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Preface

i
This report has been prepared in two volumes, each of which is a separate

document. Volume 1 is in the form of the usual final report. It contains,a

summary of the theoretical derivations, the required analytical boundary

value solutions, and a numerical analysis of the solutions, as well as con-

clusions and recommendations for further work. It includes all the equations

needed to evaluate any of the boundary value solutions except those equations

which apply strictly to two-body motion and can be found in most standard

astrodynamics or celestial mechanics textbooks.

/

The actual derivations of the second order asymptotic solutions are long and

involved. These derivations have been compiled in a separate document

which is presented as Volume 2. It contains all the assumptions and inter-

mediate steps which are an important part of the theoretical development but

which.are not included in Volume 1. The main purpose of Volume 2 is to

provide a study guide or reference for those interested in the theoretical

aspects of the method of matched asymptotic expansions and/or those who

may wish to modify or extend the results contained in Volume 1 tS1 fit some

particular problem.

Inasmuch as each volume was written as a separate document, there is a

certain amount of oye,rlap. and .cross referencing;'be|tween the two. Thus the
i

reader desiring a more detailed discussion of a particular section in

Volume 1 need only refer to the corresponding section in Volume 2 and need

not read through the entire theoretical analysis.
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ABSTRACT

Previously published asymptotic solutions for lunar and

interplanetary trajectories have been modified and combined to

formulate a general analytical solution to the problem on

N-bodies. The earlier first-order solutions, derived by the

method of matched asymptotic expansions, have been extended

to second order for the purpose of obtaining increased accuracy.

The derivation of the second-order solution is summarized by

showing the essential steps, some in functional form.

The general asymptotic solution has been used as a basis for

formulating a number of analytical two-point boundary value

solutions. These include Earth-to-moon, one- and two-impulse

moon-to-Earth, and interplanetary solutions. Each is presented

.as an explicit analytical solution which does not require interative

steps to satisfy the boundary conditions. All required formulas

are presented for each solution.

Comparisons between the asymptotic solutions and numerical

integration are shown for several applications. The results show

that the accuracies of the asymptotic'solutions range from an '

order of magnitude better than conic approximations to that of
»

numerical integration itself. Also, since no iterations are

required, the asymptotic boundary value solutions are obtained

in a fraction of the time required for comparable numerically

integrated solutions.

The subject of minimizing the second-order error is discussed ,

and recommendations made for further work directed toward

achieving a uniform accuracy in all applications.



CONTENTS

Section 1 INTRODUCTION 1

Section 2 SUMMARY OF THE ASYMPTOTIC N-BODY
SOLUTION 5

2. 1 Outer Limit 6
2.2 Inner Limit 9
2.3 Overlap Domain 12
2.4 Matching 14
2.5 Fundamental .Solution 15
2.6 Comments 17

Section 3 ASYMPTOTIC BOUNDARY VALUE
SOLUTIONS 19

3. 1 The Lambert Problem 19
3.2 Earth-to-Moon Solution 21
3.3 Earth-to-Moon Midcourse Solution 26
3.4 One-Impulse Moon-to-Earth Solution 27
3. 5 Two-Impulse Moon-to-Earth Solution 33
3. 6 Interplanetary Midcourse Solution 40
3. 7 Interplanetary Solution 41
3. 8 Formulas for the Boundary Value

Solutions 50
3. 9 Comments 66

Section 4 NUMERICAL RESULTS 67

4. 1 Earth-to-Moon Trajectories 67
4. 2 Two-Impulse Moon-to-Earth

Trajectories 75
4.3 Interplanetary Midcourse Trajectories 82
4. 4 Interplanetary Trajectories 87
4.5 Computation Times 91
4. 6 Discussion of Numerical Results 94

Section 5 CONCLUSIONS AND RECOMMENDATIONS 97

5. 1 Conclusions 97
5.2 Recommendations for Further Study 99

REFERENCES 101



Page Intentionally Left Blank



FIGURES

1 Outer Solution, Inner Solution, and Overlap
Domain 9

2 Earth-to-Moon Solution 22

3 Nonlinear Version of Earth-to-Moon Solution 26

4 Earth-to-Moon Midcourse Solution 27

5 One-Impulse Moon-to-Earth Solution . 28

6 Nonlinear Version of One-Impulse Moon-to-Earth
Solution 32

7 Two-Impulse Moon-to-Earth Solution 34

8 Nonlinear Version of Two-Impulse Moon-to-Earth
Solution 39

9 Interplanetary Midcourse Solution 40

10 Interplanetary Solution 42

11 Modified Linear Version of Interplanetary Solution 46

12 Nonlinear Version of Interplanetary Solution 49

IX



Page Intentionally Left Blank



TABLES

1 Boundary Conditions and Accuracies for Earth-to-
Moon Trajectories 68

2 Position and Velocity Magnitud.es and Errors of
Perturbed Hyperbola 76

3 Time Intervals, Velocity Impulses, and. Accuracies
for Two-Impulse Moon-to-Earth Trajectories 78

4 Terminal Boundary Conditions for Mid course-to -
Mars Trajectories 83

5 Accuracies for Midcourse-to-Mars Trajectories 84

6 Initial and Terminal Conditions for Earth-to-Mars
Trajectories 88

7 Accuracies for Earth-to-Mars Trajectories 89

8 Initial Position and Velocity Errors for Earth-to-
Mars Trajectories 92

9 Computation Times on CDC 6500 Computer 93

XI



Section 1

INTRODUCTION

A number of approximation techniques have recently been proposed for

calculating N-body trajectories (where N is greater than two). These tech-

niques include the matched asymptotic expansion (References 1 and 2),

hybrid patched conic (Reference 3), overlapped conic (Reference 4), multi-

conic (Reference 5), virtual mass (Reference 6), slowly varying functions

(Reference 7), and Chebyeshev series (Reference 8). All these techniques

are claimed to be much faster than numerical integration and considerably

more accurate than the well known patched-conic approximation. Of all these

techniques, the matched asymptotic expansion is somewhat unique since it

represents an analytical solution to the problem of N bodies rather than just

a numerical scheme for rapid calculation. The analytical nature is useful

in solving two-point or mixed boundary value problems since, in most

instances, the solution can be obtained explicity and does not require itera-

tive steps.

The N-body problem is one of determining the motion of a body of negligible

mass subject to the gravitational forces of one primary body and N-2 second-

ary bodies. The motion of the secondary bodies relative to the primary body

is assumed to be known. In general, the dominant force on the negligible

mass body is that of the primary body. However, during a close approach

of any one of the secondary bodies there is a change in the ordering of the

dominant and perturbing forces and as a result the problem falls into a class

known as singular perturbation problems (Reference 9). An approximate

analytical solution can then be obtained by the method of matched asymptotic

expansions.

Numerical schemes give solutions to this type of problem but they require a

prescribed state vector at some time t = t in order to uniquely define the

tra jec tory ._ In many boundary value problems the initial state vector is not



known a priori but is only partially prescribed along with some terminal

conditions. The n'umer'ical schemes then require an iterative procedure to

obtain the unknown part of the initial state vector, i. e. , to solve the two-

point boundary value problem.

The asymptotic solution can be formulated to solve the two-point boundary

value problem directly, i.e. , the unknown part of the initial state vector can

be obtained without iterations. The solution is formulated as a set of analy-

tical expressions in the form of asymptotic expansions. Evaluating the

expressions in a certain sequence gives all the unknown parameters as func-

tions of the prescribed boundary conditions. The goal of this study was to

formulate a general, second-order asymptotic solution to the problem of

N-bodies and to construct from this solution several two-point boundary value

solutions. This goal can be divided into three specific objectives.

The first objective was to extend the previously published f i rs t -order solu-

tions to second order. The results of this effort are summarized in

Section 2, where the N-body differential equation of motion is used as a

starting point. Section 2 covers the development of the outer ami inner solu-

tions, the overlap domain, the matching, and the fundamental solution. The

latter gives the relationships between the constants of motion of the outer !

solution, where the primary body is dominant, and the inner solution, where

one of the secondary bodies is dominant.

The fundamental solution was used to achieve the second goal of this study,

the formulation of several different asymptotic two-point boundary value

solutions. These solutions, which can be applied to certain classes of Earth-

to-moon, moon-to-Earth, and interplanetary trajectories, are presented in

Section 3. Two versions are presented for each solution, one linear, the

other nonlinear. In every case at least one of the two solutions satisfies the

boundary conditions exactly without iterations giving an explicit boundary

value solution.

The third objective of the study was to compare the asymptotic boundary

value solutions with numerical integration. Comparisons for Earth-to-moon,



two-impulse moon-to-Earth, interplanetary midcourse, and interplanetary

trajectories are presented in Section 4. These results shpw that (1) the

interplanetary solutions are more accurate than the lunar solutions, (2) mid-

course solutions are more accurate than those which originate close to one

body and terminate close to another, (3) the second-order solutions improve

the first order in some but not all applications, .and (4) the computation times

for the asymptotic solutions are 6 to 150 times faster than for numerical

integration.

A discussion of the conclusions obtained from this study and recommenda-

tions for . fur ther studies are contained in Section 5.

This study has focused on the application of the method of matched asymptotic

expansions, and it has assumed that the reader has a certain degree of

familiarity •with the theoretical background. An excellent discussion of the

basic theory can be found in Reference 9.

The notation used in this report is a combination of that of Lancaster

(Reference 1) and Carlson (Reference 2). In general, each parameter is

defined as it is introduced, but some which have only mathematical meaning

and serve an intermediary role are defined only by an equation. Scalars

are written as x or X and vectors as x or 5£. A matrix G(x) and a tensor

II(x) are also used. In addition, a bar over a parameter indicates that it

applies specifically to an inner solution. Finally, the order of a particular

term in an expansion is given by the exponent of the parameter JJL which

precedes the term, i .e . , p.n is order n or 0(n).
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Section 2

SUMMARY OF THE ASYMPTOTIC N-BODY SOLUTION

The problem of N-bodies for which an asymptotic solution is desired consists

of finding the motion of a body of negligible mass (hereinafter referred to as

the particle) under the influence of one primary body and N-2 perturbing

bodies whose motions relative to the primary body are known. This problem

requires the solution of the differential equation

•£=!(£) +!"(£, £.) (2-1)

where r_ is the position of the particle with respect to the primary body and

p. is the position of the i — perturbing body with respect to the primary body.

The functions _f and F_ are defined by

f_(r) = -£/r3 (2-2)

N-2

Z(r.£.) = £ n.

Equations (2-1) to (2-3) are dimensionless; the unit of length is the semi-

major axis of the orbit of the j— body,* and the unit of time is the period of

the j— body divided by Zt r . In dimensionless units then the mass of the pri-

mary body is unity and of the i— body is |i., which is assumed to be much

less than one. The origin of the coordinate system is the primary body

rather than the center of mass and this gives rise to the last term in (2-3) .

*The 3— body will be termed the reference body.



For lunar trajectories the primary body is the Earth, and the two perturbing

bodies of interest are the moon and the sun. (Although the (i. for the sun is

not small compared to the unit mass of the Earth, its contribution is small

due to the great distance of the sun from the Earth. ) For interplanetary

trajectories the primary body is the sun and the perturbing bodies the

planets.

As long as the particle is not close to one of the perturbing bodies, the

function F_ in (2-1) is small compared to the other two terms. However, if

a close approach is made to one of the perturbing bodies, then F_ becomes

the dominant force and the problem falls into a class known as singular

perturbation problems (Reference 9). An approximate analytical solution

can then be obtained by the method of matched asymptotic expansions.

The asymptotic solution is formulated by considering two limits of (2-1) and

then matching the corresponding solutions in an overlap domain. The result

is termed the fundamental solution and is used to formulate the boundary

value solutions in Section 3.

2. 1 OUTER LIMIT

The outer limit is defined as the limit where £-£• = O(l) for all i. Then _F

is always small in (2-1), and the solution is assumed to be given by the

asymptotic expansion

£(t) = rt) + n £ ( t ) + |A(t) + CKn3) (2. 1-1)

Where the reference mass fj. is equal to ja., the dimensionless mass of the
J-

reference body. Substitution of (2. 1-1) into (2-1) and equating powers of jo.

leads to the differential equations for r , r,, and r,,. They areT- --o —1 — i

r = f ( r ) (2. 1-2)
— o -- o

(2 .1 -3)

(2 '1-4)



where

N-Z

Ml

N-2

(2.1-6)

and

M. ^HL. /HL (2. 1-7)

The function G (x) is a matrix defined by

3x.x. fi..

x x

where 6 .. is the Kronecker delta. The function H(x) is a tensor defined by

x x J J J

G and Ii represent the first and second derivatives in the Taylor series

expansion of f ( r ) about the nominal value r = r .r — —o

The solutions of (2. 1-2) through (2. 1-4) depend on the initial condition on £

and the corresponding velocity y^. These initial conditions can be stated as



Then the solutions are

* < t ) = (2. 1-12)

A(t, to)r1( to) .+ )v (t ) + f B(t, T) F (2, 1-13)

i.(t) = A(.t, t )r B(t, t ) v J B(t 'T.)^
t

(2.1-14)

The solution for r_ is the standard two-body ellipse resulting from the two- .

body differential equation (2. 1-2). The functions f and g are infinite

series in time or can be written in closed form using eccentric anomaly as ;:

the independent variable. They are defined in any standard astrodynamics

are made

up of a homogeneous solution which is simply the propagation of initial devia-

tions along the two-body solution r_ , and a particular integral which intro-

duces the perturbations from two-body motion. The functions A(t, t ) and

B(t, t ) are partial derivative matrices which arise by partitioning the state

transition matrix

textbook and in References 2 and 10.* The solutions for r, and

«( t , t

. t ) B(t, t ) \

(2. 1-15)

-Reference 10 has been included as a second volume of this report. It is
hereinafter referred to only as Volume 2.. , . , .- -



Many expressions have been derived for the partial derivative matrices in

various coordinate systems. Some are discussed in Reference 2 and in

Volume 2.

The solutions given by (2. 1-12) through(2. 1-14) can be substituted back into

(2. 1-1) giving a second-order solution for the position £ of the particle. The

solution is a function only of the initial conditions (2. 1-10) and (2. 1-11) and

the time histories of the perturbing bodies p.. The initial conditions can be
—^ th

chosen so that at some time t = t, the trajectory passes close to the k— body.

This introduces another limit.

The outer solution and its behavior as t approached t are shown in

Figure 1.

2. 2 . INNER LIMIT

The inner limit is defined as the limit where r-p, = O(|JL, ) for some k. This
~~ thlimit arises when the particle makes a close approach to the k— body. This

limit requires the change of variables

~ 7 ~ ~ ~ '. ' - . : ' ' ' . ' ' ' CR17

OUTER SOLUTION.r(t)

/ ' OVERLAP DOMAIN

PRIMARY BODY

INNER SOLUTION ffc

SECONDARY BODY

UNPERTURBED SOLUTION

PERTURBED SOLUTION

Figure 1. Outer Solution, Inner Solution, and Overlap Domain



- 2-1)

where p, is the position of the k — body and t , is the time of pericenter
th p

passage of the trajectory about the k — body. The latter can be written

•and t, chosen as the time at which the two-body outer solution r passes
th °through the center of the k — body, i. e. , at t=t,

(2 .2-4)

Substitution of the inner variables (2. 2-1) and (2. 2-2) into (2-1) gives the

inner differential equation

( 2 '2-5 )

•where JP is a function defined in Volume 2. If the expansion

) ^ 2-6)

is substituted into (2. 2-5) and powers of |j,, equated the differential equations

are '

V0d"R.
-K'

dsk

dsk
2 = 0 (2 .2-8)

10



dSk

The solutions of (2. 2-7) through (2. 2-9) depend on the initial conditions on

R, and the corresponding velocity V, . These initial conditions can be stated

as

V. (& ) = V. (S. ) (2. 2-11)—k ko —ko ko

These initial conditions assume that the perturbations vanish at S. = S, and
^ k ko

that the full solution (2. 2-6) can be represented by _R at this point. As a
.K.O

result the solutions are

= 0 . (2 .2-13)

Sko

The solution for R is the standard two-body hyperbola resulting from the

two-body differential equation (2. 2-7). The functions f and g are defined

in many textbooks and in Volume 2. Like their counterparts in the elliptical

solution of the previous section, they can be written in closed form using

hyperbolic eccentric anomaly as the independent variable. The function

B(S , £) is the partial derivative matrix

(S )
(2.2-15)

11



The solutions given by (2. 2-12) through (2.2-14) can be substituted back into

(2 .2 -6 ) giving a second-order solution for R,. The solution Ls shown in
«x

Figure 1.

2. 3 OVERLAP DOMAIN

The outer and inner solutions are functions of the vector constants given by

(2.1-11) , (2 .1-12) , (2 .2 -10) , and (2. 2-11). For a trajectory which is con-

tinuous from the domain of the outer solution to the domain of the inner

solution, these constants are not all independent. In a region designated as

the overlap domain, the outer and inner solutions must exhibit certain

similarities, i. e. , both solutions must represent the trajectory in this

domain. This characteristic makes it possible to determine explicit rela-

tionships between the constants of the two solutions. A representation of the

overlap domain is shown in Figure 1.

The overlap domain is defined as the domain of the intermediate limit,

i.e. , the domain where t-t , = 0((j.a) with 0<a<l.
pk

defined by introducing the intermediate variable

i.e. , the domain where t-t , = 0((j.a) with 0<a<l. This limit is formally
pk

o-, = (t-t , )Ax, Osa <<r«r <i (2. 3-1)

If. a = 0 then (2. 3-1) simply shifts the time scale of the outer solution to a

new origin. If a = 1, <r, = S, giving the inner time. Within the range
iC K.

a <CKOT ^k is tnen intermediate to the outer and inner times. The values

of a and a, must be determined from the matching.

The outer solution is a function of t and replacing t , in (2. 3-1) by (2. 2-3)pk
and solving for t-t, gives

Hk^k^k + hJk ( 2-3-2 )

Since JJL, is small, (2. 3-2) indicates that the outer solution must be expanded

to about t = t, in order to determine its behavior in the overlap domain.

This expansion is derived in Section All of Volume 2.

12



The outer expansion can be summarized in function form by the following

expression:

r = £(t-tk, p.; r(tQ), v(tQ); JY,*, &k*._t,k*. Hk*) (2. 3-3)

The position vector r_, -when t-t,. is small, is a function of both the initial

conditions at t and four constants, \ ,*, 6n*. Z,i*, and]!,*, which represent
O ' — *£• — -K -^iC 1C

the first- and second-order deviations from two-body motion over the

interval t <t<t n . These constants are discussed in detail in Subsection 3. 8.
o k

The inner solution is a function of S, and comparing (2 .3-1) with (2. 2-2)

yields

^hT^k < 2 - 3 - 4 >

Since a - 1 < 0, (2. 3-3) indicates that the inner solution must be expanded

for S, large. This expansion is derived in Section A 12 of Volume 2.

The inner expansion can be summarized in functional form by the following

expression:

L ; ) (2 .3-5)

The position vector JR. , when S, is large, is a function of ^V . , the hyper-

bolic excess velocity, L, a vector function of the orbital elements, and A, *

which represents the second-order deviation from two-body motion far out

on the asymptote of the zeroth-order hyperbola. These constants are dis-

cussed further in Subsection 3. 8.

It is also necessary to expand the motion of the k — body when t-t, is small.
xC

The expansion is obtained by a Taylor series in Section All of Volume 2.

It may be summarized simply as the function

P = P ( t - t ) (2.3-6)

13



F
2. 4 MATCHING

For the outer and inner solutions to match, they must be in terms of a

common independent variable. The expansion of the outer solution near

t = t,, summarized by (2. 3-3), can be written in terms of cr, and fi, using

(2. 3-2) giving

= crk+ ̂ r^r (tQ), v(to); Y_k*, 6,*. ^, ^ , ^ (2.4-1)

The position r_ in terms of the inner solution R, is found from (2. 2-1), i. e. ,

The expansion for the position of the k — body near t = t, , given by (2. 3-6),

can also be written in terms of cr, and \±, giving

(2-4-3)

Finally the expansion for R., when S, is large, obtained from (2. 3-5), can be.

written in terms of cr and JJL, using (2. 3-3) giving

^^k^k-' ^k- Lk; AJ), 4>3 (2.4-4)

Substituting (2 .4-3) and (2 .4-4) into (2 .4 -2) gives

- = +HL (2.4-5)

Simply stated, the matching requires that the difference between the outer

solution, as given by (2.4-1), and the inner solution, as given by (2.4-5) ,

must be vanishingly small in some appropriate limit. Cole (Reference 9)

states this limit as

14



lim

constant

~ (2.4-6)

where e (\i. ) is a gauge function. For a second-order theory €((1, ) is most
K. 2 K

easily chosen to be |j., .

In Section A 14 of Volume 2, it is shown that this limit exists only if

a = 2/5
o

ff = 1/2

(2.4-7)

(2.4-8)

Thus the overlap domain is a region of order JJL where 2/5 < a < 1/2 and

a = 1/2 is not included. This is a. result of the second-order solution inas-

much as Carlson (Reference 2) showed that the first-order solution can be

matched with a = 1/2.

This was an assumption in his derivation and not a result of applying a

rigorous matching requirement such as (2.4-6) . The present results show

that his approach to matching will not work for second order, i. e. , certain

terms which are singular in the limit (2. 4-6) can only be eliminated if

a < 1/2.

2. 5 FUNDAMENTAL SOLUTION

The complete matching process is discussed in Sections A14. to A17, and

Section Bl of Volume 2. The result, summarized in one six-component

state vector equation which will be called the fundamental solution, is

,'V -1,
(2.5-1)

15



where

, = M,
k k +__log _ (2 .5-2)

(2.5-3)

(2. 5-4)

(2. 5-5)

. ,
—k -Lk —k2 (2.5-6)

and, except in the log term, |i, has been eliminated in favor of the reference
iU

mass jo. (which may be equal to JJL, if the k—body is also the reference body

used to non-dimensionalize the differential equations).

Equation (2. 5-1) is a relation between the constants of the outer and inner

solutions. The only constants which do not appear explicitly are the initial

position and velocity of the zeroth-order outer solution, r .(t ) and v (t ).c • —o o —o o
They must be chosen to make the zeroth-order ellipse intersect the position

•f~H
of the k— body at t = t, , i. e. , to satisfy (2. 2-4). They then enter implicitly

through the relative velocity _V, which is the difference between the zeroth-
th

order velocity and the velocity of the k— body at t = t, (and should not be
rC

confused with the inner > time-dependent velocity V, (S,)).
™""""K 1C

Equation (2. 5-1) can be used to solve either initial or boundary value prob-

lems. The initial value solution is discussed in Section A of Volume 2.

It is the boundary value solution which is of interest in this study, and the

applications of (2. 5-1) are discussed in the following subsections.

16



2. 6 COMMENTS .

The asymptotic solution presented here is similar, when second-order terms

are ignored, to the first-order solution derived by Carlson (Reference 2).

The obvious differences between the two first-order solutions are (1) the use

of dimensionless variables, (2) isolating the small parameter (JL so that it

appears explicitly, and (3) using the vector _L, as one of the constants of the

inner solution rather than the standard impact parameter vector.

The two solutions are numerically equivalent when applied to an initial value

problem. However, using the vector L, , does result in a mathematically

different solution when the fundamental solution is applied to boundary value

problems. This is because the use of the impact parameter vector results

in boundary value solutions which satisfy the boundary conditions in a "best"

sense while the L, vector results in solutions satisfying the boundary con-
"""""K.

ditions exactly. The two vectors are related by (cf. Volume 2)

V ' . ' ( 2 .6 -1 )

where Q, and n, are defined in Subsection 3.8.
1C iC

Next, it should be noted that the second-order 'terms add considerable com-

plexity to the solution although such complexity is not apparent in this

section. Some of the complexity can be seen from the formulas in Sub- :

section 3. 8, but it is necessary to follow the derivation in Volume 2 to really

appreciate just how much complexity is actually added. The amount of

algebra necessary to extend the solution to a higher order would probably be

prohibitive and the result somewhat unmanageable. The first-order solution

contains the 3x3 gravity gradient matrix G, while the second-order'solution

contains the 3x3x3 tensor H. Each succeeding order adds a tensor of higher

order. If the dimensions of the tensor are used as a measure of the com-
j.U

plexity of the solution, then an n — order solution has a complexity of order

17



Finally, it should be pointed out that the form of the fundamental solution is

not unique. The matching results contained in the fundamental solution are

similar, but not identical, to those of Carlson (Reference 2). Differences

which are not immediately obvious are due to the fact that an asymptotic

expansion of a given function is not unique. .Other expansions can be formu-

lated to represent the same function but actually appear as different expan-

sions. When the individual expressions which result from the matching are

combined to form the fundamental solution, there are several ways in which

such a combination can occur. Thus for a second-order solution the error

in each case may be. order |j. , but the actual value of the error may differ, .
3 3i. e. , for one case it may be 3[o, while for another case it may be 0. BJJL .

This aspect is discussed further in Subsection 4. 6.

18



Section 3

ASYMPTOTIC BOUNDARY VALUE SOLUTIONS

The boundary value solutions presented in this section are of three general

types: (1) trajectories which originate at some known position relative to

the primary body and terminate at a fixed pericenter radius, inclination, and
• •-,

time at one of the perturbing bodies (cf. , Subsections 3. 2, 3. 3, and 3.6),

(2) trajectories which originate at some known position .close to one of the

perturbing bodies and terminate close to the primary body with fixed entry

conditions (cf. , Subsections 3.4 and 3. 5), and (3) trajectories which originate

close to one perturbing body and terminate close to another, with fixed

pericenter radius, inclination, and time at each end (cf. , Subsection 3. 7).

Each of the boundary value solutions evolves from (2. 5-1),* and each requires

at least one solution of a Lambert problem to establish the zeroth-order '

outer solution. The two types of Lambert solutions which are required are

discussed in Subsection 3. 1. Subsections 3. 2 through 3.7 present the

various boundary value solutions, and finally Subsection 3. 8 gives formulas

for evaluating all the constants which appear in the boundary value solutions.

The sections which follow contain only the end results of the boundary value

solutions. More detailed discussions and the steps necessary to go from

(2. 5-1) to each solution are contained in Volume 2.

3. 1 THE LAMBERT PROBLEM

The standard Lambert problem is one of finding the two-body solution which

connects two known position vectors in a fixed time of flight. If the two

^Except for the two-impulse moon-to-Earth solution for which two different
types of solutions have been derived, one of which does not evolve from
(2. 5-1). It is this latter solution which is presented in Subsection 3. 5.

.19



position vectors are x and x and the time of flight tf, then Lambert's

theorem states that

tf = t f(a, Xj + x2, c) = t2 - tj (3. 1-1)

where a is the semimajor axis which is unknown and c is the chord length

between x and x_. The chord length is found from the law of cosines, i. e. , 7

2 2 2
c = x + .x_ -t- 2x. x2 cos 9, 2 (3.1-2)

where 8 _ is the central angle between x. and x_.
1 fa - 1 - fa . T

An iterative solution is required to determine the 'semimajor axis. Once it

is known, the velocities x and x,, and the solution x(t) can be obtained. Many*
- 1 L. -

techniques have been proposed for solving the Lambert problem. One such •>

'method is discussed by Battin (Reference 11). •?

The standard Lambert problem requires that the two vectors x, and x? be

given. The zeroth-order solutions used in the Earth-to-moon and inter-

planetary solutions are of this type. The zeroth-order moon-to-Earth

solutions however do not rely on a given position vector at the Earth.

Instead, entry conditions of radius and flight path angle are prescribed at a

given time. In addition, the t rajectory is to satisfy a prescribed inclination.

The solution for the semimajor axis is now more difficult, since 9 _ in

(3. 1-2) is not known a priori. This angle is the difference between the true

anomalies at the endpoints, i . e . ,

612

where

f = cos
-1 a (1 - e2) - x1

ex
1

(3. 1-4)
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f_ = cos
L*

-1 a (1 - e2) - x2
ex2

(3. 1-5)

The eccentricity e is a function of a, x_ and the flight path angle "Y_,
^ iL

measured from the local horizontal. The relationship is

2 7 1 1/2

e = | a + x- (x - 2a) cos Y /a (3. 1-6)
L, L* £ \

The modified Lambert problem requires the simultaneous solution of

(3. 1^1) through (3. 1-6) for a, c, 91?, f,, f? and e. Once these parameters

are determined they, along with the prescribed inclination, are sufficient to

solve for the velocities x and x_ and the time-dependent solution x(t). The

solution is discussed in detail in Section B4. 1 of Volume 2, and a similar

problem is discussed in Reference 11.

3.2 EARTH-TO-MOON SOLUTION

The Earth-to-moon problem is one in which the target body is the moon.

The moon should also be the reference body, therefore

k = M (3 .2 -1 )

H= H M " 0.2-2)

The simplest Earth-to-moon boundary value problem is shown in Figur-e 2.

The initial time, t , the initial position relative to the earth, r(t ), and the
o _ — o

pericynthion radius, p , _ , inclination, i M, and time, tp,-, are all pre-

scribed. The initial velocity relative to the earth, v(t ), is unknown and

must be determined from the fundamental solution. In order to evaluate the

solution, an ephemeris is required giving the position and velocity of the

moon and the position of the sun in Cartesian coordinates with origin at the

Earth.
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EARTH

MOON

Figure 2. Earth-to-Moon Solution

From Figure 2 it can be seen that the zeroth-order ellipse, _r (t), coincides

with the higher order solution, r_(t), at t = t . Therefore, in (2. 1-10) let

Then

(3 .2 -3)

r (t ) = r(t )o o — o
. (3 .2-4)

defining the initial position of the zeroth-order ellipse.11
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From (2. 2-3)

where T... is arbitrary and can be put equal to zero without loss of generality.

Non-zero values of T-, simply cause a change in t,.^ when t_,., is held con-
M ** • _ M PM

stant. The final •position1 of the zeroth-orde'r ellipse comes from (2. 2-4)

- ( 3 -2 -6 )

where p,, is the position of the moon obtained from the ephemeris. The two

position vectors, _r (t ) and j: (t,.,), define a standard Lambert problem of

the type discussed in Subsection 3. 1. Solution of the problem gives r_ (t),

shown as the dashed line in Figure 2, and the initial and final zeroth-order

velocities, v (t ) and v (t.. .). The latter is used to define the relative
— o o — o M

velocity

) . ' . . • - . (3 .2-7)

where p, , is the velocity of the mopn. ,

Now let the initial velocity perturbation be

S^ = V^) + H1 Z^) (3 .2-8)

Then the initial velocity at t is

v(tQ) , = . vo(tQ) + H L . 6 v ( t o ) " (3 .2-9)

while the excess velocity at the moon can be written
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The perturbation terms in (3. 2-9) and (3. 2-10) are obtained from the

fundamental solution. They are

B(tM, tj- (£M + YM + f ,iM) (3 .2-11)

D( t o ) 6 v( t o ) - < L M - K H-M (3 .2-12)

Equations (3. 2-9) through (3. 2-12) constitute a linear solution to the

boundary value problem.
c_* "

Since _V M enters (3. 2-11) through J? and since 6v;(t ) appears in (3. 2-12)

they are not explicit relations but must be solved in a sequence using the

zeroth-, first-, and second-order terms successively. The zeroth-order

approximation is obtained by putting |ji = 0 in (3. 2-9) and (3. 2-10). The

first-order approximation is obtained by putting (JL = 0 in (3. 2-11) and

(3. 2-12) and using the zeroth-order value of V x. to evaluate (3. 2-11). The
— ooJVL

second-order approximation is obtained by evaluating (3. 2-11) and (3. 2-12)

with u 4- 0 and using the first- order V x ̂  in (3. 2-11).
— ooJVl

Combining (3. 2-9) with the prescribed value of r(\. ) gives a complete set

of initial conditions for a trajectory satisfying all the conditions of the

boundary value problem. Combining (3. 2-10) with the prescribed values of

pericynthion radius and inclination gives a complete set of terminal condi-

tions as shown in Subsection 3. 8.

An alternate solution, called the nonlinear solution (Reference 2), can be

obtained from the solutions of a sequence of Lambert problems defined by

the position vectors

r ' ( t ) = r (t ) (3 .2-13)
- — o o . — o o , .
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where

Solution of the Lambert problems gives the initial and final velocities,

v1 (t ) and v'(t..,). Then the initial velocity replacing (3. 2-9) is
— p o — o M .

v(to) = v;(to) (3.2-16)

;r
and the excess velocity replacing (3. 2-10) is

= V + V- (3.2-17)

where

(3.2-19)

Again the solution requires a sequence- of steps. The zeroth-order

approximation is obtained by putting JJL = 0 is (3. 2-14) and (3. 2-17) and is

identical to the zeroth-order linear solution. The first-order approximation

is obtained by putting [i = 0 in (3. 2-15) and (3. 2-19) and using the zeroth-

order V , , in (3. 2-15). And the second-order approximation is obtained by— coJVL
using the first-order V , , in (3. 2-15). The nonlinear solution is shown in

— OO.M.
Figure 3.

The first- and second-order nonlinear solutions will be slightly different

from their linear counterparts since they include nonlinear effects in the

zeroth-order solution which are not contained in the B and D partial deriv-

ative matrices used in the linear solutions.
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MOON

Figure 3. Nonlinear Version of Earth-to-Moon Solution

The constants \_^r, §_*/[' J2A/r and HM are fixe<l through each step of both the

linear and nonlinear solutions. The function <£*,, however, depends ori

V -, and must be evaluated for each of the zeroth- . f i r s t - .and second-order
—coJVL
.approximations.

Subsection 3. 8.

Formulas for calculating all of the constants are in

3.3 EARTH-TO-MOON MIDCOURSE SOLUTION

In the previous section, the initial position, _r(t ), was implicitly assumed to

be close to the Earth. The same analysis may also be used for a midcourse

maneuver where the position, r_(t ), represents a point between the Earth and

the moon, as shown in Figure 4. The velocity just prior to the midcourse

maneuver is v(t ) and after the maneuver it is v(t ). Therefore, the
— o — o

midcourse velocity correction is

Av(to) =

(3.3-1)
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EARTH

MIDCOURSE VELOCITY CORRECTION

Figure 4. Earth-to-Moon Midcourse Solution

The solution of Subsection 3. 2 can be used to calculate v (t ) and 6v(t )
—o o — o

and since r(t ) and v(t ) are known, (3. 3-1) gives an analytical expression
— o o

for the midcourse velocity correction.

3.4 ONE-IMPULSE MOON-TO-EARTH SOLUTION

In the moon-to-Earth problem, the moon becomes the launch body and is

also the reference body. Therefore, as in Subsection 3. 2,

k = M (3.4-1)

M
(3 .4-2)

The boundary value problem is shown in Figure 5. The initial time, t,,

the initial position relative to the moon, R

radius, r , flight path angle, Y , and incl
e e

The initial velocity relative to the moon, ^

and the entry time, t ,
e

and inclination, i , are all prescribed.

is unknown and must be
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Figure 5. One-Impulse Moon-to-Earth Solution

determined using the fundamental solution. An ephemeris like that used for

the Earth-to-moon solution is required.

Since entry conditions rather than a fixed position vector are prescribed at

Earth, this solution requires the solution of the modified Lambert problem

discussed in Section 3. 1. The initial position of the zeroth-order ellipse

comes from (2. 2-4)

r (t-J = p^ft.J . (3.4-3)

where pM is the position of the moon obtained from the ephemeris and,

for convenience,

t,, = t.M 1
(3.4-4)
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The final position r (t ) must be determined from the solution of the
^ —o e

modified Lambert problem along with r (t), shown as the dashed line in

Figure 5, and the initial and final zeroth-order velocities, v (t,,) and

Xo<V- '
velocity

v (t ). The initial zeroth-order velocity is used to define the relative— o e

where pM is the velocity of the moon.

The zeroth-order solution satisfies the entry conditons exactly, therefore

any perturbations at t = t will cause the trajectory to deviate slightly from

the prescribed conditions. As shown in Figure 5, the position perturba-

tion can be made to vanish, i. e. ,

so that

r(to) = ro(to) (3.4-7)

The velocity perturbation cannot vanish without overly constraining the

problem, therefore,

6v(te) = v^tg) + n v2(te) i 0 (3.4-8)

so that entry velocity is

v(te) = v^tg) + M - 6 v(te) (3.4-9)

The hyperbolic excess velocity is given by
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The perturbation terms in (3.4-9) and (3.4-10) are obtained from the

fundamental solution. They are

•= B(tM, t^1^ (3.4-11)

V, = D(tM, te) 6v(te) - & M - H (3.4-12)

Using the initial position R. „, and the excess velocity V „, a new para-— Ml — ooM . r

meter XM is defined by

= 1 + 4{ R V "
Ml ooM

1 + cos -oeM

RM1

-1

(3.4-13)

Then the initial velocity at the moon is

-Ml
(3.4-14)

Equations (3.4-9) through (3.4-14) constitute a linear solution to the

boundary value problem. They must be solved in a certain sequence to

obtain zeroth-, first-, and second-order approximations (cf. Section 3. 2 for

a discussion of the steps involved). Equations (3.4-13) and (3.4-14) must be

included in the sequence since the constants in (3.4-11) and (3.4-12) are

functions of Rx / r i and V .— M l — M l

Combining (3.4-14) with the prescribed value of R,,. gives a complete set of

initial conditions (note that they are inner variables and that to obtain dimen-

sional values RJ..T, must be multiplied by [i as well as the appropriate dimen-

sional length scale) for a trajectory satisfying, to zeroth order,, all the

conditions of the boundary value problem. The terminal state is given by

(3.4-7) and (3.4-9). The prescribed entry radius is satisfied exactly

because of (3.4-6), while the flight path angle and inclination differ by

order |ji from the prescribed values due to (3.4-8).
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An alternative, nonlinear solution can also be obtained in a manner similar

to that discussed in Subsection 3. 2 for Earth-to-moon trajectories. The

new Lambert problem is defined by the position vectors

V

where

*Z.(ti^) = £\A + 3-\A + H1 J» (3- 4-17)

Equation (3.4-15) defines the fixed position vector for the modified Lambert

problem and (3.4-16) represents the prescribed entry conditions. Solution

of the new Lambert problem gives the final position, _r ' (t ), and the initial

and final velocities, v (t,.,) and v (t ). The excess velocity is

= v'^ + H^y ' (3.4-18)

where

(3 .4-20)

The initial velocity relative to the moon is still defined by (3..4-14). This

solution requires the same sequence of steps as the nonlinear Earth- to -moon

solution discussed in Subsection 3. 2 except that the Lambert problems are of

the modified rather than standard type.

For each of the zeroth-, first-, and second-order approximations the entry

velocity is given by

v ( t ) - v ( t ) . (3 .4-21)
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i. e. , the entry velocity is the velocity of the modified Lambert solution. -

Since all of the Lambert solutions satisfy the entry corVstraints, the nonlinear

solution satisfies these constraints to any order. Thus the nonlinear solu-

tion has the advantage that it satisfies the entry boundary conditions exactly

rather than to zeroth order as the linear solution does. The nonlinear solu-

tion is shown in Figure 6.

The constants Y , , , 6 > ,, AA/T' anc^ ' are a§ain fixed through each step. The

a n d ^ V , , . and must be evaluated for

each approximation. In addition, because of (3.4-4) , T / 0 and must be

calculated with the other constants. This is expected since V - L * - , will not, in

function^" , however, depends on R ,,. ,,.

general, be normal to R-.. ,, > i.

- L * - ,

the initial position is not pericenter. The

parameter T, , is a measure of the time between t. and the time of pericenter

passage. Formulas for calculating all of the constants are- given in •

Subsection .3. 8. , . . ..

CR17

MOON

EARTH

Figure 6. Nonlinear Version of One-Impulse Moon-to-Earth Solution
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The initial velocity Y\/t\ *s *ke velocity after the impulse. The notation

represents the velocity, at t., i.e., t-

If .y- iL.rf t , ) is the velocity before the impulse then the single impulse is

given by .

(3.4-23)

3.5 TWO-IMPULSE MOON-TO-EARTH SOLUTION

The two-impulse moon-to-Earth problem is similar to the one-impulse

problem discussed in the previous section except that the initial velocity is

assumed to be known and does not give a trajectory satisfying the prescribed

entry conditions. A second impulse is applied at some time prior to reach-

ing the moon's sphere of influence resulting in a trans-Earth trajectory

which does satisfy the entry conditions.

The boundary value problem is shown in Figure 7. The initial time, ti, the

initial position and velocity relative to the moon, .R^n and _YM1» an initial

impulse, I\, along the current velocity vector at tj, the time of the second

impulse, tz, and the entry time, te, radius, re, flight path angle, ^e> and

inclination, ie, are all prescribed. The magnitude and direction of the

second impulse are unknown and must be determined from the asymptotic

solution. -

The solution may or may not be derived from the fundamental solution. If the

second impulse occurs well outside the moon's sphere of influence then the

fundamental solution, derived from the matching process, should be used for

the part of the solution between the first and second impulses. However,

when the second impulse occurs near or inside the sphere of influence,

Carlson (Reference 2) has shown numerically that a perturbed hyperbola is

more accurate than the fundamental solution. His results have been verified

theoretically by considering the order of magnitudes of all the error.
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Figure 7. Two-Impulse Moon-to-Earth Solution

terms at various points out to and slightly beyond the sphere of influence
!

(cf. Section B4. 3 of Volume 2).

The solution described here utilizes a perturbed hyperbola between the

first and second impulses and a perturbed ellipse between the second

impulse and Earth entry. The solution therefore is not a matched solution

but simply two asymptotic solutions joined at the point of the second impulse.

The initial position and velocity (in inner variables) are

= RM1 (3.5-1)

= V
-Ml

(3.5-2)
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where S indicates the instant just prior to the first impulse which is

defined as

(3.5-3)

The position after the first impulse is still given by (3. 5-1), but the velocity

is now

VM(SJ) (3.5-4)

i. e. , the post-impulse velocity is parallel to the initial velocity. The

impulse iL must be chosen to make

i. e.,

I, 2

This is needed to guarantee a hyperbolic orbit after the impulse.
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The post-impulse position and velocity uniquely define a zeroth-order

hyperbolic trajectory about the moon. Position and velocity, Rx, and Vx, ,
-Mo -Mo

as a function of the inner time S, can be determined from .standard formulas

such as (2. 2-11). In addition the position and velocity can be used to deter-

mine the eccentricity and mean motion of the hyperbola as well as the initial

eccentric anomaly F [cf. Carlson (Reference 2)], Volume 2, or

Subsection 3. 8], Then the initial inner time is

= (e sinh (3 .5 -7 )

and the inner time of the second impulse is

(3.5-8)

The position and velocity at t?l including the perturbations due to the

Earth, are

RM<S2> = M

(3 .5-9)

^3S2

'2 -

(3.5-10)

where Gx, and A- are defined in Subsection 3.8. Transforming to Earth-M —3
centered coordinates using (2 .2-1) and (2 .2 -2 ) gives

RM (3.5-11)
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V(t? = ^M <*2> + ^M (S2} (3.5-12)

The solution between t7 and t is given by (2. 1-12), (2. 1-13) and (2. 1-14)
L* 6

with t = t and t = t,.
o e £ • • ' •

The zeroth-order solution is found from a modified Lambert problem with the

initial position given by

ro(t2) = r(t2) (3.5-13)

and the terminal position defined by .

r (t ) = r (r , Y , i ) (3.5-14)-o e -o v e e e

where (3. 5-14) represents, the prescribed entry conditions. Solution of the

modified Lambert problem gives r (t ), r (t) shown as the dashed line in

Figure 7, and the zeroth-order velocities, v (t7) and v ' (t ).

As shown in Figure 7, the position perturbation at t can be made to vanish

giving

r^) = r2 (te) = O ' (3.5-15)

so that

£.(te) = rQ (te) (3.5-16)

The velocity perturbation

6 v ( t ) = v. (t ) +ji v, (t ) ?«'0 (3.5-17)
"~™ 6 ^" J. C "^~ti C
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does not vanish, so the entry velocity is

Z ( t ) = V (te) + p. 6v (te) ' (3.5-18)

By combining (3. 5-10) and (3.5-11) with (2. 1-12) through (2.1-14), the

entry velocity perturbation and the velocity impulse at t-, can be written

6v(te) = -B(t2 , te) -1 [rio (t2> te) +HI r2Q (t2, te)l (3.5-19)

2) - v ( t~) -H PL [rn (t^ te) + D (t^ te) 6v(te)j

r (t te) (3.5-20)
L l \ . d . . .

where r i n , Ti , i r9n andr,, are constants defined in Subsection 3.8. Equa-
— i U — . 1 . J . — — ̂  U — ̂ 1 • ; , - , ' • •

tions (3. 5-17) through (3.5-19) constitute a linear solution to the boundary

value problem. Equation (3. 5-18) gives the deviation from the prescribed

entry conditions of Y and i [r is satisfied due to (3.5-14)1 and (3.5-19)' e e L e J
gives the velocity impulse which satisfies the entry conditions to zeroth

order. Note that AV0 is a function of t_, of R,,,,,, V , and I, (through
- c. 2 —Ml —Ml 1

y_(to)), of r , \ and i (through v (t7)), and the perturbations due to the
^ ™ ^ 6 6 6 * ~ O t < -

moon and sun (through the F's). Therefore AV^ is a function of all the

boundary conditions.

An alternative, nonlinear solution can be obtained by solving a modified

Lambert problem between the position'vectors

'•Io ( t2 ) = - (t2} " ^-TlO (t2' te) - ^ JzO (t2' te) (3.5-21)

l ^ ) - I ( r ' Y . i e ) (3.5-22)
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where r ' ( t 9 ) is the fixed position vector and r ' (t )i represents the prescribed
™ O L* ' — O C

boundary conditions. Solution of the new modified Lambert problem gives

the velocities v '(t±) and v '(t ). The impulsive velocity becomes
— O LJ •—O G -

- v(t') te) (t2> (3.5-23)

and again, AY- is a function of all the boundary conditions.
• ~ C*

The entry velocity is

. e
(3.5-24)

and since v (t ) comes from a modified Lambert solution, the nonlinear

solution satisfies the entry conditions exactly to any order. Therefore,

just as in the one-impulse case, the nonlinear solution has the advantage

of satisfying the boundary value problem exactly rather than to zeroth order

as the linear solution does. The nonlinear solution is shown in Figure 8'.
• • - - . • CR17

FIRST IMPULSE

EARTH

SECOND IMPULSE

Figure 8. Nonlinear Version of Two-Impulse Moon-to-Earth Solution
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3.6 INTERPLANETARY MIDCOURSE SOLUTION

The interplanetary midcourse solution is similar to the Earth-to-moon

midcourse solution and therefore similar to the Earth-to-moon solution.

The main difference is that this is an N-body solution where motion takes

place in heliocentric rather than geocentric space. N may vary from

three up to eleven, the latter being the entire solar system plus the particle.

The target body (one of the nine planets) may also be the reference body.

Letting T indicate the target body gives

k = T (3.6-1)

, H = ^T (3.6-2)

The boundary value problem is shown in Figure 9. The initial time, t the
o

initial position relative to the sun, _r(t ), and the pericenter radius, p ,

inclination, i and time, t , at the target planet are all prescribed.

TARGET PLANET MIDCOURSE VELOCITY CORRECTION
CR17

LAUNCH PLANET

Figure 9. Interplanetary Midcourse Solution

SUN
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The initial velocity, v(t ), is unknown. An ephemeris giving positions of

the N-2 planets in Cartesian coordinates relative to the sun is required to

obtain the solution.

The solution is identical to the Earth-to-moon solution described in Sub-

section 3.2. That is, .the initial velocity v(t ) is found from the equations of

Subsection 3.2 with M replaced by T and with |JL equal to (JL-, rather than ̂ .

The midcourse velocity correction is found from (3.3-1). Both the linear

and nonlinear solutions are applicable to this problem although in actual

practice the linear may be sufficient, as conditions favoring the nonlinear

solution are not as likely to occur as they are in the Earth-to-moon solution.

3.7 INTERPLANETARY SOLUTION

The interplanetary solution is similar to the previous solution in that both

apply to the general N-body problem. There is a fundamental difference

between this solution and all the others in that the trajectory passes close

to two perturbing bodies, one at the launch end of the trajectory and one at

the target end. Letting L indicate the launch body and T the target body

gives

, -' .k (- j - =-.. L (3,7-1)

k(2) = T ' (3 .7-2)

The reference body may be either L or T, but to be consistent with the

previous solution let

(3.7-3).

The interplanetary boundary value problem is shown in Figure 10. The per-

icenter radius, p. , inclination, i, , and time, t , , are prescribed at both

the launch planet, k = L, and the target planet, k = T. The hyperbolic excess
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TARGET PLANET
CR17

SUN

Figure 10. Interplanetary Solution

velocities relative to the sun as well as the pericenter positions and

velocities relative to the respective bodies are unknown. The solution

requires an ephemeris giving planetary positions relative to the sun.

From (2.2-3)

t'T " = ' t T - UTTL pL ^ L, (3.7-4)

*T = '*pT
(3.7-5)

where, as in the Earth-to-moon solution, the T'S are arbitrary and can be

set equal to zero without loss of generality.
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From Figure 10 it can be seen that the zeroth-order ellipse, r (t), passes .

through the launch planet at t = t, and through the target planet at t = t™,

therefore

(3.7-6)

rQ(tT) = pT (tT) (3.7-7)

where pT and pT are the positions obtained from the ephemeris.

The two position vectors, r (t. ) and r (t_,), .define a Lambert problem and the

solution gives r (t), shown as the dashed line in Figure 10, and the initial

and final zeroth-order velocities, v (t, ) and v (t™). These velocities are
— O J_j ' — O -L

used to define the relative velocities.

tL) ' (3.7-8)

VT = VQ (tT) -^T (t'T) (3 .7-9)"

where pT and p^ are velocities obtained from the ephemeris.
•i-J_( ••—J. - . . - . . : •

Now let the hyperbolic excess velocities be defined by

(3.7-10)

(3.7-11)
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The perturbation terms in (3,7-10) and (3,7-11) are obtained from two

fundamental solutions (Reference 12), one with k = L, and one with k = T,

which can be combined to give

(tT, tL)- ,eT + IT + n 6T - A (tT.

(3.7-12)

= C (tT, tL) (;fL + VL + JJL iL) + v- D (tT,

(3.7-13)

The position and velocity at pericenter relative to either L or T are given

by the inner variables

(3.7-14)

(3.7-15)

Equations (3. 7-10) through (3. 7-15) constitute a linear solution,.of the

boundary value problem. Since V& and V^ enter the right-hand sides of— \-t ". J. •' •
(3.7-12) and (3.7-13) through ^T and 3? the relations are not explicit but

*-^Xj J.

must be solved in a sequence using the zeroth-, first-, and second-order

terms successively. The zeroth-order approximation is obtained by putting

\i = 0 in (3.7-10) and (3.7-11). The first-order approximation is obtained by

putting |i = 0 in (3. 7-12) and (3.7-13) (but not \j.~ or ( J I T ) and using the zeroth-

order Veto's in the right-hand sides of these equations. The second-order

approximation is obtained by using the first-order VCQ 's in the right-hand

sides of (3. 7-12) and (3. 7-13). Finally the values of X»L, and X.«>-j" along

with the prescribed boundary conditions at each end, are used to evaluate

(3. 7-14) and (3. 7-15) for k = L and k = T giving the initial and final positions
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and velocities relative to the launch and target bodies, respectively. All the

additional equations needed to evaluate the complete solution are given in

Subsection 3. 8.

The linear solution does not show any explicit dependence on the time

t = t which appears in the fundamental solution. The solution is a function

of t however since the constants are evaluated either between tT and to L o
or between t and t™ (cf. Subsection 3.8). This requires knowledge of not

only r (t) but also r_ (t) and y_ (t). The time t itself is arbitrary to a

certain extent, and a logical choice would be

*o = ( t L + t T ) / 2

The value of £ (t ) can then be obtained from the original Lambert solution

for r (t) and the values of r.(t ) and v, (t ) can be obtained from the funda-—o —1 o —1 o
mental solution with either k = L or k = T and ^ = 0.

If r_. (t ) is very large then the deviation between the zeroth- and first-order

solutions may introduce large errors. These errors can be reduced by

defining a modified linear solution as follows:

The three position vectors

L' (3.7-16)

^V = W = L0(^^L^0) 0.7-17)

^o(V = 2T V (3.7-18)

define the new Lambert problems. The solution of the first Lambert problem

gives r1 (t), shown as the dashed line in Figure 11, and the two zeroth-order

velocities, v' (tT ) and v' (t ). The solution of the second Lambert problem
-~O Lj —~O O

gives r"(t), shown as the dotted line in Figure 11 ,<• and the two zeroth-order

velocities, v _ ( t ) a n d v ( t ) .
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CR17

SUN

Figure 11. Modified Linear Version of Interplanetary Solution

LAUNCH PLANET

The relative velocities are defined by

V' = v' (t ) - pT (t )— L — o Li — L, Li

— T — r> T JTT * T

(3.7-19)

(3.7-20)

while a new intermediate velocity is defined by

(3.7-21)

let the excess velocities be defined by

v = v; + ̂ 5 v'.
— L r — coL,

V. = V' + j i 6 V '
—-CO*-.-. — q- ' —COnp

(3.7-22) '

(3.7-23.)
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where the perturbation terms are obtained from the fundamental solution as

( tT> tL)
-1 II ~

- A (tT,

B" (tT, tQ) v|(tQ) - 6^ - HL TJ.^ •;• • (3.7-24)

6v' = c (t , t ) oe : -+ v; + ̂  !,') + 5 (tT, t,) uv' + 6'T— MX i L — L, — LI ^ —LI i L — <x> LI —LI

>" (*T.. tj,) XI^Q). - 6/r -H1T ' J . (3.7-25)

In (3.7-24) and (3. 7-25) the superscripts prime (') and double prime (")

indicate that the parameter (constant, matrix, function) is evaluated along

either r' o r r" respectively. The superscript tilde (~) indicates a special

partial derivative matrix defined by

«(tT, t ) = ' « " (tT, t )* ' ( t , t ) - (3 .7-26)I Li 1 o . o Li

so that

A(tT, t ) = A" (t , t ) A' (t , t ) + B" (tT, t ) C' (t , t )
T L T o o L T o o L ( 3 < 2_2 7 )

B(tT, tL) = A" (tT. to) B' (to, tL) + B" (tT, to) Dr (to, tL)

(3.7-28)

C(tT, tL) = C" (tT, t0) A' (to. tL) + D" (tr t0) C' (to, tL)

(3.7-29)

D(tT, tL) = C" (tT, to) B' (to,tL) + D" (tr to) D' (totL) (3.7-30)

The special notation is required because the two zeroth-order solutions,

r1 and r", are not continuous in velocity at t = t . Therefore, the transition

matrix has discontinuities at t = t . These 'discontinuities are removed byo '
(3.7-26).
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Equations (3 .7-22) through (3.7-30) along with (3.7-1-4) and (3.7-15)

constitute a modified linear solution to the boundary value problem. It must

be evaluated using the same sequence of steps as the linear solution and can

only be started after r_, (t ) is found from the linear solution. It thus requires

more computation time, but forcing the Lambert solutions closer to the

actual trajectory at t-t reduces the size of the perturbation terms with a

resultant increase in accuracy (cf. the section on numerical results).

.' ... -.r

The nonlinear interplanetary solution is obtained from the solutions of,a .,;

sequence of Lambert problems defined by the position vectors

• o * • • . ' • • : . . • • • . . • . . • • • . - - . !
• • • - . r » ' ( t ) = p ( t ) + j i 6 r ( t ) (3.7-31).

- ! ~ O i - i — L - i L j — L J - . . - - . • -

r^' (tT) = pT (tT) + HL 6_r (tT) (3.7-32) '

where

6r(tL) = ^ + YL + ji 1L , (3.7-33)

6r(tT) - ^T + Y T + ^ i T (3.7-34)

Solution of the Lambert problems gives the initial and final velocities,

V" (tT ) and V" (t_). The excess velocities become— o J_i — o i

' • , - • " • • Y ^ = V - + l t V V ( 3 . 7 _35)

V _ = V"1 + ^ V1" (3.7-36)
— col — 1 — col

where

YL = ^o" (tL} ~ PL (tLJ (3.7-37)

'^T = ^o' (tT} - PT (tT} (3.7.-3S)
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and
. r

-L (3.7-39)

-T (3.7-40)

This solution also requires a sequence of steps. The zeroth-order solution,

identical with the zeroth-order linear solution, is obtained by putting jo. = 0

in (3. 7-31), (3. 7-32), (3.';7-3r5), and (3, 7-36). :The first-order 'approximation-

is obtained by putting ji = 0 in (3. 7-33), (3.7-34), (3.7-39), and (3.7-40)

and using the first order Y^'s in the right-hand sides of (3.7-33) and (3.7-34).

The second-order approximation is obtained by using the first-order Vco's in

(3.1.7'.-33) and (3.7-34). The. nonlinear solution is shown in Figure 1Z.

TARGET PLANET

CR17

LAUNCH
PLANET

fL(tL)

SUN

Figure 12. Nonlinear Version of Interplanetary Solution
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It is tempting to define a modified .nonlinear solution,by replacing (3. 7-33)

and. (3. 7-34) with ,

&.r(.t ) =.*• +Yl +|a;'. . (3.7-41)
— — • ' •

&r_(tT) • = ^T + 1T + H IT + B,." (tT, to) v.'r (to) (3. 7-42) :

The theoretical basis for making such a substitution is questionable since ;

the matrix $ (t™, tT ), defined by (3.-7-26), is not a true transition matrix,
i J_i

The nonlinear solution essentially replaces the transition matrix by 'a new ;

Lambert solution to account for nonlinear effects in the partial derivatives.

The modified nonlinear solution therefore involves the replacement of a - • • i

pseudo-transition matrix with, a Lambert problem-and may not offer any

improvement over the modified linear solution.' -

All the functions appearing in this section are defined by formulas which

appear in the next section.

3.8 FORMULAS FOR THE BOUNDARY VALUE SOLUTIONS .

Each of the preceding solutions requires at least one zeroth-order ellipse

which is found as the solution of either a standard or a modified Lambert

problem. Except in the two-impulse moon-to-Earth solution, the zeroth-

order velocity at t = t, is used to define a relative velocity
K.

vk = y^ (tk) - pk (tk) ' ( 3 .8 -1 )

The relative velocity becomes the zeroth-order approximation to the hyper-

bolic excess velocity, i. e. ,

= V + 0 ( h O (3.8-2)
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Thus in each of the solutions requiring knowledge of the excess velocity, a

zeroth-order approximation can be obtained from the Lambert solution. The

previous sections showed how the zeroth-order approximation becomes the

starting point for generating successively higher-order approximations to

V , . The only steps left are to show how V . a n d the prescribed boundary

conditions are used to generate the various parameters appearing in the

boundary value solutions. The solutions of Subsections 3. 2, 3.3, 3.6,

and 3. 7 all use the same formulas and these will be given first. The solu-

tion :of-;Subsection 3.4 requires a few special formulas to make it fit with the

other solutions. Finally the solution of Subsection 3. 5 will be considered

separately. . - •

First consider-the case where prescribed values of pericenter radius, p.,

and inclination, i, , must be combined with V,^, to determine the inner

hyperbola. The Cartesian components of V^, are given by the vector

notation

Vk' Wk>
(3.8-3)

where the bars indicate inner variables. In addition to the prescribed

inclination i, , the elements of the hyperbola are (cf. Section B2 of

Volume 2)

vk k
(3.8-4)

e, = 1 + P, Vco,
k k — k

(3.8-5)

ctn i.
COS

v
k>

V, W. =F U, [(U2 + V.2) tan2 i. - W.2
k k k [v k k' k k

1/2

(3.8-6)
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ctn i.
sin

F 7 7 7 7 "I i / 7
u. w,± v. (u: + vn tan.- i. - wf ' 'k k k k k k k I1'

where

and

52

(3.8-7)

sin

'k

- 1/2

cos

(3.8-8)

(3.8-9)

cos n + sn (3.8-10)

_ Vk cos nk - Uk cos

k
cos ,

(3.8-11)

Wk_

sin i,
(3.8-12)

Qk = ±1 (3.8-13)



The elements a, , e,, £1 and UK are the semimajor axis, eccentricity,
1C iC iC iC

argument of ascending node, and argument of pericenter, respectively. In

(3. 8-6) and (3. 8-7) the upper sign is used if the approach to or departure

from the k— body is to be over the body, and the lower sign is to be used if

the approach or departure is under the body. In (3.2r-12) the upper sign is

used for departure from the k—body, and the lower sign for approach.

Additional constants which are used are derived in Sections A12 and Bl of

Volume 2. They are:

A, = a, e, (cos GO, cos £2, - sin w, sin Jl cos ii>) (3. 8-15)

B, = a, e, (cos u>, sin Ji + sin u>, cos £2, cos iyj (3. 8-16)

Ck = ak ek sin wk Sin \ (3.8-17)

, Ck) (3.8-18)

A. = V . (3.8-19)— ko — cok

= Qk log (2 nk/ek) V^^ + Lk (3.8-21)

0.8-22)
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/2 (3.8-24)

[A, ,, - LI, Q. B. _ log u, + u, Q, C,^^ l^ y r^ if ^^ ̂  ^— IT s ^ I l^ * 1^ u* ^^tzx£^ rv. jx zv u ix TV. r\. x\
/

(3'.8-25)

The matrix G(A, ) is found from (2. 1-8) with x = A, . The matrix G, is r— ICO — — KO K" . . ' ' •

defined as

= G (£k (tk)) : (3.2-26)

The vector R,2 (Qk/l^k) is found from (2.2-13) with Sfe = Qk/M-k« I<: must be

determined by Gaussian quadrature or some other numerical means. An
* . •• ; '

approximate value of A, ,, can be found from

D log2 , - E log (3. 2-27)

where

Gk

Gk2 + "^ Ck A + G E - 2

(3. 2r29)

The tensor HjA, ) is found from (2. 1-9) with x =

5.4



Formulas (3.8-4) through (3.8-13) give the constants which completely define
' • . (* ' . '• *•

the inner hyperbola R, . Formulas (3.8-14) - (3.8-21) are used to determine

the behavior of R, in the overlap domain where S, is large. The behavior

of the perturbation, R,-,, when S, is large can be found from (3. 8-22)
—K£ K ^

through (3.8-29). The key formulas are those for L; and A, since they

appear in (2. 3-5) and eventually in the fundamental solution.

In the one-impulse moon-to-Earth solution the boundary conditions are not

given as prescribed pericenter radius and inclination but rather as a pre-

scribed initial time and position. The initial position R ^ r i , combined with

V ,, in (3.4-14), gives the initial velocity Y.iv/fi' The angular momentum

magnitude, £,- , is given ,by the relation' • ' ' ' .

RM1 cos -II -Ml
V '
—coM

R,., V .,Ml »M
(3.8-30)

The inclination is then defined by

cos i. , = (e_ •
M —3 —

x V , ) /ft— M 1 . M (3.8-31)

where e-, is the unit vector in the z direction and x the vector cross product.

The pericenter radius is obtained from

M
2 - 1/2

M/ / VcoM (3.8-32)

Thus in the one-impulse solution (3.8-31) and (3.8-32) give the unknown iM

and P^ in terms of V ,, and the boundary conditions. These two equations,

as well as (3.8-30) must be added to the previous set of equations, (3. 8-4) to

(3.8-29) , in order to define the inner hyperbola.
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The time T, , which can be arbitrarily set to- zero in the solutions of

Subsections 3.2, 3.3, 3.6, and 3.7, has a fixed value in the one-impulse

solution. The eccentric anomaly along the inner hyperbola at t - t. is

found from

(3.8-34)

Kepler's equation then gives T as

TM '= (F~1 - *M sinh '*V ' *M (3.8-35)

' ' ' • I . ' . ' . , ' < r - r ' . - ,

i. e. , T-, is the negative of the inner time from pericenter.

The expressions presented up to this point all pertain to the inner hyperbola
i-U

about the k—body. Another set of formulas defines all of the parameters

related to the outer solution. Like the inner formulas they involve the

matrix G defined by (2. 1-8) and the tensor H defined by (2. 1-2), as well as

the vector function f_ defined by (2-2). These formulas, in order of solution,

are
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N-2

1=1 '
G

H, =

G

(3.8-37)

(3.8-38)

(3.8-39)

(3.8-40)

[ **1
G k ^ k - H P k - j /6 •: (3.8-41)

(3.8-42)

(tk' to) =

i

, f B(t, , T) F, (T) +. -Ik
"k* / -1 l ' (T- tk)

L

/
£lk ^2k

D (t , , T ) F (T) ^r - -y-^f
K i /_ , \c, IT - t.

(3.8-44)

57



-i 8-49)

-50)

-3

* -G,



H,
MkQk

(Gk (3.8-54)

MkQk
HQlk' Bk (3.8-55)

G a,,k —Ik (3.8-56)

G, b..k —Ik (3.8-57)

- J k l (3.8-58)

.,•4k
* ' * *

G, d,, -I- u. (G, e,, - J, b,, )k — Ik p k ~lk k — Ik (3.8-59)

* *

(3.8-60)

$ ,, = G. G. a., /6— 7k k k —Ik (3.8-62)

G, G,*k k (3.8-63)
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y =
log Q (T - t.)

lOg

-3k

+
-4k (T.. t,

d r (3.8-64)

{tk' D (tk'

logQk (T- tk)

' 1 log Qk (T. t.)
di \b £ £.
-2k , , ,3 " ^-3k , • . ,2

( T - t k ) ( T - t k )

(3.8-65)
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The formulas (3 .2-36) through (3. 2-52) arise mainly from the expansion of

the first-order solution, r_,, in the overlap domain while those given by

(3 .2-53) through (3.2-65) arise from a similar expansion of the second-order

solution, r__. The constants must be evaluated sequentially starting from the

relative velocity as given by (3.8-1).

The integral constants K l f . , , K ., , K _ _ , , and K-,., must be evaluated
"^~ 1 U K. ~— J_ JL J£ ~~^ U 1C t* 1 K.

numerically using Gaussian quadrature or some similar technique. This

requires the integrands to be evaluated at a series of discrete points. The

first-order integrands are functions of the two-body solution, r_^, the partial

derivative matrices B and D evaluated along T-, and the positions of the N-2

perturbing bodies as given by an ephemeris, as well as the indicated con-

stants. The second-order integrands are similar except that they also depend

on the first-order solution, r_ , which is given by (2. 1-13). Since r_ itself

contains an integral function, the formulas for K.?n^. and K T I ^ are actually

double integrals. This complicates the application of a technique such as

Gaussian quadrature since each quadrature point of the outer integral must

be divided into n points for the inner integral. An approximation for r, which

reduces K?ni and K?iv to single integrals is discussed in Volume 2. In addi-

tion, Volume 2 contains explicit formulas for the partial derivative matrices

A, B, C, and D which must be evaluated to obtain the constants of the outer

solution.

The inner constants can be combined to give

k Mk ^ k - k n g
k nk

Mkek
2nk

X.k

while the outer constants can be combined to give

(3.8-66)

(r t- D -K (3.8-67)

-1
(3.8-68)
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V to) (3.8-69)

lv = - An, (2Il + !) (fc - V'2/4 - i.7V (* * tJ/2
^™.K X .K Jv O . -K £ lx O Jv

" - M, T. (£„ + 2g,. - pT + T M, T, G, V.) (3.8-70).k k —Ik ^-Ik 1-k 2 k k k —k

The only other quantities which appear in the boundary value solutions are the

partial derivative matrices obtained by partitioning the state transition

matrix, the constants M, defined by (2. 1-7), the dimensionless mass of the
th

k— body, (a., , and the reference mass, p.. As noted previously, many forms

for the partial derivative matrices are available. Some are in Cartesian

coordinates and can be used directly. Other forms require coordinate trans-

formations to obtain the Cartesian expressions. The expressions which are

given in Volume 2 are in Cartesian coordinates.

The.two impulse moon-to-Earth solution has not been derived from the funda-

mental solution and thus requires additional formulas to define the parameters

appearing in the solution. The hyperbolic solution between the first and sec-

ond impulses is defined by the following set of orbital elements and angles:

a - R <<Z ) -v V ' /<; "N M 8-71^L ~ XV. I" i / ^*- * * \*^ / V * /
"^ ^^™^^i J> ^~ LvL 1

N = f / l f I (3.8-72)
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^ ., ., ,3.8-73,
M

(Sl'

(3 .8-74)

2h|£_ | 2 ) 1 / 2 (3 .8-75)

i = cos"1 (N . e.,) (3. 8-76)

_ N . £1
sin-n .= — . (.3. 8-77)

sin i

_ •" • N ' e- ;

cos n = - . _* • - (3.8-78)
sin i

_ - M
sinh F1 = _ 1 /2_ (3.8-79)

a e

_ a + R (S )
cosh FJ = •' _ _ (3/8-80)

a e . • . . .

sin". = a ( e 2 - l ) 1 / 2 s i n h F 1 (3.8-8,1)

— (e - cosh FI
• c o s - f , - --—R TO-T (3.8-82)

N. •

sin u = — (3.8-83)
R (S , ) sin i
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cos w = (3. 8-84)
R(S.) sin i

u = S1 - f1 (3. 8-85)

_ - 3 / 2
n = (a) . (3. 8-86)

i . ' . •"•

= - ( | £ _ | sin "J3" + a" 1/2 cos w")7(ae) (3.8-87)

= (| T\ cos J7 - a" 1/2 sin^)/(ae) (3.8-88)

U = U cos O - V ' sin £2 cos i (3. 8-89)

V = U sin £2 + v 'cos £2 cos i (3. 8-90)

c

. W" = V'sin T (3. 8-91)

V = ' ( U , V , W) (3 .8-92)
CO

The orbital elements, are: a, the semimajor axis; e, the eccentricity; i, the

inclination; £2, the argument of the ascending node; u>, the argument of peri-

center; and the initial inner time is given by (3. 5-7) . These-elements and '

the initial time are sufficient to define R.M_(S) sand XIVTO^^ ^n a riul*'^)er °^

\vays, (2 .2 -11) being one example. - • • : ,

The perturbations to hyperbolic motion, which appear in ( 3 . 5 - 9 ) and (3.-"5-10)

require the additional formulas .. ?
,̂ "L •

GM ^^M^l^ (3.8-93)

J ) ) (3 .8-94)

A, = 1/24 HM V 2 (3 .8-95)
—— J —1V1 •^~(X)
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The outer solution requires the evaluation of four definite integrals given by

= / B(t2, T) F^Tjdr (3.8-96)

t

rn (t2,te) = f Df t^TjF^TjdT (3.8-97)

te .

B(t2 ,T)F_2(T)dT (3.8-98)

t

, te) = /
»/

D(t2 ,T)F_2(T)dT (3.8-99)

t
e

These integrals are similar to K.,.,, ^ i i t» ^nv and ^21k w^^c^ are ^

fundamental solution. They must be evaluated numerically using a technique

like Simpson's rule or Gaussian quadrature. The first-order integrands are

functions of the two-body solution r_ obtained from the Lambert solution, the

partial derivative matrices B and D evaluated along j^ , and the positions of
o .

the moon and sun. The second-order integrands are similar except that they

also depend on r, which, according, to (Z. 1-13), contains an integral function

itself. Therefore (3.8-98) and (3.8-99) are actually double integrals and

require special care in their evaluation.
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3..9 COMMENTS

The boundary value solutions presented in the preceding sections satisfy the

objective stated in the introduction. They are explicit solutions which,

except for the linear versions of the moon-to-Earth solutions, satisfy the

boundary conditions exactly without requiring any iterative techniques. Thus

they offer a distinct advantage over numerical methods which depend on

iterative techniques to converge to the boundary value solution. It should be

pointed out however that satisfying the boundary conditions exactly with an
'.- ' i ' . ' ' ' • ' • ' ' ' •

approximate solution (which.the asymptotic solution does) is not quite the

same as satisfying the boundary conditions approximately with an exact

solution (as numerical integration does). Since the asymptotic solution is

only approximate, an exact solution based on the asymptotic initial conditions

will most likely not satisfy the terminal boundary conditions exactly. The
' > " . • , ' • ' • • " . - : * . . - '•

difference between the two methods is the subject of the next part of this

report.
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Section 4
J ' ' NUMERICAL RESULTS

In order to determine the accuracy of the asymptotic boundary value

solutions, a number of comparisons were made with numerically integrated

trajectories. Prescribed sets of boundary conditions were used to evaluate

the asymptotic solutions for'Earth-to-moon, moon-to-Earth, and inter-

planetary applications. Initial conditions determined by the asymptotic solu-

tions were then used in an N-body numerical integration program. Compari-
• . . < ' . ' j • • - • - . . . i ,

sons of terminal conditions between the asymptotic and numerically

integrated solutions are used as measures of the accuracy of the asymptotic

solution. That is, for any terminal condition x the comparisons are given

as Ax where

Ax = x (asymptotic) -x (numerical integration) (4-1)

4.1 EARTH-TO-MOON TRAJECTORIES

Earth-to-moon trajectories of the type shown In Figures 2, 3, and 4 and

discussed in Subsections 3. 2 and 3. 3 were compared with numerical

integration. Initial positions relative to the Earth were determined from

exact solutions of Apollo-type trajectories leaving Earth around February 1,

1971.

Five basic trajectories were considered; with variations in the initial

positions, the total number of trajectories was ten. They cover flight times

from 60 to 100 hours and inclinations at the moon of -35 and -80 degrees

(the minus sign indicating an approach under the moon). The boundary

conditions of all ten examples are given in Table 1.

(Additional trajectories have also been studied but the major conclusions

obtained from the results are similar to those obtained from the trajectories
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presented here. One of the additional trajectories was a 63.5 hour transfer

which was very similar to that used by Carlson (Reference 2). The results

were in good agreement with his. )

The model for the Earth-to-moon trajectories was a 4-body problem (Earth,

Moon, Sun, Spacecraft) with the positions of the moon and sun determined

from an analytical ephemeris.

Since the initial positions for five of the ten trajectories lie close to

perigee, it was decided to make the comparisons using the nonlinear

solution, (3. 2-13) through (3. 2-19). The linear solution was used first but

the results were not satisfactory. The reason for the difference is appar-
>i

ently the fact that the linear solution uses the linear partial derivative

matrices. These are not adequate if one of the endpoints lies in the non-

linear region of the zeroth-order solution close to perigee. 'Since the

nonlinear solution replaces the transition matrix with an exact zeroth-order

Lambert solution,, the nonlinear effects are included. As the initial position

moves away from perigee the differences between the two solutions are

reduced.

The prescribed initial position r(t ) and the calculated initial velocity

v(t ) were used as initial conditions in the numerical integration program and

the resulting values of pericynthion time, radius, and inclination compared

with the prescribed values which are shown on the left side of Table 1.

Comparisons were made using both the first- and second-order velocities

obtained from (3. 2-16) and are shown 011 the right side of Table 1. The

results can be divided into groups which show various trends in the accuracy

of the asymptotic solution. The data for each group are presented in the

following format.

Group ' Case Order of At
Designation Number Solution

• v/r
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The groups are:

A. 1
1
1

11
36

45

-18

-92

-210

-0. 05

-0. 05

-0. 11

101

102

103

In this group of three trajectories, the variable boundary condition is the.

time of flight, and the results show that first-order accuracy is degraded as

the time of flight increases.

B. . 101 2 2 -6 . .' . 0. 15.

102 2 -8 -299 . TO..; 33.

103 2 -154, -4497 -2. 12.,

o •

In this group, the variable boundary condition is again time of flight but the,,...

results are now second order. The same degradation of accuracy as in A is

apparent but the degree of degradation is much more marked. For No. 101

the second order is better than the first, but for No. 103, the first .order is

better. .

These results indicate that whatever is degrading the first-order accuracy

is having a highly adverse effect on the second-order solution. The cause

is most likely the deviation of the first-order solution from the zeroth-order,

solution. When this deviation is large, as it is in the long-flight-time

trajectories, it evidently causes the asymptotic solution to diverge before

reaching the second-order term. Thus the second-order error is larger

than the first.

C. 101 1 11 -18 , -0. 05

104 1 11 -21 -0. 04.

101 . 2 2 -6 0. 15

104 2 3 . 4 0. 08

This group shows the effect of choosing the initial position to be a point one

hour out on trajectory No. 101, thus giving No. 104. By delaying the initial

position, it occurs at a true anomaly of 118 rather than 6 degrees and at a

radius of almost 13J 000.rather than 3, 544 nautical miles. This delay has

little effect on either f i rs t - or second-order accuracy.
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D. 103 1 45 -210 0.11

106 1 47 -162 -0.34

103 2 -154 -4497 -2. 12

105 2 -12 -699 -0.65

106 2 1 -421 -0.45

This group is similar to C except that the time of flight is near 100 hours

rather than 60. A delay of one hour (No. 105) along No. 103 increases the

true anomaly by 106 degrees and the radius by 9, 360 nautical miles. A delay

of two hours (No. 106) increases the true anomaly another 15 degrees and

radius another 8, 264 nautical miles. The two-hour delay has very little

effect on the first order results but the one and two hour delays have a

marked effect on the second order results reducing the time of flight error

from 154 minutes down to one minute and the radius error from almost

4, 500 nmi down to 421 nmi.

Carlson (Reference 2) has shown such a trend in the first-order linear

results for a 63. 5-hour trajectory (starting at perigee). He shows steps

(delays) of 1, 3. 5, 8. 5, 13. 5, 23. 5, 33. 5, ... hours. Accuracy is improved

with each step out to 8. 5 hours after which it slowly begins to degrade. He

found no such trend using a first-order nonlinear solution, -which agrees with

the first-order comparisons shown here and in C.

The improvement in accuracy shown here as the initial position is moved

away from the Earth is evidently due to a decrease in the deviation between

the zeroth- and first-order solutions. This deviation is small for No. 101

thus a delay of one hour has little effect. For No. 103 however, the deviation

is initially quite large and delays of one and two hours decrease the deviation

and increase the accuracy. The deviation of the solutions can be measured

by the magnitude of the first order 6v(t ). The magnitudes are

No. Delay (hr) 6v(to) (ft/sec)

101 0 149

1 0 4 . 1 5 4

1 0 3 0 . 8 4 5

105 1 254 '

106 2 210

71



Since neither 101 nor 104 have excessively large values of 6v(to) the second

order solutions are not adversely affected. The large value for No. 103,

however, results in large second order errors.

E. 107 1 11 2 -0.65

108 1 46 -94 -4.24

This group .is similar, to A except the inclination at the moon is -80 rather

than -35 degrees and data for the 80-hour trajectory has not been included.

The same degradation with increasing time of flight is apparent and, except

for inclination, the errors are similar in magnitude to those of A.

F. 107 2 -64 -644 -8.86

108 2 -113 -2499 -25.90

This group is similar to B except for the difference in inclination and the

lack of an 80 hour trajectory. It again shows the degradation of the second-

order results as flight time increases but, except for inclination, the degrada-

tion is not as marked as in B.

Another trend is also apparent when B and F are considered together as

follows:

G. 101

107

103

108

2

2

2

2

2

-64

-154

-113

-6

-644

-4497

-2499

0. 15

-8. 86

-2. 12

-25. 90

Comparison of Cases 101 and 107 shows that the second-order accuracy is

degraded as the inclination goes from -35 to -80 degrees. Comparison of

cases 103 and 108 shows that, except for inclination, the second-order

accuracy-is'improved as the inclination changes. (The anomalous behavior

of the inclination cannot be explained. )

Thus inclination at the moon has an effect on the second-order accuracy, the

nature of the effect being dependent on the time of flight. No such trend is

apparent in the first-order results.
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H. 107

109 or

107 .

109

1

1

2

2

11

11

-64

1

2

r -11-

-644

-16

-0. 65

-0.48

-8. 86

0. 36

This group is similar to C except for the difference in inclination. No. 109

is obtained by delaying the starting position one hour along 107. Again the

delay has little effect on the first-order results but results in a marked

improvement in the second-order results where the errors were originally

quite large. The reason for the improvement is discussed in D.

I. 108 1 46 -94 -4.24

110 1 47 -89 -3.07

.108 2 -113 -2949 -25.90

110 2 3 -353 -7. 71

This group is similar to H except that the time of flight is near 100 hours

rather than 60. The trend is identical to H. A delay of two hours has little

effect on the first-order results but a significant effect on the second-order

results. The reason is again the same: an initial position further from the

Earth reduces the deviation between the zeroth- and first-order solutions and

thus increases the accuracy.

Several observations can be drawn from A through I and from Table 1 as a

whole. The first would be that the second-order solution is much more

sensitive to boundary conditions than is the first order. For instance first-

order pericynthion radius errors range from -210 to +2 nmi while the

second-order errors range from -4, 497 to +4 nmi. In some cases the

second order is better than the first; in other cases the first order is better.

The point of minimum error for the asymptotic solution is evidently less

than second order in some cases, and adding the second-order terms causes

the solution to diverge. (In general, an asymptotic expansion in powers of ^

will most closely approximate the function which it represents after n terms,

and then diverges as n is increased. The optimum value of n is a function of

^j. and other parameters such as boundary conditions. It is difficult to

determine a priori. )
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The second observation is that second-order errors are increased by •

starting the trajectory close to perigee, by increasing the time of flight, and

by choosing certain values of inclination at the moon. Each of these effects

can be related to the size of the first-order velocity correction

^ . ' ( 4 . 1 - 2 )

When the- -magnitude 6v(t0) ' is large the error is large and when the magnitude

is small the error is small. When v(t0) is large, the first-order solution

r, tends to grow rapidly with time; From (2. 1-6) it can be seen that the
2

force F£ is' a function of _r_ and this results in large values of the second-

order integrals i 'K

its effect could be reduced by choosing 'r_ to be closer to the actual

trajectory_r. However, the condition dictated by (2. 2 -4) prohibits _r' from

being chosen arbitrarily, i. e. y it must pass through the center of the moon.

If (2. 2-4) is relaxed then it might be possible to choose an r_ which would

minimize (4. 1-3) but such a step causes rather severe complications in the

analytical derivation of the solution and is not well enough understood at

this point to make any modifications along this line. (For a further discus -

sibn'of (2; 2-4) see Section AID and the first parts of Sections All and A17

in Volume 2. ) . ' :

The magnitude of 6v(to) should be proportional to the perturbations

experienced over the entire length of the trajectory. Numerically integrated

trajectories show a variation in the orbital elements of less than 10 over i

the first two hours of flight after leaving perigee, indicating that the moon

and sun perturbations are small over this interval. The large changes in

the magnitude of, 6v(t0) as the starting point moves away from perigee (cf. , D)'

must therefore be attributed to something other than the effect of the moon

and the sun. The evidence indicates that the cause is the large difference

between jr and r_ + jj. r., i. e. , a fictitious force arises when £ is a poor

approximation to the actual solution.

74



Since a delay in the starting position to one or two hours after perigee never

degrades the accuracy bu,t,.tends to improve it when the\errqr.s are large,

and since the effect of the real perturbing forces is small over the initial

one- or two-hour interval it may be possible to construct a more uniformly:,

valid solution by applying either a two-body or a perturbed two-body solution

out to a true anomaly of 120 to 135 degrees and then applying the asymptotic

boundary value solution from there to the moon. Certain modifications would

be required to make the velocity continuous between the two solutions, but

such changes are relatively minor. Lack of time prohibited making such a .

modification in this study although a somewhat related solution was

incorporated into the interplanetary solution. It is termed the .modified
\.

linear solution in Subsection 3. 7 and the results are shown in Subsection 4;-4.

A.third observation is that since accuracy is increased as the starting point

is moved away from perigee, the midcourse application is probably better

than the full Earth-to-moon application. This is especially true if a simple

form of the asymptotic solution is desired, since it has been amply pointed

out that starting from perigee probably will require a composite solution to

obtain uniform accuracy. ,

The fourth and final observation is that starting at perigee will always ;

involve rather large sensitivities to initial errors. The initial velocity . :. ;

calculated, even without any modification, may differ by only a small amount

from the actual velocity which satisfies the boundary value problem exactly.

Whether or not these small differences are tolerable depends on the

particular use to •which the solution is being applied.

4.2 TWO-IMPULSE MOON-TO-EARTH TRAJECTORIES . - ,

Two-impulse moon-to-Earth trajectories of the type shown in Figures .7 and

8 and discussed in Subsection 3. 5 were also compared with numerical •

integration. The initial position and velocity were taken from a patched -

conic optimum 4-impulse solution obtained from NASA-MSC. The initial ... .

time was zero hours on February 8, 1980 (Julian Date 2444277. 5) and the

initial position and velocity were , . ,, ,

-Ml = (263.24, -923.75, 272. 72) nautical miles (4.2-1)

-Ml ~ (-1125-44 ' H81.10, 5086. 90) feet/second (4.2-2)
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This corresponds to a 60-nmi circular orbit about the moon with an inclina-

tion of 97. 582 degrees. The first impulse was chosen to match the patched

conic solution by putting

Ij = 0.45805 (4.2-3)

This resulted in a hyperbolic orbit after the first impulse with a pericenter

radius of 998. 49 nmi, an eccentricity of 1. 1259, and the same inclination

as before.

Equations (3. 5-8) and (3. 5-9) were used to determine the position and

velocity at five-hour intervals out to 25 hours. The magnitudes of the two-

body position and velocity, R and V , the position and velocity perturba-

tion, 6R,,, and 6V , and the errors when compared to numerical integration,
M . M

| 6 RMJ and |&VM| , are shown in Table 2. The results show the solution

defined by (3. 5-8) and (3. 5-9) to be quite accurate with position and velocity

errors running 0. 1 percent or less. It is interesting to note that at 20 hours

the predicted radius was approximately the radius of the moon's sphere of

influence and the perturbations 6RM and &VM indicate the error of a patched

conic solution at this point.

Table 2

POSITION AND VELOCITY MAGNITUDES AND
ERRORS OF PERTURBED HYPERBOLA

"(hr)

5

10

15

20

25

RMO
(nmi)

10,

18,

26,

32,

39,

842

797

070

992

694

5^M(nmi)

5.

39.

124.

281.

535.

7

6

0

4

2

(nmi)

0.

5.

13.

24.

39.

9

1

2

9

7

VMO
(fps)

2,

2,

2,

2,

2,

975

574

404

307

243

M
(fps)

4.

17.

37.

64.

100.

9

4

2

6

0

(fps)

0.4

0. 8

1. 1

1. 0

2.5
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At each of the five points in Table 2, a second impulse was calculated using

the linear solution (3. 5-19). Entry times were chosen to make the total

flight time, t - t., equal to 120, 100, and 80 hours. In addition, an

impulse was added at t? - t.. = 5 hours which resulted in a 60-hour flight

time. (Flights of 60 hours flight time from t2 - t. = 10, 15, 20, and 25

hours were not possible without going to hyperbolic transfers. This was.

because t - t, for each of these points was less than the parabolic flight
€ C* ' •

time from that point to Earth. ) These trajectories are summarized in

Table 3. They are grouped according to the time of the second impulse in

order of decreasing total flight time. Magnitudes of the second velocity

impulse are shown, the magnitude of the first impulse was the same for

all cases, i. e. ,

AV(tx) = 2, 447 fps (4.2-4)

The Earth entry conditions were

r = 3, 594 nmi (4. 2-5)
e

Ye = 0. 0 deg (4.2-6)

ie = 30.0 deg (4.2-7)

The choice of zero for Y meant that entry coincided with perigee. Errors in
6

perigee time, radius, and inclination are shown as well as errors in entry

time and flight path angle for those trajectories where the numerically

integrated solution passed through the entry radius, i. e. , had positive perigee

radius errors meaning the numerically integrated perigee was below the

perigee (entry) radius.

The numerical integration program was set to cut off at flight times of 125

hours. In the cases where this limit was reached, the radius at that time

is shown to give an indication of how far off the trajectory was.
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The results shown are second-order results except for the 120-hour flights

and the flights where the second impulse occurred at the sphere of influence.

In these cases zeroth, first- and second-order results are all shown. (The

order of the solution applies only to the phase after the second impulse.

The hyperbolic phase used the perturbed solution in all cases since the

accuracy of this phase had already been determined. )

The results show three basic trends. First, as t^ - t increases with ...

t - t held fixed, the accuracy improves. This is to be expected. As the

point of the second impulse moves away from the moon, the outer solution

which is used to derive (3. 5-19) becomes a better approximation to the actual

solution. If the initial point is too close to the moon (a distance of order p.)

then the outer solution must be replaced by a matched solution obtained from

the fundamental solution. Since the primary purpose of the two-impulse

solution is to study trajectories where the second impulse occurs away from

the moon, the derivation was made accordingly. Thus values of t,, - tj of 5

and even 10 hours represent marginal applications for this type of solution,

and the errors are not entirely unexpected.

The second trend occurs when t., - t, is held fixed and t - t, decreased.
i . 1 e l

The trend in each group is toward improved accuracy. This should also be

expected if the Earth-to-moon results of the previous section are considered.

It was shown there that increasing flight time degraded accuracy. The same

trend appears here with decreasing flight time giving increased accuracy.

The cause is probably the same as in the Earth-to-moon cases, i. e. , the

deviation of the first-order solution from the zeroth-order solution increases

with increasing flight time and adversely affects the accuracy. A second

cause may be the use of the linear rather than the nonlinear solution. - All of

the post-second impulse trajectories had transfer angles between 170 and

180 degrees, the 120-hour trajectories all being around 178 degrees. The

linear partial derivative matrices may introduce considerable error in such

cases since both end points lie in highly nonlinear regions of the zeroth-order

solution. Since the nonlinear solution does not use the partial derivative
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matrices (except in the definite integrals), it could be expected to give better

results. Time did not permit an evaluation of the nonlinear solution.

The third trend apparent is that the first-order solution gives better results

than the second order in all but one of those cases where the zeroth-, first-,

and second-order solutions have all been compared •with numerical integra-

tion. However, a comparison of Cases 201, 205, 208, 211, and 214 shows

that the difference between the first- and second-order solutions is decreas-

ing as t? - t1 increases and finally when t? - t. equals 25 hours the second

order is better. This also can be attributed to the size of the deviation

between the zeroth- and first-order solutions. When this deviation is large,

as it is when the second impulse occurs close to the moon, then the second-

order accuracy is 'adversely affected. As the deviation decreases, the

adverse effect is diminished and the second-order accuracy is improved.

The cases where t? - t. equals 20 hours, Cases 211 to 213, are interesting

since the zeroth-order results are nearly equal to what a patched conic

solution would give. Prior to the second impulse, the solution is a perturbed

hyperbola, but the perturbations are not excessively large and the solution

is close to a pure two-body solution. After the second impulse, the zeroth-

order solution is a two-body ellipse. Since the second impulse occurs at

the sphere of influence, the zeroth-order solution is nearly patched conic

(actually slightly more accurate). The results show that both the first- and

second-order solutions are an order of magnitude more accurate than the

zeroth-order solution and that the zeroth-order solution predicts a velocity

impulse which is less than that actually required to satisfy the boundary

conditions. This would indicate that patched conic solutions may give

considerable error if used to determine the optimum time for adding the

second impulse.

This point is emphasized by considering No. 217. The errors for this case

were obtained by numerically integrating fr;om the initial conditions predicted

by the patched conic program used at NASA-MSC and adding the indicated

impulse at 6. 3 hours. Although the solution is supposedly optimum, the
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terminal errors are quite large and the second impulse would probably have

to be increased by several hundred feet per second to cancel out the errors.

The magnitude of the second impulse would then approach that of No. 209

which was the minimum of all the second-order impulses calculated by the

asymptotic solution. However, for No. 209 the second impulse occurs

8. 7 hours later and the total flight time is 20 hours less than No. 217,

indicating quite a change in the possible optimum .conditions.

A final observation is that the errors in time of flight, perigee radius and

entry flight path angle shown in Table 3 are never as small as one might

expect from a second-order theory. As discussed previously, the overall

accuracy could be expected to improve by going to a nonlinear solution, but

problems pertaining to sensitivity might still remain. Thus, as in the Earth-

to-moon solution, the intended use of the solution will determine to a large

extent what accuracies are acceptable. If the accuracies shown here,

particularly those for long flight times, are unacceptable then further

numerical analysis would be warranted to see if the errors could be reduced

by either using the nonlinear solution or by formulating a composite solution

in which the deviations from the zeroth-order solution are less. This latter

approach would be similar to the combined two-body/asymptotic solution

suggested for Earth-to-moon trajectories.

4. 3 INTERPLANETARY MIDCOURSE TRAJECTORIES

Interplanetary trajectories of the type shown in Figure 9 and discussed in

Subsection 3. 6 were compared with numerical integration. Two Earth-to-

Mars reference trajectories were chosen; the f i rs t was a 244-day transfer

leaving Earth on November 11, 1964 and the second a 184-day transfer

leaving Earth on May 19, 1971. The first reference trajectory was used by

Carlson (Reference 2) and is presented here for comparison with his

results. The second reference trajectory is similar to that actually flown

by the 1971 Mariner mission.

The prescribed boundary conditions at Mars are shown in Table 4. The

initial positions were determined along two-body solutions intersecting

Earth and Mars at the departure and arrival dates. The initial velocity was
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Table 4

TERMINAL BOUNDARY CONDITIONS FOR
MID COURSE-TO-MARS TRAJECTORIES

Reference
Trajectory

1964-244 Day

1971-184 Day

t
PT

(Date)

July 13, 1965

Nov 19, 1971 i

(Hour)

11:59:45

12:00

PT
(nmi)

1,898

2, 000

iT

(deg)

33.9

30.0

then calculated using the linear solution. The position and velocity were

used as initial conditions in the numerical integration program and the

resulting boundary conditions compared with the predicted values. The

comparisons are shown in Table 5, Cases 301 to 306 corresponding to initial

positions along the 1964 244-day trajectory, and Cases 307 and 308 corre-

sponding to initial positions along the 1971 184-day trajectory. The time to

go to'pericenter and the distance f rom Mars are shown for each initial posi-

tion as well as the differences ( e r r o r s ) in pericenter time, radius, and

inclination.

The model used was a seven-body problem with the positions of Venus,

Earth, Mars, Jupiter, and Saturn obtained from an analytical ephemeris.

The 1964 reference trajectory is a relatively low-energy Earth-to-Mars

transfer with a heliocentric transfer angle of about 178 degrees. The six

midcourse points, 40 days apart, correspond to some of the initial positions

investigated by Carlson (Reference 2). In each case both f i rs t - and second-

order results are shown.

The first-order comparisons agree very well with Carlson's first-order

results. They show an increasing degree of accuracy from 220 to 100 days

and then a trend toward decreasing accuracy as the time of flight is further

reduced below 100 days. The large error at 220 days can be attributed to
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several causes but the most probable is that the starting point is in a region

relatively close to the Earth where the midcourse solution may not be

applicable. That is, the assumptions used to derive the midcourse solution

are not satisfied if one of the perturbing bodies other than the target body is

relatively close to the starting point. If the starting point is within a distance

of order H of such a perturbing body then the interplanetary solution of

Section 3. 7 must be used. The starting points for Cases 301 and 302

evidently lie between the domain of validity of the two solutions. The

increasing error as tp-p-to goes below 100 days can be attributed to certain

iterms proportional to (tprp-to)~^ which are ignored in the first-order solution.

The second-order solution shows a. definite improvement in accuracy for

Cases 301 and 306. In Cases 302 to 305 the second-order shows an improve-

ment in time of pericenter passage but the results for radius and inclination

are inconsistent, sometimes better and sometimes worse than the first

order. The mixed results for radius and inclination are probably due to the

fact that both the f i rs t- and second-order values may be within the accuracy

'.limits of the numerical integration itself.
i

The 1971 reference trajectory is a somewhat higher-energy Earth-to-Mars

transfer with a heliocentric transfer angle of about 142 degrees. The two

midcourse points occur two and four months after launch and lie in the

region where the midcourse solution can be expected to work well. For each

case zeroth- , f i rs t - , and second-order results are shown.

The zeroth order solution, which is identical to the massless planet conic

approximation often used for interplanetary trajectory analysis, results in

'rather large errors. These errors are reduced significantly by the first

y; and second order solutions and, except for the pericenter radius error in

•Case 307, the second order is better than the first.

The magnitude of the first- and second-order errors in Cases 307 and 308 is

difficult to explain. Since the 1971 trajectory is a higher energy one (i.e., has
9

' less flight time) than the 1964 trajectory, the results from the lunar trajecto-

ries would indicate that the errors should be less. Also the two points are at
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distances from Mars which are comparable .to Cases 304 to 306. Yet both

the f i rs t - and second-order errors in Cases 307 and 308 are considerably

larger than those in Cases 304 to 306. These differences are evidently due

to the combination of time of flight, pericenter radius, and inclination pres-
I

cribed for each of the reference trajectories, but a detailed inspection of each

of the cases does not give any hint as to why this should be so.

The final observation regarding Cases 307 and 308 Ls that the first- and

second-order results show improvement as the time to go decreases. This

is in agreement with Cases 301 to 306.

The interplanetary midcourse solution appears to be an excellent application

for the asymptotic solution. There are two basic reasons for this. The first

is the magnitude of the small parameter [i. In the lunar cases fi is 10"^

while in the midcourse-to-Mars application |JL is 10"'. This causes the

asymptotic expansions to converge much more rapidly.

The second reason is less apparent from a theoretical point of view but just

as important as the size of p.: it is the fact that the location of the initial

position does not have as strong an effect on accuracy as in the previous

results. In the lunar examples the zeroth-order solution has an eccentricity

close to unity and the region close to perigee (and apogee) has a highly non-

linear behavior. In interplanetary applications the corresponding eccentri-

cities are 0.25 or less and the initial position, even if close to perihelion,'

does not lie in a highly nonlinear region.
1 , !

The combination of small ji and nearly circular zeroth-order outer solution's

causes the deviation between zeroth- and first-order solutions to be rela-

tively small when both start from a common position as in the midcourse

solution. The results of the next section show that this is no longer true

when the initial position is close to another body.
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4.4 INTERPLANETARY TRAJECTORIES

Interplanetary trajectories of the type shown in Figure 10 and discussed in

Subsection 3. 7 were also compared with numerical integration. The two

reference trajectories are the 1964 and 1971 examples of the previous

section except here they are considered in reverse order. The same seven-

body model was used.

The prescribed boundary conditions are shown in Table 6. The conditions

at Earth are typical of departure from a low-Earth orbit. In Cases 401 and

402 the terminal conditions are typical of a close approach, while in Cases 403

and 404 the pericenter radius at Mars is rather large. This value was

chosen since a numerically integrated solution with identical boundary condi-

tions was available for comparison.

For each case, the initial position and velocity at the Earth were calculated

from (3. 7-14) and (3. 7-15) using either the linear or modified linear solution.

The position and velocity were then numerically integrated up to a close

approach at Mars and the resulting boundary conditions compared with the

prescribed values. The comparisons are shown in Table 7.

Case 401 shows zeroth- , first- , and second-order results of applying the

linear solution to the 1971 trajectory. The results show the expected

improvement going from zeroth to first order but then a significant degrada-

tion in accuracy going from first to second order.
" l

Case 402 shows the results of applying the modified linear solution. The

midpoint was offset by almost 75, 000 nautical miles or 10 in dimensionless

units. The results show that except for zeroth-order inclination and second-

order time of pericenter passage, the modified, solution caused a slight

degradation in accuracy.

Since the zeroth- and second-order solutions showed such large errors

for the 1971 trajectory, only the first-order solution was compared with

numerical integration for the 1964 trajectory. The first-order results of
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Table 7

ACCURACIES FOR EARTH-TO-MARS TRAJECTORIES

Trajectory
Number

401

402

403

404

Heliocentric
Transfer

Angle (deg)

142.4

142.4

177.6

177.6

Midpoint
Shift
(nmi)

74,642

920,987

Order

0
1
2

0
1
2

1

1

At
PT

(hr)

101.4
8. 0

472. 5

1.17.5
9.0

456. 7

8. .7

3.6

APT

(nmi)

-71, 702
-8,289

-32,370

-83,357
-8,819

-32,626

-22,545

-9,005

AV
(deg)

65.4
-0. 5
-9 .9

13. 5
-0. 8
-9.9

0.8

-2.4

both the linear and modified solutions are given by Cases 403 and 404, The

modified solution resulted in a reduction of over 50 percent in the time and

radius errors but caused a slight increase in the already small inclination

error. The reason that the modified solution gave better results in this

example is probably due to the size of the midpoint shift which is 10 in

dimensionless units. Since the midpoint shift was an order of magnitude

larger than in the previous example it could be concluded that the linear

solution (403) contained significantly more error (than 401) due to the larger

deviation from the zeroth-order solution.

It should be pointed out that a solution of any given order has a minimum

error associated with that order. Solutions like the modified linear or the

nonlinear are only attempts to reduce the error to its minimum value. If

the linear solution itself is close to the minimum error then the other solu-

tions will not result in any improvement. This is evidently what happened

in Case 402.
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The second-order errors are much larger than anticipated and are not removed

by going to the modified solution. It is felt that the cause of the large error

is twofold. First, as shown in Figure 10, the zeroth-order solutions do not

go through the true midpoint in either the linear or modified linear solutions.

Therefore there is always a finite difference between zeroth and first order

and it has been shown in previous sections that this can cause rather large

second-order errors if the deviation becomes large.

In the lunar and interplanetary midcourse solutions, the first-order perturba-

tion, r^, always vanishes at t = to and this helps to reduce the maximum

value which rj may attain at some later time. In the interplanetary solution

such is not the case and the large values which rj may attain cause

excessively large deviations from zeroth order. In order to illustrate this

point consider the difference between the zeroth- and first-order midpoints

for Cases 401 and 403. These differences are equal to the midpoint shifts

in Cases 402 and 404, i. e. , 10~3 and 10"2. But according to (3. 7-17) the

shift in the midpoint should be order a or 10"'. (If the earth is the reference

body then p would be 10~". In either case the midpoint shift should be the

same, theoretically between 10~" and 10" ' . ) Even if these differences are

reduced by one or two orders of magnitude they still remain larger than

order (J. and therefore introduce error.

The second cause probably lies in the evaluation of the integral J^jL which

eventually ends up in r\ L. In all other solutions which use this integral it is

not used in calculating the initial position or velocity. That is, the value of

the initial velocity perturbation 6v(to) is a function of the first order value of

Vook and the constant H^ *s use& only in obtaining the second order value of

VOOT,- This means that T^ is used only in calculating non-prescribed boundary

conditions at the terminal end of the trajectory. In the interplanetary solution

solution, however, ^j^ is used to determine the second order value of Ya,^

[cf. (3. 7-10) and (3. 7-12)] which in turn is used to determine second order

orbital elements and second order position and velocity at the launch planet

(cf . (3 .7-14) , (3. 7-15) and Section 3. 8). Therefore the importance of the

integral ^2lk. increases significantly in the interplanetary solution.
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Of all the definite integrals which must be evaluated K^Jik *s t^ie rnost

difficult because it has the most complex integrand. Since the integrals
"* ~~-
cannot be evaluated exactly but only by some numerical approximation they

always include some error. If they are large then the error is correspond-
8

ingly large. In Case 402 the magnitude of KZ I L
 was 1^ . A one percent

error in the Gaussian quadrature would be 10". The effect of this error can

be determined by multiplying by M- since 1S21L *s a second-order integral.

The net effect is 10"^ or almost order (j.| If attempts are made to reduce

the error by enough orders of magnitude so that it is no longer a problem,

then the computation time increases considerably.

The large second-order errors indicate that a better zeroth-order solution is

needed for this application. The first-order solution however, works well

and offers considerable improvement over the massless-planet (zeroth-order)

approximation. Even though the first-order errors in Cases 401 to 404 may

appear somewhat large, the actual initial positions and velocities are quite

close to those needed to satisfy the boundary conditions with an exact

solution. The errors between the asymptotic solution and numerical
O' ' . . .

integration when both satisfy the boundary conditions are shown for

Cases 403 and 404 in Table 8. Notice that in the linear solution (403) the

first-order errors are large and the second order actually slightly better.

By going to the modified solution (404) the zeroth- and first-order errors

are reduced significantly while the second-order errors are reduced only

slightly.

The f i rs t -order error for Case 404 dramatically illustrates the problem of

sensitivity which has been mentioned earlier. Errors of 14 nmi in position

and 77 fps in velocity (out of a total velocity of 37, 858 fps) result in errors

of 3. 6 hours and 9, 005 nautical miles at closest approach to Mars. Since
i. '

problems of sensitivity cannot be eliminated, the errors shown for first

order in Table 8 are probably acceptable.

4. 5 COMPUTATION TIMES

The asymptotic solutions require three basic types of calculations: (1) Lam-

bert solutions, (2) Gaussian quadrature, and (3) general calculations

including the boundary value solution equations, partial derivative matrices,
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Table 8

INITIAL POSITION AND VELOCITY ERRORS
FOR EARTH-TO-MARS TRAJECTORIES

Trajectory
Number Order

403 0

1

2

404 0

1

2

(nmi)

601

84

47

96

14

35

(fps)

2,706

460 "

321

561

77

326

conversions to dimensionless numbers, etc. The first two require numerical

techniques (including iterations in the Lambert solutions); the third involves

straightforward evaluation of explicit expressions. The calculations can be

accomplished quite rapidly on a high-speed computer.

FORTRAN programs which evaluate the asymptotic solutions were run on a

CDC 6500 computer as was .the numerical integration program. In the

asymptotic solutions the Lambert problems required'approximately 0.3

seconds per solution while a 60-point Gaussian quadrature routine required

approximately 0.4 seconds for each of the N-2 perturbing bodies. The total

computation times for each of the different solutions as well as the corres-

ponding numerical integration times are shown in Table 9.

In the Earth-to-moon solution a large part of the time is spent in Lambert

solutions, while in the interplanetary solutions a considerable portion of the

time is spent calculating the effect of the perturbations through the Gaussian

quadrature routine. Since the interplanetary solution is derived from two

fundamental solutions rather than one, it requires almost twice as much time

as the midcourse solution. The modified linear solution adds two additional

Lambert solutions plus an extra f i rs t -order solution which pushes the time

over 10 seconds.
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Whereas, the, asymptotic solutions are.boundary value solutions, the numerical

integration, runs with which they were compared are only initial value .

solutions based on the. asymptotic initial conditions. Even so, the computa-

tion times for the asymptotic solutions are from 6 to 38 times faster than

those for numerical integration. In order to obtain a boundary value solution

from numerical integration, a..hunting or. search procedure must be added

which significantly increases the.computation time. If the asymptotic

solution is then compared with the numerically integrated boundary value

solutions, the computation times are 25 to. 150 times faster. An actual com-

parison is shown in Table 9 for interplanetary midcpurse trajectories.

It should be noted that computation time is significantly affected by the

number of .quadrature points needed to evaluate the constants. A 120-day

interplanetary midcpurse solution .was evaluated with 12, 36, 60, and 96

quadrature points. Although computation time varied by almost a factor of

three, the,re was little effect on the accuracy, indicating that, for.this trajec-

tory at least, 12 points were sufficient. . Thus the computation times shown

in Table 9 might be reduced with no significant loss of accuracy by reducing

the. number, o f . quadrature points. . . . . . . . . . •

Finally, the programs used to evaluate the asymptotic solutions are still

in the development stage and no real attempt has been made to optimize the

computation time. .The.programs make many calculations which do not .

affect .the ,solution but which were useful during checkout. It is estimated

that by.eliminating these unnecessary calculations and making other changes

within the .program, the computation times could be reduced from 25 to 50

percent-!. ...... . , . ; . . . - . . * • ; • _ , . . . . .

• ?vT t f . -4 .«" • - ;>• ' • • • ' : - ' ' - - • . , . - . . - : . . . ' • • ^ " . . .
.4.6 DISCUSSION.OF .NUMERICAL, RESULTS . . %. . --.

The numerical, results presented he.re consist of a limited number, of

examples, from .which various trends in accuracy can be observed. These

trends are,felt to be representajtive of.the accuracies which result from the

different-boundary, ya-lue: solutions, .but it may be that a more comprehensive

numerical, analysis might, reyeal.further information.
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The examples for which data is presented include those which were used as

test cases in checkout of the computer programs for each solution. This

process went through the following sequence of solutions: '

1. Linear first-order midcourse interplanetary

2. Linear first-order interplanetary

31 ' Linear second-order midcourse interplanetary

4. Linear second-order interplanetary

-5. Modified linear second-order interplanetary

6. Linear second-order Earth-tb-moon

7. Nonlinear second-order Earth-to-mdon

8. Linear second-order two-impulse moon-to-Earth.

Since the analytical derivations of each solution preceded the coding and

checkout by several months, the derivation of the final solution (8) was

completed while the coding and checkout of 4 was taking place. Also; by the

time results were being obtained from 6 and 7, the coding of 8 had been

completed. 'Since many of the factors influencing the asymptotic solution

were determined from the numerical analysis of 6 and 7 and since this

analysis occurred late in the study period, there was not sufficient time to

develop a more comprehensive numerical survey and make changes in the

other solutions.

The sequence of solutions did reveal two aspects of the asymptotic solution

which;need to be're-emphasized. The first is the need for a better nominal

or zeroth-ofder outer solution in order to decrease the deviation between

it and the first order solution. An attempt was made to improve the nominal

in the linear midcourse interplanetary solution. The new nominal did not go :

through the center of the target body and thus (2. 2-4) was violated. This

caused singularities in the definite integrals and therefore an invalid solution.

This was corrected by introducing a fictitious body with the mass of the '

target body but with a slightly different position in order to make the new

nominal satisfy (2. 2-4). This hew solution did give slightly better

results for Cases 301 and 302 and eventually led to the inclusion of the '

nonlinear versions of each solution. [The nonlinear versions were first

discussed by Carlson (Reference 2) but were not emphasized strongly.]
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The second characteristic which was revealed was that the form of the

fundamental solution can affect the accuracy. It was mentioned in Sub-

section 2. 6 that the form chosen was not unique and was slightly different

than the results of Carlson (Reference 2). A more comprehensive numerical

survey should include different versions based on these differences in the

fundamental solution.

A general comment regarding all of the solutions is that attempts .to improve

accuracy, by whatever means, sometimes results in an improvement in one

boundary condition and a degradation in another. This makes it somewhat

difficult to assess the value of the supposed improvement without studying a

large number of cases.

It would appear from the results obtained in the preceding sections and from

the comments of this section that a more comprehensive numerical survey

of all of the solutions is needed. Such a survey should be based essentially

on the solutions as they have been derived but including all versions of each

solution and those changes, such as the construction of a composite-type

solution, which have been specifically mentioned previously.
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Section 5

CONCLUSIONS AND RECOMMENDATIONS

5. 1 CONCLUSIONS
* • • . , ! . - _ .

The analytical solutions presented in this report are a result of combining

and extending the best ideas put fo,rth in previous works on this subject.

The solution of Reference 1 stressed the mathematical rigor and explicitness

of results which evolved from the earlier work of Lagerstron and'Kevorkian.
i

Reference 2, -while also stressing a certain degree of explicitness, was based

on a more general solution first derived by Breakwell and Perko. . The

concepts of mathematical rigor, explicitness, and generality have been

combined in this study to generate a number of asymptotic solutions for both

lunar and interplanetary applications. The basic solutions are the second

order outer and inner solutions presented in Subsections 2. 1 and 2. 2. These

solutions are themselves useful for studying motion along perturbed ellipses

and hyperbolas, respectively; however, their main purpose in this study lies

in the formulation of general solutions for trajectories which have both

elliptic and hyperbolic behavior, with a continuous transition from one to the

other.

The fundamental solution presented in Subsection 2. 5 represents the result of

matching the second-order outer and inner solutions in the overlap domain

(i. e. , the region of transition from elliptic to hyperbolic motion). This

solution is valid for any number of perturbing bodies and represents the first

matched asymptotic solution which has been carried to second order.

Several boundary value solutions have been formulated directly from the

fundamental solution. These include the Earth-to-moon solutions (Sub-

sections 3. 2 and 3. 3) and the interplanetary midcourse solution (Subsec-

tion 3. 6). These solutions are second-order approximations to the exact
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solution and satisfy the prescribed boundary conditions (both initial and

terminal) exactly without need for any iterative techniques (other than in the

Lambert solutions).

Two fundamental solutions have been combined to formulate the interplanetary

solution of Subsection 3. 7. Like the other boundary value solutions it is

N-body, second-order, and non-iterative. It is valid for all trajectories

originating close to one planet and terminating close to another. :

A modified version of the fundamental-solution Has been used to formulate

the one-impulse moon-to-Earth solution (Subsection 3. 4). In addition,

separate versions of the second-order inner and outer solutions' have been

used directly (no fundamental Solution) to formulate the two-impulse moon-

to-Earth solution (Subsection 3. 5). '

Although applicable to a number of boundary value problems, all of the

solutions presented are similar in that they are represented analytically

in the form of asymptotic expansions. Also, the solutions have been derived

so that most of the mathematical operations required for numerical evalua-

tion are common to each formulation and all of the solutions can be program-

med as subroutines of a master trajectory program.

The primary purpose of this study was the development of analytical

boundary value solutions. Nevertheless, Section 4 contains sufficient

comparisons with numerical Integration to demonstrate the accuracy and

speed of the asymptotic solution in typical applications. For each solution

evaluated, the results showed a significant improvement in accuracy over

standard conic approximations. In one application (i. e. , interplanetary

midcourse the accuracy is comparable to that of numerical integration.

(In fact, the results of the asymptotic solution pointed out a deficiency in the

numerical integration program with which it was being compared. Introduc-

tion of more stringent internal accuracy requirements in the numerical1

integration 'program removed the deficiency arid brought the numerical

results into agreement with those of the asymptotic solution. ) ' .
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The computation times for all of the solutions are significantly less than

those for numerical integration and in some instances are less than the

computation times of the fastest numerical approximation techniques. This

computational speed makes the asymptotic solution very attractive for

boundary value problems since all the numerical techniques, exact or

approximate, require iterative .methods to converge to a solution.

The best overall application for the asymptotic solution appears to be the

midcourse application, particularly for interplanetary trajectories where

\i is smalL In this application the solution is convergent to second order,

i. e. , the second-order.error is less than first order. The solution is also

less subject to sensitivity problems which arise with lunar trajectories

originating'close to perigee or close to the moon and with interplanetary

trajectories originating close to the launch planet. The lack of unifqrm

convergence of the second order solution and the problem of sensitivity are

closely associated and both have a minimum effect in the midcourse

solutions. .

o

In other applications certain boundary conditions may cause the second- .

order error to be larger than first order. From an examination of all

the data generated (more than has been presented in Section 4) it appears

that the cause of the second-order divergence, when it occurs, is not a

deficiency in the. second-order terms themselves, but rather the fact that

the zeroth-order solution is a poor approximation to the; actual trajectory.

This problem is discussed several times in Section 4 and again in the next

section. ,

i - •
The general conclusions are: (1) the second-order asymptotic solution does

converge (with certain exceptions), (2) it is significantly more accurate than

conic approximations, and (3) it is much faster than numerical integration.

• ' • " * ' - * i
5. 2 RECOMMENDATIONS FOR FURTHER STUDY ,

In order to formulate a second-order asymptotic solution with more uniform

accuracy, ft is recommended that any further studies include the following:

A. A more comprehensive numerical survey which would include

complete families of trajectories generated by varying each boundary
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.condition through a wide range of values and, in the interplanetary

cases, trajectories to several different planets. Such a survey

would better define those conditions under which the different

second-order solutions diverge and would indicate exactly where a

better nominal or zeroth-order solution is required.

B. An analysis to determine what modifications can be made to the

zeroth-order outer solution to make it.a better approximation to the

actual trajectory in those cases where divergence of the second-order

solution does occur. This problem is discussed in some detail in

, Section 4, but it should be re-emphasized that (2.2-4), which is an

essential condition to successful matching of the outer and inner

solutions, restricts the zeroth-order solution in such a way as to

have an adverse effect on the second-order accuracy. It may be

possible, however, to construct a piecewise continuous zerpth^

order solution from two-body arcs passing through a sequence of

points obtained from the first-order solution. Only the arc closest

to the target (or launch) body would have to satisfy (2. 2-4) yet the

total sequence, since it is obtained from the first-order solution,

would be a much better approximation than the original nominal

solution. Surh an approach would cause some increase in computa-

tion time but should result in a uniformly valid solution for all

applications, that is, a solution free of second-order divergence.

Although A and B are related, they could be carried out independently. If

such is the case, then B should be given the higher priority since it would

produce the more useful results.
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