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ABSTRACT

The consequences of the earth's elasticity are examined for close-earth satellites.
The ideas of polar motion and earth tides are developed in a form applicable to satel-

lite studies, since the polar motion, the body tide, and the ocean tide are all suitable

for study by use of satellites. Analysis of available polar-motion data is performed.
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INVESTIGATIONS OF EARTH DYNAMICS FROM SATELLITE OBSERVATIONS

Final Report

.1. INTRODUCTION .

The principal aim of this grant, initiated in 1969, was to explore the use of

precision satellite-tracking data for studying the rotating elastic earth, i. e., polar

motion, earth tides, and related phenomena. The data available were camera observa-

tions taken for geodetic purposes, with a limited amount of precision laser tracking

data. These tracking data had been used in the determination of the 1969 Smithsonian

Standard Earth (II) (GaposchMn and Lambeck, 1971).

This study had the following aspects: 1) Theoretical investigation of polar-motion

dynamics; 2) assembly of some mathematical tools; 3) study of the consequences of

polar motion and tidal deformation on satellite observations and orbits; 4) incorporation

of these effects into the Smithsonian Astrophysical Observatory (SAO) geodesy programs

where appropriate; 5) analysis of polar-motion measurements made by classical astro-

nomical methods; 6) assembly of the available tracking data for polar-motion deter-

mination; and 7) determination of polar motion based on satellite observations.

The principal results are as follows:

1) Improved values of polar motion and tidal parameters can be obtained from

analysis of satellite-tracking data. Polar motion is most easily determined from

kinematic effects, and body tides are most easily determined from analysis of satellite

perturbations.

2) Analysis of existing tracking data gives reasonable results for tidal parameters,

but the determination of polar motion was not possible with the data and orbits avail-

able at that time.



3) Polar motion and the motion of the principal axis of the earth can eventually be

studied through satellite determination of C01 and S01. The orbital effects are approx-
^ J. £t 1

imately 1 m.

4) The body tide is most easily studied through the gravitational perturbation of

satellite orbits. An important contribution to the tidal perturbation of satellite orbits

comes from the ocean tide. There is so little agreement as to the size of the second-

degree global ocean tide that it must be considered unknown at this time. Consequently,

certain components of the ocean tides may have to be determined from satellite obser-

vations.

5) The ocean-tide effect has been ignored in previous work on the determination

of the body tide. Its size could explain the variety of numerical values for the Love

number k_.



2. POLAR MOTION AND EARTH TIDES

Polar motion and earth tides depend on the elasticity of the earth — more precisely,
on the rigidity |j. The theory for polar motion, i. e., free nutation, for a rigid body
was worked out by Euler. Using the precession to obtain (C-A)/C, Euler predicted a

period of free nutation of 307 days. Attempts to observe this free nutation were
unsuccessful until 1890, when Kustner demonstrated the existence of periodic variations

of latitude. Shortly thereafter, Chandler showed the period for free nutation to be
approximately 430 days rather than 307. Newcomb then demonstrated that the elasticity
of the earth would lengthen the period of rigid-body free nutation and estimated the

rigidity to be approximately that of steel or glass. Poincare found the effects of the
liquid core would shorten the free period, and Lord Kelvin demonstrated that the oceans
would lengthen the period. The principal reference on polar motion and its geophysical

consequences is Munk and MacDonald (1960).

The theory of forced nutation, assuming a rigid earth, was completed by Oppolzer
in 1882. Schweydar concluded that the elasticity would not have any other effect on the
nutation. The theory and discussion by Woolard (1963) of the forced nutation is most
complete. An excellent reference on this subject is Federov (1963).

In 1876, Kelvin discussed the effects of earth deformation on the ocean and
body tides. George Darwin and others attempted to measure the body tides. Darwin,

in 1883, conceived of using the measured ocean tide itself, i.e., the difference between
the absolute ocean tide and the absolute body tide, to establish the amount of body tide.
Using long-period ocean tides (mostly monthly and semimonthly lunar tides), he found

the amplitude to be two-thirds of the rigid earth tide and computed the rigidity of the

earth of be the same as that of steel. A fine reference for body tides is Melchior (1966).

The interaction of body tides, ocean tides, and polar motion has never been com-

pletely understood; in some ways, our knowledge of the elastic and dissipative processes
in the earth is not much advanced since the time of Kelvin and Darwin. Dissipation



presents a particularly formidable problem. The polar motion would decay to zero
without continuous excitation, yet no energy source seems capable of providing sufficient

energy (see Section 9). Similarly, body-tide observations with tidal gravimeters,
though extensive, are not sufficient to indicate how much tidal lag there is in the solid
earth. The time scale of the earth-moon system, given the current rate of lunar

deceleration, is too small by a factor of 2 or 3. Dissipation from the solid earth
would be continuous over geologic time, where the contribution from shallow seas

would depend on their distribution.

A general theory for ocean tides has never been formulated. The ocean tide is
enormously complicated owing to irregular boundaries, loading, dissipation, and the
necessary inclusion of inertial effects. Several recent papers are quite inconsistent

in terms of the assumptions made and the results given. Compare, for example,
Hendershott (1972) and Pekeris and Accad (1969); Hendershott and Munk (1970) give a
general criticism of the subject. On the other hand, satellite orbits are sensitive to

the ocean tide (see Section 8), and these tidal terms must be included to compute
orbits of the highest precision. It is therefore imperative that the questions about

ocean tides be resolved, perhaps by use of orbit analysis.

We will see that satellite measurements allow some unification of the effects of
the earth's elasticity. The determination of polar motion will be accomplished from

kinematic effects, and the solid-earth and ocean tides will be determined from gravi-

tational effects.



3. DYNAMICAL PROPERTIES OF POLAR MOTION

The mathematical formulation of polar motion and body tides is most easily

developed from the Liouville equation (Munk and MacDonald, 1960; hereafter referred
to as MM, p. 10). Following MM, we adopt a set of geographic axes because they

have a precise realization in terms of the position of observing stations. As long as

the deformations and motions are small, we can treat the Liouville equation in the
form:

where

rr — , > / \ — — /Q 9\\J ~~~ ~̂ ^̂ ^™ '̂™ (jj II — ™ . . \O» £tt
T* A ^ Mi"

and

(C - A) </

"e C23

e C33 - Weh3 + "e L3 dt

'

"e J

The definitions are given in Chapter 6 of MM.



We have

A
I =

'1

1
"2

, the direction of the spin axis,

or approximately the direction of the angular momentum of the earth; A, B, and C are
the principal moments of inertia; c.. are the small contributions to the inertia tensor

due to deformation; oo is the rotation rate of the earth; and h. and L. are the components
G 1 -1

of momentum and torque.

In this study, we are not interested in the momentum and torque contributions, or

the variation in the rotation rate. By introducing the complex variables

(3.4)

where

the equations reduce to

it + a i = a <fa .r rr '
(3.5)

ffr* = X C13 + 23 23

• *

Assuming a rigid body, we have c = c = c = c = 0 and

WV1 »**
t - ia i. = 0 ,r '



which has the solution

-ia t
= Cle + C2 ;

c,, c are constants. The free period
1 ^

T = A / ( C - A ) / u > e .. . .e

If co ~ 1 revolution per day and (C - A)/A is obtained from the precessional constant
6

H = (C - A)/C = 0. 0032729, i. e., (C - A)/A = (1 - H)(C - A)/C = 0. 003262, we have

a free period of 306. 5 days, the result Euler obtained.

The deformation of the earth is a complicated problem in elasticity. We consider

forces as derived from disturbing potentials. A. E. H. Love introduced some dimen-

sionless parameters that summarize some of the earth's elastic properties. Their

detailed theoretical computation has been carried out by Takeuchi (1950), Longman
*

(1963), and Farrell (1972). These numbers are defined in the following way. The

displacement of the ground due to a potential of degree n is

n (surface) .,' ,— Un , (3.6)

and the additional gravitational potential due to the motion of mass is

/a \2n+l
k U I —) (3.7)n n \r / v '

If the force loads the earth, e.g., the ocean, then h' and k' are used. The response

of the earth to deformation certainly changes with position. Kaula (1969) considers

the Love numbers expressed in spherical harmonics.

*
There is no direct way to measure k and h by terrestrial means. Only the linear
combinations 1 + k - h from the deflection of the vertical and 1 + h - (3/2)k from
gravity. However, k£ is determined from the free nutation. The results are not
altogether consistent, and interpretation is complicated by the freo^iency dependence
of the Love numbers owing to resonance effects with the core. We can say that
k0 « 0. 3 and h0 « 0. 61 and that k0 < 0. 504 h0 (Melchior, 1966).



The displacements due to rotation about S. , H , H are the same as those due to
± & O

the potential of second degree:

x, y, and z being the coordinates of the displaced point. The first term adds to the
oblateness and does not concern us. The second term gives rise to the additional
external gravitational potential

(3. 8)

MacCullagh's formula (Jeffreys and Jeffreys, 1956) gives the gravitational
potential due to a deformed earth:

V - G
"M6

r

, (A + B + C) r2 - 3 (A x2 + By2 + C z 2 + 2-c23yz

2r5

+ 2 c 1 3 x z + 2 c 1 2 x y

Comparing terms, we have
2 5

(3.9)

2 5
"e e

2 5

a =-k,2 3G

(3.10)

Inserting these into Eq. (3. 5), we have

**" •*•
(3.11)



giving

i(A + a) T+ co (C - A - a) T= 0 . (3.12)
6

This differential equation has the solution

T= Cle~ l t /T + c2 , (3.13)

with the free period

A + a /o i / i \T = o , e ( C - A - a ) • <3-14>

If we now take the free period as given by latitude observations, then the Love
number is determined to be k = 0. 29. Further consideration of these equations could

shed more light on the dynamics of polar motion.

Before going on to the main body of the report, let us raise several points that

will be useful later. Kelvin has shown (MM, p. 29) that for an incompressible

homogeneous sphere of rigidity \i,

k = - - , (3. 15)
n d (n - 1){1 + (j[2(2n + 4n + 3)/19n]}

where the dimensionless rigidity [a is related to the rigidity by

It is from this formula, by use of the Love number obtained from the Chandler motion,

that the rigidity of the earth was initially determined.

We can introduce dissipation into these equations by use of a complex Love num-

ber (MM, p. 153):



"**

Using k in the previous equations includes the effect of dissipation.
^ -

It is now instructive to consider a simple solution of these modified Liouville

equations . If we let

a5
e

3G

co2 a5

A'= A + K ,

where

jb ( ) denotes the real part of ( ) ,

then Eq. (3. 12) takes the form

(A' - irK)T- i(C - A'+ iFK)T= f(t) . (3.19)

The homogeneous solution is, of course,

S. - (const) e C + another constant ,

where

- C - A> + irK rr = "1? rr = A> (C " A/) " (Kr)2 nc ~ A ' - i F K ' n J2« c (A'- iKF)(A'+ iKT) ' (

10



Now, for a forcing function

ia , t
f (t) = a e a

we have the particular solution

(3.21)(A'- iKF)[ad - or +i(KF/A')] '

We can write the real part of the frequency as

a = [(C - A')/A'] - (FK/AQ2

n [1-f (FK/A')2]

Fork0 = 0.3, co = 0 .7X 10~5 sec'1, a =6 .3X10 8 cm, G=6 .67X10~ 8 , |j=2.3,
e 44 6 -^

Q = 30 to 500, A = B = C ~ 8 X 10 , and (C - A')/A' * 1/430 « 2. 3 X 10 , we have
-5FK/A' « 10 . Therefore, the dissipation has no effect on the free period, and

further, the amplitude of the forced motion is controlled by the KF/A' term.

The natural decay time is also determined by

2 5 2

A/ 6GQ(C/Ma2) Ma2 6GQ(C/Ma2)
e (3.23)

„ 1.2X 10~3

Q

The decay time is

T = _ x 103 days = - years . (3.24)

11



Finally, we wish to make a correspondence between the contribution of the defor-
mation to the external gravity field expressed by Eq. (3. 9) and the form of the poten-

tial used to develop orbital perturbations. It is customary to write the external
potential as

V = GM
cos slm Sin mX)

f=2 m=0

(3.25)

where the P. (sin cf>) are fully normalized associated Legendre polynomials, i. e.,

/ P2 (sin*)!'
Sphere

rsinf|_cosj mVcos <j> dc)> dV= (3.26)

If we let x = r cos 4> cos \, y = r cos <|> sin X, and z = sin•()> in Eq. (3. 9) and compare them

with the expressions in terms of Legendre polynomials, we find, for example,

/2 5
P21(sin c})) = 3 y •£-- sin <j> cos 4> ,

2 r2 -yz = r cos cj> sin <|> sm X = P , (sin (f>) sin X
X

Therefore, we have

9" 12 e e 1
GM

(3.27)

GM

12



4. POLAR MOTION AND EARTH SATELLITES (KINEMATICS)

We now turn to the observable effects of polar motion on satellite orbits and

satellite observations. We will consider first the kinematic effect on observations

of satellite positions. Then we will explore the orbital perturbations arising from

variations in the mass distribution, i.e., gravitational perturbations.

Consider a reference system established with respect to some arbitrary point
on the earth's surface. This point is chosen to be near the spin axis of the earth,

and we will choose for this discussion the Conventional International Origin (CIO).

Aside from tides and crustal motions, which we ignore here, the observing stations

are rigidly fixed with respect to this point. Each station has its geographic latitude <j>.
The realization of the position of several stations in this reference system is the

subject of geodetic research. Satellite-tracking data have been very important in
achieving a consistent set of coordinates (Gaposchkin and Lambeck, 1971). The actual
values of the station coordinates establish the origin in an analogous way to the mean
observatory of the International Latitude Service.

Consider one such station, point A in Figure 1. The terrestrial system has its
A

pole (the CIO, for example) in the direction of P, which is at an angle x with the spin
axis <£>. The spin axis is approximately the same direction as the angular momentum

L of the earth. It is the angular momentum of the earth that is constant, as we are
assuming no torques. In the classical Poinsot construction, the spin axis is f • x

from the direction of L, where f is the dynamic flattening. With 1/f = 298, and
-6 -9x ~ 0. 5 X 10 radians, the difference is 1. 6 X 10 radians or about 1 cm at the

pole. We assume the spin axis is fixed in space.

Consider a satellite with inclination I. The inclination is defined with respect to

the inertia! reference system defined by L. If we assume that the satellite's orbit is
well known and that it can be observed at any point in the orbit, then we make an obser-
vation from A to S and 12 hours later from A' to S'. In the first case, the angle AOS is

$ + I - x, and in the second, <J> - I - x. Using the adopted values of (j>, we determine x.

13
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w = L

Figure 1. Kinematic determination of pole position.

This is the projection of the pole position on the meridian of A. A station 90° east or
west would determine the other component. We note that <j> - x is an apparent change
in latitude that leads to the occasional use of latitude variation as a synonym for
polar motion.

A polar satellite would be used in the same way. Instead, we would determine

v + co - x + I and v + co - x - I. We see that a satellite at any inclination can be used,
the accuracy depending on that of the combination of along-track v + co and cross-track

I components. The inclination of a satellite is inherently more accurately known, so

the optimum procedure is to make observations at the point highest in the orbit when
this point is in the meridian of the station.

This analysis has been simplified by considering only observations in the meridian.
Generally, a station will have observations through 10 to 20° longitude, and a single
station will provide some information about both components. This will be more

14



apparent when we consider determination of pole position as part of the process of
orbit determination.

Finally, since the polar motion gives rise to diurnal variations in the apparent

latitude (j> - x, the principal corruption in pole position determination comes from

diurnal errors. There are important diurnal perturbations in the satellite position
from the first-degree tesseral harmonics. Therefore, these C. , S. , f. - 3, 4, ..

J 9

geopotential coefficients must be especially well determined.

Ultimately, when orbital uncertainties are reduced, the possibility of diurnal

effects in the observations will become important. Environmental conditions at a
station have very strong diurnal variations.

To determine the pole position in the context of orbit determination, we consider
the expression relating the observation and the computed satellite position

p = r - R . (4.1)

Here, r is the position of the satellite and R is the position of the observing station.
The observation equation for direction or range observations is derived from a projec-
tion of this expression. For example, the range is determined from

A — A .— T;.
P = P • P = P • (r - R) (4.2)

The determination of any parameter p entering r or R is obtained from dp/dp. The

coordinates of the pole x, y enter R as

R =

"cos 0 -sin 9 0"
sin 0 cos 0 0

. 0 0 1

0 -x"

1 y

Y 1

X (4.3)

where 0 is the sidereal angle, the X are the rectangular coordinates of the observing

station in an earth-fixed system, and the x, y are the coordinates of the pole given in

the convention of the Bureau International de 1'Heure (BIH). The coordinate x is

15



positive along the Greenwich meridian and positive y is to the west, i. e., in the

opposite sense to the y coordinate of the station. The partial derivatives easily

follow:

dx

z cos 9

z sin 9

-x _
' ar

z sin 9

-z cos 9

y
(4.4)

It remains to consider if these observation equations are in themselves singular

and, further, if the resulting set is singular when they are augmented with equations

for orbital elements. Both questions can be answered negatively from the following

considerations.

The normal equation for the system itself for one station is

n n
• v • > 2 2 2 2 2
} ^ (z cos 9. + z sin 9. + x )

2 2(z cos 9. sin 9. - z cos 9. sin 9. - xy)v 1 1 i i J '

n n
> v > 9 2 V > 2 2 2 2 2
y (z cos 9. sin 9. - z cos 9. sin 9. - xy) y (z cos 9. + z sin 9. + y )

= n

2 2z + x -xy

L -xy
2 ^ 2z + y

(4.5)

with determinate

2 2nR z ,

which is zero only if the station is on the equator. This does not mean that we cannot

determine polar motion with an equatorial station, only that we cannot separate the

x and y components. The component along the meridian can be determined.

16



We observe that the correlation between x and y is proportional to xy and can be

reduced to zero by placing the station with either x or y = 0. This is intuitively

reasonable, as the component along the meridian of the station is most easily deter-
mined. By choosing x or y = 0, one decreases the correlation and improves the

determination of the component along the meridian at the expense of the accuracy of

the orthogonal component. The element of the normal system corresponding to the

orthogonal component is minimum and results in a maximum variance .in the inverse.

Since the data are taken at arbitrary times, the geometry of the observations

controls the part of the normal system relating the orbital elements. In general, we
can expect (and in fact find) no singularity in determining pole position with orbital

elements.

17



5. POLAR MOTION AND EARTH SATELLITES (DYNAMICS)

In the theory of free nutation, we found that the elastic deformation that lengthens

the period of free nutation also gives rise to tesseral harmonics C , and S?1, which

depend on the pole positions t, and !-„. Can we hope to determine these coefficients
J. £

by satellite perturbation analysis and recover the pole position?

The orbital system defined by the direction of L is the system in which we study
orbital perturbations. The gravity field is expressed in the system of principal axis.

We want to explore the consequences of orbit determination in which the geopotential
is moving. The dominant part of the anomalous gravity field is due to J = -/5X C Q.
We assume the system of principal axis has coordinates £, 17 with respect to L. In

the principal-axis system centered on £, r\, the gravity field can be approximated

by

v = GM
2

(5.1)

We could use the general transformation of spherical harmonics to find the expression
for V in the system oriented along L. However, if we assume £, T) to be small, a

simple expansion suffices and we have

P20(sin V) = /5 (| sin2 <>' - ±) = /5 (f z'2 - |

In the orbital system,

z'= z - £x - rjy

19



and

/
/ O o 1

P?0(sin d/) = /5 ( -~ z - — - 3 £xz - 3rjyz +

= Pon(sin d>) - ^/"3 P01(sin cb) cos X - rjV"3 P0 .(sin AV sin X ,
^JU 21 ^1

(5-2)

so we have

v2
' " '" cos

(5.3)

Therefore, the motion of the principal axis appears as tesseral harmonics of
degree 2 and order 1:

(5.4)

The gravitational potential sensed by the satellite in orbit referred to L contains the

terms

k-o^a3*.
- 2 e e 1

/I5 GM
(5.5)

k2weae^2
91 90 ''Z1 * v^!5GM

Using quantities known with sufficient accuracy, we have

C21 = °'838X 10~ % ~k£ °-893X 10

S91 = 0.838 X 10 3 TJ -k_ 0.893 X 10~3 I
£ -L ^

(5.6)

20



If we can choose the origin of the geodetic system to be the same as the principal axis,

which is not the case for the CIO, then £ = t., r\ = & „, and the values become
J. £i

2 i ~ vv" UCMJ xxo v* Ul/0-' * I x Ml

.(5.7)

o i ~~ \« •<-"•"-' ixo "•>-"'«'/ •"•a'N '"

C01 - (0.838 -k0 0.893) J!, X 10 ,

S01 = (0-838 -k0 0.893) i0X 10 ,

with the elasticity reducing the effect by about one-third. The minimum effect would be
zero for k = 0. 936, i.e., if the Love number was "the fluid Love number (MM, p. 26).

<u

If we assume i , = £ = 0. 5 X 10 and k = 0. 30, we have

Until now, this accuracy has been achieved only for the zonal harmonics of the geo-

potential (Kozai, 1969). Zonal harmonics cause long-period and secular perturbations

that can be averaged for months or years. For close-earth satellites, the tesseral

harmonics C01 and S01 give rise to diurnal perturbations. These perturbations will
4J J. ^ JL

have the same frequency spectrum as do all the first-order tesseral harmonics.

Synchronous satellites are also sensitive to the first-order coefficients. These
synchronous satellites will be in the resonant state and the orbital effects considerably
amplified. The use of synchronous satellites to study the polar motion has been pre-

viously discussed by Gaposchkin (1968) ;

We consider the use of laser retro reflector satellites as the optimum method for

determining the geopotential today. Table 1 contains the amplitude of the perturbation

for the seven existing laser reflector satellites and the nominal orbit of Geos C. The
perturbation is estimated by using the approach given by Gaposchkin (1970).

The principal perturbation due to C01 and S^, has a diurnal variation, which is
Lt J. ^ J-

the same frequency as the kinematic effects (see Section 4) . The 1-m perturbation
-5 6comes from a 0. 5 X 10 X 6 X 10 m = 30-m polar motion. We can imagine a process

where we determine i , and I from the kinematic effects and then use them in
J. Li

21



Eqs. (5. 7) with a nominal value for k . We can then redetermine i. and ^_, using2t I £
these values of C01 and S01. Since the error in computing the perturbation is 1/30

4j L & L
the error in the assumed position of the pole, the process will converge.

Table 1. Perturbations due to~C and S with S. = 0. 5 X 10~5 and k = 0. 30.
£ J. •£.! J. S.

Satellite Inclination a (Mm) Eccentricity Amplitude (m)

6406401

6503201

6508901

6701101

6701401

6800201

7010901

BE-B

BE-C

Geos 1

DIG

DID

Geos 2

Peole

Geos C

79°

41.

59.

39.

39.

105.

15.

67

69

17

36

96

43

80

0

7.

7.

8.

7.

7.

7.

6.

7.

360

502

074

319

603

708

999

28 .

0.

0.

0.

0.

0.

0.

0.

0.

013

025

071

051

084

032

017

006

0.

1.

1.

1.

1.

0.

1.

1.

70

41

07

51

40

88

20

12

The analysis of pole position,by using values of C and S determined by satellite

perturbation analysis, can be approached as follows. We imagine employing a satellite
with minimum sensitivity to the gravitational perturbations, i.e., BE-B or a high,
heavy satellite such as Lageos, to determine the pole position. Then, by using the

gravitational perturbations of a sensitive satellite, such as BE-C, DIG, or DIDj we
can determine C?, and !§„, as functions of time. We can then: 1) Assume a value of
k? and determine £, n from Eq. (5. 5) or (5.6). 2) Assume a value of |, TJ, say

*• i ~ £> ^ o ~ ~n> anc^ determine k0. The temporal variation of k0 could be investigated,J. & & £
(Gaposchkin, 1968,1972)- 3) Assume a particular form for the variation of 4, r]} e.g.,

4 = £0 cos cot, r\ = T]n sin cot, and determine £0, TJO and k . This would require a
long series of data, several oscillations, i.e., several years.
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6. BODY TIDES AND EARTH SATELLITES (KINEMATICS)

The application of an external potential of degree n, U (r,<(>, \), causes the surface
of the earth to move vertically by an amount

(see Section 3). Now, U2 can be written (MM, p. 68) as

a4
o i\/r' n

The largest term is M with b = 0. 908, and we have

2
AT., =h 0 (53.7 cm) 0.908 _2- cos 2(\ - \> - 79° 8 + \)

By using the rough value of h = 0.61,

ArM = 14. 9 (cm) cos2 cf> cos 2 (XQ - \' - 79°. 8 + X)

We see that the kinematic semidiurnal raising and lowering of the observing station

is 14. 9 cm, which is maximum on the equator. Takeuchi (1950) has computed the
complete deformation by use of a model earth and obtains 22 cm for the total change.

We conclude that only when observations and data-analysis capability reach centimeter
accuracy will this effect be observable. The current value for h0 has sufficient accu-£
racy to be used as a preliminary number in the reduction of observations.
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The previous calculation was based on uniform properties of the earth. There
are local variations; for example, tectonic conditions can control the deformation

due to atmospheric pressure. With certain pressure distributions, the vertical

movement amounts to 15 cm in northern Europe (Tomaschek).
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7. BODY TIDES AND EARTH SATELLITES (DYNAMICS)

We have defined the additional potential due to the deformation from a potential

U asn

AV = k U —n n n \ r

2n+l

(7.1)

The total potential acting on the satellite is then

n

2n+l

Un (7.2)

The potential that acts on the satellite owing to the moon (or sun) can be written

V = GM' -r -1 r • r'
(7.3)

where r and r' are the position of the disturbed body (the satellite) and the disturbing

body (the moon or sun), respectively. We can write

0=0 m=0 r

where r, $,\ are the spherical coordinates of the satellite and the primed symbols are

those of the moon (or sun). To calculate orbital perturbations, we will use the

gradient of Eq. (7. 4) with respect to the satellite position, and we can drop the I = 0
__ o

term. The i. = I term just cancels the (r • r')/|r'| , so we have for the third-body

potential
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v' = GM'
1=2 m=0

ri -
r

t

(7. 5)

Therefore, the potential acting on the satellite, including the tide, is

. ,,. im(X-X')

(7. 6)

To include the effects of the tidal phase lag, one introduces a fictitious moon lagging

the real moon by At. In this case, we cannot write the disturbing potential in such a

compact form. We proceed, assuming At = 0, i.e., no phase lag, the revision of the

theory being relatively straightforward if lag is desired, either by use of At or a

complex k .

To develop perturbations in satellite position, we have to express the potential

in orbital elements. The first step is through the relation (see Appendix 1)

(7.7)

p=0

which gives

f-2 m=0 p=0 p'=0

(7.8)
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where

tfi = (* - 2p)(v + to) + (& + 2p')(v'

by noting

The final step in expressing Eq. (7. 6) in Kepler elements involves expressing

TT { Inrv as a series in a; Kaula (1966) gives formulas for

l+la q=-oo

A more general form is given by Plummer (1918, p. 44):

rneimv = an V x£ m(e)

q—-oo

where A ' m(e) are known as Hansen coefficients. There is a classical development

for A ' (e) given in Plummer, where

( q - p - n - l , - m - n - l , , - p - » + I, p2) ,

q - p - m > 0 , (7. 11)

(Eq. cont. on next page)
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F , - q . p - n - l ,

q - p - m < 0 ,

- n -1, -m - n -1, 1, (T) , q - p - m = 0 , (7.11)

P =
1 +

in the notation for a hypergeometric series. These may suffice for theoretical

studies. For practical problems, we prefer the expression as a polynomial in e.

Andoyer (1903) developed a recursive method for computing this polynomial, which was

rediscovered by Izsak et al. (1964). Cherniack (1972) gives the practical details

for computing the X11' m(e).

By using Eq. (7.10), V becomes

v' = ]CZ}
2=2 m=0 p'=0 q=-oo q'=-o

where

(-1)
+m

X
k a2jC+1

,a

and

ip= qM + q'M' + (t - 2p)co+ (I - 2p')J + m (£2- J2') .

q'

(7.12)
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Considering the size of the perturbations, we chose to use a linear theory

developed in terms of the Lagrange Planetary Equations (LPE). These are given in

Kaula (1966):

dcj - cos I - 21/28R (1 - e) aR_
dt 2. 2. 1/2 . T 81 2 8e 'na (1 - e ) ' sin I na e

8R
dt 2. 2. 1/2 . T 31 'na '27, 2.1/2 . T(1 - e ) ' sin I

dl _ cos I 3R 1 3R
3

(7. 13)

dt 2 . , 2 . 1 / 2 ~ 3u ~ 2,, 2.1/2 . T an 'na. (1 - e ) ' sni I na (1 - e ) ' sm I

de _ 1 -e2 8R_ (1 - e2)1/2 3R
dt "na2e 9M " na2 e 9"

d_M =- _ 1 - e2 _8R 2 3R ,d t = n~2 8 e "n a 9 a

da =_2_ 9R
dt na 3M

By using Eq. (7.12) for R in (7.13) and integrating, we obtain the lunar or solar

perturbations. They have been developed by Gaposchkin et al. (1973) by use of computer

algebra, and we will not give the full expressions here. From the argument ip, we

observe that there is a rich spectrum of perturbations. The orbital effects are large

for those terms involving slow rates, i. e., q = 0.

With respect to tidal studies, Kozai (1970) has used the n - ft' terms, which have

a very long period. Using these terms requires careful study of all long-period

effects. The principal difficulties arise from radiation pressure and drag and are

complicated by our imperfect knowledge of the satellite aspect, characteristics, and

the atmospheric density. For this reason, we concentrate on the two-week lunar

tides. Though the orbital effects are smaller, the other effects are manageable and

the theoretical difficulties are reduced.
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We estimate the size of the direct lunar perturbation as

,'X2

' — ~ 1. 5 X 10 « 120 m ,

where ,

_M!
^ M '

which is quite a good estimate. The tidal effect is k (a /a) times the direct effect
and is about 15 m.
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8. OCEAN TIDES AND EARTH SATELLITES (DYNAMICS)

The observations of ocean tides are extensive, but mainly along coastlines. The
theoretical treatment of ocean tides remains a fundamental problem. Hendershott and
Munk (1970) give an excellent review of this subject. For our purposes, we note that

the bulk of the tide observations are taken on coastlines that have very important
boundary effects, and that all treatments existing today are inadequate in one way or
another. Although there is superficial agreement in the cotidal charts, the spherical

harmonic coefficients differ by more than 100% and are often different in sign. Only
a few terms in the general tidal development are important for satellite perturbation

analysis, since in exactly the same way that the satellite is a frequency filter for
the gravity anomalies, it selects only a few of the tidal terms.

Most of the tidal theory has been worked out for the M tide, the principal semi-
^diurnal tide (Pekeris and Accad, 1969; Hendershott and Munk, 1970; Hendershott,

1972). It is the two-week tide, in the inertial reference system, that would arise from

the moon in the earth's equator.

Current determinations of the low degree and low-order terms in the tide are quite

inconsistent. An equilibrium theory, which surely is inadequate, predicts the
12)̂

P 0(sinc}>) e tide of 30 cm. Pekeris and Accad give a solution in terms of a number
2i&

map. Lambeck and Cazenave (1973) have determined by harmonic analysis an

amplitude of 4.4 cm and a phase of 330°. Hendershott gives an amplitude of 50 cm.
We can only comment that these estimates roughly agree as to the order of magnitude.

For further analysis, we assume a tide raised by a disturbing body in a reference

system centered at the earth's center and oriented toward the disturbing body. We
have I/A from Eq. (7.4), and the tide raised is developed in spherical harmonics:

£=# > . U o™ P,«,(sin<|>") e , (8.1)
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where

(8'2)

If the tide is static in this system, it follows the disturbing body and . is
constant. If there is no lag, then S. = 0. The external potential due to this tide,

including the loading effect, is

f.+2

where p is the density of the water, Id is the Love number for a deformation that
CO *

loads the earth, and cj>" and \" are the coordinates of a point referred to the position
of the disturbing body. The quantity ((>" is measured from the lunar orbit and \" is
measured from the position of the moon v' + u' in the lunar orbit. If \' is referred to

the lunar node, then \' = \" - v' - a/ . We can express this potential in the inertial

system by using the transformation (see Appendix 1)

P im<8in«>')

s=-

(8-4)

We can now express the potential due to ocean tides in the orbital elements of the

satellite as

oo i s. a
jy? \-^ -\v = Jf >

t=2 m=0 s=-.
where

,. m

(8.5)
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in which

(8-6)

Similarly, if we can take the definition of the M tide with I' = 0, we have

m2T T ^ I / I X X V T T < S

where

jf=2 m=0 p=0

(8.7)

m_ , i
• V, =F. (i) D. (I) ew v '

With this expression for the potential, we can use the Hansen coefficients, Eq. (7. 11),
to express it in Kepler elements and then put it into the LPE, Eqs. (7. 13). Inte-

grating the resulting equations gives the perturbations due to the ocean tides:

« 8)
a - " 2* + 1

e

qM + q' M' + (i - 2p) o>+ m (£2 - J2' - co') ,

(8.9)

qn + q' n' + (I - 2p) w + m (f2 - f2' - co') ,

i'2pfe^ X°'mfe^ S_(e) Xq' (e } • '

(8.10)

(Eq. cont. on next page)
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6e4mpqq'

4+2

4m
D

na e
X°'m(e')Xq' (e >

9 2 12 e
X [(1 - e )q - (4 - 2p) (1 - eV/H V

4mpqq , =X d)1^'1 rlm
g-e2)1/2 d Y-

de q '(e)

cos IX * 1}l 2p (e)

sin I (1 -e2)1/2

^ ld_ D m
dl D4mp(I)J

5l4mpqq'
<L ') [(4 - 2p) cos I - m]

'4m
(1- e2)1/2 sin

,4-m-l e q
'4mpqq' <*<*-w L 4m

— DD

6M4 mpqq'

4+2
e D ml 1 " ̂  \±- x^4+3 D4mp(I) ) e de q

J. 10)
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We have given the formulas for the M tide caused by a fictitious moon in an&
equatorial orbit. These formulas are easily extended to a tide oriented in the plane

of the lunar, orbit. We would use the potential given by Eq. (8. 5). We acquire another

summation index, and the formal expressions for the perturbations would be

with

= qM + q' M' + (I - 2p) co+ sft - m(u/

and

ip = qn + q'n' + (j? - 2p) <L + sf2 - m (w' + Q') ,

with £ a generic element.

It has been convenient to develop the theory for orbital perturbations in complex

notation. It is easy to utilize these formulas as given by automatic use of complex

variables in modern Fortran compilers. To work in terms of real variables, one

can easily separate the real and the complex parts of (£» . , (i) , k», e ™; the other

variables that appear are real.

It is instructive to determine the ocean-tide equivalent of the body tide; however,

we can do this only approximately. We make the correspondence by comparing the

potentials in Eqs. (7. 8) and (8. 7) for a particular -?mp combination. We have

t
body _ GM' (-1) +m Kl D m V* D ,m <>

~ 2-2 + 1 ,1+1 1+1 ulmp(i) £j i(-m)p / ( i ; e '
r r p'=0

where (8. 12)

4> = (1 - 2p) (v + GO) + (1 - 2p') (v' + co') + m (J2 - ft') ,
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and

M 4irG l + k) .

»

where (8. 13)

$ = (* - 2p)(v + co) - m(v' + GO' + J2' - £2) .

We note that the lunar inclination is I' = 23° ± 5°, and that D n = 0. 925,
^ (~~^)U

D . =0. 160, and D = 0.0036. So for the principal semidiurnal term, we can
£\ A) i £,(—£)£

take i. = 2, m = 2, £. - 2p = 2, p = 0, and p' = 0, which gives

or

<2 47TGpc

where k0 would have a complex value as defined by Eq. (3. 17) . Using typical values,£
we have

(8.16)

From Lambeck and Cazenave (1973), the Pekeris and Accad (1969) solution with
dissipation gives

OC63JT.We then have k = -0. 026 - 0. 047 i. If we then add this to the body tide, we
^obtain the effective Love number that a satellite would sense. Choosing

k ° y = 0. 30 with no dissipation, we have
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.effective _ , body , ocean
k2 ~ K2 2

= 0.274 - 0.047 i .

We would conclude that the Love number was 0.276 with a phase lag of 9° 73, or

38.9min.

Conversely, we could determine the ocean tide if we were to adopt a value of the

effective Love number and the body Love number.

We have analyzed the P _ component with a 14-day period. The ocean tide has
£i£t

a much richer spectrum than does the body tide, with important contributions from

P and Pco. They will give rise to similar perturbations to the P00, in both ampli-
4^ t>Z &£,

tude and frequency. Therefore, the oceanic contribution to the satellite perturbations

must include these terms, and we cannot easily determine just one C^ . .

Analysis of tides by Anderle (1971) and Smith, Kolenkiewicz, and Dunn (1972) used

these two-week terms. Newton (1968) and Kozai (1970) used the terms in n - ft'. The

perturbations due to those terms from the ocean tide are much smaller, owing to the

expansion in Hansen coefficients, and should not influence the determination. There-

fore, we can roughly reconcile the determinations of Anderle, Kozai, Smith,

Kolenkiewicz, and Dunn. Newton's result could be explained by the fact that he used

k~ = k', whereas k_ = -k', which emphasizes the importance of atmospheric tides in

the treatment of long-period perturbations.
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9. ANALYSIS OF EXISTING POLAR-MOTION DATA

The availability of information on pole position from 1846 through 1970 invited
a rediscussion of the data and properties-of the polar motion. The results of the
analysis have been reported by Gaposchkin (1968, 1972).

Since completing the analysis, I obtained from Madame Rykhlova the computed
pole positions published in graphic form, which we read to obtain tabulated values.
Reprocessing these improved data gave better results in the sense that the high-

frequency-noise part of the spectrum was very much reduced in amplitude. The

properties of the motion and the amplitudes remained within the expected uncertain-

ties.

Since the analysis was completed, the complicated spectrum in the Chandler Band
has been studied in other ways. The polar motion causes an oceanic tide called the

pole tide. This pole tide has been studied with a frequency spectrum analysis, and
the two main frequencies have been found. Clearly, the pole tide, being excited by
the polar motion, would exhibit the same spectrum. However, this corollary
evidence rules out the possibility that the complicated frequency spectrum is in some
way due to some property of the reduction methods. One such study has been carried

out by Smets (1970).
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10. ANALYSIS OF SATELLITE-TRACKING DATA

The 1969 Smithsonian Standard Earth (II) was determined with a combination of
camera observations, simultaneous triangulation, and dynamical data, from surface-

gravity data compiled in 1964. In addition, the Deep Space Network of the Jet Propul-
sion Laboratory provided observation equations based on some deep-space-probe data.
A limited amount of laser data were also used.

ft

The camera data had an assumed accuracy of 3 to 4 arcsec. At 2 X 10 m, this
corresponds to a 30-m observation. The station coordinates were determined to

between 5 and 10 m. This figure was given at the time and has been verified subse-
quently by comparison with the Smithsonian Standard Earth (III). The orbit computation
seemed to be ~10 m for the Geos 1 type satellites, though this proved to be optimistic.
When sufficient laser data for good orbital coverage became available from the ISAGEX
program, the orbital fits were 20 to 30 m. One significant contribution to this uncer-

tainty is the tide perturbations. Though the tides had been studied by Kozai with long-
period terms, no short-period, 14-day, tidal terms were used in the analytical theory.
Only with the complete treatment of lunar and solar perturbations by use of computer
algebra have we satisfactorily accounted for the body tides. In this report, we give
the necessary formulas to include the effects due to the body and ocean tides.

The attempt to determine polar motion in 1969-70 by use primarily of photographic

data was unsuccessful. The investigations were^successful^ however, in exposing
several aspects of the analytical'process''that required refinement. With the advances
that have been made in orbit computations through a revised gravity field, improved
station coordinates, and a complete tidal treatment, and with the improvements that

have been obtained in the accuracy, reliability, and coverage in significant bodies
of laser-ranging data, we can expect that future efforts will produce useful deter-

minations of polar motion.
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APPENDIX 1

ROTATION OF SPHERICAL HARMONICS

Legendre functions arise naturally in the solution of Laplace's equation in

spherical coordinates. They are also used as a complete set of orthogonal base

functions for mapping arbitrary functions in spherical coordinates, particularly in

potential theory. As a set of base functions, we naturally need their expression,

transformed from one coordinate system to another. We consider here the rotation

of a coordinate system. This transformation has been used in quantum mechanics,

and proofs of the result described here can be found in that literature. For our

purposes, we follow Jeffreys (1965).

We first consider conventional Legendre polynomials, which can be defined

with

!_ a _ Am/2 d 2 _
( * ( ]

z = sin

For computational purposes, we can use

2m/2 -m k
(1 - z ) ' * (-D (21 -2k)'. J-m-2k

/ * k! (i - k)I(j? - m - 2k)'.
fc=0

where we use {x} to be the greatest integer in x. These polynomials are orthogonal

such that
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"* dx

sphere

-m)'.

= 0 , S. ±1', m ^m',
or both

where

m = 0
€m \ 2 m * 0 .

Each P, (z) can have a scale factor, called the normalization. We can choose this

scale factor such that

C ~ 2 Tsinl2

I [P. (z)] m\ cos <fa deb dX = 4ir ,I -tin ' r*r*° '
sphere

V
We note that Jeffreys uses

m . . ($. - m) I
^ '

. .
(z)

We want the expression for P. (z) e in another coordinate system defined by

the conventional Euler angles (see Fig. Al). We can write
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with

^'•-m
2r+m+s

r=max< _-(m+s)

where

•y = cos , a = sin -

and

I (t + m)I € s

We can write this in a more compact form, if <(>' = 0, as

I
•=; , . ,, im\Pim(sm <)>) e

p=0

where

... f^-m

2p\/2*-;

2p-J?-i

^+nH-2r-2p J.y * a
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in which

•y = cos - , cr = sin

and

2 (i + m ) l
j?m e (2*

We note that

Reference:

Jeffreys, B. S., 1965. Transformation of tesseral harmonics voider rotation.
Geophys. Journ. Roy. Astron. Soc., vol. 10, pp. 141-145.
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Figure Al. Geometry of coordinate transformation.

A~5


