‘("1ese variables are reset to zero at the beginning of each new line.

- Tn ltustrate this,imagine that points (1) and (2) have been computed
op Lire L1 and that after point(3’) had been computed in the normal fashion
it was necesszry to discard it. The next point to be computed would then
be (3%) but if for somef reason it was necessary to discard point 5 on the
(j} line then the point (3 ) would not exist. Therefore a point has been
deleted on each line (1 = sk = 1) and the diagram and the set of equations

(4) indicate that point (g) on line (j) and point (2) on line (k) would be used
i t
in the computation of (3) on line (k). Ailsq ttge?total number of points would
. it
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have decreased correspondingly. Note that discarding points is the same

thing as discarding right running characteristic lines.

It is now possible to include a shock wave into thc logic scheme.

Since it is a2 mathematical requiremcnt that characteristic lines of the same

family as the shock are continuously intercepted by it, the ability to discard

points was necessary. If this was the only mechanism for discarding points

then the logic process would be;

/ ing Uy (00 + (1-ig UG (&) 1 ¢, ) i=1
ik = i-1 o )
Y @owe P35, 4 = i-ZiN+l} =20,
i =i, -i§
¢i,k = Ws (¢k»¢j) Q- iSk . k .
b sk‘18k+1

Y @ %55, 5 e ¥ gL biTig i+
IJ - 1' lN lak 18. Sk k
J
v @, ) ik=i-l . i=i
\ B Vik, k' lJ.J ij = 1-21N+ i8k+ is. Ty
J
where
i &= i, +2i,, -iy ~1i
Tk 'I‘j N 8‘, 8k

and where is is defined in much the same fashion as iT , which is;
k i k

i < i +2i_-1
L sj N}
‘i

where i is the location of the upstream shock point on the (j) line.

% Pk
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Figure 7 illustrates the mesh construction when a shock wave

is present.

Figure 7

In this example iN =0ardi =8sothati =7, Alsoi, =16so0
s‘i 81 'I'j

that iT would normally also be 16. The (k) line is computed up to point 7
k .

and the shock solution is then employed. In this case the shock solution
finds that three points of the (k) line fall downstream of the shock (minimum
is one) while two right running lines (points 10 and 11 on the (j) line) al’so

are intercepted by the shock wave. Thus in this example i5 = 2 and i8 = 2.
k j

The set of equations (10-5) then says that the doui:le shock point should be
points 5 and 6 on the (k) line and that the total number of points on the (k)
line has decreased togla. Note also that the value of is. to begin the next
line must be change to 5. J
. b
So far no mention of how the shock wayé begins has been made.
There are two types of shock waves colns:jdemd; the attached shock wave
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which arises due to the flow being forced to negotiate a compression corner
on the upper boundary, and the envelope shock. The first of thesc is easily
detected from the boundary conditions and is initially of finite strength, The
second type is detected by a mathematical discontinuity in the mesh con-
struction (c;'ossing of right running lines) and is initially of zero strength

i.e., a Mach wave. An example of the compression corner solution is given
in Figure 8,

Figure 8

'The computation of the (k) line is completed without any prior know-
ledge that a compression corner exists, A check is made after the bound-
ary solution and the boundary information indicates that a compression
corner must be treated. A linear interpolation is performed between the
boundary point on line, {j) and the fictitious boundary point on line (k) in
order to determine thr.' flow properties at point u. An oblique shock calcu-
lation is made where the turning angle is known. Using this point and point
6 (i.rk-l) a new virtual point ('f) is comput‘ed.‘ isk is set to i,rk and the
shock solution illustrated in Figure (Se? o;f ﬁe;tion 6 is employed. This
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shock solution completes the (k) line in the proper fashion. In this example
iT = 6 and the next line is computed as previously disc¢ .ssed.
J
The envelope shock is detected by a crossing of right running char-

acteristic lines as shown in the figure below.

In this example point (5) on the (k) line is found tc fall in a previously
described region (the region between points (3) and (4) on the (k) line). This
discontinuity in the solution is interpreted as a shock wave. If the grid size
were chosen small enough the shock wave would initially be of zero strengtl.
Point (5) on line (j) is chosen to be a point which lies on the shock wave and
the shock solution is vvoployed. The results of this solution are stored in
the normal fashion on the (k) line. Obviously the only difference between
this situation ar.d tvedtment of a previously deve loped shock wave is to
modify the (j) line such that it appears to the logic scheme as though a
shock wave crossed the (j) line at point (5). |

When an expansion corner is enq‘ou_inte‘r d on the upper boundary the
' [ ’
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Yogic schemce is modified locally, Figure 10 .iustrates the miesh con-

struction in the vicinity of such a corncr,

Figure 10

In this case point (5) on line (k) is expected to be a boundary point.
It is discovered however that an expan ‘on corner must be nego*iated by
the (k) line. A point (6) on the (j) line is found by interpolation. A Prandtl-
Meyer calculation is employed and the fan of points is stored in the (j) line
above (6). The total number of points to be expected nn the (k) line is in-
creased accordingly and the normal logic scheme wili now compiete the

new line, The next line is calculated in the standard fashion.

An expansion corner on a lower wall is somewhat 2 more complicated
situation, Since the ¢alculation no longer utilizes the input line, the lower
wall expansion fan miy be stored in this area. The set of relations,Equa-

tion (10-5) is modified to that of Equation (10-6).
|
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( ino+(l-iN)wI}'3'(¢i, i éz,j)

ik = i-1 _ .
wl(q)ik,k’ (bij,j) ij=i+(i£-2)iN+l } 1-2”“‘sk
i =iS °i5
ws(d’k,‘b.) k "k
] io=i -ig +1
k Tk
ij =
ik = i-1 )
(b, .. b.. ) NIV E oL : : i
I ik, k" Tij, ] ij =i+(i,-2)i, tig +tig ¢ i=1_ -ig +2,...1i5 -1
1 N 8k 83.’ Sk ak Ty
u ix=i-l s
Vg (P4, ‘!’ij,j) ij = i (i )it iy +ig } “"rk
k 7)
where
i, <= i +{2-i)i-ig -i
'I'k Tj Y N Sj Sk
and where

isk<= i #(2-i)ig-1
j

for which i.! = iN = 1 until all fan points are used up.
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Section 11
NON-ISOENERGETIC FLOW TREATMENT

The bulk of this document is concerned with the discussion of the analysis
of isoenergetic supersonic flow fields. A computer program was written to
perform the necessary calculations. Subsequently the computer program was
modified to permit the treatment of non-isoenergetic flowfields. Although this
treatment is straightforward, decisions were made in che form oi ‘L. equations
and coding of the original program which were not the most advantageous
approach when the non-isoenergetic flow situation was considered. In particular,
the compatibility equation (6-15) would have been written in the pressure rather
than the velocity form. In considering the non-isoenergetic analysis the most
expedient way of modifying the computer program was chosen. The development
leading to the modified program {consistent with the constraiat of minimal impact
on the coding rather than straightforwardness of analysis) ic presented in this

section.

To begin, the development of the species continuity (starting with equation
2-1) could be repleced by atomic conservation equations. Moreover if the
conservation of those atoms associated with the fuel and the oxidizer were

considered then, for steady state,

Velpa =0 (11-1)
and
7.«;03) = 0 (11-2)

would result,
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If the weight flow ratio of oxidizer to fuel (O/F ratio) is denoted by 7
then (11-1) and (11-2) are satisfied if,

qs VN = 0 (11-2)

and

Velpq) = 0 (11-4)

The assumptions inherent in arriving at equation (2-40) did not involve
isoenergetic flow so that the momentum equation remains valid. The en2rgy
equation (2-41), however, remains valid only along a streamline and must be
replaced by

. h+1/23° = h (1) (11-5)

The equations of Section 3 are modified in an obvious fashion while
Section 4 remains unchanged. In Section 5, however, a new varizble is intro-
duced into the thermochemistry determination. Since the discussion of Section
5 is pertinent to a single O/F ratio, the gas properties description must te
expanded to include a variable O/F. To do this the discussion of Section 5 may
be followed for each of two values of the O/F ratio which bracket the desired

O/F and a linear interpolation used to generate the requiréd information.

In Section 6 equations (6-1) and (6-2) are valid but now

|

2
P = (52) Vp +(g—§3) vs +(g:) v (11-6)
X% p.s

P = P(p,s,n) so that

Expandmg (1124) and combining with (11-6) stili yields (6-7) smce qeys =

q 7 =0. Inequation (6-7), however, it 1s un? rstood that a = (8P/8p)
il
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The definition of Y culminating in equation (6-8) is similarly qualified.
Since (6-9) is generated by expansion of (6-7) it remains valid as do all the

steps culminating in equation (6-12).

To proceed beyond this point a deviation from the previous approach is

taken. Expanding the momentum equation (6-2) results in

12P, dq _ (ov 2w -
p3x+qax N "(ax ar) (11-7)
12P, 2a _ (2w 3w -
par +qar - -u(ax-ar) (11-8)

but from the chain rule

where (n,t) are respectively normal and tangential to the streamline., Hence,

9 _ v 9 _u
o -~ q° n q
It then follows that
18P, 8q _ __(dv du
P n+q8n q(ax ar)
and that
v _ 9u _1(13P, 39
- r'q(p53+qan)

(11-9)
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Notice that the last term in (11-9) replaces

2

a
YRq

Q
n

QD

n

in the previous derivation. Following the previous derivation with this in mind

the counterpart of (6-15) is easily shown to be

de + co;g ry SianR?l?sn ‘%’ +qdq) ¥ sinu s—ineg dr = 0 (11-10)
sinf{9 + )

The above result is the compatibility equation used in the isoenergetic flow analysis
Notice that by continued manipulation the pressure form of the compatibility
equation will result. That this form of the Lquation is unaltered by the non-"
isoenergetic analysis is not surprising since it is constructed entirely based

on the momentum equation and the global continuity equation {(neither of which

are altered by the non-isocenergetic flow phenomena).

The numerical solution to the governing equations is not greatly affected

by the modification to the compatibility equation. In equation (6-18)

1 (3P12 - )
Asl,z & —.;i_-:—z' (-fl—‘z— +ql,ZAql,2 (11-11)
while in (6, 25)
AP
1 1,2 ,= Aq ) }
(334"2)(:-'1:1,2(512 +q, ,7%,2 (11-12)

Now equations (6-26), (6-27), {6-28) are the finite difference analog to the

streamline equation. In a similar fashion w‘e may write



