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ABSTRACT

An empirical elastohydrodynamic (EHD) film thickness formula for pre-

dicting the minimum film thickness occurring within heavily loaded con-

9 2tacts (maximum Hertz stresses above 1.04X10 N/m (150 000 psi)) was de-

veloped. The formula was based upon X-ray film thickness measurements

made with synthetic paraffinic, fluorocarbon, Type II ester and polyphenyl

ether fluids covering a wide range of test conditions. Comparisons were

made between predictions from an isothermal EHD theory and the test data.
cr>
^ The deduced relationship was found to adequately reflect the high-load
r̂ .

I
dependence exhibited by the measured data. The effects of contact geom-

etry, material and lubricant properties on the form of the empirical

model are also discussed.

NOMENCLATURE

a minor semi-axis of Hertzian contact, m (in.)

B constant, eq. (7)

b major semi-axis of Hertzian contact, m (in.)

C. . coefficient, eq. (1)1 > J
2

E, ,E? modulus of elasticity of elements 1 and 2, N/m (psi)

/i 2 ! 2y-l11 - v1 1 - v_ \
^—L + —* J N/m2 (psi)

. * _L 2-

f(Pu )• film thickness-stress function, eq. (2)
h .
mm

H . nondimensional minimum film thickness, --7mm ' R
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h film thickness in Cheng's theory, see eq. (11), m (in.)

h . minimum film thickness, m (in.)

i experimental maximum Hertz stress subscript

j test Iburicant subscript

*
K.,K.,k. lubricarit coefficients in empirical film thickness formula
J' J' J

n. . nondimensional speed-viscosity parameter exponent, eq. (1)
•L»J

n. mean value of n, ., eq. (2)
J i > J

Pu nondimensional stress parameter, p^ /E'
HZ HZ

2
pH maximum Hertz stress, N/m (psi)

R, ,R~ radius of elements 1 and 2 in rolling direction, m (in.)

11 i "r1R1 equivalent radius, {-= h — , m (in.)
\R1 R2/

TO disk temperature, K (°F)

U nondimensional speed-viscosity parameter, y u/E'R'

u mean surface velocity, 1/2 (.u + u~), m/sec (in./sec)

u..,u2 surface velocities of elements 1 and 2, m/sec (in./sec)

2 _]L
a pressure-viscosity coefficient, m /N (psi )

2 2p inlet absolute viscosity, N-sec/m , (Ib-sec/in. )

v, « Poisson's ratio of elements 1 and 2

* high contact stress factor, eqs. (8), (9), and (10)s

ip. . ,i|» . film thickness-stress function, eqs. (4), (5)
i-> J s

INTRODUCTION

The importance of maintaining a sufficient elastohydrodynamic (EHD)

film thickness between dynamically contacting machine elements has in

recent years been more fully appreciated. The prediction of EHD film

thickness has been the focal point of many theoretical and experimental

investigations, and has been summarized well in [1,2].

Numbers in brackets designate References at end of paper.
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The ratio of EHD minimum film thickness to composite surface rough-

ness of the mating contact surfaces has become an acceptable indicator of

the effectiveness of the lubricant film within the rolling-element con-

tact zone. It has been experimentally shown that this ratio influences

the fatigue life of rolling-element bearings [3,4]. Predetermination of

this lubricant parameter with an accurate prediction of minimum film

thickness will be of value to the designer in obtaining more realistic

estimates of rolling-element fatigue life [5].

The bulk of the experimental work conducted in elastohydrodynamic

lubrication has been confined to conditions of moderate speeds; that is,

up to 25.4 meters per second (1000 in./sec), and moderate loads; that is,

maximum Hertz stresses to 1.24x10 N/m2 (180,000 psi) [6 to 9]. The re-

search of [10,11] has extended the EHD film t'hickness measurements to

9 2
maximum Hertz stresses of 2.42x10 N/m (350,000 psi) which include the

design operating range of most machine components such as bearings and

gears. This data was obtained on a rolling-disk machine using an X-ray

transmission technique to measure minimum film thickness. The film thick-

ness measurements showed good qualitative agreement with full scale bear-

ing test results [12]. That is, very low film thicknesses were measured

at conditions similar to those where the bearings suffered surface damage.

In contrast to the results obtained by previous investigators which

showed reasonably good correlation at moderate speeds and loads between

elastohydrodynamic theory and film thickness measurement, the data of

[10,11] showed a marked deviation between predicted and experimental

values of film thickness. In particular, at high contact stresses; that

9 2
is, maximum Hertz stresses greater than 1.38x10 N/m (200,000 psi), the
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sensitivity of the film thickness to load as determined experimentally is

far greater than that predicted by classical EHD theory of [13,14].

Several attempts have been made to resolve the apparent discrepancy

between theory and experiment. A critical examination of the X-ray tech-

nique itself was made [15] for possible load dependent experimental

errors. However, no experimental factors were uncovered which could ser-

iously alter the accuracy of the X-ray measurements. On the theoretical

side, the influence of several possible rheological factors has been in-

vestigated, such as the effects of a non-Newtonian lubricant of the Ree-

Eyring form [16], the effects of heating at the inlet of the contact

region [17] and the effects of a reduced lubricant viscosity-pressure de-

pendence using a composite exponential model [18] and using a power-law

model [19].

While each of the above modifications to elastohydrodynamic theory

has succeeded somewhat in improving the agreement between theory and ex-

perimental data within the heavy load regime, the resulting predicted

values of film thickness differed little in magnitude from those computed

using classical EHD theory. Furthermore, the modified theories do not

sufficiently account for the high film thickness-load dependence to allow

accurate predictions of film thickness under realistic operating condi-

tions.

The experimental data of [20,21] also show a film thickness sensi-

tivity to stress greater than theoretical for maximum Hertz stresses

9 2
greater than about 1.04x10 N/m (150,000 psi). These data, obtained by

an optical interferometry technique with sliding point contacts tend to

confirm the measurements obtained by the X-ray technique of [10,11].
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It was the objective of the work reported herein to develop an em-

pirical elastohydrodynamic film thickness model based on an analysis of

the experimental data of [10,11] and to compare the empirical relation

derived with that of conventional elastohydrodynamic theory.

EHD FILM THICKNESS EXPERIMENTAL DATA

The empirical film thickness model which is presented herein was de-

veloped from film thickness data [10,11] obtained in an X-ray rolling-

disk machine. The four lubricants studied were a Type II ester, a fluoro-

carbon, a polyphenyl ether, and a synthetic paraffinic oil. Properties

of these lubricants are shown in Table 1.

The method of measuring film thickness with the X-ray technique com-

prises projecting X-rays between the surfaces of the two contacting disks,

and detecting the rate of X-ray transmission through the contact. Since

the greatest constriction occurs at the trailing edge of the contact, the

X-ray count thus becomes a measure of the lubricant's minimum film thick-

ness.

The range of test conditions include disk temperatures from 339 to

589 K (150° to 600 F), surface speeds from 9.4 to 37.6 meters per sec-

ond (370 to 1480 in./sec) corresponding to disk rolling speeds from 5000

9 9 2to 20,000 rpm, and maximum Hertz stresses from 1.04x10 to 2.42x10 N/m

150,000 to 350,000 psi). Two crowned-cone AISI M-50 steel disks each

with a rolling radius of 1.83 centimeters (0.72 in.) and a surface finish

of 2.5x10 to 5.0x10 centimeters (1 to 2 yin.) rms were used as the

test specimens.

Both crowned disks and crowned-cone disks (with a cone angle of 10 )

were tested and no significant differences were reported between the two
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sets of film thickness data [10,11]. All the data reported herein were

generated with the crowned-cone test disks appearing in Fig. 1.

FORMULATION OF AN EMPRIICAL FILM THICKNESS EXPRESSION

To formulate a generalized film thickness expression for the four

test lubricants over the wide range of experimental operating conditions

it is most convenient to reflect the effects of the several test vari-

ables on the value of measured minimum film thickness within the confines

of a single plot. This has been accomplished in Fig. 2 which shows the

sensitivity of minimum film thickness h . to mean surface speed umm r

and lubricant viscosity u at the various experimental maximum Hertzian

stress levels p for each of the four test fluids. In these and later

plots the nondimensional groupings common to EHD theory, viz. the dimen-

sionless film thickness parameter H . = (H . /R1), the dimensionless
mm mm

speed-viscosity parameter U = (n u/E'R1) and the dimensionless stress

parameter PH = (p,, /E1), have been introduced to facilitate the han-

dling of the experimental data.

The measured data on these log-log plots can be satisfactorily

fitted by straight lines for all of the test fluids (see [22,23] for de-

tails) and therefore can be represented by the following simple power re-

lationship

_ _n • •
(H . ). . = C. .U 1>J (1)minyi,j 1,3 vx'

where subscript i = 1 -»• 5 designates one of the five experimental maxi-

mum Hertz stress levels and subscript j = 1 ->- 4 designates one of the

four test fluids and where U ranges from the lowest to highest experi-

mental value.
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What distinguishes one lubricant from the next in these plots is the

effect of contact stress on the sensitivity of minimum film thickness to

variations in U. In view of conventional elastohydrodynamic theory, it

would not be expected that the stress level would appreciably influence

the relation of H . to U. However, both the synthetic paraffinic andmm

polyphenyl ether film thickness data show a somewhat enhanced sensitivity

to U with increasing contact stress, as evidenced by the change in

slope of the lines appearing in Figs. 2 (a) and (d). The magnitude of

this variation, that is, the variation of exponent n. , with increasing
^-jJ

contact pressure, is tabulated in Table 2 for the four test lubricants.

It is apparent from this table that exponents n. „ and n, ~ fori ,z i , j

the fluorocarbon and Type II ester fluids are essentially unaffected by

variations in contact stress. Their mean values, designated as n- and

n^, were determined to be 0.61 and 0.60, respectively. With regard to

the synthetic paraffinic and polyphenyl ether test fluids, one notices

an appreciable variation in the value of n. . over the operating stress
i> J

range. For purposes of developing a generalized film thickness formula

of an approximate nature, the complications of a pressure dependent speed-

viscosity parameter exponent can be avoided without introducing serious

inaccuracies by selecting mean values of exponents n. 1 and n. , .
i , J. i ,4

Table 3 lists the values of exponent n, which have been determined for

each of the test lubricants from the X-ray test data.

Equation (1) can now be written in the following form.

where the presently unknown continuous function f (p ) . has been intro-
HZ J

duced to describe the dependence of minimum film thickness upon the
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applied contact laod for each lubricant. The main objective in this

approach is to separate the effects of maximum Hertz stress on the value

of film thickness from those effects contributed by surface speed and

lubricant viscosity. Having isolated the effects of contact pressure,

there remains the task of representing the influence of contact pressure

on film thickness by a single mathematical expression for all test fluids.

By combining equations (1) and (2), an expression can be written for

f(Pu )• where

_(n -n )
f(PHẑ  = Ci5J

U '3 <3>

and where the discrete values of f(p ) must equal the experimentally

deduced values of the expression on the right side of the above equation

for any U.

It is evident from equation (3) and the previous discussion that

f(pH )• is unavoidably an explicit function of U. In the case of the
tiZ J

fluorocarbon and Type II ester fluids, exponent n. . is essentially1» J

constant and equal to n. for all p so that the exponent of U in
j tlZ

equation (3) will be essentially zero. Thus the effect of U on the

f(pu ). term in equation (2) would be negligible in accordance with EHD

theory. With regard to the synthetic paraffinic and polyphenyl ether

test fluids, the sensitivity of minimum film thickness to maximum Hertz

stress does vary slightly with changes in operating speed and disk tem-

perature as evidenced by Figs. 2(a) and (d). However, this variation

due to U is not severe [22,23] and the inaccuracies incurred by evalu-

ating the expression in equation (2) at some mean experimental value of

U are tolerable.
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If log f(pu )j j> evaluated at the mean experimental value of U,
Hz 1 , j .

is plotted against the log of the dimension less stress parameter PH

for each of the four test fluids, the curves on Fig. 3 representing the

film thickness - stress function f(pp )• result. It can be seen that
rlZ j

there is great similarity in the shape of the curves appearing in this

figure. That is to say, the effect of maximum Hertz stress on the ratio

"- -1of (H . ) . to U is nearly the same, apart from some constant multi-

plier, say k., for all the test fluids [23]. Defining factor i|; .
J i » J

such that

• -
where constant k. is some lubricant parameter used to normalize the

value f (p ). . at F = 3.09xlO~ . Table 4 lists constant k and
9 j nz j

parameter \l> as a function of P for each of the four test fluids.
i , J "Z

It is apparent from inspecting Table 4 that the value of ip. at a
^> J

given contact stress level does not differ appreciably from lubricant to

lubricant. Thus taking the mean values of \ii-. at each P.. , this var-
i,j Hz'

iation can be represented for all of the test fluids by a single gener-

alized function ijj . Equation (4) may be rewritten as follows.

s k.
Substituting equation (5) into equation (2) yields

where function <1> satisfactorily describes the effect of pTT on h .s Hz min

for all four test lubricants.

The above expression is, in itself, a film thickness correlation
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which can be used to satisfactorily forecast minimum film thickness at

high contact stress levels. However, as a matter of convenience, equa-

tion (6) will be altered slightly to a somewhat more familiar form.

DEVELOPMENT OF EHD HIGH -CONTACT-STRESS FACTOR

As previously discussed, film thickness values forecasted by cur-

rently accepted EHD theory has shown reasonably good agreement with ex-

perimental data for maximum Hertz pressures less than approximately

9 2
1.04x10 N/m (150,000 psi) . Above this stress level, conventional theory

seriously overestimates the extent of the film generated by the lubricant

as evidenced by test data [10,11]. Thus, it is most desirable to intro-

duce some factor to adjust current film thickness formulae for the devi-

ation between theory and experiment at high applied loads.

It is generally recognized that film thickness is only moderately

dependent upon contact stress at the lower stress levels. Typically,

for line contact, film thickness is proportional to maximum Hertz stress

— — -0 22
to the -0.22 power, i.e.,Ha(PH ) " , where the stress parameter expo-

nent selected here comes from the isothermal theory of Cheng [24]. This

proportionality can be introduced into the empirical film thickness re-

lationship shown in equation (6) by simply defining a factor $ , such
s

that

*s =
 B

(P )V Hz'

-3 -0 22where constant B has been arbitrarily chosen to equal (3.09*10 )

to make $ = ip = 1, at Pu = 3.09x10 . By incorporating equation (7)S S nZ

into equation (6) , yields
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H . = K* U j PH~°'
22 * (8)min j Hz s

*
where coefficient K, = k./B and exponent n. are lubricant parameters

J J J

listed in Table 3, and parameter <J> is a reduction factor to account
s

for the much higher sensitivity of film thickness to load than normally

predicted.

Fig. 4 shows the effect of contact stress on factor $ together
S

with the following polynomial expression which closely fits this curve,

' ~ 27-5xl°3 ^Hz* + °'806

It is important to emphasize that the accuracy of the empirical re-

lationship shown in equation (6) has not been affected by the introduc-

• _Q 22
tion of the (P.. ) " term in equation (8). Either of these expressions

may be utilized to forecast minimum film thickness quite satisfactorily

but the latter is perhaps more convenient to use.

In viewing the variation of the U exponent n., appearing in

Table 3, it is apparent that the value of n. for the first three test

fluids are nearly equal, averaging approximately 0.62 However, the

^

value of n, for the polyphenyl ether fluid is significantly higher than

the rest. In the optical film thickness experiments conducted by Westlake

and Cameron [25], the speed-viscosity parameter exponent of a similar

polyphenyl ether fluid, at a value of 0.82, was found to be somewhat

larger than the exponent of any other fluid tested including that for a

fluorocarbon and a synthetic paraffinic lubricant. In contrast to the

results of the present work, no variation of n. with p for the

minimum film thickness case was observed for either the polyphenyl ether

or synthetic paraffinic oils. However, due to differences in the experi-
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mental apparatus, both the operational shear rate and contact stress

levels are significantly higher here than in the work reported in [25].

It was determined from numerical comparisons between the X-ray test

data and predictions from equation (8) that only a small loss of accuracy

--\
would result by setting n, at a nominal value of 0.62 for all four test

fluids. Taking advantage of this last simplification, equation (8) can

be written in the following final form,

H . = K. U°'62 P -°-22* (10)mm j Hz s ^ '

*
where the lubrication parameter K. has been adjusted to K to reflect

the change in the exponent of U. Table 3 lists the appropriate value of

K. for equation (10).

DISCUSSION OF RESULTS

Comparison with Test Data and Conventional Theory

The deviations in magnitude between film thicknesses forecasted by

current isothermal EHD .film thickness formulae and those experimentally

observed are partially attributable to the uncertainties encountered in

selecting appropriate values of the pressure-viscosity coefficient a

for computational use [26]. Furthermore, part of this magnitude differ-

ence between isothermally predicted and measured film thicknesses at high

rolling speeds is undoubtedly linked to inlet shear heating effects of

the lubricant. Under the appropriate dynamic circumstances, inlet shear

heating effects are known to cause appreciable film thinning [18,27].

What has not yet been satisfactorily resolved from a theoretical stand-

point is the increasing sensitivity of the minimum film thickness to con-

tact stress with increasing applied load. This anomaly is illustrated in
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Fig. 5 which is a plot of nondimensional minimum film thickness as a

function of maximum Hertz pressure. This figure compares the X-ray test

data and isothermal theory for a synthetic paraffinic oil at temperatures

of 339 K (150° F) and 422 K (300° F) and disk speeds of 5000 and
\

15 000 rpm which correspond to surface speeds of 9.4 and 28.2 meters per

second (370 and 1110 in. /sec), respectively. Comparisons using the other

test lubricants showing similar results could be made.

The EHD film thickness formula used for the above comparison comes

from the isothermal theory of Cheng [24]. Chen's formula is considered

representative of those EHD formulas which predict nominal film thickness

for bodies in line contact. This equation can be written

,0.74. v-0.22
h • au u • • Pu

• ' '_. -
R1 ', R1 i ,.E'

In keeping with Cheng [18], a correction factor of 0.8 has been

applied to the above equation to adjust Cheng's center film thickness to

minimum film thickness. The limitations of this type of an adjustment

are recognized. The necessity for it underscores the uncertainties attend-

ant with simplified film thickness formulas as applied to minimum film

thickness calculations.

The values of a utilized for this computation are based upon the

numerical integration of the reciprocal viscosity-pressure isotherm as

published in [20]. They appear in Table 5 as a function of temperature.

Film thickness correlation. - The results of the present analysis

are compared with the X-ray test data at selected temperatures in Fig. 6.

In this figure, nondimensional minimum film thickness is plotted as a

function of maximum Hertz pressure at several rolling speeds. The numer-
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.leal results of: this comparison are summarized in Table 6. It is evident

that the present film thickness formulation (eq. (10)), although reduced

to a very simple form, is still in reasonably good agreement with the

measured data for all four test fluids over the full range of test condi-

tions.

The application of the empirical film thickness formula to systems

where somewhat different lubrication conditions prevail will be considered

next.

Effect of Lubricant on Film Thickness Correlation

The empirical factors utilized in formulating the present correla-

tion have been developed from the experience gained with four test fluids.

At present no meaningful generalizations can be made regarding the exten-

sion of the present deduced relationship to systems employing different

lubricant types or formulations without the benefit of additional experi-

mental information. On the other hand, application of the film thickness

correlation to systems utilizing the lubricants under study over similar

conditions can be made with reasonable confidence.

Lubrication coefficient K <. - It may be apparent that the pressure-

viscosity coefficient a which is. customarily used to characterize the

film forming capabilities of a lubricant, apart from the effects of abso-

lute viscosity, is conspicuously absent from the present formulation. In

the present model, the role formerly played by a has been fulfilled in

part by the lubrication coefficient K... That is, a lubricant's film

forming capabilities can be ascertained by knowing its K. and its abso-

lute viscosity p at a given operating condition. An important distinc-

tion between a and K., is that a is temperature dependent where K.
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as presently defined is not. Careful examination of test data revealed

that the effects of temperature on minimum film thickness are adequately

reflected by the variation in absolute viscosity and that the added com-

plication of an additional temperature dependent variable could thus be

avoided. Further, the availability of pertinent pressure-viscosity data

at elevated temperature under the appropriate shear rate and pressure

conditions for film thickness calculation purposes have been generally

limited. There has been, however, increasingly more attention directed

at obtaining these pressure-viscosity data in recent years [21,26,28,29].

In view of the aforementioned, it is advantageous to dispense with a

for the present film thickness model.

Effects of Contact Geometry and Material

Contact geometry. - The present correlation is based exclusively

-upon measurements made with a single disk geometry chosen to simulate the

ball-inner race contact of a 120-mm bore angular-contact ball bearing

[3.0]- The .contact between the test disks approaches the condition of

line contact with an ellipticity ratio b/a of 5.9 where b and a are

the major and minor semi-axes of the contact ellipse, respectively. The

equivalent radius of curvature in the direction of rolling R' for the

test disks is 0.915 centimeter (0.36 in.).

It is difficult to extend the results presented herein to different

contact geometries with complete assurance without further experimental

verification. However, from a practical standpoint., it is speculated

that the overall effect of contact geometry on the value of film thick-

ness is minimal. Cheng [24] has theoretically shown that the proportions

of the contact ellipse with b/a varying from 1 to 5 have a relatively



16

mild effect on film thickness. That is, the dependence of film thickness

upon mean surface speed u, absolute viscosity y , and contact stress

p changes little as the shape of the contact ellipse varies from point
Hz

to line contact. Similarly, Archard and Cowking [31] have shown that

there is great similarity between the EHD lubrication of point and line

contacts. A second factor is that the contacts between the races and the

balls or rollers in rolling-element bearings and the contacts between

gear teeth normally approximate the line contact case. In view of these

considerations, the empirical minimum film thickness formula presented

can be used with reasonable certainty for most practical applications

without further modifications for small differences in contact geometry.

With regard to the size of the contacting elements, elastohydrody-

namic theory indicates that film thickness is moderately dependent upon

the contacting elements' equivalent radius of curvature in the rolling

direction R' [1J. The current film thickness formula implies that film

thickness is a function of R' to the 0.38 power at a given contact

stress level. This value is in approximate accord with conventional EHD

• 0 7fi
theory. (See eq. (11) where h . aR ' at equal p .) However, it is

recognized that the sensitivity of h . to R1 in the heavy load re-

gime remains to be established experimentally. Until such time, minimum

film thicknesses forecasted by equation (10) will be most successful for

those systems in which the R' of the contact approximates that of the

system understudy.

Material. - The effects of material properties in terms of Young's

9
modulus upon film thickness at high contact pressures (up to 3.45x10

N/m (5x10 psi) maximum Hertz stress) has been demonstrated by experi-
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ment [32] to be minimal. These tests which confirm theoretical expecta-

tions were conducted by Gohar [32] utilizing interferometry to measure

the film generated between a rolling steel ball and a flat glass plate.

It is anticipated that the choice of materials other than steel will not

appreciably alter the form of equation (10). However, caution must once

again be exercised if the elastic properties of the material of interest

are markedly different from those of steel.

CONCLUDING REMARKS

The film thickness relationship developed herein represents an ini-

tial attempt at empirically modeling the effects of high contact stress

9 2(above 1.04x10 N/m (150>000 psi)) on minimum film thickness in an

»̂elastohydrcrdynamic contact. Understandably, this expression, stemming

from a data base originating from a single source, will require addi-

tional refinements to become more universally attractive. However if

utilized judiciously, the present film thickness formula will aid the

designer in obtaining a more realistic appraisal of the extent of oil

film separating his contacting machine elements.

SUMMARY

An empirical elastodydrodynamic (EHD) film thickness formula was

developed for heavily loaded contacts based upon X-ray film thickness

measurements made with synthetic paraffinic, fluorocarbon, Type II ester

and polyphenyl ether test fluids. The film thickness test data covered

a wide and practical range of operating conditions.

9 9 2Maximum Hertz stresses ranged from 1.04x10 to 2.42x10 N/m

(150,000 to 350,000 psi), disk temperatures from 339 to 505 K (150° to

450 F), and mean surface speeds from 9.4 to 37.6 meters per second
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(370 to 1480 in./sec). Predicted values of minimum film thickness were

compared to X-ray film thickness measurements and contrasted against the

results from a well known isothermal EHD analysis. The effects of con-

tact geometry, material and lubricant properties upon predicted film

thickness were considered. The following results were obtained:

1. In contrast to commonly accepted elastodydrodynamic theory, the

present film thickness formula reflects the high sensitivity of minimum

film thickness to contact stress exhibited by the test data under heavy

loads. Good agreement with the X-ray test data existed over the full

range of test conditions.

2. The measured minimum film thickness data in the case of the

synthetic paraffinic and polyphenyl ether fluids was observed to display

an enhanced sensitivity to mean surface speed and lubricant absolute

viscosity with increasing contact stress.

3. It was judged that the empirical film thickness formula can be

used to forecast minimum film thickness under heavy loads with reasonable

certainty for rolling-element bearing and gear systems employing the lu-

bricants studied herein, and whose contact geometry approximates that

upon which the model is based.
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TABLE 1. - VISCOSITY PROPERTIES OF TEST LUBRICANTS

Lubricant

Synthetic paraffinic

Fluorocarbon

Type II ester

Polyphenyl ether

Kinematic viscosity

cs (or 10~6 m2/sec)

At 311 fc
(100° F)

443

298

29

358

At 372 K
(210° F)

39.7

29.8

5.4

13.0

Specific gravity
at 478 K
(400° F)

0.74

1.59

0.85

1.05
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TABLE 3. - MEAN VALUES OF THE DIMENSIONLESS SPEED VISCOSITY

PARAMETER EXPONENT n AND LUBRICANT

PARAMETERS K? AND K.
J J

n.

K*
J

K.
J

Synthetic
paraf finic

0.66

43.8

18.2

Fluoro-
- carbon

0.61

30.6

44.8

Type II
ester

0.60

10.7

18.2

Po lyphenyl
ether

0.83

3940.

24.9

TABLE 4. - VARIATION OF ij^ . WITH PRz FOR THE FOUR TEST FLUIDS

Synthetic paraf-
finic
Fluorocarbon
Type .11 ester
Polyphenyl ether

4>ys

k.
J

156

109
38

1.4xl04

PHz ~ ,,
3.09xlO~3

1.0

1.0
1.0
1.0

1-0

PHZ = .
4.17xlO~3

0.92

.93

.92

.85

0.91

'*i.J

PHZ = ,
5.15xlO-3

0.78

.78

.79

.71

0.77

PHZ - .
6.17xlO~3

0.61

.58

.62

.52

0.58

PHZ =
7.2xlO-3

0.43

.44

0.48

TABLE 5- - PRESSURE VISCOSITY COEFFICIENT a

FOR A SYNTHETIC PARAFFINIC OIL

a

TQ = 339 K

(150° F)

17-lxlO-9 M2/N

(11.8xlO~5 psi"1)

TQ = 422 K

(300° F)

10.8xlO~9 M2/N

(7.5xlO~5 psi'1)
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TABLE 6. - COMPARISON BETWEEN PREDICTED AND MEASURED MINIMUM FILM THICKNESS [10,11]

Nondimensional minimum film thickness, H . *10mm

Disk
speed,
rpm

5,000

10,0000

20,000

5,000

10, 000

20, 000

Maximum
Hertz
stress,
109 N/ra2

(10s psi)

1.04 (1.5)
1.72 (2.5)
2.4 (3.5)

1.04 (1.5)
1.72 (2.5)
2.4 (3.5)

1.04 (1.5)
1.72 (2.5)
2.4 (3.5)

1.04 (1.5)
1.72 (2.5)
2.07 (3.0)

1.04 (1.5)
1.72 (2.5)
2.07 (3.0)

1.04 (1.5)
1.72 (2.5)
2.07 (3.0)

Synthetic paraffinlc oil

Disk temperature, K (°F)

339(150) 422(300) 478(400)

X-ray Eq. X-ray Eq. X-ray Eq.
data (10) data (10) data (10)

98 79 21 19 14 11
80 60 13 14 8 9
4 6 3 0 4 7 2 4

116 122 36 29 25 17
96 92 24 22 19 13
55 47 11 11 7 7

142 186 48 45 39 27
110 140 35 34 25 20
67 71 17 17 16 10.

Type II ester lubricant

Disk temperature, K (°F)

339(150) 366(200) 422(300)

X-ray Eq. X-ray Eq. X-ray Eq.
data (10) data (1Q) data (10)

25 26 12 12 7 7
19 20 9 9 5 6
11 10 5 5 3 3

42 40 22 19 12 11
31 30 16 14 9 9
18 15 8 7 5 4

53 61 29 29 18 17
41 46 25 22 15 13
22 23 15 11 7 7

Fluorocarbon lubricant

Disk temperature, K (°F)

422(300) 478(400) 534(500) 589(600)

X-ray Eq. X-ray Eq. X-ray Eq. X-ray Eq.
data (10) data (10) data (10) data (10)

68 60 31 35 21 23 16 16
46 45 20 26 17 17 12 12
31 35 15 20 13 13 9 10

90 92 49 53 38 35 26 25
73 70 36 40 31 27 21 19
53 54 26 31 25 21 15 15

125 142 79 82 56 54 38 39
101 108 68 62 46 41 31 29
75 83 48 48 35 32 25 . 23

Polyphenyl ether lubricant

Disk temperature, K (°F)

422(300) 505(450)

X-ray Eq. X-ray Eq.
data (10) data ' (10)

16 16
11 9 4 6
8 6 3 3

25 22
21 14 6 10
17 9 4 5

36 34
32 22 12 15
27 15 8 7

27.9(11.0) DIMENSIONS
CM (IN.)

1.83(0.72)—-'

1.80(0.711-

1.80(0.71)

R2= 1.83(0.72)

10°

-1.91(0.75)-] VR-27.9(11.0)

Figure I - Contacting cone-disk geometry for X-ray tests [lO, ll].
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