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ABSTRACT

Spinning and rolling torques were measured in an angular-contact

ball bearing with and without a cage under several lubrication regimes

in a modified NASA spinning torque apparatus. Two lubricants were

used-- a di-2 ethylhexyl sebacate and a synthetic paraffinic oil, at shaft

speeds of 1000, 2000, and 3000 rpm and bearing loads from 45 newtons

(10 Ibs) to 403 newtons (90 Ibs). An analytical model was developed

from previous spinning friction models to include rolling with spinning

under lubrication regimes from thin film to flooded conditions. The

bearing torque values have a wide variation, under any condition of

speed and load, depending on the amount of lubricant present in the

bearing. The analytical model compared favorably with experimental

results under several lubrication regimes.

NASA-Lewis Research Center, Member ASME.
University of California, Chico, Member ASME.



NOMENCLATURE
2 2A . area of cage land, m (in. )

a major semiaxis of contact ellipse, m (in.)

b minor semiaxis of contact ellipse, m (in.)

b' semiwidth of contact ellipse at y, m (in.)

C radial cage clearance, m (in.)

CD drag coefficient
2

E materials properties factor, N/m (psi)
2

E-, 2 modulus of elasticity, N/m (psi)

e exponent

e unit vector along bearing axis

F lubricant factor

F cage force, N (Ib)

FD fluid-dynamic drag, N (Ib)

FTT friction force due to hysteresis, N (Ib)

FR friction force due to rolling drag, N (Ib)

Fg friction force due to microslip, N (Ib)

f coefficient of friction

h film thickness, m (in.)

h minimum distance between ball and groove, m (in.)
> » . > » , , * .

i , j ,k unit vector in x, y, and z direction

K constant defining outer boundary of integration

M total spinning torque at ball/race interface, N-m (Ib-in.)
o

M.. total spinning torque in Hertzian ellipse, N-m (Ib-in.)

M 2 spinning torque due to viscous drag outside Hertzian ellipse,

N-m (Ib-in.)



N number of balls

P normal load, N (Ib)

R radius of ball, m (in.)

R radius of equivalent cylinder, m (in.)
C

R~ radius of groove, m (in.)

Rj cage land radius, m (in.)

R pitch radius, m (in. )

RD radius of race, m (in.)

r polar coordinate, m (in.)

r value of r at outer boundary of Hertzian ellipse, m (in.)
o

S contact stress, N/m (psi)

T total bearing torque, N-m (Ib-in.)

T cage torque, N-m (Ib-in.)
\~t

T.. bearing torque due to ball spin torque, N-m (Ib-in.)

T^ bearing torque due to rolling drag, N-m (Ib-in.)

TV bearing torque due to aerodynamic drag, N-m (Ib-in.)

T. torque due to hysteresis, N-m (Ib-in.)

TV bearing torque due to cage drag, N-m (Ib-in.)

Ug surface velocity of ball relative to moving coordinate system,

m/sec (in./sec)

U linear velocity of ball center, m/sec (in./sec)

UD surface velocity of race relative to moving coordinate system,

m/sec (in./sec)

Ug relative slip velocity between ball and race, m/sec (in./sec)

W load per unit width, N/m (Ib/in.)

x, y, z moving coordinate system, m (in.)

2-1 -1a pressure-viscosity exponent, (N/m ) (psi )



|3 angle which ball angular velocity vector makes with bearing axis,

deg

0 loaded contact angle, deg
2 2/j. absolute viscosity, N-sec/m (Ib-sec/in. )
o 9I.L ambient viscosity, N-sec/m (Ib-sec/in. )

v Poisson's ratio
3 2 4p density of fluid, kg/m (Ib-sec /in. )

o
T shear stress, N/m (psi)

2
r, transition shear stress, N/m (psi)

0 polar coordinate in the x-y plane

fi angular velocity of ball center, rad/sec

fi- angular velocity of inner race, rad/sec

fi angular velocity of outer race, rad/sec

<jt) angular velocity of ball with respect to rotating coordinate system,

rad/sec

o>- relative angular velocity of inner race with respect to moving

coordinate system, rad/sec

o> relative angular velocity of outer race with respect to moving

coordinate system, rad/sec

OJ angular velocity of rolling, rad/sec

a) angular velocity of spinning, rad/secs
Subscripts:

1 denotes inner race

o denotes outer race

— indicates vectors

INTRODUCTION

In bearing and gear applications considerable power losses can

occur even when good lubrication is present. In rolling-element bearings



these power losses result in heat generation and increased temperature

of the lubricant and the bearing components. These losses occur due to

a number of factors; shearing of the lubricant in the bearing cavities,

rubbing of the balls and cage (separator), cage drag, spinning and rolling

of the balls in the raceways and churning of the lubricant. Ball bearing

kinematics are also affected by these losses. Early analytical work [1-3]

on power losses in ball bearings were restricted to the use of Coulomb

friction at the sliding contacts. More recently it has become evident

that the Coulomb friction model is inadequate to completely describe all

the conditions in a real bearing [4, 5 |. In the later analysis [5] the EHD

lubricant film and the rheological properties of the lubricant were used to

determine bearing friction and kinematics. The method of [5] uses an

exponential model for the lubricant pressure-viscosity characteristics

which may predict power losses higher than those which generally occur

in practice.

The torque of a ball spinning in a groove with different conformities

and several lubricants was measured [6-8] in the NASA spinning torque

apparatus. Later, an analytical model was developed [9, 10] which pre-

dicted the extent that elastohydrodynamic film contributed to the effective

ball/race separation and spinning torque. The analyses showed that

conventional elastohydrodynamic lubrication is possible in the case of a

groove having conformities up to 60 percent.

In developing the analysis of [9] it was found that the assumption of a

Newtonion fluid with an exponential pressure-viscosity relationship gave

Numbers in brackets designate references at end of paper.



impossibly high values of torque. It was necessary therefore to intro-

duce a cutoff point at which the pressure-viscosity exponent decreased

to a much lower value. The model of |9| yielded satisfactory results
/>

when the calculated shear rate was of the order of 10 reciprocal sec-

onds. Comparison with data of other researchers [11] showed the

cutoff to occur at much higher pressures when the film thicknesses were

much greater than those of [9]. In other words, a lower shear rate

resulted in a higher cutoff pressure.

The research reported herein, which is based on the work reported

initially in [12, 13], was undertaken to investigate the losses which occur

in an angular-contact ball bearing under spinning and rolling motion of

the balls. The objectives were: (a) Modify the composite viscosity

lubricant model to take into account the shear rate dependency effects;

(b) Measure experimentally the torque in a thrust-loaded ball bearing

with and without a cage; (c) Extend the previously-developed analytical

techniques for determining torque of a ball spinning in a nonconforming

groove to the case of a bearing operating with combined spinning and roll-

ing; and (d) Determine analytically the effect of lubricant viscosity and

fluid-dynamic drag on bearing torque.

APPARATUS, SPECIMENS, AND PROCEDURE

Spinning Torque Apparatus

A spinning torque apparatus (see figs. l(a) and (b)) described pre-

viously in |6. 7] was also used for the tests reported herein. The apparatus

essentially consists of a turbine drive, a pneumatic load device, an upper

and lower test specimen, a lower test-housing assembly incorporating a



hydrostatic airbearing, and a torque-measuring system. An angular-

contact ball bearing can be substituted for the upper and lower test

specimen in the apparatus. In operation, the bearing inner race is

pneumatically loaded against the balls of the bearing through the drive

shaft. As the drive shaft is rotated, the inner race rotates with respect

to the outer race in the bearing. This causes an angular deflection of

the outer race housing. This angular movement is sensed optically by

the torque-measuring system and is converted into a torque value.

During a test, the torque is continuously recorded on a strip chart.

Test Bearings

Two types of test bearings were used. Both types were conventional

204-size angular-contact bearings with all but three balls removed. One

bearing had a 26 contact angle with a 52-percent conformity at inner

and outer races. The second bearing had a 17° contact angle with 53-

and 54-percent conformity at the inner and outer races, respectively.

Specifications of the bearings are given in Table 1.

Test Procedure

Tests were conducted in the spinning torque apparatus at room tem-

perature using the two test bearings both with and without a cage. Test

conditions were 1000, 2000, and 3000 rpm and varying loads from

44. 5 N (10 lb) to 403 N (90 lb). The tests were conducted with two lubri-

cants, a di-2-ethylhexyl sebacate and a synthetic paraffinic oil.

The bearings were first run without a cage and using oil jet lubrica-

tion at a rate of 8 cc/min. After the initial tests the bearing was
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cleaned and a few drops of lubricant which had been diluted by a 5 to 1

addition of hexane was applied. The hexane then evaporated leaving only

a thin film of lubricant on the bearing surfaces. The bearings were then

run again but only long enough (usually 5 to 15 sec) at each speed and load

condition to reach equilibrium conditions. Finally, the bearings were run

with an inner-race riding cage with jet lubrication.

ANALYSIS

Generalized Rheological Model

The composite viscosity lubricant model [9] was modified to take into

account the shear rate dependency effects of a lubricant [12]. The new

Theological model incorporates four parameters: (a) Ambient viscosity u ,

(b) Pressure-viscosity coefficient or, (c) a lubricant factor F, and

(d) transition shear stress, r . These parameters may be represented by

the following relations

cyT = p. e ojy/h and r < r (la)
*-» Vx

T = p. eaSu>y/h and r < r < FS (Ib)
\J \j

T = FS and ^ e coy/h > FS (Ic)

The transition shear stress r is introduced to allow for large ratios
\s

T/'S to be present when the pressure is low. The introduction of a lubri-

cant factor. F serves to limit the shear stress at high pressures and shear

rates to a fraction of the normal stress. In order to visualize the behavior

of the fluid under the foregoing conditions. Fig. 2 shows a plot of shear



stress as a function of normal stress for a synthetic paraffinic lubricant

at various shear rates. If the shear stresses computed by Eqs. (la),

(Ib), or (Ic) are substituted into the equation for shear stress, where

T = / i - - , an equivalent viscosity may be obtained for any shear rate.
h

Fig. 3 shows this equivalent viscosity for various shear rates with the new

model and also for the composite viscosity lubricant model of [9]. The

previous model is seen to be approximately equivalent to a special case

of the newer, more general, model.

The spinning moments for a synthetic paraffinic lubricant were computed

using the revised rheological model and were compared with the experimental

values from [8], The theoretical results showed good agreement with the

experimental data of [8 |. The parameters used in the rheological model

for the synthetic paraffinic lubricant were determined to be:

/IQ = 0.414 N-sec/m2 (6xlO~5 lb-sec/in.2)

a = 1.33xio~8 m2/N (0.92xl(T4 psi"1)

T = 6.89X106 N/m2 (1000 psi)
\^r

F = 0 . 0 7

For the di-2-ethylhexyl sebacate lubricant tests which were reported

in [3 | the following fluid parameters were determined:

M0 = 0.016 N-sec/m2 (0.24xlO~5 Ib-sec/in. 2)

a = 1.45X10'8 m2/N (1.0xlO~4 psi"1)

rn = 6.89X106 N/m2 (1000 psi)
\^r

F = 0 . 0 4 5

The synthetic paraffinic oil and the di-2-ethylhexyl sebacate were the

same fluids used for the testing reported herein. The above lubricant
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properties and generalized model were used in the analysis presented in

this paper.

Origin of Friction Torque

In a lubricated ball bearing there is an elastohydrodynamic film

between each race and ball. There is also some lubricant surrounding

the high-pressure elastohydrodynamic region. Among the possible sources

of bearing friction in a thrust bearing of the type under investigation, are

the following:

1. Spinning friction arising within the elastohydrodynamic region.

2. Spinning friction due to the lubricant outside of this region.

3. Rolling resistance due to the lubricant being squeezed out in front

of the rolling ball.

4. Friction due to translational sliding in the elastohydrodynamic region.

5. Fluid-dynamic drag of the balls as they orbit about the center of the

bearing.

6. Hysteresis losses due to elastic deformation of steel during rolling.

7. Cage viscous drag.

The contribution to the bearing torque of each of these effects will be

considered independently and then the total bearing torque obtained by the

summation of the individual contributions. For the first order computation,

coupling between the various effects will be neglected.

Spinning Torque

Analysis of the spinning torque is an extension of the work undertaken

previously for the spinning of a ball in a nonconforming groove [9, 10].



11

The coordinate system for a ball bearing system is shown in Fig. 4. The

contact ellipse for the ball/race interface is shown in Fig. 4(b). As in

the case of the pure spinning reported in [9, 10] several simplifying assump-

tions are made as follows:

(a) The stress distribution is Hertzian.

(b) The major axis of the ellipse is assumed to be considerably

greater than the minor axis. For a 54 percent curvature, the ratio of the

major to minor axis is 5.2. For curvature less than 54 percent this

ratio is larger.

(c) The major axis of the contact ellipse is considerably less than

the ball radius so that the ellipse may be approximated by a plane ellipse

lying in the x-y plane.

(d) The significant velocities, as far as film thickness and torque are

concerned, are those in the x direction. This follows from the second

assumption.

(e) The nonsymmetry of the film thickness in the positive and negative

y directions is assumed to be small so that moments can be assumed to be

balanced about the z axis.

(f) The surface roughness is assumed small in comparison with the

thickness of the elastohydrodynamic film.

(g) Frictional resistance is entirely due to viscous shear,

(h) Side leakage is neglected.

(i) The film thickness in the x direction is constant.

(j) The surfaces are isothermal.

On the basis of the preceding assumptions, the system can be reduced
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to a number of elemental rollers of width dy in rolling and sliding motion

relative to the groove (Fig. 4).

The equation for the resulting spin torque about the z axis is derived

in Appendix I by integrating the elemental moments over the whole contact

ellipse as:

= / yj (3)

In addition to the effect on spinning torque of the lubricant within the

Hertzian contact region, the effect of the lubricant outside of this region

must also be considered. The expression for this moment is given in [8]

>7r/2

Ms2
dr

R
R+ h -

COS

R \2
I\/~t \ nG ] 2

1 r
1/2 2

-(R2- r2)1/2

(4)

This may be integrated numerically over the region outside the contact

ellipse. The total moment M is therefore the sum of the moments given
S

by the Eqs. (3) and (4)

M = M , + M „s si s2 (5a)

Spinning torques are computed for both inner and outer ball/race con-

tacts. For equilibrium it is necessary for the net moment vector on the

ball in the z direction to be zero. Therefore,

Msi Mso (5b)



M . + M
SI SO

M .
si + M

so
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The values of the spinning torque at the inner and outer ball/race con-

tacts are dependent upon the relative spin velocities which are in turn

dependent upon the angle /3 of the angular velocity vector. In order to

obtain the correct value of /3, two extreme values are assumed and the

net moment on the ball computed for each and an interpolation procedure is

used to arrive at that value for which the net moment on the ball is close

to zero. The criterion used in the numerical computation is

<0.01 (6)

When the net moment has been obtained within the limit defined by

Eq. (6), the resulting bearing torque due to ball spinning friction only is

obtained as:

T, = NM0 sin 0 (7)
1. S

The above analysis does not take into consideration the effect of centri-

fugal force at high speed.

Rolling Resistance

As the ball rolls in the groove, lubricant is squeezed out ahead of the

ball/race contact as shown in Fig. 5(a). However, if inertia effects are

neglected, the ball must be in equilibrium. Therefore, some micros lip

must be present in order to provide balancing forces Fg. and Fg

(Fig. 5(c)).
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A simple force analysis shows that for equilibrium:

F0. - F0 - F_..+ R, = 0 (8)
Si So Ri Ro v '

and by taking moments about the center of the ball

R(Fgi - FRi) + R(FSo - FRJ= 0 (9a)

It may be seen that

FSi = FRi <9b)

FSo = FRO (9C)

The rolling velocities are obtained from the kinematics outlined from

[4 |. The shear force due to rolling is obtainable from the analysis presented

in [14 | and modified for a ball-race contact [13].

The torque on the inner ring due to the rolling resistance is then given

by

T2i - 2F
Ri ^Ri

Similarly the torque on the outer ring is given by

T2o = 2F
Ro ^ <10b>

The preceding analysis is based upon the assumption that the micros lip

necessary to provide the forces F0. and F0 is small in comparison with
01 So

the other motion of the ball/race system and therefore does not significantly

change the kinematics of the bearing.
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Fluid Dynamic Drag

As the balls orbit within the bearing there is a drag force present

which is approximately equivalent to the drag of a sphere submerged in

a fluid. An approximate analysis of this can be made using the following

assumptions:

1. Each ball is assumed to behave as it would while moving in a

steady stream of fluid.

2. Interaction of the balls with each other is neglected.

3. Any effect due to rotation of the balls is neglected.

On the basis of the preceding assumptions the drag FJ-. of a single

ball may be computed by the following formula [15].

F D = C D 7 7 R 2 (l/2pUJ!) (11)

A difficulty arises because the density of the medium must be known.

The viscosity of the medium also must be known because the drag coef-

ficient Cj-v is dependent upon the Reynolds number [15]. The annular

space, however, is not filled with a homogeneous fluid but a mixture of

air and lubricant.

The drag force may, however, be bracketed by computing one value

based upon air alone and another value based on the annular space being

filled with lubricant.

As shown in Fig. 6, for equilibrium the drag force must be balanced by

forces at the inner and outer ball/race contact. These forces would be

caused by microslip at the ball/race contact and would each be equal to
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F,-y/2. The resulting torque on the inner race is then:

T3i = RRi FD/2 <12a>

and on the outer race is

T3o = RRoV2 <12b>

The torque at the inner race therefore adds to the friction torque seen by

the rotating inner ring. The fluid drag torque on the outer race acts in

the opposite direction to the other torque values previously discussed (see

Fig. 6). Hence, the value of fluid drag torque should be subtracted from

the other torque values previously discussed.

Hysteresis

When a ball rolls on a plate or in a groove, elastic deformation of the

ball and groove will occur. The application and relaxation of load as the

ball rolls along the groove will result in a certain amount of hysteresis

loss within the stressed zones of the ball and groove.

An experimental investigation of the hysteresis loss for balls rolling

on a flat plate was reported in [16]. A semi-analytical relationship was

derived in [16] between the specific damping capacity of the material and

the resisting force. This relationship is:

/I 1 \ /P\2

Fw = 0.1315 / —+ —W— I x Specific damping capacity (13)
1E1 E2JUJ

For an AISI 52100 steel ball (R.,60) a value of the specific damping
{j

capacity of 0.007 is given in [16].
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Since the stressed region is assumed to be that enclosed within the

Hertzian contact region, Eq. (13) may be modified for an elliptic contact

region similar to that present between a ball and groove by substituting

the area of an ellipse for that of a circle. Equation (13) then becomes

2/ I 1 \ PFw = 0. 1315/ -?- + — \l±— x Specific damping capacityH VEi vw
(14)

The torque on the outer race due to hysteresis is then obtained as:

T = NFW (R + Rcos 9) (15)
4o " P

Cage Drag

Reference is made to Fig. 7, which is a diagram of an inner race

riding cage with radial clearance C and a nominal rubbing area A .
^_>

If it is assumed that (a) the radial clearance C is constant and is much

less than the land radius R^; (b) the region between the cage and land is

filled with lubricant; and (c) the velocity gradient in the radial direction

is linear, the Pretroff formula for drag of a concentric plane bearing may

be used to determine cage drag.

On the basis of the foregoing assumptions the shear stress within the

lubricant is given by

(o - n.)RL
T=M — - l— - (16)

The total cage torque would be given by:

- O.) AcRL
2/C (17)
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In order to consider the effect of this on the overall bearing torque,

the bearing ball cage system shown in Fig. 7 must be considered. If

inertia forces are neglected and the friction between the ball and cage is

also neglected, then for equilibrium

T
Ball/cage reaction = — (18a)

RP

TcRace/ball reaction = —— (18b)2R
P

The torque on the outer race induced by the cage is

T RR~
T - -5-5° (19)

5 2Rp

The preceding analysis considers the kinematic conditions to remain the

same as for the cageless bearing. Also, the friction between ball and

pocket is neglected. By considering the equilibrium of the ball as shown

in Fig. 7(c) with a constant coefficient of friction f,

Fco = -£ (1 + f) (20)co 2

The torque on the outer race due to the cage is therefore increased by a

factor of (1 -i- f). For an effective coefficient of friction, f = 0.2 the effect

would be a 20 percent increase in the torque due to the cage.
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Total Bearing Torque

Neglecting coupling between the various effects considered individually,

and combining Eqs. (7), (lOb), (12b), (15) and (19), the gross torque on the

outer race can be obtained where

T = T l o + T 2 o - T 3 o + T 4 o + T 5 o <21)

RESULTS AND DISCUSSION

The bearing total friction torques were measured experimentally for

all specimen and lubricant combinations at loads varying from 44. 5 newtons

(10 Ib) to 403 newtons (90 Ibs) and for speeds of 1000, 2000, and 3000 rpm.

For each lubricant, the torque was measured under conditions of a full

supply of lubricant to the bearing and then with a thin film of lubricant only.

Experimental torque results for the di-2-ethylhexyl sebacate for the

17 and 26 contact angle bearing are shown in Fig. 8 for oil-jet lubrication.

The same tests were repeated for thin-film lubrication. However, no

significant difference was found between the experimental results for the

full lubrication condition and the thin film case. The analytical values for

the outer races are also shown in Fig. 8. Calculated values for the fluid-

dynamic drag have not been included because of the unknown nature of the

fluid within the annular region.

The experimental torque values with the synthetic paraffinic oil lubri-

cant with oil jet lubrication for the bearings without a cage and with the

17° and 26° contact angles are shown in Fig. 9. The calculated values for

the combined spinning and rolling torque are shown in the same figures.

There is fair agreement between experimental and analytical values of
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torque for oil jet lubrication. The calculated values of torque increase

more with speed than do the experimental values. This result is most

likely caused by more lubricant being centrifugally thrown out of the bear-

ing as the speed increases for the experimental values.

The experimental results for the thin film lubrication with the synthetic

paraffinic oil are shown in Fig. 10. From these data it is seen that the

speed effect is practically nonexistent for the conditions shown. The experi-

mental trend of the data agree closely with the calculated values of torque

considering the spinning term (eq. (7)) and hysteresis loss (eq. (15)) only.

Using the synthetic paraffinic lubricant, the bearing torque with jet

lubrication was an order of magnitude greater than the torque with thin film

lubrication (Figs. 9 and 10). However, using the di-2-ethylhexyl sebacate

lubricant, the bearing torque was essentially the same with both jet and

thin film lubrication. This is because the di-2-ethylhexyl sebacate is much

less viscous than the synthetic paraffinic oil and was not fully retained in

the bearing with jet lubrication.

The computed minimum and maximum torques expected from the fluid-

dynamic drag are given in Table 2. The minimum value is determined by

considering the annular space in the bearing to be filled with air only. To

determine the maximum value of fluid-dynamic drag, the annular space is

considered to be completely filled with lubricant. On the basis of air alone,

the contribution of fluid-dynamic drag to the total bearing torque is insignifi-

cant. If it is assumed that the annular space is completely filled with the

synthetic paraffinic oil, a maximum value of fluid-dynamic torque of
_ Q

8.6x10 newton-meters (0.076 Ib-in.) at 3000 rpm is calculated.
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The computed bearing torques due to hysteresis effects only, are

shown in Fig. 11. These torques are dependent only upon load and

contact angle and are independent of speed and lubricant. However, the

hysteresis effect alone is insignificant when compared with the other

factors considered.

The agreement between the experimental results and computed values

for the bearings without a cage is generally good, although the computed

torque is, with few exceptions, less than the corresponding experimental

value. In all cases, an extrapolation of the curves back to the zero load

point yields a finite torque at the no-load condition. This is to be expected

in the case of the di-2-ethylhexyl sebacate and the synthetic paraffinic

lubricants with adequate lubricant supply because the rolling resistance

through the lubricant will still be present with zero load. However, for the

case of the thin film, the only torques computed are those due to the ball

spin and hysteresis effects. There would, however, be a small torque due

to rolling resistance with any nonzero lubricant film. Addition of the torque

would raise the computed value by approximately the same amount over the

whole load range, and bring the computed and experimental values into

closer agreement.

The experimental and calculated bearing torques which include cage

drag are shown in Figs. 12. Figures 12(a) and (b) show the results for

the two bearings with the di-2-ethylhexyl sebacate lubricant. With this

lubricant, the calculated and experimental torques are in fair agreement.

Comparing Figs. 12(a) and (b) with Figs. 8(a) and (b), respectively, the
V

calculated values of cage drag were found to account for approximately
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98 percent of the total bearing torque at a thrust load of 44. 5 newtons (10 Ib)

and approximately 93 percent at a thrust load of 403 newtons (90 Ib) and a

speed of 3000 rpm for the bearing with the 26 contact angle. For the

bearing with the 17° contact angle under the same conditions, cage drag

accounted for approximately 97 and 92 percent of the total calculated bearing

torque, respectively. The experimental values of cage drag were found to

be approximately 95 and 87 percent, respectively, for the bearing with the

20° contact angle. For the bearing with the 17° contact angle, the experi-

mental values of cage drag were approximately 95 and 85 percent, respec-

tively, of the entire bearing torque under the same experimental conditions.

Figure 12(c) and (d) are the results for the two bearings with the

synthetic paraffinic oil lubricant. It is apparent that except at the speed

of 1000 rpm, the calculated torques are as much as approximately 100 per-

cent greater than the experimental values. The most probable reason for

this discrepancy at the higher speeds is that the more viscous synthetic

paraffinic oil does not completely fill the bearing cavity but is either centri-

fuged out of the bearing or may not enter the cage-land area of the inner

race in large quantities. As a result, less torque would occur than calcu-

lated.

Comparing the torque data of Figs. 12(c) and (d) with Figs. 9(a) and (b)

for the synthetic paraffinic oil, the calculated values of cage drag at a

speed of 3000 rpm and a thrust load of 403 newtons (90 Ibs) were approximately

27 and 29 percent of the total calculated bearing torque for the 17 and 20

contact angle bearing, respectively. Under the same conditions, the experi-

mental values of cage torque were approximately 2 and 10 percent,

respectively, of the total experimental bearing torque.
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These results would clearly indicate that with a viscous fluid,

such as the synthetic paraffinic oil, cage drag is less of a factor in

total torque values than with a less viscous fluid, such as the di-2-

ethylhexyl sebacate. Further, these results would tend to affirm the

previous speculation that the lubricant dues not enter the cage-land area

of the inner race in large quantities with the viscous lubricant.

SUMMARY

The Spinning Torque Apparatus was modified to measure the torque

on a thrust loaded 204 size (20-mm bore) ball bearings having contact

angles of 17 and 26° with and without a cage. Friction torque was meas-

ured for thrust loads varying from 44. 5 newtons (10 Ibs) to 403 newtons

(90 Ibs) at speeds of 1000, 2000, and 3000 rpm. Tests were conducted

with either a di-2-ethylhexyl sebacate and a synthetic paraffinic oil as the

lubricant. The lubrication mode was either oil jet lubrication directed at

the bearing contacting surfaces of a thin surface film of lubricant applied

on the bearing races and balls. An analytical model which included rolling

resistance and a generalized rheological model was developed and extended

from previous model for spinning torque and lubricant rheology. The

following results were obtained:

1. The calculated bearing torques using the bearing analytical model

and lubricant rheological model developed for determining the torques in

a thrust-loaded ball bearing were in fair agreement with the experimental

results.

2. Cage drag was found to be primarily a function of lubricant viscosity.



24

For the di-2-ethylhexyl sebacate, cage drag was found to account for

approximately 87 to 95 percent of total experimental bearing torque. How-

ever, for the more viscous synthetic paraffinic oil, cage drag was found to

account for approximately 2 to 10 percent of total experimental bearing

torque.

3. For a bearing without a cage with a relatively low viscosity fluid

such as the di-2-ethylhexyl sebacate the largest contribution to bearing

torque was ball spin torque. For a more viscous oil such as the synthetic

paraffinic oil, the largest contributor to bearing torque is the resistance

to rolling through the lubricant. The resistance to rolling is affected by

the amount of lubricant present.

4. With a low viscosity lubricant an excess supply of lubricant to the

bearing has a small affect on bearing torque. However, with a viscous

lubricant, a nominal flow of oil to the bearing can result in a tenfold in-

crease in bearing torque when compared with the value obtained with only a

thin film of lubricant present.
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APPENDIX

Derivation of Spinning Torque

Analysis of the spinning torque is an extension of the work undertaken

previously for the spinning of a ball in a noncoriforming groove [9, 10]. The

contact ellipse for the ball/race interface is shown in Fig. 4. The system

can be reduced to a number of elemental rollers of width dy in rolling and

sliding motion relative to the groove (Fig. 4). Relative to the rotating

coordinate system the surface velocity of the elemental roller is obtained

from [13] for the inner race as:

UBi = "(a)ri R + ^si y) (Ala)

and for the outer race as:

UD = (eo R - a) y) (Alb)Bo v ro so y' v '

The magnitude of the surface velocities of the inner and outer races with

respect to the rotating coordinate systems are:

IL,. = a; . R (A2a)Ri n v • '

UD = w R (A2b)Ro ro

The slip velocity of the ball with respect to the inner race from [13] is

obtained as:

USi = ""si y (A2C)

and for the outer race

U = -<o y (A2d)



26

The tractive force on each element of the contact ellipse is then given as:

/*b

•f .
J ~b

dF = / rdx dy i

For a Newtonian fluid with a linear velocity gradient

r =

where the film thickness h is given in [17] as

/ 1 .6a° - 6 E°- 0 3

h = o /UB + UR

W'0.13

and

E =
2 , 2

, * " "2

E,

RR

E,

R = R

W =

R + R R

0.75P

(A3)

(A4)

(A5a)

(A5b)

(A5c)

(A5d)

According to [12] the assumption of Newtonian behavior for the lubri-

cant is not realistic at high pressures and shear rates and a more general

model is:
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T = jLLoe
aSUs/h and t < TC

T = /ioe
a?SUg/h and TC < r < FS

r = F S and fti > FS

(A6a)

(A6b)

(A6c)

The resulting spin torque about the z axis is then obtained by inte-

grating the elemental moments over the whole contact ellipse as:

Msi -fdKl =f' (A7)

The computation of the shear stress T proceeds as follows

1. At a given value of y the film thickness is computed using Eq. (A5a),

2. For each value of x at the given value of y the Hertzian contact

pressure is given by

S =
1.5P

?rab
i /yf

la)
fxf](JJ

f|l/2
(A8)

3. The shear stress r is computed by Eq. (A6a) if its value is less

than the critical shear stress T . If the shear stress is larger than T
L* L,

but less than FS it is computed by Eq. (A6b). However, if the shear stress

is larger than FS, Eq. (A6c) is used.
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TABLE 1. - TEST BEARING SPECIFICATIONS

I Type A j Type B

Inside diameter, mm (in.) 20 (0.7874)

Outside diameter, mm (in.) 47 (1.8504)
i

Width, mm (in.) 14 (0.5512)!

Pitch diameter, mm (in.) . . 33.5 (1.319).

Nominal contact angle, percent 26 17

Inner race curvature, percent 52 i 53
!

Outer race curvature, percent 52 54

Number of balls 3

Ball diameter, mm (in.) 7.15(0.281)

Rockwell C hardness - inner race 62-64

Rockwell C hardness - outer race 62-64

Rockwell hardness - balls 62-64

Surface finish, rms - races, jitm (^in.) ! 0.15 (6)

Surface finish, rms - balls, p.m (p-in.) 0.025 - 0.05 (1 - 2)
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TABLE 2. - CALCULATED VALUES OF FLUID-DYNAMIC DRAG

BASED UPON COMPLETELY FILLING AN ANNULAR

BEARING CAVITY WITH A HOMOGENEOUS FLUID

[Bearing bore, 20 mm; number of balls; 3, cage, none;
temperature, room ambient.]

Fluid

Air

Di-2-
ethylhexyl
sebacate

Synthetic
paraffinic
oil

Shaft
speed,
rpm

1000

3000

1000

3000

1000

3000

Ball
orbital
speed,
m/sec

(in. /sec)

0.7

(27.5)

2.1

(84)

0.7

(27.5)

2.1

(84)

0.7

(27.5)

2.1

(84)

Reynolds
number

327

990

287

880

10.7

33

Drag
coefficient,

CD

0.55

0.42

0.7

0.45

4

2

Drag force
per ball,
newtons

(lb)

6.2X10"6

(1.4X10"6)

44.5X10~6

(10.0X10'6)

6.2X10"3

(1.4*10~ 3)

35.6X10"3

(8:OX10~3)

35.6X10'3

(8.0X10"3)

169xlO~3

(38.0X10"3)

Total drag
torque,
N-m

(Ib-in.)

0.32X10"6

(2.8X10"6)

2.3X10"6

(20X10~6)

0.32X10"3

(2.8X10~3)

1.8X10' 3

(16X10"3)

1.8X10" 3

(16X10'3)

8.6X10~3

(76X10" 3)
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