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CHAPTER I

THE E-TOPOLOGIES

1. The left and right E-topologies .

In this section the basic concepts needed in this paper are intro-
duced. ' Throughout we will use the concept of graph to mean an ordered
pair of sets (P,E) where P is a non-void point set and E is a sub-
set of PxP , the cartesian producﬁ of P. Elements of the relation E

are called edges. Others prefer to call this concept a directed graph

[Ore (1962)] or a digraph [Harary (1969)].

We will consider a graph G = (P,E) -to be infinite if the cardi-
nalities of both P and E are infinite; otherwise the graph is said
to-be finite. If P is finite then E must be finite; if P is in-
finite and E 1is finite then only a finite number of points belong to
edges and for all purposes only the graph on that finite subset of points
need be considered. Points-that belong to no edges are called isolated
points,

An edge (p,p) € E is called a loop. A subgraph H of a graph -

G = (P,E) is an ordered pair (P ,EH) where (i) PH cP and (ii)

(p,q) € E, if and only if p,q € P, with (p,q) € E.. Unfortunately,
this concept has been defined differently by some authors [Berge (1962)].
Given P' <P, a unique subgraph H of .G is specified by condition
(ii) in the definition of subgraph. We denote this subgraph by [P']. -
A partial subgraph of G is any ordered pair (Q,F) such that
Q<sP, FSE N (xQ). .

The next definitions are not found in the literature but are basic

to this paper.



Definition. Let G = (P,E) be a graph. The left E-topology,

TL(G) , for G is the family of all subsets A of P such that if

p €A and (q,p) €E then q € A. The right E-topology, () , for

| G is the family of all subsets A of P such that if p € A and
(q,p) €E then q € A . When the underlying graph is evident we denote
the topologies by T and R

We first prove that and Tp are in fact topologies. [See

T
L
Kelley (1955) for the definition of topology and related concepts. ]

Proposition 1.1. The left and right E-topologies are topologies.

Proof: The null set P and P itself are clearly members of 7. To
show this family is closed under intersection, let {Ad} be a family

of sets in t, and p €N Aa with an edge (q,p) € E . Since p is

L
‘in each Ad and (q,p) € E we have by definition q € Aa for each o;
therefore q € N Aa and this makes N Ad_E T - Similarly, let

A=U Ad . If peA and (q,p) €E, then p € A, for some 8 .

B
Since A_ is in 27 and (p,q) €E we have .q € A, €A . Thus

B B
A €1 . A similar proof shows tp is a topology. //

If should be e?ident that the complements of sets in T, are sets
in Ro and conversely. Since the elements of ‘TL and TR are closed
~under both arbitrary union and arbitrary intersection, one could call
them either open sets or closed sets, but we will avoid the use of this
terminology entirely. Since the left E-topology will be the principal
vehicle of our discussion, we shall assume it is the topology under con-
sideration unless otherwise indicated.

In Figure 1.1, three graphs are pictorially represented and the ele-

ments of their left E-topologies are listed.

" Definition. Let G = (P,E) be a graph and Q €P; then we define
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c A g, {a}, {a,b}, {a,b,c},
1) a b ’//()Zd ' {a,b,d}, {a,b,e}, {a,b,c,d},
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[

= (P,E) where
P={p_, P1sP; cesl} _
E = {(pk,pk+1n k=1,2,...} U {(pk,pm)lk =1,2,...}

Figure 1.1.



LQ = MA €1 Q<A
R(Q) = N{B € R | Q =B},
Since T and TR are closed under arbitrary intersection L(Q) € T

and R(Q €ty . If Q=0 then LQQ =RQ =0 . If Q#9,
Q €L(Q and Q €R(Q) ; so these sets exist and are non-void. If
Q € Ty then L(Q =Q; if Q € ™R then R(Q) = Q.

We also observe that the topological closure of Q with respect to
1, 1s R(Q) and with respect to R 1S L(Q) . In particular, the
Kuratowski closure axioms [Kelley (1955)] hold? L(AUB) = L(A)UL(B) and
L(L(A)) = L(A) , for'all A,B P, and similarly for R .

An alternate way of developing T and t, would be to follow the .

R
approach of Ore (1962). The operators ﬁ, ﬁ*, R and ﬁ* are defined and

 shown to be closure operators (in fact, they define a Galois éonnection).
It isAeasily shown that for any Q <P , ﬁ(Q) € 1Y and .ﬁﬁ(Q) € T and
and V €1

conversely, if U € = then there are sets P, and P,

R L’
v
for which R(Pl) = U and §ﬁ(P2) =V ; hence we may regard T and ™

are the natural topologies defined by the above closure operators. -

2. Paths

Fundamental to much of graph theory is the notion of a path between
two points. The relationship defined by this concept is based on the
idea of "reachability' or '"accessibility' through a succession of edge

relationships.

Definition. Let G = (P,E) and a,b € P . Apath from a to b
in G , denoted by pG(a,b) , 1s a non-void finite sequence (Pk) ,

k=0,...,n, such that



i) Py =2 P, = b
ii) (pk_l,pk) €Efori1<k=n
iii) Py # Py for 1 < k~s n.

The length | pG(a,b)l of a path pj(a,b) = <pj,pys-..,PY is defined
to be n . If no confusion as to which G is meant will result, we
shall denote tﬁe path by p(a,b) . One can verify directly that for
a,b,c €P, p(a,b) and p(b,c) imply pta,c) , that is, the path rela-
tionship is transitive. Also, p(a,a) 1is always true since p(a,b) =
<a» is a permissible path; thus the path relation is reflexive. Through-
out the rest of this paper we may use p(a,b) to denote the existence
of some path between a and b , or to denote some particular path.

The following theorem relates the topologies T and 1, to the

R
path relation. More important, it describes the left and right sets of

a point in terms of the familar path relationship.

Theorem 1.2.
(1) x € L(a) if and only if there is a path p(x,a)

(2) y €R(a) if and only if there is a path p(a,y).

Proof: Suppose there is a path p(x,a) of length k. If k=0
we have x =a € L(a). If k>0, 1let x' be the second point on
p(x,a) , so that there is a path frdm x' to a of length k-1, and
we may assume by induction hypothesis that x' is in L(a) . Since
L(a) is in T and (x,x') € E, we thus have x € L(a) . Conversely,
let Q be the set of points from which there is a path to a . We have
just shown that Q s L(a) . On the other hand, if z € Q and (y,z) €E
with y # z , then this edge together with a path from z to al con-
stitute a path from y to a, so that y € Q. Thus Q € T and clearly

a €Q hence L()=N{A€r | a €A} €Q . A similar argument holds



for (2).//

Corollary 1.3. The following statements are equivalent:

(1) There is a path p from a to b
(i1) L(a) sL(®) |
(iii) R(a) 2 R(b)
Proof: If (i) holds and x € L(a) , there is a bath from x to
a , and this can be concatenated with p to obtain a\ path from x to
b , proving x € L(b) . Conversely, if (ii) holds, in particular

a € L(a) < L(b) , so that there is a path from a to b . //

Corollary 1.4. LU Aa) = U(L(Aa)) and R(U Aa) = U(R(Aa)) for

any set of indices o .

Proof: There is a path from x to a point of U Aa if and only

if there is a path from x to a point of some Aa J/

Corollary 1.5. L(A) = UpeAL(p) and R(A) = UpGAR(p) .

Corollary 1.6. L(A) = AU{L(X)| (x,y) €E for some y € A};

R(A) = AU{RX) | (y,x) €E for some y € A} .

Proof: If there is a path p of length =1 from z to | a point
y of A, then there is a path from z to the next-to-last point x
of o .//

Corollary 1.7. If there is a path p from a to b , and

b€AE€ET then a € A (and similarly for =

L s R) .

Proof: a € L(b) <A .//

Corollary 1.8. X € R(L(y)) implies y € R(L(x)) .

Proof: x € R(L(y)) implieé p(z,x) for some z € L(y) , so



that z € L(x) . Also, z € L(y) implies p(z,y) , so y €R(z) &
R(Lx)) .//

Definition. A graph G is said to be acyclic if for all points
a, bof G, L(a) = L(b) implies a = b (or equivalently R(a) = R(b)

implies a =b) .

Definition. A path p(a,a) of length 21 is called a cycle.
Thus a cycle is the familar 'closed path', although we observe'that the
coﬁdition of its length préhibits our coﬁsidering single points (paths
of length zero) as cycles, and.our definition of path excludes loops.
Consequently, an acyclic graph may have loops, and further the length

of a cycle must in fact, be = 2.

Proposition 1.9. A graph G 1is acyclic if and only if it contains

no cycles.

Proof: Suppose there exist distinct points a,b such that L(a) =
L(b) . We have shown (Theorem 1.2) that a 'E L(b) implies a path p(a,b)
of length greater than zero and b € L(a) implies a path p(b,a) of
length greater than zero. Thus by combining these paths we have a path
p(a,a) of length greater than one. Therefore, we have shown that a non-
acyclic graph must have a cycle. Conversely, if there is a cycle
p(a,a) = PP in G, then there must be x € p(a,a) such that x # a .
"We have x € L(a) and . L(x) < L(a) since there is a path from x to
a . Also, L(a) €L(x) because there is a path from a to x . Hence
L(a) = L(x) , but a#x, so G is not acyclic.//

Bhafgava and Ahlborn (1968) define a topology t on a graph as
follows: for G = (P,E) , A 1is an element of 1 if for every pair of

points p,q where p£A and q €A we have (p,q) £E. This =




and our left topology T, are equivalent, since
b €A and (a,b) €E imply a € A for all a,b is equivalent-to
b€A and a £A imply (a,b) £E for all a,b.
Most other topologies on an ordered set are definéd for 1atfices [Frink
"~ (1942)] and are distinct from the L and 'TR topblogies.
The following proposition is essentially found in Bhargava and

Ahlborn (1968) as Theorem 1.4.

Proposition 1.10. Let 37 and R be the E-topologies on a graph
G = (P,E) ; then |
(1) TL(OT TR) is a To—space if and only if G is acyclic.

(2) TL(OT TR) is a Tl-space if and only if E = f§.

Proof : (1) If G is acyclic let a,b € P with a # b ; then
L(a) # L(b) and either L(a) N{b} =@ or L(b) n{a} =P , since
x € L(y) dimplies L(&x) < L(y) . Conversely, if L(a) = L(b) , any
set Q in T, Must contain L(a) ; hence a,b.G Q , and for T, to be

T, we have a #b .

0
(2) 1If there are a #b in P with (a,b) € E then b € R(a)

so {a} £ 123 “and therefore T is not a Tl-space. Conversely, if

T is not a T, -space then there is a € P such that there exists

b € R(a) with b # a . By Corollary 1.6, R(a) = [U R(pa)]4U{a} where

(a,p,) €E .//

3. Subspaces and convexity

Let H be any subgraph H £ G . We may consider the left and
right topologies on H , denoted by rL(H) and TR(H), without regard
to the graph G or its topology. It readily follows that for any set

AcpP

Yy » the left set of A in H, I (A) , is {p € Pyl pylp,a) for



H

some a € A} where the path pH(p,a) is completely contained in Py .
A similar statement.can be made for the right set of A,;RH(Aj . Itis
important to note that, in gemeral, LH(AJ # L(A) N PH .

The following definition is the usual topology for a subset of a

topological space [Kelley (1955)].

Definition. Let G = (P,E) and H =‘(P »Ey) a subgraph of G .
We define the left relative topology of H with respect to G , denoted
L by {L N PHI L €t (G)} . Similarly we have the right relative
H
topology of H , defined by R | , = {R N PHI R € TR(G)} .

The example in Figure 1.2 shows that we can have rL(H) # SR
n I . H

Py = {a,c,d,e}; '{c}_e TL(H) but {c} ¢ T IH

Figure 1.2.

However, we always have

Proposition 1.11. W < TL(H) .

H
Proof: let b € L€ T 'H and (a,b)le EH . Now L=L"nN PH
for some L' € TL(G) . Hence b €L', and since (a,b) € EH c EG' we
have a € L' . But a € PH, so that a € L, proving that L € TL(H) J/
It is now interesting to ask when the two topologies defined on a
subgraph aré, in fact, the same. A sufficient condition will be given
below. A necessary condition is not known at the present time. We must

first introduce the useful notion of convexity; for a more extensive

treatment see Pfaltz (1968, 1971). "
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Definition. Let G = (P,E) . A subset Q of P is convex in G
if given a,c € Q such that there exist p(a,b) and p(b,c) then
b €Q . A subgraph is convex if its point set is convex in G .

The following proposition shows that the class of convex sets forms
a sort of semi-subbasis of both left and right E-topologies. Indeed,
it would be reasonable to define a new topology using the convex sets
as a subbasis. However, in an acyclic graph single points are convex,

so that this topology would be discrete.

Proposition 1.12. Let G = (P,E) and Q €P; then Q is convex

in G if and only if there are L € T and R € R such that Q=L NR,

Proof: Note first that L(Q) € TL» R(Q).E Ro and Q £ L(Q) NR(Q.
If p € L(Q NR(Q), there exist paths p(p,ql) and p(qz,p) for some
dys 9, € Q . This shows p €Q since A is convex. Conversely, if
Q=LNR for L€ T, and R € TR let a,c € Q and op(a,b), p(b,c);
we shall show that this implies ble Q. Now p(a,b) implies b_E R(a) sR.
Likewise, (b,c) implies b € L(c) sL. Thus, b€RNL=Q and Q

is convex.//‘

Corollary 1.13, Any A € T (or € rR) is convex.

Proof: A=ANP.//

Proposition 1.14. Let H be a subgraph of G . If H is convex

= TL(H).

in G then 1,
L | H

Proof: By Proposition 1.]11 we need only show that TL(H) < AR
H

Let A € TL(H), so that A < PH . We must show A = A' N PH for some
A' € TL(G) . It is claimed that A = LG(AJ nNPe, . Clearly A < LGCA) N Py
If pe€ LG(A) N Py then by Theorem 1.2 applied to G there is a q € A

such that p(p,q) is a path in G . Since p,q € Py and P, 1is convex,
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p(p,q) c PH . Consequently, p(p,q) is a path in H and by Theorem 1.2
applied to H we have p € LH(q) c LH(A) . But A€ rL(H) o)
LH(A) = A and we obtain p € A .// |

The converse of Proposition 1.14 is not true as is shown'by the

example in Figure 1.3, where H is not convex but we still have

T = 1. (H) .
L| H L

c
a< >d -~ PBy={a,b,d}
b .

v () = {{a}, {a,b}, {a,b,d}, p} = .

Figure 1.3



CHAPTER 1T .

CONNECTIVITY.

1. Topological Separability and Connectivity

In graph theory as well as in topology, the study of connectivity
occupies the interest of many investigators. Furthermore, many practi-
cal problems can be reduced to questions of connectivity. It is only
natural that we consider this area and relate the various topological
and graph theoretical concepts. |

- The following definition is actually the usual tonmological defini-
tion of separability. Therefore, the concept of connectivity, defined

below, is the same as the topological concept found in Kelley (1955).

Definition. X and Y are separated in a graph G if LX) NY =
p=XNLE) . We show the following equivalent definition of separa-

tion in terms of the right topology.

Proposition 2.1. Two sets, X and Y , are separated in G if

and only if R(X) NY =f = X N R(Y) .

Proof: We assume X and Y are separated in G . Suppose
p € X NR(Y) ; then p € R(Y) implies that there exists y € Y such
that o(y,p) , which in turn implies y € L(p) € L(X) . Thus
y € L(XX) N Y, contradicting L(X) N Y =p + Similarly, p €RX) NY
would contradict X N L(Y) = § . This shows R(Xj NY=g=XnNR() .
The converse follows by an analogous argument with L and R inter-

changed.//

Definition. Let G = (P,E) . G is said to be separable if there
exist non-empty sets X,Y S P such that XUY =P and X and Y are

separated in G . If G 1is not séparable then G 1is called connected.

12
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A topological space S is connected if and only if the only subsets
of S which are both open and closed are S and f  [Kelley (1955)].

We recall that if the elements of are called open, then the: closed

L

sets -- their complements -- are just the elements of .. Thus we

R
have

Propositionlz.z. G = (P,Ej is connected if and only if
7 () N 1 (G) = {P,p) . '
In agreement with the usual definition of connectivity for subsets
of a topological space, we shall call the sﬁbgraph H connected if H
is connected with respect to the relativized topology 7y .
: o : H
Proposition 2.3.  If H 1is connected with respect to its own topo-

logy TL(H) , it is connected as a subset of G .

Proof: {Py,p} & TLI O‘TR|H S 1 M) N H) ='{PH,ﬂ} , using

H
Proposition 1.11.//

By Proposition 1.14, if H is convex, the converse of Proposition 2.3
also holds.

We recall the definition of connectivity found in Tutte (1966). A
graph G is connected if it has no proper non-null detached partiai
subgraph. A Qetached partial subgraph is a partial subgraph without
points that belong to any edge not in the subgraph. Note that a detach-
ed partial subgraph must be a'subgraph. The folldWing proposition
establishes the eqﬁivalence of Tutte's connectivity and the topologically

induced connectiVity for graphs.

Proposition 2.4. G 1is connected if and only if it is Tutte con-
nected. |

Proof: If G = (P,E) 1is not connected then there exist A‘, B
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separated with AUB =P and A# P #B. Weclaim A is detached..
If not, there is (p,q) ¢ [A] or (q,p) ¢ [A] . In either case q ¢ A
and therefore q € B . But, assuming (p,q) € E we have q € R(A) N B
which contradicts separatedness. Since A is a proper detached subgraph
of G, G is not Tutte connected.

Conversely, if G 1is not Tutte connected then there is A = (Q,F)
such that # # Q §:P witﬁ .A detached. Let B=Pn Q. If
q € R(A) N B then there is p(p,q) with p € Q . Clearly there must
be (p,q) on p(ﬁ,q) such that p €Q, a'EEB and hence A is not
detached. Therefore RfQ) NB=p. Similarly we find Q N R(B) = § .
This shows [Q] , [B] Aare separated and consequently G is not connec-

ted.//

2. Comnected Componernts

In this section we characterize the connected compdnents of a graph

G in terms of the L and R sets.

Definition. Let G = (P,E) and Q <P . We define Cn(Q) by

@
@
Note that in particular, C (Q) = L(Q) UR(Q) ; it follows that C*(Q) =

Q

L1 @) URCE @) for n=1.

Cl(Cn_l(Q)) for all n=21 . For finite graphs, there is an m such

that Cn(Q) is the connected component of Q in G for all n=ni.

Proposition 2.5. C%@Q) = cX(@™¥@Q) forall 0sksn .

Proof: For any n , this is trivial for k =0 or n ; in parti-
cular, it is true for n=0 and n =1 . Suppose the assertion true

for all m<n . Then for any 0 < k < n we have

@ =l @™t
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= ¢t 1@ X@)) by the case m ='n-1

= Ck(Cn—k(Q)) by the case m = k g/
Definition. We say that (x,y) €w if y € CT(x) = U;=0Cn(x) .
Clearly o(x,y) or o(v,x) implies (x,y) € w , since y € L(x) or

R(x) , respectively, hence in Cl(x) .

Proposition 2.6. w 1is an equivalence relation.

Proof: Since x € ) ‘we have (x,X) €w . We next show that
y € Ck(k) implies x é Ck(yj 'for all k (so that in parficular,
(x,y) € w imﬁlies (y,x) € w) . This is clear for k = 0 ; suppose it
true fof k-1 . Then y € Ck(x) implies y € L(Ck'l(xj) or |
y € R(Ck'l(x)j , say the former. Hence there is a patﬁ o(y,t) for

some t € Ck-l(x) . By induction hypothesis, we have x € Ck;l(t) ; and

o(y,t) impiies t € R(y) c Cl(y) . Thus x € ck-1

(Cl(y)) hy‘Proposi—
tion 2.5. Finally, if (x,y) € w , say y € Cr(x) and z € Cs(y) , We
Y )

have 1z € CS(Cr(x)) = Cr+s(x) by Proposition 2.5, so that (x,z) € w.//

Corollary 2.7. If a € C%(b) then CX(a) NC™ K@) # p for a1l’

0sk=<n.

Proof: CP(b) = Ck(Cn-k(b)) contains a ; hence there exists

c € C"X(b) such that a € cX(c) , which implies c € C¥@a) .//

Proposition 2.8. C”(Q) = U7_C"(@ is in both 1t and 1ty .

Proof: Let Q = U:=0Cn(Q) . If x€L@Q wehave x € L(y) for

some y €Q, say y €CF(Q) 5 hence x € Liy) = ctc¥@) = '@ =7
The proof for R 1is similar.//
Proposition 2.9. If A is in T n R then CkQA) = A for all
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Proof: This is trivial for k = 0 ; suppose it true for k-1 .

Then cX(a) = LX) urEcklm)) = L@y v R(A) = A .7/

Proposition 2.10. C”(x) is the connected component containing x .

Proof: We know from Proposition 2.8'£hat C®x) € rL(G) n rR(G) .
Thus any subset of C”(x) which is in 1 (€°(x)) or t,(C7(x)) will
be in TL(G) or TR(G) respectively [see Kelley (1955)]. Now.suppose
Cm(x) not connected; then by Proposition 2.2, there exists A4 pand #
C”(x) such that A € TL(Cm(X)) N TR(Cw(X)).,-whence as just observed,
A€ TL(G) n TR(G)_. From. Proposition 2.9 we have Ck(A) = A for all
k , therefore C”(A) = A», so that C(x) € CT(A) = A , contradiction.
Suppose there exists C _cbnnecfed such that C (x) ? c, that is,
C®(x) 1is not maximal. C"(x) € TL(G) n TR(G) énd C”(x) = C , it follows
that C (x) € rL(C) ﬁ TR(C) . By.Propositién 2.2, this shows C 1is not

connected.//

3. Other Connectivity ConCepts

Definition. Let G = (P,E) and Q € P . We say that

a) Q is weakly comnected in G if (x,y) € w for any Xx,y € Q

B) Q 1is self-connected if it is weakly comnected in [Q] .([Q] is the

- subgraph generated by Q)

c) Q is strongly connected in G if p(x,y) and »(y,x) for any
X,y € Q. | l

Figure 2.1 shows a set Q which is weakly connected in G but not self-

connected and not connected or strongly comnected in G. Note that Q

is also convex in G .
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a——3b

o]
-

.
///,/”

= {a,b,c,d,e}
c——d ' Q = {a,b,c,d}
Figure 2.1,

The above definitions are essentially (see Propositioﬁ 2.19) those

commonly found in the literature [Tutte (1966) énd Harary, et al (1965)]. 1In
accordance with our general policy of idénfifying subgraphs with their

point sets, unless the distinction is essential for clarity, we will say
that H = [Q] is connected, weakly connected, etc., if the point set Q

has the'appropriate property.

Proposition 2.11. (x,y)'E'w if and only if there exists a finite

self-connected partial subgraph W  that contains x and vy .

Proof: If y € CO(X)' we cén take W = [x] ; suppose the assertion

true when y € Ck—l(x) , and let y € Ck(x) . Then y € L(Ck-l(x)) or
y € R(Ckul(x)) , say the former, so that there is a path po(y,t) for
some t-€ Ck_l(x) . By induction hypothesis, there is a W' containing

t and x . We can then take the partial subgraph on the points and

edges of p together with W' as the desired W .
' To prove that W is self-connected, let u,v be any points of W .
If both are in W' , then (u,v) € for W' €W by induction hypothesis,
and if both are in p , then p(u,v) or p(v,u) in p €W, implying
(w,v) € for W . Finally, if u is in o and v in W' , we have

p(u,t) ; hence Ou,t)_é w for p , while (t,v) € w for W' ; thus
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(u,v) € w for W by trénsitivity of w.//

The following propositions establish relations among the connecti-

Vvity concepts.

Proposition 2.12. If Q is comnected in G then Q is weakly

connected in G .

Proof: Suppose that there were p,q‘E Q for which wip,q) did
not hold, Let A = U:::__Ocn(p) . By Proposition 2.8, A € 1, (G) N (6) ;
~hence ANQ é_rL(G)]Q‘ﬂ TR(G)IQ . But ANQ# P, since it contains
p;and ANQ#Q, since it does not .contain  q f Hence by Proposition

2.2 applied to the relative topologies on Q , Q is notvconnected.//

Proposition 2.13. If Q 1is self-connected then Q 1is connected

in G .

Proof: By Proposition 2.3, it suffices to show that [Q] is con-
nected. Suppose we had -A € TL(Q) n rR(Q)', A#pQ. Let p,q€Q,
P é A, qgfA . Since Q is self-connected we have q €<Cg(p) for
some k . But then q € CECA) = A by Proposition-Z.Q} contradiction.//

The converse of Proposition 2.13 is not true in general (see Figure

2.1).. However, we have

~ Corollary 2.14. If Q is convex in G , the following statements

are equivalent: -

1) Q is self-connécted
2) [Q] is connected

3) Q 1is connected in G

Proof: (2) implies (1) by Proposition 2.12 applied to [Q] ; (1)

implies (3) is Proposition 2.13; (3) implies (2) by the remark following
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Proposition 2.3.//

In particular, any graph G is self-connected if and only if it is

connected. - -

Proposition 2.15. Q is stfongly comnected in G if and only if
LG(X) = LG(yd for all x,y'_in Q . |
Proof: By Corollary 1.3, p(x,y) if and only if L(x) € L(y) , and

o(y,x) if and only if L(y) s L(x)>ﬂ//

Proposition 2.16. Q .is strongly connected in G if and only if

T _ T . _
LI[Q] = RI[Q] = {p,Q} -

Proof: Let A € TLI ,
' [Ql-

A € TL(G) . Let q € Q, p€A. If Q is strongly connected, we

A#p . Then A=A"'"NQ where

have o(q,p) , which wiph A' € rL(G) impliesA q €A . Thus.
q€A'NQ=A, so that A=0Q . Conversely, let p,q € Q with no
path from p to q in G then p ¢ L(q) , so that L(q) N Q is
neither p (it contains q) nor Q (it does not contain p). Thus

TL][ ] # {P,Q} . The proofs for R are analogous.//
Q

Having discussed the connectivity of point sets in a graph, we now
turn our attention to edges which reduce the comnectivity of a point

set.

Definition. Consider a graph G = (P,E) . An edge (p,q) € E is

said to be a disconnecting edge if {p,q} is not weakly connected in :

the partial subgraph ﬂ(P;E&(p,q)) . A disconnecting edge is also called
an isthmus [Tutte (1966)].

Definition. A tree is'a connected graph in which every edge is a
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disconnecting edge. A forest is a graph whose connected components
are trees.

This definition of tree is applicablé to both finite and infinite
graphs; and reduces to one of the standard definitions in the finite
case. However, in the finite case, there are several well known
equivalent definitions. One such states that a connected gréph is
a tree'if the number of points is equal to the number of edges plus one.

The following theorem is of interest in that is allows the use‘
of the finite conditions even for infinite graphs. In particular, if
a graph is not a tree then we know there is some finite subgraph which -

will provide the counterexample.

Theorem 2.17. A connected graph is a tree if and only if every

finite self-connected subgraph is a tree.

Ezggﬁ:. If G is a tree and H a finite self-cdnnécted subgraph,
H wmust be a tree since a non-disconnecting edge in H would also
be a non-disconnecting edge in G . Conversely, suppose G 1is not
a tree. Then there is a non-disconﬂecting edge (a,b) , that is, w(a,b)
in the partiai subgraph_.G'= (P,E&(a,b)). By Proposition 2.11, there ‘
exists a finite, self-connected subgraph W = (P ,Ew) of G' that t
contains a and b . If_we define W#* = [PW] we have W* finite, self-
connected and (a,b) an edge in it; but (a,b) is nét a disconnecting

edge, hence W* is not a tree.//

4. Walks

In most developments of graph theory, the concept of walk has
been awkwardly defined. The problem lies in the fact that certain sequences
of edges should not be considered walks. For example, repeating one

or more edges in not desired unless the edge is arrived at by a
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ndifferent" route. Simply stated, walks should not retrace themselves..
Another objection has been the often_sudden introduction of edge
sequences. In this section, we define walk indirectly using the
concept of weak connectedness. )

Let us denote by Q(x,y) the family of all self-connected partial
subgraphs ééntaining Xx and y . Propositiqn 2.11 assures that there
are finite members of Q(x,y) whenever @(x,y) # § . We can partially
order Q(x,y) by edge incluéion, that is Wl(Pl,El)'s WZ(PZ’EZ) if
P, P

and E1 c E2 . Then there must exist minimal elements of

1 2
2 (x,y) . We now have

Definition. A walk between x and y , denoted w(x,y) , is any
minimal element of Q(x,y) . As in the case of paths our notation
w(x,y) denotes both the existence of a minimal self-connected partial

subgraph and a specific such partial subgraph.
It is easy to establish the following lemma.
Lemma 2.18. When x # y , any w(x,y) must be acyclic.

Proof. If w(x,y) contains a cycle, an edge can be deleted without

destroying self-connectivity; thus w(x,y) was not minimal.//

The following additional properties are easily verified:
(1) w(-+,*) is an equivalence relation, in fact, w(x,y) if
and only if w(y,x)
(2) a, b_e w(x,y) then there is w(a,b) s w(x,y)
(3) if wy(x,y) Nw,(a,b) # P then for any P,q € w; Uw, there
exists w(p,q) cwy Uw,. ‘
This last statement follows from (1) and (2).
We now are in a position to shew the equivalence of the walk

concept defined above and the simple (undirected) path concept found
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elsewhere in the literature.

Proposition 2.19. A walk between x and y , where x # y , and a

simple path between x and y (as defined by Tutte (1966)) are

equivalent,

Proof : From Tutte (1966) we know a simple-path-ié equivalent to
an arc with end points ; and y (Propositions 4.31“and 4.35). An |
arc is defined'by Tutte to be a tree with just two bointé, called end
points, that belong to only one edge. |

Let W = (P,E) be an arc with end points x and y , and let
W' = (P',E') be a proper connected‘partial subgraph of W that still
contains x and y . If P’ iIP; there must exist p € P', q € Papt
with e = (p,q) or (q,p) €E. Thus (P' U {q} , E' U{e}) is
. still connected. If it is all of W, then q is an end point of W.
Contradiction; hence it is still proper. Using this argument repeatedly,
we can obtain a W' with P' =P , so that E' CE ; but since W
is a tree, such a W' cannot be connected, contradiction.

Let W be a walk and let e be any edge in W. From Tutte (1966),
Proposition 3.13, we know that the grabh G' obtained by deleting one
edge from G has the same number of components that G has if.the
edge is not an isthmus, or the same mumber plus one if it is an isthmus.
Since W is a minimal connected partial subgraph, W has only one
component, but Wr{e} must have at least two. This shows that every
edge of W is an isthmus, so that W is a tree.

We need only show that‘there are exactly two points of W which
belong to only one edge. First suppose p €W, p # X;y and p belongs
to only one edge, say (p,q) , in W. As we have observed, W&{(p;q)}’
has exacfly two components, and since {p} is clearly one component, it

follows that x and y are both in the other. This contradicts the
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the minimality of W as a connected partial subgraph containing x
and vy .

Now we show both x and y belong to only one edge. Let x
belong to the edge e , where e = (x,p) or (p,x). As shown before, for
e any edge, Wr{e} has exactly two components, and by definition of
isthmus, the end points of the edge are in different components.

Clearly 'y cannot be in the same component as x in V=Wr{e} ; therefore
y and p are in the same component, call it C.

Let q # p be any other point such that f = (x,q) or (q,x) is an
edge. Then q must be in the same component of V that x is in, since
f was not deleted from W . We how can define a new partial subgraph
D consisting of 'C together with x and e . Since q is not in |
D, D is properly contained in W . However, D is obviously
connected; thus we have a contradiction, showing that x belongs

to only one edge. A similar proof holds for y .//

Another characterization of trees in terms of the walk concept is
possible [compare Harary (1969), Theorem 4.1]. Thus, the following
Proposition further substantiates that our definition of walk is

consistent with the usual one.

Proposition 2.20. G 1is a tree if and only if for any two points

X, y there exists an unique walk w(x,y) .

Proof: If G is a tree by Proposition 2.12 for any two points
X, Yy we have x € B Cn(y) and thus Q(x,y) # #; that is, there
exists at least onen=8(x,y) .

Suppose there exist distinct walks wl(x,y) and wz(x,y) . By
minimality of walks there must be an edge (a,b) in wl(x,y) but

not in wz(x,y) . We know we_have‘a walk wl(x,a) g'wl(x,y) and
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wl(y,a) gzwl(x,y) . If (a,b) is in both wi(x,a) ggg_'wl(y,a)'
then we have w(x.b) and w(y,b) be deleting (a,b). Moreover,
W=w(x,b) U w(y,b),§1w16x,y) is a self connected partial subgraph, so
wl(x,yj was not minimal, contradiction. Consequently the edge
(a,b) is not in both wl(x,a) and w1(y,a) , say (a,b) not in
wl(x,a) . Similarly we can show (a,b) is not in both wl(x,b) and
wl(y,b) where both these walks are contained in: wl(x,y) . If (a,b)
is not in wl(x,b) , we have U= wl(x,a)'U wl(x,b)_E Q(a,b) and (a,b)
not in U . This shows (a,b) is not a diséonnecting edge which
contradicts the assumption that G is a tree. If (a,b) is not in
w (y,b), we have v = w,(x,y) Uw;(x,a) Uw,(y,b) in Q(a,b) and
(a,b) not in y . Thus, in this case too (a,b) 1is not a disconnecting
edge.

Conversely, if there is an unique walk between any two points of
G, for (x,y) an edge, the partial subgraph ({x,y}, {(x,y)}) must be
the only walk between x and y . This shows (x,y) 1is a discon-

necting edge, which proves G is a tree.//



CHAPTER I1I

REVERSAL ORDER, NORMAL
GRAPHS, AND BASIC GRAPHS

1. Reversal order

In this section we define a metric -- essentially, the minimum
number of reversals in a walk between two points, plus one -- which can
be used to develop a more quantitative concept of separation of a graph

by deleting edges.

Definition. Let a,b be points of the graph G. We say that the

reversal order of a and b , denoted by r(a,b) , is equal to n =1

if ag cg‘l(b) but a € Ca(b) . We also say that r(a,b) = 0 if
a=b (i.e., a € Cg(b)) , and that r(a,b) == if a g Cz(b) . In-
tuitively, r(a,b) 1is 1 greater than the number of path direction re-
versals required to walk from a to b . The following proposition
establishes some elementary properties of reversal order -- in particu-

lar, that it is a metric.

Proposition 3.1.

1) r(a,b) =n if and only if a € C3(b)
2) r(a,b)

1 if and only if a #b and p(a,b) or p(b,a)

3) r(b,a) r(a,b) for all a,b
4) r(a,c) =r(a,b) + r(b,c) for all a,b,c
5) Let r(a,b) =n and 0 s k =n ; then there exists ¢ such

that r(a,c) = k and' r(c,b) = n-k.

" ‘Proof:

le e,

(1) 1is clear since C0 cC

25
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0 and C1 and from

(2) is immediate from the definitions of C
Theorem 1.2.

(3) . follows from the proof of Proposition 2.6.

(4) follows from Proposition 2.8.
To prove (5), let c € Ck(a) N Cn'k(b) as guaranteed by Proposition 2.7.
If ce€ Ckfl(a) we would have r(a,b) =r(a,c) + r(B,c)'s (k;l) + (n-k)
<n , contradiction; hence r(a,c) = k , and similarly r(c,b) = n-k_.//

Using the concept of reversal order, we can define a gengralized

notion of '"'separating edge' as follows:

Definition. The edge (a,b), a # b, of the graph G = (P,E) will

be called separating edge of order k if r(a,b) > k in the partial

graph G' = (P,E~(a,b)) .
The relationship between separating edges and disconnecting edges

is given by

P;gpositionAS.Z. A disconnecting edge is a separating edge of order
"k for all k , and conversely. |
 Proof: If we had r(a,b) = k we would have b e Cé.(a) , contra-
dicting the fact that {a,b} is not weakly comnnected in G' .//
We characterize sepafating édges of orders 1 and 2 in the next two

propositions:

Proposition 3.3. (a,b) is a separatiﬁg edge of order 1 if and only

if {a} and {b} are separated in G' .

“"Proof: If {a} and {b} are separated we have LG,(a) N {b} = {a}

n LG,(b) =f, i.e., af LG,(b) and b £ LG,(a), i.e., there is no
path from a to b or from b to a in G', so that r(a,b)_> 1 in
G' . Conversely, if they are not 'separated we have either a € LG.(b)

or b€ LG.(a), i.e., p(a,b) or p(b,a) in G', so that r(a,b) =1
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in G' .//
We shall omit the subscript G' from now on unless confusion. would

result.

Proposifion_3.4. The followiné statéments are all equivalent:

1) (a,b) 1is a separating edge of ordér 2

2) {a} and both L(b) and R(b) are separated in' G‘-

3) {b} and both L(a) and R(a) are separated in G'

4) L(a) NL() = R(a) NR(Mb) = ¢ in" G' .

Proof: (2) means L(a)lﬂ L®) = {a} N L(L(b)) = R(a) N R(b)x=
{a} N R(R(b)) = P (see Proposition 2.1). Since L(L(b)) = L(b) j the
condition {a}ln L(L(B)) = is implied‘by L(a) NL(M) = ﬁ , and
similarly the fourth condition is implied by the third; hence (2) is
equivalent to (4), and analogously fof (3).

If L@) NL(b) or R(a) NR(b) were # # , say the former, we
would Bavé p(c,a) and p(c,b) for'some c, sothat b € Cz(a) , con-
tradicting 1. 'Conversely, if r(a,b) =2 we have b € Cz(a) , i.e.,
b is in L(L(a)) = L(a), R(R(a)) = R(a), L(R(a)), or..R(L(a)) . In the
first case L(a) NR(b) # § (it contains b); in the second case, |
R(a) NR(b) # P ; in the third case, p(b,c) for some cC € R(a) , so
fhat R(b) NR(a) # # ; and similarly the last case implieg L(b) N
L(a) # § -- a contradiction to (4) in all cases.//

We now introduée two special typés of separating edge which turn

out to have interesting properties.

Definition. (a,b) wjll be called a normal edge if L(a) and R(b)

are separated in G' ; an antinormal edge, if R(a) and L(b) are

separated in G' .

Proposition 3.5. A normal or antinormal edge is a separating edge
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of order 2.

Proof: L(a) and R(b) separated means L(a) N L(R(b)) = L(L(a))
NR(MD) = L@) N R(R(b)) = R(L(@)) N R(b) = # , where the second and third
conditions ‘are redundant; the first and fourth conditions evidently imply
L@) NL®) = ﬁ and R(a)Aﬂ R(b) = [/ ,-respéctively. The proof for

antinormal is analogous.//

Proposition 3.6. An edge is a separating edge of order 3 if and

only if it is both normal and antinormal.

Proof: Analogous to that of Proposition 3.4.//

 Proposition 3.7. The following statements are equivalent:

1j (a,b) is normal

2) a £ R(LERE®))) in G

3) b£LREL@)) in G

23292: If a_elR(L(Rtb))) there exists ic‘E L(a) N L(R(b)) » SO

' that V(a,b) is not hormal b? the proofvof Propdsition 3.5.,.and coﬁ;

versely, proving (2). “The proof of (3) is similar.//

An analogous result, with L aﬁd R interchanged, is true for énti4

normal edges. | | |
In Section 3 we shall chéracterize graphs all of thse édges are

separating edges of order 1 (they turn out io be jﬁst the graphs that

are basic and acyclic). To conclude the present section,'we prove

Proposition 3.8. The following statements about the graph G. are

equivalent:
1) Every edge'of G is normal
.2) Every'edge of G is a separating edge of order 2
3) Every path in G 1is convex.

. Proof: (1) implies (2) by Proposition 3.5. To see (2) implies (3),
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suppose p 1is not convex; then there exist x,y on p such that
p'(x,y) where o' €p . Let a,b be consecutive points of p' such
that a £ o, b&€p. If x precedes y on p we have p(x,b) & o
and p(x,a) € p' , so that x € L(a) NL®P) in G' . If y precedes x
on p we have p(b,y) €', o(y,x) <p and p(x,a) €p' , so that

b_e L(a) in G' . In either case this proves (a,b) is not separating
of order 2 by Proposition 3.4.

Finally, to see (3) implies (1), if (a,b) not normal then there
exists x € L(a) NL(R(b)) in G', say p(x,y) where y € R(b) and
p(x,y) does not have a,b as consecutive points. We also have 8 (x,y)
through (a,b) . It is clear that at least one of p and § has at

least three points; thus the other path is not convex.//

2. Normal graphs

Definition. G will be called normal if every normal edge is a

disconnecting edge. G is completely normal if every partial subgraph
is normal. It is clear thét completely normal implies normal. |

An "antinormal'' graph can be defined analogously with antinormal
replacing normal; however, this concept will not be needed. An example
of a non-normal graph is shown in Figure 3.1, as well as an example of
normal but not campletely normal graph. Note that any non-normal graph
must contain a normal edge, since otherwise the graph would be vacuously

normal.

a‘;,ffff"’:;;b normal but ‘ﬂf,,f""’j;;b

not completely a c non-normal

“‘"“-~:i::} normal ““---~::3’
d d

Figure 3.1
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Any tree is a normal (and "antinormal'') graph, since every edge is
a disconnecting edge. Because every comnected partial subgraph of a

tree is a tree, any tree is dalso cempletely normal.

- As an immediate consequence of Proposition 3.8 we have

Proposifion 3.9. A comnected graph G is a tree if and only if G
is normal and all paths in G are convex. ‘
Proof: If G is normal and all paths are convex, every edge of

G must be disconnecting edge, and conversely.//

Definition. The point s is called a left terminal point of G

if L(s) = {s} and R(s) = G . Similarly, t is called a right termi-
nal point if L(t) =G and R(t) = {t} . Clearly G can have at most
one left and one right terminal point. If it has both, we call it a

two-terminal graph. Such a graph is evidently connected.

Pfoposition 3.10. Every two-terminal graph is normal.

Proof: If the edge (a,b) is normal then fér any path p(x,y)
such that x € L(a), y € R(b), a,b must occur consecutively on p(X,y).
Since s € L(a), t € R(b) , any path p(s,t) must have a,b as con-

secutive points. Since every point p of G belongs to some path

o(s,t) , it follows that p € L(a) or p €R(b) , that is, P =1L(a) U R(b).

Now L(aj € TL(G') , since p(x,a) in ‘G evidently implies p(x,a)
in G'. Also RG,(L(a)) A R(b) =P by normality; since L(a) U R(b) = P,
it follows that RG,(L(a)) = L(a) , that is, L(a)‘E'TR(G') . Since
b‘ﬁ L(a) by normality, we have ﬂ.giL(a)_gvP , so that L(a) is a pro-
‘'per open and closed set in G' , proving that G’ is not connected,

that is, the edge (a,b) is a disconnecting edge.//

Definition. Let G = (P,E) be acyclic and let AcP . We say
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that m is a lower‘bound of A if me€ N L, that 1s, if A s Rﬁn).
aEA

(sups) of A .

Proposition 3.11. Let G be a finite, acyclic, and completely

normal graph. If points a,b of G have a lower bound, then they have
a unique inf. |
Proof: Since G 'is finite and acyclic, there readily exists at
least one inf. If a €L(b) or b €L(a), it is evident that a or
b is the unique inf. Otherwise, we have a‘£ Cl(b)‘. Let m;, m, be
infs of {a,b} and my # m, . Since mj‘e L(a) n L(b) for ‘j = 1,2, we have
the paths pl(ml,a), pZ(ml,b), pSO“Z’a)’ p4(m2,b). Let' P =;§ml,a1,f..,an>,

and let <m,,b bm> where a, =a and bm =b . We show that

Pz 7. T1oP1oe

the edge @nl,al) is normal in the partial subgraph H defined by the
union of P12P2sP3s and Py - Let H' denote H with the edge (ml,al)
deleted. We have LHOnl) = LH,Onl) = {ml} and RH,(LH(ml)) = RH,Onl)
is contained in the set of points of Py and Py > since if we had
g@nl,x)v in H' for some point x of Py OT opzs the second point on
o would have to be by , so that blje L(a) N L(b) would contra-

dict the maximality of m . Similarly, RH(al) is contained in the
set of points of Py and Pz - Hence RH(al) n RH,cLH(ml)) =@, so
that Onl,al) is normal in H; however, it clearly is not a discon-
necting edge. This shows that partial subgraph H is not normal, and

therefore G is not completely normal, contradiction.//

The converse of this Proposition is not true; there exists a finite,

acyclic graph which is not tompletely normal but for which every pair
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of points with a lower bound has a unique inf (Pi'gure“S.Z)

Figure 3.2.

In the remainder of this section, we investigate another class of
graphs, TISPN's, which like trees, are completely normal (but not
"antinormal''; see Figure 3.3). We give a new charaterization of these
graphs below, and in Chapter IV we show that they are invariant under

certain kinds of mappings.

" ‘Definition. A graph G = (P,E) is called a two-terminal series-

parallel network (TTSPN) if

a) P= {u,v}, E= {(u,v)} '
or b) P=P U PZ, E=E U E, , where G, = (P,E)) and G, =
(P,,E)) are TTISPN's, ENE,=p, and

‘(b ) P N P = {z}, where pG (x,2) for all x € P1
and pG (z,y) for all y 6 P2 ' '
- or (b ) P n P = {s,t}, where Pq (s,x) and - pG (x t) for all
1

x € P1 , and pG (s,y) and pG (y,t) for all y € P2

~ (a,b) is antinormal but not
4a—>b>$ . . disconnecting

Figure 3.3.
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Aside from their importance in electrical network applications,
where they originated, TISPN's are of interest in the theory of graphs for
two reasons. First, with the exception of trees and acyclic graphs, there
are few other classes of directed graphs that admit a reascnable topological
characterization. Second, since TISPN's are '‘generated" from a single edge,
they provide a means of obtaining a richer class of graphs from a given
class by a composition operation, namely replacing edges with TTSPN's.
For example, Husimi trees [Ore (1962)] can be generated froﬁ trees by
replacing edges with TISPN's. Many of the results can be extended to
larger classes of graphs which are formed by composition of TTSPN's.

For any TISPN, G, the following observations can be readily proved by
induction on the nmumber of edges of G:

1) ‘There is at least one edge in G

2) G is connected

3) G is acyclic

4) G is a two-terminal graph, hence is normal

5) Every two-terminal connected partial subgraph of G is a TTSPN;

hence G is completely normal.
The example in Figure 3.4 shows that (1) through (5) do not

characterize the class of two terminal series parallel networks.

;///zb\\\\s
’ T/'t
\\\Sa
Figure 3.4.
A graph theoretical characterization of a TISPN is important since
the inductive definition does not inmediately lend itself to proving

topological results. In particular, such a characterization is needed
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later to pfoVe that the class of TISPN's is closed under certain types
of mappings. |

The concept of series-parallel graphs arose in electrical network
theory. In this context the prototype of a non-series-parallel network
is the familiar Wheatstone Bridge (Fiéure 3.4 with the edges having re-
sistors on them). In this case the cross-cdnnection-between a and b
destroys the series-parallel property. The following definition seems

to be a natural graph-theoretical generalization of this concept.

Definition. Two points x and y of a graph G with y € R(x)

- are said to be cross-comnected if (1) there exist two paths pl(x,y)

and pz(x,y) and (2) there is a path ps(a,b) , where a # b, such
that py N pg = {a} and p, N bs = {b}. A graph without any cross- ”

connections will be called cross-connection-free (CCF). It is trivial

to see that a # x,y, b # x,y, and a, b € L(y) N R(x). We also note
that any partial subgraph of a CCF graph must be CCF. '
In Figure 3.5 a cyclic two-terminal graph with a cross-connection

between s and -t is illustrated.

b .pi = <5,C,a,t>
/‘l P, = <s,b,c,t>
S —C ¥ ————>t Pz = <a,b>
N
5

Figure 3.5.

Theorem 3.12. A finite, two-terminal acyclic graph is a TTSPN if

-and only if it is CCF. 4
Proof: Since a one-edge graph is CCF, to prove that any TTSPN is
CCF, it suffices to show that serial or parallel composition preserves

the CCF property. Let Pis Pys P3 be a cross-connection in the
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composition of G1 and G2 .

In the serial case, if a and b are both in G then p3 mist

1 s

lie in G; . If we restrict Py and p, to G, , replacing y by the

1 1
composition point z if y is in GZ , this yields a cross-connection
in Gl" contradiction.. If a is in »Gl and b in G2 , then x € L(a)
< G1 and y € R(b) = G2 , SO that’ Pys Pgs Pz all pass through =z ,
and so they cannot constitute a cross-connection.

In the parallel case, P1s Pps and’ps"mustlall lie in (say) G1 s
since no path can pass through either of the’composifion points s,t ;

hence we immediately have a cross-connection in G (The possibility

1J
that o; 1lies in G;, p, lies in G, and x,y = s,t is ruled out

since- must then contain s or t and so is not a cross-connection.)

°3

Conversely, suppose G = (P,E) 1is two-terminal, acyclic, and CCF,
and let s,t be its terminal points. If G has only one edge, it is
trivially a TTSPN. Suppose the desired result true for all G's having
fewer edges than the given one. If G can be shown to be the serial or
parallel composition of two of its partial subgraphs Gl’ GZ; where
Gl’ G2 are two-terminal graphs, then Gl’ G2- are TTSPN by induction
hypothesis (since the acyclic and CCF properties pass to paftial sub-
graphs), so that G is also TTSPN. In particular, if (s,t) €E, evi-
dently G is the parallel composition of its two-terminal partial sub-
graphs ({s,t}, {(s,t)}) and (P,E"{(s,t)}), and we are done; we may
thus assume (s,t) £ E. - '

Let F(s) = {x €P [ L(x) = {s,x}}, and E(t) = {x €P | (x,t) € E}
Define Q(x) = {s} UR(L(x) ~ {s}) . Suppose that Q(x) = P for all

x € E(t) . We claim that for any y # s in F(s) we have R(y) =2 E(t).

1]

Indeed, if not, let z € E(t), z £R(y) , so that y ¢ L(z) . ‘Now Q(z)

P, so we must have y € R(L(z)~{s}) , i.e., w € L(y) for some
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w €L(z)"{s} . But L(y) = {s,y}, and w# s ; hence w=1y and we
have y € L(z) , contradiction. We have thus shown that one of the
following must be true:
-.1) Q(z) # P for saome z € E(t)
or .2) 4R(y)‘2 E(t) for some y #s in F(s) , so that E(t) has a
lower bound # s .
We shall show that in case (1), G . .has a parallel decomposition, and in

case (2), a serial decomposition. .

In case (1), there can be no edge (a,b) in G with a € Q(z) ,
b £Q(z) unless a=s, since Q(z) ~ {s} is an R-set.: We show that
there can also be no edge (a,b) with a‘ﬁ Q(z), b€ Q(z) wunless b = t.
Since b € Q(z), and clearly b # s, there exists a lower bound # s
for b and. z . Since a ¢ L(z), we have blﬁ.L(z), sé that b is
not an inf of b and z; 1let q # s,b. be such an inf; Clearly
q €Q(z) . Consider three paths

py(s,t) = o(s,a) +0(q,2) *+ (z,t)

p,(s,t) = p(s,a) + (a,b) + o(b,t)

p3(q,b)
For any r € pz except q , we cannot have r € o(s,q) or rlE'p(q,Z),
since r would then be a lower bound for b and z , contradicting the
maximality of q . Also r # t since b # t; hence bsbn py = {al.
Moreover, for any 1 € Pz except b we cénnot have r € p(s,a) since
this wouid imply a € R(q) £ Q(z) , and we cannot have r € p(b,t)
since G is acyclic; hence lp3 n 0y = {b}, so that P1sPpsP3 consti-

tute a cross-connection, contradiction.

[Q(Z)], GZ = (PZ’EZ) = [P"Q(Z)AU{S,At}] . Clear-

ly G and G2 have s and t as terminals. Since (s,t) £ E we have

- Let G = (Py,E)

El n E2 = @, Pl'n P2 = {s,t}. By‘the preceding paragraph, E. UE, = E,

1 2
u P2 P; thus G is the parallel composition of G1 and G,.

and clearly P1
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In case (2) since E(t) has a lower bound # s , we have p =
inf E(t) # s . We shall show that a £ R(p), b € R(p) and (a,b) € E
implies b =p . Clearly b #lt » for otherwise a € E(t) so that
a € R(p) (since p is a lower bound), contradiction. If E(t) < R(b),
then b 1is also a lower bound, and since b € R(p) where p is a
‘maximal lower bound, we have b = p , and we are done. Otherwise, we
have zlé R(b) for some z € E(t) . Since b,z are in R(p) , they
have p as a lower bound, hence they have a maximal lower bound q in
R(p) , where q # b . Consider three paths

p1(5,8) = p(s,a) + (a,b) + p(b,t)

py(s,t) = p(s,p) + p(p,a) + 0(q,2) + (2,t)

p3(a,b) -
For any r €p, except b we have r € R(q) sR(p) . Hence r £ o(s,a),
since we would then have a € R(r) €sR(p) , and 1 £ p(b,t), sinbe
b € R(r) and G is acyclic. Thus r £ pys SO that oy Np, = {bl,
and in particular q £ py » So that o, # py . Moreover, if any
r € p; except g were on p,, then r would be a lower bound of b
and z , contradicting the maximality of q (we cannot have T =t
since G 1is acyclic). Thus p5 Npy = {q}, and pl,pz,bs' constitute
a cross-connection, contradiction. '

Since G is acyclic;‘ L(p) N R(p) ='{pi. Also, if w £ R(p)
there is a path ¢ from w to t € R(p) , so that a point not in R(p)
and a point in R(p) must occur consecutively on , ; but by the pre-
ceding paragraph, the second of these points can only be p , so that
there is a path from w to p . Thus w:ﬁﬂR(p) implies w € L(p) .
Let G1 = [Lp)1, G2 = [R(p)]. Since G1 and G2 are subgraphs of
G , they are acyclic and CCF; and as we have just seen, Gl has the two

terminals s and p , and G2 has the two terminals p and t . Thus
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by -induction hypothesis, G, and G, are TISPN's. Moreover, there are

2
to points of G, , so that G 1is the serial

1

no edges from points of G1

composition of G; and G, , proving that G is-a TISPN.//

2 ’
As a useful application of Theorem 3.12 we have

‘Proposition 3.13. A finite, two-terminal acyclic graph is a TTSPN

if and only if any walk between its terminals is a path

Proof: "Only if" is clear if G has only one edge. If G ia
the parallel composition of ,Gl and G, » then readily any walk between
the terminals s and t must be entirely contained in either G1 or
G2 , so that the induction hypotheais applies immediately. In the serial
composition case, any walk between s and t must pass through the com-
mon point z of G and G2 , and by minimality it can only pass this
point once. Hence we can break it up into two walks w(s, z) and w(z,t).
By induction hypothe51s, each of these is a path and readily this 1mp11es
‘that the original walk is also a path.

Conversely; it suffices to show, by the proof of Theofém 3.12, that
there is no cross-connection between any two paths from s to t. Sup-
Pose py,p,,p7 WeTe such a cross-connection, say Py = Xyseen xm>.,
py = <y1’;"’yh> » and py =<z,,...,2 > where pq Moy = {x b= iz},

p3 n Py =.{yj} = {Zr} . If {xi+1,...,xm} n {yl,.. = ﬂ.’ then

Y517

yl""’yj-l’ yj = ZoseeesZy = X pXiqeens Xy is a walk, since its‘

points are all distinct and is not a path, contradiction. Otherwise,
let Yh be the last of 4y1,...,yj_1 that is equal to any of Xi+l,""

X

o » Sy to x . We cannot have y, = X for any h <=u =< j-1 and

v

1 <v=i-1, since XpseeosXy = Ypoeoos¥y = X, would then be a cyclef

Hence x = Xpre o Xy is a walk,

100 eoXiq, 2o sy Y j—l""’yh
since its points are all distinct, and is not a path, contradiction.//
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Note that in any two-terminal graph, no walk between the terminals can

have reversal order exactly Z.

3. Basic graphs

When considering a graph as representing a transitive relation,
some edges may be superfluous. Given a graph we can safely delete these
edges without altering the relation.. We call a graph without these '"ex-

_tra" edges a basic graph.

Definition. A graph G is basic if it has no proper partial sub-
graph H on the same point set such that' pG(x,y) implies pH(x;y)'
for all X,y .
It is easily seen that G is basic if and only if for any edge (a,b) ,
the points a and b occur consecutively on any path from a to  b.
Indeed, if this condition is violated by some path p(a,b) , the edge
(a,b) can be deleted from G without changing the.path structure, since
one can use -p to get from a to b without using (a,b) . Con-
versely, if G 1is not basic, let H be a proper partial subgraph with
the same path structure as G . Since H 1is proper, some edge (u,v)
of G is not an edge of H . But (u,v) constitutes a path from u
to v in G ; hence there is a path- p' from u to v in H , which
cannot have u and v as consecutive points since (u,v) is not an
edge of H . Since H is a partial subgraph, p' 1is also a path in G.
If G is acyclic, a and b cannot occur at all on a path from
a to b except as the endpoints; hence they cannot occur consecutively

if the path has length =2 2. We thus have

“Proposition 3.14. An acyclic graph G = (P,E) is basic if and only

if |p(x,y)| =2 2 implies (x,y) £E for all x,y € P.
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“'Corollary 3.15. An acyclic graph is basic if and only if (x,y) € E

implies R(x) N L(y) = {x,y}.
" Proof: 1If a € R(x) NL(y) with x#a#y, then p(x,a) and

p(a,y) , so that p(x,y) with |p| =z 2 , and conversely.//

ProPOSition'S.iﬁ. G 1is basic'ahd acyclic if and only if every
edge is a separating edge of order 1. |
| ggggf; Suppose"G hés an edge which is not a.separating edge of
'order 1, in'other words, an edge (x,y) such that r(x,y).s 1 in G' =
G {(x,y)} . This implies x € L(y) UR(y) . If x € L(y) then. G is
non-basic; if x € R(y) then G 1is non-acyclic.

Conversely, if there is a cycle p(x,x) then any edge (a,b). on
it would have r(,(a,b) =1 ; contradiction. If G is non-basic and
acyclic there is a path p(x,y) with [p| 22 and an edge (x,y) , so
that the edge (x,y) is not a separating edge of order 1.//

Definition. By a basis graph Gb

of G [Ore (1962)] we mean any
basic partial subgraph of G that has the same point set as G . An
arbitrary graph G need not have a basis graph, and if a basis graph
exists, it need not be unique; see Figures 3.6 and 3.7.

It can be easily shown that for finite graphs G , :a basis graph
always exists. This is done by methodically deleting edges for which
there exists a path of length 2 2 between the endpoints. We will show
that for finite acyclic graphs, the basis graph is unique [Ore (1962)].

Additional conditions which are sufficient to show the existence of a

basis graph are given in Chapter 8 of Ore (1962).

Proof: Let H1 = (P,El) and H2 = (P,EZ) be two basis graphs of

G = (P,E). We need only show E, = E2 . Let e = (x,y) € E| <E.
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S
| N

Gy X/T \w . | G, l T
| -~ S

Gl and G2 are both basis graphs of G

Figure 3.6.
= (P
0\““"% P =1{0,1,2,...}
3
L E={(0,n)|n=1,2,3,...}

U {(n,n-1)|n = 2,3,...}

G has no basis graph-

Figure 3.7.
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Then e constitutes a path from x to y in G, and since HZ is

basic there exists pz(x,y) in HZ' 1f pz(x,y) consists of e alone,
then e € E2 and we are done. Otherwise, there»exists a path from X
to y in H, , hence in G , through some point z # X,y , so that there
exist paths ps(x,z) and p4(z,y) in G . Since H, is basic, we

must thus have pS(X,Z) and p6(z,y) in H1 , which combine to give

pl(x,y) of length =22 in H1 , contradicting e € E1 . Thus E1 (=

EZA. The reverse inclusion is shown similarly.// -

Definition. A graph GT = (P,ET) is said to be the transitive -

closure of G = (P,E) if pG(x;y) is equivalent to (x,y) € ET .

Proposition 3.18. Let G1 = (P,El), G2 = (P,EZ) ; then TL(Gl) =

v (G,) if and only if G = Gj .

Proof: Let A € TL(Gl), p €A, and (q,p) € E2 . Then (q,p) €
T

E2 = EE ; hence p(q,p) in G1 , S0 that q € L(p) <A by Theorem 1.2.

This shows A € TL(GZ) , and thus rL(Gl) < TL(GZ) ; the reverse inclu-

sion is proved similarly. Conversely, if TL(Gl) = TL(GZ) we have,

for all x,y € P, p(x,y) in G1 iff. x € LG (y) iff. x € Lg (y) iff.
' 1 2 :

p(x,y) in G, , proving Gg = Gg .//

Corollary 3.19. Let G
T

(P,E) ; then the largest graph on P

with topology TL(G) is G

Proposition 3.20. G = (P,E) is basic if and only if no proper

partial subgraph (P,E;) of G ‘has the same topology as G .

Proof: If (P,EH) had the same tOpology, then we would have
pG(x,y) implies x € LG(y) = LH(y) implies pH(x,y) , contradiction.
Conversely, if P implies Py then PG iff. Py » SO that LG(y) =

Ly(y) for all y , implying rL(G) = 1 (H) A/
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Thus a basic graph G = (P,E) is the same as a minimal graph on
P having topology rL(G) . In particular, in the finite acyclic case,
there is exactly one such minimal graph, i.e., there is a smallest such
graph.

As a consequence of the previous propositions, we see that an E-
topology characterizes a family of graphs which are bounded above by
- their common transitive closure and bounded below by a set of basic
graphs.

The basis graph of a given graph can be obtained in still another

way as is described in the following proposition.

Proposition 3.721. Let G = (P,E) be an acyclic graph that has a

basis graph G° , and let G* = (P?,E}) be defined by P* = {L(x)|x € P}
and E* = {(L(X), L(Y)) | (x,y) € E and there exists no z such that
L(x) ; L(z) g L(y)} . Then G* is isomorphic to P

Proof: let Gb

- (P,E®) and £:P > P* where £(p) = L(p) . If
(p,q) € E® we have no o(p,q) in &® such that lo|] =22 . Clearly
L(p) = L(q) . If L(p) gLL(rj_;iL(q) then r is on a path frqm p to
q 'which thus‘hés length 2 2 , contradiction; thus (L(p), L(q)) € B .
Conversely, if (L(p), L(q)) € g2 , we have (p,q)vé E . Suppose
there were p(p,q) in &® such that lo| =2 . Then there would ex-
ist Tt € o(p,q), T # p,q and therefore L(p) € L(r) sL(g) . Since
(L(p), L(d))'e g2 , we must have L(p) = L(r) or L{q) = L(r) ; both
cases are impossible since G is acyclic. This shows |p]| <2 or

(p,a) € Eb . Moreover, f is 1:1 since G is acyclic. Hence f

is an isomorphism.//



CHAPTER IV
~ CONTINUOUS MAPS

1. Continuous maps and homomorphisms

A key concept in the development of mathematics is that of a func-
tion, map, or transformation. In a functional approach one begins with
a space S of objects, then defines transformations which may the space
either into itself or into some new space S'. In general one is then
interested in: \

a. those transformations which are well-behaved, for example

preserve some property of the original space
or b. those spaces which are well-behaved under parti;uléf classes
of transformations. |

There are two natural ways to éstablish a functional approach t6
- graph theory (which makes the extreme péucity of any literature on

functional graph theory ;a£her surprising). The first is to construct
a space in which the objects of interest are individual graphs. Such a
set of graphs might be organized as a space by establishing a notion of
_similarity or distance between individual graphs. dne would then have
essentially a gingle‘space of graphs, which might be organized in dif-
ferent fashions depending on one's‘definition of the cbncept of simi-
1arity.' This would be analogougAtovthe'space of real numbers, which
can be organized according to thé usual metric topology, the half open
interval topology; or various other '"irregular' topologies.:

The second approach is to regard each individual graph as a space.
In this approach the points of the graph P are tﬁe objects of the
space and it is the relation E that determines their organization.

It is this latter approach that we take here. It appears to be the more
44 '



45

basic of the two approaches; in fact, it may be essential as a prerequi-
site to the definition of similarity between graphs. Fufthefmore, the
entire development of the edge topologies 27 and R together with the
exploration of their implications wifh respect to sepgrability and con-
nectivity, has been built up with this view in mind.

We therefore will consider maps that can be defined on many dif-
ferent graphs (spaces) although they may be of greatést interest when
restricted to a épecific class of graphs. In general the range graph
(space) will be distinct from the domain graph. We will interchange- .
ably use the notations f:G ~ G' and f:P - P' to denote such maps, since’
usually E' (the organization of G') is determined by £ and E .

~ The first class of maps to consider is, of course, those which are

L R
turn out to be a very large class; for example, all graph homomdrphisms

continuous (in the usual sense) with respect to 1, and t,. This will
(under any of the half-dozen different possible definitions) are con-
tinuous. For this reason we will investigate a more restrictive class
of functions, called ideal maps, in Section 4.

Relative to the topologies TL(G) and TL(G') we can define a con-

“tinuous map in the usual way, namely,

Definition. £f:G - G' is a continuous map if

A" €1y (6") implies £1(A") €1.(G) .

For our definition of a homomorphism between graphs, we shall use

a stronger version [Pfaltz (1968,1971)] then the one found in Ore (1962).

Definition. The mapping £:G > G' is called a gfaph homomorphism if
(D (a,b)le E implies (f(a), f(b)) € E
and

(2) (a', b') €E' implies there exist a € f'l(a') and
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b € £1(b') such that (a,b) € E.
A function satisfying only condition (1) will be called a weak

. homomorphism. Both definitions are common in the literature under the

name “homomorphism”. For most of our results we need not distinguish:
between the two variants.

Our first proposition shows that a continuous function is a weaker
concept than a weak homomorphism. Thus, continuous maps are a very

general class of functions which relateAgraphs{

Proposition 4.1. Weak homomorphisms are continuous.

Proof: Let A' €7 (G') and A= ffch') . If a€A and
(p,a) € E , we have (f(p), f(a))Ae E' since f is a homomorphism.
Since A' € t(G') and £(a) €A' , ve thus have £(p) €A’ . This
implies p € A = f_l(A') and therefore A € 1, (G) .//

The graph in Figure 4.1 shows the coﬁVerse of Proposition 4.1 is
not true.. For this continuous map f we have (c,b)_E E but (ftc),

£f®)) = (c', b')_£ E' and thus f is not a weak homomorphi;m.
c\\\-i
a/’//;”

f(x) = x' where xvé'a,b,c,.

b G' = C'e——pa'—a b’

Figure 4.1.

Continuous maps with respect to the topologies t,(G) and R(G")
can be defined similarly. However, the class of functions so defined is

the same as for the Ty topologiés. That is, a function is continuous
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with respect to TR(G) and tR(GJ) if and only if it is continuous with
respect to TL(G) and rL(G') . This is evident since the T and
R topologies of a graph are complements of each other, and one can in-
voke the well-known equivalent condition for continuity that the com-
plements of elements of 1t (G') are mapped onto complements of elements
of 1, (G) under el

We now characterize continuous maps by examining the preservation
of the path structure. This characterization provides a convenient

method for determining which maps are continuous.

Proposition 4.2. f:G » G' is continuous if and only if pG(p,q)
implies pq (£(p), £(q)).

Proof: Let p(p,q) be a path in G; Since f is continuous and
L(£(q)) is an element of t©,(G'), the set A = £ '(L(£(@)) is an ele-
ment of TL(G). Having q € A and o (p,q) ,.we find p € A and
£(p) € £(A) = L(£(q)), which implies p(f(p), £(q)) . Conversely, sup-
pose p(p,q) implies S(f(p), f(q)) . Let A' € TL(G') and define
A= f-l(A') . If p€A and (q,p) €E, then p(q,p) and therefore
S(f(q), f(p)). Since A' € TL(G') and f(p) € A' , we must have
£(q) €A' . Thus q € £ 7(A') = A and A€ o (6) .//

‘Corollary 4.3, The map f is continuous if and only if r(f(a),

| f(b)) = r(a,b) for all a,b.

| .When f in Proposition 4.2 is not onto then the path (f(p),
£(q)) may not be in the range of the mapping. Consider the example in
Figure 4.2. ‘The map f 1is continuous but p(f(a), £(b)) is not in the

range of f .
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G= a—b G' = a'—3x'—b'

f(a).= a', £f() =b' (', b') = a', x', b’
Figure 4.2.

Although Proposition 4.2 gives a useful test for continuity in terms
of paths, the left and right sets defined in Chapter I have played the
central role in our development and, in effect, have replaced the notion
of path. Thus, a suitable characterization of continuity in terms of

these sets would be desirable.

Proposition 4.4. Let f be amap from G to G'. The following
" are equivalent: | A ‘

(1) £ is continuous .

(2) f@L@)) g-L(f(a)) for all a

(3) f(R@E) s ﬁ(f(a)) for all a

Proof: If b' € £(L(a)), then there exists a, € L(a) such that

1
f(al) =b' . We have p(al,a), and therefore 5(f(al), f(a)) in G'

since f 1is continuous. Hence b' = f(al) € L(f(a)), proving (2).
Conversely, if (2) holds, let A' €t (6') and A=f '(A") ..If

(a,b) € E with b €A then aie L(b) and consequently £(a) € f(L(b))

s L(f(b)) . Since A' € rL(G') , we thus have f (3) € L(f(b)) s L(f(a)) =
L{a') = A' . Therefore a € f-l(A') = A and A€ 1.(G). The proofs for

(3) are analogous.//

Corollary 4.5. If f is continuous, we have f(Cn(AJ) < Cn(f(A))

for all A and all n .
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2. Convex and open maps

. A mapping on a topological space is said to be opeﬁ if the map tékés
open sets in the domain onto open sets in the range. For our situation
two topologies are defined ‘on.the doﬁain an@trange graphs, namely the
left and right topologies. In addition, by Proposition 1.12, convex
subgraphs are closely related to left and right open sets; thus we de-

fine convex maps here also.

Definition. A map £:G » G' is
(1) left open if A.E rL(G) implies f(A)_E TL(G')
(2) right open if B € t4(G) implies £(B) € o (G
(3)- convex if C convex in G impliés f(C) is convex in G'.

It is necessary to distinguish between left open and right open maps
since they do not imply one another (see Figure 4.3). This is not the
case for continuity; "'left" continuity implies ''right'" continuity and
conversely. When a map is both left and right open, we will call the
map open. |

Thé examples in Figure 4.3 show the independence of these concepts.

Continuous maps were characterized in Proposition 4.4; the next

proposition gives a dual characterization of left and right open maps.

Proposition 4.6. The map f is

(1) left open if and only if
L(f(@)) € f(L(a)) for all a
(2) right open if and only if
R(f(a)) = f(R(a)) for all a.

Proof: If f is left open, f(L(a)) € T, (G") since L(a) € TL(G); but
f(a) € f(L(a)), so we have L(f(a)) < £(L(a)). Conversely, if A is



Exggple

ar——) bl C].
az———abz-—_9c2

oc'o

a'le—— b'

C'&d'

a' 3b! = ¢!

Figure 4.3.
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Remarks

continuous, convex;
not left or right

open.

~ continuous, right

. open not left open.

continuous, left

open; not right open

convex, open; not

continuous

continuous; not con-
vex, not left or right

open.

open, continuous,

not convex,
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left open, we have A = UaGAL(a) . Hence f£f(A) = UaEAf(L(a)) 2
.UaEAL(f(a)) = .Ubef(AJL(b) = L(£(A)); and £(A) =2 L(£(A)) implies f(A)
left open.// ' o

As an immediate consequence of this proposition we have

Corollary 4.7. If £ is open, C'(£(A)) € £(C"(A)) for all A and

all n = 0.

If £ is left open, in particular £(P) is left open, so that
P' - £(P) is 1eft‘closed, and similarly on the right. It follows that
if f is open, f£(P) 1is both open and closed, hence is a union of con-

nected components of G'. We thus have

Proposition 4.8. If G' 1is connected, an open map is onto.

If f is one-to-one onto and left open, its inverse function is
continuous, and thus preserves paths, and similarly for - £ one-to-one
onto and right open. Conversely, if f 1is one-to-one onto, and its
inverse preserves paths, then f 1is both left and right open, i.e., is.
open. The foilowing two propositions generalize these remarksvto the

case where f 1is not necessarily one-to-one.

Proposition 4.9. Let f map G onto G'; then the following

statements are equivalent:
1)  f is left open
2) For all a',b' € G' such that p(a',b'), and all b € f-l(b'),

there exists a € f_l(a') such that p(a,b).

Proof: If (1) holds, then since a' € L(b') = L(£(b)) £ £(L(b)),
there exists a € L(b) such that f(a) = a', proving (2). Conversely,
(2) says that for all a' € L(f(b)) there exists a € L(b) such that

f(a) = a', i.e., a' € £(L(b)), proving f 1left open.//



52

Analogously we have

Proposition 4.10. Let £ map G onto G'; then the following

statements are equivalent:
1) £ is right open
2) For all a',b'.e G' such that p(a',b'), and all a € f-l(a'),

there exists b‘e f-l(b') such that p(a,b).

By Proposition 4.2, continuous maps preserve the path'relafionship
of the domain in the range. In ésseﬁce, Prdposition 4.9 shows that open
maps preserve the path relationship of thevrange in the domain. It is
also possible to have non-onto maps which preserve this relationship.
For example, consider the graphs in Figure 4.4; none of them are left
or right open. Nevertheless, all these maps seem to be one—to;one onto
a range_whose path structure is reflected in the domain. A relaxed

condition for openness which these maps satisfy is the following:

Definition. A map £:G > G' 1is relatively left [right]'gpen if

A €1 (0) implies £(A) €1 'f'(G) [£(A) € rp | f(é)]. A relatively open
map is both relatively left and right open. ‘

‘We emphasize that the topology used in the range is the relativized
topology of the image sﬁbgraph. Evidently every left (righf) oﬁen map
is relatively left (right) open. Another concept could also be defined
by considering the TL(f(G)) and rR(f(G)) topologies. This definition
of openness is equivalent to relative openness when the image of G 1is
convex in G'. °All the maps depicted in Figure 4.4 are relatively open.

Figure 4.5 illustrates a map that is not relatively left open.
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Figure 4.5.
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Remarks
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not continuous

not convex

not relatively
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3. Homomorphisms and isomorphisms

As a consequence of the definition of continuity, we have a well

defined notion of homeomorphism [Kelley (1955)], namely, one-to-one map

which is continuous and whose inverse is continuous.,

Definition. A map £:G+ G' is an isomorphism if f is one-to-
one and (a,b) € E if and only if (f(a), f(b)) €E' .

It is well known that f is an isomorphism if and only if f is a
one-to-one graph homomorphism. Graphs G and G' are called isomor-
phic if there exists an isomorphism between them. We observe that an
isombrphism'is also a homomorphism, and hence is a homeomorphism.

A homeomorphism need not-in general.be a homomorphism: but it must
be one when the graphs involved are basic and acyclic. Specifically, we

have

Proposition 4.11, If the map f:G.+ G' is a homeomorphism onto,

and G is basic and acyclic, then f is a weak homomorphism; if G'

is also basic and acyclic,  f is an isomorphism.

Proof: Let (a,b) é E; then pl(a,b) in G, so.that pz(f(a),
£(b)) in G, by the contiﬁuity of f. If we assume | pj‘z 2 then there
is a point p' on Py with ,93(f(a)’ P'), p4(p',f(b)), where f(a) #
p' # £f(b). Since £1 is continuous and one-to-one we thus have
ocla, £7(0") and (£ ('), b) witha #£ (p') #b . This con-
tradicts the basicness of G, since ps(a, f_l(p'))+ p6(f—1(p'), b) is
a path from a to b Qith length gfeater than 1. Therefore |[p,[< 2,
i.e., (f(a), f(b)).E E', which shows that £ ié a weak homomorphism.
The second part of the theorem follows analogously, interchanging the

roles of G' and G .//
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b

Corollary 4.12. Let G b

and G'~ be the basis graphs of G and G',

respectively, where G and G' are acyclic; then f 1is an isomorphism
between Gb and G'b .

b b

Proof: We can regard f as a one-to-one map of G onto G' .-

Moreover, p(x,y) in' G iff. p(x,y) in Gb, and similarly for G' and

G0

;‘hence £ is still bicontinuous.//

In Proposition 4.11' G' need not be basic or acyclic even though G
is. It is of interest to consider conditions under which basic acyclic
graphs are mapped into basic acyclic graphs. By Proposition 7.7 in
Pfaltz (1968), a convex homomorphism g takes acyclic graphs into acy-
clic graphs. Moreover, using Pfaltz's Proposition 7.10, we can show
that if g is onto, it.takes acyclic basic graphs into acyclic bésic
graphs;

The one-to-one onto requirement for a topological homeomorphism is
a severe restriction in the case of finite graphs. One really wants a
notion of homeomorphism between graphs of different cardinality. In the

graph literature one therefore finds a different concept of homeomorphism,

which we shall now define; first we need the concept of a subdivision.

Definition. G' =-(P',E') is a subdivision of G = (P,E) if
1) P' =P U {x}where x £P, E' = E VU {(a,x), (x,b)} -~ {(a,b)}, where
(a,b) € E (in this case, we call G' an elementary sobdivision),

or 2) G' is a subdivision of another subdivision of G.

Following Tutte (1966) and Harary (1969) we now have

Definition. Two graphs G and G' are graph-homomorphic if G and

G' have subdivisions which are isomorphic.

If G is an elementary subdivision of G, the identity map s from
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G 1into G is one-to-one, continuous, and relatively open. Simiiarly,
we can define a canonical map t from G onto G, as the .identity map on
the points of G and as taking x into a, and readily’ t' is continuous
and 1éft open. It follows that if é- is an arbitrary subdivision, the
composite s of the _; maps is one-to-one, continuous, and relatively
open, and the composite t of the E . maps is onto, continuous,.and left
open. Let f be an isomorphism of G with a subdivision -G' of G',

and let t' be the canonical map from .G' onto G' as just defined; then

is a continuous, relatively 1eft open map from G into G'; but * G and

'G' are not necessarily homeomorphic.

4. Ideal Maps

If a graph G is acyclic, so that the path relation p is a partial
ordering, theﬁ the left or:right ideal generated by a set A can be de-
fined. Clearly the left ideal generated by a set A is simply L(A)
and the right ideal is R(A) . By Propositions 4.4 and 4.6, open, con-
tinuous maps preserve left and right ideals. Thus we call an.open,
continuous map an ideal map. The remainder of this thesis will be de-
voted to the study and application of these ideal mabs: By Propositions

4.4 and 4.6 we also have immediately

Proposition 4.13. The map f£f:G -~ G' 1is ideal if and only if

£(L(p)) = L(£(p)) and £(R(p)) = R(£(p)) for all points p of G .
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@ a—3b___ ¢ a'iiZ;ET::::EQC'
ai--;b < a'—yb'——¢!'
(2)
a bz-——acz

Figure 4.4

The examples in Figure.4.4 show that an ideal map need not be a homo-

morphism or even a weak homomorphism.

Corollaries 4.5 and 4.7 show that if f is ideal, then CR(£(A)) =
f(c®(A)) for all A and all n . It follows that Cm(f(AJ) = £(CT(A) .

We also have

Proposition 4.14. Let £:G -~ G' be ideal and onto, let a', b' € G

with r(a',b') =n, and let b € f—l(B') . Then there exists a € f-l(a')
with r(a,b) =n . ‘ |
Proof: We havé a' € Cn(f(b)) = f(Cn(b)) , SO that there exists
a € f_}(a') with a € C™(b) , which implies r(a,b) =n . ‘On the other
hand, r(a,b) <n Wwould imply r(a',b') <n by Proposition 4.3.//
Propositions 4.9-10 show that under an onto ideal map, paths have

"inverses'. A stronger result is -

Proposition 4.15. Let f£:G > G' be ideal and onto, let G' be

basic and acyclic, and let p' be any path in G' . Then there exists
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apath p in G such that r € p implies f(r) €p' and 1' €0’
implies f-l(r').n o # # . In fact, we can require p to begin at a
specified preimage of the first point of p', or to end at a specified
preimége of its last point. . |
Proof: Let §' =_<p6,...,pﬁ>, and apply Proposition 4.9 (or 4.10)
to the edges (pi,pi+1) » 0= k;< n, fo obtain paths »p (pk’pk+1) in
G , where f(pk) = Py for each k. Let p = Pg * +++ * o, 13 clearly
any r' € p' has a preimage in p . Conversely, let r € p , say
r€o s then p(pk,r) and p(r,pk+1) , and since f is continuous,
this implies p&@ﬁ,f@n and Mﬂﬂ,f@hﬂ) in G' , i.e.,
p(pi,f(r)) and o(f(r), pﬂ+1) . But (pi, pi+l) is an edge, and G'
is basic and acyclic; hence we cannot have py # £(r) # Prep. ~7 in other
words, we must have f(r) = pi pr_'pi+1, so that f(r) €o' .//
Clearly if £ is one-to-one and ideal, then £l is ideal, and' f is a

 homeomorphism. Proposition 4.15 suggests that even if f is not one-to-

one, the ﬁath topologies are still "'similar"'.

Corollary 4.16. In Proposition 4.15, let (a',b') be any edge of
G' , and let £(b) =b' ; then there exists an edge ‘(a,b) of G such
that £(a) ='a' and p(b,b) € £1(b') . -

Proof: Let -5(3,5) be a path in G constructed ffom _p' = (é’,b')
as in Propositidn 4.15; theﬁ f(x) = a' or b' for all x € S , and
f(a) = a' . Hence somewhere in p there must be two éonsecutive:poiﬁts
the first of which has image a' and the second b' .//
Similarly, we can fix aefl@) and find an edge (a,b) with £(b) =
b' . Note that the conclusion of Corollary 4.16 imblies‘one of the two
defining properties of a graph homomorphism, namely that for any (a', b')

€ E' there exists (a,b) € E such that f(a) = a', £(b) = b' .
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Corollary 4.17. In Proposition 4.15, let o = <X Jyeen X >

Then for all o =i <m we have either f(xi) = f(xi+l) . or (f(xi) s
f(xi+1)) an edge in G' .

Proof: Since f is continuous we have pi (f(xi), f(xi+1)) in G' .
By construction of p , we know that any r' on pi has a preimage r
on p . Since x, and x; ., are consecutive on p , we must have
r € L(Xi),u R(Xi+1) . If re L(xi) , then f(r) =1'¢€ L(f(xi)) by
continuity. But r' is on pi , hence in R(f(xi)) ; hence r' = f(xi)'
since G' is acyclic. Similarly, if r € R(xi+1) , we must have
T' = f(xi +1) . Thus the only pbints on the path pi are f (xi) and
f(xi+1) themselves, sb that p:!L has length 51 J/

We next generalize Proposition 4.15 from paths to walks;' this result

will be needed to prove the Theorems which conclude this section.

Proposition 4.18. Let f£:G - G' be ideal, onto and let G' be

basic, acyclic with x' #y' in G' ,. x € f—l(x') OIf W o= wix',y")
in G' then thefe exists a walk W =w(x,y) in G for some y € f-l(y')
with the properties

(1) a#b, (a,b) €W implies (£f(a), £(b)) e W'

(2) a'#b', ‘(a',‘b') € W' implies there is (a,b) € W such that

f(a) = a', f(b) =b' . |

(3) r',y") = n in W' implies r(x,y) =n in W.

Proof: If L (x',y') =1 then W' =,x',y') or p(y',x') .
In either case by Proposition 4.15 there exists p(x,y) or p(y,x) in
G with r € p implying £(r) €W' and r' € W' implying £ >(r') N
p # # . In particular, r(x,y) =1 . Clearly o is a minimal. finite,

self-connected partial subgraph containing x and y . If a#b




60

occur consecutiveiy on p , so that _(a,b) _is an edge, then since G’
is basic, (f(a), f£(b)) must be an edge in W' , proviﬁg _(1). Mofeovér,
(2) holds by the proofs of Proposition 4.15 and Corollary 4.16. |
Suppose T (x',y') =n and the proposition is true for all walks
such that ,‘r(x',){')ﬂ<‘ n with respect to W' . By Coroll_ary 2.7, thero
exists z' € C?J:l(x') n C‘},_, (y_') . Thus, rw,l(x',iz‘) =n-1< n and
rw,(z'.,y') =1. By. our induction hypothesis there exists' V~\I in G
which satisfies tho conditions of tho theorem for W)'( = yv(x' 2') & iN_' .
Since z' € C&I, (y') there exists W}', '='p(1z",y') or vp(y',z') in W' .

Fixing z € f_l(z') in W, by Proposition 4.9 or 4.10 we have 5 =

p(z,y) or o(y,z) in G for some y € f-l(y') . We define W W_U 5.
Clearly W is a finite, self-connected partial subgraph containingw X
and y . Therefore there exists a minimai L= W' and readily W still
contains x and y . If a#b and (:i,b) in W t}ien (a,b) € p or
(a,b) € W , so that (£(a), £(b)) € W' by induction hypothesis. If

a' f b' and (a',b')_E W' then (a',b') in W)'( ©or W)', implies there
is (a,b) as in (2) in W or 5 , hence'in W . Now f(W) s f(W) = W'
is a connected partial subgraph containing x' and y' . If no such
(a,b) were in W , there could be no edge (a',b') in £(W) , which
would contradict the minimality of W' . Finally, r(x,z) =n-1 in W

and r(z,y) =1 in #, so that r(x,y) sn in W. If r(x,y) <n

in W then r(f(x), f(y)) <n in W' by Corollary 4.3. But r(x',y")
n ; therefore r(x,y) =n . // |

We conclude this chapter by applying the above results to prove that
ideal maps onto‘ basic graphs preserve trees, TTSPN's, normal and com-
pletely normal graphs. (It -should be noted: fh:it homomerphisms do not

preserve these properties.) We first prove
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" 'Proposition 4.19. Let f:G + G' be an onto ideal map. If G is

finite and acyclic then G' is acyclic.

Proof: If G' has a c}cle p(x',x') with |p| =2 then by Pro-
position 4.10 there is a path p(xl,xz) in G with f(xl) = f(xz) ='x'
and |p| =22 . If X; = X, we have a contradiction. If X # X, we
can fix X, and obtaih another path p(xz,x3) with f(x3)~= x',

Xz # Xq, Xy, and |p| =22 . Continuing this process we have x;,X,,Xz,

. all distinct; but G is finite, contradiction.//

Theorem 4.20. Let f£:G » G' be onto ideal and G' basic. If G

is a TTSPN then G' 1is a TTSPN.

Proof: It is evident that the terminal points s,t of G map onto
terminal points s',t' of G' and that‘ G' cannot have additional
terminal points. By Proposition 4.19, since G is finite and acyclic,
we have G' acyclic. By Proposition 4.19, if there were a walk between
s' and t' in G' with reversal order >1 , theré would also be such

a walk between s and t in G , contradicting Proposition 3.13.//

Lemma 4.21, For G = (P,E), and G' = (P',E') basic and acyclic,
let f:G > G' be an onto ideal map and let (a',b') €E' , a' #b' .
Define H' = (P',E'~{(a',b')}) and H= (P,E~{(u,v)| a' and b' occur
consecutively on a path from f(u) to f(v)}) . Then £f:H - H' is ideal.
Proof: Let Yy' € LH.(f(x)) . We have p(y',f(x)) in H' , hence
in G'. So by Proposition 4.18 there is a path e(y,x) in G for
some y € f-l(y') . If there are consecutive points u,v on o (y,x)
such that a' and vb' are consecutive on a path from u' = f(u) to
v' = f(v) , we have u' # v' and u',v' consecutive points on

p(y',£(x)) - by .the proof of Proposition 4.15. Therefore, u' = a' and
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v' = b' since G' 1is basic. Furfhermore we have u', v' consecutive
on p(y',f(x)); hence (a',b') = (u',v') is an edge in .H' R contra;
diction.. So p(y,x)vg H , that is, y € LH(x) and-it follows that
£O) =y' € £(1y(x)) . , ,_ _ _

Conversely, let. y' € £(Ly(x)) . Thus, there is y € f'l(y') N
Ly(x) . This impliei_lp(y,x) in H. If p(Y,i).= PsPyseePy”
we have p(y',x') = & p(pi, pi+l) in G' by the continuity of f on
G . Suppose (a' ,b'%FOwere on p(y',x'); then (a',b') would be on
~some  o(py,py,;) - This implies (py,py,;) on g(y,x) is not in H,
contradiction. This shows p(y',x') in H' and it follows that
y' €Ly, (£X) | |

A similar proof shows Ry, (£(x)) = £(R;(x)) J/

Theorem 4.22. Let f£:G+ G' be an onto ideal map and. G' basic.
If G 1is a tree then. G' 1is a tree.

Proof: G' is acyclic by Proposition 4.19. Suppose G' = (P',E')
is not a tree; then there exists an edge (x',y') in G' which is not
disconnecting. Thus we have a walk w(x',y') in H' = (P',E'-{(x',y")}).
Let H be defined as in Lemma 4.21. It follows that f:H > H' is an
ideal map. B

By Proposition 4.18 for any x1 € f-l(x') there eiists a walk
w(x;,y;) in H with 91'6 f-l(y') . Tt is evident that H does not
contain any edge (x,yj such that x € f—l(x') and ; € f'l(y') .
But by Corollary 4.16, G does contain an edge (xz,yz) such that

1
be the union of walk w(xl,il) and the partial.subgraph consisting of

x, € f_l(x') y Y, € f_l(y') and ‘the path p(yz,il) exists. Let F

the points of p(yz,irl) . It is clear that F, is weakly connected in

G even if the edge (xz,yz) is'deléted; Since w(x;i) is in H and
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(x5,y,) is not, and since p € f_¥(y') so that x, £ o .

In a similar manner there exists a walk w(xz,iz) in H. If
W(X2’§2) and F, had any point in common then x, and y, would be
weakly connected in G even if the edge (xz,yz) is deleted; thus
(xz,yz) would not be a disconnecting edge. In particular, X, # X] -
We also must. have an edge (XS’YS) such that X< € f'l(xﬁ) R
Yz € f_l(y') and p(y3,92) . Let F, be the union of the edge
(xz,yz) , the_walk w(gz,iz) , the path p(y3,92) , and F;. Itis
evident that F2 is weakly connected in G even if (is,ys) is deleted.

Again, we must have a walk w(x3,§3) in H. If w(x3,§3) and
F2 had any point in common then x3,y3‘ would be weakly connected in |

G even if (XS’YS) is deleted; therefore the edge (x ) would
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not be a disconnecting edge. In particular, Xz # X15Xy Continuing
this process we obtain walks w(xi,§i) which do not have points in
common with Fi—l and, hence X; # X)sXopenesXs g o This yields an

infinite set of distinct points {xl,xz,...} - a contradiction, since

G 1is finite.//

Theorem 4,23, Let f£:G > G' be onto ideal and G' basic and

acyclic. If G is finite and normal then so is G' .

Proof: If G' 1is not normal there is an edge (x',y') which is
normal but not disconnecting. In the proof of Theorem 4.22 we have
shown that if an edge in G' is_not disconnecting then there exists an
edge in G which is not disconnecting. Thus, we have an edge (Xx,y)
in G where X € f_l(x'), y € f-l(y') and (x,y) 'is not disconnect-
ing. However, from Proposition 3.7 if (x,y) 1is not normal then
x € R(L(R(y))) . Since f is an ideal map, f(x)AE f(R(L(RY)))) =

R(L(R(£(y)))) , that is, (£(x),£(¥)) = (x',y') is not a normal edge,
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contradiction. Thus (x,y) must be a normal edge; but it is not dis-

connecting, contradiction to the normality of G .//

Lemma 4.24. - Let f be an onto ideal map from - G = (P,E) to a
basic and acyclic G' = (P',E') and let x' € P' . Then fiH > H'
is an ideal onto map where

H= (P -~ f—l(x') , B~{(u,v) | x' is on a path from £(u) to £(v))}

and

H' = (P'~{x'}, E'~{(u',x"), (x',v") | u'yv' in P'}), .

Proof: Let a' € Ly, (f4(b)) for some b in H. Then we have a
path "p(a',f(b)) = < pé,pi,...,pﬁ> in H' . Since f is an ideal map
onto G' , by Proposition 4.15 we have for some a'E'f-l(a') a path
p(a,b) = <q0,.;;,qm> where for all i , f(qi) = pj for some j . It
follows that q; £ f-l(x') since pj # x' for all j . By Corollary
4.17; either £(q;) = £(q;,4) or (f(qy) , f(qi+1)) is an edge in G';
and since £(q;) # x' # £(a5,7) » we know in the latter case that (£(q;),
’ f(qi+1)) is an edge in H' . Because G' 1s basic, the only possible
path of length =1 from f(qi) to f(qi+1) is the edge (f(qi), f(qi+l),
so that x' ¢ o(£(a;), £(q;,,)); therefore (q;,q;,,) is in H. This
shows p(a,b) is in H , that is, a € LH(b) . Therefore, " a' = fH(a)
€ £,(1,;0). |

Conversely let a' € fH(LH(b)); so there exists a € LH(b)_n f_l(a').
We let p(a,b) = <q0,...,qn> . Since (qi,qi+1) is an_edge,in' H, it
is not possible that x' € p(f(qi),_f(qi+1)) for any path p in G' .
Consequently we have p(f(qi), f(qi+1)) in H' ; thus, p(f(a), £(b))
is in H' , that is, a' € LH,(fH(b)) .

A similar proof will show fH(RH(b)) = RH,(fH(b)) J/
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Given any subgraph H; , of G' , by repeated application of Lemma

4.24, discarding all points of G' ~ Hi , and all edges involving these

points, we can find an ideal map from some partial subgraph H. of G

1
onto Hi . In particular, given any partial subgraph H' = (P',E') of
G' , we can find an ideal map from some H, onto Hj = [P']. Then, by
repeated application of Lemma 4.21, discarding all edges of [P'] that

are not in H' , we can find an ideal map from some partial subgraph H

.of G onto H'. These remarks, together with Theorem'4.23; give us

Theorem 4.25. lLet f£f:G +» G' be onto ideal and G' basic and

acyclic. If G 1is finite and completely normal then so is G' .



CHAPTER V
APPLICATIONS

1. Contractions and p-congruence

In Pfaltz (1972) the idea of mappiﬁgs betwéen gréphs is used to
generalize the concept of lists, list structures, and graph structures.
The purpose is to obtain a more effective computer repfegentatibﬁ of
acyclic graphs.and_search_algorithm for thesg data structures. fn order
to do this, that paper introduces three concepts, two of which we
reproduce here.

Definition. An equivalence relation I on the point set P of a

graph G = (P,E) 1is called a p-congruence if p(pl,ql) implies p(pz,qz)

whenever. (1) (pl,pZ)_ and (ql,qz) are in I and (2) (pl,q1) is not
in ¢ .

Every function f: G » G' obviously induces an inverse image
partition on its domain G and conversely every partition defines a
function (namely, all points in the same equivalence class map to
the same image). The essential question is what kinds of maps

correspond to p-congruences.

Definition. Amap f: G 5 G' is called a contraction if G' is
acyclic. |

A key proposition in Pfaltz' development is the proof that every
"m-M contraction' (whose formal definition will not be needed) induces
a p-congruence on G . Then this fact is used to show that the generated
graph structure is a faithful .representation of the original; and to
develop computationally efficient algorithms to find "m-M contractions."

It turns out that '"m-M contractions' are simply a restricted class of ideal

66




67

maps. In fact, we will show that if the inverse image partition of
f .is a p-congruence then f must be a convex ideal contraction.
First, we obtain a characterization of ideal maps by combining -
Propositions 4.2, 4.9, and 4.10. Suppose a partition I of a graph G
is given. Readily any partition of a graph induces a map from P onto
P' which we may extend to a continuous map of G onto G' where
P' =1 and E' ='{(nl,n2) | mam, € PT o, oM # m, , and there exist
12 € LI € ™ such that (pl,pz)-e E} . Conversely, any map f: G » G'
induces a partition of G , namely, I = {f_l(p') | p' € P'} . Let m(x)

be the element of the partition I -which contains x .

Proposition 5.1. Let G be a graph and 1 a partition on G .

The map f induced by the partition I is ideal if and only if
1) if xofe L(yo) and Xy 3 n(yo) , Fhen for all vy ¢ n(yo)
there exists x ¢ n(xo) NL(y) and
(2) if Yo € R(xo) and yo_g n(xo) , then for all x ¢ n(xo)
there exists vy € ﬂ(yo) N R(x) .
Proof: By construction of the induced map, f is continuous.
Conditions (1) and (2) are equivalent to Propositions 4.9 and 4.10,
respectively. This shows £ 1is continuous and open; and conver-

sely.//

Proposition 5.2. Let G = (P,E) be acyclic and I a finite

equivalence class. A p-congruence of = on P induces a convex

ideal contraction f: G - G'

Proof: We define f(x) = f(y) whenever '(x,y) € ¢ . Thus,
P' = {f(x) | for all x € P} , and

(E®, £6)) | £) # £&) and (x,y) € E} .

E'
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In order to see that G' = (P',E') 1is acyclic, suppose there exists
p(x',x') in G' with |p| = 2.. It follows that there is z' on p
such that z' # x' . This implies pl(x',z') and pZ(Z',X')’ in G' .
Consequently, there exist pl(xl’zl) and pz(zz,xz) in G. ‘'In
“other words, (zl,zz) € £ and (xl,xz) € I with f(xl) # f(zl) , SO we

have (x l)~£ £ . Because © 1is a p-congruence, p(xl,zl) implies

122
p(Xz,ZZ). However, p(zz,xz) and p(xz,zz) form a cycle contradicting
the assumption that G is acyclic. Hence' G' is acyclic and f is |
a contraction.

To prove f 1is an ideal map onto G' » we need only show conditions
(1) and (2) of Propositions 5.1 are satisfied. These conditions
follow immediately by observing z € R(xo)lﬂ n(y)v for some' X, g n(y)
implies b(xo,z) which, by p-congruence, implies p(x,z) for any
X € n(xo) . Similarly we have condition (2) satisfied.

To show convexity, we let A be convex in G, p(x',y') in G’
and x', y'¢€ f(A) . If p' e o(x",y') it follows that p(xl,pl) and
p(pz,yz) exist in G with X) s yz‘e A . By p-congruence of‘ £ we have
p(xl,pz) which gives us P, € p(xl,yZJ . Since A is convex P, €A
and, hence f(pz) = p'lE fa) .//

The example in Figure 5.1 shows a convex ideal contraction which

does not induce a p-congruence.
a'le——Db'

Figure 5.1
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It is generally convenient to decompose a contraction f into
several simpler maps fi and then represent f as a composition of
these, namely, f = f1 a.fz o *** o fn . It appears that these simple
maps are of relevance when the graphs are viewed as data or control

structures, see Pfaltz (1972).

Definition. A map fH: G-+G' = (P',E') is called a sinple
contraction if H is a non-void subgraph of G such that (1) f(p) = p'
for all p € H and (2) £ is a homeomorphism of G~H onto
[P' ~ {p'}].

If G and G' are basic and acyclic then the homeomorphism of
condition (2) must be an isomorphism (Proposition'4.11). Pfaltz, in

.fact, uses the more restrictive isomorphic condition and then introduces
a sequence of homeomorphic contractions, called c—cohtractions, to

"reduce' graphs.

Proposition 5.3. Let H be a non-empty subgraph of a basic

finite acyclic graph G . The map fH: G- G' = (P',E') is a simple

ideal contraction if and only if H induces a p-congruence on G .

Proof: Suppose .H = (Q,F) induces a f-congruence on G , that is,
Q and the singleton sets {p} for all p ¢ Q form a partition which is
p-congruent. By Propositi@n 5.2, £ 1is an ideal contraction éd we
need only show G ~H is homeomorphic to [P' ~ {h'}] where £(Q) = {h'} .
Clearly f 1is one-to-one and onto from G ~H to [P* ~ {h'}] . If
p(a,b) = Qyse » +50 > in G ~H , we have (qi,qi+1) ¢ E and a; £Q
for all i . Thus, there are p(f(qi), f(qi+1)) for all ay .
by the continuity of f (Proposition 4.2). If h'E€ p(f(qi), f(qi+l))

for any i , since f  is one-to-one outside of H , then there exists a
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path p(qi’qi+l) with some .h:e Q -on it. Contradiction; G 1is basic.
Therefore, (f(qi), f(qi+1)) in [P'" ~ {h'}] and op(f(a), £(b)) in
[P' ~ {h'}] . This shows f is continuous from G ~H to -[P' ~ {h'}].
For the map f'lt (P! &'{h'}] +Gn~H we have a path p(a',b') in
[P' ~ {h'}] implying p(f'l(a'), f-l(b')) = p(a,b) . By Proposition
4.15 we can choose p(a,b) so that X € p(a,b) implies f(x) € p(a',b");
thus p(a,b) in G~ H . This shows ffl is continuous from [P' ~ {h'}]
to G~H. |
Conversely, suppose fH: G > G' 1is a simple ideal contraction.
Let (xl,xz)»e £ , that is xl; X, € Q, and let Y £ Q such that p(xl,y)
in G . By continuity we have o(x',y') in G' . Fixing xzfe f-l(x')
and applying Proposition 4.10 we obtain p(x2,§) for some ?ie f-%(y').
But f is one-to-one outside of H so y =y, and p(xz,y)‘exists.
Similarly, if zuﬁ Q' and p(z,xl) in G we get by Proposition 4.9 a

path  p(x,xp). //

2. Strong Maps

Pfaltz (1968) deyelops the idea of a convex subgraph~1a;ticé SG

and shows that lattice theoretic propertio§ of SG reflect the essential

. gfaph theoretic properties of G itself. In this-paoéf we have

ohown the relationships between topological properties ond fhe gfaph

theorétic properties.' Using results developed in thio paper, we will

now extend some of the reéults in Pfaltz t1968). | |
Pfaltz maintains that if f is a homorohism of 'G to - G'

>SS

which induces a lower semi-homeomorphism o: S then- £ ''strongly"

G G'
preserves the graph theoretic properties of G ; he calls these maps
"'strong homomorphisms''. Since they do preserve the internal subgraph

structure in a “matural'' way, ''strong" mapé appear to be a valuable
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concept in the theory of directed graphs. Unfortunately, he provides
only one condition which is sufficient for establishing that a |
particular kind of map (convex homomorphism) is ''strong'. A more general
sufficient condition for the existence of a ''strong' map can be
established for a wider class of maps (ideal maps) by applying results
developed for trees and TTSPN's. In particular we show that if G 1is
either a forest or TTSPN, then any ideal map defined on G is strong.
First we must prove a proposition which is interesting in its own

right. It establishes the existence of a partial subgraph, 1 , which
is a one-to-one 'homeomorph' of the range of an ideal map. (The

notation I 1is to suggest the notion of identity.)

Proposition 5.4. Let G = (P,E) be a finite, basic and acyclic
graph, and let f: G»> T' be any ideal map with T' any forest. Then
.there exists I <P such that (1) f is one-to-one from I onto |
the points of T' and (2) for p,q €I, £(p) = p', and f(q) = q' .we

have pG(p,q) if and only if pT,(p',q') .

Proof: We noté that constructing 1 "Simply" consists of choosing
a single representat;ve p from each inverse image set f_l(p') where
p' in T' . Since for any choice of 1 we have pG(p,q) implies
pT,(p‘,q') because f is continuous, the problem lies in showing
pT,(p',q') implies pG(p,q) . Our proof is by induction on the edge
set E' of T'.

For |E'| = 0, 1 the proposition is clearly evident. Now let
|E'| = n+l . In any finite forest it is easily seen that there exists
at least one point z' which belongs to only one edge. For concreteness

we may assume that this sole edge is (y',z') . Let the partial subgraph
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T* be T' with (y',z') delete&. Clearly we still have T* basic

and acyclic. Let G* be the graph formed by deléting edges of C'

as in Lemma 4.21. Now by applying Lemma 4.21 we have a map f*: G* » T*
which is ideal. Since the edge set of T* ié strictly less fhan E’,
‘our induction assumption shows the existence of a set I* in G* Qith
the desired properties. in particular there is y € If n f—l(y'). Since
f is ideal thefg exists z € f_l(z') such fhat p(y,z) by Proposition
4.15. Define I = I* U {z} . We need only show that fqr é(x',zf)

there is a path p(x,z) in lG . Because p(x',z') must end with the
consecutive points y', z', we have p(x,y) iﬁ G and thus combining

this path o(y,z) we obtain p(x,z) .//

Theorem 5.5. If T is a finite tree and f is any ideal map
defined on T with its image basic then f 1is a strong map of T

onto its range f£(T).

Proof: By Theorem 4.22 we know T' = f(T) must be a tree.
We need only show that f induces a lower semi-homeomorphism (LSH)
g: ST > ST' . We follow the proof_and notation of Theorem 7.11 in
Pfaltz (1968). From Proposition 5.4 there exists I in T such
that 1 is one-to-ome with T' and p(p*,q¥) if and only if
eo(p',q') for all ﬁ*, q* € I and 'f(p*) =p', f(q*) = q' . Défine:

o as follows:

i) o) =9
ii) o(p*) =p' for p*.G I
o(p) = § forp £1
iii) o(H) = sup(o(AH)) for all convex'subgraphs, i.e. H € ST .

By definition the map ¢ is order pfeserving with respect to



subgraph containment. Also, for H' € S, we know H = f'l(H') is
convex since the inverse image of convex sets are convex under all
continuous maps. Thus, H € Sy - It is evident that o is onto
Spr -
The only remaining problem is to show that o takes full sets
of atoms onto full sets of atoms. Following Pfaltz (1968) let A
be full and q' = ch(c(A)) . Thus, either q' = o(q) for some
q € A, in which case we are done or there exists r*, s* in A
with o(r*) =r' # @ and o(s*) = s' # 9 with q' € p(r', s")
From Proposition 5.4 there exist paths’ pl(r*,q*) and pz(r*,s*)
in T . Since A is full q*_e A and o(q*) = q' € o(A)y. This
shows that o(A) is full.
The remainder of the proof is exactly the same as the proof of
Theorem 7.11 in Pfaltz (1968).//
We note that in view of Proposition 5.4 we could have stated a
slightly stronger version of the preceding Theorem, namely "if £
1s an ideal map and its range is a forest then f is strong."
Our next goal is to show a similar result for TTSPN's, that is,

ideal maps defined on TISPN's are strong. First; the next two lemmas

must be proved.
Lemma 5.6. Let G = (P,E) be the serial composition of two
TTISPN's H1 = (Pl,El) and HZ = (PZ,EZ) , with terminal points

s, z and z, t respectively. Then f: G » G' 1is an ideal map where

[}

G' = (P',E") , P' = P, U {t},

E' = El‘U'{(z,t)} , and
f(p) =p if p€ P,
f(p) =t if p¢€ P, {z} .

73
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Proof: We show the conditions of Proposition 5.1 are s_atisfied'
for the partition 1 = {f'l(p') | p'_e P'} . Suppose xé e,L(yo)
and xo“g n(yo) . Case (a) if byo‘ﬁ m(t) then n(yo) = {y,} so that
for all y ¢ n(yo) we have w(xo) NLY) = n(xo) n L(yo) 9.
Case (b) if Yo € m(t) then xo_.ﬁ m(t) and n(xo) = {xo} . Since
X, € L(z) and z € L();) for all y € P2 we have TT(XO) NLy) # 0
for all y €n(t) < P,. Ina like manner cond_ition (2) of Proposition

5.1 can be proved.//

Lemma 5.7. Let f: G~ G' be an onto ideal map, G be a TISPN,
and G' be the serial composition of Hi = [ei] and H'2 = [eé] and
z' the common point of Hj and H) . Then for any z € f-l(z') the

map f: [R(z)] - Hé is ideal.

Proof: Since f is ideal £(R(z)) = R(£(z)) = R(z') = o} .
Define the partition Ty = {f-1(p') N R(z) | p' € 9'2} for H = '[R(z)].
We shall show this partition satisfies the conditions of Proposition 5.1
and, therefore, f: H -» Hé is a.n ideal map. In H lef Xo.e L(yo)
and £(x) # £(y)) and y € £1(y,) . If for some x €rm(x) such
that x € L(y) in H then condition (1) of Proposition 5.1 is satisfied.
Suppose n(xo) NL(y) = § , then in particular X £ L(y) . Since
f is an ideal map on G , there exists x € Lly) in G such» that
f(x) = f(xo) ; SO x'ﬁ R(z) . We have yIG'R(x) N R(z) , thus, let
u be a minimal upper bound of . x and z . Now z € L(u) N L(xo) ,
so let v be a maximal lower bound of u and x_ . It follows that

o)

we can define
py(s,t) = p(s,v) + o(v,x)) + p(x,,t)
p,y(s5t) = o(s,x) + p(x,u) + p(u,t) and

ps(v,u) where s and t are the terminal points of G .
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We have v # u for otherwise the paths p(x,u) and p(v,xo) imply
u=veE n(xo)_ (G' acyclic) and, thus, n(xo) NLyY) #9 .

let r € Py and r#v . If T € p(s,v) then G has a cycle;
if r € p(v,xo) then v is not a maximal lower bound of u and X, 3
if r € p(xo,t) then xO € L(uw) € L(y) - in all cases we have a
contradiction. Now let r € Pz and r#u. If r €p(s,x) then
x €R(z) ; if 1 € p(x,u) then u is not a minimal upper bound
of x and z ; if r € p(u,t) then G has a cycle; a contradiction
in all cases. Therefore we have shown py Nz = {v} and p, Npg =
{u} , and; thus, Pys Pps P3 constitute a cross-comnection. By
Theorem 3.12, G is CCF, hence we have a contradiction. This proves
n(x,) N L) # 9.

Condition (2) of Proposition 5.1 is immediately satisfied since if
Yo € R(xo) and f(yo) #vf(xo) then for x € n(xo) there exists
y4€ n(yo) N R(x) iﬁ G, and 'y € R(x) € R(z) so y € w(yo) N R(x)
in H .//

Proposition 5.8. If f: G-+ G' is ideal and G and G' are

TTSPN then there exists I c P such that (1) £ is an one-to-one map
fron I onto G' and (2) for p,qel, f(pj =p', £f(q) = q' we
have o(p,q) if and only if pG.(p',q') . Moreover, we can pick

the terminal points of G tobe in T .

Proof: When |E'| =1,2 the graph G' is a tree and, thus we
can apply Proposition 5.4. For |E'| 23, let G be the composition
of two TTISPN's, Hi and Hé . Let s' and t' be the terminal
points of G' . In the parallel case, if the edge (s',t') € E' , then

clearly the identity map from G' onto G' = (P', E' ~ {(s',t")})
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is an ideal map with G'" = having fewer edges than' G' ; SO we have a.map
from G onto G that is ideal (composition of ideal maps is.ideal);
By our induction hypothesis there exists 1 € P with the desired
properties. It is evident that this set I satisfies the desired
properties for. f: G » G" .

By the remarks fbllowing Lemma 4.24 we can obtain partial subgraphs

H, and Hz of G so that f: H1 > Hi and £: H2 > Hé are ideal

1
maps.. If we can show H1 and H2 are TTSPN then we can apply the

induction hypothesis for f restricted to H1 and Hy 3 thus we

1 of H1 and I2 of HZ-. “Let 1 = I1 5

and t are terminal points for both H- and H , we have

have 1 .U I Since s

s,t e I; NI, . Moreover, £(I; N 1I,) = {s',t'} because the image

1
set must be in Hi and Hé.. This shows f is an one-to-one map
from I onto G' . Now suppose p,q eI , f(p) =p' and £f(q) =q' .
By continuity of f , po(p,q) implies po(p',q') . Conversely if
p(p',q') in G' we have two cases. (i) If p' and q' are in
Hi (or Hé) then p,q € 11 (or 12) and (p,q) exists. (ii) If
p'. isin Hj and q' isin Hj , it follows that either}. p' = s
(in which case p' is in Hi) or q' =t' (in which case q' is
in Hi); therefore only the first case (i) is possible.

Now we show Hi and H2 are TISPN., Clearly s and t are in
-Hl since f({s,t}) = {s',t'} (which is in Hi). If s and t are
thebterminallpoints of Hl then Hy will be a TTSPN by remark (5)
followiﬁg the &efinition of TTSPN. Obviously, L(s) = {s} and R(t) =
“{t} in H, . For any point x in H1 , We héQe. f(x) = x' in Hi
so that there exist paths p(s',x) and p(x',t') in H' . Since

f 1is an ideal map from Hy onto Hi » by Proposition 4.15 we have paths
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p(Sl,X) and p(x,tl) in H1 where f(sl) = s' and f(tl) = t!

By the constructing of H1 the paths p(s,sl) and p(tl,t) must be

in Hl ; thus we have the paths p(s,t) and p(x,t) in Hl . This

proves s and t are left and right terminals respectively for H .
Similarly we prove s and t are terminal points for Hé and, therefore,

H'

2 is a TTSPN.

In the serial case let z' be the common point of Hi and Hé .

Since |E'| = 3 then either H] or H) must have at least two edges,

2
say Hé . We may also assume s' 1is in Hi and t' is in Hé . (A
similar -argument holds if s' is in H2 and t'_ is in Hé .) By
Lemma 5.6 we have an ideal onto map g: G' - G'" where the points of

H' except for z' map onto t' and g(x') = x' for all other points
of G' . Clearly G" has fewer edges than G' . Since the composition
of ideal maps is ideal, it follows that f o g: G » G'" is an ideal map.
By the induction hypothesis, there exists I  in G where f o g is

1

one-to-one from I onto G'" .

1
In particular there exists z ¢ I1 such that £(z) = z'

Let H = [R(z)] ; since f 1s ideal we have f(R(z)) = R(z') so that
f(H) maps onto Hé .’ By Lemma 5.7 the map f: H ~» Hz. is ideal.
Thérefore, by the induction hypothesis'there exists I2 in H such
that f 1is one-to-one from I2 onto Hi . In particular z, t € I2 .
Define I = I1 V) I2 .
from I onto G' . By the continuity of f: G -~ G' we have for

Clearly Il_n I2 = {z,t} and f 1is one-to-one

p,q € I the path p(p,q) implying o(p',q') . Conversely let
p(p',q') in G' ; we have two cases. If p',q' are both in Hi
(or Hé) then we have p(p,q) in G for p,q € L (or IZ). If

p' in Hl and q' inH) we must have p(p',z') in H and



p(z',q') in Hé . It follows that op(p,z) and p(z,q) are in -
G for p,q,z €I .//

Theorem 5.9. If G is a TISPN and f is an ideal map defined

on G, then f is a strong map of G ‘onto its range.

Proof: By Theorem 4.20 the range of f is a TTSPN, call it
G' . Proposition 5.8 enables us to pick a point set I of G such
that pG(p*’q*) if and on}y if pG'(b"q') for 'p*,q*_e I . The
proof is now the same as that of Theorem 5.5.//

In éarlier chapters we have shown that ideal maps, when defined
on suitable domains, have many desirable properties. In particular
ideal maps preserve 1) trees, 2) TISPN's, and 3) completely norhalv
graphs. In this section we have shown that in the first two cases
ideal maps are strong. it seems natural to conjecfure that ideal
maps with completely normal domains are also strong; especially since
we have éhown that trees and TISPN's are completely normal. This

conjecture does appear to be true.
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