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I. SUMMARY

-.

An accurate solution of the three-dimensional boundary-layer equations
over general configurations such as those encountered in aircraft and space
shuttle design requires a very efficient, fast, and accurate numerical method
with suitable turbulence models for the Reynolds stresses. In the study
reported here, we investigate the efficiency, speed, and accuracy of a numer-
ical method together with the turbulence models for the Reynolds stresses.
The-numerical method is an implicit two-point finite-difference method (Box
Method) developed by H. B. Keller (ref. 1) and applied to the boundary-layer
equations by Keller and Cebeci (refs. 2, 3). In addition, we study some of the
problems that may arise in the solution of these equations.

In Chapter II we write the governing boundary-layer equations, in both
streamline and body coordinates, for three-dimensional, compressible, laminar
and turbulent boundary layers. Those equations require initial conditions on
two intersecting lines. Hence, we discuss the specifications of the initial
conditions in longitudinal and lateral directions and the initial starting '
conditions, such as those existing in the nose region and those existing in
the fuselage-wing junctures. We discuss the relative advantages of streamline
and body coordinates and outline a solution procedure that combines both stream-
line and body coordinates.

When physical coordinates are used, the solutions of the governing boundary-
layer equations are quite sensitive to the spacings in the streamwise direction
(x), and the crosswise direction (z), and require a large number of x- and
2-stations. In problems where computation time and storage become important,
it is necessary to remove the sensitivity to AX- and Az-spacings. That can
be done by expressing and by solving the governing equations in transformed
coordinates. We, therefore, consider, in Chapter II, a convenient transforma-
tion and express the boundary-layer equations in terms of transformed variables.



In Chapter III we discuss Keller's Box Method. We investigate the computa-
tion time and the accuracy of the method for two-dimensional and three-

dimensional flows, and we compare the stability properties of the Box Method

with the stability properties of the method used by Krause, Hirschel, and
Bothmann (ref. 4).

In Chapter IV we discuss and present a suitable turbulence model for

thuee-dimensional compressible flows. The model, which is based on the con-

cepts of eddy viscosity and eddy conductivity (turbulent Prandtl number), has

give"n accurate results for two-dimensional incompressible and compressible

flows and for three-dimensional incompressible flows. We also present results

obtained with that formulation for an attachment-line, incompressible, turbu-

lent flow on an infinite swept wing.
Finally, in Chapter V we outline a procedure for computing the compres-

sible three-dimensional multi-component-gas boundary layers on general

configurations. On the basis of the studies conducted in the earlier chapters,

we estimate the computation time and computer-storage requirements.



II. GOVERNING EQUATIONS

2.1 The Boundary-Layer Equations in Streamline Coordinates
The governing boundary-layer equations for three-dimensional compressible

flows in a curvilinear orthogonal coordinate system are given by the following
equations:

Continuity »

3 % % ^
3x 2 8z 1 9y 1 2 ' ." "

x-Momentum

U 8u , W 9U , — 8u ... i/ . ,,2i/ _ 1 9p , 8 / 9u . . i-\
P h ^ 8 7 + P 1^91 + PV 87-pUWK2 + PW Kl - - h^87+ 87 (U 87~pirV^'

(2.1.2)

z-Momentum

(2.1.3)
Energy

y 8H , /, 1 \3 (u + vT\ r-rrrr
P ? 8 7 + y V ~ W) 87 I— 2— j - PV H J '

(2.1.4)

where pv = pv + p'v1 and h, and h« are metric coefficients. The latter
are functions of x and z, that is,

h-! = ĥ x.z), h2 = h2(x,z) . (2:1.5a)

The parameters K-, and K? are known as the geodesic curvatures of the curves
x=const. and z=const., respectively. They are given by

9h2 1 8hl
-- (2J-5b)



Figure 1. Streamline Coordinate System

The streamline coordinate system is also an orthogonal coordinate system
formed by the inviscid streamlines and their orthogonal trajectories on the
surface. As is shown in figure 1, the projection of the free-stream velocity

vector on the surface is aligned with the surface coordinate x. The velocity
component along the z-axis, referred to as the cross-flow velocity is zero at
the edge of the boundary layer. The x-momentum equation (2.1.2) is referred
to as the streamwise momentum,and the z-momentum equation is referred to as
the cross-flow momentum equation.

At the edge of the boundary layer, (2.1.2) and (2.1.3) reduce to

u su
(2.1.6a)s .h-, 9x h, ax

u2K = -L-2& (2.1.6b)



The boundary conditions for the governing equations in streamline coordi-
nates, (2.1.1) to (2.1.4), are

y = 0 u,w = 0,

H = HW or
v = vw(x,z)

(giV6n) (2J'7a)

y = u = us(x,z), w = 0, H = H£ (2.1.7b)

The solution of the system given by (2.1.1) to (2.1.4) requires closure
assumptions for the Reynolds stresses appearing in these equations. They also
require initial conditions on two intersecting lines. In some problems the
initial conditions can be established with ease; in some problems they require
careful studies. As an example, consider the blunted circular cone with
an elliptic cap shown in figure 2. It is clear that before the points
B2 arrd C2 can be calculated, it is necessary to calculate the initial
points A,, A2, B, and

SHOCK

ATTACHMENT L<tJ£ FLOW-

Figure 2. Blunted Circular Cone with Elliptic Nose Cap. Dashed Line
Separates the Nose Cap from the Conical Configuration.



The initial points in the longitudinal direction, namely, A, and A?
can be calculated by taking advantage of the symmetry conditions since in that
direction the flow is two dimensional except for the cross-flow derivatives.
The flow in that direction is usually referred to as the attachment-line
flow, because the attachment line is a streamline on the body on which both the
cross-flow velocity components in the boundary layer and the cross-flow

pressure gradient are identically zero. Since w, K~ are zero on the attach-
ment line, the cross-flow momentum equation is singular on that line. However,
differentiation with respect to z will yield a nonsingular equation. After
performing the necessary differentiation for the cross-flow momentum equation
and taking advantage of symmetry conditions, we can write the governing
attachment-line flow equations as:

Continuity

§^ (Ph2u) + Ph]wz + |y (ĥ v̂) =-0 (2.1.8)

Streamwise Momentum

u 9u' —- 9u us U s , 9 / 9u —i—r\ fr> T n\
P E 7 9 T + P V 97 = ps h7Tx-+97 (y ay-pF^) (2J-9)

Cross-Flow Momentum

Energy

U 3H . -— 8H _ 3 y 8H . /, 1 \ 9 /U\
h797+ pv 9 y - 9 y [ p F 9 7 + M I1 ~ PF) 97 (F-) -pv

where w = 9w/9z.
The attachment-line flow equations are subject to the following boundary

conditions:

y = 0 u,wz =0 v = vw(x,z)

H = Hw or (Iv) = Hw (given) (2.1^ ' w



y = 6 u = us(x,z), wz = 0, H = Hs (2.1. 12b)

The initial points A, and A2 can be obtained by solving the system
(2.1.8) to (2.1.12). Again, however, the equations are singular at the
first point (in our case A-,) and require starting conditions. These and
the initial conditions in the lateral direction, namely, B-| , C, , etc., can

be obtained by constructing special solutions in the neighborhood of the
stagnation point. At first, however, it is necessary to obtain the similarity
equations known as the stagnation-point equations. They can be obtained by the
procedure described below.

The governing conservation equations for three-dimensional laminar
compressible flows in rectangular coordinates are

Continuity

x-Momentum

z-Momentum

J-(PU) +J(PW) + y (PV) = 0 (2.1.13)

9 U . o U • o U 3 P . 3 / 9 U \ / /•* i T « \
PU 9lT+ P W 9 7 + P V 97 = -9x 97(y 97) (2.1.14)

9w . .. 3w . , 9w _ ip_ . 9 / 9w\ ,0 ,pu 3 i+ p w9i+ pv 8 y - " 9 T + ay(y 97] (2-1

Energy

+ P W ? 4 + pv|4=lrr ferlft-uM - JkrJ~ ~PU

We define a two-component vector potential by

O \h _^Y I T A ** T I / O 1 1 7 \

and introduce the following transformation

pu.
d? = p urtu dx, dn = •, /9 dy (2.1.17b)oo e ( 2 ^ \ /£

together with two scalar functions \i> and $ defined by



* = (201/2f(n), * =
ue

The subscript o denotes the reference conditions, and the subscript e
denotes the edge conditions.

Introducing the relations given by (2.1.17) into (2.1.14) to (2.1.16),
we get

(Cf11)1 + Pe/p - (f
1)2 + ff" + cgf" = 0 (2.1.18)

(Cg11)1 + c[P /p - (g
1)2 + gg"] + fg" = 0 (2.1.19)

+ (f + cg)6' = ° (2.1.20)

where the primes denote differentiation with respect to the similarity

parameter p. Those equations assume that the outer flow is irrotational and

that its components, upon suitable rotation of coordinates, are given by
ug = Ax and wg = Bz, where the constants A and B are related to the
shape of the body near the stagnation point. In addition, the parameters
C, c, f, g1 and e are defined by the following expressions:

C = - - , c»B / A , f =j-, S'=T' e = H/H (2.1.21)MoMo e e

The system given by (2.1.18) to (2.1.20) is subject to the following

boundary conditions:

n = 0 f = f = g = g' = 0, e = a or e' = given (2.1.22a)
W ' W

n = n f = g1 = 1 e = 1 (2.1.22b)
GO

Once the system (2.1.18) to (2.1.22) is solved, the initial conditions in
the streamwise and the crosswise directions can be obtained in the following way.

Let us use x and z to denote the location at which we want to specifyo o
the profiles. The velocity profile making an angle a with the x-axis is

u = u f1 cos a + w g1 sin a
C C

and the external flow component ug is

8



U = U COS a + U/ Sin as e e
Then the nondimensional streamwise profile is

f + c(zo/xo)g' tan a
1 + c tan a

If a is associated with the streamline direction (see figure 3), that

expression becomes

u_
u.

0

C<VV
(2.1.23)

Similarly,the cross-flow component w at the same location is

w_
u

czo/x0 (g'-f)
(2.1.24)

w

Figure 3. Resolution of the Velocity Profiles Near the Stagnation Point into
Streamwise and Cross-Wise Components, tan a = w /u =c z /x .



The velocity profiles given by (2.1.23) and (2.1.24) can now be used as
initial velocity profiles at BI. They can also be used to represent the -
initial profiles at AI (note that w = 0 now). However, better initial

profiles in the neighborhood of the stagnation point can also be obtained by
following the procedure discussed by Squire (ref. 5). Once the profiles at
A.J are known, the attachment-line flow equations (2.1.8) to (2.1.12) can be
solved to obtain the solution at A?. Then it is obvious that the general
streamline equations (2.1.1) to (2.1.4) can be solved subject to the boundary
conditions (2.1.7).

There are other practical problems in which the initial conditions as
described in figure 1 cannot be obtained as readily. As an example, consider
figure 4. Here, the initial conditions require special considerations.
Clearly, the attachment line AB along the wing leading edge is a plane of

Figure 4. Fuselage-Wing Configuration
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symmetry, and the initial conditions on AB can be calculated as before by
solving the attachment-line flow equations. However, the initial conditions
on AC that form the wing-fuselage juncture cannot be calculated easily.
In fact, the viscous flow along the line AC is not of the boundary-layer
type. It belongs to a class known as the boundary-region type. Certain
approximations must be made to specify initial conditions on that line.

2.2 The Boundary-Layer Equations in Body Coordinates

2.2.1 Remarks on the Two Coordinate Systems

The discussion in Section 2.1 concerning figure 1 was based on the
assumption that calculations from the initial data lines are to proceed in a
streamline coordinate system. Although the streamline coordinate system is
very'general, its calculation is a major undertaking in itself and must be
repeated at every change of attitude of the body. If the body is relatively
simple, advantage can be taken of a geometry-oriented (body) coordinate
system, which will eliminate the need to calculate the streamlines for
each change of attitude or Mach number. The only disadvantage of body

coordinates is that the initial lines cannot always be made to coincide with
the body coordinate lines. For example, on a body of revolution (see fig. 5)

Figure 5. A Body of Revolution at an Angle of Attack

11



at an angle of attack, the stagnation point S is removed from the nose,
which is the origin of the body-coordinate system. In order to start the solu-
tion, it is necessary to calculate the stagnation-point flow along the line
BC. To proceed further, it is convenient to use streamline coordinates for a
short distance in order to avoid the body singularity at A. The change from
streamline coordinates to body coordinates should be done at a constant value
of one body coordinate, for example, on line ED. The location of the line
ED is arbitrary as long as point D is aft of point C. As shown in figure 5,
the inviscid streamlines do not necessarily intersect the line ED at a con-
stant body-coordinate interval. For that reason, interpolation of the rotated
profiles (to be discussed in Section 2.2.2) on the line ED is unavoidable if
calculations with constant increments in the body coordinates are desired.

2.2.2 Equations in Body Coordinates
The governing boundary-layer equations for three-dimensional compressible

flows in body coordinates are given by (2.1.1) to (2.1.5).
At the edge of the boundary layer,(2.1.2) and (2.1.3) reduce to

u 8u w 8u 9 n ,,_

"elif «£+>elf5r->eV. l t2 + V& ' - 1^ If ("-la)

u aw w aw ,

Vhf 9/+ <>e hf TT- WeKl + "e^Z = ~ ̂  If < 2 - 2 - 1 b )

The boundary conditions for the governing equations in body coordinates are

y = 0 u,w = 0, v = vw(x,z)

H = Hw' or (I?) = Hw (given) (2.2.2a)v J' w

y=6 . u = u w ( x , z ) , w = w e ( x , z ) , H = H e (2.2.2b)

Making use of the symmetry conditions, we can write the two attachment-
line flow momentum equations as

x-Momentum

U 9 U . — 8 U 1 3 , 9 / 9 u — i — o o \

12



z-Momentum

8wz 9w

pv

— p(w'v (2.2.4)

The continuity and the energy equations are still the same, (2.1.8) and
(2.1.11), respectively. Similarly, the boundary conditions are the same as
(2.1.12), except that now the subscript s on u and H should be replaced
by e.

The solution of the governing equations in body-coordinates aft of line ED
(see fig. 5) requires initial velocity profiles, which come from the solution of
the governing equations in the streamline coordinates. Except for the attach-
ment line, they can be obtained in the following way.

Let us write the velocity components in streamline coordinates with
bars, namely, u", w, and the angle the external streamline makes with the body
coordinate x-direction as y (see fig. 6). Then the velocity components u
and w in the body-coordinate system x and z are

u = u" cos y — w sin y (2.2.5a)

w = u" sin Y + w~ cos y (2.2.5b)

Figure 6. Notation for Streamline (Barred) and Body (Unbarred) Coordinates.

13



where

i/w«\
(2.2.6)

On the attachment line the coordinate directions coincide, so that

u E u" and w = w = 0

An expression for w can be obtained by making use of the expressions

w u
sin Y = ~ . cos Y = UJ

and by taking limit of (2.2.5b) as z -*• 0. The result is
; _ "\\.t _ ___

_ 9v _ u e 8w dz
w

But,in the limit,

__
z = 9z uc 9z - dz

b d i.

h~dz .=

or

2.3 Transformation of the Governing Equations

In this, section we shall consider the transformed form of the governing

equations discussed in the previous two sections. Although those equations

can be solved in their physical coordinates x, y, z, it is often convenient
to solve them after they have been expressed in terms of transformed coordinates.

In problems where the computer storage becomes important, the choice of using

transformed coordinates becomes necessary, as well as convenient,since the
transformed coordinates allow large steps to be taken in the x and z direc-
tions. The reason is that the profiles expressed in the transformed coordinates

do not change as rapidly as they do when they are expressed in physical coordi-

nates. In addition, the use of transformed coordinates stretches the coordinate
normal to the flow and takes out much of the variation in boundary-layer thick-

ness for laminar flows.

14



2.3.1 Streamline Coordinates
Following Moore (ref. 6), we define a two-component vector potential such

that
ply _ 3 if) . fi. (2.3.la)

(2.3.15)

We note that equation (2.3.1b) includes the effect of mass transfer and
decouples the wall boundary conditions.

We also define the following transformations:

/ u, \l/2
x = x,

* =

z = z,

01/2 h,
I

,0/2
V > z,

(2.3.2a)

(2.3.25)

(2.3.2c)

Introducing the expressions given by (2.3.1) and (2.3.2) into (2.1.2) to (2.1.4)
and making use of the relations given by (2.1.6), we get

Streamwise Momentum

[C(l + Of"]' + ̂ |̂ -- (f1)2 + Ppff" + (R + N + 2M) ££-K X(g')'
t- C\\r\ I

,, = ,
s h, V

l \

(2.3.3)
Cross-Flow Momentum

[CO + e+)g"]' -r- (g1)2 + (R + N + 2M) Sil+• p fg« + (K,x -Mz n? 2h0 2 \ 1 h, I

M
~-(f)

n2 (pv)w R l /2,,

^TRs 9

= 2L_ if iS_!__ a" il]+ x_ /n' I5l_ "
3X 3Z

(2.3.4)

15



Energy

C P2fe' + (R + N

(2-3-5)
where the primes denote differentiation with respect to n and

' • £ - • * • • - * - • -r> 's-^. c =us us s s
9U_ . ..

psys

P
SKS

N =
us 3Z

P2 = (1 + P] + S - 2K ]h1x) (2.3.6)

In the above equations we have used Boussinesq's eddy-viscosity and eddy-
conductivity concepts in order to satisfy the closure conditions for the
Reynolds stresses. They are defined by

(2.3.

The turbulent Prandtl number and the dimensionless transport coefficients are
defined by

\V2
+ e _ i • _L

e = - » e - lex + ez

The boundary conditions (2.1.7) become

n = 0 f = 9 = 0, f = g1 = 0, w or e' = e1w

n -»• n f -»• 1 g1 •*• 0 -»• 1 (2.3.8)

The attachment-line equations can also be transformed by a similar
procedure. This time,we define the two-component vector potential by

|WZ = ly • hlV ,9X
(2.3.9)

16



and again use the expressions given by (2.3.2). Introducing the expressions
(2.3.9) and (2.3.2) into (2.1.9) to (2.1.11), we get

Streamwise Momentum

[CO 4)f"]' + i j£- (f)2] + P2ff"
i L J

gf -

2L_ / fi 11!. _ f if.h, I 9x ax

Cross-Flow Momentum

[CO + eV']' + r-[gg" -(g1)2] + P2fg" + (M-rMf'z n £ i n

+ x
8K,

az" -(f).^21 (PV)W
PcUc

1 /? XRy2 9.. x_

Energy

of/.
(PV)

*t R1/20' = 2L (f« ii _ e' if.s h, \ ax ax

(2,3.10)

ax - q" ̂ ~y 3x

(2.3.11)

(2.3.12)

where the definitions of the terms are the same as those defined in (2.3.6),

except for g', which is equal to w /u .
The boundary conditions (2.1.12) become

n = 0, f = g = 0, f = g1 = 0,

n + n f = e = 1,

= e orw w
g' = 0

(2.3.13a)

(2.3.13b)

2.3.2 Body Coordinates

The relations used to transform the equations in body coordinates are

similar to those used in the previous section. For the general case, we again

use the two-component vector potential defined by (2.3.1) and the same rela-
tions defined by (2.3.2a,b), except that now the subscript s is replaced by e,

that is,

17



u /2

pdy (2.3.14)

1 /p
' z

and <;> is defined by

(« \
IT g(x» z> n)^ _ /

(2.3.15a)

(2.3.15b)

With these relations and with those given by (2.2.!),we can write (2.1.2)
to (2.1.4) as

x-Momentum
rp«

P,ff" + P,gf • + iL-

+ P

(PV)
'1

+ P/

. l/2fl, _ X f, 3f fll 3f
X f - h T .3X" -f 3X

Ue h2 V
3 3Z 32/

(2.3.16)

z-Momentum

+ P-

P2fg" + P3gg"

P«l (PV),.,

- (f ,n2

(2.3.17)

Energy

Pr w

(PV),
Ry

26' = X_ ff H
h1 I 9x

w

9X

1 +

92 32

(2.3.18)
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where

f = u/ue, g1

£ £. M
ue ax ' N

7TT ax" ̂ pev

w/wfi, e = H/He, RX = ugx/ve

P-^!!e 0-x_! !e
U 9Z ' W_ 8Z ' V W_ 3X

M + S - (2.3.19)

P4 = K,x,
w.

w

The boundary conditions (2.2.2) become

n = 0 f = g = 0 f = g ' = 0

n -> n^_ f = g1 = 1 6 = 1

= 6 orw = °w
(2.3.20b)

The attachment-line equations can also be transformed by a similar
procedure. We define the two-component vector by the relations given by
(2.3.9) and again use the relations (2.3.14), except that now we
define <j> by

W

:» z , n) (2.3.21)

Introducing the expressions (2.3.9), (2.3.14a,b), and (2.3.21) into (2.1.26),

(2.1.27), and (2.1.11), we get

x-Momentum

[C(l + ct)i p2ff- * , 9f" + _ ^-(f
(PV).

0 U Xpe e

ax
H
ax (2.3.22)
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z-Momentum

[C(l + e!)g
p / p \ P,

P2fg" + } r99" + ps flg' ~1T)+\r2 \ 1 2
( P V ) ,

+ P, 'w R1/2fll _ x f,— K T - r— I T
peue x 9x

Energy

M.

ax ax

where

f = u/ue, 9' = w7/w7 .z' ze: 6 = H/H

xu

The boundary conditions are

f = g = 0

n = nm f = g1 = 8 = 1

n=0 " f = g = 0 f ' = g ' = 0 6 = 6 w o r w

(2.3.23)

1/2 1

(2.3.24)

= e,, (2.3.26a)

(2.3.26b)
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III. KELLER'S BOX METHOD

The governing boundary-layer equations presented in the previous chapter
form a system of coupled nonlinear partial differential equations that are quite
difficult to solve. For a muHi component gas, their solution is even more dif
difficult because, in addition to mass-continuity, momentum, and energy equa-
tions, we have a number of species-continuity equations to consider. The
solution of those equations for general configurations such as those that^ occur
in aircraft and space shuttle design requires a very efficient, fast, and
accurate numerical method with suitable models for the Reynolds stresses.

In this chapter we shall discuss the efficiency, speed and accuracy of a
two-point finite-difference method developed by H. B.Keller (ref. 1) and applied
to the boundary-layer equations by Keller and Cebeci (refs. 2,3). We shall
investigate the computation time and accuracy and the stability properties of
this method for two-dimensional incompressible laminar and turbulent flows
as well as for three-dimensional laminar flows. On the basis of that informa-
tion, in Chapter V, we shall estimate the computation time for three-dimensional
laminar and turbulent boundary layers of a multicomponent gas, and we shall out-
line an efficient procedure for solving those equations. But, first, we shall
present a brief description of the Box Method and point out the several advan-
tages of that method over the numerical methods now being used for boundary-layer
calculations. For simplicity, we shall consider the infinite swept-wing equa-
tions for an incompressible flow.

3.1 Box Method for Infinite Swept-Wing Equations
The transformed boundary-layer equations for an incompressible flow over

an infinite swept wing follow from (2.3.16) and (2.3.17). With h1 = h2 = 1
and spanwise derivatives of the form a/az being zero, they are

Chordwise Momentum 9 / *.f, ~f\
(bf11)1 + P2ff" + M[l - (f )Z] = x (f f^--f" ~) (3.1.D

Spanwise Momentum

(eg")' + l fg» = x(f f^-9" ~) (3.1.2)

where
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We first write the two momentum equations in terms of a first-order
system of partial differential equations. For that purpose we introduce new
independent variables u(x,n)s v(x,n), w(x,n)s and t(x,n) so that we can
write (3.1.1) and (3.1.2) as

f = u
u1 = v
g1 = w
w1 = t
(bv)1 H -u2)

(3.1.4a)

(3.1.4b)

(3.1.4c)
(3.1.4d)

(3.1.4e)

(3.1.4f)

We next consider the net rectangle shown in figure 7. We denote the net
points by

XQ = 0, xn = Vl + kn>
_ _ 4. hn- — n • T T n . *
J J-i J

n = 1, 2, ..., N

j = 1, 2, ..., J

(3.1.5)

-hi

Kn

4}

-3^

Xn-l xn-|/2 xn

Figure 7. Net Rectangle for the Difference Equations
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The net spacings, k and h., are completely arbitrary and indeed may have
1 1 J

large variations in practical calculations. Such flexibility is especially
convenient in turbulent boundary- layer calculations, which are characterized by
large boundary-layer thicknesses. To get accuracy near the wall, small net
spacing is required; large spacing can be used away from the wall.

We approximate the quantities (f, u, v, g, w, t) at points (x , n.) of
the net by net functions denoted by (f1?, u^, v" g1?, w?, t?). We also employ

J J J J J J

the notation, for points and quantities midway between net points and for any
net function q1?

? (sn + sn-l>> "j-l/2 5 7

-3-1,2 ^«J + <jn-l>

The difference equations that are to approximate (.3.1.4) are now easily formu
lated by considering one mesh rectangle as in figure 7. We approximate
(3.1.4a) to (3.1.4d) using centered difference quotients and average about the

midpoint (xn, n._-| /2)
 of tne segment P2P4, with the following results:

fn _fn

(3-1. 7a)

un - un

(3.1.7b)

" - g • ̂^ /3 i 7r]13.1.7CJh. j-l/2
J

J .H = fn /? ,h. ^ (3.1.
J

Similarly (3.1.4e,f) are approximated by centering on the midpoint
xn-l/2' nj-l/2 of the rectan9le piP2P3P4' wnich gives
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'2 + °n>K_1/2

T - -
= Vl/2

>; - (ct)?., + ^

- •

_
a

n-l /0 -, -^/.v
(3J'7f)

where

n-1
'j-1/2 = a

M"'1 {1 'j-1/2 ;j-l/2 (3.1.8a)

n-1
i-112J ' / £ J

(3.1.8b)

n-1/2
n xn - Vl

(3.1.8c)

Equations (3.1.7) are imposed for j = 1, 2, ..., J. For most laminar flows
n, is constant. For turbulent flows, HI rnay be increased, with no essentialj j
difficulty, as the calculations proceed downstream from the point of transition.

The boundary conditions for (3.1.1) and (3.1.2) are

(3.1.9)
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If we assume (fj"1, u?'1, v!?"1, g?"1, w?"1, t?'1) to be known for
\J J J J J

°±0 ±J» tnen (3.1.7) for 1 <^ j < _ J , and the boundary conditions (3.1.9)
yield an implicit nonlinear algebraic system of 6J + 6 equations in as many
unknowns (f!?, u" v1?, g1?, w?, t1?). The system can be solved very effectively

J J J J J J

by using Newton's method. The details are presented in reference 3. The
important observations are that the linearized equations obtained by applying
Newton's method to (3.1.7) and (3.1.9) form a block tridiagonal system (with
6x6 blocks) and that system can be solved very efficiently by the procedure
discussed in reference 3.

3.2 Computation Time of the Box Method

We have studied the computation time of the Box Method for two-dimensional
laminar and turbulent flows as well as for three-dimensional laminar flows.
These studies were made on an IBM 370/165.

From a computational aspect, turbulent boundary layers present a much more
difficult problem of calculation than laminar boundary layers. Consider, for
example, an incompressible turbulent flow. The skin-friction is appreciably
greater than it is for a laminar flow yet the boundary-layer is much thicker.
This means that the velocity gradient su/3y is greater at the wall. To
maintain computational accuracy when 3u/3y is large, short steps in y must
be taken; when it is small, longer steps can be taken. Therefore, near the
wall the steps in a turbulent boundary layer must be shorter than they.are in
a laminar boundary layer under similar conditions, yet near the outer edge
they can be longer.

The numerical method described in Section 3.1 is unique in that various
types of spacings in both x- and y-directions can be used with ease. In
the calculations we present in this chapter, we have done the calculations for
an arbitrary Ax-spacing but for a particular An-spacing. The net in the
n-direction is a geometric progression having the property that the ratio of
lengths of any two adjacent intervals is a constant; that is, h, = Kh. ,.
The distance to the j-th n-line is given by the following formula:

nj = hl K -"V J = 1, 2, 3, ... J, K2 < 1 (3.2.1)
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There are two parameters: h^ , the length of the first An-step, and K, the
ratio of two successive steps. The total number of points J can be calculated
by the following formula:

*n[l + (K-l) n /h,]J= — : — MK
 ] <3-2-2>

In our calculations we select the parameters h-, and K and calculate

the n .oo
To study the computation time of the Box Method for two-dimensional

turbulent boundary layers, we selected a flat-plate flow. In the range of
Reynolds number R between 1 x 10 to 40 x 10 , 21 x-stations and 50

A

n-points were computed. The total Central-Processing-Unit time (CPU) was
0.048 min. That time corresponds approximately to 0.14 sec/x-station and to

o

2.75 x 10 sec per n-point and per x-station. In the calculations the wall
shear parameter, f", was taken as the convergence parameter. The itera-w
tions were repeated until

w w_ _
r~rn - I ..

i/2[fw
tv+1} + fw

(v)] ]

where YI is a small error tolerance parameter. On the average, the calculations
required two iterations per x-station with y-j = 0.01.

To study the computation time of the box scheme for a semi-three-dimensional
flow, we have considered two different test cases. In one test case we have
computed the turbulent boundary layers over a yawed flat-plate approximately
in the same Reynolds number range as the two-dimensional test case discussed
above. Again 21 x-stations and 50 n-points were taken. The CPU time was
0.085 min. That time corresponds approximately to 0.243 sec/x-station and

3
4.8 x 10 sec per n-point and per x-station. Again in each x-station, calcu-

lations required two iterations to satisfy (3.2.3).
In the second test case we have considered the Bradshaw-Terrell flow

(ref. 7), which is a flow past a 45° "infinite" swept wing. In- that flow,
measurements were made only at the rear of the wing in a region of nominally
zero-pressure gradient and decaying crossflow. The CPU computation time to
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calculate the complete flow field with 20 x-stations and 50 n-points was
0.051 min. That time corresponds to approximately 0.14 sec/x-station and
3 x 10" sec per n-point and per x-station. At first, the computation time
for this flow appears to be approximately the same as the time for the two-
dimensional flow which required 0.048 min. However, the Bradshaw-Terrell
flow required approximately one iteration per x-station and 22 iterations for
the complete flow. Figure 8 shows a comparison of calculated and experimental
results.

The computation time of the Box Method was also studied for a full
incompressible three-dimensional laminar flow by considering the flow past a
flat plate with attached cylinder (see fig. 9). In this case, the iterations
were repeated until

w w < 0.0001 (3.2.4)

DATA OF BRADSHAW
AND TERRELL
PRESENT METHOD

.2
-ue=u

.4 .6

_y
L

.8 1.0

Figure 8. Results for the Relaxing Flow of Bracishaw and Terrell. The Calcula-
tions Used the Eddy Viscosity Formulation Described in Chapter IV.
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Figure 9. Flow Past a Flat Plate with Attached Cylinder.

The total CPU time for 25 x-stations, 16 z-stations and 21 n-points was 1.285
3

min. That time corresponds to approximately 3 sec/plane and 9 x 10 sec per
x-station, per z-station, and per n-point. On the average the calculations
required 2 to 3 iterations on the attachment line and only 2 iterations away
from the attachment line. The results agree quite well with those obtained
by Dwyer (ref. 8) and by Fillo and Burbank (ref. 9), who have also studied
the same flow using a different finite-difference method.

3.3 Accuracy of the Box Method

The accuracy of the Box Method has been studied for both incompressible
and compressible, laminar and turbulent boundary layers past two-dimensional
and axisymmetric bodies. Some of the results have been reported in refer-
ences 2 and 3 and others will be reported in a forthcoming book by Cebeci
and Smith. The results indicate that the method is quite accurate and

extremely well suited for boundary layers, especially for turbulent flows.
Extensive studies with incompressible and compressible turbulent boundary
layers show that, in general, 40 to 50 n-points with the Box Method give
results which are comparable to the results obtained by the method of
reference 11, using 300 to 400 n-points.

The studies in two-dimensional flows also show that one can take relatively
large Ax-spacing in the x-direction as long as the equations are solved in terms
of the similarity variables similar to the ones discussed in Chapter II. In
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general, an airfoil calculation in transformed coordinates requires 20 to 25
x-stations. However, the same calculation in physical coordinates may require
50 to 75 x-stations.

To study the effect of An- and Ax-spacings on the results, we have
computed the turbulent boundary-layer flow on a flat plate for a Reynolds

6 9number range of 10 to 10 . Figure 10 and Table 1 show the skin-friction
results with two different An- and Ax-spacings. Figure 10 shows the results
with fixed An-spacing (h, = 0.002, K = 1.226), and with variable Ax-spacing.

I c

The latter was chosen such that starting from R = 10 , the AR -spacing of

3-

Cf X I0
3

2-

10'

o

10'

ARX = 22 X I0

ARX = 24 x icr

I03

Figure 10. Effect of Ax-Spacing on the Computed c -Results. Calculations Were
Made for a Fixed An-Spacing. r

Table 1. Effect of An-Spacing on the Computed Results with a Fixed Ax-Spacing
hj0) = 0.002, h^0) = 0.001.

R -lO'6
X

1.0

10.7

115.3

1133.5

c f(h{0>)103

3.583

2.387

1.745

1.352

c^j^lO3

3.570

2.369

1.731

1.329

R..(h{0))10 3

2.23

15.2

115.9

364.0

R (hj^lO3

2.22

15.1

llfi.l

850.9

c f(hj°!hj '))103

3.566

2.363

1.726

1.321

RjhjO.'hj1')^3

2.2167

15.0667

114.83

846.53
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2n/2 x 106 and 2n/ x 10 gives approximately 20 and 40 x-stations, respect-
ively, in the Reynolds number range under consideration. The results indicate
that the c,.-values are not very sensitive to the Ax-spacing.

Table 1 shows the computed cf and R values for fixed Ax-spacing
t a /- T 6

(AR = 2 x 10 ) with variable An-spacing. The calculations were first
/\

made with h, = 0.002, K = 1.226 and then the net points in the n-direction
were doubled by halving each An-interval.

Table 1 also shows the Richardson-extrapolated values of c. and RQ.
(0)According to the results, the c^ and RQ values computed by h,v ' = 0.002

T o I
spacing (approximately 50 n-points across the boundary layer) are quite
satisfactory.

Figure 11 shows the computed transformed boundary-layer thickness, n^, as
the calculations proceed downstream (see ref. 10). It is interesting to note
that although the n^ increases from 20 to 200, the use of the variable grid
keeps the number of n-points approximately constant, and the use of the Box
Method maintains the computation accuracy in a large range of Reynolds numbers.

3.4 Stability Properties of the Box Method
Currently there are a number of numerical methods used to solve the

boundary-layer equations. In reference 11, Blottner gives a general review
of these methods. The stability properties of most of these methods, except

60-. 300-

40-

20-

0J

200?

100^

10' I07 108

Figure 11. Variation of the Transformed Boundary-Layer Thickness and the
Number of n-Points with Reynolds Number.
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for the method of Krause, Hirschel and Bothmann (ref. 4), have not been
investigated for three-dimensional boundary-layer equations.

It is difficult to compare the stability properties of the schemes of
Krause, et al, with those of the box-scheme by the methods used in reference 4.
One main reason is that Krause, et al, do not give a complete stability analysis
but study only one momentum equation while neglecting some of the convection
terms and other coupling terms. The box scheme is based on a different formu-
lation of the boundary-layer equations (requiring them to be replaced by a
first-order system and using transformed variables to reduce the variations in
the solutions). However, when an analogous linearized stability analysis is
made of the box-scheme (ref. 12), dropping terms similar to those neglected in
reference 4, the stability properties are found to be at least as good as those

of the best scheme of Krause, et al. Indeed even retaining terms that are
dropped in reference 4, the analysis shows stability under very general
conditions.

Unfortunately, such linearized stability studies .cannot be conclusive.
The best test would be to solve several difficult problems with each method.
We could not make such a comparison in our study because neither the exact
difference scheme nor the exact problems treated were specified in reference 4.

However, some important comparisons can be made. Since Krause, et al,
always employ three-point differences in the normal (or boundary layer) direc-
tion, they must use a uniform net through the boundary layer or else they do
not get second-order accuracy. The box-scheme is unrestricted in net spacing,
getting not only second-order accuracy but even fourth-order or sixth-order
accuracy with only one or two Richardson extrapolations, respectively (ref. 2,3).
Also, the Newton iterates used to solve the nonlinear (implicit) equations of
the box-scheme converge quadratically and thus are very efficient and do not
degrade the accuracy of the solution. It is never clearly spelled out how the
nonlinearities are treated in reference 4, so comparisons here are again
difficult. Finally, we note that the most stable scheme described by Krause
et al does not have second-order accuracy in both tangential directions unless
the net spacing is uniform in an appropriate one of these tangential coordinates.
Again, there is not such restriction on the box-scheme.

A complete analysis of the three-dimensional boundary-layer equations has
never been made. But a preliminary investigation indicates that they are not
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stable or well-posed for all tangential flow fields. Indeed something like
this must be true since even in two-dimensional flows the boundary-layer
equations become unstable when the tangential velocity changes sign (i.e., at

separation). For flows in which the boundary-layer equations are not
well-posed, it is impossible to devise stable and accurate difference schemes.
If the tangential component of the velocity vector turns through a sufficiently
large angle, this phenomenon seems to occur. This question should be studied
in more detail in order to devise numerical schemes of maximum stability, or
indeed to verify if the box-scheme, or any other scheme, possesses maximum
stability properties (i.e., is stable whenever the boundary-layer problem is
well posed).
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IV. TURBULENCE SHEAR MODELS FOR THREE-DIMENSIONAL BOUNDARY LAYERS

The solution of the boundary-layer equations for a turbulent flow requires

closure assumptions for the Reynolds stresses. That can be done by a number of
approaches*. One approach is to use simple eddy-viscosity and mixing-length
formulas for the Reynolds stresses. The methods that use that approach are
called mean-flow methods. Typical examples are the methods of Cebeci-Smith
(ref. 10), Bushnell-Beckwith (ref. 14), Harris (ref. 15), and Herring and
Mellor (ref. 16). Another approach is to use expressions that consider the rate
of change of the Reynolds stresses in the governing equations. The methods that
use this approach are called transport-equation methods. Typical examples are
the methods of Bradshaw (ref. 17) and Donaldson (ref. 18). For low-speed flows,
both approaches work equally well. For high-speed flows, however, the mean-flow
methods seem to be slightly better than the transport-equation methods, chiefly
because of the inadequate closure assumption accounting for the mean compres-
sion or dilatation effect. However, a recent report by Bradshaw (Ref. 19)
seems to substantially improve the predictions of his method for high-speed
flows. In either case, the governing equations for three-dimensional, com-
pressible flows are already quite difficult, and there is no need to increase
the complexity of the equations by using higher-order turbulence models. For
that reason, we shall restrict our discussion, in this chapter, to the turbu-
lence models that are based on the eddy-viscosity and mixing-length concepts.
In particular, we shall describe an eddy-viscosity formulation developed by
Cebeci (ref. 20), and compare it with others. We shall also present several
results obtained by that formulation. But first, we shall present a brief
description of the eddy-viscosity formulation used 'by Cebeci and Smith for
two-dimensional flows.
4.1 Eddy-Viscosity Formulation for Two-Dimensional Compressible Flows

With Boussinesq's eddy-viscosity concept, we can write the Reynolds shear

stress, -pu'v1, as

—i—r 3u f/i i i S-pu'v1 = pc — 14. l.i;

*For an excellent discussion of various prediction methods, see a recent
article by Bradshaw (ref. 13).
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According to the eddy-viscosity formulation used by Cebeci and Smith in the
so-called inner region of the boundary layer, e is defined by a modified
mixing-length expression. In the outer region e is defined by an expres-
sion based on a velocity defect. For a compressible flow* e is given by
the following formulas:

3U
Ytr

CO

J (ue - u)dy ftr

01 y i yc

yc i y 16

(4.1.2a)

(4.1.2b)

where y is obtained from the continuity of eddy viscosity. In the above
equations, L is a modified mixing-length expression given by

L = <y[l - exp (-y/A)]

where

A — A _y_ 11r\ it u
N T

1/2
pw/

u -
T

1/2

N -l^-'l-^l ^-r
W -W

_exp (̂ .s ̂ v^\+ exp(ll.8 ̂\ w w / K \ y

du

(4.1.3)

(4.1.4a)

(4.1,4b)

(4.1.4c)

For flows with no mass transfer N can be written as

2

(4.1.4d)

According to the study of Cebeci and Mosinskis (ref. 21), the Van Driest

damping parameter A and von Karman's parameter < vary with Reynolds number.

Their variation can be approximated by the following empirical formulas:

0.19= 0.40 + (4.1.5)
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(4.1.6)
-

where z, = R. x 10 > 0.3.
C O -

The parameter a in the outer eddy-viscosity formula is generally
assumed to be a universal constant equal to 0.0168. According to a recent
study by Cebeci (ref. 22), however, for values of R. < 6000, a is not a

O

universal constant; it varies with RQ in accordance with the followingo
empirical formula:

1 + n
a = ao 1 + n (4.1.7)

where a = 0.0168, n = 0.55 and n, which varies from 0 to 1.55 within
a RQ range of 425 to 6000, is approximated by

n = 0.55 [1 -exp (-0.243)Y
1/2 -0.298Y)L

 Y = ̂ 5 ~ ] (4.1.8)

In the definition of y» the Rn is defined byo

R. = -^ (4.1.9a)
9k vw

where
oo
/* .. / .. \

(4.1.9b)

The low Reynolds number corrections to the eddy-viscosity formulas,
given by (4.1.5) to (4.1.9), become quite important at high-speed flows. In a
recent study Bushnell and Morris, (ref. 23), analyzed measurements in hyper-
sonic turbulent boundary layers at low Reynolds numbers and observed variations
of the parameters K and a with Reynolds number similar to those given by
(4.1.5) and (4.1.7).

The parameter ytr in the inner and outer eddy-viscosity formulas account:
for the transitional region that exists between a laminar and turbulent
boundary layer. It has been used by several authors (refs. 15, 24, 25).
According to the expression used by Cebeci (ref. 24), it is given by
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where

Ytr = 1 - exp

-2.68

-Gr(xtr)(/ (4.1.10)

A = 60 + 4.68M1.92

,Here, x. and Retr are values taken at the start of transition.

4.2 Extension of the Eddy Viscosity Formulation to Three-Dimensional
Compressit> 1 e Fl ows
The eddy-viscosity formulation (4.1.2), which is empirical like all models

for Reynolds stresses, has worked well for two-dimensional flows. In a recent
study by Cebeci, Kaups and Mosinskis (ref. 26), it has also been extended to
handle incompressible three-dimensional flows. Here it will be extended to
handle compressible flows. In making this extension, we shall rely heavily
on our experience with two-dimensional flows and carry over the empirical model
used for the viscous layer (ref. 21), to three-dimensional compressible flows.
Because of the lack of data on three-dimensional transitional flows, it is
difficult to extend the intermittency factor in (4.1.2) to account for the
transition region. For that reason, the intermittency factor will not be
included in the formulation of eddy viscosity for three-dimensional flows.
Furthermore, we shall assume e = e .

A £,

For the inner region, we shall assume that the inner-eddy-viscosity
formula is given by the following expression:

(4.2.1)

Here L is given by (4.1.3) and (4.1.4), except that now the friction velocity
u is given by

(4.2.2)
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and the dimension! ess pressure-gradient parameter p (uses 2.1.6a) and is
given by

+ Vs 9us (4.2.3)
P = 3

U* 8S

For the outer region, we shall base the eddy-viscosity expression on a
resultant velocity defect defined by

and we shall write the outer eddy- viscosity expression as

eo =
0

oo

/ [us - (u
2 + w2)172] dy (4.2.4)

Although those inner and outer eddy-viscosity formulas are somewhat
speculative, they worked quite well for incompressible flow, (ref. 26), and
are recommended for compressible flows until "better" formulas become available.

It should be noted that the proposed expressions for the inner and outer
eddy-viscosity formulas do not, in principle, differ from those suggested by
Hunt, Bushnell and Beckwith (ref. 27). In a recent study Adams (ref. 28) used
those transport coefficients in calculating compressible turbulent boundary
layers on sharp cones at incidence and obtained good agreement with experiment.

4.3 Attachment-Line Turbulent Flow on an Infinite Swept Wing
The accuracy of the eddy viscosity presented in Section 4.2 has been

thoroughly investigated for incompressible infinite swept wings. The calcu-
lated results agreed well with experiment and with those computed by Bradshaw's
method (ref. 17). Here, we shall investigate the accuracy of our eddy-
viscosity formulation for an incompressible attachment-line turbulent flow on
an infinite swept wing.

Figure 12 shows a sketch of potential flow streamlines in attachment-line
region of an infinite swept wing, together with the rectangular coordinate
system that will be used in this paper. The parameter that determines whether
the flow will be laminar or turbulent is a dimensionless parameter defined by

37



ue = Uju cosX

Figure 12. Sketch of Potential-Flow Streamline in Attachment-Line Region
of an Infinite Swept Wing and the Coordinate System.

C* = w; (4.3.1)

It may be regarded as a Reynolds number with the length scale represented by
the ratio of spanwise velocity, we, to chordwise velocity gradient, dug/dx.
According to the experiments of Cumpsty and Head (ref. 29), flow along the
leading edge is fully turbulent for C* >1.4 x 105. For C* < 0.8 x 105,

the flow is laminar,
transitional.

In the range 0.8 x 105 < C* < 1.4 x 105, the flow is

4.3.1 Governing Boundary-Layer Equations

The governing boundary-layer equations for an incompressible turbulent
flow past a yawed infinite wing, with the use of eddy-viscosity concepts can

be written as

Continuity

=o (a. iu l«.J.—ax ay
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Chordwise Momentum

uf£ + v ]

Spanwise,Momentum

.. 9w
~ (1 +

+N awl
: ; 9yJ

(4.3.3)

(4.3.4)
ax ay

On the attachment line, u = 0. Therefore, (4.3.3) is singular along the line
(leading edge) x = 0. To remove the singularity, we differentiate (4.3.3)

with respect to x and set u and av/ax equal to zero. That procedure
enables (4.3.3) to be written as

(4.3.5)

where uv = au/ax. From Bernoulli's equation it follows that at x = 0,

(4.3.6)
d u 2

. 1 d~P - f "e ,pd7 \r/
Next we introduce a new dependent variable f defined by

*n \ _ •,-.„ u _ du / ue\" (4.3.7)

where the prime on f denotes differentiation with respect to the similarity
parameter n defined by

(4.3.8)n = - y

with B = (due/dx)x=0.

With (4.3.7) and (4.3.8) we can integrate the continuity equation (4,3.2)
and can write it as

v = -/B7 f (4.3.9)

Substituting the expression for v given by (4.3.9) into (4.3.4) and (4.3.5),
and after performing the necessary transformations, we can write the two
momentum equations as
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Chordwise Momentum

(bf11)1 + ff" + 1 - (f )2 = (4.3.10)

Spanwise Momentum

(bg11)1 + fg" = 0 (4.3.11)

In those equations b = 1 + e+ and g1 denotes the ratio of w/wg.
Equations (4.3.10) and (4.3.11) are subject to the following boundary

conditions:
at n = 0 v

f = 0 or —- v/C*" (mass transfer)
we (4.3.12a)

f - g = g' = 0

at n = n
f =g' = 1 (4.3.12b)

4.3.2 Eddy-Viscosity Formulation

The eddy-viscosity formulas (4.2.1) and (4.2.4) become

-exp(-y/A)] 9W

eo =

OO

J (we - w)dy

0

(4.3.13a)

(4.3.13b)

For zero-pressure gradient flow with no mass transfer, the damping length A
is

A = A+v (TW/P)"
1/2

tn terms of transformed variables (4.3.13) can be written as

4 - 1 — exp — w
1/2 (c*}l/4>

A

CO OO

(4.3.14a)

(4.3.14b)
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In the study reported here, we have used the above eddy-viscosity formu-
lation to compute the fully turbulent boundary layers (C* > 1.4 x 10 ) on
the leading edge of an infinite swept wing. The governing equations, namely,
(4.3.10) and (4.3.11), were solved by Keller's Box Method.

When several runs were made for different values of C*, the solutions
indicated very strong oscillations. The oscillations were small at small
values of C*, but they became quite strong at high values of C*. It should
be pointed out that such oscillations are not unusual in turbulent boundary-
layer calculations. The appearance of such oscillations arise as a result of
the eddy-viscosity formula given by (4.3.13a); they are observed in all numer-
ical methods that use (4.3.13a). However, the oscillations in nonsimilar
turbulent flows are quite small and have no bearing on the accuracy of the
solutions.

In order to eliminate the oscillations and provide convergence, we have
replaced the inner-eddy-viscosity formula (4.3.13a) by another expression,

GJ = <y+ [1 -exp (-y/A)]v (4.3.15)

which, in terms of transformed variables, can be written as

,,,1/2
1-exp--L-—L.

(C*)1/4

A
(4.3.16)

With that change, no oscillations were observed, and the solutions converged
quadratically for all values of C* considered.

4.3.3 Comparison with Experiment

Detailed measurements of attachment-line flows in turbulent boundary layers
in incompressible flows are lacking in the literature. The only detailed data
known to the authors are the data of Cumpsty and Head (ref. 29). For this
reason, our comparison calculations are limited to that data. Figure 13 shows
computed and experimental velocity profiles for four values of C*. The
agreement with experiment is quite satisfactory.
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C*= 3.7 x I05

3.0 » I05

0.0
PRESENT METHOD

O O DATA OF CUMPSTY AND
HEAD
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y x IOZ ~ METERS

Figure 13. Comparison of Computed and Experimental Velocity Profiles for the
Fully Turbulent, Attachment-Line Flow.

As was mentioned before, the flow is fully turbulent only when
C* > 1.4 x 105. For the range of 0.8 x 105 < C* < 1.4 x 105, the flow is
transitional. The calculation for that region was extended by using the inter-
mittency factor ytr used by Cebeci (ref. 24). For an incompressible flow
with zero pressure gradient, it is given by

rtr = 1 — exp
'x — x

- G
tr

w. (4.3.17)

where G is

G = 0.835 x 10~3(-IjR"1'34^- / x.M
(4.3.18)
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To have similarity we have written (4.3.17) as

Ytr = 1 - exp (-Gx
2
r/we)

which, with the use of (4.3.18), can also be written as

ytr = 1 -exp [-0.835 x (4.3.19)

According to a recent study by Bushnell and Alston (ref. 30), in calculating

transitional boundary layers it is also necessary to account for the low Reynolds
number effect (if there is one) in addition to the intermittent behavior of the

flow. An examination of the experimental data of Cumpsty and Head shows that
5 5for the range of 0.8 x 10 < C* < 1.4 x 10 , The Reynolds number based on e

varies between 200 and 400. Now the correction to a in (4.1.7), which is for

a low Reynolds number, applies for RQ greater than 425. For lower RQ values,
we simply extrapolate that curve as shown in figure 14 with a dashed line. The
resulting (a — R)-curve can be approximated by the following formula:

a x 103 = 194.8 - 128.6 ( l o g R ) + 30.925 O o g R ) 2 - 2.4751()0 100

for 10 < < 104.

(4.3.20)

so r

40

i I03 30

20

10

I02 I03

Figure 14. Variation of a with Reynolds Number.
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Figure 15 shows the transitional boundary layer profiles, together with the
experimental data of Cumpsty and Head (ref. 29). Those calculations were made by
multiplying the right-hand side of (4.3.14b) and (4.3.16) by (4.3.19) and by

varying a in (4.3.14b) as described by (4.3.20). The agreement with experi-
ment is satisfactory.

Figure 16 shows a comparison between calculated and measured local skin-
friction values. Again the agreement with, experiment is satisfactory.

Finally, we present the computed R and H-values in Table 2 at differ-
ent C*-values. We also present the experimental R -values given by Cumpsty
and Head. The agreement between predicted and measured values is quite good.

c* = 1.2 x io5

w

I.O

0.8

0.6 -

O4

0.2

0.0

1.0 x IO5

PRESENT METHOD
O O DATA OF CUMPSTY

AND HEAD

0.0 0.5 0.10 0.15 0.20 0.25 0.30

yx!02~ METERS

Figure 15. Comparison of Computed and Experimental Velocity Profiles for the
Transitional Attachment-Line Flow.

44



0.008

0.006

Cf

0.004

0.002 -

0.0
O.I

PRESENT METHOD
DATA OF CUMPSTY AND HEAD

D (.699mm DIA.)
O (.416mm DIA.)

I I

0.3 0.6 1.0 2.0 3.0
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Figure 16. Comparison of Computed and Experimental Skin-Friction Values for
the Attachment-Line Flow.

Table 2. and H-Values for Various C*-Values

C* x 10"5

0.8

1.0

1.2

1.8

2.4

3.0

3,7

Exp.

RG
200

250

295

430

540

640

760

Computed

R0 H

225 1.76

270

313

434

538

634

735

1.71

1.68

1.60

1.57

1.55

1.53
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V. OUTLINE OF A GENERAL METHOD FOR COMPUTING COMPRESSIBLE
THREE-DIMENSIONAL MULTICOMPONENT GAS BOUNDARY LAYERS

In this chapter, we shall outline a general method for computing compres-
sible three-dimensional multicomponent gas boundary layers on general configu-
rations. On the basis of the studies conducted in the earlier chapters, we
shall give estimates of computation time and computer-storage requirements for
a typical space-shuttle configuration. Our estimates are given for an equil-
ibrium or frozen flow consisting of seven-species equations, two momentum
equations, one energy, and one continuity equation.

Needless to say, the system of equations under consideration consists of
highly coupled nonlinear partial-differential equations. They can be solved
efficiently using the Box Method by following the procedure discussed below.
In the, discussion,' we shall assume that the governing equations are expressed
in transformed coordinates.

1. Express the system in terms of first-order equations. In our case
this procedure yields 22 first-order equations.

2. Approximate the system of 22 first-order equations by the difference
equations for the net in figure 7.
Linearize the resulting nonlinear algebraic equations by Newton's
method and write them in compound-block-matrix-vector notation as

3.

A 6.= r. (5.1)

where

A =

Ao co
Bl Al cl

Bj

C2

BJ-1AJ-1CJ-1
BJ AJ _

6.= r. =
r .
~J

(5.2)
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The coefficient matrix A is of order 22J + 22 and the vectors 6.
and r, have this dimension. The blocks A., B., and C. in the

~J J J J
coefficient matrix are of order 22.

4. Solve the system (5.1) by using the block tridiagonal factorization
procedure discussed in reference 31.

To estimate the computer storage and computation time for the Box-scheme
applied to three-dimensional boundary-layer problems, we suppose there are J
intervals in the n-direction, N intervals in the x-direction and K intervals
in the z-direction. For example, we feel that N = 100, K =50 and J = 50
would more than suffice to compute a complete flow field using transformed
coordinates. The number of basic variables that enter at each net point,
(x , z. , nJ 1s M E (8 + 2S) where S is the number of species to ben K j
included. Specifically, we introduce three variables for each of the x- and
z-momentum equations, two variables for the energy equation and two variables
for each species conservation equation (so that each of the equations can be
reduced to a'first-order system). Using S = 7 species yields the M = 22
basic variable alluded to 1n steps 1-4 above.

Since each basic variable requires 4 bytes, it is clear that all of the
basic variables cannot be stored in the high-speed memory at the same time.
This would require for the maximum net cited above, N x K x J x 4 x M = 2 2 x l O

3
bytes or 22 x 10 K-bytes of memory. However, by efficient organization of
the computer program we need only retain at one time all those basic variables
on at most 5 "n-columns" [i.e., all points (x , z. , n-) with fixed (x , z.)n K j n K
and all j 1n 0 <_ j <_ J]. This requires at most 5 x J x 4 x M = 22xl0 3

bytes = 22 K-bytes of high-speed memory. While the solution on one n-column is
being computed, the data on the next required n-column is being read in from
auxiliary storage (i.e., disks) and the last computed column is being stored.
This overlay technique may substantially reduce the delay time in data transfer.
There is no difficulty in allowing as many as 50 K-bytes for the five columns
to include fluid properties and other parameters.

To estimate computation time, we recall that one n-column is obtained by
solving the linear system (5.1) once for each Newton iteration. The matrix
elements of A and the inhomogeneous term r. must also be recomputed for
each iterate. The number of operations to compute these quantities is propor-

o
tional to M, J while the number of operations to solve (5.1) is proportional
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3
to M J. Thus, we note a very strong dependence on M, the number of basic
variables to each net point, and only linear dependence on J, the number of
Intervals across the boundary layer. We recall that the number of n-columns
is N x K so that the total computation time will also be linear in these
quantities. Finally, we point out that the computation time is also proportional
to the average number of Newton iterates employed for each "column."

For the computations reported in Section 3.2, where M = 6 , N = 2 5 , K = 1 6
and J = 21, the total CPU time on an IBM 370/165 was 1.285 minutes. Using
the above observed linearity with number of n-intervals if we take J = 50
rather than J = 21, the time would be 1.285 x 50/21 = 3 minutes, approximately.
This is probably an overestimate since a refinement in the n-spacing would most
likely reduce the required number of iterations. However, this estimate cor-
responds to about 7.2 sec/(n,z)-plarie (or 0.9 x 10 sec/net point). Thus, for
the case of M = 22 (with S = 7 species), N = 25, and K = 16, we estimate:

/22\^7.2 x (-£•) = 6 minutes/(n,z)-plane

For as many as J = 50 n-points through the boundary layer, this yields five
hours for the total computation. If we wish to use N = 100 and K = 50 we
get the tremendous estimate of 125 hours of CPU time.

This is unrealistic for practical computations. Fortunately, there are
several ways in which we can significantly reduce the required computation
time. First and most basic for Keller's Box-method, is the fact that Richardson's
extrapolation can be employed and yields two orders of accuracy improvement
per applications. Thus, with at most N = 50, K = 25 and J = 25 points,
we can obtain the same accuracy and reduce the computation time by slightly less
than a factor of 8. So we consider now that 16 hours of CPU time are required
(with M = 22).

Another powerful reduction in computation time is obtained by effectively
reducing the number of basic variables M that are simultaneously coupled in
solving the Box-difference equations. If only the two momentum and energy
equations are simultaneously solved, our computing estimate with M = 8 applies.
Using N = 100, K = 50, J = 50 (i.e., without Richardson's extrapolation), the

o
125-hour estimate is now reduced to 125 x (8/22) = 6 hours. However, the
S = 7 species equations must each be solved and then their updated values
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employed to recompute the momentum and energy quantities. This "inner-outer"
iteration procedure should be required at most three times and probably no more
than twice. Thus, at most 18 hours should be required by this technique.

If we use the inner-outer iterations only to solve the two momentum equa-
tions, i.e., M = 6, and then solve separately the energy and species equations,
the above estimate reduces to about 7.5 hours. This seems to be the most
promising resolution of the difficulty as now the application of Richardson's
extrapolation brings us to about one hour of CPU time for an accurate solution.

We cannot tell at the present stage of development how optimistic or
pessimistic the above estimates may be. We do feel that they are in the right
ball park. It clearly should be one of the major objectives of future work in
this area to test alternatives and to devise the most efficient set of
procedures.
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