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CHAPTER I

THE E-TOPOLOGIES

1. The left and right E-topologies •

In this section the basic concepts needed in this paper are intro-

duced. Throughout we will use the concept of graph to mean an ordered

pair of sets (P,E) where P is a non-void point set and E is a sub-

set of PxP , the cartesian product of P. Elements of the relation E

are called edges. Others prefer to call this concept a directed graph

[Ore (1962)] or a digraph [Harary (1969)].

We will consider a graph G = (P,E) to be infinite if the cardi-

nalities of both P and E are infinite; otherwise the graph is said

to be finite. If P is finite then E must be finite; if P is in-

finite and E is finite then only a finite number of points belong to

edges and for all purposes only the graph on that finite subset of points

need be considered. Points that belong to no edges are called isolated

points.

An edge (p,p) 6 E is called a loop. A subgraph H of a graph

G = (P,E) is an ordered pair (P̂.E,,) where (i) PH £ P and (ii)

(p,q) € ETT if and only if p,q € PH with (p,q) € E .. Unfortunately,

this concept has been defined differently by some authors [Berge (1962)].

Given P' £ P, a unique subgraph H of G is specified by condition

(ii) in the definition of subgraph. We denote this subgraph by [P1].

A partial subgraph of G is any ordered pair (Q,F) such that .

Q £ P, F c E n (QxQ).

The next definitions are not found in the literature but are basic

to this paper.
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Definition. Let G = (P,E) be a graph. The left E-topology,

Tr(G) , for G is the family of all subsets A of P such that if

p € A and (q,p) € E then q € A . The right E-topology, tR(G) , for

G is the family of all subsets A of P such that if p € A and

(q ,p) 6 E then q € A . When the underlying graph is evident we denote

the topologies by T. and TR .

We first prove that TT and TR are in fact topologies. [See

Kelley (1955) for the definition of topology and related concepts.]

Proposition 1.1. The left and right E-topologies are topologies.

Proof: The null set 0 and P itself are clearly members of TL. To

show this family is closed under intersection, let {A } be a family

of sets in TT and p € f) A with an edge (q,p) € E . Since p is
LJ Ot

in each A and (q,p) 6 E we have by definition q € A for each a;

therefore q € D A and this makes 0 A € TT . Similarly, letn a a L J '

A = U A . If p 6 A and (q,p) € E , then p € A. for some 6 .a p

Since AQ is in TT and (p,q) € E we have q € A c A . ThusP J-i pi
A € TL . A similar proof shows TR is a topology. //

If should be evident that the complements of sets in T. are sets

in TD, and conversely. Since the elements of TT and TD are closed
K L K

under both arbitrary union and arbitrary intersection, one could call

them either open sets or closed sets, but we will avoid the use of this

terminology entirely. Since the left E-topology will be the principal

vehicle of our discussion, we shall assume it is the topology under con-

sideration unless otherwise indicated.

In Figure 1.1, three graphs are pictorially represented and the ele-

ments of their left E-topologies are listed.

Definition. Let G = (P,E) be a graph and Q £ P; then we define



Graph

1) a *.
rc

>d

ke

Elements of T,

0, {a}, {a,b}, {a,b,c},

{a,b,d}, {a,b,e}, {a,b,c,d},

{a,b,c,e}, {a,b,d,e>, and P.

2) b

c

0, {a}, {b}, {c},

{a,b,c,d}, and P.

3)

G = (P,E) where

P = {p^, P-I ,Po . . . }

E = I (.Pv'Pv-i-i Jl ^ = 1,2, • • •. = 1,2,...}

Figure 1.1.



L(Q) = 0{A € TL| Q CA}

R(Q) = 0{B € TR| Q £B}.

Since TT and TD are closed under arbitrary intersection L(Q) € TTLi K. i_j

and R(Q) 6 TR . If Q = 0 then L(Q) = R(Q) = 0 . I£ Q ̂  j9 ,

Q G L(Q) and Q £ R(Q) ; so these sets exist and are non-void. If

Q € TL then L(Q) = Q ; if Q € TR then R(Q) = Q .

We also observe that the topological closure of Q with respect to

TL is R(Q) and with respect to TR is L(Q) . In particular, the

Kuratowski closure axioms [Kelley (1955)] hold: L(AUB) = L(A)UL(B) and

L(L(A)) = L(A) , for all A,B £ P , and similarly for R .

An alternate way of developing TL and TR would be to follow the
*• "• V V

approach of Ore (1962). The operators R, R*, R and R* are defined and

shown to be closure operators (in fact, they define a Galois connection).
V s/

It is easily shown that for any Q £ P , R(Q) € TR and R*(Q) 6 TL and

conversely, if U € TD and V € TT , then there are sets P, and P~
K L J. L

v v
for which R(P-,) = U and R*(P2) = V ; hence we may regard TL and TR

are the natural topologies defined by the above closure operators.

2. Paths

Fundamental to much of graph theory is the notion of a path between

two points. The relationship defined by this concept is based on the

idea of "reachability" or "accessibility" through a succession of edge

relationships.

Definition. Let G = (P,E) and a,b € P . A path from a to b

in G , denoted by pr(a,b) , is a non-void finite sequence

k = 0,...,n , such that



i) P0 = a, pn = b

ii) (Pk-i»PiP € E for 1 ̂  k ^n

iii) Pk-1 i Pk for 1 £ k * n.

The length | pG(a,b)| of a path pp(a,b) = <p0,p-,,... ,p^ is defined

to be n . If no confusion as to which G is meant will result, we

shall denote the path by p(a,b) . One can verify directly that for

a,b,c € P, p(a,b) and p(b,c) imply p(a,c) , that is, the path rela-

tionship is transitive. Also, p(a,a) is always true since p(a,b) =

<a> is a permissible path; thus the path relation is reflexive. Through-

out the rest of this paper we may use p(a,b) to denote the existence

of some path between a and b , or to denote some particular path.

The following theorem relates the topologies T, and TR to the

path relation. More important, it describes the left and right sets of

a point in terms of the familar path relationship.

Theorem 1.2.

(1) x 6 L(a) if and only if there is a path p(x,a)

(2) y € R(a) if and only if there is a path p(a,y).

Proof: Suppose there is a path p(x,a) of length k . If k = 0

we have x = a € L(a). If k > 0, let x' be the second point on

p(x,a) , so that there is a path from x' to a of length k-1 , and

we may assume by induction hypothesis that x' is in L(a) . Since

L(a) is in TL , and (x,x') € E , we thus have x 6 L(a) . Conversely,

let Q be the set of points from which there is a path to a . We have

just shown that Q £ L(a) . On the other hand, if z 6 Q and (y,z) £ E

with y ̂  z , then this edge together with a path from z to a con-

stitute a path from y to a, so that y € Q . Thus Q € TL , and clearly

a _€ Q; hence L(a) = n {A 6 TT (' a 6-A} £ Q . A similar argument holds
~ LJ



for (2).//

Corollary 1.5. The following statements are equivalent:

(i) There is a path p from a to b

(ii) L(a) c L(b) '

(iii) R(a) a R(b)

Proof: If (i) holds and x € L(a) , there is a path from x to
x.

a , and this can be concatenated with p to obtain a path from x to

b , proving x 6 L(b) . Conversely, if (ii) holds, in particular

a 6 L(a) £ L(b) , so that there is a path from a to b . //

Corollary 1.4. L(U A) = UCL(A )) and R(U A) = U(R(A )) for

any set of indices a .

Proof: There is a path from x to a point of U A if and only
- : - - Ot

if there is a path from x to a point of some A .//

Corollary 1.5. L(A) = U ̂L(p) and R(A) = U ^

Corollary 1.6. L(A) = A U (L(x) | (x,y) € E for some y 6 A};

R(A) = A U (R(x) | (y,x) € E for some y € A} .

Proof: If there is a path p of length ̂  1 from z to a point

y of A , then there is a path from z to the next- to- last point x

of p .//

Corollary 1.7. If there is a path p from a to b , and

b 6 A € TT , then a € A (and similarly for TR) .

Proof: a € L(b) s A .//

Corollary 1.8. x 6 R(L(y)) implies y 6 R(L(x)) .

Proof: x 6 R(L(y)) implies p(z,x) for some z € L(y) , so



that z € L(x) . Also, z 6 L(y) implies p(z,y) , so y 6 R(z) £

R(L(x)) .//

Definition. A graph G is said to be acyclic if for all points

a, b of G, L(a) = L(b) implies a = b (or equivalently R(a) = R(b)

implies a = b) .

Definition. A path p(a,a) of length £ 1 is called a cycle.

Thus a cycle is the familar "closed path", although we observe that the

condition of its length prohibits our considering single points (paths

of length zero) as cycles, and our definition of path excludes loops.

Consequently, an acyclic graph may have loops, and further the length

of a cycle must in fact, be ^2.

Proposition 1.9. A graph G is acyclic if and only if it contains

no cycles.

Proof: Suppose there exist distinct points a,b such that L(a) =

L(b) . We have shown (Theorem 1.2) that a € L(b) implies a path p(a,b)

of length greater than zero and b 6 L(a) implies a path p(b,a) of

length greater than zero. Thus by combining these paths we have a path

p(a,a) of length greater than one. Therefore, we have shown that a non-

acyclic graph must have a cycle. Conversely, if there is a cycle

p(a,a) = <p,s in G, then there must be x 6 p(a,a) such that x ̂  a .

We have x € L(a) and L(x) £ L(a) since there is a path from x to

a . Also, L(a) £ L(x) because there is a path from a to x . Hence

L(a) = L(x) , but a ̂  x , so G is not acyclic.//

Bhargava and Ahlborn (1968) define a topology T on a graph as

follows: for G = (P,E) , A is an element of T if for every pair of

points p,q where p £ A and q € A we have (p,q) £ E . This T



and our left topology TL are equivalent, since

b € A and (a,b) 6 E imply a € A for all a,b is equivalent to

b € A and a £ A imply (a,b) £ E for all a,b .

Most other topologies on an ordered set are defined for lattices [Frink

(1942)] and are distinct from the T, and TR topologies.

The following proposition is essentially found in Bhargava and

Ahlborn (1968) as Theorem 1.4.

Proposition 1.10. Let TL and TR be the E-topologies on a graph

G = (P,E) ; then

(1) tL(or TR) is a TQ-space if and only if G is acyclic.

(2) TL(or TR) is a T,-space if and only if E = 0.

Proof: (1) If G is acyclic let a,b € P with a ̂  b ; then

L(a) ? L(b) and either L(a) n {b} = 0 or L(b) n {a} = 0 , since

x € L(y) implies L(x) £ L(y) . Conversely, if L(a) = L(b) , any

set Q in TL must contain L(a) ; hence a,b 6 Q , and for T, to be

TO we have a ̂  b .

(2) If there are a ̂  b in P with (a,b) € E then b 6 R(a)

so {a} £ TR and therefore TL is not a T,-space. Conversely, if

TT is not a T,-space then there is a € P such that there exists

b € R(a) with b ̂  a . By Corollary 1.6, R(a) = [U R(p )] U{a} where

(a,pa) 6 E .//

3. Subspaces and convexity

Let H be any subgraph H s G . We may consider the left and

right topologies on H , denoted by TL(H) and TR(H), without regard

to the graph G or its topology. It readily follows that for any set

A £ PH , the left set of A in H, ̂(A) , is ' {p € PH | PH(p,a) for



some a € A) where the path Pu(p,a) is completely contained in ?„..

A similar statement can be made for the right set of A, R,,(A) . It is

important to note that, in general, L̂ A) i L(A) n PH .

The following definition is the usual topology for a.subset of a

topological space [Kelley (1955)].

Definition. Let G = (P,E) and H = (?„,&,) a subgraph of G .

We define the left relative topology of H with respect to G , denoted

TT | by {L n Pu | L € TT(G)}'. Similarly we have the right relative
L|H H L
topology of H , defined by TR , = {R n PR | R 6 TR(G)} .

The example in Figure 1.2 shows that we can have TT(H) ^ TT .L L |R

PH = {a,c,d,e}; {c} 6 TT (H) but {c} £ TT ,
n Jj ' H

Figure 1.2.

However, we always have

Proposition l.-lĵ  TT i £ TT (H) .L|R L

Proof: Let b € L € TT , and (a,b) € EL . Now L = L1 D PuL | H -H H

for some L' € TT (G) . Hence b € L1 , and since (a,b) €£„££,,, we

have a € L' . But a 6 PH, so that a € L, proving that L € TL(H) .//

It is now interesting to ask when the two topologies defined on a

subgraph are, in fact, the same. A sufficient condition will be given

below. A necessary condition is not known at the present time. We must

first introduce the useful notion of convexity; for a more extensive

treatment see Pfaltz (1968, 1971).
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Definition. Let G = (P,E) . A subset Q of P is convex in G

if given a,c € Q such that there exist p(a,b) and p(b,c) then

b € Q . A subgraph is convex if its point set is convex in G .

The following proposition shows that the class of convex sets forms

a sort of semi-subbasis of both left and right E-topologies. Indeed,

it would be reasonable to define a new topology using the convex sets

as a subbasis. However, in an acyclic graph single points are convex,

so that this topology would be discrete.

Proposition 1.12. Let G = (P,E) arid Q £ P; then Q is convex

in G if and only if there are L € TT and R 6 TD such that Q = L fl R.
L K

Proof: Note first that L(Q) € TL, R(Q) € TR, and Q £ L(Q) f] R(Q) .

If p 6 L(Q) n R(Q), there exist paths p(p,q,) and p(q2,p) f°
r some

q,, q2 € Q . This shows p € Q since A is convex. Conversely, if

Q = L n R for L € TL and R € TR, let a,c € Q and p(a,b), p(b,c);

we shall show that this implies b € Q. Now p(a,b) implies b € R(a) £ R.

Likewise, (b,c) implies b € L(c) £ L. Thus, b € R n L = Q and Q

is convex.//

Corollary 1.15. Any A € TL (or € TR) is convex.

Proof: A = A 0 P.//

Proposition 1.14. Let H be a subgraph of G . If H is convex

in G then TT . = TT (H).L|H L

Proof: By Proposition 1.11 we need only show that TT (H) £ TT i .L L|H
Let A € TL(H) , so that A £ PR . We must show A = A' n PH for some

A' € TL(G) . It is claimed that A = LG(A) n PH . Clearly A £ LQ(A) n PR.

If p € LG(A) n P,, then by Theorem 1.2 applied to G there is a q € A

such that p(p,q) is a path in G . Since p,q € PH and PH is convex,
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p(p>q) e Ppi • Consequently, p(p,q) is a path in H and by Theorem 1.2

applied to H we have p € LjjCq) £ LuCA) • But A € T,(H) so

L̂ (A) = A and we obtain p € A .//

The converse of Proposition 1.14 is not true as is shown by the

example in Figure 1.3, where H is not convex but we still have

T , = T (H) .L L

a<^ ^d PH= {a,b,d}
*̂̂ »b****̂

TT(H) = {{a}, {a,b}, {a,b,d}, 0} = TT ,L L |H

Figure 1.3



CHAPTER II .

CONNECTIVITY. . '._ ..

1. Topological Separability and Connectivity

In graph theory as well as in topology, the study of connectivity

occupies the interest of many investigators. Furthermore, many practi-

cal problems can be reduced to questions of connectivity. It is only

natural that we consider this area and relate the various topological

and graph theoretical concepts.

The following definition is actually the usual topological defini-

tion of separability. Therefore, the concept of connectivity, defined

below, is the same as the topological concept found in Kelley (1955).

Definition. X and Y are separated in a graph G if L (X) fl Y =

0 = X n L(Y) . We show the following equivalent definition of separa-

tion in terms of the right topology.

Proposition 2.1. Two sets, X and Y , are separated in G if

and only if R(X) n Y = 0 = X D R(Y) .

Proof: We assume X and Y are separated in G . Suppose

p € X n R(Y) ; then p 6 R(Y) implies that there exists y € Y such

that p(y,p) , which in turn implies y € L(p) e L(X) . Thus

y € L(X) n Y , contradicting L(X) n Y = 0 j> Similarly, p € R(X) n Y

would contradict X n L(Y) = jfl . This shows R(X) n Y = 0 = X n R(Y) .

The converse follows by an analogous argument with L and R inter-

changed.//

Definition. Let G = (P,E) . G is said to be separable if there

exist non-empty sets X,Y e P such that X U Y = P and X and Y are

separated in G . If G is not separable then G is called connected.

12
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A topological space S is connected if and only if the only subsets

of S which are both open and closed are S and 0 [Kelley (1955)].

We recall that if the elements of TT are called open, then the- closed
Li

sets -- their complements -- are just the elements of in . Thus weK

have

Proposition 2.2. G = (P,E) is connected if and only if

iL(G) n TR(G) = {P,J3} .

In agreement with the usual definition of connectivity for subsets

of a topological space, we shall call the subgraph H connected if H

is connected with respect to the relativized topology TT
|H

Proposition 2.3. If H is connected with respect to its own topo-

logy TJ (H) , it is connected as a subset of G .

Proof: {PH,J0} c TL n TR, c TL(H) H TR(H) = <PH,0} , using
H |H

Proposition l.ll.//

By Proposition 1.14, if H is convex, the converse of Proposition 2.3

also holds.

We recall the definition of connectivity found in Tutte (1966). A

graph G is connected if it has no proper non-null detached partial

subgraph. A detached partial subgraph is a partial subgraph without

points that belong to any edge not in the subgraph. Note that a detach-

ed partial subgraph must be a subgraph. The following proposition

establishes the equivalence of Tutte's connectivity and the topologically

induced connectivity for graphs.

Proposition 2.4. G is connected if and only if it is Tutte con-

nected.

Proof: If G = (P,E) is not connected then there exist A , B
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separated with A U B = P and A ̂  0 / B . We claim A is detached.

If not, there is (p,q) $ [A] or (q,p) f [A] . In either case q $ A

and therefore q € B . But, assuming (p,q) 6 E we have q € R(A) n B

which contradicts separatedness. Since A is a proper detached subgraph

of G , G is not Tutte connected.

Conversely, if G is not Tutte connected then there is A = (Q,F)

such that 0 ̂  Q c p with A detached. Let B = P -v Q . If

q € R(A) n B then there is p(p,q) with p € Q . Clearly there must

be (p,q~) on p(p,q) such that p~ € Q , q~ 6 B and hence A is not

detached. Therefore R(Q) n B = 0 . Similarly we find Q n R(B) =0 .

This shows [Q] , [B] are separated and consequently G is not connec-

ted.//

2. Connected Components

In this section we characterize the connected components of a graph

G in terms of the L and R sets.

Definition. Let G = (P,E) and Q £ P . We define Cn(Q) by

C°(Q) = Q

Cn(Q) = L(Cn"1(Q)) U R(Cn"1(Q)) for n * 1 . •

Note that in particular, C1(0) = L(Q) U R(Q) ; it follows that Cn(Q) =

C (Cn (Q)) for all n ̂  1 . For finite graphs, there is an m such

that Cn(Q) is the connected component of Q in G for all n ̂  m .

Proposition 2.5. Cn(Q) = Ck(Cn~k(Q)) for all 0 £ k £ n .

Proof: For any n , this is trivial for k = 0 or n ; in parti-

cular, it is true for n = 0 and n = 1 . Suppose the assertion true

for all m < n . Then for any 0 < k < n we have

Cn(Q) = C^C
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= 'c1(Ck"1(Cn"k-CQ))) by the case m = n-1

= Ck(Cn~k(Q)) by the case m = k .//

Definition. We say that (x,y) € to if y € C°°(x) = U°°= r
n(x̂  .

Clearly p(x,y) or p(y,x) implies (x,y) € to , since y 6 L(x) or

R(x) , respectively, hence in C (x) .

Proposition 2.6. w is an equivalence relation.

Proof: Since x € C (x) we have (x,x) 6 to . We next show that
k ky € C (x) implies x 6 C (y) for all k (so that in particular,

(x,y) e to implies (y,x) € ") • This is clear for k = 0 ; suppose it

true for k-1 . Then y € Ck(x) implies y € LCĈ x̂)) or

k-1y 6 R(C (x)) , say the former. Hence there is a path p(y,t) for
k-1 k-1some t 6 C (x) . By induction hypothesis, we have x € C (t) ; and

p(y,t) implies t€R(y)£C1(y) . Thus x € Ck"1(C1Cy)) by 'Prorosi-

tion 2.5. Finally, if (x,y) € to , say y € Cr(x) and z € Cs(y) , we

have z 6 Cs(Cr(x)) = Cr+s(x) by Proposition 2.5, so that (x,z) 6 to.//

Corollary 2.7. If a € Cn(b) then Ck(a) n Cn"k(b) ̂  J0 for all '

0 ̂  k £ n .

Proof: Cn(b) = Ck(Cn~k(b)) contains a ; hence there exists

c 6 Cn~k(b) such that a 6 Ck(c) , which ijnplies c 6 Ck(a) .//

Proposition 2.8. C°°(Q) = U°° Cn(Q) is in both TT and TD '.~ n—u L K

Proof: Let Q = U*=QC
n(Q) . If x 6 L(Q) we have x 6 L(y) for

some y € Q , say y 6 Ck(Q) ; hence x € L(y) z Ĉ Ĉ Q)) = Ck+1(Q) z Q

The proof for R is similar.//

Proposition 2.9. If A is in TL n TR , then C
k(A) = A for all

k .
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Proof: This is trivial for k = 0 ; suppose it true for k-1 .

Then CkCA) = LCC*"1 )̂) U RCC^CA)) = L(A) U R(A) = A .//

Proposition 2.10. C°°(x) is the connected component containing x .

Proof: We know from Proposition 2.8 that C°°(x) € TL(G) n TR(G) .

Thus any subset of C°°(x) which is in (̂Ĉ Cx)) or TR(C°°(x)) will

be in t̂ (G) or TR(G) respectively, [see Kelley (1955)]. Now suppose

C°°(x) not connected; then by Proposition 2.2, there exists A =f 0 and ̂

C°°(x) such that .A € TT (C°°(x)) H Tn(C°°(x)) , whence as just observed,L K • •
V

A € TL(G) n TR(G) . From Proposition 2.9 we have C (A) = A for all

k , therefore C°°(A) = A , so that C°°(x) c C°°(A) = A , contradiction.

Suppose there exists C connected such that C°°(x) 5 C , that is,

C°°(x) is not maximal. C°°(x) € rLCG) n xR(G) and C°°(x) s C , it follows

that C°°(x) 6 TL(€) n TR(C) . By Proposition 2.2, this shows C is not

connected.//

3. Other Connectivity Concepts

Definition. Let G = (P,E) and Q £ P . We say that

a) Q is weakly connected in G if (x,y) € co for any x,y 6 Q

b) Q is self-connected if it is weakly connected in [Q] ([Q] is the

subgraph generated by Q)

c) Q is strongly connected in G if p(x,y) and p(y,x) for any

x,y € Q .

Figure 2.1 shows a set Q which is weakly connected in G but not self-

connected and not connected or strongly connected in G. Note that Q

is also convex in G .
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P = {a,b,c,d,e}

Q = {a,b,c,d}

Figure 2.1.

The above definitions are essentially (see Proposition 2.19) those

commonly found in the literature [Tutte (1966) and Harary, et al (1965)]. In

accordance with our general policy of identifying subgraphs with their

point sets, unless the distinction is essential for clarity, we will say

that H = [Q] is connected, weakly connected, etc., if the point set Q

has the appropriate property.

Proposition 2.11. (x,y) 6 u> if and only if there exists a finite

self-connected partial subgraph W that contains x and y .

Proof; If y € C (x) we can take W = [x] ; suppose the assertion

true when y 6 Ck"1(x) , and let y 6 Ck(x) . Then y € L(Ck"1(x)) or

k-1y 6 R(C (x)) , say the former, so that there is a path p(y,t) for
k-1some t 6 C (x) . By induction hypothesis, there is a W containing

t and x . We can then take the partial subgraph on the points and

edges of p together with W as the desired W .

To prove that W is self-connected, let u,v be any points of W .

If both are in W , then (u,v) 6 to for W s W by induction hypothesis,

and if both are in p , then p(u,v) or p(v,u) in p £ W , implying

(u,v) 6 a) for W . Finally, if u is in p and v in W , we have

p(u,t) ; hence (u,t) € <D for p , while (t,v) 6 u> for W ; thus
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(u,v) € W for W by transitivity of <o .//

The following propositions establish relations among the connecti-

vity concepts.

Proposition 2.12. If Q is connected in G then Q is weakly

connected in G .

Propf: Suppose that there were p,q € Q for which w(p,q) did

not hold. Let A = U~ Cn(p) . By Proposition 2.8, A 6 TT (G) n tD(G) ;ft—U ' . LJ K.

hence A n Q € TL(G)L n TR(G) L . But A PI Q f ft , since it contains

p ; and A n Q ̂  Q , since it does not contain q . Hence by Proposition

2.2 applied to the relative topologies on Q , Q is not connected.//

Proposition .2̂ 15. If Q is self-connected then Q is connected

in G . .

Proof: By Proposition 2.3, it suffices to show that [Q] is con-

nected. Suppose we had A 6 TL(Q) n TR(Q) , A £ J^Q . Let p,q € Q ,

^p 6 A , q £ A . Since Q is .self-connected we have q 6 CO(P) for
v ;

some ,k , But then q 6 Cfi(A) = A by Proposition 2.9, contradiction.//

The converse of Proposition 2.13 is not true in general (see Figure

2.1). However, we have

Corollary 2.14. If Q is convex in G , the following statements

are equivalent:

1) Q is self-connected

2) [Q] is connected

3) Q is connected in G

Proof: (2) implies (1) by Proposition 2.12 applied to [Q] ; (1)

implies (3) is Proposition 2.13; (3) implies (2) by the remark following
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Proposition 2.3.// •

In particular, any graph G is self-connected if and only if it is

connected. • • . . • • : •

Proposition 2.15. Q is strongly connected in G if and only if

L~(x) = LG(Y) for all x,y in Q .

Proof: By Corollary 1.3, p(x,y) if and only if L(x) s L(y) , and

p(y,x) if and only if L(y) c L(x) .//

.Proposition 2.16. Q is strongly connected in G if and only if

TL|[QJ = TR|[Q] = {0>Q} '
Proof: Let A e TT | , A ̂  0 . Then A = A' fl Q where

L|[Q]

A1 € TT (G) . Let q 6 Q , p € A . If -Q is strongly connected, we
-L

have p(q,p) , which with A1 6 TT (G) implies q € A
1 . Thus

• ' . • L* • .

q € A1 n Q = A , so. that. A = Q . Conversely, let p,q € .Q with no

path from p to q in G ; then p £ L(q) , so that L(q) fl Q is

neither 0 (it contains q) nor Q (it does not contain p). Thus

TT I t {#>Q} • The proofs for R are analogous.//
L|[Q]

Having discussed the connectivity of point sets in a graph, we now

turn our attention to edges which reduce the connectivity of a point

set.

Definition. Consider a graph G = (P,E) . An edge (p,q) £ E is

said to be a disconnecting edge if (p,q) is not weakly connected in

the partial subgraph -(P,Ev(p,q)) . A disconnecting edge is also called

an isthmus [Tutte (1966)].• - .

Definition. A tree is a connected graph in which every edge is a
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disconnecting edge. A forest is a graph whose connected components

are trees.

This definition of tree is applicable to both finite and infinite

graphs, and reduces to one of the standard definitions in the finite

case. However, in the finite case, there are several well known

equivalent definitions. One such states that a connected graph is

a tree if the number of points is equal to the number of edges plus one.

The following theorem is of interest in that is allows the use

of the finite conditions even for infinite graphs. In particular, if

a graph is not a tree then we know there is some finite subgraph which

will provide the counterexample.

Theorem 2.17. A connected graph is a tree if and only if every

finite self-connected subgraph is a tree.

Proof; If G is a tree and H a finite self-connected subgraph,

H must be a tree since a non-disconnecting edge in H would also

be a non-disconnecting edge in G . Conversely, suppose G is not

a tree. Then there is a non-disconnecting edge (a,b) , that is, w(a,b)

in the partial subgraph G1 = (P,Ê (a,b)). By Proposition 2.11, there

exists a finite, self-connected subgraph W = (PW,EJ of G' that v

contains a and b . If we define W* = [P̂ ] we have W* finite, self-

connected and (a,b) an edge in it; but (a,b) is not a disconnecting

edge, hence W* is not a tree.//

4. Walks

In most developments of graph theory, the concept of walk has

been awkwardly defined. The problem lies in the fact that certain sequences

of edges should not be considered walks. For example, repeating one

or more edges in not desired unless the edge is arrived at by a
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"different" route. Simply stated, walks should not retrace themselves.

Another objection has been the often sudden introduction of edge

sequences. In this section, we define walk indirectly using the

concept of weak connectedness.

Let us denote by ft(x,y) the family of all self-connected partial

subgraphs containing x and y . Proposition 2.11 assures that there

are finite members of n(x,y) whenever fi(x,y) / 0 . We can partially

order fi(x,y) by edge inclusion, that is W,(P,,E,) £ W2(P2,E2) if

P, £ P~ and E, £ E~ . Then there must exist minimal elements of

ft (x,y) . We now have

Definition. A walk between x and y , denoted w(x,y) , is any

minimal element of n(x,y) . As in the case of paths our notation

w(x,y) denotes both the existence of a minimal self-connected partial

subgraph and a specific such partial subgraph.

It is easy to establish the following lemma.

Lemma 2.18. When x } y , any w(x,y) must be acyclic.

Proof. If w(x,y) contains a cycle, an edge can be deleted without

destroying self-connectivity; thus w(x,y) was not minimal.//

The following additional properties are easily verified:

(1) w(-,') is an equivalence relation, in fact, w(x,y) if

and only if w(y,x)

(2) a, b € w(x,y) then there is w(a,b) q w(x,y)

(3) if w-^Cx^) D w2(a,b) t 0 then for any p,q € w^ U w~ there

exists w(p,q) s w, U w~.

This last statement follows from (1) and (2).

We now are in a position to show the equivalence of the walk

concept defined above and the simple (undirected) path concept found
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elsewhere in the literature.

Proposition 2.19. A walk between x and y , where x ̂  y , and a

simple path between x and y (as defined by Tutte (1966)) are

equivalent.

Proof: From Tutte (1966) we know a simple path is equivalent to
/ ,. . '

an arc with end points x and y (Propositions 4.31 and 4.35). An

arc is defined by Tutte to be a tree with just two points, called end

points, that belong to only one edge.

Let W = (P,E) be an arc with end points x and y , and let

W = (P',Ef) be a proper connected partial subgraph of W that still

contains x and y . If P1 ^ P, there must exist p € Pf, q 6 P'vP' l

with e = (p,q) or (q,p) € E . Thus (P( U {q} , E' U {e}) is

still connected. If it is all of W, then q is an end point of W.

Contradiction; hence it is still proper. Using this argument repeatedly,

we can obtain a W with P' = P , so that E' <= E ; but since W
t

is a tree, such a W cannot be connected, contradiction.

Let W be a walk and let e be any edge in W. From Tutte (1966),

Proposition 3.13, we know that the graph G' obtained by deleting one

edge from G has the same number of components that G has if .the

edge is not an isthmus, or the same number plus one if it is an isthmus.

Since W is a minimal connected partial subgraph, W has only one

component, but Ŵ {e} must have at least two. This shows that every

edge of W is an isthmus, so that W is a tree.

We need only show that there are exactly two points of W which

belong to only one edge. First suppose p € W, p f x,y and p belongs

to only one edge, say (p,q) , in W. As we have observed, WM(p,q)}

has exactly two components, and since {p} is clearly one component, it

follows that x and y are both in the other. This contradicts the
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the minimality of W as a connected partial subgraph containing x

and y .

Now we show both x and y belong to only one edge. Let x

belong to the edge e , where e = (x,p) or (p,x). As shown before, for

e any edge, Ŵ {e> has exactly two components, and by definition of

isthmus, the end points of the edge are in different components.

Clearly y cannot be in the same component as x in V=WMe} ; therefore

y and p are in the same component, call it C.

Let q ̂  p be any other point such that f = (x,q) or (q,x) is an

edge. Then q must be in the same component of V that x is in, since

f was not deleted from W . We now can define a new partial subgraph

D consisting of C together with x and e . Since q is not in

D , D is properly contained in W . However, D is obviously

connected; thus we have a contradiction, showing that x belongs

to only one edge. A similar proof holds for y .//

Another characterization of trees in terms of the walk concept is

possible [compare Harary (1969), Theorem 4.1]. Thus, the following

Proposition further substantiates that our definition of walk is

consistent with the usual one.

Proposition 2.20. G is a tree if and only if for any two points

x, y there exists an unique walk w(x,y) .

Proof: If G is a tree by Proposition 2.12 for any two points
00

x, y Ave have x € U (̂(y) and thus £2(x,y) ̂  0; that is, there
n=0

exists at least one w(x,y) .

Suppose there exist distinct walks w,(x,y) and w-(x,y) . By

minimality of walks there must be an edge (a,b) in w, (x,y) but

not in w~(x,y) . We know we have a walk w, (x,a) c w, (x,y) and—— ^ _L .L
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w,(y,a) £w,(x,y) . If (a,b) is in both w-,(x,a) and w, (y,a)

then we have w(x,b) and w(y,b) be deleting (a,b). Moreover,

W = w(x,b) U w(y,b) £ w, Cx>y) is a self connected partial subgraph, so

ŵ (x,y) was not minimal, contradiction. Consequently the edge

(a,b) is not in both w, (x,a) and w, (y,a) , say (a,b) not in
-""*" J. •!•

w-, (x,a) . Similarly we can show (a,b) is not in both w, (x,b) and

wi (y»b) where both these walks are contained in w,(x,y) . If (a,b)

is not in w, (x,b) , we have U= w, (x,a) U w, (x,b) € ft(a,b) and (a,b)

not in U . This shows (a,b) is not a disconnecting edge which

contradicts the assumption that G is a tree. If (a,b) is not in

wi(y>b), we have 7 = w2(x,y) U w, (x,a) U w, (y,b) in n(a,b) and

(a,b) not in v . Thus, in this case too (a,b) is not a disconnecting

edge.

Conversely, if there is an unique walk between any two points of

G , for (x,y) an edge, the partial subgraph ({x,y}, {(x,y)}) must be

the only walk between x and y . This shows (x,y) is a discon-

necting edge, which proves G is a tree.//



CHAPTER III

REVERSAL ORDER, NORMAL

GRAPHS, AND BASIC GRAPHS

1. Reversal order

In this section we define a metric -- essentially, the minimum

number of reversals in a walk between two points, plus one -- which can

be used to develop a more quantitative concept of separation of a graph

by deleting edges.

Definition. Let a,b be points of the graph G. We say that the

reversal order of a and b , denoted by r(a,b) , is equal to n ̂  1

if a £ C?"1Cb) but a 6 (£Cb) . We also say that r(a,b) = 0 if\j u
0 °°a = b (i.e., a 6 Cr(b)) , and that r(a,b) = « if a £ Cr(b) . In-

tuitively, r(a,b) is 1 greater than the number of path direction re-

versals required to walk from a to b . The following proposition

establishes some elementary properties of reversal order --in particu-

lar, that it is a metric.

Proposition 3.1.

1) r(a,b) £ n if and only if a 6 Ĉ (b)

2) r(a,b) = 1 if and only if a ̂  b and p(a,b) or p(b,a)

3) r(b,a) = r(a,b) for all a,b

4) r(a,c) <; r(a,b) + r(b,c) for all a,b,c

5) Let r(a,b) = n and 0 £ k £ n ; then there exists c such

that r(a,c) = k and r(c,b) = n-k.

Proof:

(1) is clear since C° c C1 ip ... s, C11 .

25
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(2) is immediate from the definitions of C and C and from

Theorem 1.2.

(3) . follows from the proof of Proposition 2.6.

(4) follows from Proposition 2.5.

To prove (5), let c 6 C (a) n C11 O) as guaranteed by Proposition 2.7.

If c € Ck"1(a) we would have r(a,b) £ r(a,c) + r(b,c) £ (k-1) + (n-k)

< n , contradiction; hence r(a,c) = k , and similarly r(c,b) = n-k .//

Using the concept of reversal order, we can define a generalized

notion of "separating edge" as follows:

Definition. The edge (a,b), a / b , of the graph G = (P,E) will

be called separating edge of order k if r(a,b) > k in the partial

graph G' = (P,E~(a,b)) .

The relationship between separating edges and disconnecting edges

is given by

Proposition 5.2. A disconnecting edge is a separating edge of order

k for all k , and conversely.
v

Proof: If we had r(a,b) £ k we would have b € CG,(a) , contra-

dicting the fact that {a,b} is not weakly connected in G' .//

We characterize separating edges of orders 1 and 2 in the next two

propositions:

Proposition 5.5. (a,b) is a separating edge of order 1 if and only

if {a} and {b} are separated in G1 .

Proof: If {a} and {b} are separated we have LQI(a) n {b} = {a}

n LG,(b) = 0, i.e., a j£ Lfi,(b) and b £ LG,(a), i.e., there is no

path from a to b or from b to a in G', so that rCa,b) > 1 in

G' . Conversely, if they are not separated we have either a 6 LG,(b)

or b € LG, (a), i.e., p(a,b) or pCb,a) in G', so that r(a,b) = 1
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in G1 .//

We shall omit the subscript G1 from now on unless confusion would

result.

Proposition. 5.4. The following statements are all equivalent:

1) (a,b) is a separating edge of order 2

2) {a} and both L(b) and R(b) are separated in G'

3) {b} and both L(a) and R(a) are separated in G'

4) L(a) fl L(b) = R(a) fl R(b) = 0 in G' .

Proof: (2) means L(a) n L(b) = {a} n L(L(b)) = R(a) n R(b) =

{a} n R(R(b)) = 0 (see Proposition 2.1). Since L(L(b)) = L(b) J the

condition {a}fl L(L(b)) = 0 is implied by L(a) fl L(b) =0 , and

similarly the fourth condition is implied by the third; hence (2) is

equivalent to (4), and analogously for (3).

If L(a) n L(b) or R(a) n R(b) were ̂  0 , say the former, we
2

would have p(c,a) and p(c,b) for some c , so that b € C (a) > c°n-
2tradicting (1). Conversely, if r(a,b) £ 2 we have b € C (a) , i.e.,

b is in L(L(a)) = L(a), R(R(a)) = R(a), L(R(a)), or R(L(a)) . In the

first case L(a) n R(b) ̂  fl (it contains b); in the second case,

R(a) O.R(b) ̂  J9 ; in the third case, p(b,c) for some c 6 R(a) , so

that R(b) 0 R(a) ? 0 ; and similarly the last case implies L(b) n

L(a) ^ 0 --a contradiction to (4) in all cases.//

We now introduce two special types of separating edge which turn

out to have interesting properties.

Definition. (a,b) will be called a normal edge if L(a) and R(b)

are separated in G' ; an antiriormal edge, if R(a) and L(b) are

separated in G1 .

Proposition 5.5. A normal or antinormal edge is a separating edge
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of order 2.

Proof: L(a) and R(b) separated means L(a) fl L(R(b)) ,= L(L(a))

n R(b) = L(a) n R(RCb)) = R(LCa)) n R(b) = 0 , where the second and third

conditions are redundant; the first and fourth conditions evidently imply

L(a) n L(b) = 0 and R(a) n RCb) = 0 , respectively. The proof for

antinormal is analogous.//

Proposition 5.6. An edge is a separating edge of order 3 if and

only if it is both normal and antinormal.

Proof: Analogous to that of Proposition 3.4.//

Proposition 3.7. The following statements are equivalent:

1) (a,b) is normal

2) a £ R(L(R(b))) in GT

3) b £ L(R(L(a))) in G'

Proof: If a 6 R(L(R(b))) there exists c € L(a) fl L(R(b)) , so

that (a,b) is not normal by the proof of Proposition 3.5., and con-

versely, proving (2). The proof of (3) is similar.//

An analogous result, with L and R interchanged, is true for anti-

normal edges.

In Section 3 we shall characterize graphs all of whose edges are

separating edges of order 1 (they turn out to be just the graphs that

are basic and acyclic). To conclude the present section, we prove

Proposition 5.8. The following statements about the graph G are

equivalent:

1) Every edge of G is normal

2) Every edge of G is a separating edge of order 2

3) Every path in G is convex.

Proof: (1) implies (2) by Proposition 3.5. To see (2) implies (3),
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suppose p is not convex; then there exist x,y on p such that

p'(x,y) where p' £ p . Let a,b be consecutive points of p1 such

that a £ p, b € p . If x precedes y on p we have p(x,b) £ p

and p(x,a) cp' , so that x € L(a) n L(b) in Gf . If y precedes x

on p we have p(b,y) c p » , p(y,x) c p and p(x,a) SP' , so that

b € L(a) in G' . In either case this proves (a,b) is not separating

of order 2 by Proposition 3.4.

Finally, to see (3) inplies (1), if (a,b) not normal then there

exists x 6 L(a) n L(RCb)) in G',say p(x,y) where y € R(b) and

p(x,y) does not have a,b as consecutive points. We also have p(x,y)

through (a,b) . It is clear that at least one of p and p has at

least three points; thus the other path is not convex.//

2. Normal graphs

Definition. G will be called normal if every normal edge is a

disconnecting edge. G is completely normal if every partial subgraph

is normal. It is clear that completely normal implies normal.

An "antinormal" graph can be defined analogously with antinormal

replacing normal; however, this concept will not be needed. An example

of a non-normal graph is shown in Figure 3.1, as well as an example of

normal but not completely normal graph. Note that any non-normal graph

must contain a normal edge, since otherwise the graph would be vacuously

normal.

normal but
not completely â  ĉ  non-normal
normal

Figure 3.1
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Any tree is a normal (and "antinormal") graph, since every edge is

disconnecting edge. Because every connected partial subgraph of a

tree is a tree, any tree is alsb completely normal.

As an immediate consequence of Proposition 3.8 we have

Proposition 3.9. A connected graph G is a tree if and only if G

is normal and all paths in G are convex.

Proof: If G is normal and all paths are convex, every edge of

G must be disconnecting edge, and conversely.//

Definition. The point s is called a left terminal point of G

if L(s) = {s} and R(s) = G . Similarly, t is called a right termi-

nal point if L(t) = G and R(t) = {t} . Clearly G can have at most

one left and one right terminal point. If it has both, we call it a

two-terminal graph. Such a graph is evidently connected.

Proposition 5.10. Every two-terminal graph is normal.

Proof: If the edge (a,b) is normal then for any path p(x,y)

such that x € L(a), y € R(b), a,b must occur consecutively on p(x,y).

Since s € L(a), t € R(b) , any path p(s,t) must have a,b as con-

secutive points. Since every point p of G belongs to some path

p(s,t) , it follows that p 6 L(a) or p € R(b) , that is, P = L(a) U R(b)

Now L(a) € TL(G') , since p(x,a) in G evidently implies p(x,a)

in G'. Also Rg.CUa)) D R(b) = 0 by normality; since L(a) U R(b) = P,

it follows that Rg, (L(a)) = L(a) , that is, L(a) 6 TR(G') . Since

b £ L(a) by normality, we have 09 L(a) 5 P , so that L(a) is a pro-

per open and closed set in G1 , proving that G' is not connected,

that is, the edge (a,b) is a disconnecting edge.//

Definition. Let G = (P,E) be acyclic and let A G P . We say
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that m is a lower bound of A if m 6 D L(a) , that is, if A £ R(m).
a!€A

We say that m is a maximal lower bound (or an inf) of A if m is a

lower bound of A and there are no lower bounds of A in R(m) ~ {m}.

In a similar manner we can define upper bounds and minimal upper bounds

(sups) of A .

Proposition 5.11. Let G be a finite, acyclic, and completely

normal graph. If points a,b of G have a lower bound, then they have

a unique inf. ' •

Proof: Since G is finite and acyclic, there readily exists at

least one inf. If a € L(b) or b € L(a) , it is evident that a or

b is the unique inf. Otherwise, we have a j£ C (b) . Let m, , nu be

infs of {a,b} and m, ̂  m? . Since m. € L(a) D L(b) for j = 1,2, we have1 L j
the paths p^m-pa), p2(m1,b), p3(m2,a), P4(m2,b). Let PI = .̂.â... ,an>,

and let p9 = ̂ n, ,b,,... ,b > where a = a and b = b . We show thatu j_ j. IH n m

the edge (m, ,a,) is normal in the partial subgraph H defined by the

union of ppp2,p,, and p. . Let H' denote H with the edge (m̂ a,)

deleted. We have 1̂ (11̂ ) = Î j, (m,) = {m,} and R̂ Ô On,)) = Rĵ , (m,)

is contained in the set of points of p7 and p. , since if we had
^ T1

p(m, ,x) in H1 for some point x of p, or p,, the second point on

p would have to be ^ , so that ^ € L(a) n L(b) would contra-

dict the maximality of m, . Similarly, Ru(a-i) is contained in the

set of points of p, and p., . Hence Ru(a,) n R,,, (Lu(m-,)) = 0 , so

that (m, ,a-j) is normal in H; however, it clearly is not a discon-

necting edge. This shows that partial subgraph H is not normal, and

therefore G is not completely normal, contradiction.//

The converse of this Proposition is not true; there exists a finite,

acyclic graph which is not completely normal but for which every pair
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of points with a lower bound has a unique inf (Figure 3.2).

Figure 3.2.

In the remainder of this section, we investigate another class of

graphs, TTSPN's, which like trees, are completely normal (but not

"antinormal"; see Figure 3.3). We give a new eharaterization of these

graphs below, and in Chapter IV we show that they are invariant under

certain kinds of mappings.

Definition. A graph G = (P,E) is called a two-terminal series-

parallel network (TTSPN) if

a) P = {u,v}, E = {(u,v)}

or b) P = PI U P2, E = EI U E2 , where G-ĵ  = (P-̂ Ep and G2 =

(P2,E2) are TTSPN's, Ejfl EZ = 0 , and

(bg) PI n P2 = {z}, where PG (x,z) for all x € PI

and pr (z,y) for all y € P?

or
Lt

(b ) PT 0 P- = {s,t}, where pr (s,x) and pr (x,t) for allp 1 L bl bl
x € P, , and pr (s,y) and pr -(y,t) for all y 6 P7.

-L w^% ^J^ ' "2 2

(a,b) is antinormal but not

disconnecting

Figure 3.3.

In case fog) , G is called the serial composition of G, and G~; in case

(bp), it is called their parallel composition.
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Aside from their ijrportance in electrical network applications,

where they originated, TTSPN's are of interest in the theory of graphs for

two reasons. First, with the exception of trees and acyclic graphs, there

are few other classes of directed graphs that admit a reasonable topological

characterization. Second, since TTSPN's are "generated" from a single edge,

they provide a means of obtaining a richer class of graphs from a given

class by a composition operation, namely replacing edges with TTSPN's.

For example, Husimi trees [Ore (1962)] can be generated from trees by

replacing edges with TTSPN's. Many of the results can be extended to

larger classes of graphs which are formed by composition of TTSPN's.

For any TTSPN, G, the following observations can be readily proved by

induction on the number of edges of G:

1) There is at least one edge in G

2) G is connected

3) G is acyclic

4) G is a two-terminal graph, hence is normal

5) Every two-terminal connected partial subgraph of G is a TTSPN;

hence G is completely normal.

The example in Figure 3.4 shows that (1) through (5) do not

characterize the class of two terminal series parallel networks.

Figure 3.4.

A graph theoretical characterization of a TTSPN is important since

the inductive definition does not immediately lend itself to proving

topological results. In particular, such a characterization is needed
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later to prove that the class of TTSPN's is closed under certain types

of mappings.

The concept of series-parallel graphs arose in electrical network

theory. In this context the prototype of a non-series-parallel network

is the familiar Wheatstone Bridge (Figure 3.4 with the edges having re-

sistors on them). In this case the cross-connection between a and b

destroys the series-parallel property. The following definition seems

to be a natural graph-theoretical generalization of this concept.

Definition. Two points x and y of a graph G with y 6 R(x)

are said to be cross - connected if (1) there exist two paths p-,(x,y)

and p2(x,y) and (2) there is a path p~(a,b) , where a / b, such

that p., fl p_ = {a} and p? fl p, = {b}. A graph without any cross-

connections will be called cros s-connection-free (CCF). It is trivial

to see that a ̂  x,y, b ̂  x,y, and a, b € L(y) D R(x). We also note

that any partial subgraph of a CCF graph must be CCF.

In Figure 3.5 a cyclic two-terminal graph with a cross-connection

between s and t is illustrated.

p-L = <s,c,a,t>

P2 = <s,b,c,t>

p, = <a,b>

Figure 3.5.

Theorem 5.12. A finite, two-terminal acyclic graph is a TTSPN if

and only if it is CCF.

Proof: Since a one-edge graph is CCF, to prove that any TTSPN is

CCF, it suffices to show that serial or parallel composition preserves

the CCF property. Let p,,p_, p_ be a cross-connection in the
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composition of G, and G- .

In the serial case, if a and b are both in G, , then p, must

lie in G, . If we restrict p, and p- to G, , replacing y by the

composition point z if y is in G- , this yields a cross-connection

in G, , contradiction. If a is in G-. and b in G2 , then x 6 L(a)

£ G, and y € R(b) s G- , so that' p,, p2, p, all pass through z ,

and so they cannot constitute a cross-connection.

In the parallel case, p,, p2, and p., must all lie in (say) G, ,

since no path can pass through either of the composition points s,t ;

hence we immediately have a cross-connection in G,. (The possibility

that p, lies in G,, p- lies in G~ and x,y = s,t is ruled out

since p, must then contain s or t and so is not a cross-connection.)

Conversely, suppose G = (P,E) is two-terminal, acyclic, and CCF,

and let s,t be its terminal points. If G has only one edge, it is

trivially a TTSPN. Suppose the desired result true for all G's having

fewer edges than the given one. If G can be shown to be the serial or

parallel composition of two of its partial subgraphs G,, G2, where

G,, G2 are two-terminal graphs, then G,, G2 are TTSPN by induction

hypothesis (since the acyclic and CCF properties pass to partial sub-

graphs) , so that G is also TTSPN. In particular, if (s,t) € E , evi-

dently G is the parallel composition of its two-terminal partial sub-

graphs ({s,t}, {(s,t)}) and (P,E~{(s,t)}), and we are done; we may

thus assume (s,t) £ E.

Let F(s) = {x 6 P | L(x) = {s.,x}>, and E(t) = {x 6 P | (x,t) € E}

Define Q(x) = {s} U R(L(x) ̂  {s}) . Suppose that Q(x) = P for all

x € E(t) . We claim that for any y ̂  s in F(s) we have R(y) s. E(t).

Indeed, if not, let z 6 E(t), z £ R(y) , so that y £ L(z) . Now Q(z) =

P , so we must have y € R(L(z)~{s}) , i.e., w 6 L(y) for some
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w € LCz)~{s> . But L(y) = (s,y>, and w ̂  s ; hence w = y and we

have y € L(z) , contradiction. We have thus shown that one of the

following must be true:

1) Q(z) f P for some z 6 E(t)

or 2) R(y) 2 E(t) for some y J s in F(s) , so that E(t) has a

lower bound ^ s .

We shall show that in case (1) , G has a parallel decomposition, and in

case (2) , a serial decomposition.

In case (1) , there can be no edge (a,b) in G with a € Q(z-) ,

b £ Q(z) unless a = s , since Q(z) ~ {s} is an R-set. We show that

there can also be no edge (a,b) with a f. Q(z) , b € Q(z) unless b = t.

Since b € Q(z), and clearly b ̂  s, there exists a lower bound f s

for b and. z . Since a £L(z), we have b /£ L(z), so that b is

not an inf of b and z; let q ̂  s,b.. be such an inf. Clearly

q 6 Q(z) . Consider three paths

Pr(s,t) = p(s,q) + p(q,z) + (z,t)

P2(s,t) = p(s,a) + (a,b) + pCb,t)

For any r € p^ except q , we cannot have r € p(s,q) or r 6 p(q,z),

since r would then be a lower bound for b and z , contradicting the

maximality of q . Also r $ t since b ̂  t; hence p, fl p, = {q}.

Moreover, for any r € p., except b we cannot have r € p(s,a) since

this would imply a € R(q) £ Q(z) , and we cannot have r € p(b,t)

since G is acyclic; hence p, fl p- = (b>, so that P1,P2»P'Z consti-

tute a cross-connection, contradiction.

- Let Gl = (P1,E1) = [Q(z)], G2 = (P2,E2) = [P-Q(z) U{s,t}] . Clear-

ly G, and G- have s and t as terminals. Since (s,t) j^ E we have

EI n E2 = 0, PI n P2 = {s,t}. By the preceding paragraph, E-ĵ  U EZ = E,

and clearly PL U PZ = P; thus G is the parallel composition of GI and G2.
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In case (2) since E(t) has a lower bound ^ s , we have p =

inf E(t) ? s . We shall show that a f. R(p), b € R(p) and (a,b) € E

implies b = p . Clearly b f t , for otherwise a 6 E(t) so that

a 6 R(p) (since p is a lower bound), contradiction. If E(t) £ R(b),

then b is also a lower bound, and since b 6 R(p) where p is a

maximal lower bound, we have b = p , and we are done. Otherwise, we

have z ̂  R(b) for some z € E(t) . Since b,z are in R(p) , they

have p as a lower bound, hence they have a maximal lower bound q in

R(p) , where q $ b . Consider three paths

P1(s,t) = P(s,a) + (a,b) + p(b,t)

P2(s,t) = p(s,p) + p(p,q) + p(q,z) + (z,t)

P3(q,b)

For any r € p., except b we have r € R(q) s R(p) . Hence r £ p(s,a),

since we would then have a € R(r) £ R(p) , and r (. p(b,t), since

b € R(r) and G is acyclic. Thus r j£ p,, so that p^ D p, = {b},

and in particular q £ p, , so that p2 ^ p-i . Moreover, if any

r 6 p, except q were on p~, then r would be a lower bound of b

and z , contradicting the maximality of q (we cannot have r = t

since G is acyclic). Thus p, fl p, = {q}, and p,,p2,p., constitute

a cross-connection, contradiction.

Since G is acyclic, L(p) fl R(p) = {p}. Also, if w j£ R(p)

there is a path P from w to t 6 R(p) , so that a point not in R(p)

and a point in R(p) must occur consecutively on p ; but by the pre-

ceding paragraph, the second of these points can only be p , so that

there is a path from w to p . Thus w.£..R(p) implies w € L(p) .

Let G^ = [L(p)], G2 = [R(p)]. Since G, and G- are subgraphs of

G , they are acyclic and CCF; and as we have just seen, G, has the two

terminals s and p , and G- has the two terminals p and t . Thus
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by induction hypothesis, G, said G- are TTSPN's. Moreover, there are

no edges from points of G, to points of G2 , so that G is the serial

composition of G-ĵ  and G2 , proving that G is a TTSPN.//

As a useful application of Theorem 3.12 we have

Proposition 3.15. A finite, two-terminal acyclic graph is a TTSPN

if and only if any walk between its terminals is a path.

Proof: "Only if" is clear if G has only one edge. If G is

the parallel composition of G, and G2 , then readily any walk between

the terminals s and t must be entirely contained in either G, or

G2 , so that the induction hypothesis applies immediately. In the serial

composition case, any walk between s and t must pass through the com-

mon point z of G, and G2 , and by minimality it can only pass this

point once. Hence we can break it up into two walks w(s,z) and w(z,t).

By induction hypothesis, each of these is a path, and readily this implies

•that the original walk is also a path.

Conversely, it suffices to show, by the proof of Theorem 3.12, that

there is no cross-connection between any two paths from s to t . Sup-

pose p,,p2,p3 were such a cross-connection, say p, = <x,, ...,x > ,

P2 =
 <sy1»'.--iyn

> » and P3 =
<z-L,...,zr> where P3 H PI = {x̂ } = {z^ ,

P n P = {y.} = {z} . if {*> •••»x} n { y » ' " » y _ } = 0 » then

yl'"''yj-l' yj = V*'zl = xi'xi+l''"'xm is a walk» since its

points are all distinct and is not a path, contradiction. Otherwise,

let y, be the last of y,,...,y._1 that is equal to any of xi+1 ...,

x , say to x, . We cannot have y = *y for any h ̂  u ̂  j-1 and

1 & v ̂  i-1 , since x , . . . ,x, = yv,>"->yu
 = x

v would then be a cycle.

Hence x^. . . .x̂ -̂  zlt. . . ,zr, y ̂ _lt .. . ,yh = xk>. . . ,xm is a walk,

since its points are all distinct, and is not a path, contradiction.//
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Note that in any two-terminal graph, no walk between the terminals can

have reversal order exactly 2.

3. Basic graphs

When considering a graph as representing a transitive relation,

some edges may be superfluous. Given a graph we can safely delete these

edges without altering the relation.. We call a graph without these "ex-

tra" edges a basic graph.

Definition. A graph G is basic if it has no proper partial sub-

graph H on the same point set such that pr(x,y) implies PH(x,y)

for all x,y .

It is easily seen that G is basic if and only if for any edge (a,b) ,

the points a and b occur consecutively on any path from a to b.

Indeed, if this condition is violated by some path p(a,b) , the edge

(a,b) can be deleted from G without changing the path structure, since

one can use p to get from a to b without using (a,b) . Con-

versely, if G is not basic, let H be a proper partial subgraph with

the same path structure as G . Since H is proper, some edge (u,v)

of G is not an edge of H . But (u,v) constitutes a path from u

to v in G ; hence there is a path p' from u to v in H , which

cannot have u and v as'consecutive points since (u,v) is not an

edge of H . Since. H is a partial subgraph, p1 is also a path in G.

If G is acyclic, a and b cannot occur at all on a path from

a to b except as the endpoints; hence they cannot occur consecutively

if the path has length £ 2. We thus have

Propositibri 3.14. An acyclic graph G = (P,E) is basic if and only

if |p(x,y)| £ 2 implies (x,y) £ E for all x,y € P.
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Cbrbllary 3.15. An acyclic graph is basic if and only if (x,y) € E

implies R(x) fl L(y) = {x,y}.

Proof: If a 6 R(x) fl L(y) with x / a ? y , then p(x,a) and

p(a,y) , so that p(x,y) with |p| ^ 2 , and conversely.//

Proposition'3.16. G is basic and acyclic if and only if every

edge is a separating edge of order 1.

Proof: Suppose G has an edge which is not a separating edge of

order 1, in other words, an edge (x,y) such that r(x,y) £ 1 in G1 =

G~{(x,y)} . This implies x € L(y) U R(y) . If .x 6 L(y) then . G is

non-basic; if x € R(y) then G is non-acyclic.

Conversely, if there is a cycle p(x,x) then any edge (a,b), on

it would have r~,(a,b) = 1 ; contradiction. If G is non-basic and

acyclic there is a path p(x,y) with |p| ̂  2 and an edge (x,y) , so

that the edge (x,y) is not a separating edge of order I.//

Definition. By a basis graph G of G [Ore (1962)] we mean any

basic partial subgraph of G that has the same point set as G . An

arbitrary graph G need not have a basis graph, and if a basis graph

exists, it need not be unique; see Figures 3.6 and 3.7.

It can be easily shown that for finite graphs G , a basis graph

always exists. This is done by methodically deleting edges for which

there exists a path of length ^ 2 between the endpoints. We will show

that for finite acyclic graphs, the basis graph is unique [Ore (1962)].

Additional conditions which are sufficient to show the existence of a

basis graph are given in Chapter 8 of Ore (1962).

Proposition 5.ly. A finite acyclic graph has a unique basis graph.

Proof: Let E. = (P̂ ) and ^ = (P.EJ be two basis graphs of

G = (P,E). We need only show EI = E2 . Let e = (x,y) € E-ĵ  £ E .
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G: c ,w

MX,

>y
z'

G2: •w

G, and G~ are both basis graphs of G

Figure 3.6.

G = (P,E)

P = {0,1,2,...}

E = {(0,n)|n = 1,2,3,...}

U {(n,n-l)|n = 2,3,...}

G has no basis graph

Figure 3.7.
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Then e constitutes a path from x to y in G , and since H» is

basic there exists p2Cx,y) in H-. If p2(x,y) consists of e alone,

then e 6 E9 and we are done. Otherwise, there exists a path from x
M

to y in H2 , hence in G , through some point z / x,y , so that there

exist paths p̂ (x,z) and p^Cz.y) in G . Since H, is basic, we

must thus have pr(x,z) and Pg(z,y) in H, , which combine to give

p, (x,y) of length £ 2 in H, , contradicting e 6 E, . Thus E, £

E- . The reverse inclusion is shown similarly.//

T TDefinition. A graph G = (P,E ) is said to be the transitive
Tclosure of G = (P>E) if PG(x,y) is equivalent to (x,y) 6 E .

Proposition 5.18. Let G-ĵ  = (P.Ê ), GZ = (P,E2) ; then TL̂ ) =

TL(G2) if and only if G^ = G^ .

Proof: Let A € ̂(Ĝ , p 6 A, and (q,p) 6 E2 . Then (q,p) 6
T TE2 = El ' nence p(°l»P) in Gi > so that 3 € LG?) G A by Theorem 1.2.

This shows A € TT (G0) , and thus TT (G,) £ TT (G») ; the reverse inclu-Li Z LI J. Li Z

sion is proved similarly. Conversely, if TL(G,) = T, (G2) we have,

for all x,y € P, p(x,y) in G, iff. x 6 Lr (y) iff. x 6 Lr (y) iff.1 U, (j~
m rp J. Li

pCx,y) in G2 , proving G^ = G2 .//

Corollary 5.19. Let G = CP,E) ; then the largest graph on P

Twith topology T,(G) is G .

Proposition 5.20. G = (P,E) is basic if and only if no proper

partial subgraph (?»£„) of G has the same topology as G .

Proof: If CP»Eu) had the same topology, then we would have

PG(x,y) implies x 6 LG(y) = L̂ Cy) implies PH(x,y) , contradiction.

Conversely, if p,, implies PU , then PG iff. p^ , so that L̂ Cy) =

for all y , implying xLCG) = TL(H) .//
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Thus a basic graph G = (P,E) is the same as a minimal graph on

P having topology TL(G) . In particular, in the finite acyclic case,

there is exactly one such minimal graph, i.e., there is a smallest such

graph.

As a consequence, of the previous propositions, we see that an E-

topology characterizes a family of graphs which are bounded above by

their common transitive closure and bounded below by a set of basic

graphs .

The basis graph of a given graph can be obtained in still another

way as is described in the following proposition.

Proposition 3.21. Let G = CP>E) be an acyclic graph that has a

basis graph Gb , and let Ga = (Pa,Ea) be defined by Pa = (L(x) |x 6 P}

and Ea = {(L(x), L(y)) | (x,y) <E E and there exists no z such that
a h

L(x) 9 L(z) § L(y)} . Then G is isomorphic to G .

Proof: Let Gb = (P,Eb) and f :P •> Pa where f(p) = L(p) . If

(p,q) 6 E we have no p(p,q) in G such that |p| £ 2 . Clearly

L(p) £ L(q) . If L(p) 5 L(r) 5 L(q) then r is on a path from p to
o

q which thus has length £ 2 , contradiction; thus (LCp), L(q)) 6 E
o

Conversely, if (L(p), L(q)) € E , we have (p,q) 6 E . Suppose

there were p(p,q) in G such that |p| ̂  2 . Then there would ex-

ist r 6 p(p,q), r ̂  p,q and therefore L(p) £ L(r) £ L(q) . Since

(L(p), L(q)) € Ea , we must have L(p) = L(r) or L(q) = L(r) ; both

cases are impossible since G is acyclic. This shows |p| < 2 or

(p,a) € E . Moreover, f is 1:1 since G is acyclic. Hence f

is an isomorphism.//



CHAPTER IV

CONTINUOUS MAPS

1. Continuous maps and homomorphisms

A key concept in the development of mathematics is that of a func-

tion, map, or transformation. In a functional approach one begins with

a space S of objects, then defines transformations which may the space

either into itself or into some new space S1. In general one is then

interested in:

a. those transformations which are well-behaved, for example

preserve some property of the original space

or b. those spaces which are well-behaved under particular classes

of transformations.

There are two natural ways to establish a functional approach to

graph theory (which makes the extreme paucity of any literature on

functional graph theory rather surprising). The first is to construct

a space in which the objects of interest are individual graphs. Such a

set of graphs might be organized as a space by establishing a notion of

similarity or distance between individual graphs. One would then have

essentially a single space of graphs, which might be organized in dif-

ferent fashions depending on one's definition of the concept of simi-

larity. This would be analogous to the space of real numbers, which

can be organized according to the usual metric topology, the half open

interval topology, or various other "irregular" topologies.

The second approach is to regard each individual graph as a space.

In this approach the points of the graph P are the objects of the

space and it is the relation E that determines their organization.

It is this latter approach that we take here. It appears to be the more
44
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basic of the two approaches; in fact, it may be essential as a prerequi-

site to the definition of similarity between graphs. Furthermore, the

entire development of the edge topologies TT and TR, together with the

exploration of their implications with respect to separability and con-

nectivity, has been built up with this view in mind.

We therefore will consider maps that can be defined on many dif-

ferent graphs (spaces) although they may be of greatest interest when

restricted to a specific class of graphs. In general the range graph

(space) will be distinct from the domain graph. We will interchange- .

ably use the notations f:G -»• G1 and f :P ->• P' to denote such maps, since

usually E' (the organization of G') is determined by f and E .

The first class of maps to consider is, of course, those which are

continuous (in the usual sense) with respect to TT and TD. This will
L K

turn out to be a very large class; for example, all graph homomorphisms

(under any of the half-dozen different possible definitions) are con-

tinuous. For this reason we will investigate a more restrictive class

of functions, called ideal maps, in Section 4.

Relative to the topologies TT(G) and TT (G
T) we can define a con-

Li J_i

tinuous map in the usual way, namely,

Definition, f :G -> G' is a continuous map if

A' € TL(G') implies f"
1 '̂) 6 TL(G) .

For our definition of a homomorphism between graphs, we shall use

a stronger version [Pfaltz (1968,1971)] then the one found in Ore (1962).

Definition. The mapping f:G -> G1 is called a graph homomorphism if

(1) (a,b) €E implies (f(a), f(b)) € E'

and

(2) (a1, b') € E' ijnplies there exist a € f"1(at) and
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b 6 f"1^1) such that (a,b) 6 E.

A function satisfying only condition (1) will be called a weak

homomorphism. Both definitions are common in the literature under the

name "homomorphism". For most of our results we need not distinguish'

between the two variants.

Our first proposition shows that a continuous function is a weaker

concept than a weak homomorphism. Thus, continuous maps are a very

general class of functions which relate graphs.

Proposition 4.1. Weak homomorphisms are continuous.

Proof: Let A' 6xT(G') and A = f"
1 '̂) . If a€A and

— •-'-' l- Li

(p,a) € E , we have (f(p), f(a)) € E1 since f is a homomorphism.

Since A1 6 TT(G
f) and £(a) € A1 , we thus have f(p) 6 A1 . This

LJ

implies p € A = f"1(A') and therefore A € TT (G) .//
LJ

The graph in Figure 4.1 shows the converse of Proposition 4.1 is

not true. For this continuous map f we have (c,b) 6 E but (f(c),

f(b)) = (c!, b1) £ E' and thus f is not a weak homomorphism.

G = *b G1 = c1 - »a' - *bf

a-̂

f(x) = x' where x = a,b,c,.

Figure 4.1.

Continuous maps with respect to the topologies TR(G) and TR(G')

can be defined similarly. However, the class of functions so defined is

the same as for the T, topologies. That is, a function is continuous
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with respect to R̂(G) and tR(G
!) if and only if it is continuous with

respect to TL(G) and TL(G
1) . This is evident since the t, and

TR topologies of a graph are complements of each other, and one can in-

voke the well-known equivalent condition for continuity that the com-

plements of elements of TT(G
1) are mapped onto complements of elements

of TL(G) under f

We now characterize continuous maps by examining the preservation

of the path structure. This characterization provides a convenient

method for determining which maps are continuous.

Proposition 4.2. f:G •> G1 is continuous if and only if Pr(p,q)

implies PG,(f(p), f(q)).

Proof: Let p(p,q) be a path in G. Since f is continuous and

L(f(q)) is an element of TL(G
!), the set A = f"1(L(fCq))) is an ele-

ment of T, (G). Having q € A and p(p,q) , we find p € A and

f(p) € f(A) = L(f(q)), which implies p(f(p), f(q)) . Conversely, sup-

pose p(p,q) implies p(f(p), f(q)) . Let A1 € TT(G') and define

A = f (A1) . If p € A and (q,p) 6 E, then p(q,p) and therefore

p(f(q), f(p)). Since A' € TL(G') and f(p) € A1 , we must have

f(q) 6 A' . Thus q € f'̂ A') = A and A € TT (G) .//
Li

Corollary 4.5. The map f is continuous if and only if r(f(a),

fQ>)) £ r(a,b) for all a,b.

When f in Proposition 4.2 is not onto then the path p(f(p),

f(q)) may not be in the range of the mapping. Consider the example in

Figure 4.2. The map f is continuous but p(f(a), f(b)) is not in the

range o f f .



48

G = a >b G1 = a' >x' >bf

f(a). = a', £(b) = b1 p(a',b')= a',x',bf

Figure 4.2.

Although Proposition 4.2 gives a useful test for continuity in terms

of paths, the left and right sets defined in Chapter I have played the

central role in our development and, in effect, have replaced the notion

of path. Thus, a suitable characterization of continuity in terms of

these sets would be desirable.

Proposition 4.4. Let f be a map from G to G'. The following

are equivalent:

(1) f is continuous

(2) f(L(a)) cL(f(a)) for all a

(3) f(R(a)) cR(f(a)) for all a

Proof: If b' 6 f(L(a)), then there exists a, 6 L(a) such that

f(a,) = b' . We have p(a,,a), and therefore pCfCa.^), f(a)) in G'

since f is continuous. Hence b1 = f(a,) 6 L(f(a)), proving (2).

Conversely, if (2) holds, let A' € TT (G
1) and A = f"1(Af) . * If

LJ

(a,b) 6 E with b € A then a € L(b) and consequently f (a) € f (L(b))

c L(f 00) . Since A' € TL(G») , we thus have f (a) € L(£(b)) c L(f(A))

L(a') = A' . Therefore a € f (Af) = A and A 6 TL(G) . The proofs for

(3) are analogous.//

Corollary 4.5. If f is continuous, we have f(Cn(A)) c Cn(f(A))

for all A and all n .
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2. Convex and open maps

A mapping on a topological space is said to be open if the map takes

open sets in the domain onto open sets in the range. For our situation

two topologies are defined on the domain and range graphs, namely the

left and right topologies. In addition, by Proposition 1.12, convex

subgraphs are closely related to left.and right open sets; thus we de-

fine convex maps here also.

Definition. A map f:G -> G1 is

(1) left open if A € TL(G) implies f (A) € (̂G1)

(2) right open if B 6 tR(G) implies f(B) 6 ?R(G')

(3) convex if C convex in G implies f (C) is convex in G'.

It is necessary to distinguish between left open and right open maps

since they do not imply one another (see Figure 4;3). This is not the

case for continuity; "left" continuity implies "right" continuity and

conversely. When a map is both left and right open, we will call the

map open.

The examples in Figure 4.3 show the independence of these concepts.

Continuous maps were characterized in Proposition 4.4; the next

proposition gives a dual characterization of left and right open maps.

Proposition 4.6. The map f is

(1) left open if and only if

L(f(a)) £f(L(a)) for all a

(2) right open if and only if

R(f(a)) e fCRCa)) for all a.

Proof: If f is left open, f(L(a)) e T T(G
f) since LCa) 6 TT (G); but• L L

f(a) €f(L(a)), so we have L(fCa)) £f(L(a)). Conversely, if A is
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Example

1 b'

d'

Remarks

continuous, convex;

not left or right

open.

»b' = c1 continuous, right

. open not left open.

b

c
a' = b

a',

b

continuous, left

open; not right open

convex, open; not

continuous

o
a

o
b continuous; not con-

vex, not left or right

open.

open, continuous,

not convex.

Figure 4.3.
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left open, we have A = U ^L(a) . Hence f (A) = U if (L(a)) 2

Ua6AL(f(a)) = .^gf^LCb) = L(f(A)); and £(A) 2 L(f(A)) ijuplies £(A)

left open.//

As an immediate consequence of this proposition we have

Corollary 4.7. If f is open, (?*(£ (A)) _= f ((̂(A)) for all A and

all n £ 0.

If f is left open, in particular f (P) is left open, so that

P1 ~ f(P) is left closed, and similarly on the right. It follows that

if f is open, f (P) is both open and closed, hence is a union of con-

nected components of G ' . We thus have

Proposition 4.8. If G? is connected, an open map is onto.

If f is one-to-one onto and left open, its inverse function is

continuous, and thus preserves paths, and similarly for f one-to-one

onto and right open. Conversely, if f is one-to-one onto, and its

inverse preserves paths, then f is both left and right open, i.e., is

open. The following two propositions generalize these remarks to the

case where f is not necessarily one-to-one.

Proposition 4. 9. ,Let f map G onto G1 ; then the following

statements are equivalent:

1) f is left open

2} For all a',b' € G1 such that p(a',b'), and all b 6 f"1 '̂),

there exists a € f (a1) such that p(a,b).

Proof: If (1) holds, then since a' 6 L(b') = L(f(b)) c f(L(b)),

there exists a € L(b) such that f (a) = a' , proving (2} . Conversely,

(2) says that for all a1 € L(f (b)) there exists a € L(b) such that

f(a) = a', i.e., a' € f(L(b)), proving f left open.//
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Analogously we have

Proposition 4.1CK Let £ map G onto G1; then the following

statements are equivalent:

1) f is right open

2) For all a',bf 6 G' such that p(a',b'), and all a € f'̂ a1),

there exists b € £ (V) such that p(a,b).

By Proposition 4.2, continuous maps preserve the path relationship

of the domain in the range. In essence, Proposition 4.9 shows that open

maps preserve the path relationship of the range in the domain. It is

also possible to have non-onto maps which preserve this relationship.

For example, consider the graphs in Figure 4.4; none of them are left

or right open. Nevertheless, all these maps seem to be one-to-one onto

a range whose path structure is reflected in the domain. A relaxed

condition for openness which these maps satisfy is the following:

Definition. A map f:G •> G' is relatively left [right] open if

A € TL(G) implies f (A) € TL i £,£. [f (A) 6 TR , £(G-v]. A relatively open

map is both relatively left and right open.

We emphasize that the topology used in the range is the relativized

topology of the image subgraph. Evidently every left (right) open map

is relatively left (right) open. Another concept could also be defined

by considering the T,(f(G)) and TR(f(G)) topologies. This definition

of openness is equivalent to relative openness when the image of G is

convex in G1. All the maps depicted in Figure 4.4 are relatively open.

Figure 4.5 illustrates a map that,is not relatively left open.



Figure 4.4.

Figure 4.5.
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Example Remarks

not convex

not continuoios

not convex

a—>b\ not relatively

left open



54

3. Homomorphisms and isomorphisms

As a consequence of the definition of continuity, we have a well

defined notion of homeomorphism [Kelley'6L955)], namely, one-to-one map

which is continuous and whose inverse is continuous.

Definition. A map f:G •*• G' is an isomorphism if f is one-to-

one and (a,b) £ E if and only if (f(a), f(b)) 6 E! . .

It is well known that f is an isomorphism if and only if f is a

one-to-one graph homomorphism. Graphs G and G' are called isomor-

phic if there exists an isomorphism between them. We observe that an

isomorphism is also a homomorphism, and hence is a homeomorphism.

A homeomorphism need not in general be a homomorphism: but it must

be one when the graphs involved are basic and acyclic. Specifically, we

have

Proposition 4.H. If the map f :G -> G1 is a homeomorphism onto,

and G is basic and acyclic, then f is a weak homomorphism; if G'

is also basic and acyclic, f is an isomorphism.

Proof: Let (a,b) € E; then p,(a,b) in G, so that p9(f(a),
—̂ ^̂ ™̂ ~" J. Lt

f (b)) in G2 by the continuity of f. If we assume | pJ s? 2 then there

is a point p' on p2 with p3(f(a), p«), p4(p',f(b)), where f(a) f

p' ^ f(b). Since f is continuous and one-to-one we thus have

P5(a, f^Cp
1)) and p6(f"

1(p'), b) with a } f̂ Cp') ̂ b . This con-

tradicts the basicness of G, since Pc(a, f" (p'))+ P̂ ' (p')» b) is

a path from a to b with length greater than 1. Therefore IP?!* 2,

i.e., (f(a), f(b)) € E1, which shows that f is a weak homomorphism.

The second part of the theorem follows analogously, interchanging the

roles of G' and G .//
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Corollary 4.12. Let Gb and G'b be the basis graphs of G and G',

respectively, where G and G' are acyclic; then £ is an isomorphism

between Gb and Gfb .

Proof: We can regard f as a one-to-one map of G onto G' .

Moreover, p(x,y) in G iff. p(x,y) in G , and similarly for G' and

G1 ; hence f is still bicontinuous.//

In Proposition 4.11 G' need not be basic or acyclic even though G

is. It is of interest to consider conditions under which basic acyclic

graphs are mapped into basic acyclic graphs. By Proposition 7.7 in

Pfaltz (1968), a convex homomorphism g takes acyclic graphs into acy-

clic graphs. Moreover, using Pfaltz's Proposition 7.10, we can show

that if g is onto, it takes acyclic basic graphs into acyclic basic

graphs.

The one-to-one onto requirement for a topological homeomorphism is

a severe restriction in the case of finite graphs. One really wants a

notion of homeomorphism between graphs of different cardinality. In the

graph literature one therefore finds a different concept of homeomorphism,

which we shall now define; first we need the concept of a subdivision.

Definition. G1 =•(P',E') is a subdivision of G = (P,E) if

1) P' = P U {x> where x £ P, E1 = E U {(a,x), (x,b)> ~ ((a,b)>, where

(a,b) € E (in this case, we call Gf an elementary subdivision),

or 2) G1 is a subdivision of another subdivision of G.

Following Tutte (1966) and Harary (1969) we now have

Definition. Two graphs G and G1 are graph-homomorphic if G and

G1 have subdivisions which are isomorphic.

If G is an elementary subdivision of G, the identity map s from
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G into G is one-to-one, continuous, and relatively open. Similarly,

we can define a canonical map t from G onto G, as the identity map on

the points of G and as taking x into a, and readily t is continuous

and left open. It follows that if G is an arbitrary subdivision, the

composite s of the s maps is one-to-one, continuous, and relatively

open, and the composite t of the t , maps is onto, continuous, .and left

open. Let f be an isomorphism of G with a subdivision G' of G1,

and let t' be the canonical map from G' onto G' as just defined; then

f

is a continuous, relatively left open map from G into G'; but G and

G' are not necessarily homeomorphic.

4. Ideal Maps . . • . . . .

If a graph G is acyclic, so that the path relation p is a partial

ordering, then the left or right ideal generated by a set A can be de-

fined. Clearly the left ideal generated by a set A is simply L(A)

and the right ideal is R(A) . By Propositions 4.4 and 4.6, open, con-

tinuous maps preserve left and right ideals. Thus we call an open,

continuous map an ideal map. The remainder of this thesis will be de-

voted to the study and application of these ideal maps. By Propositions

4.4 and 4.6 we also have immediately

Proposition 4.15. The map f:G -> G' is ideal if and only if

f(L(p)) = L(f(p)) and fCRCp)) = R(f(p)) for all points p of G .
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Example 'G G'

(1)

(2)

a'

Figure 4.4

The examples in Figure.4.4 show that an ideal map need not be a homo-

morphism or even a weak homomorphism.

Corollaries 4.5 and 4.7 show that if f is ideal, then Cn(f(A)) =

fCC^CA)) for all A and all n . It follows that C°°(f(A)) = fCC"(A)) .

We also have

Proposition 4.14. Let f:G -> G' be ideal and onto, let a', b1 € G'

with r(a',b?) = n , and let b € f (b') . Then there exists a € f (a1)

with r(a,b) = n .

Proof: We have a1 € (̂ (fCb)) = fCĈ Cb)) , so that there exists

a €-f (a1) with a € ̂(b) , which implies r(a,b) £ n . On the other

hand, r(a,b) < n would imply r(a',b') < n by Proposition 4.3.//

Propositions 4.9-10 show that under an onto ideal map, paths have

"inverses". A stronger result is

Proposition 4.15. Let f:G -> G' be ideal and onto, let G' be

basic and acyclic, and let p1 be any path in G' . Then there exists
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a path p in G such that r € p implies f(r) 6 p' and r1 6 p1

implies f (r')np^0. In fact, we can require p to begin at a

specified preimage of the first point of p', or to end at a specified

preimage of its last point. .

Proof: Let p' = <p',...,p'>, and apply Proposition 4.9 (or 4.10)- - - j o . n

to the edges (Pk>Pk+1) » 0 sk<n , to obtain paths p (Pk,Pk+1) in

G , where f(pk)
 = Pk for each k . Let p = pQ + ... + p ,; clearly

any r1 € p' has a preimage in p . Conversely, let r 6 p , say

r € p, ; then p(p, ,r) and p(r,p,+,) , and since f is continuous,

this implies p(f(pk), f(r)) and p(f(r), f(Pk+1)) in G' , i.e.,

p(pk,f(r)) and p(f(r), p£+1) . But (pk, pk+1) is an edge, and G
1

is basic and acyclic; hence we cannot have pk ^ f(r) f pk+, -- in other

words, we must have f(r) = p£ or Pk+1> so that f(r) € p' .//

Clearly if f is one-to-one and ideal, then f is ideal, and f is a

homeomorphism. Proposition 4.15 suggests that even if f is not one-to-

one, the path topologies are still "similar".

Corollary 4.16. In Proposition 4.15, let (a',b') be any edge of

G1 , and let f(b) = b' ; then there exists an edge (a,b) of G such

that f(a) = a' and p(b,b) £ f"1!!)') .

Proof: Let p(a,b) be a path in G constructed from p' = <a',b'/>

as in Proposition 4.15; then f(x) = a" or b' for all x € p , and

f (a) = a1 . Hence somewhere in p there must be two consecutive points

the first of which has image a' and the second b1 .//

Similarly, we can fix a € f (a1) and find an edge (a,b) with f(b) =

b1 . Note that the conclusion of Corollary 4.16 implies one of the two

defining properties of a graph homomorphism, namely that for any (a1, b')

€ E1 there exists (a,b) € E such that f(a) = a', f(b) = b1 .
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Corollary 4.17. In Proposition 4.15, let p = <x ,...,x> .

Then for all o £ i < m we have either f(x.) = f(x.+,) or (f(x.),

f(x.+1)) an edge in G
1 .

Proof: Since f is continuous we have p?(f(x.), f(x.+,)) in G' .

By construction of p , we know that any r' on p! has a preimage r

on p . Since x. and x.+, are consecutive on p , we must have

r € L(xp U R(xi+1) . If r 6 L^) , then f (r) = r' 6 L(f (x̂ ) by

continuity. But r' is on p! , hence in R(f(x.)) ; hence r1 = f(x.)

since Gf is acyclic. Similarly, if r € R(x.+,) , we must have

r1 = f(x.+,) . Thus the only points on the path p! are f(x-) and

f(x-+1) themselves, so that p! has length £ 1 .//

We next generalize Proposition 4.15 from paths to walks; this result

will be needed to prove the Theorems which conclude this section.

Proposition 4.18. Let f:G + G1 be ideal, onto and let G' be

basic, acyclic with x1 ^ y1 in G' , x € £"1(xl) . If W1 = w(x',y')

in G1 then there exists a walk W = w(x,y) in G for some y € f (y1)

with the properties

(1) a ̂  b, (a,b) €W implies (f(a), f(b)) g wf

(2) a' ̂  b1, (a',b') 6 W' implies there is (a,b) 6 W such that

f(a) = a', f(b) = b1 .

(3) r(x',yf) = n in W implies r(x,y) = n in W .

Proof: If r ,(x',yf) = 1 then W1 = p(x',y') or p(yf,x') .

In either case by Proposition 4.15 there exists p(x,y) or p(y,x) in

G with r € p implying f (r) € W' and r1 € W implying f Cr1) n

p ^ 0 . In particular, r(x,y) = 1 . Clearly p is a minimal finite,

self-connected partial subgraph containing x and y . If a ̂  b
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occur consecutively on p , so that (a,b) is an edge, then since G1

is basic, (f(a), f(b)) must be an edge in W , proving (1). Moreover,

(2) holds by the proofs of Proposition 4.15 and Corollary 4.16.

Suppose r , (x',y') = n and the proposition is true for all walks

such that r(x',yf) <n with respect to W . By Corollary 2.7, there

exists zf € Ĉ Cx') ncj,(y') . Thus, rw,(x',z') = n-1 < n and

r , (z',yf) = 1 . By our induction hypothesis there exists W in G
W * .

which satisfies the conditions of the theorem for W' = w(x ' ,z ' ) c W .
. ' . •"•

Since z' 6C^,(y1) there exists W =p(z',y') or p(y',z!) in W .

Fixing z € f (z') in W , by Proposition 4.9 or 4.10 we have p =

p(z,y) or p(y,z) in G for some y € f̂ Cy') . We define W = W U p.

Clearly W is a finite, self-connected partial subgraph containing x

and y . Therefore there exists a minimal W £ W and readily W still

contains x and y . If a f b and (a,b) in W then (a,b) 6 p or

(a,b) € W , so that (f(a), f(b)) € W by induction hypothesis. If

a1 ^ b1 and (a',b') € W then (a',b') in W or W1 implies therex y
is (a,b) as in (2) in W or p , hence in W . Now f(W) £ f(W) = W

is a connected partial subgraph containing x' and y1 . If no such

(a,b) were in W , there could be no edge (a',b?) in f(W) , which

would contradict the minimality of W . Finally, r(x,z) = n-1 in W

and r(z,y) =1 in p , so that r(x,y) £ n in W . If r(x,y) < n

in W then r(f(x), f(y)) <n in W by Corollary 4.3. But r(x',y') =

n ; therefore r(x,y) = n . //

We conclude this chapter by applying the above results to prove that

ideal maps onto basic graphs preserve trees, TTSPN's, normal and com-
N

pletely normal graphs. (It should be noted that homomorphisms do not

preserve these properties.) We first prove
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Proposition 4.19. Let £:G -*• G' be an onto ideal map. If G is

finite and acyclic then G1 is acyclic.

Proof: If G' has a cycle p(x',x') with |p| ss'2 then by Pro-

position 4.10 there is a path p(x,,x2) in G with f(x,) = f(x-) = x'

and |p | ̂  2 . If x, = x2 we have a contradiction. If x, f x? we

can fix x- and obtain another path p(x2,x,) with f(x,) = x
1,

x, $ x,, x-, and |p| 2: 2 . Continuing this process we have x,,x2,x_,

... all distinct; but G is finite, contradiction.//

Theorem 4.20. Let f:G ->- G1 be onto ideal and G' basic. If G

is a TTSPN then G1 is a TTSPN.

Proof: It is evident that the terminal points s,t of G map onto

terminal points s',t' of G' and that G1 cannot have additional

terminal points. By Proposition 4.19, since G is finite and acyclic,

we have G1 acyclic. By Proposition 4.19, if there were a walk between

s' and t' in G1 with reversal order > 1 , there would also be such

a walk between s and t in G , contradicting Proposition 3.13.//

Lemma 4.21. For G = (P,E), and G1 = (P',Ef) basic and acyclic,

let f:G -> G1 be an onto ideal map and let (a',b') € E' , a1 f b' .

Define H1 = (PT,E!~{(a',b')}) and H = (P,E~{(u,v)| a' and b' occur

consecutively on a path from f(u) to f(v)}) . Then f :H -»• H1 is ideal.

Proof: Let y1 61^, (f(x)) . We have p(y',f(x)) in H1 , hence

in G' . So by Proposition 4.18 there is a path P(y,x) in G for

some y € f" (y1) . If there are consecutive points u,v on p(y,x)

such that a' and b1 are consecutive on a path from u1 = f(u) to

v1 = f (v) , we have u1 f v' and u' ,v' consecutive points on

p(y',f(x))'- by the proof of Proposition 4.15. Therefore, uf = a' and
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vf = b1 since G' is basic. Furthermore we have u', v1 consecutive

on p(y',f(x)); hence (a',b') = (u',v') is an edge in H1 , contra-

diction.. So p(y,x) sH , that is, y € LU(X) and it follows that

£(y) = y'

Conversely, let y' 6 fCLCx)) . Thus, there is y € £"1(yl) fl

Lu(x) . This implies p(y,x) in H . I£ p(y,x) = <p ,p, ,. .. ,p > ,M n-1 o i n
we have p(y',x') = £ p(pil, Pv+i) in G1 by the continuity o£ £ on

K?=U
G . Suppose (a',b') were on p(y',x'); then (a',b') would be on

some p(Pk»Pk+1) • This inplies (Pk»Pk+1) on p(y,x) is not in H,

contradiction. This shows p(y',x') in H' and it follows that

y'

A similar proof shows IVnCfCx)) = f(It-(x)) .//

Theorem 4.22. Let f :G -»• G1 be an onto ideal map and G1 basic.

If G is a tree then G' is a tree.

Proof: G' is acyclic by Proposition 4.19. Suppose G' = (P',E')

is not a tree; then there exists an edge (x',y') in G' which is not

disconnecting. Thus we have a walk w(x',y') in H' = (P1 ,E'~{(x' ,y')})

Let H be defined as in Lemma 4.21. It follows that f :H -*• H' is an

ideal map.

By Proposition 4.18 for any x, € f (x1) there exists a walk

w(x, ,y.) in H with y, € f (y') . It is evident that H does not

contain any edge (x,y) such that x € f (x') and y € f (y1) .

But by Corollary 4.16, G does contain an edge (x2,y2) such that

x2 € f (x1) , ,y2 € £" (y
f) and the path p(y2,y1) exists. Let F^

be the union of walk w(x, ,y,) and the partial . subgraph consisting of

the points of p (y2 ,y, ) . It is clear that F, is weakly connected in

G even if the edge (x2,y2) is deleted. Since w(x,y) is in H and
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(x2,y2) is not, and since p £ £ (yf) so that x_ £ p .

In a similar manner there exists a walk w(x2,y2) in H . If

wfx-^) and F, had any point in common then x- and y~ would be

weakly connected in G even if the edge (x2,y2) is deleted; thus

(x̂ jŷ ) would not be a disconnecting edge. In particular, x» f x, .

We also must have an edge Ĉ y?) such that x., € f (x') ,

y,, € f (y') and pCy-̂ y*,) • Let Ir- be the union of the edge

(x-̂ ) , the walk w(x2,y-) , the path p(y3,y2) , and F,. It is

evident that F2 is weakly connected in G even if (̂ y?) is deleted.

Again, we must have a walk w(x,,y.,) in H . If w(x y,) and

F- had any point in common then xT»y-r would be weakly connected in

G even if (x̂ y?) is deleted; therefore the edge (x,,y3) would

not be a disconnecting edge. In particular, x^ ^ xi >X2 -• Continuing

this process we obtain walks w(x.,y.) which do not have points in

common with F._, and, hence x. ̂  x, ,x2,... ,x._.. . This yields an

infinite set of distinct points {x..,x2,...} - a contradiction, since

G is finite.//

Theorem 4.25. Let f :G ->• G1 be onto ideal and G' basic and

acyclic. If G is finite and normal then so is G' .

Proof: If G1 is not normal there is an edge (x',y') which is

normal but not disconnecting. In the proof of Theorem 4.22 we have

shown that if an edge in G' is not disconnecting then there exists an

edge in G which is not disconnecting. Thus, we have an edge (x,y)

in G where x 6 f" (xf), y € f" (y1) and (x,y) is not disconnect-

ing. However, from Proposition 3.7 if (x,y) is not normal then

x 6 R(L(R(y))) . Since f is an ideal map, f (x) € f (R(L(R(y)))) =

R(L(R(f(y)))) , that is, (f(x),f(y)) = (x',y') is not a normal edge,
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contradiction. Thus (x,y) must be a normal edge; but it is not dis-

connecting, contradiction to the normality of G .//

Lemma 4.24. Let £ be an onto ideal map from G = (P,E) to a

basic and acyclic G1 = (P',Ef) and let • x1 € P1 . Then £H:H + H.
1

is an ideal onto map where , .

H = (P ~ f'̂ x') , E~{(u,v) | x' is on a path from f(u) to f(v))}

and

H« = (P'~{x'}, E'~{Cu',x'), (x',v') | u',v' inP'}), .

Proof: Let a1 € Ljj,(fH(b)) for some b in H . Then we have a

path p(a',f(b)) = < p1 ,p.j , . . . ,pf> in H1 . Since f is an ideal map

onto G' , by Proposition 4.15 we have for some a € f (a1) a path

p(a,b) = <q ,...,q_> where for all i , fCq-) = P- for some j .It

follows that q. £ f " (x') since p! ̂  x1 for all j . By Corollary

4.17, either f(qp = f(qi+1) or (fCq̂  , fCqi+1)) is an edge in G' ;

and since f(q-) i x' £ f(q-+i) , we know in the latter case that (f(q.),

f(q.+-,)) is an edge in H' . Because G1 is basic, the only possible

path of length £ 1 from f(qi) to f(qi+1) is the edge (fCqi), f (qi+1) ,

so that x1 gpCfCqp, f(qi+1)); therefore (qĵ ^̂  is in H . This

shows p(a,b) is in H , that is, a € Lr,(b) . Therefore, a' = fii(a)

Conversely let a' € fICb)); so there exists a € ICb) n £"1(a1).

We let p(a,b) = <q , ...,a > . Since (q-,q-+1) is an edge in H , it

is not possible that x1 € p(f(q.)» f(q-+1)) for any path p in G' .

Consequently we have p(f(q.)» f(q-+i)) in H' ; thus, p(f(a), f(b))

is in H1 , that is, a1 € Î .Cf̂ b)) .

A similar proof will show f̂ Rĵ Cb)) = 1̂ , (fH(b)) .//
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Given any subgraph H-^ , of G' , by repeated application of Lemma

4.24, discarding all points of G' - H' , and all edges involving these

points, we can find an ideal map from some partial subgraph H, of G
t

onto H, . In particular, given any partial subgraph H1 = (P',E') of

G' , we can find an ideal map from some H, onto Ej = [P']« Then, by

repeated: application of Lemma 4.21, discarding all edges of [P!] that

are not in H1 , we can find an ideal map from some partial subgraph H

of G onto H'. These remarks, together with Theorem 4.23, give us

Theorem 4.25. Let f :G •*• G' be onto ideal and G' basic and

acyclic. If G is finite and completely normal then so is G' .



CHAPTER V . • •

APPLICATIONS

1. Contractions and p-congruence

In Pfaltz (1972) the idea of mappings between graphs is used to

generalize the concept of lists, list structures, and graph structures.

The purpose is to obtain a more effective computer representation of

acyclic graphs and search algorithm for these data structures. In order

to do this, that paper introduces three concepts, two of which we

reproduce here.

Definition. An equivalence relation £ on the point set P of a

graph G = (P,E) is called a p-congruence if p(p,,q,) implies p(p2,q2)

whenever (1) (p-.,??) an^ (<\-\><\2) are ^n ̂  anc^ ^ (Pp0 )̂ i-s not

in l .

Every function f: G -»• G' obviously induces an inverse image

partition on its domain G and conversely every partition defines a

function (namely, all points in the same equivalence class map to

the same image). The essential question is what kinds of maps

correspond to p-congruences.

Definition. A map f: G + G' is called a contraction if G1 is

acyclic.

A key proposition in Pfaltz' development is the proof that every

"m-M contraction" (whose formal definition will not be needed) induces

a P-congruence on G . Then this fact is used to show that the generated

graph structure is a faithful representation of the original; and to

develop computationally efficient algorithms to find "m-M contractions."

It turns out that "m-M contractions" are simply a restricted class of ideal

66
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maps. In fact, we will show that if the inverse image partition of

f is a p-congruence then f must be a convex ideal contraction.

First, we obtain a characterization of ideal maps by combining

Propositions 4.2, 4.9, and 4.10. Suppose a partition n of a graph G

is given. Readily any partition of a graph induces a map from P onto

P1 which we may extend to a continuous map of G onto G' where

P1 = II and E' = {(TT, ,TT_) | ir,',ir- g P' , TT, ? ir_ , and there exist

p € IT, , p- 6 IT™ such that (p-,,??) € E} . Conversely, any map f: G ->- G1

induces a partition of G , namely, n = {f (p') | p1 g P1} . Let TT(X)

be the element of the partition n which contains x .

Proposition 5.1. Let G be a graph and n a partition on G .

The map f induced by the partition n is ideal if and only if

(1) if XQ G L(yQ) and XQ £ Tt(yo) , then for all ye ir(yo)

there exists x € TT(X ) n L(y) and

(2) if y € R(x ) and y g TT(X ) , then for all x £ ir(x )

there exists y £ ir(y ) n R(x) .

Proof: By construction of the induced map, f is continuous.

Conditions (1) and (2) are equivalent to Propositions 4.9 and 4.10,

respectively. This shows f is continuous and open; and conver-

sely.//

Proposition 5.2. Let G = (P,E) be acyclic and E a finite

equivalence class. A p-congruence of Z on P induces a convex

ideal contraction f: G •*• G' .

Proof: We define f(x) = f(y) whenever (x,y) 6 z .' Thus,

P' = {f(x) | for all x e P) , and

E' = {(f(x), f(y)) | f(x) f f(y) and (x,y) € E} .
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In order to see that G' = (P',E') is acyclic, suppose there exists

p(x',xf) in G' with |p| ̂  2.. It follows that there is z' on p

such that z1 ^ x' . This implies p, (x',z') and p-Cz'jX1) in G' .

Consequently, there exist p^Cx,^) and P2(z2,x2) in G . In

other words, (z,,z2) 6 Z and (x,,x2) 6 E with f(x,) ? f(z,) , so we

have (x,,z,) £ l . Because Z is a p-eongruence, p(x,,ẑ ) implies

p(x2,Z2). However, p(z2,x2) and p(x2,Z2) form a cycle contradicting

the assumption that G is acyclic. Hence G1 is acyclic and f is

a contraction.

To prove f is an ideal map onto G' , we need only show conditions

(1) and (2) of Propositions 5.1 are satisfied. These conditions

follow immediately by observing z € R(*0) H n(y) for some XQ £ ir(y)

implies p(x ,z) which, by p-congruence, implies p(x,z) for any

x € TT(X ) . Similarly we have condition (2) satisfied.

To show convexity, we let A be convex in G , p(x',y') in G1

and x', y1 6 f(A) . If p1 6 p(x',y') it follows that pCx^p^ and

p(p2,y2) exist in G with x,, y2 € A . By p-congruence of £ we have

p(x,,p2) which gives us p2 g p(x,,y2) . Since A is convex p2 £ A

and, hence £(p2) = p
1 € f(A) .//

The example in Figure 5.1 shows a convex ideal contraction which

does not induce a P-congruence.

b2

a'

a2

Figure 5.1
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It is generally convenient to decompose a contraction £ into

several simpler maps f . and then represent f as a composition of

these, namely, £ = f , « f~ o • • • o f . It appears that these simple

maps are of relevance when the graphs are viewed as data or control

structures, see Pfaltz (1972).

Definition. A map £„: G -> G1 = (P',E') is called a simple

contraction if H is a non-void subgraph of G such that (1) f (p) = p'

for all p 6 H and (2) f is a homeomorphism of G "- H onto

[P1 * {p'l].

If G and G' are basic and acyclic then the homeomorphism of

condition (2) must be an isomorphism (Proposition 4.11). Pfaltz, in

fact, uses the more restrictive isomorphic condition and then introduces

a sequence of homeomorphic contractions, called a -contractions, to

"reduce" graphs.

Proposition 5.3. Let H be a non-empty subgraph of a basic

finite acyclic graph G . The map £„: G -> G1 = (P',E') is a simple

ideal contraction if and only if H induces a p- congruence on G .

Proof: Suppose .H = (Q,F) induces a P-congruence on G , that is,

Q and the singleton sets {p} for all p £ Q form a partition which is

p-congruent. By Proposition 5.2, f is an ideal contraction so we

need only show G ̂  H is homeomorphic to [P1 ̂  {h1 }] where f(Q) = {h? }

Clearly f is one-to-one and onto from G ̂  H to [Pf ̂  {h1}] . If

P(a,b) = <qQ,. . .,qn> in G * H , we have (q̂ q̂ ) £ E and qi £ Q

for all i . Thus, there are p(f(q.), f(q )) for all q.

by the continuity of f (Proposition 4.2) . If h1 € p(f (q.), f (q ))

for any i , since f is one-to-one outside of H , then there exists a
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path p(q-,q-+1) with some h (• Q on it. Contradiction; G is basic.

Therefore, (ffâ , £(qi+1)D in [P'*{h'}] and p(f(a)., f(b)) in

[Pf '̂{h1}} . This shows £ is continuous from G ̂  H to [Pr ̂  {h'}].

For the map f : [Pf ̂  {h'}] •*• G /vH we have a path pCa',b') in

[Pf * {h'}] implying pff'̂ a'), f"1 '̂)) = p(a,b) . By Proposition

4.15 we can choose p(a,b) so that x € p(a,b) implies f(x) € p(a',b');

thus p(a,b) in G ̂  H . This shows f" is continuous froiji [P1 ̂  {h'}]

to G ̂  H .

Conversely, suppose f,,: G -> G' is a simple ideal contraction.

Let (x-.,x2) € £ , .that.is x,, x2 € Q > and let y £ Q such that p(x..,y)

in G . By continuity we have p(x',y') in G1 . Fixing x-.6 f (x1)

and applying Proposition 4.10 we obtain p(x2,y) for some y € f (y1)-

But f is one-to-one outside of H so y = y , and p(x2,y) exists.

Similarly, if z £ Q and p(z,x,) in G we get by Proposition 4.9 a

path P(x,x2). //

2. Strong Maps

Pfaltz (1968) develops the idea of a convex subgraph-lattice S,,

and shows that lattice theoretic properties of S~ reflect the essential

graph theoretic properties of G itself. In this paper we have

shown the relationships between topological properties and the graph

theoretic properties. Using results developed in this paper, we will

now extend some of the results in Pfaltz (1968).

Pfaltz maintains that if f is a homorphism of G to Gf

which induces a lower semi-homeomorphisir. o: Sf -> Sr, then' f "strongly"

preserves the graph theoretic properties of G ; he calls these maps

"strong homomorphisms". Since they do preserve the internal subgraph

structure in a "natural" way, "strong" maps appear to be a valuable
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concept in the theory of directed graphs. Unfortunately, he provides

only one condition which is sufficient for establishing that a

particular kind of map (convex homomorphism) is "strong". A more general

sufficient condition for the existence of a "strong" map can be

established for a wider class of maps (ideal maps) by applying results

developed for trees and TTSPN's. In particular we show that if G is

either a forest or TTSPN, then any ideal map defined on G is strong.

First we must prove a proposition which is interesting in its own

right. It establishes the existence of a partial subgraph, I , which

is a one-to-one "homeomorph" of the range of an ideal map. (The

notation I is to suggest the notion of identity.)

Proposition 5.4. Let G = (P,E) be a finite, basic and acyclic

graph, and let f: G -> T1 be any ideal map with T1 any forest. Then

there exists I sP such that (1) f is one-to-one from I onto

the points of T1 and (2~) for p,q € I, f(p) = p1, and f(q) = q' we

have pG(p,q) if and only if pT,(p',q') .

Proof: We note that constructing I "simply" consists of choosing

a single representative p from each inverse image set f (p1) where

p1 in T1 . Since for any choice of I we have Pp(p,q) implies

PTI (P1 »<}') because f is continuous, the problem lies in showing

P-piCp'jCi1) implies p/-(p,q) . Our proof is by induction on the edge

set E' of T' .

For |E* | = 0, 1 the proposition is clearly evident. Now let

|E'| = n+1 . In any finite forest it is easily seen that there exists

at least one point z' which belongs to only one edge. For concreteness

we may assume that this sole edge is (y',z') . Let the partial subgraph
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T* be T1 with (y',z() deleted. Clearly we still have T* basic

and acyclic. Let G* be the graph formed by deleting edges of G

as in Lemma 4.21. Now by applying Lemma 4.21 we have a map £*: G* -> T*

which is ideal. Since the edge set of T* is strictly less than E',

our induction assumption shows the existence of a set I* in G* with

the desired properties. In particular there is y € I* 0 f (y1). Since

f is ideal there exists z € f (z') such that p(y,z) by Proposition

4.15. Define I = I* U {z} . We need only show that for p(x',z')

there is a path p(x,z) in G . Because p(x',z') must end with the

consecutive points y', z1, we have p(x,y) in G and thus combining

this path p(y,z) we obtain p(x,z) .//

Theorem 5.5. If T is a finite tree and f is any ideal map

defined on T with its image basic then f is a strong map of T

onto its range f(T).

Proof; By Theorem 4.22 we know T' = f(T) must be a tree.

We need only show that f induces a lower semi-homeomorphism (LSH)

0: ST -»- ST, . We follow the proof and notation of Theorem 7.11 in

Pfaltz (1968). From Proposition 5.4 there exists I in T such

that I is one-to-one with T' and p(p*,q*) if and only if

p(p',q') for all p*, q* 6 I and f(p*) = p', f(q*) = qf . Define

a as follows:

ii) a(p*) = p' for p* € I

a(p) = 0 for p £ I

iii) a(H) = sup(o(A,j)) for all convex subgraphs, i.e. H 6

By definition the map 0 is order preserving with respect to
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subgraph containment. Also, for H1 € ST, we know H = £" (H') is

convex since the inverse image of convex sets are convex under all

continuous maps. Thus, H 6 S™ . It is evident that a is onto

Srp, .

The only remaining problem is to show that a takes full sets

of atoms onto full sets of atoms. Following Pfaltz (1968) let A

be full and q' = ch(o(A)) . Thus, either q1 = a(q) for some

q € A , in which case we are done or there exists r*, s* in A

with a(r*) = r1 f 0 and o(s*) = s' + 0 with q' 6 p(r', s1) .

From Proposition 5.4 there exist paths p-,(r*,q*) and p~(r*,s*)

in T . Since A is full q* 6 A and a(q*) = q1 € a(A)t. This

shows that a(A) is full.

The remainder of the proof is exactly the same as the proof of

Theorem 7.11 in Pfaltz (1968).//

We note that in view of Proposition 5.4 we could have stated a

slightly stronger version of the preceding Theorem, namely "if f

is an ideal map and its range is a forest then f is strong."

Our next goal is to show a similar result for TTSPN's, that is,

ideal maps defined on TTSPN's are strong. First, the next two lemmas

must be proved.

Lemma 5.6. Let G = (P,E) be the serial composition of two

TTSPN's H, = (PpE,) and H2 = (P2»
E2^ » with terminal points

s, z and z, t respectively. Then f: G -> G1 is an ideal map where

G' = (P',E') , P1 = PL U {t} ,

E' = E1 U {(z,t)} , and

f(p) = p if p € Pl

f (p) = t if p. € P2 - {z} .
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Proof: We show the conditions of Proposition 5.1 are satisfied

for the partition n = {f"1(p1) | pf e P1} • Suppose XQ £ L(yo)

and XQ £ ff(yo) • Case (a) if y £ ir(t) then .7r(y ) = {yo> so that

for all y 6 ir(y ) we have ir(x ) D L(y) = TT(XO) fl L(y ) ̂  0 .

Case (b) if y 6 ir(t) then x £ ir(t) and TT(X ) = (x } . Since

x £ L(z) and z € L(y) for all y € P2 we have TT(XQ) fl L(y) f 0

for all y 6 ir(t) G P9 . In a like manner condition (2) of Proposition
Li

5.1 can be proved.//

Lemma 5.7. Let f : G •> G1 be an onto ideal map, G be a TTSPN,

and G1 be the serial composition of HJ = [0j] and HI = [01] and

z1 the common point of K! and HI . Then for any z € f (z') the

map f: [R(z)] -> Hi is ideal.

Proof: Since f is ideal f(R(z)) = R(f(z)) = R(z') = ©^ .

Define the partition nH = {f"
1(pl) D R(z) | pf € 0^} for H = [R(z)].

We shall show this partition satisfies the conditions of Proposition 5.1

and, therefore, f : H -> HI is an ideal map. In H let x € L(y )

and f(x ) ̂  f(y ) and y € f " (y ) . If for some x 6 ̂00 such

that x € L(y) in H then condition (1) of Proposition 5.1 is satisfied.

Suppose TT(X ) n L(y) = 0 , then in particular x £ L(y) . Since

f is an ideal map on G , there exists x € L(y) in G such that

f(x) = f(xQ) ; so x f. R(z) . We have y € R(x) n R(z) , thus, let

u be a minimal upper bound of x and z . Now z 6 L(u) D L(XQ) ,

so let v be a maximal lower bound of u and x . it follows that

we can define

= P(S,V) + P(V,XQ) + p(xQ,t)

P2(s,t) = p(s,x) + P(x,u) + p(u,t) and

PT(V,U) where s and t are the terminal points of G
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We have v ̂  u for otherwise the paths p(x,u) and p(v,x ) imply

u = v € ir(x ) (G1 acyclic) and, thus, ir(x ) fl L(y) $ 0 .

Let r € p, and r ̂  v . If r € p(s,v) then G has a cycle;

i£ r € p(v,x ) then v is not a maximal lower bound of u and x ;

if r 6 p(x ,t) then XQ 6 L(u) c L(y) - in all cases we have a

contradiction. Now let r € p, and r ? u . If r £ p(s,x) then

x € R(z) ; if r € p(x,u) then u is not a minimal upper bound

of x and z ; if r € p(u,t) then G has a cycle; a contradiction

in all cases. Therefore we have shown p, fl p? = {v} and p- D p, =

{u> , and, thus, p-,, P2, P? constitute a cross-connection. By

Theorem 3.12, G is CCF, hence we have a contradiction. This proves

TT(XO) n L(y) ? 0.

Condition (2) of Proposition 5.1 is immediately satisfied since if

y € R(x ) and f(y ) ̂  f(x ) then for x € ff(x ) there exists

y € TT(VO) n R(x) in G , and y € R(x) £ R(z) so y € ̂ Cyo) H R(
x)

in H .//

Proposition 5.8. If f: G -*• G1 is ideal and G and G' are

TTSPN then there exists I e P such that (1) f is an one-to-one map

from I onto G' and (2) for p,q e I , f(p) = p' , f(q) = q1 we

have Pr;(p,q) if and only if Pp,(p',q') . Moreover, we can pick

the terminal points of G to be in I .

Proof: When |E'| = 1,2 the graph G1 is a tree and, thus we

can apply Proposition 5.4. For |E'| ^ 3 , let G1 be the composition

of two TTSPN1s, HJ and HJ . Let s' and tf be the terminal

points of G1 . In the parallel case, if the edge (s',f) G E1 , then

clearly the identity map from G1 onto G" = (P', E1 ~ {(s',tf)})
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is an ideal map with G" having fewer edges than G' ; so we have a map

from G onto G" that is ideal (composition of ideal maps is ideal).

By our induction hypothesis there exists I G P with the desired

properties. It is evident that this set I satisfies the desired

properties for f: G -> G' .

By the remarks following Lemma 4.24 we can obtain partial subgraphs

^ and H2 of G so that f: H, -> H^ and f: H2 + H2 are ideal

maps.- If we can show H, and H- are TTSPN then we can apply the

induction hypothesis for f restricted to H, and H- ; thus we

have I, of H, and I- of H~ . Let I = I, U !„ . Since s

and t are terminal points for both H and H , we have

s,t e I, n I2 . Moreover, f(I, n I2) = {s',t'} because the image

set must be in Hj and HI . This shows f is an one-to-one map

from I onto G' . Now suppose p,q e I , f(p) = p' and f(q) = q' .

By continuity of f , p(p,q) implies p(p',q') . Conversely if

p(p'»q') in Gf we have two cases, (i) If p' and qr are in

HI (or HI) then p,q e I, (or I2) and (p,q) exists, (ii) If

p1. is in Hj and q' is in HI , it follows that either p' = s'

(in which case p1 is in Hp or q' = t' (in which case q' is

in Hp ; therefore only the first case (i) is possible.

Now we show H, and H~ are TTSPN. Clearly s and t are in

H, since f({s,t}) = {s',t'} (which is in Hp. If s and t are

the terminal points of H, then H, will be a TTSPN by remark (5)

following the definition of TTSPN. Obviously, L(s) = {s} and R(t) =

{t} in H, . For any point x in E, , we have f (x) = x' in H'

so that there exist paths p(s',x) and p(x',t') in H' . Since

f is an ideal map from H, onto H,' , by Proposition 4.15 we have paths
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p(SpX) and p(x,t̂ ) in H, where f(s,) - s1 and f(t,) = t1 .

By the constructing of H^ the paths pCs.s^) and p(t,,t) must be

in H, ; thus we have the paths p(s,t) and p(x,t) in H, . This

proves s and t are left and right terminals respectively for H, .

Similarly we prove s and t are terminal points for HI and, therefore,

H' is a TTSPN.
Lt

In the -serial case let z1 be the common point of HJ and H' .

Since |E'| £ 3 then either E! or H' must have at least two edges,

say Hi . We may also assume s1 is in H' and t1 is in HI . (A

similar argument holds if s' is in H- and t1 is in HI .) By

Lemma 5.6 we have an ideal onto map g: G1 ->• G" where the points of

H' except for z1 map onto t1 and g(x') = x' for all other points

of G1 . Clearly G" has fewer edges than G1 . Since the composition

of ideal maps is ideal, it follows that f o g: G -> G" is an ideal map.

By the induction hypothesis, there exists I in G where f ° g is
1

one-to-one from I, onto G" .

In particular there exists z e 1^ such that f(z) = z1 .

Let H = [R(z)] ; since f is ideal we have f(R(z)) = R(z') so that

f(H) maps onto H' . • By Lemma 5.7 the map f: H -»• H' is ideal.
L, £*-

Therefore, by the induction hypothesis there exists I- in H such

that f is one-to-one from I2 onto H' . In particular z, t 6 I2 .

Define I = 1^ U l~ . Clearly 1^ fi *2
 = ^'^ and f is one'to"one

from I onto G' . By the continuity of f: G -> G1 we have for

p,q 6 I the path p(p,q) implying p(p',q') . Conversely let

p(p',q') in G' ; we have two cases. If p1,q' are both in H^

(or HI) then we have p(p,q) in G for p,q 6 1-̂  (or I2). If

p' in H' and q1 in H' we must have p(p',z') in H| and
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p(z',q') in Hi . It follows that p(p,z) and p(z,q) are in

G for p,q,z € I .//

Theorem 5.9. If G is a TTSPN and f is an ideal map defined
t

on G , then f is a strong map of G onto its range.

Proof: By Theorem 4.20 the range of f is a TTSPN, call it

G' . Proposition 5.8 enables us to pick a point set I of G such

that pG(p*,q*) if and only if pg.Cp^q1) for p*,q* 6 I . The

proof is now the same as that of Theorem 5.5.//

In earlier chapters we have shown that ideal maps, when defined

on suitable domains, have many desirable properties. In particular

ideal maps preserve 1) trees, 2) TTSPN1s, and 3) completely normal

graphs. In this section we have shown that in the first two cases

ideal maps are strong. It seems natural to conjecture that ideal

maps with completely normal domains are also strong; especially since

we have shown that trees and TTSPN's are completely normal. This

conjecture does appear to be true.
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