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1.0 SUMMARY

A development program to establish the feasibility and applicability of high energy rate forg-
ing procedures to tool steel spur gears was performed. Included in the study were relatively
standard forging procedures as well as a thermo-mechanical process termed ausforming.

The subject gear configuration utilized was essentially a standard spur gear having 28 teeth,
a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use
a high contact ratio gear design, however, a comprehensive evaluation indicated that severe
forging problems would be encountered as a result of the extremely small teeth required by
this type of design.

The forging studies were successful in achieving gear blanks having integrally formed teeth
using both standard and thermo-mechanical forging procedures. In both cases, excess ma-
terial in the critical gear tooth area was held to less than .015 inches over final machined
dimensions. As a result, a production forging run utilizing both processes was performed.
The resultant forgings were finish machined and forty gears (twenty each process) were de-
livered to NASA for test and evaluation.
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2.0 INTRODUCTION

The requirements being placed on advanced aircraft engines, gearboxes and helicopter trans-
missions with regard to weight reduction, increased service life and greater reliability also
place an equally stringent demand on the gear material. The gearing in these applications is
expected to carry higher loads, at higher temperatures and still provide increased life, low
maintenance and high reliability. NASA Lewis Research Center, in an ongoing research
effort is evaluating existing and developmental gear materials, in an attempt to define the
mechanical properties of the existing materials and to establish the degree of improvement
which can be expected from the newer materials. Within this overall effort, two areas of
gear materials technology are being pursued. The first consists primarily of evaluating by
life testing gear structural materials per se, while the second is aimed at improving gear
material properties, by the introduction of special metal working techniques during the pro-
cessing of these materials. It is within the scope of this latter area that the work discussed
in this report was performed. The specific process utilized was a thermo-mechanical treat-
ment termed "ausforming' which has been applied with considerable success in improving the
rolling element fatigue characteristics of high speed bearing steels. Within the context of
this report, the term ausforming will be used to describe a specific thermo-mechanical pro-
cess which consisted of high energy rate forging of a Cr-Mo-V tool steel (AISI M-50) while
subject material was in the meta-stable austenitic condition.

The primary objective of the work described herein and performed under NASA Contract

NAS 3-15338 was to develop the ausforming procedures for a specific geometry spur gear,
and to produce 20 such gears for delivery to and subsequent testing by NASA. Simultaneously,
it was required that an equal number of parts be produced, also employing high-energy rate
metal working procedures, except that these parts would be forged using more standard forg-
ing temperatures and practices. The intent, of the latter effort, was to provide test speci-
mens for comparative evaluation against those produced by the thermo-mechanical forging
procedure.

These objectives were successfully accomplished. The development activities performed in
support of this work are summarized in the following sections of this report.
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3.0 BACKGROUND

A great deal of importance is placed on the bending strength of aircraft gear teeth because a
failure due to bending fatigue can often result in catastrophic damage to the entire gearbox or
transmission. The designer establishes the gear tooth size (diametral pitch) on the basis of
an allowable bending fatigue stress index number. These allowable stress index numbers,
which establish limits for actual bending stresses, are often based upon static and dynamic
test data, as well as field experience with a particular design and specific method of stress
calculation.

At present, it does not appear that developmental gear materials will offer a significant im-
provement in gear tooth fatigue strength. Even if this were to be accomplished, it would have
to be established that no detrimental effects on other equally critical gear material properties
such as rolling element fatigue and wear resistance would be encountered. Thermo-mechanical
processing was selected for evaluation as it offers a potential improvement in all of these vital
material properties. The rationale for this reasoning is presented in the following paragraphs.

The thermomechanical process termed ausforming has been studied since 1954, when Lips
and VanZuilen(1) first reported on work \Zhich t)hey had bee Sgerforming. Since then, a num-
ber of organizations both in this country 2,3,4) and abroad(®) have investigated the process.
The application of ausforming to ma h;ne elements such as rolling-element bearings, was
first reported by Bamberger in 1964 6). The material used in (Ref. 6) was M50. This ma-
terial has the required metallurgical transformation characteristics for ausforming, and in
addition is the prime material for current high-performance jet engine bearings. M50 was
also chosen by NASA as the material of interest in the current gear study.

In the initial ausforming studies of M50, the material was evaluated at 40, 70, and 80 per-
cent deformation, in order to establish the proper degree of working for maximum improve-
ment under rolling-contact fatigue conditions. Testing was performed on the General Electric
rolling-contact (RC) fatigue tester. This early work showed that approximately 75 to 80 per-
cent of deformation was required in order to achieve the maximum benefit. This is illustrated
in Figure 1. The Weibull curve for the 80-percent-worked material, which gave the greatest
improvement in fatigue life, is shown in Figure 2 and is compared to the results obtained
when testing bars made of the same heat of material but normally heat treated. The 90-per-
cent confidence band for this latter series of tests indicates that the ausformed material con-
stitutes a separate and superior population from the standard material, with an improvement
of over 600 percent in the B1g life.

The next step was to evaluate the effects of ausforming in actual bearing tests. For this, a
35 mm bore single-row radial ball bearing was selected. Twenty such bearings, l'saving aus-
formed inner rings and balls and standard heat-treated outer rings, were tested(?).
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The test results of the ausformed bearings are presented in Figure 3. For reference, the
data resulting from testing 27 additional bearings having all standard-heat-treated CVM M50
‘components are also shown. These latter bearings were identical to the ausformed bearings
and were tested under the same conditions. The results confirmed the improvement in roll-
ing-contact fatigue life predicted by the RC rig tests. Some of the ausformed balls produced
for these bearings were independently evaluated by NASA 8 , who also reported a significant
improvement in fatigue life of these parts when compared to balls made from standard CVM
M50 material.

General Electric h&s; also performed considerable work in scaling up this process to larger
diameter bearings'\?/. While the success here has not been as unequivocal as with the smaller
sizes, directionally the results have demonstrated the potential life improvements possible
with the ausforming process.

The application of ausforming to gears was therefore a logical progression in the utilization
of thermomechanical processing to improve the reliability of these components.

The major causes of gear failure can be summarized as:

Surface fatigue
Adhesive wear
Abrasive wear
Bending fatigue

The different failure regimes are indicated in Figure 4, as a function of gear speed and
torque. With the current knowledge of the beneficial effects of ausforming, it can be shown
that each of these areas of gear distress will be aided by the ausforming process.

Surface fatigue (pitting) is akin to the rolling-element fatigue failures observed in bearings.
Consequently, the data shown earlier on the effects of ausforming on rolling-element fatigue
life are directly applicable to this gear failure mode.

Adhesive wear, or scoring, is generally caused by adhesive forces developed by the contact
of two gear teeth when the oil film is insufficient to prevent contact of the mating surfaces.
Metal asperities come into contact, and the high localized temperatures result in temporary
welding of the two surfaces. As sliding continues, the welded surfaces separate, although
the juncture does not necessarily take place at the original interface. The wear particles
adhere to the surface to which they are transferred and eventually break loose. After re-
peated cycles of welding and fracture, the surface is badly deteriorated, and wear continues
at an ever-accelerating rate.

Abrasive wear generally results when a hard surface slides over a softer surface. The harder
material penetrates the surface. of the softer material during the sliding action, scoring or
otherwise damaging the softer surface. Abrasive wear may also occur when hard, foreign
particles are trapped between the surfaces of the two softer materials. As a result, some of
the debris caused by the adhesive wear can then result in abrasive wear.

Both of these wear processes are expected to be reduced by the use of ausformed material.
This is based on results reported by the Ford Motor Company, which uses the ausforming
process for tooling applications such as cold heading, rivet setting, piercing and extruding
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punches(lo). These processes generate wear situations similar to those experienced in the
contact surfaces of gears. Ford has reported increases in life of 300 to 500 percent when
ausformed tools were used. This is shown in the following listing:

No. of Pieces
Tool Formed per Tool

o Rivet head former

Regular AISI T5 200,000
Ausformed H11 600, 000

@ Hex head bolt punch

Regular AISI T5 30,000
Ausformed H11 70, 000

o Hex head bolt punch

Regular AISI T5 50,000
Ausformed Vasco MA 160, 000

e Piercing and extruding punch

Regular M2 77,000
Ausformed H11 120, 000

One of the most significant applications was the use of ausformed H13 steel for a hot shearing
punch in one of the Ford plants. This punch was used to pierce 1-inch diameter holes in hot-
forged blanks for differential side gears. The conventional punch lasted about 14,000 pieces
on the average. The ausformed punches, produced by vertical extrusion, pierced an average
of 26, 000 gear blanks before losing dimensional accuracy.

The improved wear resistance of the ausformed materials can be explained on the basis of
the metallurgical structure generated by the ausforming process. One of the primary con-
tributing factors to the extended life of the ausformed material is the reduction in size of the
carbide particles, as well as their more uniform dispersion throughout the structure. The
benefit of having small, uniformly dispersed carbides is that these particles will increase
the resistance to wear while lessening the severity of dislocation pileups and, hence, the
stress concentrations which accelerate crack initiation or propagation. The latter observa-
tion also applies directly to the fourth failure mode. A great deal of importance is placed
on the bending strength of aircraft gear teeth, because a failure due to bending fatigue can
cause serious damage to the entire gearbox or transmission.

In this area of concern, ausforming should be most beneficial. Lemanski(n), reporting on
single-tooth, nonrotating bending fatigue tests of typically-sized aircraft quality gears made
of M50, states that '"The M50 test gears indicated that the material does not resist crack
propagation, in comparison to the other two materials te(ste>d. ' While these conclusions are
not substantiated by work performed at General Electric 12 , ausforming should significantly
reduce such a problem because of its increased resistance to crack initiation or propagation
and its im{)roved fracture-toughness characteristic. Borik, et al 13 , as well as McEvily
and Bush( 4), have commented on this very fact in that they believe the resistance to crack
propagation of ausformed steel is one of the main factors contributing to the high fatigue
strength of these steels.
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4.0 PROGRAM SCOPE

The program was segmented into four major technical tasks. These were as follows:

4.1 TASK 1 - GEAR DESIGN

In this task, a high contact ratio type spur gear, using a pitch diameter and center distance
of 3.500 inches was to be designed, having a diametral pitch which would produce a com-
bination of high tooth strength and good surface load capacity.

4.2 TASK II - STANDARD GEAR FORGINGS

The manufacturing technique for high energy rate forging of M50 gear preforms having in-
tegrally formed teeth was to be developed. Following this, sufficient preforms were to be
produced to net 20 finish machined gears. The necessary physical and metallurgical evalu-
ation of the forged preforms was to be conducted to assure the structural and dimensional
integrity of the parts.

Since, at the outset of the program, no firm assurance could be given that M50 could be
forged as planned (i.e., with integral gear teeth) a back-up forging program was included
which consisted of forging a plain gear blank (no teeth). It was reasoned that this could be
used to hob out a gear if so required, although the grain flow pattern would not be as desir-
able as in a gear having integrally forged teeth.

4.3 TASK NI - AUSFORMED GEAR FORGINGS

The manufacturing technique for the high energy rate thermomechanical forging of M50 gear
preforms, having integrally formed teeth was to be developed. Following this, sufficient
preforms were to be produced to net 20 finish machined gears. As was the case with the
parts in Task II, the necessary physical and metallurgical controls were to be exercised to
assure sound parts. Additionally and similar to Task II, blank forgings were also to be pro-
duced, in the event the ausforming of integral teeth preforms proved to be physically, and/or
in this case economically, unfeasible.

4.4 TASK IV - FINISH MACHINING AND INSPECTION

Following the forging of the standard and thermomechanically forged preforms, twenty each
gears were to be finish machined, inspected to conform to the metallurgical and dimensional
tolerances specified by NASA, and delivered to NASA for test and evaluation.
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5.0 GEAR DESIGN

The initial intent was to design and manufacture a high contact ratio gear. These gears are
characterized by a tooth form which has long thin (fine-pitched) teeth. As a result of this
configuration, the tooth load is distributed between three pairs of teeth during the entrance
phase of engagement, two pairs in contact at the pitch point, and three pairs during the exit
phase. This contrasts to a standard involute gear, where the load distribution is shared be-
tween two pairs of teeth during the entrance phase, one pair at the pitch point, and two pairs
during the exit phase.

The reported advantages of high-contact-ratio gears include the following:

Increased surface contact capacity

Increased bending strength capacity

Smoother tooth action

Reduced noise level

Reduced sensitivity to profile and spacing errors
Improved mesh efficiency

The design of the specific high contact ratio gear for use in subject program was subcon-
tracted to the Boeing Co., Vertol Division because of their past experience with this type of
gear configuration and the ready availability of computer programs to aid in the design of
the gear. The result of the Boeing study and their recommended design is included in this
report as Appendix I.

In reviewing the appended data it may be seen that the gear recommended by Boeing had a
profile contact ratio of approximately 2.1, a diametral pitch of 11.14286, and a 39 tooth
complement. This combination of diametral pitch and overall gear diameter results in a
gear having extremely small, thin teeth. The individual teeth have a total height of only
0.25 inch with top land surfaces somewhat less than .035 inch. This miniscule tooth con-
figuration posed a serious problem from the standpoint of obtaining reproducible and sound
high energy rate forgings using standard forging techniques,and a correspondingly greater
degree of difficulty with a thermomechanically processed part. This matter was reviewed in
considerable detail with the technical personnel, who would be performing the actual forging
operations as well as with General Electric forging experts. After lengthy discussions and a
thorough evaluation of every possible means to utilize the high contact ratio tooth configura-
tion it was the unanimous decision of all involved that subject tooth configuration was not
practical for the intended purpose. Consequently it was recommended to NASA that a more
standard gear configuration be used for this program, in order to evaluate the effectiveness
of the high energy rate forging and thermomechanical working process on M50 gear materials.
The gear design recommended was essentially the modified Ryder gear type, currently used
by NASA in their in-house gear research program. This design is shown in Figure 5 and the
pertinent dimensions and specifications of the gear are presented in the following tabulation.
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NumbeT¥ of teeth - 28

Diametral pitch - 8

Pressure angle - 20°

pitch diameteY - 3.500 inches
Outside diameteT - 3.75 inches
Addendum - 125 inches

Whole depth - _300 inches

Circular pitch - _3927 inches
Chordal tooth thickness -~ .191 inches
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6.0 GEAR MATERIAL

The material for the forging and ausforming studies, as well as for the subsequent production
of 20 forged and 20 ausformed gears, was a high-speed tool steel manufactured by a consum-
able vacuum melting (CVM) process. This tool steel, M50, is currently used as the major -
structural material for main engine bearings by U.S. jet engine manufacturers. Its use as a
gearing material has been limited, although the General Electric Company has performed
high~temperature Ryder gear tests on the material 12), As shown in Table 1, the M50 shows
some superiority in load carrying capacity when compared with premium gear materials

such as Super Nitralloy.

The CVM M50 used in the current study was purchased to General Electric specification

B50TF103 which meets or exceeds AMS 6490A. The chemistry and other pertinent details of
the specific heat of material used is presented in Table 2.
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TABLE 1

High Temperature Load - Carrying Capacity Deter-
. minations for Two Gear Materials

Load-Carrying Capacity, 1lb/in.
Test No. A Side B Side Avg.
’ M-50 Test Gears
M-1 2920 3500 3210
M-2 3680 3820 3750
M-3 4020 3720 3870
3610
Super Nitralloy Test Gears
N-1 3540 3290 3420
N-2 3110 3130 3120
N-3 2860 2910 2890
3140
Test Conditions:
Test 0il - MIL-L-23699
Test gear temperature, °F 425
Test oil-in temperature, °F 400
Test 0il flow, ml/min 270
Speed, rpm - 10,000
Gear Data
Super Nitralloy M-=50

Diametral pitch

Pitch diameter, in.

Face width, narrow gear, in.

Face width, wide gear, in.
Number of teeth

Pressure angle, degree
Material, G.E. Spec,

Case hardness, Rockwell N15
Case thickness, in,
Core hardness, Rockwell C

8
3.500
0.250
0.375
28
22.5
C50TF5
92 min.

.018 to .024

39-40

20

Diametral pitch

Pitch diameter, in.
Face width, narrow gear, in.
Face width, wide gear, in,

Number of teeth

Pressure angle, degree

3.500
0.250
0.375
28
22.5



TABLE 2

Chemical & J-K Rating of CVM M50
used in Gear Forging Program

Vendor: Carpenter Steel Co.

Heat: #89660

Chemistry:
C Mn Si P S Cr Ni Mo Cu \J Co W
.80 .24 ,22 ,006 ,005 3,98 .07 4,18 ,06 .98 .05 .04
Average Jerkontoret Inclusion Rating
A B C D
Thin Thick Thin Thi ck Thin Thick Thin Thick
0 0 0 0 0 0 1 0]

Magnaflux

Frequency - 0, Sensitivity - O

Fracture Cleanliness

Tested and approved

Hardenability

Rc 64
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7.0 HIGH ENERGY RATE FORGING FACILITIES

The forging development was to be carried out by using high energy rate equipment. It was
reco&r%szed at the outset of this program that such forming of gears had been attempted in the
past although in the referenced work, the materials were standard low carbon steels
(AMS 6265) which, after forming were carburized per the usual practices. Since two pro-
cesses were therefore combined, it was difficult to assess the effects of high-energy-rate
forming only on the operational characteristics of the gears.

In the current program, a controlled-energy-flow forming technique (CEFF) was utilized for
the ausforming, as well as for the normal forging of the gears. This high-velocity metal-
working procedure has been a production process for the past several years by the Precision
Metals Products Company, El Cajon, California(m?.

The equipment used is shown schematically in Figure 6 and illustrated in Figure 7. The CEFF
equipment uses the counter-blow concept, but employs two independent cylinders to accom-
plish this action. Nitrogen is pressurized at maximum energy to 1400 psi. Provision is made
to operate the machine with dissimilar pressures in the two cylinders. This allows the balan-
-cing of the system to provide equal momentum at impact, which, in turn, provides efficient
and rapid transfer of energy to the tooling and to the work piece. A trigger system, with a
hydromechanical lock for the upper ram and lower bolster, synchronizes the simultaneous
release of both parts of the tool. After firing, the latch system separates the tools to their
starting positions in conjunction with ancillary pressure cylinders. The energy can be es-
tablished by regulating the cylinder pressure and by adjusting the forging stroke. The com-
binations of stroke and cylinder pressures that may be used to obtain equivalent pressures
are given in the theoretical curves shown in Figure 8.



Ready for Impact

! KNOCK-OUT CYLINDER
: | ' TIE ROD
Ll : N RE
T
TOP GAS-CYLINDER
NITROGEN F_;D ———————{—FRAME, TOP SECTION
RAM L
5N, 1 ‘l
LATCH RELEASE CYLINDER : ]
ol T 11}
> ‘ ‘ LATCH
NITROGEN — i}y -
| g
l . 3
LATCH LINK t @ I~ PUNCH
| .
CARRIAGE . \
!
' DIE & DIE HOLDER
18 7
[
o A ————————— FRAME, SIDE SECTION
7
!
1
|
FLOOR LINE === o FLOOR LINE
KNOCK-OUT BOTTOM
BOLSTER
PISTON i RS '
|
© T i NITROGEN
BOTTOM GAS-CYLINDER L }
N j ———————1—FRAME, BOTTOM SECTION
PISTON \ =
ol
STROKE ADJUSTMENT CYLINDER
0 N

T
®0OIL

Je—— @® NITROGEN

The nitrogen in the upper and lower gas chambers has been compressed
to the point required to produce the desired amount of energy. The
hydraulic oil in the two carriage cylinders is pressurized to keep
the ram and the bolster separated while the machine is awaiting ac-~
tivation. As a safety measure, the latch system is self-locking for
the prevention of accidental cycling.

Figure 6 Schematic of Controlled Energy Flow Forming (CEFF) High Energy
Rate Forging Egquipment
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Figure 7 CEFF Machine in Operation
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8.0 FORGING OF GEAR BLANKS

As with any other developmental metal-working process, a number of iterations were re-
quired before the optimum sequence of forging was established. Rather than detail all of the
numerous minor corrections and adjustments made in thermal cycling, die and preform de-
sign, material handling, etc., a general summary will be presented designed to highlight
the major accomplishments. Also, for clarity, each component will be discussed separately,
recognizing that in actual practice, the parts were not handled in this manner.

8.1 GEAR BLANK - NO TEETH - STANDARD FORGING

This part was a back-up in the event the integral tooth gear blank could not be successfully
forged. Due to its relatively simple shape, illustrated in Figures 9 and 10, no undue diffi-
culties were encountered. A lack-of-fill condition initially experienced was remedied easily
by increasing the forging energy.

The actual forging sequence consisted of the following cycle:

Preheat: 1500°F/30 min.
Forging Temp: 2000°F + 25
(Held in endothermic furnace, dew point of 10°F + 5°F, 30 minutes prior to forging)
Forge:
Still Air Cool to Room Temperature
Anneal: 1500°F/4 Hr. - Slow furnace cool to 1000°F - Air Cool to Room Temperature

8.2 GEAR BLANK - NO TEETH - AUSFORMED

This part was also a back-up in case the integrally ausformed teeth forging proved to be not
feasible. Because of the more involved ausforming procedure and higher forging energy re-
quired, some minor problems were encountered although these were readily resolved. As a
point of comparison, the energy required to ausforge these parts was approximately 25 per-
cent greater than that needed to forge the blanks at the normal temperature. The ausforming
cycle was as follows:

Preheat 1500°F/30 min Forge

Austenitize 2075°F + 25°F/30 min Qil quench to 150°F

Rapid Air Cool to 1500°F Air coolto R.T.

Place into 1475°F stabilizing furnace Stress relief at 950°F/2Hrs

Hold for 5 min at 1475°F

Typical forgings made by this procedure are shown in Figures 11 and 12.
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8.3 INTEGRALLY FORGED TEETH-STANDARD FORGING

The die inserts used for these forgings are shown in Figure 13. The initial two forging trials
resulted in a considerable lack-of-fill condition at the outer gear tooth periphery which was
partially remedied by increasing the volume of the forging preforms shown in Figure 14.
After several other minor changes including an increase in the forging temperatures to
2050°F acceptable parts were produced during the fourth forging trial.

A number of parts forged during this run were sectioned radially in order to obtain a better
measure of the tooth profile and the overall material envelope. Comparator measurements
showed that the configuration of the as forged tooth was nearly perfect, matching the forging
drawing, (and gear drawing) almost exactly. However, as shown in Table 3 the actual tooth
measurements were a cause of concern.

To better relate these measurements, a section of the forging drawing is shown in Figure
15. The shaded area in subject drawing indicates the excess stock which was considered
necessary to allow for cleanup to the final tooth dimensions. Generally, this excess material
was planned to be between .010 to .015 inches.

The dimensions given in Table I are relative to the final machined tooth profile. These indi-
cated that on the tooth surfaces, the actual excess material was only about .003 to .005
inches, which was considered marginal in terms of material available for complete cleanup.
The outside diameter as well as the base radius dimensions were undersize by .004 to .0075
inches.

Neither of these conditions was considered serious as only a minimal die modification was
required to rectify this problem. The reason for the dimensional deviations from the forging
print were attributed to the fact that the die dimensions were based on calculated metal
shrinkage from the ausforming temperature range (1200-1500°F), Since the subject gear was
forged at 2000°F, a correspondingly greater amount of shrinkage was experienced. In other
critical areas such as root radii and width of tooth top land, the as forged gear was well
within acceptable dimensional variances.

Following an additional die modification and a slight change in preform size, dimensionally
acceptable gear forgings were produced. These are shown in Figures 16 through 20. Dimen-
sionally, these parts were within the specifications which required the material envelope not
to exceed .015 inches per side on the gear teeth.

8.4 INTEGRALLY FORGED TEETH - AUSFORMED

These parts, as anticipated proved to be considerably more difficult to produce. The initial
forging trial was performed on a Model HE-10 CEFF machine which has a maximum energy
output of 75,000 foot lbs. This unit had been adequate for the production of both blank gear
forgings (Items 8.1, 8.2) as well as the standard forged integral tooth gear (Item 8.3). At
the 1475°F ausforming temperature however, the HE-10 unit did not have sufficient capacity
as shown by the forgings illustrated in Figure 21. This photograph clearly demonstrates the
minimal movement of the M50 material into the gear tooth configuration of the die. It was
therefore decided to adapt the tooling to the larger HE-55 CEFF machine which has a capa-
city of 400, 000 foot 1bs. This was done and the first forging trial was still not encouraging
despite a considerably higher forging energy. This is illustrated by the parts shown in Fig-
ure 22. In reviewing the operation it was apparent that die closure had taken place, causing
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Figure 13 Tooling Inserts Utilized For Forging
Gear Blanks With and Without Teeth
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Tooth

Number

© 00 N O U B W N

NONONDN N DN DN DN N H M
W 3 & U A W N H O W W N0 g RWw D - O

TABLE 3 - As Forged Gear Tooth Dimensions

Deviation From Final Tooth Dimension

(all dimensions in inches)

Pitch Diameter

Left Side

+0.,004
+0.003
+0.003
+0,003
+0.,003
+0.004
+0.004
+0,004
+0.004
+0,005
+0.005
+0,006
+0,007
+0,007
+0.006
+0,007
+0.007
+0.007
+0,007
+0.008
+0.008
+0.008
+0.008
+0.006
+0.006
+0,006
+0.004
+0.004

Right Side

+0,004
+0.005
+0.005
+0,005
+0.005
+0.005
+0.005
+0.005
+0.005
+0.005
+0.004
+0.004
+0,003
+0.004
+0.004
+0.005
+0.004
+0.004
+0.005
+0.003
+0,004
+0.004
+0.004
+0.003
+0.005
+0.004
+0.004
+0.004

35

Outside

Diameter

-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.,0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0.0075
-0,0075
-0.0075
-0.0075
-0.0075

Root

Diameter

-0.004
-0.004
-0.004
-0.004
-0.005
-0.005
-0.006
-0.006
-0.006
-0.006
-0.005
-0,005
-0,005
-0.,005
-0,005
-0.004
-0.004
-0.006
-0.006
-0.006
-0.005
-0.005
-0.005
-0.004
-0.005
-0,005
-0.005
-0.004
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Figure 19 Macvro Cross Section Through as Forged Gear Blank
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the ejector to deflect in an elastic manner, since the ejector top face appeared to have main-
tained its original height after forging. This deflection also resulted in the generation of
teeth mislocated from the central hub as indicated in the photograph. '

It was reasoned that the significant ejector deflections resulted in the absorption of much of
the forging energy and therefore the efficiency of energy transfer to the workpiece was poor.
Consequently, tooth fill would be expected to be nonexistent or at best minimal.

An additional tooling and procedural modification remedied this problem to some extent and
produced a part shown in Figure 23. It was estimated that the teeth at this point were approxi-
mately 60 percent formed and unless relatively major modifications were made, this repre-
sented the best part which could be produced.

In reviewing this situation with NASA technical personnel it was concluded that more of the
tooth profile would be desirable, and it was consequently decided to attempt to improve the
tooth fill condition by a change in the die configuration. This change consisted of adopting a
minimal scallop configuration intended primarily to permit a larger radius at the top of the
die tooth form (gear tooth radius) which would alleviate the apparent restrictive metal flow.
It was also decided to increase the ausforging temperature by 50°F (1525°F) in order to
achieve improved flow characteristics.

This was done and the subsequent forging trial produced the parts shown in Figure 24. As can
be seen,full tooth configuration has essentially been achieved, although the lack-of-fill con-
dition of the upper part of the teeth still made this a marginal part in terms of the final ma-
chined tooth width of 1/4 inch.

One final modification was therefore in order, which consisted of increasing the height of
the tooth insert tooling coupled with an equivalent increase in the volume of the preform.
These measures were designed to increase the tooth height and thus provide adequate ma-
terial for final machining. These corrective steps were successful and resulted in the pro-
duction of dimensionally acceptable parts. These are illustrated in Figures 25 through 29.
The only problem encountered was a heavier than expected flash area (illustrated in Figure
26) which required more time during final machining.

The die inserts held up remarkably well, as shown in Figure 30. While there is some evi-
dence of scouring and upsetting, no serious damage or tooth breakage was encountered.
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Figure 24 Ausformed Gear Forgings After Additional Tooling and Die
Modifications, 100 Per Cent Tooth Configuration Has Been
Established Although Lack of Fill at Bottom (Upper Surfaces
in Photograph) Has Created Condition of Minimal Tooth Width
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Figure 25 Ausformed Gear After Increasing Height of Tooling
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Figure 27 Macro of Ausformed Gear Teeth. Note Minimal Scallop
Configuration in Bottom Radius
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Figure 28 Close-Up of Ausformed Gear Tooth

50



Saeon pouIOoIsSny Jo uny

uoT3onpoad,, Sutang

ope| Sjaed

62 2an3tg

51




Figure 30 Section of Die Insert After Production Ausforming Run
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9.0 METALLURGICAL EXAMINATION

The inherent metallurgical characteristics contributing to the beneficial effects of ausforming
on rolling element and bending fatigue life have been discussed at length in the technical
literature. In respect to gear materials these beneficial effects are directly relevant and
should provide a favorable array of properties. There is, however, one additional aspect in
gear technology which is critical to the successful operation of highly loaded gear trains.
This is the bending moment at the base of the tooth which can precipitate tooth breakage long
before the more normal scuffing or fatigue spalling failures are encountered. The resistance
to bending fatigue in gear materials is of particular concern when through hardened materials
(such as M50) are used. In the current program, a major objective therefore was to attenuate
this problem by generating a macro grain-flow pattern which would be conducive to improved
tooth radius fatigue strength. The schematic sketch in Figure 31 illustrates this concept. In
the design of the forgings considerable attention was therefore directed toward the generation
of a good grain flow pattern in the gear tooth radius, as well as along the contact areas. This
consideration was also a factor in the attempt to achieve a minimum as forged material en-
velope, as it was felt that any subsequent machining would tend to reduce the beneficial grain
flow depth.

As can be seen in Figures 32 and 33 the actual grain flow pattern which was achieved was
generally as had been planned. The additional photomicrographs shown in Figures 34 and 35
illustrate the typical microstructure expected with ausformed M50.

Hardness, always a good indicator of the effectiveness of the ausforming procedure was
Rc62-64 as forged and did not vary as a result of the temper or stress relief cycles. Typical
hardness surveys on as forged and final machined ausformed gear teeth are shown in Figures
36 and 37.

The standard forged gears exhibited the same grain flow pattern as their ausformed counter-
parts. The standard forged parts were semimachined, (within .006 inches of final dimension)
heat treated to achieve full hardness and then finish machined. The hardening cycle was as
follows:

Preheat: 1500° + 5°F/30 minutes (salt)

Austenitize: 2035°F + 5°F/5 minutes at temperature ( 10 minutes total time,
salt bath)

Quench into 1065°F + 10°F Salt - hold for ten minutes
Air cool to room temperature
Temper 1025°F + 5°F/2 hours

Air cool
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Grain-Flow Pattern in Ausforged

Figure 33 Macro
25X, Etchant: 3% Nital

Gear. Original Mag:
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Figure 34 Typical Microstructure in Tooth of Ausformed Gear.
Mag: 500X, Etchant: 3% Nital
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Figure 35 Typical Microstructure in Tooth of Ausformed Gear.
Mag: 1000X, Etchant: 3% Nital
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Subzero cool - 100°F/2 hours
Warm to room temperature
Temper 1025°F + 5°F/2 hours

Hardness measurements taken on all gears after the heat treatment showed a range of Rc63 -
Rc64. Metallographic examination of one of the gears showed no evidence of decarburization.
X-ray diffraction measurements to determine the amount of retained austenite were also
made on the extra gear. These measurements showed the percentage of retained austenite

to be less than one percent.

A typical microstructure of the fully heat treated M50 gear is shown in Figure 38. A hard-
ness survey (Figure 39) of the gear teeth showed extremely good consistency in hardness.

61



Figure 38 Typical Microstructure in Tooth of Standard Forged Gear.
Mag: Top - 500X, Bottom - 1000X; Etchant: 3% Nital
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10.0 GEAR MACHINING - INSPECTION

The standard forged and ausformed gear blanks were finish machined to NASA Drawing
#CD850863 by the Indiana Gear Works Division, Buehler Corp., Indianapolis, Indiana.

The standard forged gears, which were in the soft, annealed condition, were semi-finished
machined, i.e., having an excess material envelope of .006 inches, and then returned to
General Electric for heat treatment. The heat treat cycle has been detailed in an earlier
section of this report. The parts were then finish machined by IGW.

The ausformed gears, being in the fully hardened condition required a different manufactur-
ing cycle. Initially, the excess material was removed by electrochemical machining. Simi-
larily, the center was trepanned by ECM, following which the remainder of the tooth profile
as well as the other dimensions were obtained by stress free grinding. The standard forged
gears after heat treatment are shown in Figures 40 and 41. A fully machined ausformed gear
is shown in Figure 42. In Figure 43 the starting preform as well as the finish machined gear
are shown and finally in Figure 44 the four major steps in the production of the ausformed
gears are illustrated.
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VERTOL DIVISION ¢ BOEING CENTER

8-1132-8001

7 July 1971
General Electric Company
Aircraft Engine Group
Cincinnati, Ohio 65225
Attention: Mr. R. Forrester
Subject: Purchase Order No. 200-1-14D46790, Analytical

Design of Ausformed High Contact Ratio Spur
Gears: Submittal of Final Report

Enclosure: Subject Final Report D210-10310-1 (5 copies)

Géntlemen:

In accordance with the requirements of subject
contract, the Contractor forwards herewi;h, as the Enclosure,
the Final Report. Submittal of this FinalAReport constitutes
completion of performance of the contract.

Very truly yours,

THE BOEING COMPANY
Vertol Division

:_‘A&:S_B ] “‘_“D\a‘”"m _.'\,j\ e

H. D.. Fowler
Contract Administrator
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REPOR'T

General Electric Company Order MNo. 200-I-14D46790

SUBJECT:
NASA ~ Lewis Ausformed High Contact Ratio
Spur Gear Design Project

‘REFERENCE: Investigition ¢f Increased Load Capacity

of Spur and Heliczl Gears with
Increased Contact Ratio - October 1970

ENCLOSURES: (1) Spuf Gear Geometry - Computer Output
(2) Transverse Section Tooth Plot - Computer Output

(3) Plot of Bending Stress vs. Pinion Torque

(4) Plot of Pitch Line Contact Stress
vs. Pinion Torgue

"(5) Mesh Kinematics Plots - Computer Output

(6) Involute Profile Modification Chart

A computer analysis of the subject gear set has been compléted

based on the following initial data:

Centex Diétance - 3.500 Inch
. Pinion Speed - 10,000 RPM

Actual Face Width

0.250 Inch

Effective Face wWidth 0.100 Inch

Diametral Pitch - 8.000
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The analysis was accomplished in four distinct steps: Basic
Geometfy Optimizaticn, Strength and Durability Rnalysis, Mesh
Kinematics Analysisg, ana-Préfile Modification. 'The load sharing
spectrum developed from the strain gaging conducted during the

test program reported in the reference was utilized in this design

effort. The results of each design step are summarized as follows:

Basic Gecmetry Optimization

Boeing-Vertol computer program "HCR" was utilized to define the
optimum basic geometry of the gear set. Input to this program
-includes number of teeth, diametral pitch, minimum topland desired,
minimum contact ratio desired, and the applicable tolerances.
Se&érai diametrél pitéhes were considered in the range of é—lé.

The 8 pitch design had a foll angle of less than 5° at theblowest
point of contact, which>produces guite unsatisfaétofy contact
conditioﬁs both from a pitting aﬁd scoring standpoint. The coarsest
pitch whicﬁ has a suitable roll angle at the lowest point of
~contact is 11.14286. The basic geometry was then optimized at

this pitch.

Strength and Durability Analysis

The bending and contact stresses as well as a complete geometric
description of the resultant mesh were obtained by use of computer‘

programs R23 and SPUR. Complete tooth geometry data is shown in

18



Enclosure (1). _An automatic data plotter was utilized in conjunction
with Program R23 to produce the tooth plot shown in Enclcsure (2).
Enclosures (3) and (4) present bending strgss ana.contact stress,
respectively, as a function of gpinion torque. It should be noted

.a£ this point that terms such as "load in pounds per inch of face",
'”unit load", etc. have an ;xtirely different interpretation when

applied to high contact ratio gearing, since there are always at

least two pairs of teeth in contact.

Mesh Kinematics

Enclosure (5) presents plots of the various kinematic parameters
of the mesh at a speed of 10,000 rpm. The abscissa on each plot

is the adjusted pinion roll angle which is defined as follows:

ep = 6p - 91

adjusted roll angle - degrees 

il

where on

]

6p roll angle at pitch point - degrees

©1 = roll angle at Ith point on profile - degrees

A brief description and interpretation of each plot follows:

Sliding Velocity - Sliding velocity is a relative measure of the

heat generated during the meshing cycle. While high sliding
generally indicates high heat generation, high contact ratio

designs generally are lightly loaded in the region of highest

-9



sliding so that heat generation and efficiency are both egual

to and in many cases better than standard involute designs.

Entraining Velocity - The entraining velocity is a measure of

the rate at which fresh lubricant is brought into. the contact-
zone to provide cooliné and separation of the mating surfaces.
Higher values of entraininé velocity indicate a rapid
replenishment of the lubricant in the contact area. The
entraining velocity for this design_is’great¢r>than 1200 in/sec

indicating suitable entraining conditions.

Slide/Entraining Ratic - Since the sliding and entraining
vélocities are directly opposite in effect but similar in
origin, it is natural to form this ratio as & measure of their
joint effect. A high value generally indicates greater net
heating, while a low value indicates good lubricant flow and

lower heating.

" Specific Slidinq Ratic - This ratio is formed by dividing the

instantaneous sliding velocity by the instantaneous rolling
velodity at a given point on the profile. This qﬁantity
provides additionalvinsight into the effect of.sliding velocity
by eliminating the efféct of rotational speed. Thus, the
effectiveness of.different designs operating at various speeds

may be easily compared. - 'The slo?e of this curve in the dedendum
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region is'ﬁypical of high contact ratio designs. This results
from extending the profilie towards the base circle. A reiative}y
high slope is not desirable for standara designs. However,
experimental test results indicate that a high. slope dbes noﬁ
adversely effect a high contact ratio design as compared to a

standard design. '

Profile Modification

'To minimize intefferencé in the mesh, the true involute profile
must be moedified to account for tooth deflection under lodad. A
given profile modification is optimum for only a limited range

of loads and speeds. The profile modification shown in Enclosure:
(6} has been designed for a pinion torgue level of approximatély

300 inch-1lb.
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SPUR GEAR STRENGTH ANALYSIS

NUMBER OF TEETH
OUTSIDE RADIUS
TOP LAND (INCL. E.B.)
EDGE BREAKS
BREAK RADIUS
FACE WIDTH
TRUE INVOLUTE FORM CLEARANCE
STD.APC TOOTH THICKNESS
PRESSURE ANGLE
CENTER DISTANCE
DIAMETRAL PITCH
PITCH RADIUS
OPR.APC TOOTH THICKNESS
‘ PRESSURE ANGLE
CENTER DISTANCE
DIAMETRAL PITCH
PITCH RADIUS
PROFILE CONTACT RATIO
BACKLASH AT OPER, C,D.
TORQUE '
BASE RADIUS
TRUE INVOLUTE FORM RADIUS
ROLL ANGLE AT LAST POINT OF CONT
MEASURING PIN DIAMETER
MEASUREMENT OVER PINS
PIN CLEARANCE OVER O.R.
RADIUS TOOTH BECOMES POINTED
STD.ADDENDUM
DEDENDUM
OPR.ADDENDUM
DEDENDUM
WHOLE DEPTH
ROOT RADIUS
FILLET TANGENCY RADIUS
FILLET RADIUS

CO= 1,0000 CV= 1.0000 CM= 1,0000 CS= 1,0000 CF= 1,0000

LOAD ANGLE

TANGENTIAL LOAD

LOAD RADIUS

FILLET RADIUS

X-BAR

H

TOOTH THK.AT C.S,

STRESS CONC. FACTOR

- FORM FACTOR

GEOMETRY FACTOR

BENDING STRESS

GEOMETRY FACTOR )
PITCH LINE CONTACT STRESS
ROOT CLEARANCE

PINION EXTERNAL GEAR
MINIMUM MAXIMUM MINIMUM  MAXIMUM
39 , 39 ’
1.8719 - 1.8733 1.8719 1.8738
0.01222 0,02541 - 0.01222  0.02326
0.0050 0.0100 0.0050 0.0100
1.8618 1,8688 1.8618 1.8688
0.10000 0.10000
0.00500 0.00500
0.13797 0.13897 0.13797 0.13897
19,49998
3. 50000
11.14286
1.7500 1,7500
0.13797 0,13897 0.13797 0.13897
19.50009
3,50000
11.14286
1.7500 1.7500
2,1004 MIN /12,1568 MAX
0,00400 TO 0.00600
300.0000 300, 0000
1.64962 1.64962
1.66993 1.67259 1.66993 1.67259
10.07427 10.59509 10,07427 10.59509
0.174540 0.174540
3.77656 3.77890 - 3.77656 3.77890
0.01589 0.01906 - 0.01589 0.01906
1.903 1,904 1.903 1.904
0.12185 0.12385 0.12185 0.12385
0.15165 0.15915 0.15165 0.15915
0.12185 0.12385 0.15165 0.15915
0.12185 0.12385 0.15165 - 0.15915
0.27550 0.28100 0.27550  0.28100 -
1.5908  1.5983 1.5908 1.5983
1.6345 1.6427 1.6345 1.6427
0.0443  0,0449 0.0443 0.0449
17.2412 17.2412
_ 108.631
1.7272 1.7272
0.0447 0.0447
0.0714 0.0714
0.1137 0.1137
0.1802 0.1802
-1.7066 1,7066
0.5706 0.5706
0.3343 0.3343
36206.02 36206.02
0.07866
144471.20
0.02780 ~ 0.03730 0,02780 0,03730

PREPARED BY: THE ADVANCED DRIVE SYSTEMS TECHNOLOGY DEPARTMENT
THE BOEING COMPANY - VERTOL DIVISION
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()

Enclosure

INVOLUTE PRCFILE MODTPJCATION CIHILTTY

| ; f" -
1(,
OUTSIDE DIAMETER BREAK (30.87°)— _ % U BRI
(~0.0005) (-0.0009) \f\'\' b
f E'_‘(- "‘- ':'
CONTROL POINT NO. 1 (256.007) — ‘:-;'fii‘ L
(0.0000) (~0.0003) \J‘/
- T
CONTROL POINT NO. 2 (25.00°) eaeumes LN
(0.0000) (-0.0002) SR o
HEIR AN Y
: : R EEES e I I I
PITCH DIAMETER (20.29°) AT L
(0.0000) (-0.0002) 3‘ H SRR
. (R E RS il B
T
CONTROL POINT NO. 3 (ls.oo°)—-_.___‘;7w
(0.0000) (-0.0002) Rt
. . . Ty, 0
IONTROL POINT NO. 4 (14.00-”)/:‘;;" .
(0.0000) (-0.0003) M
o EEEE
I .
FORM DIAMETER (9.04°) —=
(-0.0005) (-0.0009) T P
SEine
NOTE

Profile shape'within the tolerance band shall be a smooth and gradual

. convex curvature.
shall not exceed 0.000025".
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NASA Contract NAS3-15338
Final Report Distribution List

' : Number of
Address : Copies

NASA - Lewis Research Center

21000 Brookpark Road

Cleveland, OH 44135

Attentlon D.P. Townsend (M.S. 6-1) 2

A. Ginsburg (M.S. 5-3) : "
W.J. Anderson (M.S, 23-2)
B. Lubarsky (M.S. 3-3)
N.T. Musial (M.S. 500-311)
L.W. Schopen.(M.S. 500-206)
C.H. Voit (M.S. 5-3)
Report Control Office (M.S. 5~ 5)
Library (M. S. 60-3)
Office of Reliability & Quahty Assurance (M, S. 500-111)
Technology -Utilization Office (M.S. 3-19)
Office of Operations Analysis & Planning (M. S. 3-15)
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NASA Scientific and Technical Information Facility
Attention: Acquisitions Branch

P.0O. Box 33

College Park, MD 20740

NASA Ames Research Center : - ' 1
Attention: Library
Moffett Field, CA 94035

NASA Flight Research Center ' 1
Attention: Library . :
P.O. Box 273

Edwards, CA 93523

NASA Goddard Space Flight Center 1
Attention: Library :
Greenbelt, MD 20771

Jet Propulsion Laboratory ‘ ‘ 1
Attention: Library .

4800 Oak Grove Drive -

Pasadena, CA 91103

NASA Langley Research Center 1

Attention: Library
Hampton, VA 23365
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Address . Copies

NASA Manned Spacecraft Center A ‘ _ 1
Attention: Library
Houston, TX 77058

NASA George C. Marshall Space Flight Center . 1
Attention:” Library
Marshall Space Flight Center, AL 35812

NASA Headquarters ' - 1

Attention: RLC/N.F. Rekos
Washington, DC 20546
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