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ABSTRACT

Swirling flow in a rotating tube is studied by flow visualization at a moderate

Reynolds number, and its velocity field is measured by laser-Doppler anemometry.

The tube has constant diameter, and approximately uniform initial rigid rotation of

the flow is assured by passing the flow through a rotating plug of porous metal before

it enters the test section. At moderate swirl values, an object mounted on the tube

centerline causes a closed bubble to form upstream of the obstacle, with a clearly,

defined stagnation point on the axis, and recirculating flow inside the bubble. The

bubble length grows upstream as the swirl is increased, until it breaks up into a

Taylor column reaching all the way upstream and downstream at swirl values above

a certain critical value. A vortex jump (in the sense of Benjamin) occurs down-

stream of the obstacle except when the Taylor column is present. Using a laser

Doppler anemometer, axial and swirl velocity profiles are obtained at several

stations upstream and downstream of the bubble, and in and around the bubble.

The experimental velocity profiles, the stream surface plots, and the velocity

distribution on the axis are compared with the corresponding results of solutions

to the equation of inviscid rotating flow.

I. INTRODUCTION

The problem under consideration is that of swirling flow (water, in this case)

past an axisymmetric body of characteristic dimension a. The fluid and obstacle

are contained within a cylindrical rotating tube of radius ro. In its undisturbed

state (no obstacle in the flow) the fluid is in rigid rotation with angular velocity O

and has a uniform velocity WQ parallel to the axis of rotation except in the wall



boundary layer. In the presence of the obstacle a pronounced upstream effect is

observed. We report here on flowfield measurements and the comparison with

numerical results for the case where a stationary closed region of fluid containing

recirculating flow is observed upstream of the obstacle. This region has a stag-

nation point at the upstream end; downstream it is closed by the obstacle itself.

There is reversed axial flow near the axis. Two examples of the flow are shown

in Plate 1. In view of its structure it seems appropriate to call the closed region

a "vortex bubble". Whenever the vortex bubble is present, we have also observed

downstream of the obstacle a rapid transition of the vortex flow to a different

state. This "vortex jump" has all the features of the hydraulic jump analogy of

Benjamin (1967). When the swirl ratio of the flow reaches a certain critical value,

the vortex bubble and vortex jump disappear abruptly, and are replaced by a cylin-

drical column extending through the entire test section upstream and downstream of

the obstacle. This critical value thus divides supercritical flow (vortex bubble)

from subcritical flow (column).

The basic upstream effect was discovered experimentally by Taylor (1922).

Using a sphere of radius a as the obstacle, he observed that for a Rossby number,
w

€ =—P-, less than about 0. 32, a column of fluid, of the same diameter as the
afi

sphere was pushed along in front of the sphere as it moved along the axis of the

rotating fluid. This column has since been called the "Taylor column"; it has also

been studied by Long (1953), who has estimated that fluid is "pushed" ahead of the

body only when e is less than about 0. 23. Pritchard (1969) has termed this effect



the "blocking" phenomenon, a situation in which fluid placed in front of the body

is pushed ahead of it for all time.

Most theories (Morgan 1951, Stewartson 1952, Bretherton 1967) have con-

sidered these flows only when e « 1, ultimately yeilding a stagnant column of

fluid extending far ahead of and behind the body. Studies at larger finite values

of c have been made by Stewartson (1968) and Lighthill (1967); their results have

raised a question as to whether or not there is a maximum value of € beyond which

upstream influence cannot occur. Maxworthy (1970) has reported that a "forward

wake" (as it has also been called by Stewartson (1970) is probably present for

values of e as large as 1.

Greenspan (1968) has conjectured that a column of fluid is trapped in front of

the body (the blocking phenomenon!) at all Rossby numbers less than about 0. 7.

He bases this assertion on his solution of the time-dependent flow of a disk that

moves slowly along the axis of rotation after an impulsive start; in the flow ahead

of the disk there is a stagnation point behind which exists a reversed cellular flow.

Except for the prediction that the stagnation point advances upstream with a

velocity of 0. 675 af?, Greenspan's flowfield follows closely that predicted by

Bossel (1967), and that reported herein.

The flowfield computations of Bossel (1967, 1969) gave closed bubbles of the

type shown on Plate 1. However, for lack of experimental data these computations

This advancement has also been predicted by Benjamin (1970).



were based on an assumed downstream axial velocity profile. In the present paper

the same computational method is again applied using the measured downstream axial

velocity profile, and computed and measured results over the whole flowfield are

compared.

The vortex jump downstream of the obstacle has been previously observed,

perhaps not quite as clearly as reported here. Long (1953) has reported the presence

of a "strong, cyclonic" change in the vortex behavior behind a symmetrical obstacle

moving along the axis of a rotating flow. Stewartson (1970), Pritchard (1969), and

Maxworthy (1970) have considered this behavior to be a finite-transition in the sense

of Benjamin (1967), since it appears as a "jump" from one state of flow to another.

We present here a set of velocity measurements through the vortex jump region.

Miles (1972) has theoretically determined that forward separation should first

occur for a disk at a critical Rossby number of C= 1.05, which is in good agreement

with our observations. Miles also predicts steady-state reversed axial flows with-

in the separation region and a forward stagnation point which only advances rapidly

upstream for Rossby numbers smaller than 0.67, whereas our measurements

indicate Taylor column formation for € < 0. 2.

The measurement of a swirling flowfield requires some caution since the distur-

bance caused by an intrusive probe can be large enough to modify the flow and the

data substantially. The laser Doppler velocimeter is a nonintrusive method of

measurement and eliminates this complication. This technique has been successfully

applied to the present problem. From the resulting data, stream surface plots are



determined by a simple integration. These plots, axial velocity profiles,

and the velocity distribution along the axis are compared with the cor-

responding results from solutions to the equation of inviscid rotating flow.

II. EXPERIMENTAL APPARATUS

1. Rotating Flow System

A diagram of the rotating flow apparatus is shown in Figure 1. The

rotating cylindrical plexiglass test section is 61 cm long with an inner

diameter of 10.8 cm. It is a friction fit into aluminum housings which

each contain a "shower-head" type fixture for dispersing the water as it

enters and leaves the system. To give uniformity to the entrance flow,

two slabs of General Electric porous nickel "Foametal" are inserted into

the entrance housing; these porous plugs have an average pore size of 1.53 mm

and are 2.5 mm thick. The entire unit rotates and is belt-driven by a 1/3-hp

variable-speed motor. Mechanical rotating seals are used for sealing at the

inlet and outlet.

The water system is "closed", and a flowmeter mounted downstream of

the test section continuously monitored the flow rate which was found

steady to ±1%. The rotation rate was monitored and found to be steady

and reproducible.

Axisymmetric obstacles (sphere, disk, etc.) were mounted along the

axis of the test section on a stainless steel rod. They remained sta-

tionary and did not rotate with the tube. Dye was injected through this

rod into the flow at a position centered at the top of the obstacle in

order to visualize the inner flow. Dye could also be injected at the

entrance section to mark the outer flow.



2. Laser Doppler Anemometer

The concept of laser Doppler velocity measurement was first reported by Yeh

and Cummins (1964). Since then it has been reported in many geometrical configu-

rations, and each specific arrangement is usually a result of the requirements of the

problem to which the anemometer is to be applied. The optical design chosen for

this experiment and the associated electronics used for signal analysis are shown

schematically in figure 2. Coherent laser light scattered from a fluid moving with

velocity v is Doppler-shifted in frequency by an amount

Ay = y • (kg - kj) (1)
Ao

where X is the vacuum laser wavelength, and n is the index of refraction of the

scattering medium; k s and k j are unit vectors in the directions of the scattered

and incident waves, respectively. When the scattered and the incident (unshifted)

waves are recombined at the photocathode of a photomultiplier tube, a beat signal is

produced at frequency A v which is linearly related to the average velocity of the

2
fluid within a small scattering volume (for this instrument about 0. 20 mm by

0.5 mm length).

The laser has an output power of 5 milliwatts. Even though it is of relatively

low power, good heterodyning has been obtained by using a series of mirrors

(figure 2) which allows forward-scattered light to be collected by the collecting lens;

these mirrors form an attachment which is mounted to the front of the anemometer.



Figure 2 depicts the anemometer in the "swirl" velocity mode (as applied to

vortex measurements). When the optical arm is rotated by 90° the anemometer

is in the "axial" velocity mode. Refractions of the scattered beam at the water-

plexiglass-air interfaces are accounted for by optical ray tracing; a set of

correction equations are obtained which yield the true radial position within the

test section. The instrument has continuous traversing capability by means of a

fine-thread slide mechanism; reading accuracy of the slide scale is ±0. 25 mm.

The overall instrument resolution which could be obtained was ±0.5 mm.

In order to insure a high scattered-light intensity, polystyrene latex spheres

of 0.5 micron diameter were added to the water; good heterodyne signals were

obtained, and no further investigation was made to optimize the signal by varying

the latex concentration and particle diameter.

Further details of this instrument are available in a report by Bossel and

Orloff (19 7Z).

m. EXPERIMENTAL RESULTS

1. Dye Studies

Plate 2 illustrates the type of flowfield under investigation. Dye has been

injected from both upstream (at the entrance) and downstream (top of sphere). A

retardation of the velocity along the axis was clearly observed, whereas at larger

'radii the flow quickly reached the obstacle. There is also a gradual expansion of

the streamlines, with all of the upstream dye near the axis drawn into a very thin

high velocity layer on the sphere before it passes around to the rear without



separation. As the upstream fluid flows around the vortex bubble the two regions

do not mix, indicating that the bubble is defined by a closed streamsurface with a

stagnation point at the upstream end.

After moving over the downstream side of the sphere in a thin unseparated layer,

the fluid leaves the sphere in a swirling laminar stream of small diameter. However,

•it quickly indergoes a jumplike turbulent transition to a much larger diameter, and

proceeds downstream in a cylindrical swirling wake. This "vortex jump" follows

Benjamin"s (1962, 1967) analogy to the hydraulic jump of open channel flows, which

involves a finite transition between two distinct states of flow. More experimental

evidence for this explanation is offered below.

Of interest is the behavior of the vortex bubble as the swirl changes. Figure 3a

aOis a plot of bubble length against the inverse Rossby number Of = . Data are
wo

given for the length of the bubble after a steady state has been reached for both

increases and decreases in a. In the experiments, with their relatively low Reynolds

numbers (500 < Rez < 1500), hysteresis effects were apparent in the length of the

bubble, but Re — 1450 was sufficiently high to minimize this effect, as demonstratedz

by the reversibility in figure 3a.

Below a value of a— 1.3 no vortex bubble is observed. When the swirl is in-

creased beyond a certain value, the bubble abruptly changes its structure and under-

^Since the axial Reynolds number Rez is approximately 500, this flow without rotation

would result in separation.



goes a transition to the well-known Taylor column at an inverse Rossby number of

about 4. 5. The first stages of this transition are seen as a breaking up of the vortex

bubble, the enclosed dye moving out in sheets to form the outer boundary of the

Taylor column. The column then proceeds rapidly upstream through the entrance

porous metal and the flow becomes completely cylindrical with a diameter near that

of the obstacle. In addtion, the vortex jump at the base of the sphere vanishes at ,

this point and the upstream and downstream conditions become similar.

The inception of the bubble and the transition to a Taylor column were likewise

found to be strongly Reynolds number dependent (Orloff 1971). At the lower Reynolds

numbers the apparent convergence of the flow tube (and the associated pressure

; gradient) due to a greater thickening of the wall boundary layer caused both bubble

and Taylor column formation to occur at higher swirl ratios for decreasing Rez.

r fiFigure 3b shows the swirl ratios, S = -2— , required for transition at variouswo
Reynolds numbers. For very large Rez the trend is toward asymptotic values of

o
the swirl ratio which represent the absence of a wall boundary layer. This same

trend was found by Torrance and Kopecky (1971) in their viscous computations of axi-

symmetric vortex breakdowns in cylindrical streamtubes.

3The early experiments of Taylor (1922) and the more recent of Pritchard (1969)

are for obstacles moving axially through a rotating cylindrical test section (in which

no axial flow is present and hence no wall boundary layer exists) whose interior

fluid is in initially rigid rotation.



Greenspan's prediction of reversed cellular flow for a -1.5 is strikingly

close to the extrapolated value of 1.3 in figure 3a, which according to figure 3b

should be near the inviscid limit. The exact value of a for transition to the

Taylor column is difficult to determine, but it is near 4. 5 as shown in figure 3a.

This is in general agreement with Taylor's often-quoted value of a ~ TT, and Long's

1953 observation of 4.4.

.2. Laser Doppler Measurements

The attainment of an undisturbed flow condition with w uniform and the flow

in rigid rotation is complicated by the effect of a radial pressure gradient induced

by the rotation,

2

dr r

which for rigid rotation is

_E = p fJ r (2)

A laser Doppler study was undertaken to determine if any state of approximately

uniform flow and rigid rotation could be obtained in the experimental flow system.

4
Figure 4a shows the manner in which the axial profile near the entrance was

A limitation of the experimental apparatus was that velocity profiles could not be

obtained immediately downstream of the entrance porous metal; the closest pro-

files were obtained at approximately one tube radius, ro, downstream.

10



influenced by rotation (for a constant flow rate) when no obstacle was present. The

initial increase in velocity on the axis (with increasing fi) is attributable to the

radial pressure gradient of equation (2), but the cause for the subsequent decrease

at higher values of fi is not known. At any rate, for fi = 3.48/sec the flow was

found to be reasonably uniform (wo - 1.5 cm/sec); the axial flow profiles at this

rotation rate were measured and found nearly identical along the length of the

test section (figure 4b). The swirl velocity profiles were also measured and found

to be nearly that of rigid rotation for the length of the test section (figure 5).

Into this undisturbed flow condition was placed a disk (radius 1. 27 cm) with a

conical afterbody (1. 27 cm long). The vortex bubble which resulted for fi = 3. 48

sec and w = 1.5 cm/sec is shown in Plate 3. This bubble was just below the

critical length for transition to a Taylor column. The importance of this fact will

become apparent later.

The flowfield both upstream and downstream of the disk surface was then

quantitatively mapped with the laser velocimeter. The measured upstream axial

and swirl velocity profiles are shown in figure 6. The retardation along the axis

with eventual stagnation and subsequent reversed axial flow agrees with the flow

visualization of Plate 2. In addition, a region of accelerated flow develops outside

of the vortex bubble at about r = 0.2 r with velocities more than twice the free-

stream velocity at the exit station (disk surface).

The swirl velocity profile remains nearly invariant with increasing z, except

very near the disk surface where viscous effects predominate and the velocity must

11



vanish. This lack of response of the swirl profile to substantial variations in the

axial profile is significant and has also been observed and reported by Chigier and

Chervinsky (1967) in the measurement of swirling jets; it is also characteristic

of Bossel's numerical solutions to the equations of inviscid swirling flows which will

be discussed later in more detail.

Profiles measured downstream of the disk surface are given in figure 7.

Upstream of the region where the vortex jump is observed to occur, the axial pro-

file develops much as it did further upstream. The swirl velocity, however, shows

a pronounced increase adjacent to the disk which is thought to develop as the fluid

attempts to converse its angular momentum. Near the jump region, violent

fluctuations in the laser Doppler velocity signal were indicative of highly unsteady,

turbulent flow (shown by flow visualization in Plate 2). Further downstream the flow

was observed to be steady, the accelerated flow region having lost part of its momen-

tum in the turbulent vortex jump. Correspondingly, the increase in the swirl profile

has vanished, and the swirl velocity profile has again become nearly linear.

The stream function for an axisymmetric flow is related to the axial velocity

component by

1 $>w = — -— .r 9r

The experimental axial velocity profiles of figures 6 and 7 were therefore integrated

numerically to obtain the streamline plot shown in figure 8.

12



0* is a nondimensional stream function

where 0(r) =/ wr dr

1 r 2
o o o

The accelerated flow region (converging streamlines) and the vortex jump

are both apparent. Furthermore, one observes that the flow upstream of the

obstacle remains cylindrical for r/ro > . 36, indicating a "core" region within

which the dynamics of the upstream influence are contained.

The velocity on the axis was measured and is plotted in figure 9 as a function

of swirl for rotation rates between zero and 3.48/sec. The effect of the radial

pressure gradient (equation (2)) is clearly evident when the data are extrapolated

to the entrance (the same trend can be seen in figure 4a). It is clear that the up-

stream effect becomes more important as rotation increases, until for fl = 3. 48/sec

the decrease in axial velocity is nearly linear; for O> 3. 48/sec no curve exists due

to Taylor column formation. Extrapolation of this linear profile to the entrance

suggests a characteristic freestream velocity of WQ ~ 0.9 cm/sec. This does not

agree with figure 4b which yielded WQ - 1.5 cm/sec. This discrepancy may

indicate that the flow exactly at the entrance is not uniform, but has been influenced

by the obstacle, its presence sensed upstream through the porous metal. The other

possibility is that the curve does not continue linearly to z = 0.0.

13



If the data for the incipient bubble are extrapolated to the axis, w (z = 0)

= 2. 3 cm/sec. Using O= 1.74/sec and a disk radius of 1. 27 cm one calculates a

w0
critical Rossby number of (^ = ~rT= 1-04, in agreement with Miles (1972) prediction

of 1.05.

IV. COMPARISON WITH COMPUTATIONAL RESULTS

The basic equation describing incompressible, inviscid, steady, rotating axi-

symmetric flow in a Newtonian frame can be written in cylindrical coordinates

(r, e, z) as

92(/) 1 30 a2* dk r2 dpo
- + _ _ -K + ; — (d)

3r r dr Zz* d0 p d0

(for example, see Batchelor 1967) where 0 is the streamfunction chosen to

satisfy continuity; k(0) = rv is the circulation function, and pQ ($)

= p+— (u +v +w) represents the total pressure; u = — — is the radial2t r oz
1 90velocity, w = — -— is the axial velocity.

Considering the order of magnitude of each term in the Navier-Stokes

equation, Bossel (1967, 1969) has determined that equation (3) should be applicable
i

within the central portion of a vortex which closely approximates rigid rotation.

This core is what the apparatus described earlier was intended to simulate.

14



The condition of initial rigid rotation O and uniform axial flow w linearizes

equation (3). Introducing the following set of nondimensional variables,

R = _r_ U = _ u _ •% = . I/)
rc W

0
 worc2

Z = _z_ V = _v_ K = ^r_
Tc wo worc

W= w P = p

wo ^2

one obtains

o o
tt ~ £,

-n

R 3R BR " o

T O

or, introducing the swirl parameter F =

3Z2 R dR 9R2

The general solution to equation (6) has been obtained by Long (1953). Applying

the following boundary conditions to Long1 s solution,

«>We note that equation (6) is elliptic and requires specification of the complete

boundary enclosing the region of interest. However, Bossel points out that

specification of the pressure on the axis may be used as an alternative to

specifying * .
Ll

15



R2
— rigid-body rotation at the (7)

entrance with uniform axial
flow; . 1 2= — w r

2 o

(0, Z) = 0 the central streamline and
the contour of the bubble (7)
are given by 0 = 0

, Z) = - The outer surface of the
vortex core is cylindrical (7)
with $i = 1 at r = r_ 6

c

, L) = #T(R) exit stream function (7)
Li

Bossel (1967, 1969) obtains

2
,Z) = ^-+ R y. C J, (j, R) sinh { Z thin" -(21)" \ (8)2 ^"^ n 1 In

6Since the only requirement for the specification of the core radius is that the

outer streamline remain parallel, a core radius r = 0.36 r is chosen from
C O

figure 8. Discussions of an obstacle of dimension a in an unbounded flow (r -»m)
~~ c

lead to a description in terms of the Rossby number, e, and its inverse, a. In

the numerical approach of this section the obstacle size is inherent in the spec-

ification of the exit axial velocity profile, and the swirl parameter, F, is the

quantity of interest.

16



where the j, are the zeros of the Bessel function J .In 1

The C are Fourier-Bessel coefficients which may be determined, if ty isn L

known, by

0

with

f(R)

1

I f(R) EJ1 (J

•
C = 2 / f(R) RJn (j, R) dR/J 2 (j, J s i n h ^ L V i , "-(2T)" } (9)n .1 1 In o In ' » J i « v ' < v '

- I [*L(R) - I-'

The implication of the above solution is that if we can supply F and ^ (R)
L

from experimental results, then, in principle, the interior flow can be obtained

exactly with the infinite sum in equation (8), and to a close approximation by using

only a finite number of terms. Bossel (1967) has determined that this solution

converges rapidly with increasing n and that the inclusion of terms beyond n = 10

will not significantly change ^(R, Z).

An important feature of the solutions is that for an increasing swirl parameter,
rcn

F = T^—»the vortex bubble increases in length until, for any value greater thanwo

1.91585, the solution becomes subcritical with infinite upstream influence. This

is taken to represent the transition to a Taylor column.

As noted in section IH. 1., the transition to a Taylor column occured for a

value greater than 1.91585 due to the apparent convergence of the flow tube.

Nevertheless, a valid comparison of experiment and inviscid solutions should be

possible if both are set at the point of incipient transition to the Taylor column.

This is done in the following comparison.

17



^ (R) is generated by a Fourier-Bessel reproduction of the measured exitLI

axial velocity profile according to equation (9). The reproduction is given as

w/w vs. r/r ; w is a value which allows the computational scheme to satisfyo c o

continuity. rc and L are inputs which set the scale for the computational scheme.

The inviscid calculations predict that the swirl .velocity should reverse sign

within the vortex bubble. This is definitely not observed - the rotation always

remains in the same sense; therefore no comparison of the swirl profiles can be

made with experiment. It is felt, however, that since the axial and swirl velocity

profiles remain highly uncoupled, it is the presence of the rotation and not its detailed

structure that dominates the development of the axial velocity profile; a comparison

of the experimental and calculated axial profiles should therefore be meaningful.

Axial velocity computations are shown in figure 10. Matching the exit profile

to the computed values required that WQ = 1.3 cm/sec; this is higher than that

indicated by figure 9, but smaller than that suggested in figure 4b. The profiles

match extremely well in the vortex bubble region especially inside of the bubble

where the predicted reversed axial flow agrees well with the measurements.

The predicted streamline plot is shown in figure 11. The predicted vortex

bubble is exactly the same length and shape as that observed. In particular, very

near the disk the bubble expands out quickly over a very small axial distance (less

than a/10) to match the disk diameter. This is also observed experimentally as

shown in Plate 3. It is for this reason that the measured profiles of figures 6,7,

and 10 indicate that an axial velocity exists at the outer portion of the disk, for it was

not possible to make the laser Doppler measurements exactly at the surface of the disk.

18



The numerical scheme can be used for swirl parameters less than 1. 91585,

but one must have data for ty (R). Lacking this data, the exit profile given earlierLi

was used as the input for several different swirl values. In figure 12 the velocity

on the axis is plotted versus downstream distance. Even though ^ (R) may not be
L

correct, the similarity to figure 9 Is striking. Again, as maximum swirl is

approached, the curve becomes linear.

SUMMARY AND CONCLUSIONS

Laser Doppler anemometry has been successfully applied to the study of a

swirling flow with upstream influence and recirculation. The flowfield which has

been nonintrusively measured and reported appears not to have been previously

well-documented except in the limit of Taylot? column formation. We have in

particular studied flows with confined recirculating flow regions (vortex bubbles)

upstream of an obstacle, and the vortex jump occurring downstream of the obstacle.

Our experimental observations and the inviscid compuations suggest that the

vortex bubble starts at the obstacle at a certain nonzero swirl value. It then grows

in length with increasing swirl ratio until, at a certain critical swirl ratio, it is

abruptly replaced by a Taylor column which reaches all the way upstream and

downstream of the obstacle. The vortex bubble flow is supercritical upstream of

the obstacle, while the columnar flow is subcritical. The swirl values for inception

of the bubble and the critical swirl value dividing bubble from column flow are depen-

dent on Reynolds number - lower Reynolds numbers having higher critical swirl

values.

19



The measured vortex bubble flowfield has been compared with the computed

bubble flowfield. The computational method uses the equation of inviscid rotating

flow with initial rigid rotation. In both cases (experimental and computational) the

swirl ratio was that of impending transition from the bubble to the Taylor column

(supercritical to subcritical). The agreement of bubble shape, axial velocity pro-

files, and development of velocity on the axis is very good, leading to the conclu-

sion that the inviscid dynamics almost entirely determine the overall features of

the vortex bubble flowfield.

Flow visualization and velocity measurements downstream of the obstacle

show the existence of a vortex jump if the upstream flow is supercritical. The

inner streamsurfaces undergo a very rapid expansion at the location of the jump, -

which is also marked by strong turbulence. Through the jump, axial momentum

is lost in the inner region. Downstream of the jump the inner flow continues as a

cylindrical (subcritical) column.

The present experiments have dealt with "forced" vortex bubbles caused by

the presence of an obstacle. We have also generated, but not yet measured, "free"

vortex bubbles by appropriate shaping of the external stream surface (expansion

and subsequent contraction) without the presence of an obstacle. Free vortex

bubbles appear approximately at the same swirl parameter as forced bubbles and

appear to be the same physical phenomenon. This is underscored by the fact that

they can also be generated by the same computational procedure used to compute

the forced vortex bubbles.
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LIST OF PLATE CAPTIONS

Plate 1 - Vortex bubbles, showing upstream stagnation point and recirculating

contained flow upstream of (a) a disk (4.30 cm dia) with a conical afterbody

(b) a sphere (3.85 cm dia).

Plate 2 - Vortex bubble ahead of sphere (2.54" cm dia). Dye injected at top of

sphere is contained within the vortex bubble. Dye injected upstream at the

entrance flows around the bubble, through thin layer at the rear of the obstacle,

then is ejected in a vortex jump.

Plate 3 - Vortex bubble ahead of disk (2. 54 cm dia). Measurements of this flow

structure are used for comparison with the numerical solutions. The bubble is

near transition to the Taylor column; w =1.5 cm/sec; ^= 3.48/sec.
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LIST OF FIGURE CAPTIONS

Figure 1 - Rotating flow system.

Figure 2 - Optical layout and signal processing electronics for local oscillator

laser-Doppler system.

Figure 3 - (a) Length of vortex bubble nondimensionalized by sphere radius,
rowo

a = 1. 27 cm, versus inverse Rossby number, a ; Re = = 1450;

w = 2.9 cm/sec.

roO ro
(b) Swirl ratios S = = a —, required for transition at various

wo a

Reynolds numbers, Re , showing asymptotic approach to inviscid
z

values of S as Re -* °°. Obstacle is a sphere of radius a = 1. 27 cm.
z

Figure 4 - Undisturbed flow conditions (no obstacle)

(a) Variation of axial velocity profile with rotation

(b) Uniformity of axial velocity profile along the test section.

Figure 5

Figure 6

- Undisturbed flow conditions - swirl velocity profile for w =1.5 cm/sec.
o

- Velocity measurements; upstream. Measurements of reversed axial

flows are shown within vortex bubble. Disk diameter is 1. 27 cm.

Figure 7 - Velocity measurements; downstream.

Figure 8 - Streamline plot constructed from axial velocity measurements of

figures 6 and 7.

Figure 9 - Measured velocity on the axis versus distance downstream.
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Figure 10 T Computed axial velocity profiles within computational region,

based on Fourier-Bessel reproduction of exit velocity profile.

theory; experiment; w =1.3 cm/sec.
o

Figure 11 - Streamline plot (theory) showing agreement in length and shape

of observed vortex bubble.

Figure 12 - Computed velocity on the axis for various swirl parameters and a

fixed exit profile.
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