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Introduction

X

The motion of a charged particle in electromagnetic fields

of various geometric configurations and arising from a variety of

sources is of intrinsic interest in electromagnetic theory. The

results of the analysis of the motions generated by the field-

charge interaction are in many cases also pertinent to the

discussion of applied problems in plasma physics and astrophysics.

The particular configuration consisting of a plane wave propagating

in the presence of a:static uniform magnetic field whose direction

is parallel to the wave normal is examined in this report. The

analysis presented here is developed along lines different from

those pursued in a previous study.of the same configuration by

Roberts and Buchshaum [1964]. It should be remarked that the

problem under consideration is treated within the context of

classical electromagnetic theory. The corresponding quantum

mechanical, problem - but neglecting the quantization of the field -

has been discussed by Redmond [1965] who solved the appropriate

Klein-Gordon and Dirac equations. In neither of the references

.cited above is the radiative reaction force taken into account.

While from a physical point of view a knowledge of the influence



of the radiative reaction on the motion of the charge would be

very useful, the analytical difficulties associated with the

Lorentz-Dirac equation are frequently sufficiently formidable to

preclude the obtaining of the desired information. In fact it

was hoped originally, on the basis of some success with a simpler

field configuration, Mitchell et al. [1971], to include this

radiative reaction in the following analysis, but to date mathe-

matical difficulties have proved insurmountable in the search

for a purely analytical solution. A numerical solution - at least

to the approximate Lorentz-Dirac equation - could, of course, be

obtained in a relatively straightforward way.

As a final comment prior to developing the analysis, it may

be pointed out that an approach to this problem through the

Hamilton-Jacobi formulation, although not adopted here, is an

alternative possibility. Such an approach would naturally have

much in common with the quantum mechanical formulation. The basic

non-linearity of the Hamilton-Jacobi equation, especially in its

relativistic form introduces major difficulties, however; see

e.g., Corben and Stehle [1965], Landau and Lifshitz [1959].



Motion in Moving Frame of Reference

The direction of propagation of the wave, and consequently

the uniform magnetic field direction, is taken to be along the

positive z-axis of the usual cartesian xyz triad. The field can

then, without significant restriction, be represented as the

superposition of a circularly polarized monochromatic wave and a

uniform field, H , in the form

E = E sin (u>t - az) ; H = H cos (cot - az>

= -E cos (wt - az) ; H = H sin (tot - az)

E = 0 '. ? H = Hz z o

... (1)

all quantities being measured relative to a reference frame in

which the electrical conductivity is zero and the constitutive and

field equations are the usual

"*" )
D = eE ; V-H = 0 ; VxE + U ff = 0

- > • - » . -> -»• 3F V ... (2)
B = yH ; V-E = 0 ; VxH - e ~ = 0

)

expressed in rationalized m.k.s. units. It follows,. Stratton [1941]/

that the phase velocity, v.. , of the wave is given:;by

v = cj/a = 1/v/iJF = E/uH . • (3)

and that the index of refraction, n, of the medium in which the

motion takes place satisfies the relations

n = c/v, = c/w = cB/E (4)

where the speed of light in vacuo is represented by c. Subsequently,



unless explicitly stated otherwise, it is assumed that n > 1. The

exception to this inequality will be the case in which n = 1, i.e.,

the case in which the motion takes place in a vacuum.

The equation of motion of the charge, q, is

£2. = q[E + vxB + vxB ] (5)at ^ o

in which the momentum of the charge is

-»• -*• / X " 2.2 ,,.p = mv//l — v /c (6)

m, being the rest mass.

The analysis of the motion can be simplified considerably by

carrying out a Lorentz Transformation to a frame moving in the

positive z-direction with velocity v, . Relative to this frame the

particle is subjected to the influence of a magnetic field alone,

the electric field of the wave being entirely eliminated. In

fact, after some reduction one finds the magnetic field -in the

moving frame .to .be . . .

and the equation of motion reduced to

q v' ;x ' (8)

In equations (7) and (8) the superscript prime has been introduced

to denote .quantities measured relative to the moving reference

frame, the unit vectors 1, ~] r Jc are along the x
1 , y1, z1 axes,

2 2 -1/2respectively, and the constant factor, j^, represents (1 - v̂ /c } ' ,

Equation (8) in cartesian component form is
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. (10)

and

the three constants

1 1 2 o 3 1 1

being introduced for conciseness.

The first two component equations can be integrated immediately

to give

px = a2y' ~ a4 cos a3 z' + Cl (13)

and
p' = - a-x1 + a. sin a., z' + C., . (14)y / 4 j z

respectively, where C, and C2 are constants of integration and the

constant a4 = a-,/a^.

The energy of the charge is

and so

= mc2//l -. (̂ -)2 (15)

' , dp '
- = v • r-

From equations (9), (10), (11), and (16) it follows that

0 (17)



and therefore the energy E' is a constant. This, of course, is to

be expected because the motion is taking place in a pure magnetic

field. Accordingly, equations (13) and (14) can be written

my1 , t = a- y
1.- ̂-cos a ^ z ' + C , (18)

and

.
my' p- = - a2 x

1 + ~ sin 03 z
1 + C2 (19)

_!_
v ' 2 2

in which the constantly1 = (1 - ( — ) ) • Although the third compo-
\̂ t

nent of the equation of motion cannot be integrated as directly as

the first two, the explicit spatial deperidence of p' can be found
• *'

as follows. On eliminating the terms dependent on z1 from the

right hand .side of equation (11) one finds after some development

an integrable equation which leads to . . .

Pz = - |
 a
2
a3(x'2 + Y'2) + a3(C2X' ~ CIY|) f C3 (20)

and consequently

my' - = - aa(x' 2 + y'2) + a(Cx' - C') + C (21)

in which C3 is a constant of integration. •

Alternatively, the temporal and spatial and dependence of

p' can be determined from the general energy -momentum relationship
2

E1 •= .(p'c)2 + m2c4 (22)

The trajectory of the charge in the moving frame of reference is

given in parametric form by equations (18), (19), and (21), or in

simultaneous form by .



dx' _ dy|
?2y' - o. cos a3z ' + C, ~02X' + °4 s-"-n a3z' + C2

-a2a3(x'
2 + y'2)/2

(23)

Without attempting an explicit determination of the trajectory it

can be asserted on the basis of equations (13) , (14) , (20) , and

(15) that the motion takes place on the surface

2 ? 1
(x.̂  + y-^) - a3(G2x- - Ciy') - C3J

2

2 2
+ (o2y' - a. cos a'z' + C,) +'(a2x' - a^ sin a3z' - C2)

= constant (24)

where the constant is determined by the initial conditions.



Motion in Fixed Frame of Reference

The application of the Lorentz Transformation to the momen-

tum four-vector

"*" i i
M' = .{my1 ~ , i ̂ 2-} (25)

c

produces the equations which describe the motion in the fixed frame,

After some algebraic manipulation one finds the momentum components

to be

p = a~y - cr. cos (ut - az) + C, (26)

p = ~c?2x ~ cr/ sin (cot- - az) + C'^ (27)

and . ' • . •

Pz = -T1
0'2

a3 (*2 + Y2)/2 + Y1a3(C2x - Ĉ y). + ̂^3 + Y1v]_ ̂ j
t̂

(28)

The energy of the motion relative to the fixed frame can be written

in the form .-

E = Yff' + Y '

+ Yj_ !a3(C2x " ̂^ + Y1V1C3

(29)

It is worthy of note that equations (28) and (29) can be combined

to give

E1 = Y-L^ -• vlPz) (30)

Thus the quantity E - vnp remains constant throughout the motion.
_L Z



An additional constant of the motion can be obtained by combining

equations (26) and (27) in the form

2 2 2
• x 2- 1 ' y 2 2 4 ^ /

. A more direct link between the relationship expressed in

equation (30) and the equation of motion (5) may be established as

follows. The rate of change of the energy E is

•>-. ' c-3 ->• dp • i-i')\
at = v • at (32)

\vhich ' .

= qv - E . - • . .(33)

on using the equation of motion (5).. However, for a plane wave

I = .VIB x ic ; . • (34)

and again from equation (5)

^ - (v x S) (35)dp

Therefore

(36)

a n d ' . ' . ' '

3 = ̂o + Vl(?2 - PZ
 } (37)

o

in which the subscript zero -denotes values at. some particular time

t . It is now seen that the constant E1 introduced in equation. (15)

satisfies the equation

£' = .Y^ - vp ) . (38)



10

In conclusion one notices that a simultaneous set of

differential equations which determine the trajectory relative to

the fixed frame can be written by combining equations (26) , (27) ,

and (28). In contradistinction to equation (23), however, the

formulation under discussion would explicitly involve the time.
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Motion in a. Vacuum: The Case n_ = 1_

The analysis contained in the preceding pages has been

developed subject to the restriction that the index of refraction,

n, of the Medium in which the motion takes place is greater than

unity. However, the case in which n = 1 is also of considerable

interest. It cannot be treated by the Lorentz Transformation

already used because the phase velocity of the wave is v, = c

when n = 1, and hence Y-I "*" °° rendering the transformation singular.

One observes, nevertheless that the expressions (26), (27), and

(28) for the components of the linear momentum are independent*

of the factor y-i • It can be, .shown, in fact, by direct substitution

in the equation of motion (5) that the three relations (26), (27),

and (28) are valid for any value of n. Accordingly, the constants

of the motion already established exist independently of any

restriction on the value of the index of refraction. For the

case n = 1, the energy relationship (37) takes the form

E = EQ + c(pz - pz ) (39)
o

On using the general energy-momentum relationship, one finds that

pz
 = T (PZ ~ V

0'"1 {(PZ ' V
c)2 ' ™2°2o o

2
- [tfo^ ~ a4 cos ^^ ~ az^ + Cl^

2
- [a2x + a, sin (cot - az) - C^] } (40)

* Equation (28) exhibits a superficial dependence on YI • It can be
removed upon recourse to equation (12).
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Equation (40) is equivalent to equation (28) which, although derived

for n .> 1, is now seen to be valid for arbitrary n.

In addition equation (40) when used in conjunction with

equation (39) provides the explicit dependence of the energy E on

the position of the charge and on time. This functional dependence,

as in the case n > 1, can be expressed in the form #(x, y, cot - az)

without difficulty.
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Motion, in Momentum Space

Considerable insight into the particle's motion can be

obtained by examining the dynamics in a "momentum-space" in which

the momentum components are taken to be the rectangular cartesian

coordinates of a point. In particular, the difference in the

behavior of the charge in the two cases n > 1 and n = 1 is quickly

made apparent by the formulation in momentum-space. For this

reason, and also for mathematical convenience, the two cases referred

to are once again treated separately.

1. Index of Refraction n_ >_ l_

On squaring equation (37), which actually expresses the

constancy throughout the motion of a certain function of the momen-

tum components, it is seen that the charge is confined in momentum-

space to the surface defined by

2 7 1 9 V1 79
p^ + p + -i- p - 2 -4 (E - v,p )p + m cx^x *y Y2 z 2 v o l^z '*z .1 , c o

This equation represents a prolate ellipsoid whose axis of symmetry

coincides with p -axis. The semi-major axis, a, of this spheroid

13 2 1 2 2 2 1/2
a = (p_ - p ) /2 = Y [ (E ~ v.,p ) (—) - m e ]

max min . • o .

where the maximum and minimum values of p are, respectively

V' v 1 ZP ' 2 2 2
=' Y n - f c ' -£ + [( > ~ m c 3 > (43)Jmax
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7T. I Vl C1 ' 9 ? 9

' ' " " "

Owing to the closed nature of the surface of the ellipsoid

it is immediately clear that the energy of the charge remains

finite* and bounded at all times. In fact, it is possible, although

the results will not be reproduced here, to calculate, explicit

upper and lower bounds on the energy.

2. Motion in_ £ Vacuum; Index of Refraotion n_ ̂ 1_- . •

In this case the appropriate point to start the discussion

form is equation (39) which leads, on squaring it, to

The significant, difference between equations (41) and (45) is the

absence of a quadratic term in p in the latter. This

results in an opening up of the ellipsoid into a paraboloid, its

surface being a surface of revolution about the p -axis.

Consequently, it is no longer possible to establish an upper

bound on the particle's energy which may therefore increase with-

out limit as the motion develops. Some aspects of these results

are discussed in a different context by Roberts and Buchsbaum

[1964] .

As a final comment, it is remarked that if the index of

refraction n is less than unity, the corresponding surface in

momentum- space is determined by an equation formally similar to

equation (41). However, the condition n < 1 implies , that the '•
2

coefficient y-i < 0 an<^ hence the surface is a. hyperboloid of



'
n •
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