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| Preface

. : ,
This report has been prepared in two volumes, each of which is a separate
document. Volume 1 is in the form of the usual final report. It contains,a
_sﬁmmary 6f the theoretical derivations, the réquired analytical boundary
value solutions, and a numerical analysis of the solutions, as well as con-
clusions and re cémméndations for further work., It includes all the equations
needed to evaluate any of the boundary value solutions except those é'quatidns
which apply strictly to two-body motion and can be found in most standard

astrodynamics or celestial mechanics textbooks.

The actual derivations of the secon;i order asymptotic solutions are long and
involved. These derivations have been compiled in a A.sep'arate document
which is presented as Volume 2. It contains all the assumptions and inter-
mediate steps which are an important part of the thec))retical development but
which are not included in Volume >l. The main purpose of Volume 2 is to
prdvide a study guide or reference for those interested in the theoretical
aspects of the method of matched asymptotic expansions and/or those who
may wish to modify or extend the results contained in Volume 1 to fit some

particular problem.

Inasmuch as each volume was written as a separate document, there is a
certain amount of overlap af.f,'id_ cross 'réfe_fencing}‘be;}tWeen the two. Thus the
‘reader desiring a more detailed discussion of a particular section in
Volume 1 need only refer to the corresponding section in Volume 2 and need

not read through the entire theoretical analysis.



Page Intentionally Left Blank



ABSTRACT

Previdusly published. asymptoti.c solutions for lunar and
interplanetary trajectories have been modified and combined to
formulate a general analytical solution to the problem on
N-bodies. The earlier first-order solutions, derived by the
method of matched asymptotic expansions, have been extended
to second order for the purpose of obtaining increased accuracy.
The derivation of the second-order solution is summarized by

showing the essential steps, some in functional form.

The general asymptotic solution has been used as a basis for
formulating a number of analytical two-point boundary value
solutions. These include Earth-to-moon, one- and two-impulse
moon-to-Earth, and interplanetary solutions. Each is presented
.as an explicit analytical solution which does not require interative
steps to satisfy the boundary conditions, All required formulas

are presented for each solution.

Comparisons between the asymptotic solutions and numerical
integration are shown for several applications. The results show
that the accuracies_of the asymptoti'c'géblut“i'ér;s range from an ‘
order of magnitude better than conic approximations to that of
numerical integration itself. Also, since no iterations are
required, the asymptotic boundary value solutions are obtained

in a fraction of the time requi“red for comparable numerically

integrated solutions,

The subject of minimizing the second-order error is discussed,
and recommendations made for further work directed toward

achieving a uniform accuracy in all applications,
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Section 1

INTRODUC TION

A number of 'apprqximation techniques have recently been proposed for
calculating N-body trajectories (where N is greater than two). These tech-
niques include the matched asymptotic expansion (References 1 and 2),
hybrid patched conic (Reference 3), overlapped conic (Reference 4), multi-
conic (Reference 5), virtual mass (Reference 6), slowly varying functions
(Reference 7), and Chebyeshev series (Reference 8). All these techniques
are claimed to be much faster than mi-merical_ integration and considerably
more accurate than the well known patched-conic approximation. Of al.l these
techniques, the matched asymptotic expansion is somewhat unique since it
represents an analytical solution to the problem of N bodies rather than just
a numerical scheme for rapid calculation. .The analytical nature is useful
in solving two-point or mixed béundary value problems since, in most
instances, the solution can be obtained explicity and does not require itera-

tive steps.

The N-body problem is one of determining the motion of a body of negligible
mass subject to the gravitational forces of one primary body apd N-2 second-
ary bodies. The motion of the secondary bodies relative to the primary body
is assumed to be known. In general, the dominant force on the negligible -
mass body is that of the brimary body. However, during a close approach

of any one of the secondary bodies there is a change in the ordering of the
dominant and perturbing forces and as a result the problem falls into a class
known as singular perturbation prob'lems (Reference 9). An approximate
analytical solution can then be obtained by the method of matched asymptotic .

expansions.

. Numerical schemes give solutions to this type of problem but they require a
prescribed state vector at some time t = to in order to uniquely define the

trajectory. In many boundary value problems the initial state vector is not



known a priori but is only partially prescribed along with some terminal
conditions. The Hiime¥ical schemes then require an iterative procedure to
obtain the unknown part of the initial state vector, i.e., to solve the two-

point boundary value problem.’

The asymptotic solution 'can be formulated to solve the two-point boundary
value problem directly, i.e., the unknown part of the initial state vector can
be obtained without iteratioﬁs. The solution is formulated as a set of analy-
tical expressions in the form of aéympfotic expansions. Evaluating the
expressions in a certain séquehce gives all the unknown parameters as func-
tions of the prescribed boundary conditions.  The goal of this study was to
formulate a general, second-order asymptotic solution to the problerﬁ of
N-bodies and to construct from this solution Seve’fal tWo-point’boundary value

solutions. This goal can be divided into three specific objectives.

The first objective was to extend the previously published first-order :soiﬁ-
tions to second order. The results of this effort are summarized in

Section 2, where the N-body differential equation of motion is used as a’
starting point. Section 2 covers the 'developmen’f of the outér and inner solu-
tions, ' the overlap domain, the -fnatching, and the fundamental solution. The
latter gives the relationships between the constants of motion of the outer
solution, where the primary body is dominant, and the inner solution, where

one of the secondary bodies is- dominant.

The fuhdémental solution was used to achieve the second goal of this study,
the formulation of several different asymptbtié two -point boundary value |
soluti'ons-. These sblﬁti_ons,‘ which can be applied to certain classes of Earth-
- to-moon, moon-—lto-Ea..fth, and iriterplahetary trajector:ieé, are présented in
Section 3. Two versions are presented for each solution, one linear, the"
other nonlinear. In every case at least one of the two solutions satisfies the
boundary.conditions exactly without iterations giving an explicit boundary

value solution,.

The third objective of the study was to compare' the asymptotic boundary

value solutions with numerical integration. Cornpérisons for Earth-to-moon,



two-impulse moon-to-Earth, interplanetary midcourse, and i_nterplé.netary
trajectories are presented in Section 4. These results show that (1) the
interplanetary solutions are more accura't.e than the lunar solutions, (2) mid-
course solutions are more accurate than those which originate close to one
body and terminate close to another, (3) the second-order solutions 'improve
the first order in some but not all applicatidns, ,Aand (4) the computatibr_l times
for the asymptotic solutions are-6 to 150 times faster thaﬁ for numerical

integration.

A discussion of the: conclusmns obtamed from this study and recommenda- ’

tions for.further stud1es are contamed in Section 5.

- This study has focused on the applicat.ioh of the method of matched asymptotic
expansions, and it has assumed that the reader has a cerfaiifl degi'ee of
familiarity with the theoretical background. An excellent discussion of the

basic theory can be found in Reference 9.

The notation used ih this report is a co,rr'l,bination of that of Lancaster
(Reference 1) and Carlson (Reference'Z). In general, each parameter is
defined as it is introduced, but some which have only mathemaf_ical meaning
and serve an intermediary role ‘ar_e defined only by an equ-ation.. Scalars
are written as x or X and vectors as x or X. A matrix G(.i)-and. a tensor
H(x) are also used. In addition, a bar over a parameter indicates that it
applies specifically to an inner solution, Finally, the order of a particular
term in an expansion is. given by the exponent of the parameter u which

" precedes the term, i,e., p.n is order n or O(n).

et Ty . 4 b ..
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Section 2 .
SUMMARY OF THE ASYMPTOTIC N-BODY SOLU’IfION.

The problem of N-bodies for which an asymptotic solution is desired consists
of finding the motion of a body of negligible mass (hereinafter referred to as
the particle) under the influence of one primary body and N-2 perturbing

bodies whose motions relative to the primary body are known, This problem

i'equires ‘the solution of the differential equation

- £ =1(r) + F(r, p;) ) - (2-1)
where r is the position of the particle with respect to the primary body and
P, is the position of the 1—1:1- perturbing body with respect to the pr1mary body.
The functions f and F are defmed by :

= (2-2)

£(x) = -x/r
N-2
F(r.p) = » p; [£(x-p) +£(p)] (2-3)
oi=l :

Equations (2-1) to (2-3) are dimensionless; the unit of length is the semi-
major axis of the orbit of the _1—}l body, * and the unit of time 1s the period of
the _]—11 body divided by 2. In: dimensionless units then the mass of the pri-
‘mary body is unity and of the i& body is My "which is assumed to be much
less than one, The origin of the coordinate sy.stem is the primary body

rather than the center of mass and this gives rise to the last term in (2;3').

*The jﬁ body will be termed the reference body..



For lunar trajectories the primary body is the Earth, and the two perturbing
bodies of interest are the moon and the sun, (Although the By for the sun is
not small compared to the unit mass of the Earth, its contmbutmn is small
due to the great distance of the sun fromthe Earth.) For interplanetary
tra_]ectones the primary body is the sun and the perturbmg bodies the

planets,

As long as the particle is not close to one of the perturbing bodies, the
func'cidn F in (2-1) is srﬁall compared to the other two terms. However, if
a close approach is made to one of the perturbing bodies, then F becomes
" the dominant force and the problem falls into a class known as singular
perturbation Iproblems (Reférence 9,).A An approximate analytical solution

can then be obtained by the method of matched asymptotic expansions.

The asymptotic solution is formulated by considering two limits of (2-1) and
then matching the corresponding solutions in an overlap domain. - The result
is termed the fundamental solution and is used to formulate the boundary

value solutions in Section 3.

2.1 OUTER LIMIT
The outer limit is defined as the limit where r-p; = O(1) for all i. Then F
is always small in (2-1), and the solution is assumed to be given by the

asymptotic expansion
- N 2 3
T(t) = r (t) +pur,(t) + p r,(t) + Ow”) (2. 1-1)

Where the reference mass j is equal to pJ, the dimensionless mass of the

reference body Substitution of (2, 1-1) into (2-1) and equating powers of "

leads to the differential equatlons for T 1, a»nd T, They are
¥ o= A(x) (z.<1-2)
¥, =Glx ) + E(x . p) | (2.1-3)
¥, =Glz )z, + 52(;0, z_l,gi) | (2. 1-4)
6




where

~ N-2 o
Eyzgp) = 2 M [_f(zo-gi).+_f(_pi)] | (2. 1-5)
i=1 ' '
N-2
S 2 <
i=1 '
,ar}d
M, = pi/p ‘ o - (2.1-7)
The function G (x) 'is a matrix defined by
3xix;j ﬁl . :

where § ij is the Kronecker delta. The function H(x) is a tensor defined by

15xix.xk 3 '
Eijk = — ———l—-x7 + " (xi 6jk + X, T xkéij) (2.1-9

G and H represent the first and second derivatives in the Taylor series

expansion of f(r) about the nominal value r = r_.

The solutions of (2. 1-2) through (2. 1-4) depend on the initial condition on r

and the corresponding velocity v. These initial conditions can be stated as

E(to) = -:o(to) + I-Lﬁl(to) + “ZEZ(tO) (2 1-10)

wit) = Yo(t) + vy (to) +uvy(t ) (2.1-11)



Then, the solutions are

r () =f (Or () + g (Bv (k) (2.1-12)

. t -
‘r,l(t), = A(t, t_o)zl(to)'J' B(t, ‘to)_\-:ll(to) +'f B‘(t,fr)__li_‘l(_j)df ) | (g, ‘1-1’3):
tO
_-;Z'(f) = Alt, ¢t )r (t, ) + B(t t )vz(t ) +/ B(t, 7) E,(1)dr (2. 1-14)
t,

The solution for Ty is the standard two-body ellipée .resulting from the two- .

body differential equation (2. 1-2). . The functions fo and g are infinite.’

series in time or can be written in closed form using eccentric anomaly as :.
the independent variable., They are defined in any standard astrodynamics :.
textbook and in References 2 and 10* The solutions for r,andr, are made
up of a homogeneous solution which is simply the propagation of initial devia-
tions along the two-body solution Iy and a particular intégral which intro-
duces the perturbatmns from two body motion, The functions A(t, to) and
B(t, to) are partial derivative matrices which arise by partitioning the state

transition matrix

Altt) Blt,t )

@(t,to)'s”' | o 1= (2.1-15)

Clt, ?co)' D(t, t_)

*Reference 10 has been included as a second volume of this report. It is
hereinafter referred to only as Volume 2. . R R




Many expressions have been derived for the partial derivative matrices in
various coordinate systems. Some are discussed in Reference 2 and in

Volume 2,

The solutions given by (2. 1-12) through(2. 1-14) can be substituted back into
(2.1-1) giving a second-order solution for the position r of the particle.  The
solution is a function only of the initial conditivor}s'_(Z. 1-10) and (2.1-11) and
fhé time histories of the pertufbing bodies p;. The initial conditions can be

- chosen so that at some time t = ty the trajectory passes close to the k& body.
This introduces another limit,

Thé outer solution and ifs:bé'ha\}iof as t ;alppr.oac‘hedv'tk are shown in
Figure 1,

2,2 INNER LIMIT o
The inner limit is defined-as the limit where r-p, ‘= O(u, ) for some k. This
limit arises when'the particle makes a close approach to the k@ body. This

limit requires the change of variables

CR17

_OUTERSOLUTIONK |  INNER SOLUTION By (Sy)-

S, : _

UNPERTURBED SOLUTION
PERTURBED SOLUTION

Figure 1. Outer Solution, Inner Sotution, and Overlap Domain
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: Ry = (x-py )y - . (2.2-1)

where Py is the position of the k-1£ body and t_, is the time of peficenter

. . Pk .
passage of the trajectory about the kPE body. The latter can be written

t:

o ® ty BTy (2.2-3)

-and tk chosen as the time at which the two-bod? outer solutionio passes .

through the center of the kt—l'l body, i.e., at t:tk

(6 = pilty) | (2.2-4)

Substitution of the inner variables (2, 2-1) and (2. 2-2) into (2_-1) give»s the

inner differential equation

2

dBk—f ) + P( ) | (2. 2-5)

o2 AR T ERepeR; (2. 2-
K

N

where _E is a function defined in Vo_lui'ne 2, If the expansion

Ry (§)) = B"ko(sk)} PRy 1 (Sy) + “kZsz(Sk) * O(“k3) (2.2-6)

. is substitutéd into (2. 2-5) and powers of P equated the differential equations

are

2 _

d | : |
kao = f(R 0) _ . (2.2-7)

dSkZA .
2
d : . o

szl -0 | ‘ (2.2-8)

ds,




2
dBkZ—G( )R, , + G(p, (t,) 2.2-9)
5 2 BrolBra T GlRk(f) By (2.2-9)
k

The solutions of (2. 2-7) through (2.2-9) depend on the initiél conditions on
B—’k and the corresponding velocity Xk' These initial conditions can be stated

as

Bk(sko) = R o05k0). | (2.2-10)
. Xk(sko) = VoSro) ' (2.2-11)
These initial conditions assume that the perturbations vanishat S, =S, and -

k ko
that the full solution (2. 2-6) can be represented by R_k at this point. As a

result the solutions are

R, (S,) =1 (5 )R (8, ) +E(S5)V, (S ) C (2. 2-12)
ok o) kR'ko —ko' ko
R(S)=0 (2. 2-13)
Sk
Ry ,(S)) = f B(S,, £)G(p, (t, )Ry (£)de (2. 2-14)
S
ko

The solution for B—ko is the standard two-body hyperbola resulting from the
twe-body differential equation (2.2-7). The functions fo and g, are defined
in many textbooks and in Volume 2. Like their counterparts.in the elliptical
solution of the previous section, they can be written in closed form using
hyperbolic eccentric anomaly as the 1ndependent variable. The function

B(S £) is the partial derivative matrix

aR'ko(sk)

R B(S,.£) = 5, () (2.2-15)

11
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The solutions given by (2, 2-12) through (2. 2-14) can be substituted back into
(2.2-6) giving a second-order solution for Ry. The solution is shown in

Figure 1.

2,3 OVERLAP DOMAIN
The outer and inner solutions are functions of the vector constants given by

S (2.1-11), (2.1-12), (2. 2-10),' an-d (2.2-11). For a trajectory which is con-
tinuous from the domain of the outer solution to the domain of the inner

" solution, these constants are not all independent. In a region designated as
‘the overlap domain, the outer and inner solutions must exhibit certain '
similarities, i.e,, both solutions must represent the trajectory in this
domain. This characteristic makes it possible to determine explicit rela-
tionships between the constants of the two solutions., A representation of the

overlap domain is shown in Figure 1.

The ove rlap domain is defined as the domain of the intermediate limit,

i.e., the domain where t—tp = 0(u¥) with O<a<l, This limit is formally

defined by introducing the intermediate variable
- a : - .
o) = (t-tpk)/pk 05a0<a:<cc151 (2. 3-1)

If =0 then (2. 3-1) simply shifts the timé scale of the outer solution to a

new origin.,  If a = 1, o, = S, giving the inner time. Within the range

k
ag<o<ay’ Tx is then intermediate to the outer and inner times. The values

of a, and a, must be determined from the matching.

- The outer solution is a function of t and replacing tpk in (2. 3-1) by (2.2-3)
and solving for t-t, gives

t-t (2.3-2)

-, @
e AL N
Since By is small (2,3-2) indicates that the outer solution must be expanded
to about t = in order to determine its behav1or in the overlap domain,

k
This expansion is derived in Section All of Volume 2.

i2




S

The outer expansion can be summarized in function form by the following

expression:
ro=x(t-ty, s n(t ), vt )i Y&, 6%, g%, ny¥) (2.3-3)

The position vector r, when 't-tk. is small, is a function of both the initial
conditions at to and four constants, Y%, 815 Ly éndn}:, which represent
the first- and second-order deviations from two-body motion over the
interval tosts'tk. These constants are discussed in detail in Subsection 3, 8.

The inner solution is a function of S, and comparing (2.3 -1) with (2. 2-2)

k
yields

(2.3-4)

Since a - 1 < 0, (2. 3-3) indicates that the inner solution must be expanded

for Sk large. This expansion is derived in Section Al2 of Volume 2,

The inner expansion can be summarized in functional form by the following

expression:

Ry = B (S b Yogper Ly A45) (2.3-5)

The position vector -B'k’ when Sk is large, is a function of l/'_cok, the hyper-
bolic excess velocity, Lk a vector function of the orbital elements, and ék;’

which represents the second-order deviation from two-body motion far out
on the asymptote of the zeroth-order hyperbola, These constants are dis-

cussed further in Subsection 3. 8.

It is also necessary to expand the motion of the k—t—}1 body when t-tk is small,

The expansion is obtained by a Taylér series in Section All of Volume 2.

It may be summarized simply as the func_tiorf
Py = Pilt-ty) ‘ _ (2.3-6)

13
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2.4 MATCHING

For the outer and inner solutions to fnatch; they must be in terms of a
common independent variable, The expaﬁsion of the outer solution near

t = tk’ summarized by (2, 3-3), can be written in terms of.ck and Py using

(2. 3-2) giving

s

- o3 e v . sk ' sk b -
r= E(P-k 0'k+ Hka:HIII (to)1- Y_(to),lk ’ _é ’ 2K H‘k ) = il (2- 4 1)

The position r in terms of the inner solution B‘k is _found from (2. 2-1), i, e.,
x=p. Ry | (2. 4-2)

The expansion for the position of the'k& body near t = t,, given by (2. 3-6),

can also be written in terms of LN and My giving

= . a -
Pp = Pr(ti Ok tRRTR)= 22 (2. 4-3)

Finally the expansion for B‘k when Sk is large, obtained from (2. 3-5), can be.

written in terms of ¢, and Ky using (2.3-3) giving

k
| -1 b3
By = Byl Oiotic Yo L A43)= ¢ (2.4-4)
Substituting (2. 4-3) and (2. 4-4) into (2.4-2) gives
=45 tpé, ' | (2. 4-5)
Simply stated, the matching requires that the difference between the outer
solution, as given by (2,4-1), and the inner solution, as given by (2. 4-5),

must be vanishingly small in some appropriate limit. Cole (Reference 9)

states this limit as

14




lim
o D17 P M| 0
"k €y i

Tk

(2.4-6)

constant

wherek(pk) is a gauge function. For a second-order theory e(pk) is most

easily chosen to be By -

In Section Al4 of Volume 2, it is shown that this limit exists only if

a =2/5 (2.4-7)

o 1/2 (2.4-8)

1 .
Thus the overlap domain is a region of order Ha where 2/5 < a <1/2 and

a = 1/2 is not included. This is a result of the second-order solution inas-
much as Carlson (Reference 2) showed that the first-order solution can be
matched with a = 1/2, v

This was an assumption in his derivation and not a result of applying a
rigorous matching requirement such as (2.4-6). The present results show
that his approach to matching will not work for second order, i.e., certain
terms which are singular in the limit (2. 4-6) can only be eliminated if

a <1l/2.

2.5 FUNDAMENTAL SOLUTION
The complete matching process is discussed in Sections Al4 to Al7, and
Section Bl of Volume 2. The result, summarized in one six-component

state vector equation which will be called the fundamental solution, is

2 (69)  eryley) £ e |
' . =<I:(to,tk) ' )t ' (2.5-1)
1 Xl(to) +PLY—Z(to) H_I(ka‘_\f_k) Syt
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where

. k k
Y. = lk* (2. 5':3)
B S - (2.5-4)
Lembe | (2.5-5)
Nk = 11:: tAS L, (2. 5-6)

and, except in the log term, M has been eliminated in favor of the reference
mass p (which may be equal to F if the kQ body is also the reference body

used to non-dimensionalize the differential equations).

Equation (2, 5-1) is a relation between the constants of the outer and inner
solutions. >fI"he only consténts which do not appear explicitly are the initial .
position and velocity of the zerofh-order outer solution, zo.(to) and zo(to).
They must be chosen to make the zeroth-order ellipse intersect the position
of the k& body at t = t,, i.e., to satisfy (2,2-4). They then enter implicitly
through the relative velocity Xk which is the difference between the zeroth-
order velocity and the velocity of the km body at t = tk (and should not be

- confused with the inner; time-dependent velocity y_k(Sk)).

Equation (2.5-1) can be used to solve either initial or boundary value prob-
lems, The initial value solution is discussed in Section A of Volume 2.
It is the boundary value solution which is of interest in this study, and the

applications of (2.5-1) are discussed in the following subsections.
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2.6 COMMENTS

The asymptotic solution presented here is similar, when second-order terms
are ignored, to the first-order solution derived by Carlson (Reference 2).
The obvious differences between the two first-order solutions are (1) the use
of dimensionless variables, (2) isolating the small parameter p so that it
appears explicitly, and (3) hsing the vector L. as one of the constants of the

k
inner solution rather than the standard impact parameter vector,

The two solutions are numerically equivalent when.applied to an initial value
problem. However, using the vector L,. does result in a mathematically
different solution when the fundamental solution is applied to boundary value
problems, This is because the use of the impact plarameter vector results
in boundary value solutions which satisfy the boundary conditions in a ''best'" -
sense while the L, vector results in solutions satisfying the boundary con-

, k
ditions exactly. The two vectors are related by (cf. Volume 2)

'Ek‘ = _I:k + (Qk/ﬁk) y-mk : R S 7 6-1)

where Q, and A, are defined in Subsection 3, 8.
Next, it should be noted. that the secon‘d-'o‘rdef'terms add considerable com-
plexity to the solution although such complexity is not apparent in’'this
section, Some of the complexity can be seen from the formulas in Sub-
section 3.8, but it is hecessaty to follow the derivation in Volume 2 to really
appreciaté just how much cpm‘plexity is actually added, The amount of
algebra necessary to extend the ‘solution to a higher ordér would probably be
prohibitive and the result somewhat uhmanageable, The first-order solution
‘contains the 3x3 gravity gradient matrix G, while the second-order “solution
contains the 3x3x3 tensor H. Each succeeding order adds a tensor of higher
order, If the dimensions of the tensor are used as a measure of the com--

plexity of the solution, then an n:C—h— order solution has a complexity of order °

3n+1: [ . : Lo o Soar Tl
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Finally, it should be pointed out that the form of the fundamental solution is
not unique. The matching results contained in the fundamenAtval solution are
similar, but not identical, to those of Carlson (Reference 2). Differences
which are not immediately obvious are due to the fact that an asymptotic .
expansion of a given function is not unique. .Other exp;ansim:;s can be formu-
lated to represent the same fuﬁction but actually éppear as different expan-
sions. When the individual expressions which result from the matchmg are
combined to form the fundamental solution, there are several ways in wh1ch"
such a combination can occur. Thus for a second order solution the error
in each case may be order p3, but the actual value of the error may dlffer,
i.e., for one case it may be 3|J.3 while for another case it may be O, 5|J.3

This aspect is discussed further in Subsection 4. 6
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Section 3

ASYMPTOTIC BOUNDARY VALUE SOLUTIONS

The boundarf value solutions pfe sented in this section are of 'three-éeneral -
types: (1) trajectoi‘ies which originate at some known position relative to

the primary body and terminate at a fixed pericenter radius, inclination, and
time at one of the perturbing bodies (cf., ‘Subsections 3. 2, 3.3, and 3.6),

(2) trajectoriés which originate at some knowri'position,c'lose to one of the '
perturbing bodies and terminate'cllos'e to the primaryvb&dy with fixed entry
conditions (cf., Subsections 3.4 and 3.:"5)., and (3)-_trajector_ies which originate
close to one pertui'bing body and terminate close to another. with fixed

pericenter radius, inclination, and time at each end (cf., Subsection 3. 7).

Each of the boundary value solutiéns evolves from (2.5-1)* and each requires
at least one solution of a Lambert problem to‘ establish the zeroth-order -
outer solution. The two types of Lambert solutions which are required are
discussed in Subsection 3. 1. Subsections 3.2 through 3,7 present the

various boundary value solutions, and finally Subsection 3. 8 gives formulas

for evaluating all the constants which appear in the boundary value solutions.

The sections which follow contain only the end results of the boundary value
solutions. More detailed discussions and the steps necessary to go from

(2. 5-1) to each solution are contained in Volume 2.

3.1 THE LAMBERT PROBLEM

The standard Lambert problem is one of finding the two-body solution which

connects two known position vectors in a fixed time of flight. If the two

*Except for the two-impulse moon-to-Earth solution for which two different
types of solutions have been derived, one of which does not evolve from
(2.5-1). It is this latter solution which is presented in Subsection 3. 5.
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position vectors are x, and x then Lambert's

1 2

and the time of flight te

theorem states that

tf = tf(a’ xl + XZ’ c) = tz - tl (3. 1-1)

where a is the semimajor axis which is unknown and c is the chord length

between %, and X5e The chord length is found from the law of cosines, i.e.,

2 2 2
¢’ = x +,x2 + 2x1 X, cos 912 (3.1-2)

where 0 2 is the central angle between x. and x

1 1

2" ' , T
An iterative solution is required to determine the semimajor axis. Once it

is known, the velocities %X, and x,, and the solution x(t) can be obtained. Many

1 2
techniques have been proposed for solving the Lambert problem. One such 3
‘method is discussed by Battin (Reference 11). ' r

The standard Lambert problem requires that the two vectors x, and x, be

given. The zeroth-order solutions used in the Earth-to-moon altnd intezr- '
planetary solutions are of this type. The zeroth-order moon-to-Earth
solutions however do not rely on a given position vector at the Earth.
Instead, entry conditions of radius and flight path angle are prescribed at a
given time. In addition, the trajectory is to satisfy a prescribed inclination.
The solution for the semimajor axis is now more difficult, since 912 in
(3.1-2) is not known a priori. This angle is the difference between the true

anomalies at the endpoints, i. e.,

612 = f2 - fl (3.1-3)
where
1l 2 (1 - eZ) - X
f1 = cos e (3.1-4)
1
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a».(l—ez)-x2

fz = cos ex, . (3.1-5)

- The eccentricity e is a function of a, X, and the flight path angle YZ’
measured from the local horizontal. The relationship is

2 2 1/2
e = [a +x2 (x2 - 2a) cos YZ] [a (3.1-6)

The modified Lambert problem requires the simultaneous solution of
(3.1-1) through (3. 1-6) for a, «c, 012, 'fl, f2 and e. Once these parameters
are determined they, along with the prescribed inclination, are sufficient to

solve for the velocities X, and %X, and the time-dependent solution x(t). The

1 2
solution is discussed in detail in Section B4, 1 of Volume 2, and a similar

problem is discussed in Reference 11,

3.2 EARTH-TO-MOON SOLUTION
The Earth-to-moon problem is one in which the target body is the moon.

The moon should also be the reference body, therefore

k = M (3.2-1)

Ho= My ) (3.2-2)

The simplest Earth-to-moon boundary value problem is shown in Figure 2.
The initial time, to’ the initial position relative to the earth, E(to)’ and the
pericynthion radius, P M inclination, i,, and time, tp) . are all pre-
scribed. The initial velocity relative to the earth, v(to), is unknown and
must be determined from the fundamental solution: In order to evaluate the
solution, an ephemeris is required giving the position and velocity of the
jnoon and the position of the sun in Cartesian coordinates with origin at the

‘Earth.
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Figure 2. Earth-to-Moon Solution

From Figure 2 it can be seen that the zeroth-order ellipse, £o(t)’ coincides *

with the higher order solution, r(t), att = to. Therefore, in (2.1-10) let

t) = 0 (3. 2-3)

Then

r(t) = x(t) . (3.2-4)

defining the initial position of the zeroth-order ellif)se\.‘
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From (2.2-3)

t =

M W

M (3.2-5)

toMm -

where ™ is arbitrary and can be put equal to zero without loss of generality.
Non-zero values .9f ™ simply cause a chan.ge }n tM when tPM is held con-
stant. The final-position of the zeroth-order ellipse comes from (2. 2-4)

r ) = Paltyy)

(3.2-6)

where Pm is the position of the‘ moon obtained from the ephemeris. The two
position vectors,. zo(to) and EO(tM), define a standard Lambert problem of
the type discussed in Subsection 3.1, Solution of the problem gives E_O(t),
shown as the dashed line in Figure 2, and the initial and final zeroth-order

velocities, -Yo(to) and Xo(t The latter is used to define the relative

- M).
velocity '

VM T Xo(tM) B BM(tM) ' o Be2e?
where BM is the velocity of the moon.
Now let the initial velocity perturbation be
6y_(to) = x_/l(to) + 1 Xz(to) (3.2-8)

Then the initial velocity at to is

, vt ), :“Xo(to) + p'_ﬁx(to) ) (3.2-9)

Vo = Yy tesVg ©(3.2-10)
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The perturbation terms in (3. 2-9) and (3. 2-10) are obtained from the
fundamental solution. They are o '
_ -1 |
dv(t)) = Blty, t) (&g + Ypq T 1 QM) (3.2-11)
(3.2-12)

6Vy = Dityy to) 8x(t)) - &y -1 Ny

Equations (3. 2-9) through (3. 2-12) constitute a linear solution to the

boundary value problem. .

Since X,ooM enters (3.2-11) through a_fM and since 6X(to) appears in (3. 2-12)
they are not explicit relations but must be solved in a sequence using the
zero'th-, first-, and second-order terms successively. ~The zeroth-order
approximation is obtained by putting p = 0 in (3. 2-9) and (3. 2-10). The
first-order approximation is obtained by puttingu = 0 in (3. 2-11) and

(3. 2-12) and using the zeroth-'orde'rrvalue of V = to evaluate (3.2-11). "The

M
o0
second-order approximation is obtained by evaluating (3.2-11) and (3. 2-12)
with u # 0 and using the first-order V M in (3. 2-11),
E —"c0

Combining (3 2-9) with the prescr1bed value of r(t ) gives a complete set
of 1n1t1a1 cond1t1ons for a traJectory satlsfymg all the cond1t1ons of the ”
boundary value problem Comblnlng (3.2- lO) with the prescrxbed values of
per1cynth1on rad1us and inclination g1ves a complete set of term1na1 cond1-

t1ons as shown 1n Subsectlon 3. 8.
An al'.cer.nate solution, called the nonlinear solution (Reference 2), can be
~ obtained from the solutions of a sequence of Lambert problems defined by

the position vectors .

rl(t) = x_(t) S B2y

r! oltm) = I () +nrdzity) (3.2-14)
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where

= £ +_Y_

Brlty) = £y Mt rE (3.2-15)

Solution of the Lambert problems gives the initial and final velocities,

,—V:?(to) énd _\_/_c')(tM). Then the initigl velocit.yAreplacing (3. 2;9) is
S , | )
) = i) (3.2-16)

and the excess velocity replacing (3. 2-'10)‘ is

Vom = I+ L8V, R (3.2-17)

where ‘e
-\_;1(/[ = viity,) - Bygltyy) I (3..248)
V' = - S Y S (3.2-19)

Again:thé solution i'equ'.ires'é. éeqﬁénce' of. sté'ps: The zefofh_—,prdér
approximation is obtained by putti}ng |.L' = 0is (3. 2—14) anjd (3.2 —17) and is ‘
idépticai to the zeroth;drder linear solution. TheAfivrst-'order approximation
is obtained by puttihg Bo= 0'in (3.2-15) and (3. 2-19) and using the zeroth-
order \_/_mM in (3.2-15). And the second-order apf)r_oximatibn is obtained By
using the fir;t—order ’\_/_wM in (3. 2'15)7 The nonlinear s_olution'is shown in

Figure 3.

The first- and second-order nonlinear solutions will be slightly different
from their linear counterparts. since they include nonlinear effects in the
‘zeroth-order solution which are not contained in the B and D partial deriv-.

ative matrices used in the linear solutions.
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R "#5L(t|v|)

Figure 3. Nonlinear Version of Earth-to-Moon Solution

“The constants \LM, QM’ £’-M and - are fixed through each step of both the

IMm
linear and nonlinear solutions. The function {M’ however, depends on
'\_/wM, and must be evaluated for each of the zeroth- ,first- ,and second-order
approximations. Formulas for calculating all of the constants are in

Subsection 3. 8.

3.3 EARTH-TO-MOON MIDCOURSE SOLUTION

In the previous section, the initial position, L(to), was implicitly assumed to
be close to the Earth. The same analysis may also be used for a midcourse
maneuver where the position, _1_‘(t0), represe'nts a point between the Earth and
‘the moon, as shown in Figure 4. The velocity just prior to the midcourse
maneuver is g_(t;) and after the maneuver it is X(tZ). Therefore, the

midcourse velocity correction is

Av(t) = v(t}) - v(t])
= v (Eh) - wit] ) +pdut)) (3.3-1)
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EARTH

Toltpm) = Ppmitp)
rlt)

MIDCOURSE VELOCITY CORRECTION

Figure 4. Earth-to-Moon Midcourse Solution

The solution of Subsection 3.2 can be used to calculate Xo(ti) and 6x(t:)
and since _x;(to) and X(t;) are known, (3.3-1) gives an analytical expression

for the midcourse velocity correction.

3.4 ONE-IMPULSE MOON-TO-EARTH SOLUTION
In the moon-to-Earth problem, the moon becomes the launch body and is .

also the reference body. Therefore, as in Subsection 3. 2,
k = M (3.4-1)
T T (3.4-2)

Thé boundary value problem is shown in Figure 5. The initial time, tl,

the initial position relative to the moon, —RMl’ and the entry time, te’
radius, r , flight path angle, Yo and inclination, ie’ are all prescribed.
e

The initial velocity relative to the moon, XMI’ is unknown and must be
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IMPULSE

Figure 5. One-lmpuise Moon-to-Earth Solution

determined using the fundamental solution. An ephemeris like that used for

the Earth-to-moon solution is required,

Since entry conditions rather than a fixed position vector are prescribed at
Earth, this solution requires the solution of the modified Lambert problem
discussed in Section 3. 1. The initial position of the zeroth-order ellipse
comes from (2, 2-4)

ERC (3. 4-3)

M)

where PMm is the position of the moon obtained from the ephemeris and,

for convenience,

t =t " (3.4-4)
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The final position Lo(te) must be determined from the solution of the
modified Lambert problem along with Eo(t)’ shown as t!fxe dashed line in
Figure 5, and the initial and final zeroth-order velocities, y_o(tM) and
Xo(te). The initial zeroth-order velocity is used to define the relative

velocity

ALVERER ALVY

- (t (3.4-5)

M)

>

where pM is the-velocity of the moon.

The zeroth-order solution satisfies the entry conditons exactly, therefore
any perturbations att = te will cause the trajectory to deviate slightly from
the prescribed conditions. As shown in Figure 5, the position perturba-

tion can be made to vanish, i.e.,
£l(to) = EZ(to) =0 _ -' (3.4-6)
so that
xt) = r(t) - (3.4-7)

The velocity perturbation cannot.vani'sh without overly constraining the

problem, therefore,
st = ylte) +u volte) # 0 ’- (3.4-8)
so that entry velocit}; is
Vit = v (t) +pbultd | (5. 4-9
The hyperbolic excess velocity i; given by

Vo = My trdV, o (3.4-10)

29



The perturbation terms in (3.4-9) and (3.4-10) are obtained from the
fundamental solution. They are _ -

-1
)

8y(te) = Blty, te)  (Byp+ Xy +rbyy) (3.4-11)

6V, = Dity, to 6v(jce) R IVEIT Y (3.4-12)

o0

Using the initial position BMI and the excess velocity wa, a new para-

meter XM is defined by

-1

' _ R.,. .V _
X. = 1+44R... Vv 2| 1+ cos (‘Ml °°M> (3.4-13)

M Ml ooM RMI VwM

f

Then the initial velocity at the moon is

L : V.
Vv = /2 <1 +m>l’wm 'ﬁ<. _\anBMl (3.4-14)
Equationé (3.4-9) through (3. 4-14) constitute a linear solution to the
boundary value problem. They must be solved in a certain sequence to )
obtain zeroth-, first-, and second-order approximations (cf. Section 3.2 fdr
a discussion of the steps involved). Equations (3.4-13) and (3. 4-14) must be
inciﬁdéd: in the sequence since tHe constants in (3.4-11) and (3.4-12) are
func’tior.ls of Ry and —YMI’
Combining (3. 4-14) with the prescribed value of —RMl gives a complete set of
initial conditions (note that they are inner variables and that to obtain dimen-
sional values —BMI must be multiplied by p as well as the appropriate'dimeff-
sional léngth scale) for a trajectory satisfying, to zeroth order,. all the
conditions of the boundary value problem, The terminal state is given by
(3. 4-'_7) apd_ (3.4-9). The prescribed entry radius is satisfied exactly
because ofA(3. 4-6-), while the flight path angle and inclination differ by

order p from the prescribed values due to (3.4-8).
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An alternative, nonlinear solution can also be obtained in a manner similar
to that discussed in Subsection 3.2 for Earth-to-moon trajectories.. - The

new Lambert problem is defined by the position vectors

r (ty,) ;"Lo(tM) +ubr(ty,) (3. 4-15)
L;V(te) - _r; (re, Ye i) (3.4-16)

where
bxlty) = Lyt Yy th by (3.4-17)

Equation (3.‘4—15) defines the fixed povsit:ion vector for the modified Lambert
problem and (3,4-16) represents the prescribed entry conditiohs. Solution
of the new Lambert problern g1ves the final p051t10n, r (t ), and the initial

and final velocities, v (t

M) and v, (t ). The excess ve10c1ty is
1 l ' .
Youm = Ymtréy, | (3.4-18)
where
L ) S .
XM. = v (tM) pM(tM) .‘(3.4-1‘?)
Vo = “8&yp - POy (3.4-20)

- The initial velocity relative to the moon is still defined by (3.4-14), This
solution requires the same sequence of steps as the nonlinear, Earth- to-moon
solution discussed in Subsectlon 3. 2 except that the Larnbert problems are of

the mod1f1ed rather than standard type.

For each of the zeroth-, first-, ‘and second-order approxifné.tions"the' entry’

velocity is given by

v(t,) = Xo(te) . (3.4-21)
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i.e., the entry velocity is the velocity of the modified Lambert solution.
Since all of the Lambert solutions satisfy the entry constraints, the nonlinear
solution satisfies these constraints to any order. Thus the nonlinear solu-
tion has the advantage that it satisfies the entry boundary conditions exactly
rather than to zeroth order as the linear solution does. The nonlinear solu-

tion is shown in Figure 6.

The constants ARV EVE LM

functiono_fM, however, depends on BMI and XMI and must be evaluated for

each approximation. In addition, because of (3. 4-4), ™ # 0 and must be

»and n gy are again fixed through each step, The

calculated with the other constants. This is expected since yMl will not, in

general, be normal to R i, e., 'the initial position is not pericenter. The

-MYV’

M is a measure of the time between ’c1 and the time of pericenter

passage. Formulas for calculating all of the constants are given in - .

Subsection 3. 8.

parameter 7

CR17

Figure 6. Nonlinear Version of One-Impuise Mooq-to-Earth Solution
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The initial velocity XMI is the velocity after the impulse. The notation

represents the velocity at t,, i.e., s

1!

_ .t
=V (tl)

Vv = Y (3.4-22)

If XM(ti) is the velocity before the impulse then the single impulse is
given by ‘

AV

I
|

= Voo - Vo, () (3. 4-23)

3.5 TWO-IMPULSE MOON-TO-EARTH SOLUTION

The two-impulse moon-to-Earth problem is similar to the one-impulse
problem discussed in the previous section except that the initial velocity is
assumed to be known and does not give a trajectory satisfying the prescribed
entry conditions. A second impulse is applied at some tirrie prior to reach-
ing the moon's sphere of influence .resulAtihg in a trans-Earth trajectory. o

which does satisfy the entry conditions.

The boundary value problem is shown in Figure 7. The initial time, ty, the
initial position and velocity relative to the moon, BMI and A_VMl’ an initial
impulse, Ij, along the current velocity vector at tj, the time of the second
impulse, t2, and the_ entry time, to, radius, re, flight path angle, Ye, and
inclination, ie, are all prescribed. The magnitude and. directionv.o_f‘ the
second impulse are unknown and must be determined from the asymptotic

solution.

The solution ma& or may not be derived from the fundamental solution. 'If the
second impulse occurs well outside the moon's sphere of influence then the
fundamental solution, derived from the matching process, should be used for
the part of the solution between the first and second impulses. However,
when the second impulse occurs near or inside the sphere of influence,
Carlson (Reference 2) has shown numeric;ally that a pertﬁrbed hyperbola is
more accurate 'th’a.n' the fundamental solution. His results have been -verifi'ed '

theoretically by considering the order of magnitudes of all the error. .
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FIRST IMPULSE

{

" Bmy

" SECOND IMPULSE

Figure 7. Two-Impulse Mdon-to-Earth Solution

terms at various points out to and slightly beyond the sphere of influence

(cf. Section B4, 3 of Volume 2).

The solution described here utilizes a perturbed hyperbola between the -

first and second impulses and a perturbed ellipse between the second

impulse and Earth entry. The solution therefore is not a matched solution

but 'sil-fnply two asymptotic solutions jbined at the boint of the second impﬁlse.

The initial position and velocity (in inner variables) are

Ry(S) = By (3.5-1)
V8] = Yy, (3.5-2)
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wheére SI indicates the instant just prior to the first impulse which is

defined as

av, = LIV ) | (3. 5-3)

The position after the first impulse is_lstil‘l‘ given by (3, 5-1), but the velocity
is now B ) : ‘

.

¥

YmBp = (A +1) W (8)) (3.5-4)

i.e., the post-impulse veloc.ity is parallel to the initial velocity. The

impulse I. must be chosen to make

1

L2 L2
Vo= Vg8

+

1) - 2/RM($1)2'0 o (3. 5-5)

i. e.,

This is needed to guarantee a hyperbolic orbit after the impulse.
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The post-impulse position and velocity uniquely define a zeroth-order
hypei'bolic trajectory about the moon, Position and velocity, P—‘Mo and YMo’
as a function of the inner time S, can be determined from standard formulas
such as (2.2-11). In addition the position and velocity can be used to deter-
‘mine the eccentricity and mean motion of the hyperbola as well as the initial
eccentric anomaly —fl [cf. Carlson (Reference 2)], Volume 2, or

Subsection 3, 8]. Then thé initial inner time is

S, = (e sinh F, - F,)/n (3.5-7)

and the inner time of the second impulse is

S, = S, +(t, -t))/p (3.5-8)

The position and velocity at t,, including the perturbations due to the

. . 2,
Earth, are
: 2 Sg ' Sg ’
BmS2) = RyolSp) +17 Gy | BrmoS2) 27 - Yimo(52) 37

3 4 :
+u é3 S2 (3.5-9)

2 S%

VmS2) = VoS0 ™ Gy [Ry(55) S, - V(S50

3 3 '

+4p> A, S (3,5-10)

where Gy and A, are defined in Subsection 3.8. Transforming to Earth-

centered coordinates using (2.2-1) and (2. 2-2) gives

xlt,) = Py () + 1 Ry (S,) (3.5-1D)
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_V(té-) = EM (tz) + Y‘M (SZ) . v (3. 5712)

The solution between tZ and te is given by (2.1-12), (2.1-13) and (2.1-14)
witht =t andt=t,.
o e 2

The zeroth-order solution is found from a modified Lambert problem with the

initial position given by
Eo(tz) = E(tz) (3.5-13)

and the terminal position defined by
Azo(te) = I, (rg, Yer i) (3.5-14)

where (3.5-14) represents the prescribed ehtry conditions. Solution of the

modified Lambert prohlem gives T, (te), T, (t) shown as the dashed line in

Figure 7, and the zeroth-order velocities, Vo (t;) and Yé (te).

As shown in Figure 7, the position pertui‘bation at te \c'a'.vn be made to vanish

giving
I,(t,) = z;(t) = O ' (3.5-15)
so that
x(t,) = r_(t) | (3°5'A16)
The velocity perturbatiog
éz(te) = il (te)'+ BV, (te) # 0 .(3,_5_1-'7)
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does not vanish, -so the entry velocity is

- vit,) = v (te) + by (te) (3.5-18)
By combining (3.5-10) and (3.5-11) with (2.1-12) through (2.1-14), the

entry velocity perttirbation and the velécity impulsé at t, can be written

by(t) = -Blt,, t)7 [_1;10 (ty te) +1 Lyg (t,, te)] (3.5-19)

Hp’ 5y te) a2
where Lo Iy Dpp 2nd I, are constants defined in Subsection 3. 8. 'Eq~ua-;-_.
tions (3.5-17) through (3.5-19) constitute a linear solution to the boundary
value problem, Egquation _(3.:5418) gives the deviation from the pfescribed ‘
entry conditioqs of Ye and i’e‘ ,[re is sai_:isfié_d due 'to (3. 5—}4)] and (3.5-19)
gives the velocity impulse which satisfies the entry conditions to zeroth

order. Note that AYZ is a function of tz, of R and ‘Il (through

i " S VERRAVEE |
X(tz))s of Tor Y and ie- (through v, (tz)), and the ‘_perturbations due to the
moon and sun (through the I''s), Therefore‘AYZ' is a function of all the
boundary conditions, - - ’ S ' ‘ '

An alternative, nonlinear solution can be obtained by solving a modified

Lambert problem between the position vectors
r'(t,) = (t) T, (t,, to) 2 (t,, t (3.5-21)
TEp) = 2 E) -k Iyg (Ep te) -k Ing (Eps te) -5

rite) = rp(rgs Yoo de) (3.5-22)
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where 1_-(')(1:2) is the fixed position vector and r(;(te)r represents the prescribed
boundary conditions., Solution of the new modified Lambert problem gives

the velocities Yé(ti) and Y(;(te).' The impulsive velocity becomes

T 2 _
AV, = vglty) - xlty) ti Ty (e, ) 407 Dpy (6 b)) (3.5-23)

and again, AV, is a function of all the boundary conditions.

The entry velocity is

L Ylte) = vl () - (3.5-29)

and since Yo(te.) comes from a modified Lambert solution, the nonlinear
solution satisfies the entry conditions exactly to any order. Therefore,
just as in the one-impulse case, the nonlinear solution has the advantage

of satisfying the boundary value problem éx.éctly rather than to zeroth;orde;

as the linear solution does. The nonlinear solution is shown in Figure 8.

CR17

!

| MOON gy,
3"\ FIRST IMPULSE

Figu re 8. Nonlinear Version of Two-Impulse Moon-to-Earth Solution
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3.6 INTERPLANETARY MIDCOURSE SOLUTION

The interplanetary midcourse solution is similar to thetEarth-‘to-moon
midcourse solution and therefore similar fo the Earth-to-moon solution.
The main difference is that this is an N-body solution where motion takes
place in hel-i;centric rather than geocentric space. N may vary from

three up to eleven, the latter being the entire solar system plus the particle.
The target body (one of the nine planets) may also be the reference body.

Letting T indicate the target body gives

k = T (3.6-1)

T T (3.6-2)

The boundary value problem is shown in Figure 9. The initial time, to the

initial position relative to the sun, r(t_), and the pericenter radius, FT’
inclination, i_T’ and time, tPT’ at the target planet are all prescribed.
CR17
TARGET PLANET MIDCOURSE VELOCITY CORRECTION

_l’o(t'r) = ET(tT)
LAUNCH PLANET

Figure 9. Interplanetary Midcourse Solution
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The initial velocity, X(to), is unknown. An ephemeris giving positions of
the N-2 planets in Cartesian coordinates relative to the sun is required to |

obtain the solution.

The solution is identical to the Earth-to-moon solution described in Sub-
section 3. 2. That 1s, the initial velocity v(t ) is found from the equations of

Subsection 3.2 with M replaced by T and w1th p equal to B rather than e

The midcourse velocity correction is found from (3:3-1). Both the linear
and nonlinear solutions are applicable to this problem although in actual
practice the linear may be sufficient, as conditions favoring the nonlinear

solution are not as likely to occur as they are in the Earth-to-moon solution,

3.7 INTERPLANETARY SOLUTION

The 1nterp1anetary solution is S1rn11ar to the previous solution in that both
apply to the: general N-body problem. There is a fundamental difference
between this solution and all the oti'lers in that the trajectory passes close
to two perturbing bodies, one at the launch end of the trajéctqry and one at
the target end. Letting L indicate the launch body and T the target body.

gives

Ky = L (3.7-1)

=T - | (3.7-2
k(Z) ‘(3 7-2)
The reference body may be either L or T, but to be consistent with the

previous solution let
p = p’T (3. 7'3)

The interplanetary boundary value problem is shown in Figure 10, The per-

icenter radius, inclination, lk’ and time, tpk’ are prescribed at both

o
the launch planet, k = L, and the target planet, k = T. The hyperbolic excess
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' ’ o T N . "~ CR17
" TARGET PLANET T : : - . ... GR12

Tolty) = Py(tp) \ - .. | . LAUNCHPLANET ¥

Io {tp) = B (t)

SUN

Figure 10. Interplanetary Solution

velocities relative to the sun as well as the pericenter positions and
velocities relative to the reéspective bodies are unknown. The solution

requires an ephemeris giving planetary positions relative to the sun. o

From (2.2-3) - - ' i

tp = .tpL - BT (3.7-4)

'tT = tpT = BT ’ (3.7-5)

whe're, as in the Earth-to-moon solution, the T's are arbitrary and can be
set equal to zero without loss of generality.
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From .Figure 10 it can be seen that the zeroth-order, eiliﬁs_e,I ‘go.(t')‘,. Ap~a-.s's:e-s
through the launch planet at t = tL and through the target planet att = trs

therefore
T (k) = pp (t;) ~. ‘ - (3.7-6)

r, (tp)

where Py, and 1_3'1“ are the positions obtained from the ephemeéris.

The two position vectors, r, (t ) and T, {t .define a Lambert problem andthe

)
T bl
solution gives r (t), shown as the dashed line in Figure 10, and the initial
and final zeroth order velocities, v (t ) and v (tT) These velocities are

used to define the relat1ve veIOC1t1es

Vi ove ) -y te)  (3.7-8)

Y s Yoty dp o) (.79
where —PL‘ and .ET are velocities obtained from the e'phemell'is‘. A

Now let the hyperbolic excess velocities be defined by

oI,
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The perturbation terms in (3, 7-10) and (3,7-11) are obtained from two
fundamental solutions (Reference 12), one with k = L and one with k = T,
which can be combined to give
_ -1
Woy, = Bty ty) {ffr FYptpbp - Aty ) (Xt Y e éL’} |

-5y, - mhp, (3.7-12)

6XwT _ =’ C (tT, tL) (KL +lLv+ B _§,_L) +uD (tT, tL) (6X°°L + QL + R HL).

-8 - KNy ' (3.7-13)

The position and velocity at pericenter relative to either L or.T are given

by the inner variables

B‘pk' = == Ek ' (3.7-;4)
: k "k )
o _1,/2 A | _ _
l+e
Yok = == < = k) 2%11: (3.7-13)
e w
a; € Pk .

. Equations (3, 7-10) through (3, 7-15) constitute a linear solution.of the
boundary value problem. Since Vg, and XmT enter the Aright-har}d sides of
(3.7-12) and (3,.7-13) thr'ough _1_’L and EgT the relations are not explicit but
must be solved in a sequence using the zeroth-, first-, and second-order

"terms successively. The zeroth-order approximation is obtained by putting
p = 0in (3.7-10) and (3.7-11). The first-order approximation is obtained by
putting p = 0 in (3. 7-12) and (3,7-13) (but not pp, or p..r) and using the zeroth-
order V's in the right-hand sides of these equations. The second-order
approximation is obtained by using the first-order Vao'’s in the right-hand
sides of (3.7-12) and (3.7-13), Finally the values of X_Q,L and XCOT, along
with the prescribed boundary conditions at each end, are used to evaluate

(3.7-14) and (3,7-15) for k = L. and k = T giving the initial and final positions
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and velocities relative to the launch and target bodies, respectively, All the
additional equations needed to evaluate the complete solution are given in

Subsection 3. 8.

The linear solution does not show any explicit dependence on the time
t = t_ which appears in the fundamental solution. The solution is a function

of t0 however since the constants are evaluated either between t. and to

L
or between t° and tT (cf. Subsection 3.8). This requires knowledge of not
only Eo(t) but also T, (t) and L‘l(t). The time to itself is arbitrary to a

<_:ertain extent, and a logical choice would be
to = (tL +tT)/2

The value of zo(to) can then be obtained fromthe original Lambert solution
for _1:0(1:) and the values of zl(to) and Xl(to) can be obtained from the funda-

mental solution with either k = L or k=T and p = 0.
If Ll(to) is \}ery large then the deviation between the zeroth- and first-order
solutions may introduce large errors. These errors can be reduced by

defining a modified linear solution as follows:

The three position vectors

o) = pr, (tg) (3.7-16)
Eé(to) = _{g(to) = r—o(to) +p.£1(to) . (3.7-17)
roltp) = pp(tg) (3.7-18)

define the new Lambert problems. The solution of the first Lambert problem
gives I_c')(t), shown as the dashed line in Figure 11, and the two zeroth-order
velocities, l;;(tl_,) and l’_é,*(to)' The splution of the second Lambert problem
gives E’c;(t-)’ shown as the dotted line in Figure 11,-and the two zeroth-order

velocities, ig(to) and X'g(tT).
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CR17

LAUNCH PLANET

SUN

Figure 11. Modified Linear Version 6f Interplanetary Solution

The relative velocities are defined by

Vi = vi(t;)-pp (t) (3.7-19)

vioo= !3 (tT) - P (tT) ~(3.7-20)

[}

while a‘new intermediate velocity is defined by
i) = [eng x| m (3.7-21)

Now let the excess velocities be defined by

= yL~+p6y;L (3.7-22)

.YmL
= V' +pbéVv) - . (3.7-23)
-7 FPwg :
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- where the perturbation terms are obtained from the fundamental solution as

L = -1 " - T
6V, = B (tqs ty) |‘7‘—0T tYp tpbp - Al t) e vy e ly)

+ B! (tT, to) Xl(to)l - QL -p n-!L 3 (3.7-24)
' = C ! ! ! T ' ' '
6Ver = C (tps tp) (‘;_CL+ Y tw EL) +D (tr, t;) (6\_7001_‘ t8; tup ny)
- D." (tT, to) Xll(t"o)t' Q!I'. -|.t lTlflf . ' ' . (3.7-25)

In (3.7-24) and (3, 7-25) the superscripts pfimé (1) and double prime (')
indicate that the parameter (constanf,' matrix, ‘function) is evaluated along
either rl orry respectively. The superscript tilde (~) indicates a special

partial derivative matrix defined by

~

- 1 . 4 ‘
3 (tr, tL) = 9 (tTT to.)fp.'(to, tL). (3.7-2§)
so that
Aty t.) = A" (b, t VA (£, t )+ B"(t, t)C' (£, t,)
T "L T’ "o o’ L T "o o’ 'L (3.2-27)
~ _ 4, ) P
B(tT, t’L) = AU (tT, to) B (to, tL) + B" (tT, to) D (to, tL) -
' (3.7-28)
i _ ] !
C(tT, tL) = Cc" (tT, to) A (to, tL) + D (tT, to) C (to, tL)
’ (3- 7-29)
- _ ' . '
D(tT, tL) = C" (tT., to) B (to’tL.) + D" (tT, to) D (to t.L); (3.7-30)

The special notation is required because the two zeroth-order solutions,

r(') and rg, are not continuous in velocity att = t,- Therefore, the transition

matrix has discontinuities at t = to- These discontinuities are removed by
(3.7-26).
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Equations (3. 7—22) through (3. 7-30) along with (3. 7-14) and (3. 7-15)

constitute a modified linear solution to the rboundary value problem. It must

be evaluated using the same sequence of steps as the linear solution and can

only be started after r

more computation time, but forcing the Lambert solutions closer to the

actual trajectory at t-t_ reduces the size of the perturbation terms with a

1

£,

(to) is found from the linear solution, It thus requires

resultant increase in accuracy (cf. the section on numerical results).

The nonlinear interplanetary solution is obtained from the solutions of.a

_ sequenc‘e,‘_of Lambert problems defined by the position vectors.

ar

where

Py (b)) + 1 BT (t))

(3.7-3 1)

!

¥

o ) =

5_3' (tTv) = ETV (tT) tpbr (tT)4 (3.,7-32)
br(t;) = £, +y; +H b (3.7-33)"
br(tp) = Lo +Yp trlp ’ (3.7-34)

Solution of the Lambert problems. gives the initial and final velocities,

1T e i
Xo (tL) and -Yo (tT).

where

The excess

velocities become

Vo = VU4 VI (3.7-35)
_ " e !
Vot VF te Vi (5.7-36
e " o _37)
VYS wl () - by (k) (3.7-37)
. te R ] | . -
vy = v i) - by ) (3.7:38),

48



and

R 3 4 N L - e

| SR
8V r = OS¢ -k Dy ' . (3.7-40)

This solution also requires a sequence of steps. The zeroth-order solution,
i_denticalt'with the zeroth-order linear solution, is obtained by ‘putting y = 0

in (3.7-31), (3.7-32), (3.7723%), and (3. 7-36). The first-order approximation
is obtained by putting p = 0 in (3,7-33), (3.7-34), (3.7-39), and (3.7-40)

and using the first order Vi_'s in the right-hand sides of (3,7-33) and (3.7-34),
'The second-order approximation is obtained by using the first-order Vw's in

(3..7-33) and (3. 7-34). The nonlinear solution is shown in Figure 12.

uér(ty) S . RO - , . CR17

TARGET PLANET

r 0we
L™ LAUNCH

PLANET

-r. o”’(tL)

BL(tL)

-

Figure 12." Nonlinear Version of Interplaretary Solution - o
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It is tempting to define a modified nonlinear solution by replacing (3,7-33) .
and (3. 7-34) with

6r(t;) =&y +Y¥; +p é_'i ., __(:}._;7’-4_1)

" "I‘ ' ’ o T
, 6r(tT) L+ YT + ET B!t t ) v () (3.7-42),

The theoretical basis for making such a substitution'is questionable since
the matrix & (tT, tL),' defined by (3.7-26); is not a'true transition matrix.
The nonlinear solution essentially replaces the transition matrix by a new - :
Lambert solution to account for nonlinear effects in the partial derivatives.
The modified nonlinear solution therefore involves the replacement of a - <4
pseudo-transition matrix with.a Lambert problem:-and may nb_t‘ offer any

improvement over the modified linear solution,”™" .

All the functions appearlng in th1s sect1on are defined by formulas whlch '

a.ppear in the next section. .' L -

3.8 FORMULAS FOR THE BOUNDARY VALUE SOLUTIONS ,
Each of the preceding solutions requires at least one zeroth- order elhpse
which is found as the solution of either a standard or a modified Lambert
problem. Except in the two-impulse moon-to-Earth solution, the zeroth-
oi‘der velocity at t = ty is used to define a relative velocity |

\_/'- =

K = Yo (b)) - Py () | (3.8-1)

The relative velocity becomes the zeroth-order approximation to the hyper-

bolic excess velocity, i.e.,

l’;k =V, +0 () ' (3.8-2)
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Thus in each of the solutions requiring knowledge of the excess velocity, a
zeroth-order approximation can be obtained from the Lambert solution. The
previous sections shéwed how the zeroth-order approximation becomes the
starting point for generating successively higher-order app.roximations to
Xm\k' The only steps left are to show how l/’mk,and the prescribed boundary
conditions are used to generate the various parameters appearing in the
Bouridaf-;r value solutions., The solutions of Subsections 3.2, 3.3, 3.6,

and 3.7 all use the same formulas and these will be given first. The solu-
tion -of :Subsection 3. 4 requires a few special formulas to make it fit with the
other solutions. Finally the solution of Subsection 3.5 will be considex_‘ed

separately.

First consider the case where prescribed values of pericenter radius, Fk’
and inclination, i'k’ must be combined with X:ok to determine the inner
hyperbola. The Cartesian components of V, -are given by the vector
notation

Ymk = | k"_Vk’ Wk)

(3.8-3)
where the bars indicate inner variables. In addition to the prescribed
inclination —ik’ the elements of the hyperbola are (cf. Section B2 of

Volume 2) '

- -2 : '

K = Ve (3.8-4)
e = 1+7, Vol (3.8-5)
°x k =%k <5

L ctn i . Z -2 —2 a2_ _a1l/2
cos Qk = T2 V_k Wk F Uk [(Uk + Vk) tan i - Wk].
' (T, + V) : ‘

(3.8-6)
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- . T ctn fk - - —2 -2 2 -
51n§2k :—:2-—_—2— Uk Wkivk[(Uk'f'Vk) tan.: lk
(lﬁc+ Vk)
- 1/2 .
- k —2 1/2 = '
sinw,  =— — [(ek -1) Uk + Qk Vk]
e
k
- 1/2
- k —2 1/2 =+ '
cos wk = — l:(ek - 1) Vk - Qk Uk]
e
k
where
— _ — —_— — . -_—
Uk = Uk cos Qk+Vk sin Qk.
- Vk cos Qk - Uk cqsﬂk
V., =
k 51
. cos i,
Wk
sin_ik
Qk = *1
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| (3.8-7)

(3.8-8)

(3.8-9)

(3.8-10)

(3.8-11)

(3.8-12)

(3.8-13)



The elements Ek, -ék’ §k and Gk are the semimajor axis, eccentricity,
argument of ascending node, and argument of pericenter, respectively. In
(3.8-6) and (3.8-7) the upper sign is used if the approach to or departure
from the kil- body is to be over the body, and the lower sign is to be used if
the approach or departure is under the body. In (3.2-12) the uppér sign is

used for departure from the k@body, and the lower sign for approach.

‘Additional constants which are used are derived in Sections Al2 and Bl of

Volume 2, They are:

n = V] (3.8-14)

—Ak = ;k gk {cos ;k cos ﬁk - sin ;k sin ﬁk cos _i'k) (3. 3-15)
Ek = Ek Ek (cos Jk sinlﬁk + sin ;,k cos §k cos _ik) (3.8-16)
C, = Ek e, sin Jk sin "ik (3.8-17)

L = (A, B, C) (3.8-18)

AL, =V (3.8-19)

B, = QY. /0 (3.8-20)

Cio = Qlog (21 /e ) V /oy + Ly (3.8-21)

A, = G A /6 (3.8-22)

B, = G, B, /2 (3.8-23)
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e

Cr2 = [G(éko) Az + Ox Cyo - 3—Bk2] /2 (3.8:24)

ale

> : 2
Ay, = Mk{“k Qe Bya Qfpy)
AN Q B 1 tpy Q C
THe [Fk2 T MR Mk P2 T8 e T Pk Tk 2k2
(3:8-25)

The matrix Gk' is ' ;

The matrix,G(z_\ko) is found from (2, 1-8) with x = -éko'

defined as

G, = G (g, (&) . (3.2-26)

The vector R, , (Q, /) is found from (2. 2-13) with S = Qk/pk. It must be
determined by Gauss1an quadrature or some other numer1ca1 means, An

approximate value of ékZ can be found from

* 2 2 . \.
By, F ka(_Dkz log™ p) - Ey, log *‘k) (3.2-27)
where !

B2 © [ Gl ) Sp + BB ) S A42 Gy By - 2 ka]
(3.2-29)

The tensor E(é-ko) is found from (2. 1-9) with x = éko‘
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Formulas (3. 8-4) through (3.8-13) give the constants which completely define
the 'ih'ner hyperboia I_{_ko’. Formulas (3.8-14) --(3.8-21) are used to determine
the behavior of R in the overlap domain where 'Sk is large. The behavior

of the perturbatmn R 29 when Sk is large can be found from (3,.8-22)

—k
through (3.8-29). The key formulas are those for Ly and AkZ since they

appear in (2. 3-5) and eventually in the fundamental solutlon

In the one -i»rhpﬁlse moon-to-Earth solution the ‘boundary conditions are not
given a’s prescribed pericenter radius and inclination but rather as a pre-

scribed initial time and position. The initial position &Ml’ combined with
\4 in (3. 4 14), glves the initial velocity V

oM
magnitude, lM, is given.by the relation’

Ml The ‘angularﬁmorn'e'ntum

’

M1

_ _ Ml oM _ ; . B2 Vo,

Y i (1 + \/XM)sm [cos ( R .V )] (3.8-30)
‘ oM

The inclination is then defined by

cos iy = (egt By * Yvy) My (3.8-31)

where E3 is the unit vector in the z direction and x the vector cross product.

The pericenter radius is obtained from
_ ; . ' 2 ' ;
Py = [(1 + V2 M) } /v 2 (3.8-32)

~Thus in the one-irﬁpulse solution (3. 8—3 1) and (3.8-32) give the unknown —iM
and PM in terms of V VoM and the boundary conditions, These two equations,
as well as (3.8-30) must be added to the previous set of equations, (3. 8-4) to

(3.8-29), in order to define the inner hyperbola,
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The time T which can be arbitrarily set to zero in the solutions of
Subsections 3.2, 3.3, 3.6, and 3,7, has a fixed value in the one-impulse
solution, The eccentric anomaly along the inner hyperbola at t - t) is

found from -

, cosh Fy = (ay + Ry / By om) {3.8-33)
. - _ . — 1/2 R
sinh Fy = (Vg * Rypy) /ey oy ' ©) (3.8-34)
Kepler!'s equation then gives TM as
™ = (F) - -ZM sinh F) / ny, (3.8-35)

1 e.',h'fM is the negative of 'tAISie *‘inner t1me from b‘ericenter. _

The expressions presented -up to th1s point all pertain to-the inner hyperbola
about the k‘-11 body. Another set of formulas defines all of the parameters
related to the outer solut1on. Like the inner formulas they involve the
matr1x G defined by (2.1- 8) and the tensor H defmed by (2.1-2), as well as
the vector function f defined by (2-2). These formulas, in order of solution,

are

P = M L(py ()

N- .
z [_f (P () - p; () + £ (jgi (tk))] (3.8-36)
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a8

= H(py (6)

‘ \?—1k,f Q M £ (V)

By = e GBI
By = QM G(Vk)[ k p_Pk ]/6 —_—
Bk = Qk Mk G, £ f (Vk) /6

t

Kok b to) = [
t
(e}

t

k . ' 8 ]
—1k
[B (tk’ 'l") F_‘l (™ +F7k—)] dr

k

; l’;ﬂ‘ M Gk Pk (t
N-2
M, [G (py (5) = p; () (B (&) - B, (£)) + G (p; (£)) P, (tk)]
i=1
izk

(3

(3

(3

(3.
(3.

(3.

- 2 —1k : 2k
llk (t 0) - j D (tk, T ) El ('I') - > - (‘l’ — tlj dr
o .

| (_T' £
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. 8'37)

.8-38)

.8-39)

8-40)

8-41)

8-42)

. 8-43)

(3.8-44)



(3. g -45)

2k Bk (3. 8-406)
ik kark. 3+ A B ) I )
B (tk’ O) Y;'l (t y + }5'10\( tk’ t, (3.?-47}
Chik = sz’\*k (
. S »
o e Yo CARE e o
ek -kark«» N
iy -3 B4 (3.8-5Y)
LS
f Bal? 3p e Tk o et V2 Gk\gm gy Tk -n\
'(3.3-52\
% . i )
My ~k G“Lk) (3.8 %)




Q
k1 %
2 [3 HV,) (G Vi -1 By )

%

T = Tz B By

&

u
O
0

2y /6
bgy = Gy Gy byy /6
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(3.8-54)

(3.8-55)

(3.8-56)

(3.8-57)

(3.8-58)

(3.8-59)

(3.8-60)

(3.8-61)

(3.8-62)

(3.8-63)
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The formulas (3.2-36) through (3.2-52) arise mainly from the expansion of
the first-order solution, pRY in the overlap domain while those given by
(3.2-53) through (3.2-65) arise from a similar expansion of the second-order
solution, r,. The constants must be evaluated sequentially starting from the

relative velocity as given by (3. 8-1).

The integral constants KlOk’ Kllk’ KZOk’ and K2 1k must be evaluated
numerically using Gaussian quadrature or some similar techn1que This
requires the integrands to be evaluated at a series of discrete points. The
first-order integrands are functions of the two-body solution, Ty the partial
derivative matrices B and D evaluated along r Ty and the positions of the N-2
perturbmg bodies as given by an ephemeris, as well as the indicated con-
stants. The second-order integrands are similar except that they also depend
on the first-order solution, o which is given by (2. 1-13). Sinpe r, itself
contains an integral function, the formulas for —ISZOk and KZ 1k are actually
double integrals., This complicates the application of a technique such as
Gaussian quadrature since each quadrature point of the outet integtal friust
be divided into n points for the inner integral. An approximafion for T, which
reduces 520k and 52 1k to single integrals is discussed in Volume 2. In addi-
tion, Volume 2 contains explicit formulas for the partial derivative matrices
A, B, C, and D which must be evaluated to obtain the constants of the éuter A

solution.

The inner constants can be combined to give

Q. MFE

o= M L +§-1vog _zkﬁ":_ Vor |- (3.8-66)
while the outer constants can be ’combined to give

Y 77 By (M- D) - By (e ty) (3.8-67)

B 7 - Bp (80T S K (atg) (3.8-68)
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Pl 0~ D - Koo (e £) (3. 8-69)
T LTy -2 .
My = - ¥y @G+ D) (6 -t ) 7/4 - Wy (-t )/2

.. ) 2
Yy (&g - ) + g (T - 2)/2
o .
+ ¥ (O + 1)+ 3%, (257 - 5)/4
+ ¥ BT -1 - Ky (b £) - ey HA

- M G

sk l
Tk e 2811 - B t7 My (3. 8-70)

k i)
The only other.quantities which appear in the boundary value solutions are the
pa"rtial' derivative matrices'obtai'ne'd by partitioning the state transition

matrix, the constants M

k
k—h b0dy, (S and the reference mass, p. As noted previously, many forms

def1ned by (2.1- 7), , the d1mens1on1ess mass of the

for the part1a1 derivative matr1ces are ava1lab1e Some are in Cartesian
Coordlnates and can be used d1rect1y Other forms require coordinate trans-
formations to obtain the Cartesian expres sions. The expressions which are

given in Volume 2 are in Cartesian coordinates.

‘The two impulse moon-to-Earth éolutioh has not been derived from the funda-
‘mental solut1on and thus requlres add1t1ona1 formulas to define the parameters
appear1ng in the solut1on The hyperbohc solution between the f1rst and sec-

ond 1mpulses is deflned by the followmg set of orb1ta1 elements and angles
x V., (S.) (3.8-71)

N = 2/]2] | (3.8-72)
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(3.8-73)

(3.8-74)

(3.8-75)

(3.8-76)
(3.8-77)

(3.8-78)

.(3;3-79)
(3i§{89)3
'kééé;éii_

(3.8-82)

(3. 8-83)




[e3xN Ros (s )] S

cosw = — ' (3.8-84)
R(S,) sin 1

© = v, - fl (3.8-85)

_ -3/2
n = (a) (3.8-86)
T = lll sin w + a 1/2 cos w)/(ae) (3.8-87)
V" = (|£_| cosw - a 1/2 sin w)/(ae) (3.8-88)
U = [_J"' cos § - V|s1nQ cos 1 ‘ | (3.8-89)
vV = ﬁl sin Q + v'cos Qcos i - (3.8-90)
W = V'sini (3.8-91)
v = (T,V,W) (3.8-92)

B ]

The orbital elements. are: a, the semimajor axis; e, the eccent.ricit'y;-i_,the'-
inclination; 2, thé argument of the ascending node; w, the argument:of peri-
cen{:er' and the initial inner time is given by (3. 5-7). These‘elements and
the 1n1t1a1 time are sufficient to define RMO(S) ‘and VMO(S) in a number of
ways, (2. 2-11) being one example. . - ’
The perturbat1ons to hyperbolic motlon, which appear in (3.5-9) and (3.:5-10)

require the additional formulas

Gy = Glpy (£))) (3.8-93)

Hy = H (pyy (]))) (3. 8-94)
- 2

Ay = 1/24Hy V (3.8-95) -
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The outer solution.requires the evaluation of four definite integrals given by

t

2
—I:IO (tZ’te) = f B(tz, T) El('r)d-r (3.8-96)
! . t
) : e
t2
Iy (yt) = f D(t,, T)E (r)d = | (3.8-97)
t
e.
o t,, |
1"20( , t ) = f B(tz,'r)E_Z(-r)d'r (3.8-98)
t
e
1:2 .
I (tZ’te) = [ D(tz,:-r.)z_z(-r)d'r , (3.'3_9'9)
t
e
These 1ntegrals are similar to KlOk’ Kk EZOk and K2 1k which are ';n the .

‘fundamental solution. They must be evaluated numerically using a technique
- like Simpsdn's rule or Gaussian quadrature. The first-order integrands are
functions of the two-body solution T, obtained from the Lambert solution, the
partial derivative matrices B and D evaluated along r , and the positions of
the moon and sun. The second-order integrands are gimilar‘ except that they
also ldepend on r, which, according to (2. 1-13), contains an integral 'functiori
itself. 'Therefore (3.8-98) and (3. 8-99) are actually double integrals and

requlre special care in their evaluation.
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3.9 COMMENTS )

The boundary value solutions presented in the preceding sections satisfy the
objective stated in the introduction. They are explicit solutions which,
e}rcept for the linear versions of the moon-to-Earth solutions, satisfy the
boundary conditions exactly w1thout requ1r1ng any 1terat1ve techniques. Thus
they offer a distinct advantage over numerical methods which depend on _
iterative technlques to converge to the boundary value solutlon It should be
pointed out however that sat1sfy1ng the boundary cond1t10ns exactly with an
approx1mate solut1on (wh1ch the asymptot1c solutlon does) is not quite the
same as sat1sfy1ng the boundary cond1t1ons approx1mate1y with an exact
solutlon (as numer1ca1 1ntegrat1on does) Smce the asymptotic solution is
only approx1mate, an exact solut1on based on the asymptot1c initial conditions
will most likely not sat1sfy the termmal boundary cond1t1ons exactly. The '
difference between the two methods is the sub_]ect of the next part of th1s »

report,
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" Section 4_'
NUMERICAL RESULTS

In eraer to deterrvnin'e} the accuracy of the asyrriptotic boundér’y value
solutions, a number of compansons were made with numer1ca11y 1ntegrated
trajectories, Prescrlbed sets of boundary cond1t1ons were used to evaluate
the asymptotlc solutions for' Earth-to-moon,” moon-to- Earth and inter- ‘
planetary app11cat1ons In1t1a1 cond1t1ons determined by the asymptotm solu-
t1ons were then used in an N- body numerical 1ntegrat1on program, Compan-
sons of term1na1 conditions between the asymptotm and’ numer1ca11y '
integrated solut1ons are used as measures of the accuracy of the asymptot1c
solution, That is, for any terminal condition x the comparisons are given

as Ax where
Ax = x (asymptotic) -x (numerical integration) - (4-1)

4,1 EARTH-TO-MOON TRAJECTORIES

Earth-to-moon trajectories of the type shown in Figures 2, 3, and 4 and
discussed in Sub‘sections.3.2’and 3.3 were compared with numerical
integration, Initial poeitions relative to the Earth were determined from

exact solutions of Apollo-type trajectories leaving Earth around February 1,
1971, ' ‘

Five basic trajectories were considered; with variations in the initial
positions, the total number of trajectories was ten, They cover flight times
from 60 to 100 hours and inclinations at the moon of -35 and -80-degrees .
(the minus sign indicating an approach under the moon), The boundary

conditions of all ten examples are given in Ta_.ble_ 1,

(Additional trajectories have also been studied but the major conclusions

obtained from the results are similar to those obtained from the trajectories
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pre.sente'd here. One of the additional trajectories was a 63.5 hour transfer
which was very similar to that used byA Carlson (Reference 2). The results

were in good agreement with his.)

The model for the Earth-to-moon trajectories was a 4-body problem (Earth,
Moon, Sun, Spacecraft) with the positions of the moon and sun determined

from an analytical ephemeris,

Since the initial positions for five of the ten trajectories lie close to
perigee, it was decided to make the comparisons using the nonlinear
solution, (3,2-13) through (3.2-19), The linear solution was used first but

~ the results were not satisfactory., The reason for the difference is ap-pa;'--
ently the fact that the linear solution uses the line:«:tr partial derivative
matrices. These are not adequate if one pf the endpoints lies in the non-
linear region of the zeroth-order solutic;n close to perigee, ‘Since the ‘
nonlinear solution replaces the trans’itibn matrix with an exact zeroth-order
Lambert solution,. the nonlinear effects are included, As the initial position
moves awéy from perigee the differences between the two solutions are

reduced,

The prescribed initial position E(to) and the calc'u‘lated initial velocity

l’—(to) were used as initial conditions in the numerical integration program and
the resulting values of pericynthion time, radius, and inclination compared
with the prescribed values which are shown on the left side of Table 1,
Comparisons were made using both the first- and second-order velocities
obtained from (3.2-16) and are shown on the right side of Table 1. The
results can be divided into groups which show various trends in the acéuracy
of the asymptotic solution, The data for each group are presented in the

following format.

Group" . Case " Order of At g Aoy g - AT
Designation Number -+ .Solution P
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The groups are:

A, ‘101 1 11 . -18 -0, 05
' 102 R | 36 . -92 -0. 05

103 ! 45 -210 -0, 11

In this gfohp of three trajectories, the variable boundary condition is the .
time of flight, -and the results ‘show that first-order accuracy is'degr:adéd as

. the time of flight increases,

B."t Sl - Tz 2 6015,
' ' “lo2 2 7 -&  -299 . .0.33,
© 103 2 <154 4497 . 22,12

In this ‘g'r'oup‘.,‘ the variable Bd,uhdé.ryi éonditi_on is agaiﬁ Atixjne of flight but th,,e,\-,__-;
results are rio'vx; s‘ecbhd'?ordér: - The same degradatio‘_n'ouf accufa‘cy as in A‘—i‘s N
apparent”but the degree of degradation is much more marked. For No. 101

the second order is better than the first, but for No, 103, the first order is .,
better, . o o — o N

Thesé résul-fs indicate that lWhatever is degré.ding the ’first-é)rder accuracy.
is having a highly adverse effect on the second- order solution. The cause
is most likely the deviation of the first-order solut1on from the zeroth- order;
solution, When this deviation is large, as it is in the long-flight-time
trajectories, it evidently causes the asymptotic solution to diverge before
reaching the second-order ter:h, Thus the second-order erroxr is,larg‘er.
than the first, |

11 18 . -0.05,

C. I 1) 1

o 104 1 1 -2l -0,04
. 101, 2 2 6. 015
" 104 2 3. 4 o008

<

This group shows the effect of choos1ng the -initial position to be a point one
hour out on traJectory,No. 101, thus giving No, 104. By delaying the initial
position, it occurs at a true anomaly of 118 rather than 6 degrees and at a
radlus of almost. 13 000 rather than 3, 544 naut1ca1 miles, This delay has

httle effect on either first- or second- order accuracy.
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D, ' 103 1 45 =210 0.11
106 1 47 -162 -0, 34
103 2 - -154 -4497 -2, 12
105 2 -12 -699 -0, 65
106 2 1 -421 -0. 45

This group is similar to C except that the time of flight is near 100 hours
rather than 60, A delay of one hour (No. 105) along No, 103 increases the
true anomaly by 106 degrees and the radius by 9, 360 nautical miles, A delay
of two hours (No. 106) increases the true anomaly another 15 degrees and
radius another 8,264 nautical miles, The two-hour delay has very little
effect on the first order results but the oné and two hour delays have a
marked effect on the second order results reduc1ng the time of flight error -
from 154 minutes down to one minute and the radius error from almost

4,500 nmi down to 421 nmi, =

Ca‘rléorl“(Réferenc'e 2.) has shown such’a trend in the first-order linear
results for a 63, 5-hour trajectory (starting at perigee). He shows steps
(delays) of 1, 3,5, 8.5, 13,5, 23,5,-33,5, ...hours. Accuracy is improved
with each step out to 8. 5 hours after which it slowly begins to degrade He
found no such trend using a first-order nonlmear solut1on wh1ch agrees w1th

the first- order compar1sons shown here and in C.

The improvement in accuracy shown here as the initial position is moved
away from the Earth is evidently due to a decrease in the deviation between
the zeroth- and firét—order solutions, This deviation is small fo'r'N-o, 101
thus a delay of one hour has little effect. For No. 103 however, the deviation
is initially quite large and delays of one and two hours decrease the deviation
and increase the accuracy. The deviafion of the solutions can be" measured

by the magnltude of the f1rst order 6v(t ). The magnitudes are

No, ~ Delay (hr) 6v(to) (ft/sec)
101 0 | 149

104 o | 54

103 o 845 :
105 ! 254

106 2

210
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Since neither 101 nor 104 have excessively large values of §v(to) the second

order solutions aré not ad\}errs'erly affected. The large value for No, 103,

however, results in large second order errors, '

E. 107 1 11 2 -0.65
| 108 1 46 -94 -4. 24

- This group.is similar to A except_fhe inclination at the moon is -80 rather

than -35 degrees and data for the 80-hour trajectory has not been included,

The same degradation with increasing time of flight is apparent and, except

for inclination, the errors are similar in magnitude to those of A. ,

F, 107 2 -64 . -644 -8. 86
' 108 : 2 -113 -2499 -25,90

This group is similar to B except for the difference in inclination and the
lack of an 80 hour trajectory, It again shows the degradation of the second-
order results as flight time increases but, except for inclination, the degrada-

tion is not as marked as in B,

Another trend is also apparent when B and F are considered together as

follows: . .
G, 101 2 2 6 0,15
107 2 64 644 -8, 86
103 2 154 . -4497 2,12
108 2 113 -2499 -25, 90

Comparison of Cases 101 and 107 shows that the second-order accuracy is
degraded as the inclination goes from -35 to -80 degrees, Comparison of
cases 103 -and 108 shows that, except for inclination, the second-order
accuracy-i§ improved as the inclination changes. (The anomalous behavior

of the inclination cannot be explained. )
Thus inclination at the moon has an effect on the second-order accuracy, the

nature of the effect being dependent on the time of flight, No such trend is

apparent in the first-order results,
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H - . 107 1 11 ' 2 . -0, 65
109 ar 1 11 e =14 : -0, 48,
107 . 2 -64 -644 -8. 86
109 2 1 -16 0. 36

This group is similar to C except for the difference in inclination. No. 109
is obtained by delaying the starting position one hour along 107. Again the
delay has little effe‘ct on the first-order results but results in a marked -
improvement in the second-order results where the errors were originally
quite large, The reason for the improvement is discussed in D, - .

L 108 1 46 -94 -4.24

y 110 1 47 -89 -3.07
.108 2 -113 -2949 -25, 90
110 2 3 -353 -7.71

This group is similar to H except that the time of flight is near 100 hours
rather than 60, The trend is identical to H, A delay of two hours has little
effect on the first-order results but a significant effect on the second-order
results, The reason is again the same: an initial poéition further from the
Earth reduces the deviation between the zeroth- and first-order solutions and

thus increases the accuracy,

Several obéervations can be drawn from A through I and from Table 1 as a
whole, The first would be that the second-order solution is much more
sensitive to boundary conditions than is the first order. For instance first-
order pericynthion radius errors range from -210 to +2 nmi while the
second-order errors range from -4, 497 to +4 nmi, In some cases the
second order is better than the first; in other cases the first order is better.
The point of minimum errof for the asymptotic solution is evidently less
than second order in some cases, and adding the second-order terms causes
the solution to diverge. (In general, an asymptotic expansion in powers of p
will most closely approximate the function which. it represents.after n terms,
and then diverges. as n is increased, The optimum value of n is a function of N
p and other parameters such as boundary conditions. It is difficult to

determine a priori. )
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" The second obsefvation is that second-order errors are increased by
starting the trajectory close to perigee, by increasing the ti'me"of'flig'ht' and
by choosing certain values. of inclination at the moon, Each of these effects
can-be related to the size of the first-order velocity correction

bvlto) = [vo(t) - voe)] /0 41-2)
When the magnitude 6v(to)'is large the error isv'large and when the "rnagnitude
is small the error is small, When v(tg) is large, the first-order solution -’ ‘
r, tends to grow rapidly with time; From (2.1-6) it can be seen that the
force F2 is'a function of r? and this results in large values of the second-

_order integrals KZOM and KZIM “Since

Ty 5 (-l B % HE)
its effect could be reduced by choosing 'r to be closer to the actual
trajectory r.~ However, the condition d1ctated by (2., 2-4) proh1b1ts r from _
being ¢hosen arbitrarily, i.e.; it must pass through the center of the moon,
If (2. 2- 4) is relaxed then it might be possible to choose an —Iio Wh1ch would
minimize (4, 1-3) but such a step causes rather severe complications in the
analytical derivation of the solut1on and is not well enough understood at A
th1s point to makKe any- mod1f1cat1ons along this line, (For a further d1scua-
sion -of (2. 2 4) see Section AlO and the f1rst parts of Sections All and A17

" in Violurne 2,7 L : '

The magnitude of &§v(to) should be.‘prop‘or‘tiona’l to the perturbations
'experienced over the entire length of the trajectory. Numerically integrated
trajectories show a variation in the orbital ele‘rnente of less than '10-5 over <.
the- f1rst tWwo hours of f11ght after 1eav1ng per1gee 1nd1cat1ng that the moon .
and sun perturoauons are small over this interval. The large cnanges in
the magnitude of. 6v(ty) as the start1ng pomt moves away from per1gee (cf D):
must therefore be attributed to something othet than the effect of the moon
and thé suh. The evidence indicates that the cause is the large. difference a
between Ty and r, + R rl, i,e., a f1ct1t1ous force arises when ro is a poor

' approx1mat1on to the actual solution,
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Since a delay in the starting position to one or two hours after perigee never:
degrades the accuracy but tends to improve it when the.errors are large,

and since the effect of the real perturbing forces is' small over the initial -
one-- or two-hour interval it may be possible to construct a more uniformly.- -
valid sélution by applying either a two-body or a perturbed two-body solution
out to a true anomaly of 120 to 135 degrees and then applying the asymptotic
boundary value solution from there to the moon. Certain modifications would
be required to make the velocity continuous. beh&een the two solutions, but
such changes are relatively minor, Lack of time prohibited making such a
modificat.i‘on in this sfudy although a somewhat related solution was -
incorporated into the interplanetary solution, It is termed the.‘modifigd :

linear solution in Subsection 3. 7 and the results are shown in Subs‘gc__tfi‘ion 4.4,

A .third observation is tﬁat since accuracy is increased as the starting point
is moved away from perigee, the midcourse application is probably better
than the full Earth-to-moon application, 'I‘_his is especially true'if a sifnple
form of the asymptotic soluti_qn is desired,  since it has been amply pointed
out that starting from perigee probably will require a composite solution to -

obtain uniform accuracy.

.The fourth and final observation is that stafting at perigeé will always -
involve rather large sensitivities to initial errors,.- The initial velocity. . .
calculated,. even without any modification, may differ by only a small amount
from the actual velocit}; which sétisfies the boundary value problem exactly,.
Whether or not these small differences are tolerable depends on the

particular use to which the solution is being applied,

4,2 TWO-IMPULSE MOON-TO-EARTH TRAJECTORIES ,
Two-impulse moon-to-Earth trajectories of the type shown in Figures 7 and -
8 and discussed in Subsection 3, 5 were also conﬁpared with nu'mericéal_ .‘
integration, The initial position and velocity were taken from a patched
conic optimum 4-impulse solution obtained from NASA-MSC. The initial .. .
time was zero hours on February 8, 1980 (Julian Date 24442"(7_ 5) and fhe. .
initial position and velocity were
Rm1
\4

MY

(263,24, -923,75, 272, 72) nautical miles (4,2-1)

-

I:/Il (-1125, 44, 1181, 10, 5086, 90) feet/second o (4.2-2)
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This corresponds to a 60-nmi circular orbit about the moon with an inclina-
tion of 97, 582 degrees, The first impulse was chosen to match the patched
conic solution by putting

I, = 0.45805 (4, 2-3)

This resulted in a hyperbolic orbit after the first impulse with a pericenter'
radius of 998, 49 nmi, an eccentricity of 1, 1259, and the same inclination

as before,

Equations (3. 5-8) and (3. 5-9) were used to determine thg position and
velocity at five-hour intervals out to 25 hours. The magnitudes of the two-
body position and velocity, Ry o and VMo’ the position and velocity perturba-
tion, 8R,, and &6V__, and the errors when c_ompared to numerical integration,
|6 EMI and |6V__M| , are shown in Table 2. The results show the solution
defined by (3. 5-8) and (3. 5-9) to be quite accurate with position and velocity
errors running 0, 1 percent or less. It is interesting to note that at 20 hours
the predicted radius was approximately the radius of the moon's sphere of
influence and the perturbations éRM and 6V,  indicate the error of a patched

M
conic solution at this point,

Table 2

POSITION AND VELOCITY MAGNITUDES AND
ERRORS OF PERTURBED HY PERBOLA

t2-t Rvo - 8By AR VMo Y 1AVl

“(hr) - (nmi) (nmi) (nmi) (fps) (fps) (fps)
5 10,842 5.7 0.9 2,975 4.9 - 0.4
10 18,797  39.6 5.1 2,574 17.4 0.8
15 26,070 124.0 = 13.2 2,404 37.2 1.1
20 32,992 281.4 24.9 2,307 64.6 -« 1.0
25 39, 694 535. 2 39.7 - 2,243 100. 0 2.5
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At each of the five points in Table 2, a second impulse was calculated using
the linear solution (3. 5-19), Entry times were chosen to make the-total
flight time, te - tl, equal to 120, 100, and 80 hours. In addition, an
impulse was added at t, - t; = 5 hours which resulted in a .60-hour flight

1
time. (Flights of 60 hours flight time from t2 -t, = 10, 15, 20, and 25

hours were not possible without going to hyperbolilc transfers, This was.
because te -ty for each of these points was less than the parabolic flight
time from that point to Earth,) These trajectories are summarized in
Table 3, They are grouped according to the time of the second impulse in
order of decreasing fotal flight time. Magnitudes of the second velocity
impulse are shown, the magnitude of tBe first impulse was the same for

<

all cases, i.e.,
AV(E)) = 2, 447 fps (4.2-4)
The Earth entry conditions were

3, 594 nmi (4, 2-5)

r =

e
Ye = 0,0 deg (4.2-6)
i, = 30.0deg (4. 2-7)

The choice of zero for Ye meant that entry coincided with perigee, Errors in
perigee time, radius, and inclination are shown as well as errors in entry
time and flight path angle for those trajectories where the numerically -
integrated solution passed through the entry radius, i, e., had plositive i)erigee
-radius érrors meaning the numerically integrated perigee was below the

perigee (entry) radius,
The numerical integration program was set to cut off at flight times of 125

hours., In the cases where this limit was reached, the radius at that time

is shown to give an indication of how far off the trajectory was,
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The results shown are second-order results except for the iZO-hour flights
and the flights where the second impulse occurred at the sphere of influence,
In these cases zeroth, first- and second-order results are all shown. (The
order of the solution applies only to the phase after the second i"mpulse;

The hyperbolic phase used the pertﬁr‘bed solution in all cases since the

accuracy of this phasé had already been determined. )

1

t, - t1 held fixed, the accuracy improves. This is to be expected. As the

point of the second impulse moves away from the moon, the outér solution

The results show three basic treﬁds. First, as t2 - t, increases with

which is used to derive (3. 5-19) becomes a better approximation to the actual -
solution, If the initial point is too close to the moon (a distance of order p)
then the outer solution must be replaced by a matched solution obtained from
the fundamental solution, Since the pfimary purpose of the two-impulse
solution is to study trajectories where the second impulse occulrs away from
the moon, the derivation was made accofdihgly. Thus values of t, -ty of 5
and even 10 hours represent marginal applications for this type of solution,
and the errors are not entirely unexpected.

The second trend occurs when tZ - t, is held fixed and te - f:1 décreased,

1
The trend in each group is toward improved accuracy, This should also be

expected if the Earth-to-moon results of the previous section are considered,
It was shown there that increasing flight time degraded accuracy. The same

trend appears here with decreasing flight time giving increased accuracy.

The cause is probably the same as in the Earth-to-moon cases, i, e,, the .
deviation of the first-order solution from the zeroth-order solution increases .
with increasing flight time and adversely affects the accuracy. A second
cause may be the use of the linear rather than the nonlinear solution, - All of
the post-second impulse trajectories had transfer angles between 170 and

180 degrees, the 120-hour trajectories all being around 178 degrees, The
linear partial derivative matrices may introduce considerable error in such
cases since both end'points lie in highly nonlinear regions of the zeroth-order

solution. Since the nonlinear solution does not use the partial derivative
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matrices (except in the definite integrals), it could be expected to give better

results, Time did not permit an evaluation of the nonlinear solution,

The third trend apparent is that the first-order solution gives better results
than the second order in all but one of those cases where - the zeroth-, first-,
and second-order solutions have all been compared with numerical integra-
tion., However, a comparison of Cases 201, 205, 208, 211, and 214 shows
that the difference between the first- and second-order solutions is decreas-
increases and finally when t, - t. equals 25 hours the second

1 2 1
order is better, This also can be attributed to the size of the deviation

ingast, -t

‘between the zeroth- and first-order solutions, ‘When this deviation is large,
as it is when the second impulse occurs close to the moon, then the second-
order accuracy is adversely affected, As the deviation decreases, the

adverse effect is diminished and the second-order accuracy is improved,

The cases where t2 - tl equals 20 hours, Cases 211 to 213, are interesting
since the zeroth-order results are nearly equal to what a patched conic
solution would give, Prior to the second impulse, the solution is a perturbed
hyperbola, but the perturbétionls are not exces sively large and the solution
is close to a pure two-body solution, After the second impulse, the zeroth-
order solution is a two-body ellipse, Since thé second impulse occurs at
the sphere of influence, the zeroth-order solution is nearly patched conic
(actually slightly more accurate). The results show that both the first- and
‘second-order solutions are an order of magnitude more accurate than the
zeroth-order solution and that the zeroth-order solution predicts a velocity
impulse which is less than that actually required to satisfy the boundary
conditions., This would indicate that patched conic solutions 'i'nay give
‘considerable error if used to determine the optimum time for adding the

second impulse,

This point is emphasized by considering No, 217, The errors for this case
were obtained by numerically integrating from the initial conditions predicted’
by the patched coniqlprogra‘m used at NASA-MSC and adding the indicated
impulse at 6, 3 hours, Although the solution is supposedly optimum, the
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terminal errors are quite large and the second impulse would probably have
to be increased by several hundred feet per second to cancel out the errors,
The magnitude of the second impulse would then approach that of No, 209
which was the minimum of all the second-order impulses calculated by the
asymptotic solution, However, for No, 209 the second impulse occurs

8. 7 hours later and the total flight time is 20 hours less than No, 217,

indicating quite a change in the possible optimum conditions,

A final observation is that the errors in ti'me of flight, perigee r‘a'd‘i.us -and -
‘entry ﬂight path angle shown in Table 3 are never as small as one might |
expect fro‘m a second-order theory. ‘As discussed previously, the overall
accuracy could be expected to improve by going to a nonlinear solut1on but
problems pertaining to sensitivity might still remain, Thus, as in the Earth—.
to-moon s’olution, the intended use of ;che solu’tion will deter'rrune to a large
extentAwhat accuracies are acceptable. If the accuralcies shown here, '
particularly those for long flight times, are unacceptable then further
numerical analysis would be warranted to see if the errors could be reduced |
by either using the nonlinear solutlon or by formulating a composite solution
"in which the deviations from the zeroth-crder solution are lese, This. latter A_
approach would be similar to the ce’mbined two-body/asymptotic soluticn

suggested for Earth-to-moon trajectories,

4.3 INTERPLANETARY MIDCOURSE TRAJECTORIES

Interplanetary traJectones of the type shown in Figure 9 and dlscussed in
Subsection 3.6 were compared with numerical integration. Two Earth-to-
Mars reference trajectorie‘s were cholsen; the first was a 244-day transfe'r '
leaving Earth on November 1, 1964 and the second a 184-day transfer
leaving Earth on May 19, 1971. The first reference trajectory was used byﬂ
Carlson (Reference 2) and is presented here for comparison with his
results. The second reference trajectory is similar to that actually flown

by the 1971 Mariner mission,
The prescribed boundary conditions at Mars are shown in Table 4 The

initial positions were determlned along two- body solutions 1ntersect1ng

Earth and Mars at the departure and arrival dates. The initial velocity was
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Table 4

' TERMINAL‘.BOUNDARY CONDITIONS FOR
"MIDCOURSE-TO-MARS TRAJECTORIES !

1

Reference ' PT ‘ PT ' N
Trajectory (Date) (Hour) (nmi) - (deg)
1964-244 Day ' July 13, 1965 - 11:59:45 1,898 33.9
1971-184 Day ~ Nov19, 1971 12:00 2,000 30.0

then c‘aléula/t'led using the liﬁear solution. The position and velocity were
used as initial conditions in the numerical integration program and the
resﬁiting bovundAary conditions compared with the predicted values. The
comparisons afre shown in Table'5, Cases 30l to 306 corresponding to initial’
positions along the 1964‘244-day trajectory, and Cases 307 and 308 corre-
sponding to initial positiéns along the 1971 184-day trajectory. The time to
go to pericenter and the distance from Mars are shown for each initial pdsi- '
tion as well.as the differences (errors) in pericenter time, radius, and V

inclination.

The model used was a seven-body problem with the positions of Venus,

Earth, Mars, Jupiter, and Saturn obtained from an analytical ephemerié.

The 1964 réference trajectory is a relatively low-energy Earth-to-Mars
transfer with a heliocentric transfer angle of about 178 degrees. The six
midcourse points, 40 days apart, corréspond to some of the initial positions
in{/estigated by Carlson (Reference 2). In each case both first- and sécond-

order results are shown.

The first-order comparisons agree very well with Carlson's first-order
results. They show an incréasing degree of accuracy from 220 to 100 days
and then a trend toward decreasing accuracy as the time of flight is further

reduced below 100 days. The large error at 220 days can be attributed to
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several causes but the most probable is that the starting point is in a region
relatlvely close to the Earth where the midcourse solution may not be
applicable. That is, the assumptions used to derive the midcourse solution
are not satisfied if one of the perturbing bodies other than the target body is
relétively close to the starting point. If the starting pointis within a distance
xof order p of such a perturbing body then the interplanetary solution of
Section 3.7 must be used. The starting points for Cases 301 and 302
evidently lie between the domain of validity of the two solutions. The
Eincreasing error as tppty, goes below 100 days can be attributed to certain

terms proportional to (tpT—to)'l which are ignored in the first-order solution.

The second-order solution shows a definite improvement in accuracy for
Cases 301 and 306. InCases 302 to 305 the second-order shows an improve-
ment in time of pericenter passage but the results for radius and inclination
are inconsistent, sometimes better and sometimes worse than the first
order. The mixed results for radius and inclination are probably due to the
fact that both the first~ and secoﬁd—order values may be within the accuracy

ilimits of the numerical integration itself.
! .

The 1971 reference trajectory is a somewhat higher-energy Earth-to-Mars
transfer with a heliocentrie transfer angle of about 142 degrees. The two
m1dcourse points occur two and four months after launch and lie in the
region where the midcourse solution can be expected to work well. For each

casé zeroth- , first- ,and second-order results are shown,

The zeroth order solution, which is identical to the massless planet conic
approximatidn often used for interplanetary trajectory analysis, results in -
‘rather large errors. These errors are reduced significantly by the first

{and second order solutions and, except for the pericenter radius error in
§Case 307, the second order is better than the first.

I |

;The magnitude of the first- and second-order errors in Cases 307 and 308 is
difficult to explain. Since the 1971 trajectory is a higher energy one (i.e., has
less flight time) than the 1964 trajectory, the results from the lunar trajecto- .

ries would indicate that the errors should be less, Also the two points are at

!
!
{
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distances from Mars which are comparable to Cases 304 to 306. Yet botﬁ

the first- and second-order errors in Cases 307 and 308 are consxderably
larger than those in Cases 304 to 306, These differences are ev1dent1y ‘due

to the combination of time of flight, perlcenter radius, and inclination pres-
cribed for each of the reference traJectories, but a detailed inspection of each

of the cases does not give any hint as to why this should be so.’

The final observation regarding Cases 307 and 308 is that the first- and "
secor_ld-order results show improvement as the time to go de¢reases. This "

>

is in agreement with Cases 301'to 306.

The interplanetary midcourse solution ap‘pears to be an excellent a'pplica‘tion'
for the asymptotic solution. There are two basic reasons for this. The first’
is the magnitude of the small parameter p. In the lunar cases i is 10-2
while in the midcourse-to-Mars apphcatlon pis 10° -7, This causes the

asymptot1c expans1ons to converge much more rap1dly

The second reason is less apparent from a theoretical point of view but ﬁJ.st
as important as the s_ize of u: it is the fact that the location of the initial
position does not have as strong an effect on accuracy as in the previous
results. In the lunar examples the zeroth—order solution has an eccentr1c1ty
close to umty and the region close to per1gee (and apogee) has a h1ghly non- -
linear behavior. In 1nterplanetary applications the corresponding eccentri-
cities are 0.25 or less and the initial position, ‘even if close to perihelion,’

does not lie in a highly nonlinear region.

The eombination of small p and nearly circuler zeroth order outer solution’s
causes the dev1at1on between zeroth- and first- order solutions to be rela-
tively small when both start from a common position as in the m1dcourse
solution. The results of the next section show that this is no longer true-

when the initial position is close to another body.
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4.4 INTERPLANETARY TRAJECTORIES )

Interplanetary trajectories of the type shown in Figure 10 and discussed in
Subsection 3. 7 were also compared with numerical integration. The two
reference trajecfories are the 1964 and 1971 examples of the previous
section encept here they are conside_%-ed in reverse order, The same seven-

body model was used.

The prescribed boundary conditions are shown in Table 6. The conditions

at Earth are typical of departure from a low-Earth orbit, In Cases 401 and
402 the terminal conditions are typical of a close approach, while in Cases 403
and 404 the pericenter radius at Mars is rather lar'ge. This value was

chosen since a numerically integrated solution with identical bound.ary condi-

tions was available for comparison.

For each case, the initiali position and velocity at the Earth were calculated
from '(3. 7-14) and (3. 7-15) using either the linear or modified linear solution,
The position and velocity were then nurnerically integrated'up to a close
approach at Mars and the resulting boundary conditions compared with the

prescribed values, The comparisons are shown in Table 7.

Case 401 shows zeroth- , first- , and second—order results of applying the
linear solution to the 1971 trajectory. The results show the expected
improvement going from zeroth to first order buf then a significant degrada-
tion in accuracy going from first to second order.

Case 402 shows the results of applying the modified linear solution. The
midpoint was offset by almost 75,000 nautical miles or 10—3 in dimensionless
units, The results ‘show that except for zeroth-order 1nc1mat10n and second-
order time of pericenter passage, the modified, solution caused a slight

degradation in accuracy,
Since the zeroth- and second-order solutions showed such large errors

for the 1971 trajectory, only the first-order solution was compared with

numerical integration for the 1964 trajectory. The first-order results of
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Table 7
ACCURACIES FOR EARTH- TO-MARS TRAJECTORIES

‘

Heliocentric®  Midpoint

Trajectory Transfer Shift AtpT APt Alp
Number Angle (deg) {(nmi) Order (hr) (nmi) (deg)
401 142, 4 - 0 101.4  -71,702 65.4

1 8.0  -8,289 -0.5

2 472.5  -32,370 -9.9

402 142. 4 74, 642 0 117.5  -83,357 13.5

I 9.0 _8,819 -0.8

2 456.7 -32,626 -9.9

403 177. 6 - 1 8.7 -22,545 0.8
404 177, 6 920,987 1 3.6 -9,005 -2.4

both the linear and modified solutions are given by Cases 403 and 404, The
modified solution resulted in a reduction of over 50 percent in the time and
radius errors but caused a slight increase in the already small inclination
error. The reason that the modified solution gave better results in this
example is probably due to the size of the midpoint shift which is 1072 in
dimensionless units. Since the midpoint shift was an order of magnitude
larger than in the previous example it could be concluded that the linear
solution (403) contained significantly more error (than 401) due to the larger

deviation from the zeroth-order solution.

It should be pointed out that a solution of any given order has a minimum |
error associated with that order. Solutions like the modified linear or the
nonlinear are only attempts to reduce the error to its minimum value. If
the linear solution itself is close to the minimum error then the other solu-
tions will not result in any improvement. This is evidently what happened

in Case 402,
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The second-order errors are much larger than ant1c1pated and are not removed
by going to the modified solution, - It is felt that the cause of the large error

is twofold. First, as shown in Figure 10, the zeroth-order solutions do not

go through the true m1dpo1nt in either the linear or modified linear solutions.
Therefore there is always a finite difference between zeroth and f1rst order
and it has been shown in previous sections that this can cause rather large

second-order errors if the deviation becomes large.

In the lunar and interplanetary midcourse solutions, the first-‘order perturba-
tion, r;, always vanishes at t = tp and this helps to reduce the maximum
value 'which r)] may attain at some later time. In the interplanetary solutien |
such is not the case and the large values which ri may attain cause
excessively large deviations from neroth order. In order to illnstrate this
point consider the differénce between the zeroth- and first-order midpoints
for Cases 401 and 403. These differences are equal to the midpoint shifts

in Cases 402 and 404, i.e., 10-3 and lO'Z. But accordmg to (3 7-17) the '
shift in the midpoint should be order por 10~ [ (If the earth is the reference
body then p vvould be 10-6. In either case the midpoint shift should be the
same, theoretically between 16'6 and 10-7, ) Even if these differences ar'eA
reduced by one or two orders of magnitude they still rema1n larger than '

order M and therefore introduce error,

The second cause prob"ably lies in the evaluation of the integrel K,;L which
ventually ends up in n1,. In all other solutions which use this integral it is
not used in calculatmg the initial position or veloc1ty That is, the value of
the initial velocity perturbatmn dv(to) is a furiction of the first order value of
Vo and the constant Nk is used only in obtaining the second order value of
Y“’k' This means that 1) is used only in calculatmg non- prescr1bed boundary
conditions at the terminal end of the trajectory. In the 1nterplanetary solution
solution, however, N, is used to determme the second order value of Vor,
[cf. (3. 7-10) and (3, 7- 12)] which in turn is used to determine second order
orbital elements and second order position and velocity at the launch planet
(cf. (3.7-14), (3.7-15) and Section 3. 8). Therefore the importance of the

integral K, increases significantly in the interplanetary solution.
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Of all the definite integrals which must be evaluated Ky is the most
~di;f-f.icult because it has the most complex integrand. Since the integrals
éaenpt be evaluated exactly but only by some numerical approximation they
Aalvways. include some error. If they are large then the error is correspond-
ingly_lerge. In Case 402 the magnitude of KZlL was 108., A one percent
error in the Gaussian quadrature would be 106. The effect of this error can
be determined by multiplying by p2 since K211, is a second-order integral,
The net effect is 110'8 or almost order p' If attempts are made to reduce

the error by enough orders of magnitude so that it is no longer a problem,

then the computation time increases considerably.

The large second-order errors indicate that a better zeroth-order’solution is
needed for this application. 4The first-order solution however, works well
abnd'offers considerable improvement over the massless-planet (zeroth-order)
app.roxvimation Even though the first-order errors in Cases 401 to 404 may
appear somewhat large, the actual initial positions and veloc1t1es are qulte
close to those needed to satisfy the boundary conditions with an exact
solut;on The errors between the asymptotic solution and numerical
1ntdegrat10n when both satisfy the boundary conditions are shown for

Cases 403 and 404 in Table 8. Notice that in the linear solution (403) the
first-order errors are large and the second order actually slightly better.
By going to the modified solution (404) the zeroth- and first- order errors
are reduced significantly wh11e the second-order errors are reduced only

shghtly

The'vfir‘s_t'-order error for Case 404 dramatically illustrates the problem of
| sensi:tivity which has been mentioned earlier. Errors of 14 nmi in position:
~and 77 fps in velocity (out of a totai velocity of 37, 858.fps) result in errors

of 3.6 hours and 9, OAOS nautical miles at closest approach to Mars. Since

Lproble‘ms of sensitivity cannot be elimin_ated, the errors shown for ﬁr-'st

order in Table 8 are probably acceptable.‘

4.5 COMPUTATION TIMES |
The asymptotic solutions _require three basic types of calculations: (1) Lam-
bert solutions, (2) Gaussian qué.drature, and (3) general calculations

including the boundary value solution equations, partial derivative matrices,
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Table 8

INITIAL POSITION AND VELOCITY ERRORS
FOR EARTH-TO-MARS TRAJECTORIES

Trajectory l—A—R‘pL' l'Ai,pLL
Number Order (nmi) (fps)
403 ’ 0 601 2,706
84 460
2 47 321
404 0 96 561
1 14 77

2 | 35 . 326

conversions to dimensionless numbers, etc. The first two require numerical
techniques (including iterations in the Lambert solutions); the third involves
straight'forward evaluation of explicit expressions. The calculations can be

accomplished quite rapidly on a high-speed computer.

FORTRAN programs which evaluate the asymptotic solutions were run.on a
CDC 6500 'computer as was .the numerical integration program. In the
asymptotic solutions the Lambert problems reciuired’ approximately 0.3
seconds per solution while a 60-point Gaussian quadrature routine required
approximatély 0.4 seconds for each of the N-2 perturbing bodies. The total
computation times for each of the different solutions as well as the corres-

ponding numerical integration times are shown in Table 9.

In the Earth-to-moon solution a large part of the time is spent in Lambert

solutions, while in the interplanetary solutions a considerable portion of the

"3

time is spent calculating the effect of the perturbations through the Gaussian
quadrature routine. Since the interplanetary solution is derived from two
fundamental solutions rather than one, it requires almost twice as much time
as the midcourse solution, The modified linear solution adds two additional
Lambert solutions plus an extra first-order solution which pushes the time

over 10 seconds,
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Whereas, the asymptotic eolﬁtior_}s are.boundary value solutions, the numerical
inte_/g_x'-atiop:_ runs with which they were compared are only initial value
solutions based on the. asymptotic ,‘i‘nit.;ial_‘cqndit.ions. ~Even so, the con*iputa-
tion times for the asymptotic solutions are from 6 to 38 times faster than
those for numerical integration., In order to obtain a boundary value solution
from numerical integration, a.hunting or.search procedure must be added
which significantly' increases the'.eonipgte.tionatime. If the asymptotic
solution is then compared with the numerically integrated boundary value
solutions, the computatibn times are 25 to.150 times fgste_r. An actual com-

parison is shown in Table 9 for interplanetary midcourse trajectories.

It should be noted that cob1putkat'i.on,ti.bn'e ;1s eighificantly affected by the -
number of quadrature pomts needed to evaluate the constants., A 120-day
1nterp1anetary m1dcourse solution was evaluated with 12, 36, 60, and 96
quadrature points. . Although computation time varied by almost a factor of .
three, there was 11tt1e effect on the accuracy, indicating that, for this trajec-
tory at least, 1'?2”,'po_;1‘nAt§ were, sufficient. Thus the computation times shown

in Table 9 ;mlg-,l'l?t be reduced with no significant loss of accuracy by reducing.

0

the number of quadrature points,
Finally, the programs used to evaluate the asymptotic solutions are.still

in the development stage and no real attempt has been made to optimize the
computatlon time. The: programs make many calculations which do not
affect. the solut1on but which were useful during checkout. It is estimated
that_\l%y:.,Q.l};m;:vgg,t'mg_tbe_s_e unnecessary calculations and making other changes
ygirtbi\r},:t’he;prq-gram,» the cgmputqtiop times could be reduced from 25 to 50

percent, - ... . . . L a

LTI 51»-‘\3" ~ . . LR

A 6 DISCUSSION OF. NUMERIC L ESULTS, S . .
The numerical resuits presented here consist of a limited numbef of
exa.rnples from which various trends in accuracy can be observed. These
trends are felt to be representative of the accuracies which result from the .
different boundary kyAah_J.:e; splutfx,_b__ns, _but it may be that a more comprehensive
nume»ric'alwazljlq_‘ly_gs“is,. might geyealifu_rt_her information,

4 [N L.
L .
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' "The examples for which data is presented include those which were used as
test cases in checkout of the computer programs for each solution. This
process went through the following sequence of solutions: ‘
1; Linear first-order midcourse interplanetary

'Linear first-order interplanetary »
- Linear second-order midcourse 1nterplanetary

Linear second-order interplanetary
.~ Modified linear second-order mterplanetary
Linear second-order Earth-to-moon ™

Nonlinear second-order Earth-to-moon

PN E RN

Linear second-order two-impulse moon-to-Earth,

Since the analytical derivations of each solution preceded the codmg and

checkout by several months, the derivation of the final solutlon (8) was .V
completed while the coding and checkout of 4 was taklng place, Also, by the
‘time results were being obtained from'é and 7, the codmg of 8 had been _
completed; ‘Since many of the factors influencing the asymptthc solution”
wete determined from the numerical analysis of 6 and 7 and since this .| .
analysis occurred late in the study period, there was not suffieien't"'time"-t_:o""
develop a more comprehensive numerical survey and make chang‘ee _m'.thé

other solutions.

The sequence of solutions did reveal two aspects of the asyn'iptotic's’olu't‘i'o'n" :
which'need to be re-emphasized. The first is the need for a better nommal

or zeroth—order outer solution in order to decrease the dev1at1on between

it and the first order solution. An attempt was made to improve the nommal :

in the linear midcourse interplanetary solution. The new nominal did not go

through the center of the target body and thus (2. 2-4) was violated. Thxs :

caused singularities in the definite integrals and therefore an invalid’ solutlon.', -

This was corrected by introducing a fictitious body with the mass of the
target’ body but with a slightly different position in order to make the new ”
nominal satisfy (2.2-4). "This new solution did give slightly better ‘
results for Cases 301'and 302 and eventuallyléd to thé inclusion of the =~
nonlinear versions of each solution. [The nonlinear versions were first . -

discussed by Carlson (Reference 2) but were not emphasized strc'm'gly.‘]l
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The second characteristic which was revealed was that the form of the
fundamental solution can affect the accurac;r. It was mentioned iﬁ Sub-
section 2, 6 that the form chosen was not unique and was slightly different
than the results of Carlson (Reference 2). A more comprehensive numerical
survey should inclﬁde different versions based dn these differences_in the

fundamental solution.

A general comment regarding all of the solutions is that attempts to improve
acé{lracy, by whatever means, sometimes results in an improvement in one
boundary condition and a degradation in another.. This makes it sémewhat

| difficult to assess the value of the supposed improvement without étudying a

large number of cases. -

It would appear from the results obtained in the preceding sections and from
the comments of this section that a more comprehensive numeri'.cal survey
of all of -the solutions is needed. Such a éurvey should be bagéed essentially
on the solutions as they havelbeen derived but including all v,eréiops of each
‘soluti,on and those changes, such as the construction of a cbrhposite-type

solution, which have been specifically mentioned previously.
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Sectlon 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The analyscical solutions preéentea in this report are a result of cfoi’ﬁbining -
and extending the best ideaé put forth'in previous works on this subject,

The solution of Reference 1 stressed the mathematical rigof and éxplicitneés
of results which evolved from the earlier work of Lagerstron and Kevork1an
Reference 2, while also stressing a certain degree of’ exp11c1tness was based
on a more general solution first derived by Breakwell and Perko, . The
concepts of mathematical rigor, explicitness, and generality have been
combined in this study to generate a number of asymptotic solutions for both
lunar and interplanetary applications, The basic solutions 'are the second
order outer and inner solutions presented in Subsections 2, 1 and 2, 2, These
solutions are themselves useful for studying motion along perturbed e111pses
and hyperbolas, respectively; however, their main purpose in this study lies
in the formulation of general solutions for trajectories which have both
elliptic and hyperbolic behavior, with a continuous transition from one to the

other,

The fundamental solution presented in Subsection 2, 5 represents the result of
matching the second-order outer and inner solutions in the overlap domain

(i. e., the region of transition’from elliptic to hyperbolic motion), This
solution is valid for any number of perturbiflg bodies and represents the first

‘matched asymptotic solution which has been carried to second order,

Several boundary value solutions have been formulated directly from the
fundamental solution, These include the Earth-to-moon solutions (Sub- -
sections 3.2 and 3. 3) and the interplanetary midcourse solution (Subsec-

tion 3.6). These solutions are second-order approximations to the exact
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solution and-satisfy the prescribed boundary conditions (both initial and -
terminal) exactly without need for any iterative techniques (other than in the"
Lambert solutions). ’

- Two fundamental solutions have been combinéd to formulate the interplanetary
solution of Subsection 3.7. Like the other boundary value solutions it is
N-body, second-order, and non-iterative, It is valid for all trajectories
origir‘l‘ati_ﬂg close to one planet and terminating close to another.’

A modified version of the fuhdamental -solution has been used to formulate
the one-impulse moon-to-Earth solution (Subsection 3‘, 4), In addition,
separate versions of the second-order inner and outer solutions have been
used directly (no fundamental solution) to formulate the two-impulse moon- -

to-Earth solution (Sﬁbsection 3. 5). ‘ '

Although applicable to a number of boﬁndary value problems, all-of the
solutions presented are similar inv that they are represented analytically

in the form of asymptotic expansions, Also, the solutions have been derived
so that most of the mathematical operations required for numerical-evalua-
tion are common to each formulation and all of the solutions can be program-

med as subroutines of a master trajectory program,

The primary purpose of this study was the development of analytical
boundary value solutions, Neévertheless, Section 4 contains sufficient -
comparisons with numerical integration to demonstrate the accuracy and
‘speed of the asymptotic solution in typical applications, For each solution
evaluated, the results showed a significant improvement in accuracy over
standard conic approximations, In oné application (i.’e., interplanetary
midcourse the accuracy is comparable to that of numerical integration, - -
(In fact, the results of the asymptotic solution pointéd out a-deficiency in the
numerical integration program with which it was being compared. Introduc-
tion of more stringent internal acéuracy requirements in the numetical
integratioﬁ ‘pfogr’arﬁ rerhoved the deficiency and brought the numerical
results into agreement with those of the asymptotic solution, ) :

X
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The computation times for all of the solutions are significantly less than-
those: for nur_nericél integfation and in some instances are less than the.
computation times of the fastest nymerical approximation techniques, This
computational speed makes the asymptotic ‘solution very attractive for '
boundary value problems since all the numerical techniqﬁe s, exact or

approximate, require iterative methods to converge to a solution. -

The best overall application for the asymptotic solution appears to be the. -
midcourse application, particularly for interplanetary trajectories where
p is small; In this application the solution is convergent to second order,
i, e, , the second-order.error isv less than first order. The solution is also
less subject to sensitivii;y problems which arise with lunar trajectories .
originating'close to perigee or close to the moon and with interplanetary
trajectories originating close to the léunch planet. The lack of uniform
convergence of the second order solution and the problem of sensitivity are
closely associated and both have a minimum effect in the midcourse
solutions,
In other applications certain bgundary conditions may cause the second-
order error to be laAfger than first order, From an exa’mination of all
the data generated (more than has been presented in Section 4) it appears
that the cause of the second—ordef divergénce, when it occurs, is not a
deficiency in the,second-order terms. the‘mseives_, but rather the fact that
the zeroth-order solution is a poor approximation to the;actual trajectory,
This problem is discussed several times in Section 4 and again in the next
section,

. .
The general conclusions are: .(1) the second-order asymptotic solution does‘.
converge (with certain exceptions), (2) it is significantly more accurate than

conic approximations, and (3) it is much faster than numerical integration,

!

5.2 RECOMMENDATIONS FOR FURTHER STUDY ,

In order to formulate a second-order asymptotic solution with more uniform

accuracy, ft is recommended that any further studies include the following:
A, A more comprehensive numerical survey which would include

complete families of trajectories generated by varying each boundary
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.condition through a wide range of values and, in the interplanetary
cases, trajectories to several different planets. Such a survey
would better define those conditions under which the different
second-order solutions diverge and would indicate exactly where a
better nominal or zeroth-order solution is required,

B. An analysis to determine what modifications can be made to the
zeroth-order outer solution to make it .a better approximation to the
actual trajectory in those cases where divergence of the second-order
solution does occur., This problem is discusséd in some detail in
Section 4, but it should be re-emphasized that (2.2-4), which is an
essential condition to successful matching of the outer and inner
solutions, restricts the zeroth-order solution in such a way as to
have an adverse effect on the second-order accuracy. It may be
possible, however, to construct a piecewise continuous zeroth-

-order solution from two-body arcs passing through a 'sequence of
points. obtained from the first-order solution, Only the arc closest
to the target (or launch) body would have to satisfy (2;2-4) yet the
total lsequence, since it is obtained from the first-order solution,
would be a much better approximation than the original nominal .
solution. Such an approach would cause some increase in computa-
Ation time but should result in a 'ui;ifprrhly valid solution for all

- ‘applications, that is, a solution free of second-order divergence,
Although A and B are related, they could be carried out independently. If

such is the case, then B should be given the higher priority since it would

produce the more useful results,
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