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PHYSICAL PHENOMENA RELATED TO CRYSTAL GROWTH 
I N  THE SPACE ENVIRONMENT 

Ting L. Chu 

Elec t ronic  Sciences Center 
Southern Methodist University 

D a l l a s ,  Texas 75222 

SUMMARY > 

The object ives  of this program are t o  study the mechanism of c r y s t a l  
growth which may be a f fec ted  by t h e  space environment and t o  de&uce conclu- 
s ions  as t o  the relative technica l  and sc i en t i f i . c  advantages of c r y s t a l  
growth i n  space over ea r th  bound growth without regard t o  economic advantage. 
To meet these objec t ives ,  the l i t e r a t u r e  on c r y s t a l  growth from the  m e l t ,  
so lu t ion ,  and vapor phases w a s  reviewed, and the physical phenomena important 
f o r  c r y s t a l  growth i n  a zero-gravity environment were analyzed. 

The melt-growth i s  the most important technique f o r  the production of 
large c rys t a l s  of e l e c t r o n i c  mater ia ls .  In  the Czochralski pu l l i ng  technique 
with t h e  m e l t  contained i n  a crucible ,  forced convection is  necessary t o  over- 
come the random thermal f luc tua t ions  due t o  na tu ra l  convection and t o  minimize 
the impurity inhomogeneity i n  the m e l t  due t o  segregation. The absence of  
f r ee  convection i n  the space environment w i l l  only m e a n  t h a t  the forced con- 
vection can be of smaller magnitude. I n  the f l o a t  zone and cruc ib le less  
techniques, t h e  sur face  tension of the m e l t  and the  l e v i t a t i n g  electromagnetic 
f i e l d  overcome the g rav i t a t iona l  force t o  support  the molten zone. The 
c ruc ib le less  technique w i l l  therefore  most d i r e c t l y  demonstrate the unique 
e f f e c t s  of the grea t ly  reduced gravi ty  i n  the space environment. 

Several  experiments, including cruc ib le less  c r y s t a l  growth using s o l a r  
energy, determination of d i f fus ion  coef f ic ien ts  of common dopants i n  l i qu id  
s i l i c o n ,  etc.,  were recommended f o r  the Space Shu t t l e ,  and continued e f f o r t  
t o  carry out  preliminary experiments on ea r th  w a s  suggested. 



I. Introduction 

This is  the  f i n a l  repor t  of a study program "Physical Phenomena Related 
t o  Crystal  Growth i n  the  Space Environment" 
Center of the National AeronaUtiGS and Space Administration, Hampton, Vi rg in ia ,  
under cont rac t  NASI-11869. 
mechanism of c r y s t a l  growth which may be a f fec ted  by the space environment and 
t o  deduce conclusions as t o  the  r e l a t i v e  technical  and s c i e n t i f i c  advantages 
of c r y s t a l  growth i n  space over ear th  bound growth without regard to economic 
advantage. 

sponsored by the Langley Research 

The object ive of t h i s  cont rac t  i s  t o  study the  

To m e e t  the above ob je s t ive ,  the l i t e r a t u r e  on cvystal growth techniques 
w a s  reviewed, the physiaal  phenomena important f o r  c r y s t a l  gxowth i n  a zero- 
grav i ty  environment w e r e  analyzed, and three meetings w e r e  held a t  the  Elec- 
t r o n i c  Sciences Center of Southern Methodist University t o  discuss various 
aspects of t h i s  program. Par t ic ipants  a t  these  meetings included M r .  Wendell 
6 .  kyers  of the Langley Research Center, D r s .  Ting L. Chu and Ronald K. S m e l t -  
zer of Southern Methodist University,  and three eminent consultants -- D r .  Jack 
P. Wolman, Professor of Thermal and Fluid Sciences a t  Southern Methodist Unives- 
s i t y ,  D r .  Francois Padovani, Manager of S i l icon  Research and Development a t  
Texas Instruments, Incorporated,  and D r .  Walter R. Runyan, Manager of  Materials 
Processing a t  Texas Instruments, Inc. I t  was concluded from de ta i l ed  analyses of 
c r y s t a l  growth from the m e l t ,  so lu t ion ,  and vapor phaseg t h a t  c ruc ib le less  growth 
i n  the  space environment has d i s t i n c t  technical  and s c i e n t i f i c  advantages and 
merits inves t iga t ions  i n  space. Furthermore, the  study of gas phase c r y s t a l  
growth i n  space can contr ibute  s ign i f i can t ly  t o  the  bas ic  understanding of t h i s  
most important technique i n  modern e lec t ronics .  Several suggestions were also 
made concerning earth bound experiments which w i l l  f a c i l i t a t e  the  design of 
c r y s t a l  growth experiments i n  the space environment. 

In  t h i s  r epor t ,  t he  commonly used c r y s t a l  growth techniques are  reviewed, 
the e f f e c t s  of zero gxavity 'on various growth pxocesses and the s c i e n t i f i c  
and technica l  meri ts  of c r y s t a l  growth i n  the space environment a re  discussed, 
and recommendations on space and ear th  bourrd experiments are described. 
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11. Crys ta l  Growth of Elec t ronic  Materials 

The c r y s t a l  growth of s o l i d  state mater ia ls  from the  m e l t ,  the  so lu t ion ,  
and the vapor phase is an art of many years ( R e f .  1). With the  advent of 
semi-conductors i n  the late f o r t i e s ,  the crystal growth techniques have ad- 
vanced rap id ly ,  and considerable progress has also been made i n  the  under- 
standing of the  c r y s t a l  growth processes. The growth of l a rge ,  near ly  pe r fec t  
s ing le  c r y s t a l s  of germanium and s i l i c o n  has contributed s i g n i f i c a n t l y  t o  the  
understanding of t h e i r  p roper t ies .  The proper t ies  of e l ec t ron ic  materials are 
s t rongly dependent on the  s t r u c t u r a l  perfection. For example, g ra in  bound- 
aries act  as carrier recombination centers and mobili ty s c a t t e r i n g  centers .  
Also, t he  boundary may a c t  as an in su la t ing  layer ,  and the  measured proper- 
ties of po lycrys ta l l ine  material may be more ind ica t ive  of the proper t ies  of 
gra in  boundaries than of the t r u e  proper t ies  of ind iv idua l  crystal grains .  
Thus, the  growth of s ing le  c r y s t a l s  i s  e s s e n t i a l  f o r  t he  charac te r iza t ion  of 
e l ec t ron ic  materials and the  fabr ica t ion  of many e l ec t ron ic  devices. The 
techniques used successful ly  f o r  the  c r y s t a l  growth of e l ec t ron ic  mater ia ls  
are reviewed i n  the  following sect ions.  t 

11.1. Growth from the M e l t  

The c r y s t a l  growth from a m e l t  has been the  most success fu l  technique 
f o r  the preparat ion of s ing le  c rys t a l s  of e l ec t ron ic  materials. '  
nique o f f e r s  the  advantages of high growth r a t e s  and the  preparat ion of large 
s ing le  c r y s t a l s  However , the  material under consideration must m e l t  congru- 
en t ly  without i r r e v e r s i b l e  decomposition, and there  i s  no s o l i d  state phase 
transformation between the melting poin t  and the temperature t o  which the  
c r y s t a l  w i l l  later be cooled. Also, the temperature required f o r  melt-growth 
i s  higher than t h a t  required by the  so lu t ion  and vapor growth techniques, and 
contamination from the container may be a problem. 

This tech- 

11.1.1. Pr inc ip les  of Melt-Growth 

When a a r y s t a l  is grown from a m e l t ,  t he  s o l i d i f i c a t i o n  process must 
be control led t o  avoid random nucleation. Usually, a s ing le  c r y s t a l  seed i s  
used, and the s o l i d i f i c a t i o n  is allowed t o  take place ,on the  surface of the 
seed by adjust ing t h e  thermal geometry. Under proper conditions,  the  growth 
continues the c rys ta l lographic  o r i en ta t ion  of t h e  seed t o  form a s ing le  c rys t a l .  
The thermal conditions a t  the growing l iquid-sol id  in t e r f ace  are the most i m -  
po r t an t  f ac to r s  governing t h e  c r y s t a l  growth process and are  influenced by 
many fac tors .  In  p rac t i ce ,  the l i q u i d  i s  heated a t  a temperature above the 
melting poin t  by conduction and rad ia t ion  from a thermal source. 
fusion is generated a t  the  in t e r f ace  a t  a rate d i r e c t l y  proport ional  t o  t h e  
r a t e  of s o l i d i f i c a t i o n .  
the grown c r y s t a l  and by conduction and rad ia t ion  from the  c r y s t a l  t d  thermal 
s inks  provided by t h e  container w a l l s  and any gaseous atmosphere. 
is a ne t  accumulation of h e a t  t o  t h e  in t e r f ace ,  the c r y s t a l  w i l l  m e l t .  
is a n e t  loss  of h e a t  at the i n t e r f ace ,  the e r y s t a l  w i l l  grow a t  a r a t e  deter-  
minedby the  rate of d i s s ipa t ion  of h e a t  of fusidn. 
l i qu id  and s o l i d  de t eMine - the  rate a t  which hea t  axrives at: .and leaves . the  
in t e r f ace ,  thus determining the rate of crystal g m * .  
a ture  and temperature gradients  are therefore  of utmost importance i n  malt- 
growth techniques * 

The heati of 

Heat i s  l o s t  from the  in t e r f ace  by conduction through 

I f  there 
, ~ f  there 

Thermal gradients  i n  the  

'Ilfie control  of temper- 
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The thermal gradients  i n  the graving c r y s t a l  a l so  determine the shape 
of the  so l id i fy ing  in te r face .  Figure 1 shows t h e  isothermal surfaces  f o r  
concave, planar ,  and convex in te r faces .  In  the planar cases, there are 
only longi tudinal  gradients .  The curved in t e r f aces  are  associated ?with 
transverse temperature gradients  as w e l l  as longi tudinal  ones. The t rans-  
verse gradients  can be espec ia l ly  troublesome. For expample, when the 
in t e r f ace  concaves i n t o  the l iqu id ,  Fig.  1 (a) ,  the cooler surface of the 
c r y s t a l  acts as a cons t r ic t ing  tube which tends t o  sgueeze the h o t t e r  in-  
t e r i o r  and could cause p l a s t i c  deformation of the i n t e r i o r  of the c rys t a l .  
A p lanar  i n t e r f ace  can be achieved by minimizing thermal loss f r am t h e  
surfaces  of the c r y s t a l  by using a f te rhea ters  (Ref. 2 ) .  

(a) 

Fig. 1. Isothermal surfaces  i n  a growing c r y s t a l  when the l iquid-  
s o l i d  in t e r f ace  i s  (a )  concave i n t o  the  l i qu id ,  (b) p lanar ,  
and (c) convex i n t o  the  l iquid.  

During the c r y s t a l  growth by the s o l i d i f i c a t i o n  of a m e l t ,  the c r y s t a l  
does no t  have exact ly  the  same composition as the  m e l t  because of the segrega- 
t ion  of impuri t ies .  In  the  case where only one impurity with a segregation 
coe f f i c i en t  k is  present ,  the impurity d i s t r ibu t ion  along the  length of the  
c r y s t a l  is given by ( R e f .  3)  : 

where C(x) i s  the concentration of impurity i n  the c r y s t a l  as a function of 
the  h a c t i o n ,  x ,  of the m e l t  s o l i d i f i e d ,  and Co is the i n i t i a l  concentration 
of impurity i n  the m e l t .  Unless the segregation coe f f i c i an t  is  near unity,  
the  *impurity content changes along the  length of the c r y s t a l  making it im- 
possible  t o  produce a c r y s t a l  of uniform impurity concentration. 

11.1.2. Growth i n  a Containing Crucible 

The Bridgman-Stockbarger technique is the  o l d e s t  and widely 
used technique for  growing s ing le  c rys ta l s  from the m e l t .  In  this technique, 
both the m e l t  and the growing crystal are contained i n  the same crucible ,  and 
Fig. 2 shows the  crucibles  used f o r  the growth process. When a v e r t i c a l  cru- 
c ib l e  i s  used, it is f i l l e d  w i t h  t he  polycrys ta l l ine  m a t e r i a l ,  placed i n  a 
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furnace, and heated t o  a temperature above the melting po in t  t o  m e l t  t he  

Fig. 2. Crucibles used i n  the Bridgman-Stockbarger technique. 

e n t i r e  charge. The c ruc ib le  is  then slowly cooled i n  such a manner t h a t  
s o l i d i f i c a t i o n  begins a t  the  tapered end of the  crucible .  Because of the 
s m a l l  volume of the tapered region, the probabi l i ty  of forming only a s ing le  
nucleus is  enhanced. Further  cooling is car r ied  ou t  so  t h a t  an isothermal 
surface near  t h e  melting po in t  passes progressively from the  cohs t r ic ted  
region through the m e l t  u n t i l  t he  e n t i r e  m e l t  has s o l i d i f i e d .  In  t h i s  manner, 
the s ing le  nucleus which first forms i n  the t i p  of the crucible  can be made t o  
grow and fill the e n t i r e  crucible ,  y ie ld ing  a s ing le  c r y s t a l  of the  s i z e  and 
shape of the crucible  i t s e l f .  Using the  crucible  configuration i n  2 (b) , a 
s ing le  c r y s t a l  may be grown even i f  it is  not  poss ib le  t o  form one s ing le  nu- 
cleus i n  the f i r s t  cons t r ic ted  region. I f  s eve ra l  nuclei  are  formed y ie ld ing  
several grains  which reach the  second cons t r ic t ion ,  it i s  highly probable that 
only one of the growing grains  w i l l  be properly or iented t o  grow through t h i s  
cons t r ic t ion .  The surviving grain then serves as the  seed f o r  t he  growth pro- 
cess. The process of self-seeding by spontaneous nucleation is  usually em- 
ployed when a vertical  crucible  i s  used. It  is very d i f f i c u l t  to cont ro l  the 
c r y s t a l  gxowth w i t h  a seed c r y s t a l  because of the i n a b i l i t y  t o  see the l iquid-  
s o l i d  in t e r f ace .  The seeding may be readi ly  car r ied  out  by using a hor izonta l  
crucible ,  Fig. 2 ( C ) ,  and this technique has been used widely i n  the growth of 
germanium s i n g l e  c r y s t a l s  ( R e f .  2 ) .  

The Bridgman technique is  simple and espec ia l ly  u s e f u l  f o r  the  c r y s t a l  
growth of materials which decompose a t  the melting poin t .  
motion is  required between the l i q u i d  and growing c r y s t a l ,  t he  Bridgman tech- 
nique may be car r ied  o u t  i n  a sea led  tube t o  e s t a b l i s h  the desired vapor 
pressure of the v o l a t i l e  component. The disadvantages of the Bridgman tech- 
nique include the i n a b i l i t y  t o  cont ro l  the  dopant concentration and d i s t r ibu -  
t i on  i n  the  grown c rys t a l ,  the d i f f i c u l t y  of se l ec t ing  an i n e r t  crucible  f o r  
many m a t e r i a b ,  and the  r e l a t i v e l y  poor s t r u c t u r a l  per fec t ion  of the grown 
c r y s t a l  due t o  the  preva i l ing  thermal conditions. 

Since no r e l a t i v e  

I1 1.3. Crys ta l  Pul l ing  

The most common melt-growth technique is the  pu l l ing  technique 
developed by Czochralski i n  1917. The Czochralski technique w a s  re f ined  by 
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T e a l  and L i t t l e  f o r  t h e  growth of germanium and s i l i con  s ing le  c rys t a l s  
(Ref. 4) a The b a s i c  elements of a c r y s t a l  p u l l e r  are shown i n  Fig. 3. 
The m e l t  is  contained i n  a s u i t a b l e  crucible ,  A, heated by an energy source, 
B, The s i n g l e  c r y s t a l  seed, C,  is he ld  i n  a s h a f t ,  D, which can be raised 
and ro t a t ed  a t  control led rates. To g r m  the crystal, the m e l t  is  first 
he ld  a t  a temperature s l i g h t l y  above the melting po in t  of the material. 
The seed is  lowered i n t o  the  m e l t ,  and the  temperature of the m e l t  is  ra i sed  
s l i g h t l y  t o  m e l t  a small port ion of the seed t o  insure  the melting of the 
seed by the  m e l t .  The temperature of the m e l t  is  then Lowered u n t i l  the m e l t  
begins t o  f reeze onto the seed, and the  seed is  slowly pul led  away from the  
m e l t .  The grown port ion of the crystal is cooled by conduction along the  
seed and seed holder  and a l so  by conduction and rad ia t ion  t o  its surroundings, 
thus d i s s ipa t ing  the hea t  of fusion. 

0 

.[ 0 0 

0 
0 

Fig. 3.  Schematic of the b a s i c  elements of a c r y s t a l  pu l l e r .  

The shape of the cross sec t ion  of the pul led  c r y s t a l  perpendicular t o  the  
growth axis is determined by two competing fac tors .  The development of 
equilibrium faces  of luwest surface energy tends t o  produce a polygonal 
cross sec t ion  while the surface tension of the m e l t  tends t o  produce a 
circular Liquid-solid in te r face .  The r e su l t i ng  cross sec t ion  is a compro- 
mise between these two forces .  For example, the surface tencion of molten 
s i l i c o n  is  considerably higher than t h a t  of molten gemanium, and the pul led  
s i l i c o n  crystals have e s s e n t i a l l y  c i r cu la r  cross sec t ions  and germanium 
c r y s t a l s  pu l led  along a <lo07 crystal lographic  d i r ec t ion  has four  f la t s  of 

equivalent  d i rec t ions  and the braces designate a group of crystal lographi-  
ca l ly  equivalent  p lanes) .  

110 } or ien ta t ions  (the cara ts  designate a group of c rys ta l lographica l ly  

The important parameters a f f ec t ing  t h e  chemical per fec t ion  (such as 
t h e  uniformity of dopant d i s t r ibu t ion )  and s t r u c t u r a l  per fec t ion  of the 
pul led  c r y s t a l s  include the thermal gradients  i n  the m e l t  and i n  the c r y s t a l ,  
t h e  f l u i d  motion i n  the m e l t ,  and the shape of the so l id- l iqu id  in t e r f ace  
during the c r y s t a l  growth. The temperature gradients  are e s s e n t i a l  f o r  the 
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c r y s t a l  growth process. The temperature of the crucible  w a l l  is kept  above 
the melting poin t  of the material, and the thermal gradients  are such that  
hea t  flows from the crucible  i n t o  the crystal-melt  i n t e r f ace ,  and from the re  
i n t o  the  grown port ion of the c rys t a l .  The difference between these two 
thermal f luxes determines the rate of  c r y s t a l  growth. 

The f l u i d  motion during Czochralski growth is very complicated and is  
s t rongly influenced by the  thermal and favced conveetion ( R e f .  5 ) .  Thermal 
convection flow w i l l  be generated as steady c i r cu la t ion  i n  any l i q u i d  where 
the temperature grad ien t  is  no t  aligned with the d i r ec t ion  of  grav i ty  and no 
o ther  ex te rna l  forces  are present.  In  many geometric configurations,  this 
flow is t h e  steady streamline c i r cu la t ion  generated between v e r t i c a l  bound- 
aries by hor izonta l  temperature gradients  and occurs i n  Czochralski growth 
as hot  l i q u i d  r i s i n g  a t  the s t a t iona ry  crucible  w a l l s  and f a l l i n g  i n  the 
center.  
t h e  crucible.  I n  the case of a r o t a t i n g  disk i n  an i n f i n i t e  Isothermal 
medium, the ve loc i ty  boundary l aye r  thickness has been shown t o  be uniform 
across the sur face  of the d isk  and is  approximately equal t o  (p/u)k, where p 
is the kinematic l i q u i d  v i scos i ty  and w the  c r y s t a l  r o t a t i o n  rate. During 
t h e  c r y s t a l  growth process,  the l i q u i d  forced outward by cent r i fuga l  accel- 
e r a t ion  is  replaced by a c e n t r a l  flow up t o  the  d isk  surface.  When the cru- 
c ib l e  o r  m e l t  r o t a t e s  around a v e r t i c a l  ax i s ,  the bound- layea a t  the 
upper l i qu id  sur face  cannot remain uniform because the ro t a t ion  of an 
isothermal f l u i d  i n  a cy l ind r i ca l  container r e s u l t s  i n  a parabol ic  depression 
a t  the  upper f r e e  surface due t o  the  veloci ty  and pressure changes. Conse- 
quently,  the boundary layer  produced when a s t a t i o n a r y  disk is placed on t h e  
top surface should show a m a x i m u m  thickness a t  the ro t a t ion  ax is  where the 
r a d i a l  ve loc i ty  has i t s  lowest value. 

The forced convection r e s u l t s  from the ro t a t ion  of  the  crystal and 

Experiments have been designed t o  simulate f l u i d  flow ex i s t ing  during 
c r y s t a l  growth using a water-glycerine mixture e The observed flow pa t t e rns  
a re  shown schematically i n  Fig. 4. Treat ing the  c r y s t a l  and crucible  rota- 
t i on  rates separately!  the following observations may be summarized. Figure 
4 (a )  shows the l iqu id  flow configuration f o r  thermal convection alone, i .e.,  
no c r y s t a l  ro ta t ion .  
descended gradually near  t h e  center.  A t  l o w  c r y s t a l  ro t a t ion  rates, thermal 
convection flow w a s  diminished close t o  the  in t e r f ace  because the f l u i d  flow 
from the r o t a t i n g  c r y s t a l  w a s  countercurrent t o  t h a t  caused by the thermal 
convection. The def lect ion of streamlines is shown schematically i n  Fig. 4 
(b) . A t  h igher  crucible  ro t a t ion  rates, the c r y s t a l  acted l i k e  a fan, draw- 
i n g  l i qu id  up a t  the  center  and spinning it out  a t  the s ides .  Thermal con- 
vection i s  r e l a t i v e l y  unimportant i n  t h i s  case. A t  low crucible  ro t a t ion  
rates, the l iqu id  flow close t o  the  crucible  w a l l  moved i n  a long closed 
s t reamline path,  and the e x t e n t  of thermal convection w a s  diminished. For 
faster crucible  ro t a t ion  rates, flow separat ion occurred at the periphery of 
the c rys t a l ,  and eddies developed i n  the  outer  region of the l iqu id .  The 
region close t o  the  cxystal-melt i n t e r f ace  s t i l l  possessed the  same b a s i c  
non-uniform flow. Also, combinations of c r y s t a l  and crucible  ro ta t ion  i n  t h e  
same di rec t ion  pzoduced only a modification of the simple crucible  ro t a t ion  
flow, and the c r y s t a l  ro t a t ion  did not  e x e r t  i t s  previous influence on the 
bulk f l u i d  flow, except a t  l o w  crucible  ro ta t ion  rates. For counter ro t a t ions ,  
t he  c e n t r a l  convection ce l l  shown i n  Fig. 4 (e) became q u i t e  s t ab le .  

The ho t  l i qu id  rose at  the  outer  ,crucible wal l  and 
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The convection pa t t e rns  a r i s i n g  fram simultaneous c r y s t a l  and crucible  
ro t a t ion  during Czochralski growth has  been f u r t h e r  analyzed (Ref. 6). 

(a) I f i~~l  
thermal convectl'on only 

Ib1 (d) 25rpm 

low. c r y s t a l  Low c ruc ib l e  
r o t a t i o n  rate rotatton r a t e  

'Pm 

(cl (e) 100rpm 

high crystal high cruc ib le  
r o t a t i o n  r a t e  r o t a t i o n  r a t e  

Fig. 4. Schematic flow pa t t e rns  i n  t ransparent  l i qu id  model. 
(a )  thermal convection only, (b) low c rys t a l  ro t a t ion  rate, 
(c) high c r y s t a l  ro t a t ion  rate, (d) low crucible  ro t a t ion  
r a t e ,  (e) high c ruc ib le  ro t a t ion  rate. 

Convection i n  a r o t a t i n g  high-temperature m e l t  with a c r y s t a l  growing a t  
the upper f r ee  sur face  and ro t a t ing  a t  a d i f f e r e n t  ve loc i ty  has been shown 
t o  cons i s t  of two d i s t i n c t  types.  I n  the ou te r  region of the l i qu id ,  where 
almost solid-body ro t a t ion  occurs, flows due t o  t h e  ro t a t ion  only are  s t r i c t l y  
two dimensional with respect  t o  an axis  ro t a t ing  with the crucible  and the  
r e l a t i v e  observer e f f e c t s  tend t o  obscure the streamlined convection pa t t e rns .  
In the  region of l i q u i d  beneath the c rys t a l ,  three-dimensional flows occur i n  
d i r ec t ions  determined by the v e r t i c a l  var ia t ions  of the r a d i a l  cen t r i fuga l  
pressure gradient.  Thermal convection flows from nonvert ical  temperature 
gradients  are shown t o  be enhanced by crucible  ro ta t ion  i n  the outer  l i q u i d  
region and reduced i n  the inne r  region by the s t rong  inner  flows. 

The shape of the so l id - l iqu id  in t e r f ace  is closely r e l a t e d  t o  the f l u i d  
motion and temperature p r o f i l e  i n  the m e l t .  The f l u i d  moti.on and t h e  so l id-  
l i q u i d  in t e r f ace  shape during the Czochrakski c r y s t a l  growth have been com- 
puted from the numerical so lu t ion  of the  Laplace equation ( R e f .  7,8), A 
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cy l ind r i ca l  c r y s t a l  of a constant radius is  grown from a m e l t  i n  a cy l ind r i ca l  
crucible  as shown i n  Fig. 5. I t  is  assumed t h a t  t he  hea t  t r a n s f e r  i n  the m e l t  

Crystal i 
-t- 

i 
I 

i 
I 

T=Tmi 
f-R - 
1 

T I 

+ * c  

Fig. 5. The growth of a cy l ind r i ca l  crystal. 

i s  governed only by conduction and t h a t  the rad ia t ion  and gas convection 
losses4 from. the c r y s t a l  and m e l t  surfaces  are given by &q (T+273I4 and 
~ t ( T i - 2 7 3 ) ~ ' ~ ~ ~  respect ively ( where E and a are emissivi ty  and thermal con- 
duc t iv i ty ,  respec t ive ly) .  The f l u i d  motion has been calculated using various 
c r y s t a l  ro t a t ion  rate, os, i n  the range 0-40 rpm and crucible  ro t a t ion  rate, 
wc, we q u a l i t a t i v e  agreement w i t h  those shown i n  Fig. 4 .  The shape of t h e  
so l id- l iqu id  in t e r f ace  has been s tudied  under various crucible  and c r y s t a l  
ro ta t ion  rates. The e f f e c t  of the crucible  ro t a t ion  on the in t e r f ace  shape 
is shown in .  Fig. 7 .  A t  low crucible ro ta t ion  ratesI t h e  in t e r f ace  shape is 
almost unchanged, although the  flow pa t t e rn  is changed from the n a t u r a l  
convection f l o w  t o  the  crucible-rotation-dominating f l o w .  A t  h igher  cru- 
c ib le  ro t a t ion  rates, the  downward f l a w  becomes s t rong ,  and the  temperature 
p r o f i l e  is a l t e r e d  i n  such a manner t h a t  the isotherms are s l i g h t l y  dis-  
placed downwards. Fig.  8 shows t he  e f f e c t  of c r y s t a l  r o t a t i o n  on the 
i n t e r f ace  shape w i t h  no crucible ro t a t ion  and with a crucible  ro t a t ion  rate 
of 10 rpm. 

i n  the  range 0-10 r p m .  The r e s u l t s  are shown i n  Fig. 6. The r e s u l t s  
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The homogeneity of dopant d i s t r ibu t ion  is  an important prsper ty  of 
semi-conductor c rys t a l s .  The  r a d i a l  d i s t r ibu t ion  of dopant i n  a plane 

1 
Fig. 6. F lu id  flow pa t te rns  under various c q s t a l  and crucible  

ro t a t ion  rates. 

0 5 IO - 15 
CNCbk rototion rote w, (rpml 

Fig. 7. E f fec t  of crucible  ro ta t ion  on the  in t e r f ace  shape. 

perpendicular t o  the growth d i r ec t ion  is determined pr inc ipa l ly  by t h e  shape 
of the so l id- l iqu id  in t e r f ace  and the  f l u i d  flow pa t t e rns  in  the l iqu id .  
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These parameters can be control led experimentally by varying the d i r ec t ion  
and magnitude of ro t a t ion  rates, temperature gradients  i n  the melt ,  etc. 

-40 counter- 7 -30 rotation -20 -10 0 10 X,  30 ismtotion 40 50 

Crysfol rotolion role 1.1, (ynl 

Fig. 8 ,  Effec t  of c r y s t a l  ro t a t ion  on the in t e r f ace  shape with and 
without cmca le  r o t a a o n .  

Figures 9-11 show t h e  effects of crucible  r o t a t i o n  and seed r o t a t i o n  on 
r a d i a l  r e s i s t i v i t y  of <lib Czochralski-grown s i l i c o n  cyystals (Ref. 9)  . 
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w - C R U C I B L E  ROTATION R A T E  IN REVOLUTIONS P E R  MINUTE 

Fig. 9. E f f e c t  of crucible  ro ta t ion  on radial r e s i s t i v i t y .  
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Fig. 10 Ef fec t  of see ro ta t ion  on radial r e s i s t i v i t y .  
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Fig. 11 Combined e f f e c t s  of seed ro t a t ion  and 25 rpm crucible  
ro t a t ion  on r a d i a l  r e s i s t i v i t y .  ~ 

The maximum var ia t ion  i n  the r a d i a l  so lu t e  d i s t r ibu t ion  occurred a t  a 
c r y s t a l  ro t a t ion  of 10 rpm and a crucible  ro ta t ion  of 25 rpm and these 
e f f e c t s  were independent of each other.  
plained by the e f f e c t s  of thermal convection on f lu id’ f low.  
normal t o  the in t e r f ace  due t o  ro ta t ion  i s  uniform over the  radius ,  where 
t h a t  flow due t o  thermal convection w i l l  follow gradual curved stream- 
l ines  and possess a d e f i n i t e  s tagnat ion p o i n t  near the  center  of the  
in t e r f ace .  Thus, a t  low crystal ro t a t ion  rates, the boundary l a y e r  
thickness near the s tagnat ion point  remains unchanged, while a t  t he  
ou te r  regions of the in t e r f ace  the thickness is reduced by the  addi t ive 
e f f e c t s  of the tangent ia l  ve loc i ty  component and the thermal convection 
veloci ty .  This combined e f f e c t  w i l l  then cause an increase i n  the  r a d i a l  
gradient  of so lu t e  concentration as the c r y s t a l  ro ta t ion  increases  i n  
the  low range. The e f f e c t  of crucible  ro t a t ion  i s  t o  i n h i b i t  thermal 
convection, bu t  it does no t  change the s tagnat ion point .  The streamline 
flow a t  the c r y s t a l  i n t e r f ace  is  qu i t e  s i m i l a r  t o  t h a t  of thermal convec- 
t i o n ,  bu t  the longi tudinal  flow component should be enhanced a t  the outer  
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port ion of the in t e r f ace  and the  degree of r a d i a l  s o l u t e  segregation is  in- 
creased. Crys ta l  ro t a t ipn  rates above 10 r p m  w e r e  .observed t o  be moxe effec- 
t i ve  i n  reducing radial so lu t e  segregation than high crucible  ro t a t ion  rates. 
This e f f e c t  is  associated with a more rap id  decrease i n  the  laminar l aye r  a t  
the  in t e r f ace  center  than a t  the outs ide,  so the  e f f e c t s  of secondary flow a t  
the outer  periphery a re  minimized. In  summary, the m a x i m u m  s o l u t e  uniformity 
is possible  only when t h e  boundary layer  a t  the growing in t e r f ace  is control led 
by cxystal  ro t a t ion .  

11.1.4. Crucibleless Methods 

While good qua l i ty  s ing le  c rys t a l s  of many e lec t ron ic  materials 
have been produced by the  Czochralski pu l l i ng  technique from a m e l t  contained 
i n  a crucible ,  t h e  chemical r e a c t i v i t y  of some molten materials has m a d e  it 
d i f f i c u l t  t o  f ind  a s a t i s f a c t o r y  crucible  t o  contain t h e  m e l t .  For example, 
fused s i l i ca  is the m o s t  commonly used crucible material f o r  t he  pu l l ing  of 
s i l i c o n  c rys t a l s .  However, molten s i l i c o n  reacts with fused s i l i c a  t o  y i e l d  
s i l i c o n  monoxide according t o  the  equation: 

%e equilibrium vapor pressure of s i l i c o n  monixide a t  the melting poin t  of 
s i l i c o n  is  approximately 10 Torr. Thus, the  s i l i c o n  monoxide can vaporize 
from the molten s i l i c o n  a t  an appreciable rate, and t h e  react ion continues 
throughout the c r y s t a l  growth process.  The pu r i ty  of the s i l i c a  container 
therefore  l i m i t s  the  ult imate pu r i ty  of s i l i con .  Furthermore , oxygen a l s o  
dissolves  i n  molten s i l i c o n  t o  an atomic, concentration of higher  than 1018m-3. 
Oxygen is  an e l e c t r i c a l l y  s i g n i f i c a n t  impurity i n  s i l i c o n  and produces cam- 
p l i ca t ed  e l e c t r i c a l  chanbes after various hea t  treatments (Ref. la). To 
avoid the problem of crucible  contamination , cruc ib le less  techniques devel- 
oped €or the  c r y s t a l  growth of semiconductors are described below. 

MOLTEN ZONE 

RF 

4 FEED ROD 

Fig. 12. Pul l ing  of s i l i c o n  crystals from a parti .al ly melted 
polycrys ta l l ine  boule. 
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Si l icon  c q s t a l s  of good chemical and s t r u c t u r a l  per fec t ion  have been 
pul led  from a p a r t i a l l y  melted boule, as shown schematically i n  Fig. 12  
( R e f .  11). I n  this technique, a la rge  diameter s i l i c o n  ingot  i s  supported 
v e r t i c a l l y  i n  a s i l i ca  envelope. The top of this ingot  is melted by a 
su i t ab ly  designed rad io  frequency induction c o i l .  A seed c r y s t a l  is  then 
used f o r  the pu l l ing  of a s ing le  c r y s t a l  from the molten top of the s i l i c o n  
boule j u s t  as i n  ordinary s ing le  crystal pul l ing.  A s  the  c r y s t a l  is  pul led,  
the  boule is moved slowly upward i n t o  the  rad io  frequency c o i l  so  t h a t  the 
crystal-melt  i n t e r f ace  remains e s sen t i a l ly  f ixed r e l a t i v e  t o  the  coil. The 
process is  continued u n t i l  t he  boule is  depleted. This process u t i l i z e s  the 
advantages of c r y s t a l  pu l l i ng  without the disadvantage of crucible  contamin- 
a t ion ,  and c rys t a l s  up t o  5 un i n  diameter e s s e n t i a l l y  free of d is loca t ions  
have been produced. 

Another widely used technique f o r  the  c r y s t a l  growth of e l ec t ron ic  
mater ia ls  is the f loa t ing  zone process, a zone melting technique. Zone 
melting w a s  first used by Pfann f o r  t h e  pu r i f i ca t ion  of e l ec t ron ic  m a t e r -  
i a l s  (Ref. 3 ) .  Ln this technique, a narrow zone of a r e l a t i v e l y  long charge 
i s  melted, and t h e  molten zone is traversed thrcfugh the charge as shown 
schematically i n  Fig. 13. The so lu t e  d i s t r ibu t ion  i n  the  zone-melted ba r  
(except i n  the l a s t  zone) a f t e r  single-pass is  given by 

where C is the  i n i t i a l  concentration, k is  the  segregation coef f ic ien t ,  
0 

LENGTH MOLTEN 
SOLIDIFIED ZONE _--- %--.-.+-L-d 

I I I 

-. 
CR~STALLIZED -- MOVEMENT OF 

SOLID MOLTEN ZONE 

Fig. 13. Schematic diagram of the zone-melting process.  

R is the  zone length,  and x i s  the length s o l i d i f i e d .  The so lu t e  concen- 
t r a t i o n  a f t e r  single-pass zone melting is  shown i n  Fig. 14.  In  the f loa t -  
i ng  zone process (Ref. 1 2 ) ,  an ingot  of s i l i c o n  is supported at its end by 
two chucks, and a s m a l l  sec t ion  of the rod is  melted (Fig. 15). If the 
molten sec t ion  is  not  too long, it w i l l  be supported between the  two s o l i d  
port ions of the rod by the surface tension of l i qu id  s i l i c o n .  The two sec- 
t i ons  of t h e  rod can be moved independently, and the r e l a t i v e  speed of t h e i r  
movements determine the diameter of the r e su l t i ng  rod. The molten region can 
be made t o  t raverse  the e n t i r e  length of the rod, and zone r e f in ing  can be 
achieved. Furthermore, by s t a r t i n g  w i t h  a s ing le  c r y s t a l  seed a t  one end of 
the rod, a s ing le  c r y s t a l  can he grown. Self-seed techniques, such as the  
cons t r ic t ion  used i n  the Bridgman technique, may a l so  be used. 
advantage of t he  f l o a t i n g  zone technique is  the absence of many contamina- 
t i on  sources present  i n  o ther  c r y s t a l  growth process,  and near ly  i n t r i n s i c  
s i l i c o n  has been prepared i n  t h i s  manner (Ref. 13) .  

The primary 
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0 LENGTH SOLIDIFIED, X - 
Fig. 14. Solute concentrations before and a f t e r  single-pass 

zone-me l t i n g  . 

INGOT - 
+- HOLDER 

Fig. 15. Schematic diagram of the f loa t ing  zone technique. 

In  the f loa t ing  zone technique, t he  surface tension is pr imari ly  respon- 
s i b l e  f o r  the  s t a b i l i t y  of the molten zone between the two s o l i d  port ions of  
the ingot .  However, the  g rav i t a t iona l  f i e l d  a c t s  on the molten zone and tends 
t o  make the zone collapse.  The hydros ta t ic  pressure increases with the length 
of  the molten zone, and a t  some poin t ,  t h i s  pressure w i l l  be la rge  enough t o  
overcome the sur face  tension, causing the molten zone t o  collapse.  Assuming 
that the only active forces are surface tension and t h e  g rav i t a t iona l  f i e l d ,  
t he  m a x i m u m  stable zone length has been shown t o  be about 2.7(p/dgl%, where 
p ,  d, and g are the sur face  tension of the l iqu id ,  t h e  densi.ty of the l iqu id ,  
and the g rav i t a t iona l  constant,  respect ively.  Although there  appears t o  be 
no t h e o r e t i c a l  l imi t a t ion  on the diameter of the c r y s t a l  t h a t  can be grown by 
the  f loa t ing  zone technique, i t  i s  d i f f i c u l t  i n  practice t o  m e l t  completely 
through a rod and maintain a zone length much smaller than the  rod diameter. 
This would ind ica te  that c rys t a l s  could be grown w i t h  diameters. only s l i g h t l y  
l a rge r  than 2.7(6/dg)%, i . e . ,  about 2 m f o r  s i l i c o n .  



11.2. Growth from Solution 

Solution growth is simple i n  pr inc ip le  and has many appl icat ions.  This 
technique is  p a r t i c u l a r l y  s u i t e d  f o r  the  growth of materials which have high 
vapor pressure o r  decompose i r r eve r s ib ly  a t  the melting point .  The so lu t ion  
growth can be accomplished a t  temperatures considerably below the melting 
po in t  of the material, and the use of lower temperature alleviates many of 
the problems associated w i t h  the m e l t  growth process.  However, solvent  sub- 
s t i t u t i o n  and inclusion could occur. 

11.2.1. Pr inc ip les  of Solution Growth 

The so lu t ion  growth method is  based on the temperature depend- 
ence of s o l u b i l i t y  according t o  the  re la t ion :  

d In s AH 
= -  

2 RT dT 

where s is s o l u b i l i t y ,  AH is the hea t  of so lu t ion ,  and R i s  the gas constant. 
Most d i sso lu t ion  react ions are  endothermic, i .e.,  t he  s o l u b j l i t y  increases  
w i t h  increasing temperature. For example, t he  s o l u b i l i t y  o f  gallium arsenide 
i n  gallium increases  w i t h  increasing temperature. Thus, during the  slow cool- 
ing of a so lu t ion  of gallium sa tu ra t ed  with gallium' arsenide a t  a given temp- 
e ra tu re ,  900'C f o r  example, the so lu t ion  becomes supersaturated and nucleation 
w i l l  begin. In  the presence of a seed c rys t a l ,  nucleation and growth w i l l  
occur p r e f e r e n t i a l l y  on the seed. 

The so lu t ion  growth process involves three  s t eps :  (1) the  d i f fus ion  of 
so lu t e  t o  t h e  c rys ta l - so lu t ion  in t e r f ace ,  (2) t h e  deposit ion of the so lu t e  
on the growing in t e r f ace ,  and (3) the  d iss ipa t ion  of the hea t  of c rys t a l l i za -  
t ion.  Step (1) o r  (2)  is usually rate-determining. As a r e s u l t ,  growth rates 
from so lu t ion  a re  usually only a few percent of those from pure m e l t ,  where 
t h e  rate-determining step i s  the d iss ipa t ion  of the hea t  of fusion from the 
so l id- l iqu id  in t e r f ace .  Thus, solvents  of low viScosity are prefer red  t o  
f a c i l i t a t e  t he  t ranspor t  of so lu t e  by diffusion.  A s ing le  c r y s t a l  seed is  
generally used because of the d i f f i c u l t i e s  involved i n  cont ro l l ing  the  spon- 
taneous nucleation. 

11.2.2. Solution G r o w t h  Techniques. 

Several  techniques have been developed f o r  the c r y s t a l  growth 
of semiconductors from so lu t ion .  These techniques are widely used f o r  t he  
growth of 1 1 1 - V  compounds required f o r  various device appl icat ions.  

The e p i t a x i a l  growth of gallium arsenide has been accomplished by a 
t i l t i n g  boa t  method as shown i n  Fig. 16 ( R e f .  1 4 ) .  I n i t i a l l y ,  the sub- 
strate i s  he ld  t i g h t l y  aga ins t  the f l a t  bottom a t  the upper end of a graphi te  
boat. A tin-gallium arsenide mixture is  placed a t  the lower end. The graph- 
i t e  boa t  is f ixed i n  pos i t ion  a t  the center  of a constant temperature zone of 
the furnace tube, and the  boat  i s  heated t o  about 64OOC i n  a hydrogen atmos- 
phere. A s  the temperature increases ,  gallium arsenide dissolves  i n  the  t i n  
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a t  the lower end of the  boat.  The power is  then turned off  and the  furnace 
is  tipped s o  t h a t  the t i n  so lu t ion  covers t he  subs t r a t e  surface.  As the  

SEED SOLVENT 
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FUAN APHITE BOAT 
TGBE 

POLYCRYSTAL (a) 

I 
TIN- GO AS MELT 

Fig. 16. Schematic diagram of the  apparatus fox the e p i t a x i a l  
growth of gallium arsenide from a t i n  so lu t ion .  

furnace cools,  gallium arsenide r e c r y s t a l l i z e s  from the so lu t ion  and depo- 
sits e p i t a x i a l l y  onto the  subs t r a t e  surface.  

Fig. 17. The temperature grad ien t  r e c r y s t a l l i z a t i o n  technique 
(a )  schematic presentat ion of the system, (b) phase 
r e l a t ions  between the semiconductor and the solvent .  

The temperature grad ien t  r e c r y s t a l l i z a t i o n  technique shown i n  Fig. 1 7  
has produced r e l a t i v e l y  la rge  s ing le  c rys t a l s  of semiconductors. The seed 
c r y s t a l  is  heated t o  temperature T 2 ,  and a polycrys ta l l ine  ingot  of the  
semiconductor is  heated t o  temperature T1. 
serves as the  s a l v e n t  and is placed between the seed and the polycxystal l ine 
source. The so lvent  dissolves  p r a c t i c a l l y  none of the seed s ince  it is  
sa tu ra t ed  with semiconductor a t  T2. However, it does dissolve a port ion of 
the  polycrys ta l l ine  material u n t i l  t h e  concentration a t  the solution-poly- 
c r y s t a l l i n e  source i n t e r f a c e  has reached the  value X1. Thus, the so lu t ion  
a t  the source i n t e r f a c e  i s  of higher  concentration than that a t  t h e  seed 
in t e r f ace .  Because of t h i s  concentration gradient ,  the semiconductor 

A so lu t ion  of composition X 2  
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di f fuses  through the so lu t ion  producing a supersaturated so lu t ion  a t  the  seed 
surface.  The semiconductor w i l l  p r ec ip i t a t e  on the seed, and the  seed w i l l  
grow. The t rave l ing  solvent  method i s  based on the temperature gradient  
r ec rys t a l l i za t ion  and has been used f o r  the  growth of refractory semiconductors 
such as s i l i c o n  carbide (Ref. 15 ) .  

11.3. Growth from the  Vapor Phase 

Many semiconductors do u o t  m e l t  a t  temperatures and pressures conveniently 
obtained i n  the laboratory and have, i n  some cases, been successfully grown 
from the  vapor phase. For t h i s  technique t o  be appl icable ,  the material of 
i n t e r e s t  must e i t h e r  vaporize without undergoing i r r e v e r s i b l e  decomposition o r  
be preparable by chemical react ions of gaseous reac tan ts .  The direct growth 
methods include sublimation, vacuum evaporation, etc. The chemical vapor 
growth technique has been used extensively during the  pas t  twenty years f o r  the  
preparation and c r y s t a l  growth of  e l ec t ron ic  materials e i t h e r  i n  the bulk form 
or as t h i n  layers  on subs t ra te  surfaces.  This technique has the  d i s t i n c t  ad- 
vantages t h a t  refractory materials can be prepared a t  temperatures considerably 
below t h e i r  melting poin t  o r  decomposition temperature, and that the  impurity 
concentration and d i s t r ibu t ion  i n  the  product can be control led t o  an ex ten t  no t  
obtainable by o ther  techniques. A l s o ,  a wide range i n  the  thickness f r o m  a 
f rac t ion  of a micron t o  a few centimeters or m o r e  can be achieved and controlled.  
These advantages have been u t i l i z e d  i n  the preparation of a broad spectrum of 
conductors, semiconductors , and insulatoxs i n  the s i n g l e  c rys t a l l i ne  , polycrys- 
t a l l i n e ,  or amorphous f o r m .  I n  chemical vapor growth,. a l l  species  except the 
desired product are v o l a t i l e  a t  the processing temperature. The growth process 
may be car r ied  out  by t w o  d i s t i n c t  approaches: t he  t ranspor t  of the desired 
substance by chemical react ions i n  a temperature gradient ,  and the  reac t ion  of 
gaseous compounds containing the  const i tuents  of the desired material a t  high 
temperatures. 
c rys t a l l i ne  materials where the nucleation and growth processes must be con- 
t ro l l ed .  T o  achieve e p i t a x i a l  growth, the chemical react ion m u s t  be predomin- 
a t e ly  heterogeneous taking place on the  subs t ra te  surface , s ince  volume reac- 
t ion  r e s u l t s  i n  the  formation of atomic o r  molecula? c lus t e r s  of random orien- 
t a t i o n  i n  the space surrounding the  substrate and the  deposit ion of these 
c lus t e r s  on the  substrate w i l l  produce non-oriented growth. 

A subs t r a t e  i s  usually used pa r t i cu la r ly  i n  the  growth of s ing le  

11.3.1. Direct growth methods. 

Similar t o  so lu t ion  growth, direct  growth from the  vapor phase 
a l so  involves three steps: (1) the t ranspor t  of the  vapor t o  the  growing 
surface,  ( 2 )  the nucleation and growth of a new layer ,  and ( 3 )  the  diss ipa-  
t ion  of the hea t  of vaporization. However, t h e  molecular d i f fus iv i ty  is 
generally more rapid i n  a vapor than i n  a Liquid and i s  no longer so s t rongly 
rate control l ing.  The m o s t  important var iables  are the vapor pressure of t he  
mater ia l  i n  the growing chamber and the temperature of the growing surface.  
Since the vapor pressure i s  usually control led by the  temperature of the source 
material, the  difference between the  souxce temperature and the subs t ra te  
temperature determines the  supersaturat ion of the vapor, and therefore  the 
growth rate , a t  the  growing sur f  ace. 

Epi tax ia l  Layers of elemental semiconductors, such as germanium and sili- 
con, have been prepared by vacuum evaporation. Using an u l t rah igh  vacuum, 
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about 10-l' Torr, homoepitaxial s i l i c o n  layers  free of s t r u c t u r a l  defects  can 
be grown at  temperatures as l o w  as 65OOC on (111) surfaces and 35OoC on {loo)  
surfaces  of s i l i c o n  subs t r a t e s  (Ref. 16) .  

When the growth is  ca r r i ed  out  under atmospheric pressure, high tempera- 
t u re s  are of ten  required t o  obtain s u f f i c i e n t  vapor pressure of the source 
material, and a s u i t a b l e  container must be se l ec t ed  t o  minimize contaminations. 
For example, a s i l i c o n  carbide container has been used t o  grow s i l i c o n  carbide 
s ing le  c r y s t a l s  ( R e f .  1 7 ) .  Granular s i l i c o n  carbide w a s  placed i n  a graphi te  
crucible ,  and a cy l ind r i ca l  mandrel w a s  pressed i n t o  the  granules t o  form a 
cy l ind r i ca l  hole.  A cover w a s  formed fram another piece of  s i l i c o n  carbide. 
To grow c r y s t a l s ,  the  s i l i c o n  carbide-lined graphi te  crucible  w a s  heated a t  
2500 t o  26OOOC under an atmosphere of hydrogen o r  argon. 
designed so  t h a t  temperature gradients  are  produced i n  the cruc ib le ,  and the 
c rys t a l s  grow along these gradients .  

&e furnace w a s  

11.3.2. Chemical Transport  Technique 

The chemical t ranspor t  technique is appl icable  t o  s o l i d  sub- 
s tances  which w i l l  react revers ib ly  with a gaseous reagent (the t r anspor t  
agent) t o  form v o l a t i l e  products (Ref. 18) .  When the e q u i l i b r i A  constant 
of t h i s  react ion is  temperature-dependent, the  s o l i d  substance can be trans- 
ported by the presence of a temperature gradient.  I n  p rac t i ce ,  the chemical 
t r anspor t  technique can be ca r r i ed  o u t  i n  a closed or gas-flow system. The 
s o l i d  substance t o  be transported ( A ) ,  a t ranspor t  agent (B), and a subs t r a t e  
(S) are placed i n  a reac t ion  system w i t h  A and S i n  temperature regions TA 
and Ts, respect ively.  
y i e lds  v o l a t i l e  products C, D, etc.,  according t o  the equation: 

The react ion between A and B i n  the source region TA 

aA(S) f bB(g) = CC(g) f dD(g) + ----- 
The products are t ransported t o  the  subs t r a t e  region TS as a r e s u l t  of the 
pressure gradient .  Because of the change i n  temperature i n  t h i s  region, 
t he  reverse react ion takes place,  deposi t ing A on the subs t ra te .  The t rans-  
po r t  agent regenerated i n  the subs t r a t e  region serves t o  repeat  the process 
i n  a closed system and is  n o t  reused i n  a gas-flow system. The r e l a t i v e  
magnitude of TA and TB required for the t ranspor t  process depends on t h e  
var ia t ion  of the equilibrium constant of the react ion with temperature. 
When the equilibrium is  s h i f t e d  toward t h e  formation of A as the  temperature 
i s  decreased, then TA > TS is  a necessary condition f o r  t he  t ranspor t ,  and 
vice versa. Thus, the f e a s i b i l i t y  of using the t ranspor t  technique f o r  t h e  
chemical vapor growth of a given material can be r ead i ly  deduced from thermo- 
chemical considerations The r a t e  of t ranspor t  depends on the  temperature 
of  the source and the  subs t r a t e ,  the concentration of the t ranspor t  agent, 
and t h e  gaseous d i f fus ion  and convection. 
be s i g n i f i c a n t  a t  pressures  higher  than about 3 a t m .  
increases w i t h  increasing temperature difference,  and increasing concentra- 
t ion  of t h e  t ranspor t  agent. 

Thermal convection is bel ieved t o  
The deposit ion rate 

The closed-tube chemical t ranspor t  technique may be used f o r  the growth 
of bulk c rys t a l s  by cont ro l l ing  the nucleation and grawth of the t ransported 
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material on the w a l l  of the react ion tube. This is  possible  because the 
t ranspor t  variables i n  a closed system can be so adjusted that the e n t i r e  
system is  e s s e n t i a l l y  a t  equilibrium. When a closed tube containing the 
source material and a t ranspor t  agent is  maintained a t  a uniform, constant 
temperature, no n e t  t r anspor t  occurs. Nucleation may be l n i t i a t e d  by 
introducing a h e a t  s ink  on a s m a l l  region of the tube so that the tempera- 
tu re  of t h i s  region is a f e w  degrees lower than the remainder of the  system. 
Since t h i s  cooler region cannot be made i n f i n i t e l y  s m a l l ,  many nucle i  are 
formed a t  random. 
temperature gradient ,  i n t e r v a l s  of deposit ion are a l te rna ted  with intervals  
of e tching t o  reduce the number of nuc le i ,  thereby leading to t he  formation 
of l a rge r  c rys t a l s .  

However, by reversing per iodica l ly  the  d i rec t ion  of the 

The growth of s i l i c o n  c rys t a l s  by the  chemical t ranspor t  technique i n  
a closed tube w i l l  be used as an example. S i l icon  r eac t s  revers ibly with 
s i l i c o n  t e t r a iod ide  t o  form s i l i c o n  di iodide according t o  the  react ion 

Since the equilibrium of t h i s  react ion is s h i f t e d  toward the formation of 
s i l i c o n  as the temperature is  decreased, s i l i c o n  t e t r a iod ide  i s  able t o  
t ranspor t  s i l i c o n  from a source a t  about l l O O ° C  t o  a lower temperature 
region. Single c r y s t a l s  and e p i t a x i a l  layers  of s i l i c o n  have been prepared 
i n  t h i s  manner (Ref .  19 ) .  A schematic diagram of the e p i t a x i a l  growth 
apparatus is  shown i n  Fig. 18. 

Thermocouple \, 

Quartz support rcd 

Quartz reaction tube 

Substrate region 

11 00" 800" 

Fig. 18. Apparatus f o r  the e p i t a x i a l  growth of s i l i c o n  by chemical 
t ranspor t .  
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I1 e 3 . 3 .  Chemical Reactions i n  a Flow System 

Chemical vapor growth by conventional chemical react ions i n  
a gas-flow system i s  the most commonly used technique i n  the e l ec t ron ic  
industry.  A va r i e ty  of chemical react ions with widely d i f f e r e n t  f r ee  
energy changes and ac t iva t ion  energies are usually available f o r  t he  growth 
of a given mater ia l .  The cornonly used react ions include thermal decom- 
pos i t ion ,  thermal reduction, hydrolysis ,  ammonolysis, etc. The chemical 
react ion chosen f o r  the  growth process should be thermochemically and 
k i n e t i c a l l y  favorable,  and the  experimental conditions must be adjusted 
so t h a t  t he  heterogeneous react ion dominates. For example, the  use of low 
p a r t i a l  pressure of the reac t ing  species tends t o  suppress volume react ions.  
The gas-flow system i s  f l ex ib l e  i n  t h a t  the pur i ty  o r  dopant concentration 
i n  the grown material is  readi ly  controlled.  In  p rac t i ce ,  the substrate i s  
maintained a t  a su i t ab le  temperature i n  a react ion tube provided with a gas 
i n l e t  and exhaust tubes. The substrate may be heated i n  a res i s tance  fur-  
nace o r  supported on a s u i t a b l e  susceptor and heated ex terna l ly  by an r f  
generator. The r f  hea t ing  is most c m o n l y  used, s ince  the wal ls  of the 
react ion tube are  a.1; r e l a t i v e l y  low temperatures and the  volume react ions 
and random nucleations are  minimized. The r eac t an t  mixture is  introduced 
i n t o  t h e  react ion tube; under proper conditions,  the react ioq takes place 
on the  subs t r a t e  surface deposit ing the desired material. 

Chemical vapor e p i t a x i a l  growth i n  a gas flow system has made real 
s i g n i f i c a n t  contr ibut ions t o  s o l i d  s t a t e  e lec t ronics  ., The e p i t a x i a l  growth 
of s i l i c o n  accomplished i n  the late f i f t i e s  has had a real impact on the 
development of new and improved devices. The thermal decomposition of 
s i l ane ,  the m o s t  promising low temperature process takes  place according 
t o  the  react ion 

SiH4(g) + S i ( s )  4 2 H2(g) 

This process has been s tudied  i n  more d e t a i l  i n  a hor izonta l  r eac to r  shown 
schematically i n  Fig. 19. It has been demonstrated t h a t  a th in  s tagnant  
layer  with a large temperature gradient (>lOO°C mmmL) i s  present  above the 
heated susceptor,  and the  main gas flow is  v e r t i c a l l y  mixed by thermal 
convection above the s tagnant  l aye r  (Ref. 20) Experimentally measured 
growth rates were i n  good agreement with the  assumption t h a t  the deposit ion 
of s i l i c o n  is  determined only by the d i f fus ion  of s i l a n e  through t h e  s tag-  
nant layer .  A s m a l l  angle of t i l t i n g  of the susceptor is necessary f o r  
obtaining thickness uniformity along the sus  ceptor. When hydrogen chloride 
is  added t o  s i l a n e ,  the grawth rate can be in t e rp re t ed  i n  terms of a mut- 
ual ly  independent growth of  s i l i c o n  from s i l a n e  and an etching of s i l i c o n  
by hydrogen chloride (Ref. 21) Comparison of growth rates fram mixtures  
of silane-hydrogen chloride and hydrogen-silicon te t rachlor ide  ind ica tes  
t h a t  gas phase react ions are slow and t h a t  equilibrium between s o l i d  s i l i-  
con and the  gas phase i s  establ ished.  Kinet ic  da t a  poin t  t o  a d i f fus ion  
control led react ion r a t e ,  and it is  shown t h a t  thermodiffusion i n  the  
s tagnant  layer  r e t a rds  t h e  growth rate of s i l i c o n  and enhances the  etching 
react ion e 
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. Fig. 19. Schematic diagram of the apparatus f o r  *e e p i t a x i a l  
growth of s i l i c o n  by the  pyrolysis  of s i l ane .  
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111. Physical Phenomena Related to  Crystal  Growth i n  Zero Gravity 

Nearly a l l  c r y s t a l  growth processes involve both a s o l i d  and a f l u i d  
( l i qu id  o r  vapor) component. Since i n t e r n a l  bonding forces i n  s o l i d s  are 
much g rea t e r  than one-g forces ,  only the proper t ies  of the f l u i d  are in- 
fluenced by gravi ty .  I n  the l i qu id  state, i n t r i n s i c  forces  such as cohe- 
s i o n  and sur face  tension are of the same order  as one-g forces ,  and the 
fami l ia r  proper t ies  of l i qu ids  are the r e s u l t  of the in t e rac t ion  of i n t e r -  
molecular forces  and t h e  g rav i t a t iona l  force. I f  the g rav i t a t iona l  force 
disappears,  the  behavior of f l u i d s  w i l l  be determined by molecular forces 
alone. Thus t h e  near-zero gravi ty  condition w i l l  have a s i g n i f i c a n t  
influence on the f l u i d  behavior which may a f f e c t  the c r y s t a l  growth process. 

Fluid proper t ies  of  i n t e r e s t  t o  c r y s t a l  growth include: melting poin t ,  
vapor pressure,  d i f fus ion ,  v i scos i ty ,  thermal conductivity,  surface tension, 
and chemical r eac t iv i ty .  The e f f e c t s  of some of these proper t ies  on c r y s t a l  
growth w i l l  be g rea t ly  modified by a zero-gravity environment. For instance,  
gravity-driven themal convection is the  most important na tu ra l  convection 
process i n  a l l  but  t h i n  f l u i d  layers  on earth and is  s t rongly influenced by 
f l u i d  v iscos i ty  and t h a m a l  conductivity. Viscosity and thermal conductiv- 
i t y  may therefore  be less important i n  zero-gravity c r y s t a l  groyth. However, 
the magnitude of the surface tension force may become more important. Also, 
i n  the  absence of convection, diffusion w i l l  be much more s i g n i f i c a n t  f o r  the  
m a s s  t ranspor t  process. 

Crystal  growth involves many processes of g rea t  complexity including mass 
t ranspor t ,  nucleation, i n t e r f ace  in t e rac t ion ,  f l u i d  flbw, e t c .  ' Mass t ranspor t  
occurs v i a  convection and d i f fus ion .  I f  m a s s  t r anspor t  could be s tudied  sepa- 
r a t e ly  from o the r  f ac to r s ,  t he  analysis  of the c r y s t a l  growth process would 
no t  be i n t r ac t ab le .  However, m a s s  t r anspor t  is int imately coupled w i t h  hea t  
t r ans  f e r  which occurs by convection, conduction, and rad ia t ion .  For example 
i f  the h e a t  input  t o  a sys tem i n  a steady s ta te  i s  changed, new m a s s  and'  
thermal convection currents  w i l l  occur u n t i l  a new steady state i s  establ ished.  
The f i n a l  conditions are not  j u s t  determined by superimposing the hea t  i npu t  
onto the i n i t i a l  thermal condition. Rather, the new or  a l t e r e d  convection 
pa t te rns  due to the  h e a t  input  must be considered. Emphasis i n  t h i s  repor t ,  
however, i s  d i rec ted  t o  m a s s  t r anspor t  which can be influenced by n a t u r a l  and 
forced convections. Mass t ranspor t  by diffusion i s  not  considered s i n c e  d i f -  
fusion is  independent of gravi ty .  Diffusion, however, may be a dominant mass 
t r anspor t  mechanism i n  a zero-gravity environment. In  t h i s  case, c r y s t a l  
growth may be considered as a Stefan problem (Ref. 22), which is  one c lass  
of t ranspor t  problems involving t h e  diffusion equation with a moving o r  f r e e  
boundary. It  should be noted tha t  the  Stefan analysis  is  no t  useful  i n  the  
presence of o ther  e f f e c t s  such as convection. Since c r y s t a l  growth on ea r th  
is  frequently influenced by convection i n  the f l u i d ,  the mechanisms of con- 
vection, the r o l e  of convection i n  c r y s t a l  growth, and the expected r e s u l t s  
of c r y s t a l  growth i n  zero-gravity are discussed i n  this sec t ion .  

111.1. Convection 

Fluid flow can be motivated by many types of convective dr iving 
forces ,  and the e f f e c t s  of convective flow are t o  break up long-range diffusion 
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f i e l d s  and t o  a l ter  temperature and concentration gradients .  The convective 
flow e f f e c t s  a re  of ten  more important than d i f fus ive  t r a n s f e r  i n  c r y s t a l  
growth processes. 
below. 

The most important convection mechanisms are discussed 

111.1.1. Gravity Driven Convection 

Gravity driven convection occurs as the r e s u l t  of grav i ty  
act ing on densi ty  differences within a f l u i d  and is  the m o s t  well-known form 
of f r ee  convection. Density var ia t ions  i n  a f l u i d  can be created by temp- 
e ra tu re  gradients  and by concentration gradients ,  both of which are expected 
t o  be present  i n  c r y s t a l  growing systems. When c rys t a l s  are grown from a 
m e l t  w i t h  a low impurity concentration , a s i t u a t i o n  frequently encountered 
i n  the growth of s i l i c o n ,  the temperature gradient  mechanism w i l l  dominate. 

C las s i ca l  f l u i d  mechanics has been used t o  analyze the  s t a b i l i t y  of a 
pure f l u i d  i n  a g rav i t a t iona l  f i e l d  (Ref. 23) .  A f l u i d  can be i n  mechanical 
equilibrium with no macroscopic motion without being i n  thermal equilibrium. 
However, a r i g i d  condition is p u t  upon the temperatuxe d i s t r ibu t ion :  it can 
only depend on the ver t ica l  dimension. Furthermore, when a temperature 
gradient  is  d i rec ted  downwards, mechanical equilibrium i s  only poss ib le  if 

dT T 3V - >  q- d Z  c Y (K’P 
P 

where g is the accelerat ion due t o  grav i ty ,  Cp is the  hea t  capacity a t  con- 
s t an t -p res su re ,  and V is  the volume. Otherwise, i n t e r n a l  currents w i l l  
appear i n  the f l u i d ,  and t h i s  i n t e r n a l  motion, re fer red  t o  as f r e e  con- 
vection, tends t o  mix the f l u i d  and t o  minimize the temperature gradient.  

The thermal convection may be characterized by two dimensionless 
numbers: t he  Prandt3 number and the  Grashof number (Ref. 2 4 ) .  The Prandt l  
number i s  defined as P r  = V / x ,  where v and x are  respect ively the kinematic 
v i scos i ty  and thermometric conductivity of the f lu id .  The kinematic vis-  
cos i ty  is  r e l a t e d  t o  v i scos i ty ,  n ,  and densi ty ,  p , ~  by the r e l a t i o n  I, = n/p. 
It can be shown t h a t  x = K/CPPI where K is  the  thermal conductivity. The 
Prandt l  number can be expressed i n  terms of  measureable parameters as 

P r  = q C /K. P 

This dimensionless n W e r  is  a measure of the relative importance of the 
v iscos i ty  t o  the thermal conductivity i n  e f f ec t ing  the convective flow. 

The Grashof number i s  defined as 

3 2 
G r  = gBL AT/V 

where B is the thermal expansion coef f ic ien t ,  L is the c h a r a c t e r i s t i c  length,  
and AT i s  the temperature difference.  The product of the Prandt l  number and 
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the Grashof nurnber i s  defined as the ,RayLeigh number: R a  = P r G r .  This 
quant i ty  is most of ten  used t o  character ize  the f l u i d  s t a b i l i t y .  Since 
the g rav i t a t iona l  accelerati.on appears t o  t h e  first power i n  the  Rayleigh 
number, R a  i s  reduced propor t iona l ly  when g is  reduced. It should also 
be noted t h a t  the system dimension i s  t o  the  t h i r d  power i n  the  Rayleigh 
number. Thus no d r a s t i c  increase i n  the size of the f l u i d  body over the 
size used on ea r th  can be m a d e  i n  the space experiment i f  s m a l l  accelera- 
t ions occur. Two a n a l y t i c a l  so lu t ions  f o r  R a  are w e l l  know. In  the case 
of a f l u i d  s i t u a t e d  between two i n f i n i t e  hor izonta l  planes with the lower 
plane a t  a higher  temperature, the onset  of com7ection occurs f o r  Ra > 1710. 
If the upper sur face  is free, the c r i t i ca l  Rayleigh number i s  1100. 
f l u i d  bound by v e r t i c a l  w a l l s ,  c r i t ical  Rayleigh numbers are  a l so  on t h e  
order of 1000 (Ref .  25).  For very la rge  values of the Grashof number, on 
the order  of 50,000 f o r  t he  first case, f l u i d  flow becomes turbulent .  

For a 

In  t y p i c a l  c r y s t a l  growth arrangements, the Rayleigh number usually 
exceeds the c r i t i c a l  values f o r  the onset  of convective flow. For example, 
i f  L = 5 cm and AT = 10aC, Ra exceeds lo5 f o r  metals such as aluminum and 
t i n  (Ref. 26, 2 7 ) .  It is no t  es tab l i shed ,  however, i f  t h i s  value is la rge  
enough t o  ind ica te  turbulent  flow (Ref. 28) . 

I 

Convection s tud ie s  have been car r ied  out  i n  many melt-growth experi- 
ments. In  hor izonta l  c r y s t a l  growth i n  an open boat ,  convection a r i s e s  
from the hor izonta l  temperature gradient  and the  accompanying density 
gradient.  The l i q u i d  near t he  so l id- l iqu id  in t e r f ace ,  being cooler,  is 
r e l a t i v e l y  dense and tends t o  s ink ,  while t ha t  a t  the hot  end of the boat 
tends t o  rise. Circulat ion of the l i qu id  r e s u l t s  i n  flow along the top 
of the boa t  towards the in t e r f ace  and flow along the bottom away from 
the in t e r f ace .  However, t he  ac tua l  flow pa t t e rns  a re  more complicated 
(Ref. 26) .  The major e f f e c t  of thermal convection i s  t o  cause temperature 
f luc tua t ions  a t  the  l iquid-sol id  in t e r f ace ,  and these f luc tua t ions  lead 
t o  non-uniform growth rates and consequent impurity s t r i a t i o n s  i n  t h e  
c rys ta l .  For conducting m e l t s  such as indium antimonide, the f luc tua t ions  
can be damped by the  appl icat ion of a magnetic f i e l d  qormal t o  the hori-  
zonta l  growth ax is ,  and s t r i a t i o n s  i n  t h e  c r y s t a l  are a lso  eliminated 
(Ref 27, 29).  The thermal convection i n  rectangular  volumes of l i qu id  
gallium has been shown t o  produce s inusoida l  temperature o s c i l l a t i o n s  of  
large amplitude i n  both "heated from below" and "heated from the s ide"  
configurations,  and the  period of the o s c i l l a t i o n  depends on the m e l t  
dimensions ( R e f .  30) . Convection phenomena are p a r t i c u l a r l y  important 
i n  the  growth of la rge  diameter crystals by the  Czochralski technique. 
For example, s i l i c o n  c r y s t a l s  of 3'' diameter are cur ren t ly  pul led  from a 
crucible  containing s e v e r a l  kilograms of m e l t .  Thermal convection f l u i d  
flow has been s tudied  i n  a calcium f lour ide  m e l t  (m.p., 136OOC) using a 
t y p i c a l  s i l i c o n  p u l l e r  (Ref. 31) ,  and a motion p i c tu re  w a s  made t o  i l l u s -  
t r a t e  the r e s u l t s  of t h i s  study (Ref. 32). Large temperature f luc tua t ions  
i n  the m e l t  were measured, and the  e f f e c t s  of c r y s t a l  and crucible  ro t a t ion  
on t h e  f l u i d  flow w e r e  observed. Large c r y s t a l  ro t a t ion  rates reduced t h e  
temperature f luc tua t ions ,  and crucible  ro ta t ion  a l s o  tended t o  reduce turbu- 
lence i n  the m e l t .  The geometry of the hea t  sources and sh ie lds  w a s  found 
t o  be very important i n  reducing turbulen t  flow i n  the m e l t .  Gross so lu t e  
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inhomogeneities i n  Czochralski grown germanium have been observed when only 
thermal convection mixing was used (Ref. 3 3 ) .  The simulation of Czochralski 
growth w i t h  a water-glycerine mixture as the m e l t  and a m e t a l  cyl inder  as 
the c r y s t a l  has been used t o  study the  f l u i d  flow pa t t e rns ,  as described i n  
Section 11.1.3 (Ref. 5,6). However, these experiments w e r e  ca r r i ed  ou t  near  
room temperature, and the  magnitude of thermal convection e f f e c t s  were much 
less than what occurs i n  a high-melting l iqu id .  

Convective temperature f luc tua t ions  i n  vapor growth are presumably of 
less importance than those i n  m e l t  grolwth because of the higher  frequencies 
obtained i n  gases (Ref .  341, and the l o w e r  growth rates reduce t h e  s t r i a t i o n  
spacing t o  sub-diffusion dis tances .  

I I I . 1 ,2 .  Surface Tension-Driven Convection 

The temperature dependence of  sur face  tension forces can cause 
convection i n  t h i n  f l u i d  layers  (Ref. 35).  Surface tension forces exist at  
the in t e r f ace  between a l iqu id  and a s o l i d ,  a t  the in t e r f ace  between t w o  i m -  
miscible  l iqu ids ,  and a t  a f r e e  l i qu id  surface.  These convection dr iving 
forces a re  s i g n i f i c a n t  i n  c r y s t a l  growth; however, they haye no t  been con- 
sideaed s ince gravi ty  driven convection dominates i n  most cases. The Apollo 
14 h e a t  flow and convection experiments have firmly es tab l i shed  the  exis tence 
of surface tension convection i n  t h i n  f l u i d  layers  under zero-gravity condi- 
t i ons  (Ref. 3 6 ) ,  I t  is therefore  possible  t h a t  surface tension-driven f r e e  
convection is the most s i g n i f i c a n t  f l u i d  mixing force i n  zero gravi ty .  

There are very few es tab l i shed  theo re t i ca l  r e s u l t s  regarding surface 
tension-driven convection N o  analyses o r  experimental observations on the 
l iqu id-so l id  in t e r f ace  are  known (Ref. 37) .  I n  the case of the l iqu id- l iqu id  
in t e r f ace ,  the Marangoni e f f e c t  i s  associated with the convection motion due 
t o  var ia t ions  i n  i n t e r f a c i a l  tension and has been used t o  explain turbulen t  
phenomena a t  t he  in t e r f ace  between two mequ i l ib ra t ed  l iqu ids .  Surface tension- 
driven convection i n  t h i n  f l u i d  layers  w i t h  a f r ee  su r face  is a l s o  re fer red  t o  
as t he  Marangoni e f f e c t .  In  t h i s  case, any temperatuve gradient  along the 
surface w i l l  create a surface tension gradient  a t  the in te r face .  Liquid flow 
w i l l  then occur from h o t t e r  t o  colder regions s ince  the sur face  tension de- 
creases with increasing temperature. 
v e r t i c a l  temperature grad ien t  w i l l  cause convective motion i n  a hexagonal 
c e l l u l a r  pa t t e rn ,  ca l led  Benard C e l l s .  The s i t u a t i o n  i s  more complicated if 
the l i q u i d  is evaporating, and t h e  convection is then less regular .  I t  i s  
apparent that surface tension-driven convection can be observed on ea r th  only 
i n  fi lms up t o  a few mill imeters thick s ince  gravity-driven convection w i l l  
tend t o  m a s k  surface tension convection. I n  a zero-gravity environment, 
however, surface tension-driven convection may occur on the surface of a 
large volume of l iqu id .  

I t  has a l s o  been observed t h a t  a uniform 

The theo re t i ca l  foundations of surface tension-driven convection are 
not  w e l l  e s tab l i shed ,  although several s i g n i f i c a n t  t heo re t i ca l  papers have 
appeared (Ref .  38 - 41) .  Analogous t o  the  case of gravity-driven convection, 
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the Marangoni number is defined t o  describe su r f  ace tensLon-driven convection 
(Ref. 35) : 

dT 2 
B = 0- d /pVx 

dY 

whe;rscis ts is  the  temperature coe f f i c i en t  of surface tension,  d is  the thickness 
of the  l i q u i d  layer ,  dr is  the temperature gradients i n  the thickness dimension, 

p is  the densi ty  of the l i qu id ,  V is  the  kinematic v i scos i ty ,  and x is the 
thermometric conductivity. Physical ly ,  the  dimensionless number B expresses 
the  re la t ive importance of surface tension and v iscos i ty  forces .  I t  has been 
concluded that a c r i t i ca l  value of the Marangoni number i s  required f o r  t he  
onse t  of convective flow. Since the Marangoni number depends upon the square 
of t he  l i q u i d  depth, sur face  tension-driven convection w i l l  be  s i g n i f i c a n t  
i n  zero-gravity m e l t  growth. 

3F 

In addi t ion to  convection, surface tension forces  a re  a l s o  responsible 
for capi l la ry  action. The dimensionless Bond number i s  used as a comparison 
between g r a v i t a t i o n a l  and capi l la ry  forces  (Ref. 42) : 

2 B o = g p  r / a  I 

where g is  the g rav i t a t iona l  accelerat ion,  p is  the  densi ty ,  r is  the  radius 
of  capi l la ry ,  and 0 is the  surface tension. For Bo 32 1, the  g rav i t a t iona l  
force dominates, and f o r  Bo << 1, capi l la ry  force dominates.. In  the la t ter  
case, which could be e a s i l y  achieved €or any material i n  zero-gravity, a long 
column of l i qu id  would rise i n  a capi l la ry .  The cap i l l a ry  constant has been 
defined as a = (2o/pg)&. 

111.1.3. Other Convection Mechanisms 

I n  addi t ion t o  grav i ty  and surface tension, o ther  na tu ra l  
convection mechanisms may e x i s t ;  however, no ana ly t i ca l  s tud ie s  have been 
car r ied  out.  For example, convection may occur near  the in t e r f ace  of a 
so l id i fy ing  c r y s t a l  due t o  the  volume change accompanying s o l i d i f i c a t i o n .  
Convection has a l s o  been observed i n  layers  when a l i q u i d  contains a non- 
l i n e a r  v e r t i c a l  p r o f i l e  of impuri t ies  (Ref. 43). This phenomenon can prob- 
ably be ignored i n  melt-growth; however, it may be s i g n i f i c a n t  i n  the so lu t ion  
growth process. Also, evidence f o r  a low-g surface tension-driven convection 
near  edges due t o  r a d i a l  temperature gradients  w a s  i n fe r r ed  from the Appollo 
14 experiments. 

111.2. Crys ta l  Growth i n  Zero Gravity 

On the bas i s  of previous discussions,  the e f f e c t  of zero gravi ty  
on c r y s t a l  growth processes are summarized i n  T a b l e  I. For most appl ica t ions ,  
the  reduced s t r a i n  brought about by zero gravi ty  appears t o  have negl ig ib le  
e f f e c t .  If e x t r a  la rge  c rys t a l s  w e r e  t o  be grown from very s m a l l  seeds it 
could be an advantage, bu t  c r y s t a l  i n e r t i a ,  coupled with a jerky p u l l  o r  ro- 
t a t i o n  system could s t i l l  induce damage o r  complete f r ac tu re  of the seed. 
gravi ty ,  however, should allow undis tor ted whiskers (Ref .  44) t o  be grown up 

Zero 
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t o  t he  m a x i m u m  length d i c t a t ed  by either container,  d i f fus ion  length, o r  
i n i t i a l  size of l i qu id  cap (assuming the  vapor-liquid-solid growth mechanism), 
depending on which one is  t h e  l imi t ing  fac tor .  Growth of r a t h e r  l a rge  e q u i l i -  
brium shaped c rys t a l s  i n  fluxes o r  other  so lu t ions  could be advantageous, 

Table I. Effec ts  of Zero Gravity on C r y s t a l  Growth Processes 

Ef fec t  

Reduced weight of czys t a l  

Reduce l ikel ihood of unat tached 
c rys t a l s  " f a l l i ng"  t o  "bottom" 
of container 

V i  r t u a l  ly  e limin at e conve c ti on 
currents  

Allow molten port ion t o  assume 
shape d i c t a t ed  by surface tension 

Impact on C r y s t a l  G r o w t h  

Eliminate any high temperature deforma- 
t i o n  caused by excessive crystal weight. 

Allow more nearly equilibrium shaped 
c rys t a l s  t o  be grown from so lu t ions  o r  
fluxes s ince  crystals would, not p i l e  
up on bottom. 

Probably very l i t t l e  on Czochralski and 
f l o a t  zone techniques s ince  most p r a c t i c a l  
growth systems require  forced convection 
t o  homogenize the composition of the  m e l t .  
For those materials normally grown i n  
hor izonta l  boats ,  no e x t r a  s t i r r i n g  is usee 
however, it is  not clear whether elimina- 
t i o n  of na tu ra l  convection is  desirable .  
For those cases where forced convection i s  
not necessary, impurity s t r i a t i o n s  caused 
by n a t u r a l  convection induced temperature 
f luc tua t ions  would be eliminated. 

Allow l a rge r  molten zones i n  the f l o a t  
zone process.  Allow spher ica l  shaped 
c rys t a l s  t o  be grown. (Actually d i f f e r e n t  
surface energies f o r  various c r y s t a l  faces 
w i l l  probably preclude the l a t t e r ) .  

f 

although an inunediate use f o r  such c rys t a l s  is no t  obvious. 

The el iminat ion of na tu ra l  convection currents  has been suggested as the  
most important aspect  of c r y s t a l  growth i n  space, and one which would allow 
c r y s t a l s  of higher  per fec t ion  t o  be grown. This useful lness  does not appear 
founded. The thermal gradients  t o  which the  c r y s t a l  i s  exposed and t h e  mech- 
an ica l  cons t ra in ts  imposed on it while s t i l l  hot  enough t o  be i n  the p l a s t i c  
flow region i n  general  determine the  crystal lographic  per fec t ion ,  and it is  
not clear t h a t  the el iminat ion of convection w i l l  i n  any way make these grad- 
i e n t s  less severe.  
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The Czochralski pu l l i ng  technique with the m e l t  contained i n  a cruc ib le  
is the most important technique f o r  the production of la rge  seimiconductor 
c rys t a l s  a t  present.  The r o l e  of na tu ra l  and forced convections i n  this 
technique has been analyzed both theo re t i ca l ly  and experimentally ( c f .  11.1.3. 
and III.1.1.), and the importance of forced convection is w e l l  recognized. 

purpose of the forced convection is  t o  overcome the random thermal f luc-  
tuat ions due t o  na tu ra l  convection. More importantly, the forced convection 
is  necessary t o  minimize the  impurity inhomogeneity i n  the m e l t  due t o  segre- 
gation. Also, the forced convection is used t o  ta i lor  the temperature gradi- 
en t s  i n the  m e l t .  I t  i s  thus evident  t h a t  forced convection w i l l  be needed 
i n  a zero-gravity environment. The absence of f r ee  convection w i l l  only mean 
t h a t  the forced convection can be of smaller magnitude. 

The f loa t ing  zone and cruc ib le less  techniques (cf 11.1.4.1 are current ly  
used f o r  t he  production of ul t rahigh pu r i ty  s i l i c o n  c rys t a l s .  The molten 
zone i s  supported by the surface tension of molten s i l i c o n  and the  l e v i t a t i n g  
electromagnetic f i e l d  provided by a properly shaped r f  co i l .  The volume of 
the m e l t  is  l imi ted  by the  g rav i t a t iona l  force which tends t o  m a k e  the zone 
collapse.  Thus, the c ruc ib le less  techniques w i l l  most d i r e c t l y  demonstrate 
the unique effects of the g rea t ly  reduced gravi ty  i n  the space environment. 
However, forced convection i s  s t i l l  necessary to  minimize impurity inhomo- 
genei t ies  i n  the grown c rys t a l .  For example, the source rod and the crystal 
may be ro t a t ed  asymmetrically i n  opposite d i rec t ions  as  shown i n  Fig. 20. 

4 
DIRECTION 

CRYSTAL 
MOE-NT 

OF 

SOURCE ROD 

Fig. 20. An asymmetric technique f o r  crucibleless c r y s t a l  growth. 

This arrangement is known t o  provide a planar  so l id- l iqu id  i n t e r f a c e  and 
uniform d i s t r ibu t ion  o f  dopants i n  the grmn c rys t a l .  The ro t a t ion  of 
the c r y s t a l  w i l l  of course generate an accelerat ion which w i l l  tend t o  m a k e  
the  molten zone uns tab le .  However, the  accelerat ion generated i s  s m a l l  a t  
ro ta t ion  r a t e s  required f o r  homogenizing the  m e l t ,  about 0.01 g when a 
c r y s t a l  of 5 at diameter is ro t a t ed  at  a rate of 20 rpm.  The molten zone 
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can be a t  l e a s t  s i x  times longer than that obtainable on ea r th  s ince  the maximum 
stable zone Length is  inversely proport ional  t o  t h e  square root  of g r a v i t a t i o n a l  
accelerat ion . 

It should be mentioned t h a t  f l oa t ing  l i q u i d  zones i n  simulated zero gravi ty  
have been s tudied  by the  suspension of one l i qu id  i n  another of equal  densi ty  
(Ref. 45, 46). The s t a b i l i t y  of the f l o a t i n g  zone w a s  s tud ied  as a function of 

wet t ing conditions,  zone shape, and ro ta t ion .  Float  zones have a l so  been simu- 
l a t e d  with soap fi lms which are e s s e n t i a l l y  weightless (Ref .  471. 

In the  so lu t ion  and vapor growth techniques, the t ranspor t  of. s o l u t e  or 
reac tan ts  t o  the  subs t r a t e  surface by diffusion and convection is  usual ly  t h e  
rate-determining s t e p  of the growth process. Thus, the use of these techniques 
i n  space o f f e r s  no d i r e c t  t echnica l  advantages, However, inves t iga t ions  of 
chemical vapor e p i t a x i a l  growth i n  space w i l l  provide an ins igh t  i n t o  the  r o l e  
of convective t r a n s f e r  i n  t h i s  most important process of modern e l ec t ron ic s ,  
and the manufacturing technology can be b e t t e r  optimized. 

The Skylab manned o r b i t a l  laboratory t o  be launched i n  Apr i l  1973 w i l l  
carry apparatus f o r  a var ie ty  of s o l i d i f i c a t i o n  and c r y s t a l  growth experiments 
sponsored by NASA's Materials Science and Manufacturing i n  Space Program ( R e f .  
48) a The experiments r e l a t ed  t o  c rys t a l  growth include gaillium arsenide 
c r y s t a l  growth, vapor growth of 11-VI compounds, radioact ive t r a c e r  diffusion,  
microsegregation i n  germanium, growth of spher ica l  c rys t a l s  I indium antimonide 
c rys t a l s ,  and mixed 1 1 1 - V  c r y s t a l  growth. 

IIV. Recommendations 

There are no obvious revolutionary changes ( e i t h e r  s c i e n t i f "  IC o r  econo- 
m i c )  i n  c r y s t a l  growth procedures o r  r e s u l t s  which would be brought about by 
growing i n  space. However, several process refinements might prove useful  
under some circumstances, and a number of experiments r e l a t ed  t o  crystal 
growth would be very des i rab le  t o  perform. 
space, although convenient i n  some respects, is  not considered t o  be a g r e a t  
consequence s ince  r e l a t ive ly  good vacuums are av+lable on ea r th  a t  modest 
cost .  Therefore a l l  recommendations revolve around the  low gravi ty  environ- 
ment. The p o s s i b i l i t y  a l s o  e x i s t s  t h a t  a requirement f o r  some new materials 
may arise which would make space g r m t h  very a t t r a c t i v e .  In  order  t o  be 
j u s t i f i a b l y  grown i n  space such materials should probably f u l f i l l  one o r  
more of the requirements of T a b l e  11. 

The high vacuum associated with 

Table 11. C r i t e r i a  f o r  Crystal  G r o w t h  Experiments i n  Space 

Materials deform e a s i l y  and y e t  m u s t  be g r a m  unsupported 

Materials should be f l o a t  zone ref ined b u t  have very low surface tensions 
and cannot be electromagnetically s t a b i l i z e d  so  t h a t  on'ily s m a l l  diameters 
can be grown under normal conditions. 

Deliberate growth of a s ing le  c r y s t a l  matrix around randomly dispersed 
inclusions of d i f f e r e n t  density.  
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Any growth process Which requires complete convection current  suppression 
f o r  successful  operation. 
e a s i l y  accomplished i n  this manner.) 

(Diffusion control  for example could be m o s t  

The following discussion describes several of those experiments, exclud- 
i n g  those already planned for earlier missions, w h i c h  appear w o r t h w h i l e .  
it might appear unimaginative, t he  suggestion of some ca re fu l ly  documented 
straight-forward c r y s t a l  g r m t h  operations i s  based on the observation that 
the ac tua l  performance of an experiment under r ad ica l ly  d i f f e r e n t  conditions 
(as t h i s  would be) of ten  produces a var ie ty  of unexpected resu l t s .  

While 

1. Floating-Zone Crucibleless C r y s t a l  Growth Using Solar  Energy. As 
discussed i n  Section I I . 2 . ,  the  low gravi ty  environment is  pa r t i cu la r& 
s u i t e d  f o r  the crystal growth of  re f rac tory  e l ec t ron ic  materials by the 
f loa t ing  zone crucibleless technique. The easy access of a good vacuum, 
about Torr,  with an i n f i n i t e  pumping speed is a l s o  an advantage. Haw- 
ever, the large power requirements f o r  the growth of re f rac tory  c rys t a l s  may 
be a ser ious  l imi ta t ion .  E l e c t r i c a l  energy aboard a spacecraf t  is usually 
derived from s o l a r  cel l  arrays which have conversion e f f i c i enc ie s  on the 
order  of LO%, and the  use of direct sunl ight  is more attractive. The s o l a r  
energy required t o  maintain a molten s i l i c o n  zone can be readi ly  estimated 
from the rad ia t ion  and conduction losses .  Assuming t h a t  the emissivi ty  of 
molten s i l i c o n  i s  0 .8  and t h a t  the conduction loss  is of the same order  of 
the rad ia t ion  l o s s f  an inc ident  power of 70 W is  needed t o  maintain the 
molten zone. Since the s o l a r  power density i s  1 kW m’-2, a reasonable s i zed  
o p t i c a l  system is s u f f i c i e n t  t o  provide the energy required f o r  the pul l ing  
of s i l i c o n  c rys t a l s  of a few centimeters diameter. The temperature gradient  
i n  the m e l t  can be control led by ro t a t ing  the c r y s t a l  and the  polycrys ta l l ine  
rod i n  opposite d i rec t ions  e 

2. Determination of Diffusion Coeff ic ients  of Common Dopants i n  Si l icon.  
The s t a t e  of the  ar t  s i l i c o n  c rys t a l s  of large diameter invariably exh ib i t  
microsegregation of dopants, and a b a s i c  understanding of the dopant behavior 
i n  the  m e l t ,  such as the  d i f fus ion  coef f ic ien ts ,  w i l l  be extremely usefu l  f o r  
the  optimization of the growth process,  The determination of the diffusion 
coef f ic ien ts  of common dopants, such as boron, phosphorus, arsenic ,  carbon, 
aluminum, and gallium, i n  i i q u i d  s i l i c o n  can be b e s t  determined i n  the  space 
environment where the convective flow is negl ig ib le ,  

3. Study of Vapor Growth i n  a Horizontal Reactor* The ro l e  of convec- 
t i o n  i n  the  conventional chemical vapor e p i t a x i a l  growth process can be 
determined by car r ing  o u t  the growth process i n  space, For example, the 
growth r a t e  of s i l i c o n  o r  o ther  e l e c t r o n i c  materials can be measured as a 
function of composition and flow rates of the r eac t an t  mixtxire, and these 
resu l t s  are expected t o  be extremely valuable i n  the  optimization of the 
e p i t a x i a l  growth process on ear th .  
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4. Conventional M e l t - G r o w t h  Experiment. To b e t t e r  understand the con- 
vent ional  c r y s t a l  pu l l ing  from m e l t  contained i n  a c ruc ib le ,  a c r y s t a l  pu l l i ng  
experiment should be car r ied  out i n  which a l l  phases of growth are carefu l ly  
documented with recorded da ta  and movies. The extent  of convection may be 
s tudied  by using Wilcox's approach ( Ref. 31, 3 2 ) .  

I t  i s  a l s o  f e l t  t h a t  p r i o r  t o  t h e  execution of the above experiments 
i n  the Space Shut t le ,  preliminary experiments should be carr2ed out  on earth 
t o  tes t  the concept of c ruc ib le less  c r y s t a l  growth w i t h  s o l a r  energy and t o  
develop the apparatus f o r  a l l  experiments. Spec i f ica l ly ,  a lower melting 
semiconductor, such as indium antimonide, should be used t o  inves t iga te  the 
various parameters of the c ruc ib le less  c r y s t a l  growth process. The deter- 
mination of the d i f fus ion  coef f ic ien ts  of common dopants i n  l i qu id  s i l i c o n  
may be ca r r i ed  out by using an isothermal environment. 
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