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A THREE-STATION LIGHTNING DETECTION SYSTEM

Lothar H. Ruhnke

A three-station network is described which senses magnetic
and electric fields of lightning. Directional and distance in-
formation derived from the data are used to redundantly deter-
mine lightning position. This redundancy is used to correct
consistent propagation errors. A comparison is made of the
relative accuracy of VLF direction finders wi.th a newer method
to determine distance to and location of lightning by the ratio
of magnetic-to-electric field as observed at 400 Hz. It was
found that VLF direction finders can determine lightning posi-
tions with only one-half the accuracy of the method that uses
the ratio of magnetic-to-electric field.

1. INTRODUCTION

Lightning positioning systems have been in use for a long time;

however, data on their accuracy are difficult to obtain because of the

complexity of the physical problem of wave propagation as well as tech-

nological problems that must be overcome to verify indicated lightning

positions. In addition, the location of a lightning as such is difficult

to define, because of its complex space and time structure. Several

methods are used to determine the position. Most commonly used are direc-

tion finders that use loop antennas to sense the magnetic field radiated

from a lightning. The position can be found by having two or more receiving

stations and by using triangulation methods. For thunderstorms less than

100 km away, Ruhnke (1971 has recently proposed to use the ratio of mag-

netic field to electric field as an indicator for distance. The amplitude



of the electric field from a lightning can also be used as an indicator

for distance, if we assume that the dipole moment does not change among

individual strokes. The latter two methods, in conjunction with direction

finders, lead to positioning systems that need only one observation station.

This study tested several of these methods and compared their

relative accuracy. The inherent difficulty of such a study is that no

data on the actual position of lightning exists; therefore, conclusions

about the accuracy can only be derived by comparisons of systems, each

having its individual error source. The assumption is then made that no

error exists if most or all of the systems indicate lightning at the same

location.

For this, three stations spaced in a triangle about 10 km on

a side were equipped with crossed loop antennas to sense the magnitude of

the magnetic field and the direction to the strokes. These stations also

had horizontal wire antennas to sense the magnitude of the electric field.

The position of a number of lightning was then calculated from directional

data using three baselines, from data of the ratios of the magnetic to

electric field (H/E) at three stations, and from the magnitude of the

electric field at three stations. For each lightning a set of nine

positions is obtained and can be used in an error analysis. A tenth set

of data was evaluated from an operational two-station direction finder

using crossed loop antennas but having different electronics and different

observation frequencies. This data set was included to assess the impor-

tance of errors that are introduced by electronic equipment rather than

propagation and lightning characteristics.



2. INSTRUMENTATION

At each of the three observation stations identical equipment was

used. For the magnetic pickup, crossed loop antennas were used as pre-

viously described (Ruhnke, 1971). This reference also describes the

horizontal wire antenna to sense the electric field, as well as filters,

amplifiers, and pulse-forming networks. The equipment differs from that

previously described only by different output signals. Figure 1 is a

block diagram that facilitates the understanding of the detailed diagram

in figure 2. Voltages from the crossed loop antennas are filtered by a

400-Hz filter and amplified by factors of 10, 100, or 1000 by adjustable

amplifiers. Then the signal is processed by precision full-wave recti-

fiers and peak voltage detectors. The outputs are labeled HX for the

Magnetic Inputs

Electric Input

HXY

Figure '1. Block diagram of receiving station.



east-west, and HY for the north-south component of the magnetic field.

The voltages of both crossed loop antennas are also multiplied with each

other after additional amplification, and the peak voltage of the product

is available at the output as signal HXY. This pulse is necessary to

sense whether both loop antennas have the same or opposite polarity

signals, because the sharp filter and the full-wave rectifier loses

the information on polarity. The rectified loop antenna signals are

added in a summing amplifier and trigger a one-shot multivibrator. This

trigger signal T programs the peak voltage modules. For 1 sec the output

of the peak voltage circuit displays the peak voltage.

The signal from the long wire antenna is similarly filtered,

amplified, and rectified. The output of its peak voltage circuit is

labeled E. Four channel strip chart recorders recorded the output vol-

tages at all three sites at 1 mm/sec. For this study, all 12 values of

each lightning were manually read from the chart paper and transferred

to punch cards for computer analysis. The time to 1 sec and the date

of each lightning was also kept on punch cards. This method of analysis

is nonpractical for fast read-out of information on lightning location.

The design of the instrumentation took into account the need for

rapid information analysis. The output signals can be scanned by analog-

to-digital converters, and real-time computation by moderately sized

digital computers can give information on lightning position as well as

probable accuracy of the data. On an experimental basis a scanner and

digital voltmeter, along with the programmable desk calculator (Model HP

9100B of Hewlett Packard), calculated lightning position, printed it with
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Figure 2. Detailed diagram of receiver instrumentation.



time on a digital printer, and plotted lightning position on a map using

an x-y plotter. Computational time was 7 sec including printing and

plotting.

Within 1 sec of the start of a lightning signal, the instrument

puts out voltages proportional to the peak amplitudes. The maximum

voltage before instrument saturation is 10 V. Only positive voltages are

sensed. Transients, zero drift, and nonlinear effects do not produce

errors of more than 10 mV. An exception was station 3, where 60 Hz noise

was picked up by the instrument and 160 mV appeared at the output of the

north-south component of the magnetic field. This error voltage was

eliminated by mounting the instrument in a different location within the

shelter. However, the lightning data discussed in this report, contain

this error that somewhat decreased the reliability of station 3.

3. THEORETICAL CONSIDERATIONS

3.1 Calculation of Lightning Position

Assume a rectangular coordinate system centered at station 1 with

the x-axis toward the east and the y-axis toward the north. Assume

further that the coordinates of station 2 are .X(2), Y(2), and for

station 3, X(3) and Y(3). The position of lightning number M can be

expressed by using the direction to the lightning from two stations

together with the station coordinates. The direction to a lightning

at station 1 can be expressed by the tangent XM(1,M) of the angle from

the x-axis:

XM (1,M) = HY1/HX1 . (1)



The polarity of this tangent is decided by the absence or presence of a

pulse at HXY1, namely, whether the product at HX1 and HY1 is positive.

If a positive pulse appears at HXY1 , the tangent is negative. In

FORTRAN notations this is expressed by

IF (HXY1. GT.O.) XM (1,M) = -XM (1,M) . (2)

Similar notations are used for the direction to lightning M from stations

2 and 3.

The position of a lightning using station 1 and 2 as baseline is

expressed by the coordinates XI (M) and Y1(M):

X1(M) = (Y(2) - XM(2,M) * X(2))/(XM(1 ,M) - XM (2,M)), (3)

Y1(M) = XI (M) * XM(1,M) . (4)

Similar equations apply for the positions calculated from the other

two baselines. Directional data will therefore produce a set of three

positions for every lightning. The area of the triangle formed by these

three positions can be used to estimate the accuracy, with the assumption

that the locating error is zero if the triangle area is zero. This

assumption is reasonable, yet not totally convincing. The area F of this

triangle can be calculated from

F = (XI (M) *Y2 (M) - X2 (M) * Yl (M) + XI (M) * Y3 (M) - X3 (M) *

Yl (m) + X2 (M) * Y3(M) - X3 (M)*Y2 (M))/2. (5)

This area F not only can be used to judge the reliability of a particular

position calculation but also several statistics can be performed on this

number which will assess this system's accuracy relative to other systems.



In particular, the average area F will give an indicatin of random errors

and give a means of finding consistent errors in the system, as will be

shown later.

An additional set of three lightning positions can be obtained from

the ratio of the magnetic-to-electric field (H/E) at each of the three

stations together with directional information (Ruhnke, 1971). With an

observation frequency of 400 Hz, as used in our equipment, H/E increases

approximately linearly with distance D between 3 km and 80 km,

Dl (M) = Tl * SQRT(HX1 * HX1 + HY1 * HY1) /El . (6)

The factor Tl depends on antenna length, amplifier gains, and loop antenna

size and is best determined empirically so that the average area F, by

using data from three stations, is a minimum. One obtains the x and y

coordinates at station 1 by

XI (M) = HX1 * T1/E1, (7)

Yl (M) = XI (M) * XM (1,M) . (8)

The polarity of the x-coordinate must be determined independently,

since our direction finders have an inherent 180° ambiguity. In

principle, there is no difficulty in eliminating this ambiguity by com-

paring the polarity of the electric signal with that of the magnetic

signal. For our study, data from the other two stations were used to

eliminate the 180° ambiguity.



3.2 Error Analysis

Several error sources in lightning positioning systems can be

identified. Two basic philosophies can be used to investigate and

eliminate such error sources. First, one can study the physics of

lightning and the physics of its propagation and make measurements per-

tinent to deviations from idealized or standardized conditions. Such

measurements can then be used to correct the lightning data. Second,

one can look statistically at the data. Because we have measurements

from which the lightning position can be determined in more than one

way, one can use this overdetermination to find statistical correction

terms.

A lightning is an electrical discharge in the atmosphere and has

a physical length that often is comparable with the distance to the

observation point. The approximation of a lightning by the position

of a point on the ground already introduces errors because the measuring

method uses possibly a different approximation scheme than the method

to verify the result. For instance, the sensing of the magnetic fields

produced by a branched lightning with horizontal components inside the

thundercloud will yield an average direction to a lightning. This

direction is different than the direction obtained for the same lightning

by optical observation of the visible part beneath the cloud. Another

direction may be obtained by detecting the location where the lightning

made contact with the ground. This error, or uncertainty in position,



usually will be less than the horizontal extent of the lightning. A

positioning error of 1 km from the source must be expected; therefore,

any system judged to be accurate in positioning lightning to within 1 km

must be considered excellent.

Limiting the error analysis to lightning that are approximated as

point sources and sensed by their electric and magnetic field, one must

now differentiate between (1) distortion produced by the propagation path,

namely, such distortions that apply to all lightning at one locality like

finite ground conductivity, secondary radiator, and inhomogeneities in

the propagation path, and (2) between height above ground and orientation

in space of individual elementary lightning dipoles. While the first

category is fixed in time and space such that compensations for it can be

calculated or empirically applied if the cause for such distortions can

be assessed, the second category is random from one lightning to the

next and can only be reduced by using less affected measurement parameters.

Additional errors are introduced by the instrumentation. A difference

in gain of the loop antennas will cause directional error, as will in-

accuracies in positioning the loop antennas. The coordinates of the ob-

servation station must also be accurate. Noise in the electronics,

nonlinearities, and drifts in the amplifiers will introduce errors.

However, these are accessible to investigation, and periodic checks and

calibration can minimize instrumental errors of a well-designed system.

Other systems errors are those inherent in triangulation systems:

the length of the baseline and the direction to a lightning in relation

to baseline direction. In particular for lightning near baseline direc-

10



tion, the positioning error becomes very large if small angular errors

,are made. Assume the origin of the coordinate system to be at midpoint

of a 10-km baseline, which extends along the x-axis. Figure 3 shows the

distribution of maximum positioning error EI in kilometers for a direc-

tional error of 1° at each station.

For distances larger than the baseline, this error EI increases

approximately with the square of the distance and it approaches high

values when the lightning is near baseline direction. The plot in figure

X, km

Figure 3. Magnitude of positioning error for direction finders with 20 km
baseline and 1° azimuthal error at each station.
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3 is based on the following formula, where DI and D2 are the distances to

the lightning from stations 1 and 2, a is the baseline length, and y

the lightning coordinate perpendicular to baseline direction

A similar analysis is possible if the position of a lightning is

calculated by using distances to lightning at two stations. Of more

importance to this study, however, is the position error, if the loca-

tion is determined by direction and distance from one station only.

Assuming that errors caused by uncertainties in direction are equal in

magnitude to errors caused by uncertainties in distance, the positioning

error £2 is obtained similar to (9) for directional uncertainties of 1°:

E = W ' ̂  ' D ' (10)2

E2 is always smaller than Els which encourages the development of single-

station systems for locating lightning. How well the assumption -- that

uncertainties in determining distance from one station are equal in

magnitude tg uncertainties in determining direction to lightning —

holds is subject to experiments.

The next error considered is random noise from either external

sources or from within the electronics. At station 3 the receiver elec-

tronics was accidentally mounted in a rack near a strong power supply

that induced noise into the y-component of the magnetic field. Since

such error signals can appear to some extent at each location, it is

12



advantageous to consider compensating for this error. This is possible,

to some degree, if the noise source is steady and if noise on the average

increases the output signal. The lightning signal S after the input

filters is quasi-sinusoidal and has the form

S = S sin (u t) , (11)
o

with S being the amplitude. Similarily the noise signal N has the form

N = N sin (to t + 0) , (12)
o

where 0 is an arbitrary phase angle and N the amplitude of the noise
o

signal. The output of the lightning detector is proportional

to the amplitude of the sum of noise and lightning signal. Depending

on the phase angle of the noise signal, the output signal either increases

or decreases. On the average, the amplitude of the output signal S1 is

approximately given by

S12 = N2 + S2 . (13)
0 0

This formula can correct the output signal. The amplitude of the noise

signal can easily be determined by manually triggering the peak voltage

sensing circuit.

When more than two stations are used as direction finders, it is

possible to detect from a sufficient number of lightning whether the

direction finders are properly aligned. Suppose that a lightning from

direction a is received by one station that is 6 degree's misaligned.

The indicated angle y relates to a and 6 by

13



tan\ , tan a + tan e * (14
1 - tan a • tan 3 V

Such a misalignment will affect the area of the triangle computed from

the positions of the lightning determined from directions from three

stations. The average of such an area computed from many lightning

incidents will also be affected. One can assume with good reason

that this average area is a minimum for a 0° misalignment error. A

calculation of the average area as a function of 6 will readily indicate

if misalignment of any of the antennas is evident. In the experiment

performed for this study, no such misalignment could be detected. This

was as we expected because during installation the antennas were very

carefully aligned.

There are several error sources that lead to consistent directional

changes and which are difficult to eliminate after the system is in-

stalled. These sources are associated with inhomogenieties of the propa-

gation path; with permeable materials of nearby manmade structures, like

steel frame buildings or railroad tracks that at very low frequencies

influence the magnetic field of a lightning signal; and with secondary

radiators near the receiving site. To this category of errors also

belong differences of antenna sensitivity between both crossed loop

antennas as well as differences in the gain in the electronics of the

two channels that process the crossed loop antenna signals. The effect

of all these error sources is that certain magnetic field components

are distorted. That means that the magnetic field component in direction

a of a lightning from an arbitrary direction is increased by a factor M.

14



M ,/sTid a are two numbers that characterize a single disturbance. For

wtms case the x component HX as well as the y-component HY of the mag-

netic field is influenced. The disturbed values HX1 and HY1 can be

expressed by

HX1 = HX • A + HY • B, (15)

HY1 = HX • B + HY • C. (16)

The constants A, B, and C depend on the two constants M and a :

A = sin2 a + M cos2 a ,

B = (M-l) sin a cos a , (17)

C = M sin2 a + cos2 a .

When M and a are known, (15) and (16) can be inverted to obtain the

undistorted magnetic field components Hx and Hy,

HX = HX1 • A1 + HY1 • B1 , (18)

Hv = HX1 • B1 + HY1 • C1 . (19)

For the constants A', B1, and C1, one finds

A1 = sin2 a + i cos2 a ,

B1 = (77 - 1) sin a cos a , (20)
M

C' = — sin2 a + cos2 a .
M

In general, distortions do not occur in only one direction but are

distributed as a function of a. If M(a) is known, then the three parameters

in (17) can be determined

15



27T

A = 1 f M(a) cos2 a da , («)
0 ^\
-•2TT ^,

B = 1 / M(a) sin a cos a da , (22)"
* •'o

C = - / M(o) sin2 a da . (23)
7T yQ

The constants for the inverted equations (18) and (19) are

A1 = AC
 C

 B2 , (24)

B' = A^ ' <2 5>

C' = . (26)
AC - B2

From a practical point of view, it is impossible to determine M(a)

as a continuous function. A, B, and C are best determined by experiment.

As an error function, again the average area T of all triangles can be

used as determined by directions to a number of lightnings from three

stations. A computer program can search for the optimum values of A,

B, and C which give the smallest average area F.

With this last procedure any other possibilities of compensating for

consistent errors in lightning direction finder systems seems to end.

Still remaining are random errors which depend in magnitude on the type

of measured parameters as well as on the variability of lightning

characteristics. The experiment was aimed to derive a measure of this

random error for the particular measurement system described in this

report.

16



4. EXPERIMENTS

During the summer of 1971, the equipment described in this report

was installed at three sites at Kennedy Space Center, Florida. Station 1

was on top of a four-story building with the approximate coordinates

28° 3V 26" N and 80° 38' 52" W. This station was used as the origin
r! of a rectangular coordinate system in which the positive x-axis and
fv̂ y-axis point east and north, respectively. In this system, station 2

had the coordinates X(2) = -3.80 km and Y(2) = 11.32 km. Station 3 was

located at X(3) = 7.00 km and Y(3) - 1.04 km. Several thunderstorms

were recorded between June 25 and July 8, 1971, of which a storm period

on July 2, 1971, between 15:30 1ST and 18:00 LST was analyzed with

particular care. During this time each lightning incident that produced

a signal at all three stations was used for the data base. About

20 percent of all lightning signals were either too weak to trigger

all three stations or occurred within less than 1 sec of each other, so

that the two independent lightnings could not be differentiated. The

data base consists of 268 lightning incidents and is tabulated in

table Al (see appendix). Time was recorded to within 1 sec in column 1.

The data columns 2 to 13 are marked HX, HXY, HY, and E to denote the

components of the magnetic field, the polarity signal, and the magnitude

of the electric field from all three stations. Columns 14 to 17 are

magnetic field data from the KSC operational lightning locating system

with its two stations located very close to our stations 1 and 2.

X X , Y , Y denotes the x and y components of the magnetic field.
1 2 1 2

The last column is a counter to help to identify individual lightning

strokes. The values in data column 2 to 13 are output voltages in

17



units of 20 mV. The resolution of the chart paper recordings from which

the data were taken is +_ 50 mV; which means that the last digit already

includes a considerable uncertainty. The sensitivity of the electric

field channel at station 1 was decreased at 16:28 1ST by a factor of 10.

All data of El from lightning 124 to 268 are therefore in units of 200 mV.

Full scale and voltages higher than full scale are denoted by 500.

Columns 14 to 17 are readings taken from a digital printer and are in -•'"'

units of 10 mV.

On July 2, 1971, the Cape Kennedy Space Center area in Florida had

typical thunderstorm conditions for this time of the year. On the

synoptic chart for that day a long cold front extended from Texas,

through Georgia, and North Carolina up to Labrador moving slowly towards

Florida. The Shbwalter Stability Index from Cape Kennedy radiosonde

data at 2:00 p.m. 1ST was zero, indicating increasing chances of thunder-

storms. Winds were variable at about 10 mph from the SW. After a clear

morning, cumulus clouds began developing at 10:00 1ST in the west. Over

the water and east of station 3, the sky stayed clear until after the

measuring period. During the measuring period, a large area west of

station 3 was covered with clouds. Intermittent heavy rain was observed

at stations 1 and 2 with lightning and thunder occurring about three times

per minute. Figure 4 is a graph of the number of lightnings per minute

during the observation period averaged over 5-min intervals.

Figures 5 to 17 show lightning positions on a 100 km by 100 km map.

Station 1 is in the center. All three stations are connected by a solid

line to show the observational network. In figure 5, directional data

18



No. of Lightning
per minute

5

1600 1700 1800 LSI

Figure 4. Lightning frequency during observation period on July 2, 1971.

from stations 1 and 2 were used to calculate lightning positions. No

corrections were applied to the data, and all positions outside the

100 km by 100 km were as shown on the borderline. Two thunderstorm areas

can be recognized. The cluster of lightning 10 km west of station 2

occurred mainly between 1530 and 1645 1ST. The storm which was 30 km

southwest of station 1 occurred between 1645 and 1800 1ST. In figure 6

the same lightning positions are shown from directional data of stations

2 and 3. The first storm now appears in a wide scatter up to 20 km

west and north of station 2, while the second storm now is fairly con-

centrated at 18 km southwest of station 2. For the earlier storm, 10 per-

cent of the lightnings were so close to the baseline direction of

stations 2 and 3 that they appeared in the wrong quadrant. Finally in

figure 7 directional data from sites 1 and 3 are used for calculating

19
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lightning positions. The first storm seems centered over station 2

while the second storm seems centered over station 1. Most lightnings

of this storm are close to baseline directions which results in a dis-

tortion such that the storm appears elongated along the baseline. These

three figures show that the measurement system contains systematic

errors, but before discussing data treatments, the other positioning

data will be shown. In figure 8, lightning positions are plotted from

the present operational lightning locating system. The direction finders

were located at stations 1 and 2. The center of the first storm is 5 km

southwest of station 2, but a wide scatter is apparent. The second

storm stretches from station 1 for 15 km on westward. Thirty percent

of the data appear either at unlikely locations (remember that during

the observation period blue sky prevailed east of station 3), or unrea-

sonably far away, as evidenced by the magnitude of the magnetic and

electric field. Nevertheless, this plot represents fairly well the

centers of thunderstorm activities.

In figure 9, lightning positions are plotted from data collected

by station 1 only. Directions were derived from the ratio of the mag-

netic components as before, but the distance was calculated from the

ratio of the magnetic field to electrostatic field. The inherent

180° ambiguity in the directional information was eliminated by deter-

mining the proper quadrant from directional data at site 2. The first

storm appears centered over station 2, while the second storm seems to

be clustered about 14 km southwest of station 1. The data scatters

33



much less than the triangulation data, and no unreasonably far lightning

is indicated. A similar plot is obtained from direction and distance

data at station 2 (fig. 10). Most of the lightning of the first storm

saturated the electric field channel, indicating the closeness of the

storm. The position of the second storm appears 15 km west of station 1

and agrees reasonably with directional and distance data from station 1.

Figure 11 finally depicts positions when using distance and direction

data from station 3. In this plot a somewhat larger scatter is evident

due to the 60 Hz noise pickup at this station. The first storm is

centered again near station 2 and the second storm is indicated 15 km

southwest of station 1.

From the data in figures 5 to 11 it is evident that lightning

positions from single-station data are more consistent with each other

than triangulation data. But before a final judgment can be made, it

is appropriate that consistent errors be removed from the data and that

an average error number also be derived for each data system.

By using directional data, we can plot a triangle with area F. The

average area F over all lightning data was 36.4 km2. Part of this

value is due to random errors and cannot be eliminated, but part of it

can be due to consistent errors such as antenna misalignment or secondary

radiators. In a first test, (14) was applied to see if all three stations

had properly aligned antennas. By calculating "F as a function of 8 at all

three stations, we found that misalignment errors were less than 1°. Next

the constants A, B, and C of (17) were determined by using a computer

search program to find the lowest average area F. We found that station 1
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had the largest distortion, probably because the antennas were mounted on

top of a large steel-frame building. For this station the distortion

parameters were A = 1.11, B = 0.19, and C = 1.31, which is equivalent to

an increase of 40 percent of the magnetic field component at an azimuthal

angle of 30° from true north. At station 2 only a 15 percent error in

gain of the north-south component could be detected. This could be caused

by poor adjustment of recorder amplifiers, or differences in the gain of

the loop antenna circuits. The distortion components at station 2 were

A = 1, B = 0, and C = 0.87. At station 3 no distortion could be detected.

After applying distortion corrections, the average area F over all

lightning was 18.2 km2, which is a considerable improvement. From this

area we can estimate that the positioning error is about 6 km. This

positioning error is equivalent to approximately 3° directional error at

each station. When we consider that data leading to this estimate came from

one storm that was overhead of one of the stations and a second storm

that was only 15 km away, the experimentally found directional errors

were expected.

Positioning data from ratios of the magnetic and electric field can

also be used to calculate the average error area F. The value using

uncorrected magnetic field data is 9.5 km2. Applying distortion

correction changed this number to 4.8 km2. This also is a significant

improvement. The positioning error is about 3 km for this system.

Figures 12 to 17 show again the same lightning positions as in figures

5 to 11 but with distortion correction applied. It is evident that

improvements have been made and -that data from single stations are
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inherently more consistent with each other than directional data from

two-station networks.

The third system that gives positioning data is based on the assump-

tion that the electrostatic field of a lightning decreases with the third

power of the distance. Again an average area F can be calculated assuming

a constant dipole moment for all lightning. The area F so obtained was

13.9 km2. That is larger than the error area obtained from data on the

ratio of magnetic-to-electric fields but smaller than the error area

obtained from triangulation data.
i

5. CONCLUSIONS

It has been demonstrated that lightning position can be sensed by

automatic equipment. A three-station network senses at 400 Hz the north

and east component of the magnetic field and the electrostatic field.

This three-station arrangement that uses three methods of evaluation

gives redundant data on lightning positions.

The first method uses only directional data from which triangulation

lightning positions are derived. This method proved the least accurate

when compared with the other two methods. Apparently random errors

caused by horizontal component of lightning signals combined with finite

ground conductivities limit the accuracy of this method, so that on the

average the indicated lightning position is within 6 km of the real

lightning.

The second method uses directional and distance data from one

station. Distance is determined from the ratio of the magnetic to
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electric field. This method is less affected by distortions produced

by inhomogeneities in the ground and by secondary radiators and also

less affected by random error sources. The accuracy of determining

lightning position is on the average 3 km.

The third method uses distance information derived from the magnitude

of the electrostatic field produced by lightning. Because the electro-

static field decreases with the third power of the distance, distance to

a stroke can be estimated well from the field amplitude if the electric

dipole moment of lightnings have only a modest variation. The data

indicate that lightning position can be determined within 5 km on the

average with this method. This agrees well with earlier observations of

determining distance to lightning strokes from electrostatic field

strength measurements (Ruhnke, 1962).
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APPENDIX

Lightning Data at Kennedy Space Center During July 1971

(Raw Data)
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