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FOREWORD

This Final Report provides the results obtained in the Shuttle Cryogenics Supply System
Optimization Study, NAS9-11330, performed by Lockheed Missiles & Space Company
(LMSC) under contract to the National Aeronautics and Space Administration, Manned
Spacecraft Center, Houston, Texas. The study was under the technical direction of
Mr. T. L. Davies, Cryogenics Section of the Power Generation Branch, Propulsion
and Power Division. Technical effort producing these results was performed in the
period from October 1970 to June 1973.

The Final Report is published in eleven volumes*:

Volume I - — Executive Summary

Volumes O, III, and IV — Technical Repbrt _
Volume VA-1 and VA-2 — Math Model — Users Manual
Volume VB-1, VB-2, VB-3,

and VB-4 — Math Model — Programmer Manual
Volume VI — Appendixes

The LMSC Staff participants are as follows:

Study Manager L. L. Morgan
Subsystem Evalu: tions C. J. Rudey

D. P. Burkholder

C. F. Merlet

'W. H. Brewington
Integrated Systems H. L. Jensen
Component Aﬁalyses B. R. Bullard

F. L. Bishop

*The Table of Contents for all volumes appears in Volume I only.
Section 12 in Volume III contains the List of References for Volumes I through V.
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Section 10

INTECRATED SYSTEM TRADEOFF STUDIES

The number of cryogenic subsystems being considered for the Space Shuttle_
leads to the examination of ways that the subsystems can be integrated.
Through integration, some overall system weight réduction can be expected.
But, mofe importahtly, the reduction in complexity obtained by combining
cryogenic storage and supply systems will likely result in impressive gains
in system relisbility, maintainability, operational flexibility, and finally
a reduction in program and unit costs. To achieve the full benefits of this
integration, a logical display of the various possible subsystem combingtions

was established, followed by selection and analysis of reasonable candidates.

The number and variety in sizes of the various cryogenic subsystems aboard
the Space Shuttle Orbiter make integration a complex problem. A huge array
of combinations for integration is mathemetically possible, particularly when
interconnected lines and use of common heat-exchangers or other equipment are

. considered.

10.1 CANDIDATE SYSTEM APPROACHES

A set of guidelines was used to establish a matrix of possible combinations.
First, the primary mode of integration is defined to be a common storage tank,
with the use of connecting lines as a subalternative case. Second, due to the
impracticality of insulating the orbit injection system tanks for long-term
storage, they were considered for integration only in cascade tank arrangements
or for use as low-pressure accumulators. Third, integration of subsystems

requiring high-purity fluids was subject to this limitation.

The original matrix, which was used to establish the baseline for integration
potential of cryogenic systems, is shown in Fig. 10.1-1. A list of the sub-
systems with the maximum and minimum cryogen loed and flowrates is shown in

Table 10.1-1. Seven basic subsystems (shown at the top of the matrix) were

10-1
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considered as major contributors to the variety of combinations. Other

systems that can contribute to various degrees of integration are:

purging and inerting systems, valve actuation systems, and active reentry
thermal protection systems. Serious integration analysis of these systems

was not conducted, because (1) the first two consist of inert fluids that

tend té cause them to be categorized separately from the oxygen and hydrogen
used in the other:systems, and (2) the third system has not yet been identified
as a mainline approach for the shuttle. At the time the matrix was established,
it was deemed prudent to identify integration combinations that recognized

the potential problems associated with the use of multigrades of oxygen and

hydrogen.

Cases 1 through 20 show the possible modes for integrating the systems using
Grade C fluids; the range is from no integration (Case l) to complete integration
(Case 20). Only two alternatives are shown for the fuel-cell reactants and

life support supply, since these systems are separate to ensure purity.

Because the use of Grade A oxygen in the life support system is practical, this

mode of integration is indicated.

Additional modes of integration are possible if the higher purity fluids are
used in other systems. However, the auxiliary power system is the only system
with small enough propellant requirements to be considered economically

acceptable. The resulting modes are shown as Cases 21 and 22, which complete

the matrix.

Purity is one consideration that limited the modes of integration presented above.
One method of overcoming this limitation is to provide an onboard purification
system to upgrade the purity of propellant grade fluids for use in the life-
support system and as fuel-cell reactants. Early in the study, however, it was
considered practical to utilize Grade C cryogens for both the fuel cell and

life support supply. This resulted in extending the matrix to include additional
modes of integration as shown in Fig. 10.1-2 and, therefore, several cases were

added to the list so that fuel cell and life support systems would be integrated.
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The matrix represents combinations of the primary mode of integration, which
is common storage tanks. The circles indicate oxygen tanks and the squares
indicate hydrogen tanks. Lines connecting these circles and squares represent

the common storage of the cryogens for the particular subsystem indicated.
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10.2 SELECTION OF CANDIDATE CONCEPTS

Thé matrices, shown in Figs. 10.1-1 and 10.1-2, represent only the storage

" tank mode of integration. Several other modes of integration were considered.
Six modes were established to represent the items that may play significant
roles in the integration process; these items are: storage, lines, tank

pressure control, thermal control, fluid control, and fluid conditioning.

The various concepts and combinations that resulted for each case listed in
Figs. 10.1-1 and 10.1-2 are shown in Table 10.2-1. Six modes of potential
integration are shown along the top of the table, and comments regarding
integration methods, which apply to these modes, are listed for each case.
Thus, almost all combinations and concepts for the integration of the

cryogenic subsystems on the Space Shuttle are listed.

Each case (shown in the matrix of Table 10.2-1) was reviewed, and at least

one representative block-diagram flow chart was prepared for the significantly
different cases. These are presented in Figs. 10.2-1 through -20. The

flow charts show a basic mode of integration of each of the six elements
listed (Table 10.2-1), along with alternates that appeared worthy of
evaluation. TFor example, starting with Case 2, which calls for the orbital
injection system (0IS) and the orbital maneuver system (OMS) to be integrated,
one can see from the flow chart (Fig. 10.2-1) that the primary mode is to
consider the OIS propellant to be stored separately from the OMS propellant.
Also, alternate integration modes for tank pressure control and propellant

transfer are shown.

Flow diagrams for each case were prepared except where one case is a combination
of one or more preceeding cases, (e.g., no flow diagrams were prepared for

Case 9, because it is basically a combination of Cases 2 and L), Case 11

ié a combination of Cases 2 and 7. Case 12 is a combination of Cases 2 and

8. Case 13 is a combination of Cases 2, 4, and 6, Case 14 is a combination

of Cases 3 and 7. Case 17 is & combination of Cases 4 and 10. Case 21

consists of two parts: Case 15 and a new flow diagram representing the
integrationvof the APU fuel cell and the EC/LSS. Case 22 consists of a

10-7

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A991396

combination of Case 20 without the AFU and the second part of Case 21. Case

23 is a combination of Case 20 and the second part of Case 21.

In considering Cases 24 to 30, complete statements of potential integration
modes were included in the matrix of Table 10.2-1 rather than referring back
to combinations of other cases. To some extent, this repeats some of the

previdusly listed integration concepts; however, it was felt that if
reference back to other concepts were continued, confusion soon would exist
and the matrix would become useless. Therefore, for each Case (24 to 30) in
which all cryogenic subsystems are considered in one form of integration

or another, a potential integration concept was stated for each of the six

elements.

At this point, a comprehensive representation of all reasonable integration
concepts has been displayed. The process of selecting appropriate combinations

for further analyses is described next.
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10.3 - INTEGRATED SYSTEM ANALYSES

A major decision by NASA to utilize JP-fueled airbreathing engines instead.
of hydrogen-fueled engines resulted in the elimination of many of the cases
shown in Figs. 10.1-1 and -2. The cases eliminated were 6, 7, '8, 10 through
17, and 19. | |

Several approaches were taken to analyze the remaining combinations.
Obviously, every combination that can be formed by the selection of each
concept, listed in Table 10.1-1 for each case and major mode of integration,
-could not be investigated. Therefore, preliminary schematics were formed
that contained the more reasonable and desirable concepts and ideas., At
the same time, analyses of the individuai subsystems were being conducted

and component listings were being generated.

Because the number and arrangement of components were important aspects of
the integrated concepts, an approach was developed whereby the schematics

and component listings of the individual subsystems were simply combined.

The components that were common to more than one subsystem were eliminated,
and additional components required for the'specific integration were added.
This approach is represented by the combined schematics shown in Fig. 10.3-1.
A pump feed system, utilizing common tanks for storage of all subsystem
cryogens, shows single-thread concepts. However, in performing the component
counts and in obtaining the weights of the integrated systems, subsystems
'employihg redundant components capable of meeting the fail-operation/fail-

safe criteria were utilized.

The integrated systems selected for analyses were‘based upon the degree of
common - storage; i.e., the integrated systems having all cryogens stored in
common subcritical tanks were evaluated first. Combinations having less
degree of commonality were then evaluated. These systems, shown in Table
10.3-1, present the systems arrangement in order of storage commonality, with
the suberitical storage being listed first and moving on to less-storage

commonality and/or more supercriticel .storage. Supercritical storage
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somewhat implies a lesser degree of integration, because the orbit maneuvering
propellant is never assumed to be stored supercritically because of the large

weight penalties that would result.

Boxes in this table enclose those systems whose cryogens are stored in common
tanks. For System I, all the cryogens are stored in subcritical common -
tankage: For System II, the fuel cell and 1ife-support cryogens ere stored
in common supercritical tankage that is separate from the rest of the systems.
This arrangement continues for eight different systems. The case numbers

to which these systems apply are shown on the bottom of the chart.

Also, the weight and total number of components of eeeh system are shown. These
weights are based upon a nomihal set ef usable cryogens, as shown in Table
10.3-2, For most of the analyses, fhese nominal quanfities were employed;
however, the range of maximum and minimum shown previously also were considered
to make sure that general trends and conclusions were still applicable to

different combinations of cryogen weights.

The Orbit Injection Propellant Supply (OIPS) System is considered a separate
system, except for supplying its prepressurant from the ACPS accumulators,
crossfeeding from the OMPS System for abor? ﬁodes, and utilizing residuals
for environmental control cooling. The weights shown in the table include

the feed and pressurization portion of the OIPS only.

The number of components was determined by utilizing the subsystem detail
listing of components, including the redundance required to satisfy the
fail-operational/fail-safe criteria. When subsystems were combined, a number
of components were eiiminated. This is exemplified by comparing the

number of coﬁponents for each system listed with the reference system shown
in the last column. This reference system was choeen by selecting light
weight and simple indi#idﬁal subgystems. The OIPS gystem components are not
included in the number shown on the table. When baseline subsystems and
integrated systems were finalized, slight changes in the humber of components
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Table 10.3-2 _
CRYOGEN WEIGHTS USED FOR COMPARISONS

0, Hy Inp
OIPS 450,000 |75,000 |
OMPS 23,128 | 4,626 | 444(2)
acps (03 5,7934) 1,645 | 379 ss., 341 pulaing MR = 3.52
APU(5) ' 408 454 _ P !: 300 psia, MR = 0.9
£c(6) 1,4 | ws| .
EC/LSS ' 50

(1) Based on RL-10 I, for cbmpaﬂs_on - highorbvialﬁba_m'be
readily achieved =~ ' S

(2) Based on & A V split which devotes 185 ft/sec to the ACPS

(3) Total impulse = 1,687,000 1b/sec S.S.’, 1,018,000 1b/sec pulsing

(4) These values resolve to O, = 5,230 and Hy = 1,310 delivered

‘ at the thruster for I, = 430 S.S. and 388 pulsing

(5) Other values used depending on integration modes at MR = 0.9:

Turbine ' . ,
Pressure | O ~H
r_mu__-cm__&m_
900 282 | s
60 (29 | 322
300 48 | 454

(6) Near the maximum was used, Current nominal valuss are
approximately 750 1b total. o '
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and weights resulted. These new values were not cycled back through the

systems shown here; however, the values shown are correct for comparisons.

The systems listed in Table 10.3-1 can have slightly different arrangements,
which require more description of the system elements. In analyzing the
systemé, several elements seemed to continually show up as major design
featureé. These were somewhat different. than those originally described

in the early definition of potential integrated systems. The primary

elements are:

Storage
Pump-type and location

Pressurization type, with or without vacuum jackets

Type of acquisition system

" These elements were used to further describe the integrated systems listed
in Table 10.3-1. For example, System I and two alternate systems are
described in Table 10.3-3. The primery system, shown as System Ia, consists
of all cryogens stored in common subcritical tankage. In this system:

(1) all cryogens are passed through a comﬁon set of pumps with liquid-fed
OMPS thrusters and gas-fed ACPS thrusters;,(Z) helium is used for pressur-
ization; (3) vacuum-jacketed tanks are provided; and (4) the acquisition

subsystem is compartmented with screened heads.

This compartment is obtained by'placing a bulkhead with screened holes in it
in the aft portion of the cylindrical-hemispherical hydrogen tank; thus, a
smaller tank containing the acquisition device is created. The device
consists of cylindrical channels with seven, screened acquisition heads

attached.
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The weight statement for System Ia is shown in Tables 10,3-4 and -5.

Also shown in Table 10.3-3 is an alternate for different pump arrangements.
This system utilizes RL-10 engines for the OMPS operation and a separate
pump for supplying the cryogens via heat exchangers and accumulators to the

other systems. The weight of this system is shown in Tables 10.3-6 and -7.

Another alternate is shown in Table 10.3-3, which is similar to the MDC
Phase B configuration. This system utilizes a start tank arrangement, and
the weight summaries for this mode of integration are shown in Tables 10.3-8
and -9.

An estimate of the number of components for each system has been made and is
shown in the weight summaries for each primary and alternate system as well

as in the summary in Table 10.3-51.

A description of System II, with one alternate system (b), is shown in Table
10.3-10. Tables 10.3-11, -12, and -13 show the weight summaries for System
ITa, and Tables 10.3-14 and -15 show the weight summaries for System IIb. .

The description of System III is shown in ?able 10.3-16. TFor this system, the
only difference between the primary system (a) and the alternate system (b)

is that the APU system uses either subecritically or supercritically stored
reactants. The weights for System IIIa are shown in Tables 10.3-17 through
-20. To complete the weight summary, the information for the supercritically
integrated fuel cell and EC/LSS shown in Table 10.3-13 for System II should
be added to this system. '

An alternate for this system is presented in Tables 10.3-21 and -22, which show
the data for the supercritically stored APU reactants. The other systems

are the same.
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The description of System IV is shown in Table 10.3-23 along with two
alternates. Weight summaries for the primary system are shown in Tables
10.3-24 and -25; the alternate (b) weights are presented in Tables 10.3-26
and 427. System IV(c) is most like the NAR Phase B system, and the weights
are shown in Tables 10.3-28 and -29.

A description of System V is shown in Table 10.3-30 along with one alternate.
Weight summaries for the OMPS are shown in Tables 10.3-31 and -32 and for

the ihtegrated subcritically stored ACPS, APU, FC, and EC/LSS in Tables
10.3-33 and -34. System V(v) differs from V(a) in that the pressurization
system uses helium rather than gaseous propellants, and the integrated

ACPs, APU, FC, and EC/LSS system is not required to feed pressurization

gas to the OMPS, The weights are shown in Tables 10.3-35 and -36 for the OMPS
system and in Tables 10.3-37 and -38 for the ACPS, APU, FC, and EC/LSS
integrated system. '

Integrated System VI, with one alternate, is described in Table 10.3-39. The
weight summary for the OMPS is the same as System V (Tables 10.3-31 and -32).
The weight summary for the supercritical ACPS, APJ, FC, and ES/LSS is
presented in Tables 10.3-40 and -41. System VI(b) represents an option

for refilling the supercritical ACPS, APU, FC and EC/LSS tanks; details

of the refill process are discussed later. Weight changes to the system

are shown in Table 10.3-42; the weight increment shown can be applied to
System II(a), whose weight is given in Tables 10.3-31 and -32 for the OMPS
and Tables 10.3-33 and -34 for the supercritical ACPS, APU, FC, and EC/LSS.
The resulting weights will be representative of the weight of System VI(v).

The description of System VII is shown in Table 10.3-43; no alternates are
shown for this particﬁlar.combination. Weight summaries are shown in
Tables 10.3-4lt and -45 for the OMPS and Table 10.3-U6 for the subcritical
ACPS and APU, The supercritical FC and EC/LSS weights are shown in
System II (Table 10.3-13).
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A description of System VIII is shown in Table 10.3-47. The weight summaries
for the OMPS are the same as for System V (Tables 10.3-31 and -32); The
supercritical FC and EC/LSS weights are shown in System IT (Table 10.3-13).
Weight summaries for the supercritical ACPS and APU are shown in Tables
10.3-48 and -L49,

The deécription of the reference subsystems is shown in Table 10.3-50. The

systems and their alternates are summarized in Table 10.3-51.

In addition to the weight'statements and component counts, other operational
and safety aspects of the systems were considered. Table 10.3-52 presents
a matrix of integrated systems and important parameters that influence

the design or operation of the particular subsystem. ZEach element of the
matrix has been assigned a judgement term that has meaning in a relati&e
sense to elements of a particular row. Many evaluations of this nature

are done by assigning weighted numbers to each element, adding the total

and defining a "best system" based upon the highest number thus obtained.
This approach was avoided, since it merely transforms the evaluators bias

to an earlier stage of the comparison and tends to be ﬁisleading.
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FOLDOUT FRAME |

Integrated
Systems Ia b Ic
Subsystem Inert/ Inert/ Inert/
Cryogens | Cryogens | Cryogel
OIPS 3,298 3,298 3,298
OMPS ) ) h
ACPS
5,380/ 5,983 6,123
APU " 20,020 | {39,858 | (40,17
FC
EC/LSS
J y y
TOTAL 8,678/ 9,281/ 9,421/
40,020 39,858 40,172
Number of 375 396 422

Components

(1) Does not include OIPS components.

PREGED®IE PAGE BLANK NOT FILMED



Fo LDOUT

FRAME )
Table 10.3-51
SUMMARY OF WEIGHTS AND COMPONENTS
b Ic Ia h11:] Ila b Iva IVb IVe \
Inert/ Inert/ Inert/ Inert/ Inert/ Inert/ Inert/ Inert/ Inert/ Ine
Cryogens | Cryogens || Cryogens | Cryogens § Cryogens | Cryogens || Cryogens | Cryogens | Cryogens [ Cry
3,298 3,298 3,298 3,298 3,298 3,298 3,298 3,298 3,298 3,2
1l | 7N | ‘ :
2
' 3,946/ 3,946/ ’ 3,946/ 4,763/ ¢ 4,733/
5,283/ | 5,407/ | [37-003 | [ 37,003 } (37,003 | [ 36,673 | [ 37,003 {
38,128 | (38,781
P P
5,983 6,123/ 871/ 1,601/
39,858 | (40,172 ) y 737 g8 | h s
3 3 s
2,129/ | {2,120/ {2,120/} [!
r574/ | 574/ 574/ 574/ 2,717 2,777 2,777
1,675 1,675 1,675 1,675
. >
y y , J -
9,281/ 9,421/ 9,155/ 9,369/ 8,695/ 9,419/ 9,373/ 10,190/ 10,160/ 8,8
39,858 40,172 39,803 40,456 39,415 39,506 39,780 39,450 39,780 40,:
396 422 451 477 679 622 608 634 608 433

1ponents.



3-51

ITS AND COMPONENTS

FOLDOUT FRAME a IMSC-A991396

IVb IVe Va Vb Via Vh vl v Ref
Inert/ Inert/ Inert/ Inert/ Inert/ Inert/ Inert/ Inert/ Inert/
Cryogens | Cryogens || Cryogens | Cyrogens || Cryogens | Cryogens § Cryogens | Cryogens | Cryogens
3,298 3,298 3,298 3,298 3,298 3,298 3,298 3,298 3,731
|

) 2,084/ | 2,126/ 2,084/| 2,084/ 2,128 | 2,084/] 2,021/
29,143 29,022 29,143 29,143 29,022 29,143 29,129
{ 4,763/ X 4,733/ N R ’
36,673 | [ 37,003 fl{ ~ N B 2,763/
) ) | 3,410/ | | 6,468/ | 8191
W ~ 8.994 9,547 877/
3,472/ | 3,450 | U7,323/ [ 5,287/ | J ) 737
>2’129/ }2’129/ 11,406 10,950 11,892 11,892 481/
2,777 2,777 574/ 574/ 1,646
1,675 | { 1,675 :
63/51
-~ - y y | » /5
y J
10,190/ 10,160/ 8,854/ 8,878/ 12,705/ 10,669/ 9,410/ 12,424/ 9,936/
39,450 39,780 40,549 39,972 41,035 41,035 39,691 40,365 39,754
634 608 433 443 431 484 519 488 774

10-99/99a




FOLDOUT FRAM l

Table 10.3-52
INTEGRATED SYSTEMS COMPARISON

IMSC-A991396

TOLDOUT FRAME )

System
Parameter Ia 13 ) 2 m» s 1] Ve v Vo Ve vb Via Vi ve v
Cryogens Use Flexibility Good Goed Fair Pair Fuir Fair Fair Falr Puir Patr Palr Putr Pair Poor Poor
Insulation or Thermal Protection
o Reusability
Good Good Poor Good Poor Patr Puir Puir Patr Good atr Tuir hir Fatr atr Pulr
) o Operational Bimplicity
Aoquisition Requirements Very Very Stringent | Stringent] Stringent | Moder- |Moder- |Moder- |Moder- |Moder- |Stringent] Stringent |Easy Moder- |Moder- { Very
Btringent { Stringent ate ate ate ate ate ate ate Easy
Heltlum Use Requirements Large Large Medium |[large | Large Large Large Medium |{Medium |Medtum |Medtum | Large |Small Modium | Medium | 8mall
Adaptation to Alternate Poor Poor Poor Medium | Medium |Medium |Medium |Modium |Medium |Meodium |Medixm | Medium |Medium | Medium |Good Good
Operating Modos X
Systsm Complexity
o Diversity of Component Few Fewt Pewt Moder- | Moder- |Many Many Many Many Many Moder- | Moder- ] Moder- | Many Many Many
Type ate ate ate ate ate
® Tanks — Number Pew Fow Fows Pews Pows Many Many mllmhh Moder- |Moder- | Moder- |Moder- | Many Many Many
ate ate ate ate
- Size Large Large large Large Large Large Modinm | Medtum dt diy Modtw: Modium | Medtum | Small Small
~ Couafiguration Moder- |Moder- |Complex | Moder- | Complex |Moder- |Moder- |Moder- |Complex |Moder- |Moder- | Moder- |Simple | Complex [Simple |Bimple
ate ate ate ate ate ate ate ate ato
Complex | Complex Complex Complex | ¢ lex | Compl C lex | € dex | € L
& Control Moder- |Moder- |Moder- |Moder- | Moder- |Moder- |Moder- |Moder- ]stringent{Moder- |Moder- | Moder- |Stringent! Stringert|stmple | Moder-
ate ate ately ato stely ately ately ately stely stely stely atoly
Stringent Btringent |Simple | Bimple Stringost | Stringent| Stringest Bimple
¢ Functiosal Requirements
Opeorational Characteristics
o Losding 8imple |Simple |Moder- |Moder- | Moder- |Moder- |Moder- |Moder- {Moder- |Moder- |Modsr- | Moder- |Moder- | Moder- |Complex | Complex
ate ate ately ately ate ato ately ate ste ato ate ately
Complex | Complex Complex Complex
o Atmospheric Operation Simple |[Bimple |[Moder- |Stowple | Moder- |Simple |Simple |Stmple |[Simple |Very Moder- | Moder- |Moder- | Moder- [Bimple |Bimple
stely ately Simple |ately stely ately stely
Complex Complex Complex | Complex | ¢ «
¢ Maintenance
o Post-Flight Activity Medtum | Medium | Modium | Medtum | Medium | Medtum | Medium | Medtum | Medtum { Medturs |Little | Littte Little | Medhm | Modtum | Little
Safety
o Inerting i Of Large| Of Large] Of Large| Of Large| Of Large | Of Large] Of Largs] Of Largey Of Large] Of Large] Of Large
Tanks |Tenks [Tanks |[Tenks |Tenks |[Tacks |Tenks |Tanks | Taonks |Tanks | Tenks
¢ Lleakage (In Atmosphere) Small Small Medium | Medium { Medium | Medium | Large Modium { Moditum | Medtem | Modium | Medium | Large Large
Largoe | Large large |large |Large | Large |Llarge
@ Pressure Level Medium | High
Push the Technology ? Yea Yes Yes Yos Yes Very Very Very Very Very Little Little Yoo Very Little Yoo
Development Risk Modiy d! Medium dt d! ds Modturn+ | Medium | Medium | Modtum | Medium | Medium | Medium+| Little Little
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10.4 INTEGRATED SYSTEM TRADEOFF STUDIES

In reviewing the‘weights and number of components for each integrated system
shown in Table 10.3-51,'it can be seen that most qf the integrated systems
weigh less than the reference nonintegrated system and all_integrated
systems have fewer components. In arriving at the weights, an OIPS was
employed that utilized = warm gas prepressurization system. The gas was
assumed to be stored in high-pressure tanks at ambient temperatures. When
the prepressurization is supplied from the ACPS accumulators, a significant
weight in the OIPS can be saved. If the OIPS tanks are prepressurized'on
the gfound or allowed to self-pressurize, this savings would be unavailable
and could not be attributed to a weight reduction for integration purposes.
The relative change between the integrated system and the nonintegrated
system would be 324 1b - i.e., the reference system would be reduced by

433 1b, and the integrated system would be reduced by 109 1b.

With this situation and including the cryogen weights, eight integrated
systems are lighter than the reference system. These are systems Ia, Tb,
IIa, IITa, IIIb, IVa, Vb and VII. The lightest system is IITa and the
system with the lowest inert weight is Ta. The system with the fewest
components is Ia. There are seven systems with fewer than 451 components
(an arbitrary choice for the sake of discussion). If one were to select
systems strictly on the basis of weight and number of components,

then Id, Ib, ITa, ITIa, IIIb; and Vb appear to be good. However, since
Systems Ic and IVc are closest to the MCD and NAR Phase B configurations,

respectively, they are included in further discussion and comparisons.

Each of the above systems is discussed by group, and a rationale is developed

' for eliminating some of them.
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10.4.1 Systems Ia, Ib, and Ic

Systems Ja, Ib, and Ic are all completely integrated in that the cryogens
are stored in common tanks and conditioned oxygen and hydrogen are stored
4in -accumulators for use with all systems except OMPS., The only differénce
between Systems Ia and Ib is that & new 8,000- to 10,000-1b thruster is
requiréd'for the OMPS in System Ia, whereas RL.-10 engines are used for System
Ib. Both systems employ an acquisition device that is enclosed by a bulk-
head having screened ports. The entire tank is pressurized with cold helium
and the tanks are vacuum-jacketed. The oversll weight of System Is is
'conSiderably less than System Ib, so there is a strong tendency to choose
the lighter system that would'employ the new thrusters. The pumps have to
be developed anyway; therefore, it is only the thruster that requires
additional development. The final selection must be based on cost con-
siderations. No doubt it will cost more for a thruster development'than it
would to employ the RL-10; however, the cost difference may not be as great
as may be imagined when the overall vehicle weight and payload penalties

are factored in.

System Ic utilizes start tanks placed within the OMPS oxygen and hydrogen
tanks and does not employ vacuum jackets. The start tanks serve to provide
a more definitive arrangement from the acquisition point of viéw. However,
the same broad range of requirements is placed on the acquisition devices
for ali Group I systems. The start tank tends to be heavy and imposes a
weight penalty that is commensurate with having a vacuum jacket on the
tanks while not having the advantage of operational simplicity made avail-
able by the use of vacuum jackets. The quantity of helium used is less
for‘the start tank than for System ITa; however, each time that the start
tank is refilled the helium must be vented overboard. In System Ia, the
helium is maintained in the tank and can be recovered during subsequent
refill operations. The start tank arrangement tends to place duty-cycle
limitations on.the system because the refill is required during OMPS burns,
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and the start tank siie, transfer line size, and operating pressures are
dependent upon refill time,:acceleration, and quantity. Thus, System Ia
would appear to be the best system to select within this group.

10.4k.2 System ITa

System ITa is different from Ia in that the fuel cell and life-support
cryogens are stored separately in supercritical tanks. This permjits these
cryogens to be conditioned by the vehicle-waste heat and, thereby, obtain
some savings in conditioning fluids. Generally speaking, all other. problems
contained in System Ia are also contained in System IIa. Therefore, there

is no strong reason for selecting System IIa over Iea.
10.4.3 Systems ITITa and IIIb

System IIT provides an approach to easing the requirements imposed on the
acquisition devices by separating the AFU reéctants and placing them in a
separate set of vacuum-jacketed tanks. System IITa employs subcritically
stored APU neactanté, and System IITb employs supercritically stored reactants;
otherwise the two systems ﬁre the same. By not having the fuel cell and AFU
reactants stored in the OMPS and ACPS tanks, vacuum jackéts are no longer
necessary on the large tanks; therefore, the system weights are relatively
low. System IITa is lighter than IIIb, because the APU reactant is stored
suberitically. This presents some problems in that acquisition devices are
needed. However, the operational profile is such that fhe reqﬁirements are
not stringent. The zero-g acquisition takes place when the tanks are nearly
full, so the reactants can be easily aéquired. As the reactants are being
depleted, they are under a 1l-g acceleration, and the depletion problem is
simplified. In System IITa, the APU reactants are stored supercritically
and high-flow heat exchangefs’are required to maintain the tank pressure
dﬁring expulsion. This presents some problems in heat exchanger design and
controlability. All in all, there would be a tendency to select System IITa,
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10.4.4 System IVc

System IVc is similar to the NAR Phase B system. This system is heavy,
primarily because of the combination of using vacuum jackets on the large
OMPS tanks and utilizing vacuum-jacketed supercritical tanks for the APU,
FC, and’ life-support cryogens. However, the scquisition problem is somewhat
alleviated by utilization of the supercritically stored APU and fuel cell
cryogens; although zero-g acquisition is still required for the ACPS feed
system. Thefe would be a tendency not to select this system, primarily

because it is heavy.
10.4.5 System Vb

There would be a tenaency to eliminate Vb on the basis that the system
embodies most of the problems that the other systems have, yet lacks the
versatility of OMPS-ACPS propellant-use interchangeability. The advantage
lies in the fact that the vacuum jackets are not as heavy for the smaller
ACPS, APU, FC, EC/LSS tanks as for the larger completely integrated systems.
Acquisition devices are not complicated by the fact that they have to operate
in large tanks as in other systems such as the System I group.

10.4.6 Summary

N\

In summary, two systems seem to have advantages: Systems Ia and IIIa. These
systems are tentatiyely selected as reference systems, and detail schematics

have been prepared.

10.L4,6. 1 System Ia. Flgure 10.4-1 shows a schematic of System Ia. The
integration mode employed is to store the OMPS, ACPS, APU fuel cell,and
EC/LSS cryogens in common subcritical storage vesselg. Common pumps are
used to feed liquid to the OMPS engine and, during nonoperaﬁion periods of
the OMPS, to'feed heat exchangers for storing gas in 2,000 psi accumilators.
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The combination employed is for the single-tank configuration with the pump
at-the-tank and helium prepressurization and pressurization. Optimum line

diameters and tank pressures are those used for the subsystem studies.

For the integration mode studied here, it is necessary to have three pump
sets fb meet the ACPS fail-operational/fail-safe criteria. Three 8,000-1b
thrusters were used for the initiasl sizing done earlier, and these were
retained for the current updating. Therefore, there is a better chance of
meeting the'fail-opgrational/fail-safe criteria on the OMPS system for the
three-thruster integrated case than for the case where two RL-10 engines are
employed. A higher ISp of 456 sec at the thruster'can be used. Since the
integrated turbopump systems must operate on conditioned gas from the ACPS
accumilators, some additional losses are experienced as compared to the
turbopump operated at the engine from an expander cycle or its own cold

fluid-fed gas generator.

The integrated portion of the ACPS system employs the same basic features

as the subcritical stored nonintegrated ACPS. A high-pressure accumulator
(2,000 psi) is employed,'and'the gases are conditioned to 250°R for Hé and
380°R for 02.
"high pressures, if two-phase flow is to be avoided after blowdown and

The 380°R is about the minimum temperature for storage at
regulator throttling.

For the integration mode, where a common set of pumps is used to supply liquid
to the OMPS thrusters and alternately feed heat exchangers for ACPS operation,
several minor problems exist. Among these problems are: 1lower efficiency
due to variable operating conditions, turbine's use of conditioned gases from
the accumulators, more on-off cycles due to mismatch between OMPS and ACPS
flow rates, and the requirément for simultaneous liqﬁid flow to the OMPS

and ACPS heat exchangers.
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This latter problem results from having too little gas in the accumulator
to feed the turbopumps during & long OMPS burn. There sre several possible

solutions as follows:

a. One potential solution is to use larger accumulators; however, this

. results in & significant weight penalty.

b.. Another approach is to add & fourth pump and heat exchanger set with
the associated redundant valves and control. This would result in
having to use two pumps at a time; therefore, four would be required

to meet the fail-operational/fail-safe criteria.

c. A third approach is to have only a three pump set and utilize an
alternate pump when accumulator recharge is necessary. With this
operation mode, two pump failures would cause the OMPS deorbit burn
to be performed_intermittently.‘ When the accumulators become
depleted, the OMPS wéuld have to shut down for approximately 10 sec.
This means that two or three shutdowns would be required, which

might cause some operational problems for deorbit and reentry control.

d. A fourth approach would be to oversize the pump and add additional
exchangers designed to operate at low flowrates. This approach adds
complexity that is more extensive than adding a pump set.

Of the approaches mentioned, the addition of a pump set (item b.) seems most
appropriate. e

Fuel-cell reaétants and life-support ox&gen aie taken from the reguiated side
of the accumulators. The cool reactants can be passed through heat exchangers
in the fuel cell module énd,.thereby, help reduce the cooling load within the
module. The life-supportvoxygén would be furthei conditioned by cabin heat
exchaﬁgers that can be relatively small. ‘
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The APU reactants are taken from the high-pressure side of the accumlator.
They are supplied to regulators which regulate to approximately 600 psia.
This is a higher pressure than the rest of the system, because better

specific reactant consumption can be obtained.

10.h.6.é System ITIa. System IIIa is represented by three schematics shown
in Figs. 10.4-2, -3, and -4. The OMPS and ACPS propellants are stored in
common suberitical tanks. Common pumps are used and the system is very
similar to System Ia, except vacuum jackets are not required. The acquisition
system need only to operate in the low-gravity environment of space flight
rather than the combination of low gravity and high gravity of reentry and
atmospheric flight. |

The APU system is completely separate from the other systems because of the
unique operating conditions and rather limited operating time. Reactants are
stored in separate subcritical vacuum- jacketed tanks. Pumpsvgre employed ‘
to raise the pressure to 1,360 psi. Borske fype pumps are employed that have
the characteristic of a relatively flat pressure-flowrate curve at the low -
flowrates. Acquisition devices are required for start-in space, but the tanks
are relatively small and cén be depleted in an efficient manner during the

atmospheric portion of the flight.
The fuel cell reactants and life-support oxygen are stored in supercritical
vacuum-jacketed tanks. TFlowrates are relatively low and, therefore, the problem

of supplying heat to the tanks to maintain tank pressure is not too difficult.
The Freon-21 coolant loop can be utilized for this function.
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10.5 SUPPLEMENTAL APPENDIX - DETAIL STUDIES APPLICABLE TO INTEGRATED SYSTEMS

Detail studies on specific ways of integrating certain functions within each
subsystem were conducted throughout the overall study effort. These studies
are quite varied in their basic nature and application and, therefore, will

be discussed separately. The items covered are:

e Prepressurization of the OIPS and the OMPS with conditioned gases
from the ACPS accumilators

e Utilization of the ascent tanks residuals and propellants as heat
sinks for the vehicle waste heat (from liftoff to radiator deployment)

e Utilization of propellants to absorb vehicle waste (also provides some

conditioning)

e Description of procedures fo refill supercritical ACPS propellant tanks
from suberitical OMPS propellant tanks

e Analyses and arrangement of start tanks
10.5.1 Prepressurization of OIPS and OMPS from ACPS Accumlators

10.5.1.1 OIPS Prepressurization. The integration mode between the ACPS and

the OIPS is prepressurization of the OIPS tanks with conditioned G02 and GH2

from the ACPS accumletor. éhanges that result to the OIPS are shown in

Table 10.5-1. A greater amount of prepressurant gas is required when it is
supplied from the ACPS acqumulators ﬁhan_would be required if the prepressurant
is supplied from ambient-stored OIPS prepressurant vessels, because the gas
temperature in the accumulators is lower than it would be if it were withdrawn
from the warm storage vessels. The differences in weight show that it is
advantageous to use gases ffom the ACPS accurulsators for prepressurization of
the OIPS. It may be possible to permit the ascent tanks to self-pressurize,

in which case a slightly greater weight savings would be realized.
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10.5.1.2 OMPS Prepressurization. The integration mode between the ACPS
and the OMPS is prepressurization of the OMPS tanks for each OMPS start.
Resultant changes in components and weight are shown in Table 10.5-2. To

prepressurize the OMPS with warm gases, it 1s necessary to make sure that an
ullage space exists in the vicinity of the pressurant inlet; otherwise the
pressurént would collapse in temperature and pressure, and large pmqunts of
pressurant would be required. The gas weighﬁs shown in the table are based
upon this assumption. One-way to achieve this is to utilize the ACPS +X
thrusters to provide acceleration for propellant orientation for the
prepressurization period. If it is necessary to dé this, a weight penalty
ﬁust ﬁe assigned to any system utilizing the hot-gas prepressurization
techniques. Approximately 460 1b of propellant’isffequired for nine
orientations. All of this welght can not be assigned as a penalty, because
some weight provides useful A4V, which the OMPS does not have. The penalty
for conditioning is approximately 70 1b of cryogens. If an 1ntegrated
subcritical OMPS-ACPS storage system is being éonsidered, then the penalty
is the 70 1b plus the tankage to store it of about 3 1b resulting in an

. overall penalty of 73 1b. If a supercritical ACPS system is used, the
storage weight for the usable propellant increases to ;bout 260 1b and the
-total penalty is 330 1b. '

10.5.2 Utilization of Ascent Tank Residuals and Prépellants

Orbital Injection Propellant Supply residuals can be used for éooling during
ascent and the first two orbits, while the radiators are not deployed.

The heat rates, a system cooling schematlc, and a list of components are

shown in Table 10.5-3. During the groundhold and ascent portions of the
'mission, a total heat of 7,680 Btu is generated; this can be easily absorbed
by the H cryogens with only a!small increase in temperature and vapor
pressure ( A P 0.15 psi) resulting. After depletion of the OIPS propellants,
the residuals can be heated and vented to absorb the heat generated during the .
next two orbits. Sufficient residuals are available for this function.
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10.5.3 Utilization of Vehicle Waste Heat

If the fuel cell system is integrated with the supercritical ACPS and is
supplied with conditioned reactants from the accumulators, a heat-transfer
system can be included as an additional integration mode. This prevents
having'to condition any more reactant than is absolutely necessary. A
schematic of this system is shown in Fig. 10.5-1. For redundanc& purposes,
three para11¢1 systems are assumed. Heat exchangers HX62 and HX61 transfer
- heat to the fluid flowing from the storage vessél to the accumulator, and
heat exchangers HX55 and HXS6 tfansfer heat to the 02
The added components to transfer the heat and the amounts of conditioning
propellants saved are shownfin\Tabié 10.5-4. By incorporating this form

of integration, a weight savings of approiimately 73 1b can be realized.

and H2 storage tanks.

The optimum storage pressure for the separate ACPS subsystems is 600 psi.
for the H, storage and less than 700 psia for the 0,
since the 02 system is operated supercritically, a minimum pressure of 850
psia is utilized. These studies were based on 1,000 and 4,000 1b of usable
H2 and 02, respectively., To determine the validity.of\this trend with an
.integrated ACPS system, a storage system trade was conducted for a higher
propellant loading of 8,095 1b for O, and 2,499 1b for H,. Results

presented in Fig. 10.5.2 show that the optimum storage pressure shifted very

subsystem, However,

little. Therefore, the same storage and conditioning temperature and pressure
conditions were maintained for the integration study as were employed for the

separate subsystem definition.
10.5.4 Refill of Supercritical Tanks

One approach to integrating the various subsystems is to refill supercritical
pressure vessels from subcriﬁicalistorage tanks.: This has the advantage of
diminishing the potential‘problems}associated with liquid acquisition, while
not incurring the weight penalty associated with storing large propellant’
quantities in supercritical tanks. : :
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However, there are problems with the competibility of pump output and mission
profile (e.g., see Table 10.5-5). Three modes of transfer with pumps come to
mind as indicated in this table. If the RL-10 is considered, it is immediately’
observed that the 02

pressures. Neverthelesg, the O

pressure output is not compatible with the 02 tank

5 tank could be vented to a lower pressure
and ref}lled with the high-pressure liquid out of the 02 pumps. Th;s would
cause oxygen weight loss each time of refill and also cause the 02 to be
subcritical Quring the transfer process.

Table 10.5-5
REFILL SUPERCRITICAL TANKS

Refill with RL-10 Pumps

e Pump Pressures 02 540, Hé 972 Psi
e Tank Pressures O, 800, H, 450 Psi
o Limited Refill Time N

Refill with New OMPS Engine Pumps

e Pump Pressures, 02 1000 Psia, H2 1300 Psia

0, 800 Psia, H2 450 Psia

o Limited Refill Time

Refill with Special Refill Pumps

e Fluid Orientation Required
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Another problem exists with establishing how much flow can be tapped off the
pump without interference'with satisfactory engine operation. It is expected
that a maximum flow variation of 10 percent should not be exceeded.

Another approach is to design the capability of flow tapoff into the pump
and engine system, if a new OMPS engine development is initiated. Among the
probleﬁs are that refill time and quantity are limited to periods of OMPS

operation.

A third approach is to dedicate a special transfer pump to the system and
refill the tank at a lower flowrate. However, this requires that the liquid
be pumped during periods of adverse acceleration, and an acquisition device

is needed.

Some of the problems of duty-cycle compatibility, pump sizing, refill time,

and fluid characteristics in the supercritical tanks during transfer are
presented. To illustrate the duty-cycle compatibility problem and the inability
to refill during OMPS operation, reference is made to Table 10.5-6; these »

data are extracted from the duty cycles presented in the Requirements Sections
of the Propellant Supply Systems Tagk Report. The table presents data on the

cryogens used at certain major intervals for a five-burn OMPS mission.

Using the Table 10.5-6 date and computing the amounts of cryogens that can be
resupplied to the storage tanks under the conditions indicated in the table,
the data in Table 10.5-7 result. Shown in the latter table for each subsystem
are (1) the total amounts of cryogens consumed, (2) the quantity that can

be resupplied from the OMPS pumps at 10 percent of the flowrate, and (3) the
minimum storage tank capability that is permissiblé. The figures in the

last coiumn represent the minimum amounts of cryogens for which the tanks must
be sized. Also shown is the percentage of the total usable.
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Due to the fact that the subsystems must operate during times when cryogens
can nét be transferred, the tanks must be sized to contain the cryogens
required. Although a reasonably large portion of the usable cryogen required
for the ACPS and fuel cell can be transferred, no real tank savings can be

realized because of the long time periods when transfer is not possible.

The same type of information is presented in Table 10.5-8 for the cases
where the subsystems are integrated. fn the lower part of the table, the
minimum storage quantity is showh. A small advantage is gained for the case
where APU + FC cryogens are stored together. Savings in tank size can be
realized in that the tank would have to be configured to contain only 75
percent of its full-use requirement for the 02 tank and 60 percent for the
H2 tank,

Ffom these results, note that to refill from a pump system that operates only
when the OMPS engine is operating holds little advantage. Even if a separate
pump is used that can pump at high flowrates; 1little advantage is gained if
it can transfer cryogens only at time when the OMPS is operating.

Another method is to utiliie e separate pump that can transfer at any time.
This is dependent upon either (1) settling the liquids in OMPS propellant
tanks by an induced-acceleration, or (2) installing & propellant acquisition
device. The first approach introduces mission-operation restrictions and
limitations; the second reestablishes the potential problem of acquisition,
which the use of supercritical propellant storage has been trying to eliminate

in the first placef

However, to examine whether or not transfer is attractive, it has been assumed
that transfer can.be made at any time by the utilization of an acquisition
device. Under this assumption, a different set of limitations on propellant
tfansfer results than have been described in the previous tables. It was,
assumed that no transfer could be made after 167.6 hours into the mission,
which corresponds to the approximate time of initial reentry aerodynamic

forces. This may not be a valid restriction; however, it seemed desirable
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that all systems should be charged and ready to go before the high activity
reentry portion of the mission begins. The amounts of cryogens used after
this time along with the percent of total are shown in Table 10.5-9.

It can be seen from these values that significant gains in tank storage weight
can be achieved if resupply can be achieved with these low-storage quantities.
With this information in mind, the transfer problem was examined. An updated
set of cryogen weights was used for this evaluation. The new weights were

based on the same nominal values that the subsystems were based on. The total
amount of reactants stored for operation of an integrated supercritical ACPS +
APU + FC after retroburn is 1,792 1b of 0, and 91k 1b of H,.
usable, conditioning, and residuals. The amount that can be refilled depends

This includes

upon the refill processes, and usually a fraction of the total tank capacity
can be refilled. To establish this amount, an examination of the refill pro-

cess is in order.

To refill the supercritical tanks, it was assumed that high-pressure low-
temperature fluids are transferred. For the O2 tanks, the inlet and outlet
conditions were assumed to be 175°R, 30 psia, and 182°R, 1,000 psia,
respectively; and for H2 about 39°R, 25 psia, and h9°R, 600 psia, respectively.
For O2 refill, the injection of the low-energy fluid into the nearly empty
tank causes the fluid to be two phase; this is illustrated by Fig. 10.5-3.
Two processes are shown: one for initial and final pressures at 1,000 psia
and thé one used in this trade study where the initial and final pressures
are 850 psia. The initial condition, the replenishing fluid state, and the
refill density are shown in the figure. For refill of the hydrogen tank, the
process is assumed to begin at a pressure of 550 psia and, during the process,
the minimum pressure is 500 psia and the fluid is always single phase. This
is illustrated in Fig. ld.s-h, which shows the process overlaid on a hydrogen
T-S diagram. The initial'conditions at refill are assumed to be 550 psi and
170°R[ It is necessary to permit the storage pressure to drop slightly from
the operational value of 600 psi to assure that the tank does not over-

pressurize during the initial phase of the fill process. The final conditions
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are'at a pressure of 600;psi, temperature of 7h°R, and density of 2.73 Ib/ft3.
If, during the refill proéess, it is necessary to raise the pressure to

600 psia from & minimum of 500 psi, it would take approximately 10 sec if

the fluid withdrawal rate is on the order of 2.5 to 3 lb/sec.

With these fill conditions, the amount of oxygen to be refilled is 1,520 1b
and thé hydrogen is 710 1b. To evaluate the approximate influence of refill
time, a trade study of pump system weight versus refill time was conducted.
The refill qﬁantities assumed are those given above. Results are shown in
Fig. 10.5-5. The system weights are based on pumps and electric motors, with
the power assumed to be provided by either fuel cell or an alternator on an
APU. It can be seen that optimum transfer times for an APU-driven system

are about 1000-to-1500 sec for the hydrogen and about 300 sec for the oxygen.
For a fuel-cell-driven system, no definite optimum occurs; however, if

powers leés than . 15kW aré to be encountered, refill times greater than about
3,300 sec for the hydrogen and about 350 sec for the oxygen should be employed.
For conditions at the optimum refill times, a list of weight changes

for a refill system is shown in Table 10.5-10. ‘The weights are based

on a refill system for oxygen and hydrogen as shown in‘Figs. 10.5-6 and
10.5-7, respectively. The list of components is shown in Table 10.5-11.

Iﬁ order to refill the oxygen tanks, two tanks are required: one to be filled
and permitted to go subcritical while one is for operation. It can be seen from
Table 10.5-10 that a significant weight savings (2,036 1b) can be realized by
utilization of the refill system as compared to a system where all the ACPS +
FC + APU + EC/LSS cryogens are stored in supercritical tanks. 4Howéver, this
is not accomplished without the added complexity of valves, pumps, acquisition
systems, and APU restarts. '

10.5.5 Start Tanks As Part of Integrated Systems

A tradeoff study was conducted on an integrated system with a start tank
incorporated in the hydrogen side of the system. The integrated system
evaluated is shown schematically in Fig. 10.5-8, and all cryogens used in

the various subsystems are contained in one hydrogen and one oxygen tank.
10-134
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Table 10.5-10
REFILL COMPARISON FOR ACPS + FC + APU + EC/LSS

NO REFTLL REFTIL CwWT

Oy Tank 1,020 280 =740
Ingulation 8 3 =5
Vacoum Jacket 59 16 -43

H, Tank 3,600 2,240 -1,360
Insulation 61 39 -22
Vacuum Jacket . _ 27 : 138 =79
05 Residual _ 515 ' 113 =402
- Hy Residual 203 72 -131
Added Components - ' 370 +370
Added Conditioning - . 53 +53
Added Storage, OMPS Tanks - ‘ 123 +123
Acquisition , - 200 +200
TOTAL WEIGHT SAVINGS ‘ . _ 2,036
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The approach to the analysis was (1) to provide a list of assumptions and
groundrules (see Table 10.5-12), (2) establish a typical mission duty cycle
that would maximize start tank requirements (Tables 10.5-13 and 10.5-1&),
(3) size the start tank (Table 10.5-15), (4) determine the optimum system
characteristics (Table 10.5-16), and (5) determine a detailed system weight
(Table 10.5-17).

A five-burn, three-revolution rendezvous mission was used to evaluate the
system, This mission was used,since it should result in one of the more

difficult missions for a start tank type of system because:
e There are only five OMPS burns

e ACPS AV burns are performed (+X) between orbit transfer and retro-

burns
e Some refill times are short
e Time between potential refill burns is maximized.

The above approach resulted in a requirement that the start tank should hold
2,046 1b of usable propellant between refills. Propellant usage as a function
of mission time is. shown in Tables 10.5-14% and 10.5-16, and the amount of
propellant allocated to the various system functions is detailed in Table
10.5-12.

In determing the system characteristics (since pumps at the tank were asSumed),
a pump start transient midway between that of an RL-10 and the new transient
used in.LMBC work on this study was assumed; i.e., 02' m= 64.8 lb/sec2 and -
Ha‘ﬁ = 12.8 1b/sec2 at an 8K 1b thrust level. Valve pressure drops were
calculated using the data supplied by AiResearch under contract to LMSC.

Line pressure drops were calculated taking into consideration typical line

routings and components -such as bellows or PVCs.
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PRECEDING PAGE BLANK NOT FILMED

Table 10.5-12

GROUNDRULES AND ASSUMPTIONS

e All tanks were sized for 3% ullage and 1% liquid residuals except for the LH,
start tank, which was sized for 1%% liquid residuals.

e Tank sizing was based on a completely integrated system for all cryogenic
fluids and an orbit AV capability of 2000 ft/sec with 185 ft/sec allotted
to the ACPS,

® On-orbit AV maneuvers in the +X direction were accomplished by firing two
8000-1b-thrust pressure-fed thrusters simultaneously, but three 8000-1b-
thrust thrusters were installed. OMPS thruster specific impuse of 459.8

seconds was assumed.

¢ The common propellant pumps sized for supplying the 8000-1b-thrust
thrusters and for ACPS use were operated as required.

® Only single-tank systems were evaluated with an assumed aft location. The
oxidizer tank was assumed spherical, and the hydrogen tank had a 12-ft

diameter.

e HPT with a purge bag was assumed on the hydrogen ma;n tank, and the H2 start
tank had one inch of polyurethane foam. The oxidizer tank was vacuum
jacketed to reduce boiloff during the reentry and landing Phases of the
flight. Optimum insulation thicknesses of 2 in. and 0.8 in. of Superfloc
for the H2 and 02'ta.nks, respectively, were used in all calculations.

® All lines weré vacuum jacketed with HPI within the jackets.

® No hydrogen was vented below 160,000-ft altitude.
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Teble 10.5-12 (Cont.)

LH2 insulation on the main tank was ground purged with helium supplied from
a ground source. The helium vented from the purge cavity as the vehicle
-climbed out, and venting was assumed complete as the vehicle reached an al-

titude pressure of 10~ torr.

Main tank hydrogen vapor pressure was maintained by a TCU at the 21.5-psia
reached in the tank at the time venting could begin.

The H2 start tank and the O2 tank were pressurized by helium supplied at
their respective cryogenic temperatures. Separate helium storage at an
initial helium storage pressure of 1&00_0 psia was assumed, and the helium

storage tanks were mounted outside the propellant tanks under the HPI.

Only hydrogen was vented for tank, line, and pump cooling. Venting was
through & thermal conditioning:imit, and the vented hydrogen gas was used
to cool the oxidizer tank, |lines, and pumps.

The H2 main tank was pressurized by gas from the H2‘ accumulator. The ac-

cumulator also supplied gas to the fuel cell, APU, ACPS, EC/LSS, and the gas
' generators for the conditioning heat exchangers and the common pumps.

Component redundancy was added to meet fe.il-operationa.l/fa.il-sa.fe criteria.

ACPS thruster weight, feed lines to the thrusters, and required va.lving
were not included in the weight summary. Lines and valves to the fuel
cells,| APUs, and EC/LSS also were not included.

Propellant acquisition devices were installed in the O, tank and the H,
start tank. The devices have zero "g" all-axis withdrawal capability.

" Minimm NPSP for the oxidizer and hydrogen pumps was 4 and 2 psia,
respectively.
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Table 10.5-1k

o ON-ORBIT STORAGE TANK USAGE T;%
3!
Mission At 4 G02 Accumulator Outflow =
Elapsed |From Last | Event .
Event Time Event A LSS OMPS H2 Acc. | Accun.
(hr) (hr) (sec) FC APU  |.32 1b/| ACPS |.35 1b/|Recharge| Usable
: hr sec |(6.4 1b/ |aty (1b)
' chg)
Launch 0 0 Nil | mi1 - - - 78
Injection 0.12 .0.12 %07 Vil 70 - - 19.2 66.8(1)
Phasing - Pre-Burn Tl - 25 - 0.2 48.4 - 6.4 61#.8(1)
Phasing - Burn 0.83 7 - - - 3.2 2.5 - 59.1(1)
Phasing - Burn + 7 sec 4 207.6 - - - 3.2 72.7 25.6 35.6"
{Height Adjust - Burn 1.58 0.75 7 7 - 0.2 1.6 ‘2.5 - 21;.3(1)
Height Adjust - Burn + 7 159.6 6.4 55.9 19.2 | - 20.8
Coelliptic - Burn 2.37 0.79 7 8 - 0.3 1.2 2.5 - 8.8(
Coelliptic - Burn + 7 0.79 8.3l | - 0.8 2.9 6.4 | 76.7'1)
Dispersion - Burn (ACPS) 3.11 0.74 10 7 - 0.2 200 - -
Dispersion - Burn + 10 _ 3k.7 -. , 78
TPI - Burn : 3.85 0.74 7 8 - 0.2 63.6 2.5 6.4 75.3(1)
TPI - Burn + 7 5.9 - - - 2.1 - 73.2
MCC - 1 Burn (ACPS) 4,05 0.20 10 2| - m1 | 817.2 - :
MCC - 1 Burn + 10 sec) , 54,1 63.2 69.9
MCC-2 BURN (ACPS) 4,21 0.16 10 1 - 0.1
MCC-2 + 10 23.8
Post Burn Access Refill ' o 78
On-Orbit Use 166.57 162.36 1372 4 51.9 |1717.6 - 255.7
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Table 10.5-15
LH_ START TANK PROPELLANT QUANTITIES

2
| LH2
| ACPS Impulse 642
Fuel Cell | 165
Thruster Chilldown - 5
Cooling -A Pumps ' 488
-' Tanks ' 304
- Lines 106
Cdnditioning ___ 336
Total LH, . 2046 1b
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Table 10.5-16

SYSTEM CHARACTERISTICS

Main LH2 Tank Operating Pressure

LH2 Start Tank Operating Pressure

LO2 Tank Operating Pressure

30.4 + 1 psia
26 + 1 psia

2k bk + 1 psia

'L, Tank Volume 2430 £t3
10, Tank Volume 578 £t3
LH, Start Tank Volune L8l 43
GH, Accumilator Volume 47.8 £t3
Go,, Accumlator Volume 1.1 £t3
OMPS Nominal Thrust 16000 1b

ACPS Nominal Thrust

1750 1b/thruster

Nominal OMPS Flow Rate 0, - 1lk.51b/sec
(per thruster) HS - 2.9 1b/sec
ACPS Nominal Max Flow Rate . 0, - 9.78 1b/sec

Hg - 2.43 1v/sec
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Table 10.5-17

INTEGRATED SYSTEMS WEIGHT (Hé START TANK)

SUBSYSTEM
Ground /Flight Vent

_Components

Lines

Fill/Drain & Feed

Valves

Lines (incl. bellows, etc.)
Propellant Tanks

Tank Insulation

Pressurization

Valves and Switches
Pressurant Storage Spheres
Lines

Propellant Conditioning

Valves, Controls, ete.
Heat Exchangers .
Acquisition Devices
Turbopumps

Subsystem Totals
OMPS Thrusters (3)

Total Dry Weight (1b)
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Table 10.5-17 (Cont.)

Fluids 0, | H,
¢ Impulse Propellants
- OMPS 22,340 4,468
-~ ACPS 5,230 1,310
® Cryogens
© Fuel Cell ‘ 1,450 175
APU 294 327
EC/LSS 50 0
OIPS Prepressurant 2 5
OMPS Pressurant o - 32
OMPS GG ) 277 277
Conditioning . 756 756
Cooling - Pumps - 50k
~ Tanks - 31k
-~ Lines —— 110
Subtotals 30,392 8,278
® Residuals - Liquid - 390 95
- Gas 239 aLs
® Dumped Propellants ‘ 6 1
31,027 8,619
Summary:
Total O ' 31,027
H - 8,619
Pressurant , 77
Total Fluids (1b) ' 39,723
System Dry Weight 5,821
Total Weight (1b) 45,54,
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Main tenk, line, and pump ccoling requirements were determined by using
previous studies for the OMPS and extrapolating for the larger size tanks; in
the case of pump cooling requirements, the APS technology contract data were
used. The accumulators were sized to hold 22 1b and 78 1b of usable propellant
for.the.'H2 and 02, respectively. The amounts were determined by reviewing
probable usage requirements from the mission duty cycles and then fixing a

size that would reduce turbopump cycle requirements to an acceptaﬁle number,
The accumulapor usable quentities were based on an isentropic blowdown from
the initial conditions shown in the schematic, i.e., 2000 to 1000 psia. The
approach on accumulator operation was to assume that a pressure switch would

actuate at 1100 psia and start a turbopump and‘its respective heat exchanger.

In the case of the O2

was oversized for the ACPS requirement. A net increase in accumulator pressure

system, since the pump was sized for OMPS operation, it
would occur even though ACPS flowrates were at thelr most probable maximum.

The H, side of the'system was a different case. A single H, pump, sized for

OMPS ESe, was undersize for the most probable ACPS flowrateg (2.9 vs 3.64
lb/seq or a maximum of 4.29 1b/sec), and during ACPS operations, two H, turbo-
pumps would operate for ACPS burns of approximately 15 seconds and longer.
Since an H2 turbopump also has to operate during OMPS burns of approximately
63 seconds and longer, a fourth H2 turbopump was added to the system so the
OMPS would be subjected to minimum impact during retroburn after a double

malfundtion of H, turbopumps.

2

An extra oxygen turbopump i1s not required, because the oxygen accumulator can
hold sufficient propellant so that resupply is not required during the retro-
burn. An alternate operating mode would have to be employed, however, and
would consist of recharging the oxygen accumulator to maximm capacity Jjust
prior to retroburn and then letting it blowdown (900 psis) quring the burn.
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While this would be slightly under the dormal pressure-switch setting, it leaves
an adequate reserve before absolute minimum pressure is reached (500 psia) and

is the recommended method of operation.

The.refill of the start tank had to be accomplished for a total of four times to
minimize the size of the start tank. The largest refill occurred during the
retroburn and established the size of'the transfer iine between the main tank
and the start tank. Three other_refills were required because of the short
times availaﬁle for refill. The method of refill was as follows:

® The OMPS or ACPS +X burn operation would begin by propellant supply
from the start tanks.

® When propellants were settled (7 and 10 sec, respectively for
the OMPS and ACPS), the transfer-line shutoff valves would
be opened. Concurrently with propellant settling, the main
tank woﬁld be pressurized by gaseous hydrogen supplied from

the hydrogen acéumulator.

e The start tank vent valves would bé opened and adequate
pressure (~ 26 psia) maintained in the start tank with the
main tank supplying both propellants to the -operating
thrusters and refilling the start tank.

The above approach resulted in a transfer-line optimum diameter of 5.5 in. This
relatively large size was due to the high flowrate required to refill the tank
and supply the two OMPS engines simultaneously. Assuming that the start tank
would be basically empty and that the refill should be completed in a time

10 percentrless than the available time, the total flowrate calculated was

15.3 1b/sec. '

While detailed conclusions cannot be made between a start tank type approach
versus other approaches, due to the lack of detailed evaluations on all the
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approaches, the present study does allow. a number of general conclusions to be

made. These are:

The start tank approach reduces helium requirements by a factor
of approximately 2.5 for a completely integrated system where
.the pumps (ACPS or common) must be ready to go at all times.
The start tank approach eliminates the néed for vacuum-Jjacketed
tanks in integrated systems, as cryogen boiloff during atmos-
pheric flight can be reduced by use of foam insulaﬁion on the
start tank exterior.

The start tank approach is lighter than a vacuum-jacketed
system for a completely integrated system but is heavier than
a nonvacuum-jacketed approach. A nonvacuum-jacketed approach
with a hardshell purge bag with foam insulation on the purge
bag exterior should result in the lightest systemn.

The start tank approach is duty-cycle limited unless the start
tank is sized largé. A larger size start tank can result in a
heavy system, as the start tank is subjected to externally

imposed crushing pressures. These .crushing pressures could be
the most critical aspect of a start fank approach when safety

"is considered.

The start tank approach complicates tank fabrication and adds
complexity to system operation. '

Pump at-the-~tank should be lighter than pump at-the-engine due
to lower ullage pressure requirements resulting from low-pressure

. losses during start trensients and flow due to the shorter feed

lineé.
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10.5.6 Propellant Utilization Exeminations for Integrated OMPS/ACPS System

A study was performed to determine the propellant usage uncertainties of the
integrated OMPS/ACPS and to determine the ambunt of either O, or Hé loading

bias to assure adequate propellant is available to perform all the required
functibns. Two approaches in determining the amount of loading bias were
considéred. Since the RL-10 engine has mixture ratio control, the mixture ratio
can be varied to account for the uncertainties in usage. This mixture ratio
control is utilized during the last engine operation (retro maneuver) for the
first approach. The second approach did not tgke advantage of the mixture
'ratid control and both the O2 and Hé loading must be biased to account for

the performance deviations. The performance uncertainties used in this study
are summarized in Table 10.5518. The miSSion considered was the seventeenth
revolution rendezvous case. Using these performance uncertainties, the re-
sulting 02 and Hé uncertainties are shown in Table 10.5-19.. The mixture

ratio of the RL-10 engine can be controlled between 4.4 and 5.6, the resulting
delta O2 and H2 weights_(based on 5.0 nominal) are shown in Fig. 10.5-9 as a
function of mixture ratio selected for the retro burn. The delta weights

shown are the negative of .the delta weights used by tﬁe engine. For example,

if a mixture ratio of 4.h were selected, the engine would use 211 1b less O

2
than if a ratio of 5.0 vere used or a delta weight of -211 1b O,. However,

2
this is plotted as a +211 1b delta weight in order to be consistent with the
sign of the usage uncertainty. That is, if during previous ACPS and OMPS
» had been used, then a ratio of 4.4 could be

‘selected for the retro burn which is 211 1b less 02 than nominal, with the

usage5'an excess of 211 1b of O

result that the O2 usage is now balanced out.
Taking the RSS values of the O2 and Hé usage uncertainties for all functions

except the retro burn reéults in an O, usage uncertainty of +77.98 1b,

2
-85.27 1b and the corresponding H, uncertainty is +103.57 1b and -97.66 1b.
These  are p;otted in Fig. 10.5-9. These uncertainties result in two ways
of biasing the propellant loading. If 02 depletion is desired, then &
mixture ratio of h,77 is selected with the result that an additional 170 1b
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OMPS/ACPS PERFORMANCE UNCERTAINTIES

OMPS Engine Mixture Ratio
ACPS Engine Mixture Ratio (Pulsing)

ACPS Engine Steady State O,
Feed Pressure

ACPS Engine Steady State B,
Feed Pressure

ACPS Engine Steady State O,
Feed Temperature

ACPS Engine'Steady State H,
Feed Temperature

ACPS Conditioning Mixture Ratio

O2 Vapor Residual Equilibrium Temperature

Hé Vapor Residual Equilibrium Temperature

O2 Pump Chilldown 02

Hé Pump Chilldown Hé USagg

Usage

. ACPS Pump Cooling Hé Usage
Tankage and Line Cooling Hé Usage
02 Loading Deviation

Hé Loading Deviation
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5.0
4,0

1.00

164
38

£ 0.1
i 0.5

+2.5¢ |

+ 2.5% +.1156
MR = 4,00 ooe

+2.5%

;t 2'5% .

+.0289
-.0277

+1°R

+1°R

£ 1 1b Per Start
+ 1.2 1b Per Start
+ 10%

+ 10%

£0.0916%

10.278%
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Table 10.5-19

OMPS/ACPS USAGE TOLERANCE

?unction 02 H2
+ NOM - + © NOM -
OMPS Pre-Retro 50 15411 52 ' 52 3082 50
ACPS TCA's 51 5159 60 60 1289 51
ACPS Conditioning 7 Los .6 6 4os 7
OMPS Pump Chill-
down (11 Burns) 11 110 11 13.2 55 13.2
ACPS Pump Cooling - - - ' 50 504 50
|Tank & Line Cooling| - - - 16 158 16
Vapor Residuals 9.5 170.2 8.4 32.5 216.7 28.2
Loading Tolerances | 27 - 27 20 - 20
Overall RSS 77.98 85.27 103.57 97.66
OMPS Retro (W/0 '
MR Control) - 26 TL77 26 26 154y 26
Overall RSS (W/O
MR Control 82.2 89.1 106.8 101.1
R1-10 Control Dur-
ing Retro Burn r211 -194.1 - +127.6 -166.4

Bias Required with MR Control During Retro:
For H, Bias, Select MR for Retro = L.77 and Add 170 1b of H,

Or

For O, Bias, Select MR for Retro

2

Bias Required W/0O MR Control:

5.49 and Add 238 1b of o2

Add 82.2 1b of O

2
Add 106.8 1v of Hé
189.0
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of Hé must be loaded or, if Hé depletion is desired, then a ratio of 5.49 is

selected with the result that an additional 238 1b of 02 must be loaded. Of
these two options, it is better to bias the Hé loading and, then, add 170 1lb
to the H2 loading.

If no mixture ratio control is used, then the overall 0O, usage uncertainty

2
is +82.2 1b and -89.1 1b and for the H, +106.8 and -166.4 1b. The required
propellant loading bias would then be +82.2 1lb of 0, and +106.8 1b of H, for
a total of 189.0 1b additional propellant loading or 19 1b more than if

mixture ratio control is used during the retro burn.

For both of these cases, open loop propellant utilization can be employed

and no zero-g gaging system would be required.
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SECTION 11
COMPONENT EVALUATIONS
Component evaluations were pianned to provide information in depth regarding
the required cryogenic supply components. The information ineludes the

followi'ng, as applicable to the components under consideration:

° Compénent descriptions for each identified appliecation,
relating where possible to existing hardware

e Analyses supporting a particular component selection or
" gpproach '

e Parametric data regarding a number of component parameters,
as applicable to the components under consideration

e Reusability evalustions

° VMalfunction informé.tion '

e Component effects upon reliability
As previously presented , Lockheed- and the AiResearch Manufacturing‘Company
performed the comi)qneht evaluations and selections. In addition, information .

wag obtained from other cooperating suppliers,.

1.1 COMPONENT DATA COMPILATION

This subsection discusses the component selection and parametric data
collection for the components. Reusability, malfunction, reliability, and
technology evaluation data are discussed in other subsections.
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11.1.‘1 Component Selection Data from AiResearch

11.1.1.1 Component Selection. In the collection of component data, a major
step was the contribution of component data from AiResearch. The discussions
rega.rding the preparation of the schematics are presented with each subsyétem.
These Echematics, presented in Appendix E—: are sumarized as follows:

~

e Orbit Maneuvering Propellant Supply
(1) Helium Pressurized Tanks
(2) GOQ/GHZ Pressurized Tanks (with Boost Pump)

e Orbit Injection Propellant Supply ‘
(1) Helium Prepressurized with On-Off Pressurizstion
(2) GO‘?/GH2 Prepressurized with Regulated Pressurization

e Attitude Control Propellant Supply
(1) Suberitical Storage

(2) Supercritical Storage

e Auxiliary Power Unit Supply
(1) Suberitical Storage
(2) Supercritical Storage

e Fuel Cell Supply
(1) Subcritical
(2) Supereritical

o Life Support Supply
' (1) Subcritical Storage
(2) Supercritical Storage
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e Purge, Inerting, and Pneumatic System
. (1) Suberitical Nitrogen and Helium Stored at
Cryogenic Temperature
(2) Supercritical Nitrogen and Helium Stored at
Ambient Temperature

In addition to the schematics, Lockheed provided to AiResearch information
regarding the component requirements, such as flowrates, temperatures,

number of cycles per mission,and lifetime.

- AiResearch exasmined each of the subsystems through the use of a computer_
program and properly sized the valves with regard to pressure droﬁ and other
design characteristics. Then, AiResearch analyzed and selected components
for each application in the subsystems for the followlng:

a. Valves and regulators
b. Disconnects

c. Heat exchangers

4. Pumps

€. Turbires |

f. Control units

g. Pressure switches

For each of the components,data sheets were prepared containing information

such as:

a. Sketch of geometry

b. Type, application, function

c. Type actuation

d. Actuating power requirements (ae applicable)
e. Helium used per actuation (as applicable)
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f. Reesponse time

g, Flowrate, temperature, pressure A
h. Pressure drop

i. "C" factor and CA

Je Geometric area

k. Closure element diameter

1. Closure element position (NO or NC)
m. Leakage

n. Welght

0. Similar drawing (as applicable)
p. Materials recommended for:

(1) Body
(2) Actuator
(3) Seat

(4) Rotary geals
(5) Static seals
(6) Butterfly seals

The data sheets for the components are présented in the Space Shuttle
Cryogenic Supply System Optimization Study Task Reports. These represent
a very extengive collection of data.

11.1.1.2 Parametric Data. Certain of the component types examined by
"~ AiResearch were sglected for the generation of parametric data. The intent

of generating these parametric data was_to provide information for
performing f.he subsysteni tradeoffs and necessary information for the
Integr_ated Math Model. Components, for which parametric data were generated
by AiResearch, were as follows: '
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11.1.1.2.1 Valve Parametric Data.
. Weight versus welve diameter parametric dats

were genersated as presented in Table 11.1-1.

° Pressure drop versus veight flow parametric

data were generated as presented in Table 11.1-2.

It was cons;dered desirable only to include the valve parametric weight
data in this report. These are presented in Figs. 11.1-1 through 11.1-T.

'11.1.1.2.2 Heat Exchanger Parametric Data. The wide range of variation in
temperatures, pressures, and flowrates of the fluids makes it impossible to

present actual heat exchanger weights and volumes in a report of reasonable
size. The approach taken, therefore, was to have the user determine those
heat exchanger characteristics which can be easily calculated and use
graphical data only when further calculations become impractical.

Instructions fall into two categories: <those concerned with establishing

.a heat exchanger design point and those concerned with determining the
wgight and volume of a heat exchanger, given the design point. The deeign
procedure is sometimes iterative, depending on whether or not a realistic
heat exchanger exists for a given design point. This problem can occur
only when pressure drops are speciflied by system demonstrationse. The design
procedures are shown in Fig. 11.1-8.

The following parameters must be defined before attempting to determine heat
exchanger weight or volume: ‘

£
]

Flowrate of the cryogenic fluid

]

. i, = Temperature of the cryogenic fluid at inlet
s .
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Table 11.1-2

PRESSURE DROP VERSUS WEIGHT FLOW PARAMETRIC DATA

Stze Flow Fluid
(inches) Type Coefficient| (Liquid)
0.25 to 2.5 | Butterfly 0.75 Oxygen
1.0 to 14 Butterfly 0.75 Oxygen
0.25 to 2.5 | Poppet 0.65 6xygen
1.0 té 14 Poppet .0.65 Oxygen
0.25 to 2.5 | Ball (Visor) 0.85 Oxygen
1.0 to |4 Ball (Visor) 0.85 Oxygen
0.25 to 2.5 | Disconnect 0.95 Oxygen
1.0 to 14 Disconnect 0.95 bxygen
0.25 to 2.5 | Butterfly 0.75 Hydrogen
1.0 to 14 . Butterfly 0.75 Hydrogen
0.25 to 2.5 | Poppet 0.65 Hydrogen
1.0 to 4 Poppet 0.65 Hydrogen
0.25 to 2.5 |{Ball (Visor) 0.85 Hydrogen
1.0 to 14 Ball (V?sor) -0.85 Hydrogen
0.25 to 2.5 |Disconnect 0.95 Hydrogen
1.0 to 14 Disconnect 0.95 Hydrogen
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Poppet Type
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Pressure of the cryogenic fluid at inlet
Temperature of the cryogenic fluid at outlet
Temperature of the combustion products at inlet
Pressure of the combustion products at inlet
Temperature of fhe combustion products at outlet

Combustion products oxidizer-to-fuel ratio

The resulting approach is very extensive and can be found in the Shuttle
Cryogenic Supply System Optimization Study Task Reports. ‘

11.1.1.1.3 Pump Parametric Data., Pump parametric data were divided into
two parts: design data and off-design data.

The design data enable the user to determine the following pump character-

isticé:

a. ILength

b. Diameter

c. Volume

d. Welght

e.. Efficiency

f. . Power requirement

g. Rotational speed

h, °~ Specific speed

i. Net Positive Suction Pressure (NPSP) requirement
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Items a. through f. and i. are directly applicable to system studies, while
Items g. and h. are presented for performance determination when pump-oper-
a.{',ing conditions are different than those for which the pump was designed.

The off-design data allow the estimation of pump performance, when it is
operating at conditions other than those for which it was designed.
Off -design efficiencies are principal outputs from these ‘curves.'

11.1.1.3 Summary of AiResearch Component Selection Results. The exam-
ination by AiResearch resulted in the specification of components for each

" application. For most of the valving, equivalent components were existing.
Heat exchanger designs were within the state-of -the-art. Pump designs were
specified, but it 1s known that pump development would be required for most
of the spplications.

11.1.2 Mechanical and Electrical Component Data Collection and
Related Analyses

Lockheed engaged in supplemental component data collection and performed
analyses relative to the selection of components.

11.1.2.1 Electrical Motors. As noted in the subsystem discussions,
electrical motors offer potential for application to the following:

‘e Attitude Control Propellent Supply
(1) Operation of boost pumps (if employed):
102 - 8 hp

(2) Operation of the ACPS pumps:
0, - 88 np
LH2 - 405 hp
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Orbit Maneuvering Propellant Supply

(1)

(2)

(3)

()

(1)

Operation of boost pumps (if employed):

I’o2 -T.Shp
LH2 - 25 hp

Operation of OMPS pumps:
o, - 84 hp
I-H2 - 309 hp

Feedline circulation pumps (if employed):

10

2}- ~ 0.1 hp

8,

Circulating fans for thermal conditioniﬁg:

10
2} - ~ 0.0l hp

18,

Auxiliary Power Unit Supply

Operation of the APU pumps:
10, - L np ‘ '
LA, - 63 hp

e Orbit Injection Propellant Supply

(1)

Feedline circulation pumps:
ma - 10-12 hp

IH, - 6-9 bp

The cryogenic cooling of an electrical motor gives definite advantages in
the improvemente in efficiencies. Possible types include:
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° AC motors
™ DC motors
° Brushless DC motors

11.1.2.1.1 AC Motors. Classification and perfdrmance characteristics of AC
motors deperd primarily on the electromagnetic construction of the rotor.
When the rotor flux is generated by a voltage induced in the rofor by the
changing stgtor flux, the motor is classified as an induction type. When
the rotor flux is generated by DC excitation through a commutator or slip
rings, or if the rotor is a permanent magnet, the motor 1s classified as
" a synchronous type.

The speed of a synchronous-type motor is directly proportional to the fre-

quency of the AC-voltage excitation in the stator, whereas the speed of an

induction-type is a function of the stator voltage magnitude in addition

to the voltage frequency. Therefore, the inherent speed-regulation control
of the synchrohous-type motor is simpler and generally superior to that of

the induction type.

Efficiencies of the two types of motors are not as closely comparable. The
synchronous-type, due primarily to larger iron losses, generally operates
with low efficiencies. Induction-type motors commonly operate with higher
efficiencies. For this reason, the induction motor appears to be the most
suitable AC type.

In an AC motor, a given magnetic circuit and winding is capable of a def-
inite maximum torque. Since the iron magnetic saturation is clearly
defined, increaging the flux density beyond saturation causes excessive

magnetizing current and increased drain on the power supply.
An AC motor for cryogenic application has been developed; it is a 50-hp,
two-pole induction motor, operated at 23,000 rpm on a 400-cps supply. The

unit has a continuous rating of 1.8 hp/1b.
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11.1.2.1.2 DC Motors. Conventional DC motors using graphite-impregnated
brusi:e_s have had an inherent problem of short life in a space environment.
When operated in a vacuum, graphite brushes have temded to flake and
powderize - thus, reducing life. In recent years, developments have im-
proved life; the cbnventional DC motor will function better in sealed and
pfessi:riied enviromments. :

The brushless DC motor seems to be a promising DC motor type in the lower
hofaepover applications., These- motors have essentially the same character-
istics of conventional DC motors, but the problems associated with brushes

. are nonexistent.

Functions of the stator and rotor of a.conventional DC motor are exactly
reversed by the brushless DC motor; (i.e., the rotor maintains a constant
flux from a permanent magnet, and the stator effectively produces a
rotating flux wave through electronic commutation). Pairs of coils are
located circumferentially around the axis of rotation, and the DC excitation
is electronically switched to these coils in sequence producing the rotating
flux. The DC switching is usually controlled photoelectrically by the rotor
positibn. .

Fractional horsepower, brushless DC motors are switched using transistors,
but in the integral horsepower range, SCRs (Silicon Controlled Rectifiers)
are required to switch the high currents. Speed regulation is accomplished

~ by modulating the ~ switched pulse width, thereby oon'brblling the time that
the flux field is maintained. Thus, brushless DC motor speed is sensitive
to pulsing or quickly ﬂuctua.ting-liﬁe imputs, while being relatively
insensitive to slow-voltage decay. Because of the pulse width modulation
technique of speed control, the motor draws current in pulses and, therefore,
will require a filter network to dampen the current oscillations.
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The efficiency of & brushless DC motor is good.

Since starting currents in a DC brushless motor are considerably higher
than rated current, current limiting is required.

Iﬁ a e motor, the maximum torque capability is not as clearly defined as
for the AC motor. If a higher torque load is aspplied, the machine will
slow down, lowering the counter-emf and resulting in a higher current Input.
This produces a higher torque to equal the increased load.

. DC motors have been operated in liquid hydrogen at 6 hp. The motors may
achieve 1 hp/ib.

11.1.2.1.3 General Discussions Relative to AC Motors amd DC Motors. Motor
speeds and motor efficiencies may not be strongly related at the speeds
under consideration. ‘ However, motor speed is related to weight. At higher
gpeeds, less torque is required to genératé an equivalent shaft output

power.

Since torque dictates. thé slze of the motor frame,it is also the principal
Pactor governing weight. Then, a motor operating at high speed would weigh
less than one delivering an equal output and operating at low speed.

Motor weight varies with output ‘power at a given speed. The relationship
is primarily s function of torque as described above,

Both AC induction and DC brushless motors can be speed-regulated + 1 percent
of the rated speed using temperature compensation techniques, a.nd/or a
frequency standard in the AC case. This corresponds to speed-torque char-
acteristics where speed variations are held to.within + 1 percent over a
‘range of torques. Speed control in a brushless DC motor is active; i.e.,
speed can be regulated relative to shaft speed or pump pressure by a
feedback system. In an AC motor-inverter, .speed control is usually passive.
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Speed depends primarily on the inverter switching frequency, which is not
usually actively controlled. Since speed-regulation circuitry operates at
low-power levels, the added weight and power consumption for either motor
are nearly constant over the motor power range. Speed-regulation provisions
result in added circuit complexity and a smaller percentagewise change in
overail efficiency and weight as larger motors are required.

Starting currents can be limited in both types of motors. However, current
limiting may adversely affect the AC motor,depending on the initial load
torque imposed. - A centrifugal pump imposes a negligible initial load torque,
' vhile a positive displacement pump may impose an initial load torque as high
as 50 percent of full load. This can cause the AC motor to partially stall
and overheat, although not to the point of destruction., Nominal starting
current for a noncurrent-limited AC motor is 500 percent of full-load
current. At this current, approximately 200 peréent of full-load torque

is generated, If current is limited to 150. percent of full-load current,

it is expected that starting torque will be only 60 percent of full-load
torque. In a DC motor, the torque is directly proportional to current, and
nonlimited starting currepts are some’cmes in the order of 20 times rated
current. In order to protect the power source, current limiting is the

normal method of operation.

Figure ll.1-§ grossly spproximates the starting currents required to bring
a brushless DC motor up-to-speed in a given increment of time. This plot
- indicates that the mbtor, driving a centrifugal pump, can require & very
high current if'st;a.rting times of less than 0.5 sec are desired.

The rotor of the brushless DC motor, being a permanent magnet, has a mass
and moment of imertia much larger than that of an induction motor. While
the larger mass tends to minimize and smooth speed fluctuations due to
forque_ transients, it is anticipated that the starting time of the brushless
DC motor would be somevhat greater than that of the induction motor.
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An AC induction motor-inverter will probably weigh more than a brushless DC
motor. The efficiency of the brushless DC motor is at least equal to that
of the induction motor-inverter and will probably exceed it. Additionally,
the brushless DC motor offers better operation under current limited con-
ditions. '

Since torque is directly proportional to the current in the brushless DC
type, less starting current is reqpiréd to generate the same starting
torque as in an AC type for which other factors come into play. The rotor
of the brushless DC motor has a greater moment of inertia than the AC;

the torque transients would cause less drastic changes in speed.

"11.1.2.2 Thermal Conditioning Units. Existing Thermal Conditioning Unit
(TCU) approaches such as those developed by IMSC in "Liquid Propellant
Thermal Conditioning System"”, NAS 3-T942 and NAS 3-12033, as shown in

Fig. ll.l-lO,aréapplicgble to the requirements generated in this study.

One of the principal congiderations in the TCU application has been the

method of controlling venting. These venting considerations are as follows:

e Venting to control the vapor pressure of the liquid

hydrogen in the hydrogen-storage tanks

(1) Control potentially by tank pressure or
by temperature

e Venting of hydrogen to control the vapor pressure in
the liquid-oxygen tanks

(1) Hydrogen vented on demand and used to cool
the liquid-oxygen tanks
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(2) Hydrogen-tank venting by temperature or
pressure in the liquid-oxygen tank

e Venting of hydrogen to provide cooling to pumps, lines,
or other equipment requiring cooling

(1) Venting controlled by the temperature of the
equipment being conditioned

11.1.2.2.1 Venting to Control the Vapor Pressure of the Liquid
‘ ' Hydrogen (or Liquid-Oxygen) Tanks. Heat addition to the
liquid-hydrogen tanks (or the liquid-oxygen tanks) by any means, such as

heat leak through the insulation or structure, results in an increase in
the liquid temperature and subsequently the vapor pressure. The increase
in vapor pressure results in a corresponding increase in tank total
pressure, regardless of whether the tank is pressurized by helium or only
has the propeliant gases pressurizing the tanks,

In theﬂOMPS/ACPS integrated systems, or any other subcritical system
requiring instant start, the tank pressure must be kept up to a given
total pressure and a given NPSP (total pressure - vapor pressure). This
may be controlled by a pressure switch, which opens the valves, or by a
regulator; elither control admits helium to keep the pressure at the de-

sired level.

If tank pressure is used as the indicator of vapor pressuie rise, then any
tank pressure over and above a given value will be interpreted as
liquid-hydrogen (or liquid-oxygen) vapor pressure rise, and the TCU will
withdraw liquid, expand this, and run it through the heat exchanger to
cool the liquid and reduce the vapor pressure. The problem with this type
of control ;s that any pressure rise is interpreted as a need for venting.
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If the pressure rise is due to some other factor, the hydrogen is needlessly
vented and subcooled. For example, helium leakage into the tank, if
sufficiently large, can ralse the pressure and be interpreted as a signal

to lower the vapor pressure. Likewise,.during a rapid withdrawal of liquid,
such as during an engine burn, some liquid subcooling occurs. However, the
tank pressure is being kept up to a desired level by helium addition. When
heat is subsequently added to the tanks, the vapor pressure rises, and if
pressure control is being used, venting automatically occurs. Through a
succession of OMPS engine burns; or ACPS operations, the vapor preesure
(temperature) of the liquid can be driven down needlessly.

The conclusion from these considerations is that if an effectiwve 1iqpid-
hydrogen venting system could be controlled by temperature, then the vapor
pressure could be accurately controlled. Liquid-hydrogen demand venting
for liquid-oxygen vapor preseure control could be by the same approach.

The control system would be provided with an accurate indication of the
vapor pressures within the liquid-hydrogen>and iiqpid-oxygen tanks, which
would be desirable for monitoring purposes. It would be desirable to
obtain temperature sensing accurate within + 0.1° R, but up to + 0.5 °R could
probably be accepted.

If hot gas pressurization were being employed, the sensors would be approp-
riately disabled until equilibrium conditions were restored. As discussed
elsewhere in the report, under certain conditions, it is desirable to vent
hot gases used for pressurization during shutdown to remove this heat from
the propellant tanks.

11.1.2.3 Instrumentation ggggggente. Both Lockheed and AiResearch produced
inputs to the instrumentation components. The Instrumentation and Control
subsystem analyses are preeented in Appendix D,. A discussion of these
eomponents follows.
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e Pressure Switches - For most tenk applications, AlResearch
selected a bellows-type switch; possible alternative is

the metal diaphragm-type swltch. For application in lines,
a belleville spring-type switch was selected.

e Pressure Transducers - The pressure transducers only operate
satisfactorily in the gaseous or supercritical conditionms.
A variable reluéte.nce-type transducer was selected.

e Temperature Transducers - A variety of temperature transducers
could have been gelected. The precision platinum-type trans-

ducer is satisfactory for the sapplications.

e Point Level Sensors - The optical-type polnt level sensor has

been increased in ruggedness in the last few years and is,
by far, the most accurate point level sensor. An alternative
to this 1s the use of the capacltance-type point level sensors.

11.1.2.3.1 Continuous Liquid-Level Indicators. There have been no firm
requirements generated in the study for zero-gravity sensing devices.

The continuous level sensor, therefore, could be the capacitance-type with

concentric tubes.

Zero-gravity devices were exa.minéd in the course of the study. The general
conclusion was that the Radio Frequency Gaging 'I'echniqﬁe and the Nucleonic
Gaging Techniques are both promising systems. The Radio Frequency Gaging
Technique will produce better regults with oxygen amxl storable propellants
than with hydrogen. ' The mode count 1s much more definitized in oxygen.

11.1.2.3.2 Control Units. ‘M.Research provided descriptions for the control
unite for the applications in the subsystems. Each of these was discussed
specifica.liy for the a.pplica.tioné. The data sheets for these components
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are presented in the Task Reports.

11.1.3 Leakage Analyses. The leakage of gas through valves and regulators

is considered to be an inherent characteristic of the components. However,
the leakage of liquid is considered to be related to a fallure, with the
'excepﬁion of disconnects. The possible occurrences and effects from com-

ponent leakage, which were considered significant, were:

‘Liquid Hydrogen

(1)

(2)

(3)
(&)
(5)

Leakage of LH2 or GH2 in the atmosphere resulting in a

potential fire or explosion hazard

Leskage of GH, (and GHe) into insulation systems or
vacuum Jjackets resulting in performance degradation

Leakage of GHe into tanks resulting in overpressurization
Leakage of GHe from tanks resulting in helium loss

Significant loss of propellant or reactant occurring
from leakage

Liquid Oxygen

(1)

(2)

(3)
(4)
(5)

Leakage of I.O2 or G02 onto organics resulting in a
potentiael fire hazard )

Leakage of GO, (and GHe) into insulation systems or

vacuum jackets resulting in performance degradation
Leakage of GHe into tanks resulting in overpreesurizetion
Leakage of GHe from tanks resulting in helium lose

Significant loss of propellant or reactant occurring
from leskage
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11.1.3.1 Leakage of Ligquid Hydrogen or Liquid Oxygen. The leaksge of liquid

hydrogen or liquid oxygen is considered only to be possible in the case of
component failure. Fail-operational/fail-safe provisions should be arranged
and instrumented to handle this type of failure.

11.1.3.2 Leakage of Gaseous Hydrogen into the Atmosphere. It must be con-

sidered that the legkage of any amount of gaseous hydrogen into the atmos-
phere presents a possible ignition source. Hydrogen leskage on the order of
10-t0-~100 sccm has been observed to support combustion under coutrolled
conditions. To date, IMSC has not located sufficient data relating to sus-
taining of flames of hydrogen in air. The information required must relate
low flowrates (scem) to opening sizes and air movement for the sustaining

of flames.

11.1.3.3 Leakage of Propellants and Reactants. Leakage can result in the
loss of propellants and reactants. However, when this is analyzed for the
shuttle systems, it is found that leskages must be extremely.high (high
emough to be in the failure range) before significant losses of propellants

and reactants will occur.

11.1.3.4 Leakage of Helium from Propellant and Reactant Tanks. Helium
requires a high weight for storage, and its leakage from helium-pressurized
tanks can result in weight penalties. Analyses were made considering the
combined leakage rate of the propellant gases with helium. Cases were

selected that were considered representative of the suberitical systems.

The resulting helium losses from oxygen ard hydrogen tanks as a function

of the leskage rates are presented in Figs. 11.1-11 and 11.1-12, respectively.
As noted from these curves, (1) the leskage rates must be relatively high

in order to leak a significant smount of helium, and (2) for a given leakage
rate, the helium loss from a LO2 tank is greater than the loss from a LH
tank.

2
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11.1.3.5 Tank Pressure Rise Prom Helium leakage. The tank pressure rise in
propellant and reactant tanks from helium leakege into the tanks can
possibly result in overpressurization. Also, it can result in the signal-
ing of TCUs %o vent and cool hydrogen unnecessarily. Parametric data

are presented in Figs. 11.1-13 and 11.1-1} regarding helium leakage into
o:qrgeﬁ and hydrogen tanks. Data presented in these curves cannot be applied
directly to a given tank, but do indicate the maximum conditions.

Additional studies were made using the Orbit Maneuvering Propellant Tank
with integrated Attitude Control Propellant Supply; a typical duty cycle for
propellant withdrawal was used. The results are presented in Fig. 11.1-15.
Note that the liquid-oxygen tanks could have significant pressure rises.
Liquid-hydrogen tank pressure rises are relatively low.

11.1.4 Tankage Data Collection
Extensive parametric tank data were collected in order to support the
tradeoff studies and to provide data for future analyses.

11.1.4%.1 Metallic Tankege. In performing the Reusable Subsystem Design
Analysis, Contract No. FO 4 (611)-69-C-00k1, IMSC conducted an extensive
literature search regarding fracture mechanics and the reusability of.
shuttle tankage. One result of these analyses was that sustained pressure
loading was the majJor degrading factor for propellant and reactant tanks,
since the number of cycles is not the limiting factor. Accumilators require
more pressure cycles, and cycling can become the limiting factor. From
examination of available data ,8 Safety Factor of 2.0 was selected.
Nonoptimum factors also were employed of 10 or 20 percent, depending upon

the application.
Tank sizing was performed by computer programming. The program considered

the liquid hydrostatic head, ullage pressure, and temperature characteristics,
and determined the maximm condition. The principal comparisons are the
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fully loaded under peak 3-g acceleration to on-orbit or reentry mode with

associated temperatures.
The tankage for which parametric data were produced is shown in Table 11.1-3,

ll.lﬁh.2 Composite Tankage. Metal shells with an overwrapped glass-filament

shell for high pressure storage make possible lighter weight tarkage than
hamogeneous metal pressure vessels. Very high strength-to-density ratios

are.attainable.

The ‘use of cryogenically formed stainless-steel tanks (Arde process) can
potentially increase the advantages of composite tanks. These are stainless-
steel 301 tanks. This material is satisfactory for reusable applications for
oxygen at any temperature. However, prolonged storage of hydrogen at

supercritical temperature can result in hydrogen embrittlement.
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11.1.5 Feedline Components Data Collection

Extensive contact with suppliers was employed in order to obtain feedline

component data. Names of contributing suppliers are presented in Section 12.

11.1.5.1 Feedlines. One of the principal issues related to feedlines is
the comparison of aluminum and stainless-steel feedlines. Parametric
feedline data were genersted for aluminum and stainless-steel feedlines
as”a_function of pressure. An example of these data.is presented in

Fig. 11.1-16.

Aluminum feedlines can result in significant weight savings. However,
aluminum expansion joints are not considered to be satisfactory. This

would require transition Joints to bellows of stainless steel or Inconel.

Transition pieces have been successfully fabricated and tested for diameters
up to 10 inches, and have been satisfactorily tested for cryogenic applications,

1torr) and leakage rates (1 x 1072

vacuum-holding eapability (1 x 107t sces) .
There is sufficient evidence to assure that feedlines up to 18 inches are .
feasible. It is recognized that aluminum is more difficult to weld than

stainless steel.

Vacﬁumejacketed feedlines could be constructed to maintain vacuum conditions
for extremely long periods (years). However, the major weakness in the

system is the vacuum.

Vacuum sealoff valves are currently being made with Kel-F double seats.
These seats are affected by the cryogenic temperatures and have g history
‘of leakage. The Kel-F will gradually assume a'compression set, and leakage
probability is increased. Additional technology development is needed to

improve the seals in the vacuum sealoff valves.
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The vacuum-sensing tubes have a less severe leakage history, but the
connector reliability and service-life definition needs to be improved.
Heater wires on these probes should be removed and self-heating by the high-
frequency technique should be employed. This has worked very well on the

Saturn V systems.
Parametric vacuum-jacketed line data are presented in Fig. 11.1-17.

11.1.5.2 Feedline Components. Bellows segments, which during operation

compensate for the thermal contraction and expansion of the lines, most
likely should be fabricated from Inconel 718 or a 300 series stainless
steel. The suppliers with experience in forming aluminum bellows were
contacted for information, and they recommended against the use of aluminum

in propellant feedlines because of the unreliable fatigue life.

The line design could be a basic tension system utilizing restrained expansion
devices to facilitate line contraction and expansion during operation.
Parametric data regarding bellows are presented in Figs. 11.1-18 through
11.1-21., As shown in the curves, the internal tierod bellows generally is

the most desirable from a weight standpoint. However, since the internal

yoke or tierod is in the flowstream, this bellows contributes to greater

line losses than internally gimballed bellows; this is shéwn on the

"Bellows K Factor Design Curves", Fig. 11.1-22. Externally gimballed

bellows would have approximately the same "K" factor as a straight convoluted
section. An even lower "K" factor can be obtained with the use of flow
sleeves in the convoluted sections. Also, this type of bellows may contaminate

the flowstream.

Contraction and expansion of the smaller diameter lines (1-in. diameter

and smaller) will be taken care of by the line routing. The loads and
stresses involved are small in magnitude and will not need expansion devices,
except when the line interfaces with the engine; then gimballing devices

will be used. Off-the-shelf bellows are not considered to be available.
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Fig. 11. 1-18 Parametric Bellows Data Pressure e~ 40 psi
Ametek/Straza Corporation - Estimated Data
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Fig. 11.1-20 Parametric Bellows Data - Pressure o~ 175 psi
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Fig. 11.1-21 Pressure-Volume Compensator (Linear) - Design Curve

L0 / ILH, Service Cycle Life ~ 1000 Missions or 10 Years
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Fig. 11.1-22 Bellows "K" Factor Design Curves
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11.1.6  Tank Vacuum Shells

Evaluations were made of tank vacuum-Jjacketed shells in order to cbtain
ﬁgliminary data for concept analyses. A variety of materials and tank
configurations were examined.

Structural sizing of the OMPS shell was based on an ultimate factor-of-safety
of 2.0 and & design collapse pressure of 15 psig at room temperature. Vacuum
shell geometry and structural arrangement details - such as joints, fittings,
- 1nsulation, and vacuum-jacket supports - were obtained from a drawing made

of a typical tank. Minimum gage constraints were iricluded in the structural
sizing., However, joints, fittings, and similar nonoptimum considerations V
were not included in the "ideal" structural weight.

A sumery of candidate structural/material concepts and vacuum shell weights
for a spherical 10, tank is shown in Table. 11.1-L. Comparisons of vacuum
shell weights show that the honeycomb sandwich is the minimum weight
structural concept. For example, the aluminum honeycomb-sandwich vacuum
shell weight is reduced by T7.4 and 75.0 percent relative to monocogue and

hat-section-stiffness construction, respectively.

Aluminum, beryllium, and advanced structural composite materials were
éons;l.dered for fhe honeycomb-sandwich facesheet. Homeycomb-core material
_ was aluminum with 1/4-in. square cells and 0.002-in. foil thickness. The
minimﬁm weight "conventional” material , 2219-T87 aluminum, was selected as
the leading candidate for honeycomb vacuum shell construction. Also,
aluminum was considered best from the foilowing standpoint :

Forming .

Fabrication

Reliability
_ Cost )

Compatibility with cryogenic fluids
Resistancé to a.ir. leakage
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Table 11.1-k

SUMMARY - CANDIDATE STRUCTURAL/MATERTAL CONCEPTS AND STRUCTURAL WEIGHTS
FOR SPHERICAL VACUUM SHELL, LO, TANK FOR OMPS

Vacuum Shell

‘Structural | ' . (1)
Concept Material Weight (1b)
"1. Monocogue a. Aluminum ' - 829 '
| b. Titanium 1,051
c. Beryllium 271
4. Boron Epoxy(z) 607
e. Graphite Epoxy(z) . 543
f. Boron Aluminum(a) 545
2. Hat Section a. Aluminum 49
Stiffened :
3. Honeycamb a. Aluminum ~ 187
sandwich(*) b. Beryllimm'3) 80
c. Boron Epoxy(z) 171
d. Graphite EP.OXY(Z) 151
e. Boron Aluminum(z) 191

Notes:

(1) Joints, fittings, and other -nonoptimum considerations not included in
the "ideal" structural weight.

(2) Isotropic la.yhp (0 deg + 45 deg, 90 deg). Minimum gage, t
(3) Minimum gage,t . = 0.010 in.

min - 0.020 in.

(4) Aluminum core, minimum gege,t . =~ =0.002 in., adhesive weight not
included.
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Amohg the advanced structural composites, graphite-epoxy is the minimm-
weighf honeyconb-facesheet material. Because of the biaxial membrane loads, .
a four-layer isotropic layup (O deg + 45 deg, 90 deg) was considered.

Minimum wall thickness was 0.020 in. or 0.005 in. per layer. Becauée of

the i{sotropic layup, the full unidirectional stiffness of the advanced
structural composites could not be employed. Comparison of éluminum and
graphite-epoxy honeycomb vacuum shell weights shows K 18.9 percent reduction
for the latter. |

Beryllium is the minimum-weight honeycomb-facesheét material. Relative to
aluminum honeycomb, the beryllium vacuum sheet wéiéht is reduced by 57.3
percent. Minimum gage of 0.010 in. was considered for the beryllium-
honeycomb facesheet. Because. .the bérylliumrhoneycomb~sandwich offers
extreme structural efficiency and signifiéant welght savings potential,
application of this structural/méterial concept to vacuum shell design
should be considered for future development. A

Vacuum shell weights and structural sizing dats for OMPS tankage are
summarized in Table 11.1-5. Aluminﬁm—hpneycomb-sand&ich was considered

.for the vacuum shells of Tank' Nos. 1 to 4. Vacuum shell weight of Tank No. 4
is based on 0.010-in. minimm facesheet thickness and 0.25-in. core height.
Because of minimum gage and core height restraints, an gluminum monocoque
"shell was cdnsidered for the relatively small vacuum shell of Tank No. 5.

11.,1.7 Fluid Acquisition Device Data

The propéllant acquisition devices have been discussed in detail in other
sections of this report. Information presented here is only supplemental

to these discussions.

There are two common wire-cloth weave patterns used to fabricate surface-

tension devices: a Dutch twill and sqﬁare weave. The Dutch twill is

formed by a shute wire over two and under:fwo-warp wires. The square weave

. is formed by one strand of wire at right angles to, and over and under,

.a wire, o
' 11-60
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SUMMARY - BASELINE VACUUM SHELL WEIGHTS AND STRUCTURAL SIZING DATA FOR OMPS

Tank
Configuration

TANKAGE

Vacuum Shell Weight

Structural Sizing Data

H2 Tank No. 1

¥
160
in

Total Weight

JW =512 1b

Unit Weight
1b
ft

(excluding adhesive)

Aluminum Honeycamb Sandwich

=2
H:q 0 H;d N:>

681 £t2
0.0170 in. face thickness
1.105 in. core height
36,600 psi face stress

surface area

L0, Tank No. 2 2w =215 1 _ Aluminum Honeycomb Sandwich
1b 2
I__3l7 “‘_1& W - W, = 0.663 -;;2 A, = 324 ft
H te = 0.0113 in.
h, = 1.432 in.
Lo 4n. % hoop 30,400 psi
LO, Tank No. 3 . 2w =187 1 Aluminum Honeycomb Sandwich
_L W.- Wyp = 0.59k }32 A, = 314 £t2
114 ft _ .
O in te = 0.01k41 in.
T h, = 0.796 in.
0 = 32,000 psi
LH, Tank No. Y ZWw=9.9 1 Aluminum Honeycomb Sandwich
| ' W - Wy = 0.349 2 |a, =286t°
- . ft s
O31+.8 in. : t, = 0.010 in. (minimum)
; ' h, = 0.25 in. (minimum)
df = 13,500 psi
10, Tank No. 5 Zw=12.81 Aluminum Monocoque Shell
l w-wm)=o.396-ll’2 Az=7f‘b2
O15.9 in. ' £ t = 0.27 in. shell thickness
. T : 0. = 5,000 psi
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Altﬁough wire cloth can be made from most stainless steels, the most common

and réadily available cloth is made of 304 stainless. A contending problem
concerns imperfections that can exist in large screen panels. In a“roll of
écreen, there may be no imperfections for several feet and then a small

afealof broken wireé may occur; the cloth must be cut to select choice pieces, o:

adequate repairs must be made.

An important factor in providing a screen that is compatible with propellants
is that of cleanliness. A means of eliminating the volatile contaminants

is to sinter the cloth about 2, 000°F 1in a controlled furnace. At this
temperature, volatile contaminants are ‘boiled off; each wire diffusion bonds
to the adjacent wire and the cloth increases its rigidity. Wire reorientation
1s minimized during working of the cloth.

Aluminum mesh is availsble in coarser mesh: 50~t0-60 micrpns nominal and
approximately 100 microns sbsolute. Finer meshes are not available because
of the inability to draw the fine wire without breaking.

A means of lowering the bubble point of a cloth is to calender (roll) the
-cloth to reduce the pore size. Aluminum mesh has been succeéefully calendered
to & lower bubble point. The aluminum cloth increases in stiffness as it
is calendered. Aluminum cloth materials are 5056 and 6061 aluminum alloy.

Another material used to fabricate surface-tension devices isvphoto-etchéd
foil_stock. Uniform patterns of any pore shape can be generated by the
etching process..

It has been found, in comparing photo-etched material that has ciréuiar
holes with the ﬁoven Dutch twill mesh!\that the circular-hole material will -
‘support & higher hydrodynamic head compared to an irregular shaped hole of
the'samg size. Whereas the metal-cloth mesh will wick, the circular-hole
material will not. The Dutch twill mesh will rewet, but perforated

material will not-because of the absence. of capillary passages.
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Tests have been conducted with porous plates made of sintered metﬁl powdérs.
Although a very low micron rating can be achieved with porous plates, the
pressure drop through the material becomes dominant at the expense of
reducing the hydrodynamic head that can be supported during expulsidn.

In design of a surface tension system; the hydrodynamic head that can be
supported for a given liquid is controlled by the pore size or wire-cloth
bubble-point rating. The pressure drop through the pores of a given screen
is minimized by a greater flow surface area. This can be accomplished
through pleating the fabric in designs that will allow this approach.

If the pores of the screen material are too small, the deviee will tend to
become & filter. This may or may not become a problem, depending upon
propellant solids content. Propellants should be filtered to reach a

maximum average particle size of 10-to-20 microns, with maximum individual
particles up to 40 microns. However, most.propellant procurement specifications
and inspection procedures are inadequate. The approximaste pore diameters

of screens are as presented in Table 11.1-6.

Table 11.1-6
SCREEN PORE SIZES
Equivalent Pore Sizes

Type Weave ' Weave ~ (4in. XlO.h) (microns)
Square Mesh 100 : 55 | 140
' 200 30 77
400 15 38
Dutch Twill 24k x 110 55 1L0
' 30 x 150 L. 105
30 x 250 : 28 73
50 x 250 24 . 62
80 x 70 .12 31
165 x 1,400 : 7 .18
325 x 2,300 2 5
- 11-63
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11.1.8 Insulation Subsystems and Related Analyses

The insulation subsystems considered for the cryogenic subsystems evaluated

were:

e ~“Insulation for long-time storage. This requires the use of multi-

.1ayer insulation which is effective only in vacuum.

e Insulation for groundhold and ascent. The insulation employed may be

foam, purged baﬁting, or propellant gas (held in honeycomb or some

other surface tension device).

11.1.8.1 Multilayer Insulation for Tankage. This insulation was examined
through the following steps:

(1) Generation of parametric date
(2) Evaluation of the effect of insulation on subsystem performance

(3) Examination of multilayer insulation properties as affecting the
applications

(4) Purging

11.1.8.1.1 Parametric Data Generation. These dats were generated on the

folidﬁing multilayer insulation composites:

e Double-aluminized mylar-silk netting (2 layers)
e Double-goldized mylar-silk netting'(2 1ayers)
e NRC-2°

Effeétive thermal conductivities for the installed conditions were selected
by examination of exiéting-data. AOne'of the principal references was

IMSC Report, "Inveétigation Regarding Development of a High Performance

' Insulation System," Contract 8-20758, July 1968. The parametric data are
presented in the Task Reports. '
' ' ' ' - 11-64
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11.1.8.1.2 Insulation Effects on Subsystems. The effects of insulation on '

subsystems was examined to determine the importance of insulation'parameters.
These data were presented in Section 9.1 for the Orbit Maneuvering Propellant
System. These analyses indicated that the type of insulation system had very
1little effect upon the overall system performance. The types of multilayer
jnsulation composites will optimize (from the standpoint of subsystem welght)
at different insulation thicknesses.

11.1.8.1.3 Multilayer Insulation Properties. Multilayer insulation properties
were examined for the shuttle application. Current information being generated
"is being produced in "Effect of Environment on Insulation Materials", NAS3-14342,

The studies have produced several generalized conclusions:

® Protection of multilayer insulation from the atmosphere and from light
is essential to the long-life application.

e The insulation csmposite should be capable of exposure to 350°F for a
short period during reentry. Xapton film has the potential for this.

e Goldized mylar and Kapton appears to be more resistant than aluminized
films.

e Gold coatings have poorer adhesion than aluminized coatings.
Several conclusions have been indicated by currently available data:

e Aluminized film is probably the most satisfactory material for use in

vacuum insulation.

e ' Goldized film is desirable for spplications in which mild environmentsal

exposures or occasional accidental environmental exposures may occur.
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e  Kapton film is needed for heat protection, . .

o Vacuum jaéketing is the most satisfactory method of protecting multi-
layer insulation.

11.1.8.1.4 Multilgxef Purging System. The multilayer purging system analyses
are presented in Section 9.7, Purging, Inerting, and Pneumatic Shppiy Systenm.
As indicated in these analyses, purge gas heating is necessary to maintain
purge bag eiterior temperatures if foam or other materials are not employed

to keep up the exterior temperatures. The choices for the ?urge gystem are:

o Liquid-Hydrogen Insulated Tanks

(1) Helium-purged multilayer with a soft shell (bag)

(2) Helium-purged multilayer with a hard shell

(3) Helium-purged multilayer with a hard shell with exterior foam
(4) Helium-purged multilayer with foam on tank

(5) Nitrogen-purged mltilayer with foam or batting on tank

(6) Nitrogen-purged multilayer with foam inside tank

e Liquid-Oxygen Insulated Tanks

(1) Nitrogen-purged miltileyer

A, Liggid-Hydrogeh Tank Insulation Purging Concepts

The examination of purging of insulastion on liquid-hydrogen tanks resulted

in several conclusions:

a. The soft-shell (bag) helium-purge insulation has the lightest weight

but presents problems‘in obtaining g satisfactory baé. Materials selected
for either a flexiblé-or semirigid purge bag must provide the following
functions: - '
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Gas Barrier (for He, N2, air and moisture)
Fabric reinforcement

Lamination adhesive

Seam sealing

Seam reinforcement

'Flanges for sealing to mounting and plumbing connections

Seals for final installation

Hot-gas flow into the vehicle base makes a high-temperature capability desir-
able. Most common films are eliminated from consideration by a 350°F require-
"ment. Of the films that will withstand 350°F, Kapton provides the best
strength-to-weight ratio and duraﬁility. However, the moisture-vapor trans-

mission rate of Kapton is high.

FEP Teflon offers the oxidation resistance needed for 350°F and 8 low water-
vapor transmission rate, but free film or film-to-fabric laminates would tend
to heat shrink at this temperature. FEP Teflon can be bonded readily by
fusion that must be sodium-etched to provide a surface for bonding or sealing

with adhesiyes.

The desirable properties of both materials are combined in a commercially
available Kapton coated with FEP Teflon. This provides one surface for heat
sealing during fabrication of the subassemblies and a surface that is bondable
by adhesives and sealants without special treatment. This material would also
offer greater resistance tb pinholing due to handling than would uncosated
Kapton. '

Thickness of Kapton would be decided on the basis of durability vs weight
tradeoffs, The minimal thickness of FEP available for the given thickness of
Kapton is desirable in order ‘to save weight.
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Beta glass cloth is attractive for the reinforcement of the gas bar?ier film.
This‘mgterial is available in a mumber of styles. The material selected would
represent a balancing of strength, durability, and weight considerations. The’
glass cloth would be bonded usihg‘a_polyamidé polyamid-polyester lamipating
adhesive such as developed by the Schjeldahl Company. This adhesive has been

used to bond glass cloth to Kapton for a variety of aerospace uses.

~

If FEP-coated Kapton is used, seams would be sealed primarily by fusion-bonding
a tape having a coating of FEP Teflon to the FEP Teflon side of the laminate.
Also, seams could be sealed by fusion-bonding FEP Teflon with Kapton strips
-over surfaces to be sealed and then using an RIV silicone (GE-RTV-156) as the .
adhesive-sealant. If uncoated Kapton is used, seams would be made by adhesive-

bonding‘only.

Reinforcement of seams would be accomplished by the use of a beta glass back-
ing for the sealing tape. If the strength of this seam proves inadequate, the
glass cloth side would be joined using a silicone rubber adhesive and a tape

containing glass cloth.

b. Helium-purged multila&er with a hard shell is a heavier system than that
of a soft shell. A shell of fiberglass laminate is a logical approach.

c. Helium-purged ﬁultilayer with a hard shell having exterior foam is a

heavy ‘insulation system. It does provide some protection to the multilayer
. from reentry heating.' This system provides accessibility to the foam.

d. Helium purged multilayer with foam on the tank produces the same result
(elimination of helium heating) a8 having the foam on a hard shell, bgt does
not provide ready access to the foam. It also raises the multilayer temperature

during reentry.
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e, Nitrogen-purgedVmultilayér with foam on the tank would eliminate helium

from the system. However, foam must be sealed to prevent nitrogen cryopumping
into the foam. If nitrogen is trapped in the foam, it is slowly released

in vacuum to degrade the multilayer.

f. Nitrogen-purged multilayer with foam inside the tank would be an applicable

systeﬁ only if & satisfactory internal foam system were developéd for long-
lifetime application. (The importance of such a system is lessened with the
adoption of droptanks.) Foam on the interior of tank; is viewed by LMSC as a

potential contamination problem.

B, Liquid-Oxygen Tank Insulation-Purging Concepts

Nitrogen is thellogical'purging gas for oxygen-tank insulation. The major
purpose of the purging is to protect the insulation from moisture, etc.
Consideration of foam underlayer or overlayer is not required, since nitrogen

heating is not required.

11.1.8.2 Groundhpld and Ascent Insulatiqn for Tankage. The groundhold and

ascent insulation for tankage has the following objectives:
e Prevention of air condensation on hydrogen tanks
e 'Reduction'of ice formation on tanks and adjacent structure

e Reduction of propellant or reactant temperature rise and subsequent
stratification and effects on tank pressure rise '

® Reduction of boiloff during groundhold

e Assistance in chilldown of tankage
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The groundhold and ascent inéulations were examined through:
e Parametric data generation

. e _Evatuation of the effects of insulation on subsystem performance

'

e Examination of properties

11.1.8.2.1 'Parémetric Data Generation. Parametric data were generated for

three types of systems:

(1) Foam insulation
(2) Purged batting (including shells)
(3) Internal gas barrier

These parametric data are presented in the task reports.

11.1.8.2.2 Ezg}uationAof Effects on Subsystem Performance. The computer
analyses of foam insulation, presented in Appendix C, indicéted that insulation
~ thermal conductivity did not have & significant effect on the overasll system

wéights. Therefore, the trend would be towards obtaining an insulation at
minimm weight to prevent air condensation and minimize ice formation.

11.1.8.2.3 Candidate Concepts. The selection of a system would be very
-dependent upoﬁ material physical properties, resistance to environments,

" maintainability, and initial cost.

The insulations may have to withstand temperatures of 810°R (3SO°F) during
reentr&, depending upon the type of shuttle thermal protection system. This
can resuit in degradation of organics and lead to requifeménté for an external
insulation on foams to reduce temperatures. This had lead some investigators
to considerétion of internal 1nsuiation to assist in this protection. However,
this does expose tpe bondline to increased temperatures.
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Possible choices for groundhold and ascent insulation are:

(1)

-(2)

(3)

(4)

(5)

(6)

Polyurethane foam applied by spraying. This system presents

attractive economies; however, the system ranks relatively low

in structural strength and heat resistance.

Polyurethane foam with honeycoﬁb reinforcement. This system

increases the strength of the polyurethane system but must be
bonded to tanks.

Polypropylene oxide foam. This is a high strength foam but must
be installed by bonding. )

Internal foam. The internal foam system may either be polyurethane

or polypropylene oxide reinforced with fiberglass or other
reinforcement. The foams must be bonded to the tanks and overcoat-

ings employed.

Internal surface tension and gas trap systems. These systems

employ small capillary passages that fill with gas by virtue of
heating rates, when liquid hydrogen is in the tanks, and form a
gas barrier. (Also, they inhibit convective gas flow when gas
is in the tanks.) The systems involve bonding to the tanks.

Purged batting materials. Batting material purged with helium

for liquid-hydrogen applications and nitrogen for liquid-oxygen
applications have potential applications. An external shell of
some type is required, and this imposes the principal disadvantage.
In liquid-hydrogen applications, the high-helium conductivity
requires insulation thickness that is approximately 3-to-5 times

as thick as foam insulation.
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11.1.8.2.4 General Comments Regerding Selection. The selection of a
groundhold and ascent insulation will be entirely dependent upon technology
advancements and cost considerations. If the trend towards droptéhks
continues, external polyurethane applied by spraying is undoubtediy the
best approach. For reusable internal tanks, polyurethanes have a definite
limitation if not locally protected against high-tempe:ature exposure,
Crackihg is considered to be a major problem that can result in.cryopumping

of air.

The alternatives listed have many similar problems associated with bonding,

temperature resistancé, maintainability, etec.

11.1.8.3 Feedline Insulation. Insulation of feedlines presents a somewhat
more complex matrix than the insulation of tankage. The feedlines fall into

several categories:

e Cryogenic Liquid or Cold Gas Feedlines

(1) Feedlines with_cryogenics during groundhold and ascent but not
required to be used after reaching orbit

(2) Feedlines with cryogenics on the ground and during ascent, which
imust contain cryogenics in orbit and possibly during reentry

©(3) Feedlines with cryogenics only in orbit (not required to contain
cryogenics in the atmosphere)

e Heatéd Gas Feedlines
(1) Feedlines with gases which are under highér ambient conditions

during groundhold and ascent but are not required to provide
insulation after reaching orbit
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(2) Feedlines that mey contain gases at a higher temperature than
ambient on the ground, in orbit, and possibly during reentry

(3) Feedlines that contain gases under higher than ambient conditions

only in orbit (not required to provide insulation in the atmosphere)

The feedline insulation examinations. have involved the feedline and feedline

component studies presented in Section 11.1.5 . Evaluations have included:
o Parametric data generation
e Candidate concepts

e Examination as part of subsystems

11.1.8.3.1 Parametric Data Generation. These data were generated for:

e Feedlines insulated with NRC-2 multilayer insulafion

o Feedlines insulated with foam
The data are presented in the Task Reports.
11.1.8.3.2 Candidate Concepts. Candidate concepts were formulated considering
the feedline insulation cgtegories previously presented. The candidates for
liquid-hydrogen feedline insulation are presented in Table 11.1-7, and the liquid

oxygeh-candidatgs are presented in Table 11.1-8. Candidates for heated gas
- feedlines are presented in Table 11.1-9.
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11.1,8.3.3 Examination of Feedline Insulation in Subsystems.

A. Orbit Maneuvering Propellant Supply

Feedline insulation approaches were considered most extensively in the OMPS
calcufations. In these studies, it was necessary to consider storage of
liquid hydrogen and liquid oxygen in feedlines for extended periods, These
evaluations indicated that liquid-hydrogen storage in feedlines for extended
periods (da&s) was not practical. Liquid oxygen could be effectively stored
only by employing supplemental cooling with hydrogen.

Vacuum-jacketed lines were examined for use with the OMPS subsystem. These

lines result in significant weight penalties and should be employed only if

it is considered essential to have the OMPS ready for operation at ground

launch or to provide the ultimate system for insulation protection. The OMPS
feedlines can be drained of liquid hydrogeh prior to reentry and only cold-helium

purging of insuletion is required.

B. Orbit Injection Propellant Supply

in the OIPS evaluations, the relatively high-héat input from the main engines
tends to reduce the sensitivity to feedline insulation. It was found that
increasing the circulation rates by 50 to 100 percent could offset any heate

reduction advantages of vacuum-jacketed lines or thicker foam-type insulations.

11.1.8.3.4 Selection Considerations. As will be recommended in the technology

evaluations, feedline insulation system development is needed. Considering the

available information, some of the better candidates can be recommended.

A. Lines Containing Cryogenics During Groundhold, Ascent, and On-Orbit

Fof this caée, multilayer insulation is required. The recommendation for

line insulation ig the NRC-2-type insulation purged during groundhold and
ascent. To'eliminate helium heating on hydrogen lihes, a fiberglass cover
with interior foam is desirable. The covers would be designed to be removable.
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B. Lines Containing Cryogenic During Groundhold an& Ascent

One of the previously discussed foam insulations is considered to be a
satisfactory approach, with adequate circulation. Adhesion of the foam and
sealing of bondlines are recognized problems. Purging of certain component
areas;is considered necessary even with this type of insulation to prevent
cryopumping under the insulation system.
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11.2 REUSABILITY AND RELIABILITY EVALUATTIONS

Reusability and Reliability evaluations were conducted in basically the

same task, inasmuch as these two areas are so closely related in subsystemsA
that m@st be "reusable". Generally, it has been observed in the performance
of this contract and a previous contract (Reusable Subsystems Design Analysis,
FO4(611)-69-C-0041) that the expressions of "reusability" and "reliability" as
developed for expendable systems require considersble explanation and qualifi-
cation when épplied to the shuttle. The philosphies and approaches to the
shuttle subsystems must tend to adopt aircraft practices that result in a more
flexible approach to reusability and reliability.

The term "Reusability” has not been given the connotation of being a
quantitative term but has been considered somewhat qualitative. The term
"Reliability,” on the other hand, has been given too much of & connotation
of being quantitative and, as such, has lost much of its impact upon design.
It is difficult to substitute a single word for "Reusebility," however, it
must take on the connotation of a quantitative term (lifetime, cycle life,
etc.). A substitute for the word "Relisbility," in terms of the shuttle
application is possible, by using the word "Predictability."” It is possible
to combine the concept of Reusability and Reliability into the single concept
of "Predictability"” for the shuttle application. This combines the data
collection functions of Reusability and Reliability, which are so closely
related in the shuttle application.

11.2.1 Reusability and Reliability Data Collection
The collection of data regarding reusability and reliability was considered to

be very important to the success of the evaluations. AiResearch and Lockheed
cooperated in this effort. ‘
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Schematics prepared for AiResearch evaluation were discussed in Sections 9:1
through 9.7. The components selected by AiResearch were examined and the
following supplied:

e Lifetime estimates (cycles, hours of oﬁeration, etc.)
e ‘Most likely malfunction |

e Failure rate estimate

Lockheed collected lifetime and failure rate estimates on the balance of the
components in these schematics. When the schematics were iterated and expanded,
the data for the additional components were collected.

It is believed that the best available and applicable lifetime and failure rate
data were utilized in these studies; fhis information is provided in the Task
Reports. Where lifetime data were not available, these were estimated by the
technique presented in subsection 11.2.3.

11.2.2 Initial Redundancy Evaluations

Initial functional redundancy evaluations were performed to provide a guide
"to the safety evaluations and schematic iterations by finding the "weskest"
components in the sﬁbsystems.

Fﬁnctional redundancy appraisals have been accomplished using an iterative
procedure., The SETA IT program was employed in these analyses; this computer
programAhas extensive capability to evaluate the effect of redundancy upon
reliability. - The .SETA II computer program was allowed to insert any number

of redundancies necessary to bring a component up to a point for satisfying

a reliability effectiveness ratio. From the run data obtained, it was then
possible to establish the identity of4these components requiring redundancy
characterization. Then, either a component required no redundancy, or, it
required some particular kihd of redundancy. The next step, therefore, was to
select the type 6f redundancy that best fitsthe component and subsystem function
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requirements and then constrain the component to that type of redundancy. A
second run of the SETA II program with component constraints was made - this
time allowing the program the option of selecting only the number of redundancies

within the constrained redundancy type.

The anglysis considered only those redundancies hecessary to assure functional
performance with a probability of successfully functioning of at least 0.99.
"Weak link" components of the various systems have been identified. The

results of the redundancy analyses are presented in Appendix E.
11.2.3 Predictability Evaluations*

Subsystem analyses were made to obtain a quantitative evaluation of component
reusability and effects on subsystem reliability. At the same time, comparisons

were made of subsystem and integrated system approaches.

The SETA II computer program used in the analyses is specifically designed for
reussble spacecrgft systems analyses. This program, which considers the
"effective useful 1life" of components at any specified confidence level,
automatically replaces components (1) that are sbout to exceed their effective
useful 1life, (2) notes the replacement, and (3) continues the analysis through

the specified number of mission flights.

The term "predictability” as employed in the study relates to the probability that
a subsystem or component will conform to requirements over a given period of
time. This term is used to indicate not only "reliability" but also the effects

of replacement of components as a result of "wearout."

*Include component replacement requirements, reliability relationships,
integrated system comparisons, and operational mode comparisons
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There exist two probabilities of failure that are considerations in reusable
systems: . !

e The probability of failure per flight, which is a constant for gll flights,
if constant failure rates for the components may be assumed. This is
~ essemtially a function of the effective redundancies in the subsystems

ind, of course, the failure rates of the components.

e The prébability of failure in "N" number of flights, which does not relate
to the probability of failure per flight but is an excellent indicator-

for. the comparison of reusable subsystems.

This latter probability of failure is affected by the removal of components, as
they reach their respective lifetimes and are replaced by "new" components.

The failure rate versus operating time curve shown in Fig. 11.2-1 provides the
basis for reliability and 1ifetime éonsiderations. In order for constant failure
rates to be used, the flat portion of the curve must be the operating range

of the component lifetimes.

Component 11fet1me‘data are not available for a number of components, since tests
to the wearout conditions (iRcrease in failure rate) have not been performed.
Studies have been made (Ref. 11-2) which have shown that effective useful
lifetimes for components can be estimated from known failure rates.

If it is assumed that existing failure rate data aré-redsonably good, an
estimate of this minimum wearout-failure-free 1ife can be made for any degree
of sta.tistica.l confidence by utilizing the pure-chance chi- -square (X ) estimator.

2
Xa,2
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where, '
ML = the lower -limit of the mean wearout distribution (effective useful 1if
M = Mean life to wearout failure (useful life)
X2 = the pure-chance chi-square number

Subscript @ = 1 - desired confidence o
Sﬁbscript 2 = 2 degrees of freedom associated with gero failures.

The literal interpretation of this estimate (ML) is: if the mean wearout life is
M, as given, one can expect (on the basis of pure chance) that (1 - ) percent
of the time the device will not fail due to wearout in less than M hours.

As an example,. assure that s pressure switch is claimed to have a mean life of
25,000 cycles. On the basis of pure chance and for a risk (@) of 0.05, the
lower. 1imit of the wearout distribution can be expected to be:

' _ _2x25,000 ° _ jo;ooo
i T - 5%
0.05, 2

= 839 cycles

. That is, there is a 5-percent risk that failures other than those due to
wearout will occur over the period of O to 8349 cycles. The wearout distri-

bution can hot be defined to exist over the range

8349 < 25,000 M

max.

This :Linplies that the standard distribution might be

Lo - 25,000 > 8ho Léﬂgi = 5550 cycles.

The tot_al range might then be construed to be

8349 < 25,000 < 41,651 cycles.

11-8k4
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From the preceding, the following inferences can be made:

o The exponential or pure-chance probability will only hold for mission
requirements of less than 8350 cycles.

e 'The probability that the device will operate continuously for longer
‘than 41,000 cycles is practically zero.

The validity.of the estimated standard deviation, which was obtained by uéing
the chi-square estimator, is established by the following considerations. It
is well known that all possible.fémilies of distribution are, for all practical
purposes, between the exponential and the normal. This is shown by the gamma,
beta, chi-square, and Weibull families of distribution. In estimation of
standard directions, therefore, the minimum value is given by the exponential,
since 0° = mean , then ¢ = VM, The maximum ¢ for the normal distribution of
failures occurs when the range is fromt = 0O (or cycles = 0) to the mean;

i.e., g = }—; . 2g‘rggothe example above, ge = V35,000 = 158 and the
meximm g = .——43-- = B8333. Since the estimate of 5550 is reasonably close

to the maximum normal, it may be considered a reasonsble estimate.

The steps in the analyses of the subsystems and integrated systems were as
follows:

o"Employment_of schematics that satisfy redundancy and safety requirements
e Determination of single mission probability of failure (reliability)
o Determination of the probability of failure in a given number of flights,

N, considering replacements.

11.2.3.1 Selected Subsystems and Integrated Systems for Evaluation. Two

integrated systems approaches and variations of these approaches were selected;

also, individual subsystems were examined as a basis for comparison. The

selected systemsconsisted of:

11-85
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e, System IIT, as presented in Section 10, consisting of: , ‘

(1) Integrated OMPS/ACPS with pump-at-tank
(2) Subcriticsl ARU
(3) Integrated fuel cell/Life support

e fBystem I, as presented in Section 10, consisting of: Lo

(1) A1l systems integrated in OMPS tank with pump-at-engine
(2) Basic construction of subsystem similar to System ITI

e System I, as presented in Section 10, consisting of: |

(1) A1l systems integrated in OMPS tank with pump-at-engine

(2) More optimum construction of subsystens -
e Individual subsystems

(1) OMPS with pump-at-engine
(2) Subcritical ACPS

(3) Subcritical APU

(4) Supercritical fuel dell
(5) Supgrcritical life support

11.2.3.2 Duty Cycles and Operational Modes. The selected duty cycles for
the systems are very extensive and are presented in the Task Reports.

Two operational modes were sélected for operation of the Integrated OMPS/ACPS
systems.

Tﬁp pump operation schedules were examined as follows:

11-86
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e Preselected Pump Arrangement (PPA) - This schedule designates a first
pump subsystem as prime for the mission, supported by a second pump

running on-line with a lighter load. The third pump is a standby.

e Sequential Pump Arrangement (SPA) - This schedule divides load among

all pumps for equal operating times, such that when the pumps are

" operated in a sequenced mode they all receive equal wear and are, in

turn, sequenced through primary, secondary,'and backup ordering.

The operating schedules for System III are presented in Tables 11.2-1 through
'11.2-4.

The integrated OMPS/ACPS with pump-at-tank assumes five OMPS engine burns, with

component duty cycles as presented in the Task Reports.

The integrated OMPS/ACPS with pump-at-engine requires different duty cycles
for the pump operational modes. One main engine was assumed to operate five
times for a total of 800-sec burn time for the preselected pump arrangement
model. For the sequential pump arrangement models, all three of the main
engines were assumed to operate an average of two times each for an average

total burn time of 267 sec on each engine.

11.2.3.3 Comparison of Operational Modes. The preselected pump and the

sequential pump operational modes were compared by employing System III.
Pump—at-the-tank'results are presented in Fig. 11.2-2, and the pump-at-the-
engine results are'presented in Fig. 11.2-3. As may be seen in these figures,
the preselected pump mode of operation results in lower probability of un-

scheduled maintenance but results in higher component replacements.

It is expected that this indicates a trend which will be found in all "reusable"
éystems. If one "leg" of the system is selected for operation, the second "leg"
operated oniy in-critical periods, and the third "leg" as standby, the reliability
will be'higher and ﬁrobability of failure over a given number of missions will

be lower than by spreading the operations over all of the "legs". The number
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A

Table 11.2-1 \

PRESELECTED PUMP ARRANGEMENT SCHEDULE
' . (PUMP-AT-TANK)

LOCKHEED MISSILES & SPACE COMPANY

| | __OMPS Operation | ACPS Operation | Total Operation _|
* Subsystem - Time " Cycles Time |Cycles Time Cycles
en l : .
Pump 1 775 sec 5 | 277sec | 70 1,052 75
‘Pump 2 775 sec 5 166 sec | 20 941 25
Pump 3 : STANDBY ONLY -
Hydrogen Supply
Pumpl | 775 sec 5 525sec | 95 (13,000 | 100
Pump 2 775 sec 5 315 sec | 20 1,090 25
Pump 3 : STANDBY ONLY -
Pump 4 : STANDBY ONLY - —
1
Table 11.2-2
SEQUENTIAL PUMP ARRANGEMENT SCHEDULE
~ (PUMP-AT-TANK)
OMPS Operation ACPS Operation | Total Operation
Subsystem “ Time ~Cycles Time |Cycles Time Cycles
Oxygen Supply o
Pump 1 516 sec | § | 149sec| 20 665 sec’| 25
Pump 2 516 sec 5 149 sec | 20 665 sec | 25
Pump3 516 sec 5 149 sec | 20 665 sec | 25
Hydrogen Supply .
. Pumpl 516 sec 5 107 sec | 20 623 sec | 25
" Pump 2 516 sec 5 107sec | 20 623sec | 25
Pump 3 518 sec 5 107 sec 20 623 sec 256
Pump ¢ - - 524 00c| 128 524 sec | - 25
11-88
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Table 11.2-3

PRESELECTED PUMP ARRANGEMENT SCHEDULE
(PUMP-AT-ENGINE)

' ACPS. Operation
Subsystem “Time (sec) Cycles

Oxygen Supply

Pump 1 696 65

Pump 2 418 15

Pump 3 ' ' . STANDBY ONLY ———»
Hydrogen Supply

Pump 1 731 90

Pump 2 439 15

Pump 3 l STANDBY ONLY —»

1
Table 11.2-4

SEQUENTIAL PUMP ARRANGEMENT SCHEDULE
(PUMP-AT-ENGINE)

ACPS Operation
Subsystem Time (sec) Cycles
"~ Oxygen Supply
Pump 1 | 372 22
Pump 2 372 22
Pump 3 372 22
" Hydrogen Suppl
Pump 1 390. 30
Pump 2 390 30
Pump 3 390 30
11-89

LOCKHEED MISSILES & SPACE COMPANY



IMSC-A991396

oot

06

uot3sIadg dumg TwTyuUsnbag sA PIjosTasaay - YuBL--dumg IIT wayshg 2-2°TT *31d

08

SNOISSIW 40 ¥3IWNN Q31D3rOyd
0L 09 os . of o€ 0c ot

1 I

V90AS ‘€6 IHON4 | | L~
60AS “€0Sd ‘GVOAS *VYOAS ‘£ LHOITd - | "
208d ‘104d 49 IHON |~
Ezmzwuﬁ&x ITONIS) :a3DV143¥ SININOIWOD E

|

|

\5:9.:3 NNY-dWNd @31o7

7
mmEV \ )

N3ND3s

\ml JINAIHDS NNY¥-dWNd TVIL

£0Sd ‘8¥0AS ’ VIOAS ‘1£ 1HONd
Z0¥d ‘10¥d ‘¥9 1HONA -

Ezuzuuﬁag m._oz_& cmusmg &zmzoA_SOu

00Z°0

0o¥°0

009°0

008°0

- §o—

IDONVNIINIVW GIINGIHISNN 40 ALITIEVEOUd

11-90

LOCKHEED MISSILES & SPACE COMPANY



IMSC-A991396

uoggeaadpo dumg Tetqusnbag sA PajdaTo8aIg - onﬂwcmup.m..masm IIT woyskg €-2°TT °*Brd

SNOISSIW LHOIT4 40 ¥YIGWNN Q3103rOYd

00l 06 08 174

09

0s oy ot 14 ol 0

_ | T
VZIAS ‘VOLAS 96 1HOIY
10¥d ‘S8 LHOIT4
#0Sd ‘9E0AS ‘VEOAS ‘€ 1HONS
10¥d ‘¥9 1HOINS
10¥d ‘e¥ LHOINS
L0¥d ‘ZC 1HOIT4

*d3DV14d3Y¥ SININOIWOD

=

‘

| |

31NQ3HDS NNY-dWNd a315313534d

=]
-

pd

e

e

10¥d mm IHONN4
¥0Sd ‘9E0AS <mo>m mm 1HOINd

| "]

L

JINA3IHDS NNI-dWNd TVILN3ND3S
|

204d ‘10¥d ‘¥9 IHONN4 —
10¥d ‘e¥ LIHOIS
10¥d ‘IZ LHOT11d

"om.usn_mx mWZmZOmE.OU

0oz*

ooy

009°

000°1

IDNVNIINIVW 3 TNAIHISNN 40 ALITIEYEONd

11-91

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A991396

of component replacements in the preselected "leg"” will be higher.  Tradeoffs
theréfore, exist between component replacement and probability of failure over

a number of missions.

11.2.3.4 Comparison of Subsystems and Systems. SETA II analyses were used
to.prdduce comparisons of system concepts ,Asystem variations, and subsystems.
The probability of unscheduled maintenance in a given number of missions and
the mumber of replacements are a good indication of the relative suitability

of the subsystems for reusable applications.

-11.2.3.4.1 Comparison of Pump-at-Engine and Pump-at-Tank. System IIT was used

as & basis for comparing the pump-at-tank and pump-at-engine for both the pre-
selected and the sequential pump operational modes. The comparisons are presented
in Figs. 11.2-4 and 11.2-5. '

Results indicate that the pump-at-tank has a lower probability of a failure over
8 ‘given number of missions than the pump-at-engine. This results primarily from

the number of components that must be added for the chilldown functions associated

with the pump-at-engine.

11.2.3.4.2 Comparisons of Subsystems in'§ystem TIII. The relative predictability
of gubsystems with a given system are of interest. Results of the Integrated
OMPS/ACPS are p;esented in Figs. 11.2-2 and 11.2-3. The subcritical APU systen,
shown in Fig. 11.2-6, reflects the lesser duty cycle and less complexity of

.this subsystem}"The EC/LSS system, presented in Fig. 11.2-7, has a severe duty

cycle; this results in a number of component replacements. As shown, the component
replacements tend to continually adjust the probability of failure to lower
values because of the percentage of new components added.

A}
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11.2.3.4.3 Comparison of System III and System I. The relative probabilities-

of-failure of System III and System I have been compared for the pump-at-engine
configurations for the preselected pump mode of operation. Results of this
comparison are presented in Fig. 11.2-8. The comparison indicates very little
difference in relative probability of unscheduled maintenance over a given
number ‘'of missions. This is primarily because the components eliminated by
going from System III to System I are principally low duty-cycle components.

There is a difference in the probability-of-failure per mission:

Preselected Pump-at-Engine

Probability of

Unscheduled Maintenance Reliability
e System I 0.006162 0.993838
e System IIT 0.008416 0.991585

11.2.3.4.4 Comparison of Integrated Systems and Individual Subsystems.

Integrated systems and individual subsystems were compared with regard to
relative probability-of-failure over a given number of missions, as noted in
Fig. 11.2-9. Nonintegrated systems have a slightly higher relative probability

of failure. The component replacements are comparable.

The integration of systems does not significantly affect component replacements,

as can be seen from these data.

The per-flight probabilities-of-failure differ substantially:

Preselected Pump-at-Engine

Probability of

Unscheduled Maintenance Reliability
¢ System I . 0.006162 0.993838
e System III 0.008416 0.991585
® Individual Subsystems 0.008972 0.991028
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11.2.4 Component Reusability Discussions

As previously discussed, the similarity between the shuttle and aircraft
requires adoption of an approach to "Reusability" that is similar to aircraft
prgctiées. In subsection 11.2.3, the concept of components replacement
(whilé they have a constant failure rate) was discussed. This concept is
considered more acceptable for mechanical components than the "inspect and
replace" approach, which may be applied to certain components. Applicable
components for this aﬁproach include insulation, wiripg, support structure,‘

and similar inspectable components.

11.2.4%.1 Effect of Duty Cycles and Mission Lifetime. One conclusion resulting
from the analyses présentéd in éubgéctioﬁ 11.2.3 and from previous studies

(such as "Reusable Subsystems Design Analysis,” FO4(611)-69-C-0041) is that
the shuttle duty cycle is not severe from the standpoint of hours of operation,
number of cycles, etc. Only the Fuel Cell and the Life Support subsystems

require continuous operation during the mission.

The 1imiting factor for many components will be the length of environmental
exposure. Degradation of organic»materials - such as thermal insulation,
electrical insulation, and plastics - will be governing factors in component

replacement.

11.2.4.2 Mechanical and Electrical Component Reusability. AiResearch and
Lockheed examined the mechanical and electrical componehts selected for the
subsystems to determine the likely malfunctions. These possible malfunctions
should be considered as points that could affect the "effective useful 1ife"

or, in other words, result in an increase in failure rate after a certain period

of time.
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The results of the component examinations are presented in the Task Reports.
From examination of these data and making general conclusions, the following

brief summary results.
e Valves
Valve seat leakage is generelly identified as & principal fﬁilure
mode. Organic materials gradually age and are subject to compression set.

Metal seats are affected by contamination and stress.

Actuator failure (principally to open a normally closed valve) is identified

as a major shutoff valve failure mode.

e Regulators

Bellows and disphragm leakages are the major failure modes. This is

expected because of the large number of cycles used by these components,

5 Relief Vaglves

Bellows leakage is the principal cause of malfunction. Relief valves

generally have high failure rates.

e Pressure Switches

Pressure switches normally fail by shorting which produces & continuous
signal. The lifetime of pressure switches in cryogenics is relatively

short in comparison to most other components.
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11.2.4.3 Tankage Reusability.

11.2.4.3.1 Design Allowables. The factors related to the reusability of
tankage for the shuttle have Béen extensively investigated. A summary of the
stafg-oféthe-art is presented in "Reusable Subsystem Design Analysis Study,
AFRPL TRF69-210." The entire subject will not be presented in this report.

~

Design allowables, also represented by safety factors, are employed to account
for any differences between (1) actual and calculated stresses and (2) actual
stresses and known strength values. The standard desigﬁ approaches, utilizing
ultimate strength and yield strength, assume that the fracture strength is

greater than the yleld strength and equal to or greater than the ultimate

strength; these rely on proper design procedures that incorporate past experi-
ence and safety factors to keep the working loads below the yleld and ultimate

loads and, hence, below the fracture load.

Failure histories illustrated a major shortcoming in conventional design
criteria. They did not provide for the possibility that unstable fractures
can occur at stress levels that are well below the design limit (yleld stress)

of a structural member.

"Brittle" failures, indicating no significant gross plastic deformation prior .
to failure, occur. Analyses of many of these "brittle" failures disclosed a
sufface~or embedded flaw (crack) as the origin of the catastrophic fractures.
To assist in ﬁroviding a solution to this and‘related érdblems, a special ASTM
committee was formed. With Griffith-Irwin fracture mechanics as a basis,
methods of fracture-toughness testing have been proposéd by the ASTM committee.
For certain applications, these tests have provided an analytical technique,
which establishes a quantitative measure of a material's crack tolerance. This
has been an important step in the development of a rational procedure for
designing against catastrophic failures.

Uhstable-fracture wiil occur, according to fracture mechanics theory, when the
stréss—ihtensity factor K at the tip of a crack reaches a critical value Kc.
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If plang strain conditions prevail, the eritical value is KIc' In turn, the
critical stress-intensity factor is a function of the gross stress o and the
ceritical flaw size (a/Q)cr. The parameter Q is determined by the flaw shape,
gross stress o , and material tensile yield strength FTY'

In thick-walled pressure vessels, flaws are often surface or embedded cracks.
Slow, stable crack growth to a critical value can occur as a result of exposure

to either fatigue-type loading or to certain chemical environments.

Experimentally, it has been determined that for a given chemical environment,
there exists for each material tested, a stress-intensity factor KThreshold
below whlch no crack growth and, hence, no failure occurs. Therefore, an
initial stress-intensity factor KIi can be established, such that no crack
growth will occur. Threshold stress-intensity factors(KThreshold)are usually
presented in terms of the ratio KIi/KIc’ for which no stable crack growth
occurs. Threshold stress-intensity factors vary widely for different material-

environment conditions.

For fatigue loading, no analogous KThreshold has been experimentally established.
Apparently, some finite crack growth occurs even at very low values of AK (the
excursion in stress intensitxl arising from the varying stress encountered in

fatigue-type loading.

Fracture toughness data are very limited for the alloys being considered for
the shuttle cryogenic supply systems. Current safety factors are accepted with
general agreement between shuttle contractors. However, it is recognized that

some conservatism is likely present in these design allowables.

11.2.4.3.2 Tankage Components. The tankage compbnents might be considered to

include:

® Access doors and seals
® Electrical feedthroughs
o Tank heat exchangers
11-103

LOCKHEED MISSILES & SPACE COMPANY



IMSC-A991396

Access doors (manhole covers) present potential leakage regions. Current
serrated seals have proven to be effective, but these may become problems in
systems requiring repeated reuse. Leakage from seals must be isolated from
multilayer insulation by vented covers. Purging must be provided for hydrogen
leakége;into the atmosphere.

P——

Electrical feedthroughs have been examined for high cycle life. However,
failures are likely to occur. Reliability and lifgtime data for these components

are very doubfful, since "failures" by low leakage may go undetected on current
expendable vehicles.

11.2.4.4 Feedline Reusébiliﬁy; The feedline design data presented are based

upon a minimum of 10,000 cycles. Designing for high cycle life is basically a
function of design allowables and length of expansion joints. The designers
have flexibility in tradeoff of weight and cycle life. '

Problems associated with vacuum éealoff valves have been previously discussed.

The effectiveness and lifetime of these valfes should be improved.

11.2.4.5 1Insulation Reusability. ‘Insulations are organic materials, which are
suﬁject to gradual degradation if exposed'to light, air, and moisture. Protection
from the enviromments, such as in a vacuum jacket, or inert atmosphere can

significantly increase the life.

11.2.4.5.1 Multilaygr Insulation. As previously indiéated, gold-coated film

appears to be more resistant to moisture, but has less adhesion. Gold-coating

film, therefore, would appear to be more satisfacfory than aluminized film for
feedline 1nsulation, insulation around valving, and similar applications where

possible contact with the atmosphere and moisture is most likely to occur.
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The superior adhesion and abrasion resistance of aluminized film appears to
make it more satisfactory for vacuum-jacketed tanks and for purged-tank

insulation.

Dacron net is demonstrating superior envirommental resistance in the tests
currently being conducted in the contract, "Effect of Environment on Insulation
Materials“, NAS 3-14342. Therefore, dacron net may be the both satisfactory

material for-use with gold- and aluminized-film as a spacer and support material.

11.2.4.5.2 Foam Insulation. This insulation reusability is of major

concern to NASA and contractor investigators, with considerable Jjustification.
Used as an internal insulation, it receives more protection from envirommental
effects but is subjected to liquid contact, slosh loading, etc. As an
external foam, it is subjected to severe environmental conditions. Cracking

can result in cryopumping with significant effects.

It is unlikely that a foam insulation can be employed that will last the
lifetime of the shuttle. However, in aircraft practice, organics such as
fuel-tank bladders (fuel-tank sealant in military aircraft) and interiors

are replaced at intervals (based on lifetime constraints).

11.2.4.6 Fiberglass Tank Support Struts. A study of the fiberglass struts

reusability was performed under Fiberglass Support for Cryogenic Tanks ,
NAS3-12037. There are sufficient cryogenic-tank support test investigations
to indicate that fiberglass tank struts are capable of being (1) cycled to
design loads and (2) unloaded at least 10,000 times in both tension and
compression with design safety factors of 1.4. The critical failure mode

is in tension loading. Failures normally occur in the warm end of the struts,
since the tensile strength is less at the higher temperature.

The number of thermal cycles that the struts are capable of surviving without
damage appears to be extremely large. Design practice is to match the thermal

expansion characteristics of the fiberglass and end fittings.
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11.3 TECHNOLOGY EVALUATIONS

Technology evaluations were performed with the objective of identifying the
nged for further technology improvements and developments. These evaluations
were formulated to provide pertinent information relative to the importance of
techndlogy improvements and the extent of benefits that could be derived. The
approach was to record technology information throughout the study'as it was
identified and to make the necessary analyses when the sensitivity and tradeoff
studies were being performed.

"This section of the report does not contain the application and the reusability

analyses discussions.
11.3.1 ‘Bagic Data Requirements

In the performance of the evaluations, several items related to basic data were
identified,gs follows:

Helium solubility.in cryogenics

Hydrogen flame data ‘

Fracture mechanics data .

Géneral belloﬁéfdata for cryogenic applications
Organic materials lifetime data

e ®6 o 0 o o

Cryogenic fluid capillary properties

11.3.1.1 Helium Sblubiliﬁx in Cryogenics. Data available regarding helium
solubility in liquid oxygén, 1liquid hydrogen, and 1liquid nitrogen need to

be expanded. Also, basic data are needed concerning the release of helium
resulting from pressure drops, introduction into pumps, introduction into
thrustefs, etc. This 1nformaﬁioniis needed in propellant acquisition device
étudies, fuel cell burging, pumping of helium-saturated cryogenics, etc.
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11.3.1.2 Hydrogen Flame Data. There are very little data available regarding

hydrogen flames from low-leakage sources. Data are needed to determine the
conditions for supporting combustion from potential hydrogen-leakage areas, &s

a function of air and nitrogen flowrates over various leakage geometries.

These data are necessary to determine methods of employing nitrogen purge for
potential component leakage regions. Also, data are needed to establish confidence

for elimination of purging from components.

©11.3.1.3 Fracture Mechanicg Data. The desired quantity of fracture mechanics

data for shuttle cryogenic materials is not available. Fracture mechanics data
for all alloys and conditions that might be employed in the shuttle could provide

considerably more design confidence and lower design allowables.

11.3.1.4 General Bellows Date for Cryogenic Applications. A number of component

failures in cryogenic applications are related to bellows. These include
bellows as a part of feedline components, regulators, valves, etc. While
considerable testing and analyses have been performed, there needs to be a
centralized collection made of these data and additional testing performed to
provide adequate parametric data, analytical techniques, etc. Lifetime

(reusability)data should be established for a wide variety of applications.

11.3;1.5 Organic Materials Lifetime Data. As has been indicated in numerous

places in this report, the lifetime of organic materials will be the limiting
factors in many applications. The shuttle has uniquely imposed environments,
which include severe launch conditions periodic vacuum exposure, aﬁd periodic
exposure to temperatures up to 350°F. From considerable experience with
organic materials, the aircraft industry is capable of selecting proper

electrical insulations, thermél insulations, pléstics, etc.
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The ipitiation of a "materials and pfocésses" function for the shuttle, similar
to that-employed in aircraft, and the collection of required date should result
in significant payoffs in the future design efforts. Component manufacturers ’
will need considerable assistance in the selection of suitable organic materials.

11.3.1.6 Cryogenic Fluid Capillary Properties. Data are very limited regarding
the caﬁillary properties of cryogenic fluids. These data need to be expanded
to improve analytical techniques.

11.3.2 Improvements in Analytical Techniques

Several areas requiring improvement in analytical technique were determined as

follows:

e Improvement in pressurization anslytical techniques
e Improvement in cryogenic fluid stratification analytical techniques
e Analysis of insulation purgihg.

11.3.2.1 Improvements in Pressurization Analytical techniques. Pressurization

in suberitical cfyogenic supply systems represents a major weight factor.
Efrors in the optimization of the pressurization system'can be more significant
than errors in the optimization of the insulation system. Development of
analytical techniques and support test data has been severely neglected. The
pressurization analytical techniques are related to the stratification analyses
“improvements sﬁbsegpently discussed and ultimately mst be coupled with these

results.

11.3.2.2 Improvements in Cryogenic Fluid Stratification Analytical Techniques.
The stratification of eryogenic flulds under acceleration and heating can have

significant effects upon design. Stratification is closely coupled with the
pressurization analyses. Coupling with the pressurization analyses can be
particularly significant when the sidewall heating rates are low, as in a
multilayer insulated tank.
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Programs need to be initiated that provide for analytical improvements with
related large-scale testing. ' E

11.3.2.3 Analysis of Insulation Purging. Even if vacuum jacketing is used

extensively on the shuttle, insulation purging will be required for a number of
apﬁlidations. Insulation-purging analyses relste to assurance that (1) atmospheric
gases are removed, (2) inert atmosphere is maintained after the'system is filled
with cryogenics and(3) the venting processes are functioning during ascent.
Improvementsin the analytical techniques are needed to provide for the design

of purging and purge vent systems for a variety of conditions. In some of the
relatively small volumes to be purged, the desired. sizing of the vents would

be small in comparison with the mean free path of the gas molecules at low

pressure.

11.3.3 Mechanical and Electrical Components (Instrumentation and Controls Not
Included)

The mechanical and electrical components (other than instrumentation and controls)
generally were found to require little technology advancement. With the
exception of several major components, most of the modifications would fall

into the category of design improvements rather. than technology advancements;

11.3.3.1 Cryogenic Pumps.

11.3.3.1.1 Attitude Control Propellant Supply. The pumps for the Attitude
Control Propellant'Supply subsystem have been recognized as a technology

advancement requirement for the last two years. Work is currently‘underwéy

under "APS L02 and LH, Turbopump Assemblies", NAS 8-27784, being performed by

Rocketdyne Division of North American Rockwell.
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It iq recognized that the severe requirements for this turbopump can be
reduced by the acceptance of accumulator weight penalties. Some tradeoffs in
this manner will likely be necessary to offset high development costs.

In_thi§ study, an examination was made of the effects of turbopump start transient
on acquisition device sizing. The acquisition device was the type discussed

for the integrated OMPS/ACPS system. It is a "gallery" type devicé, which is
generally accepted as the principal candidate for this application.

The current RL-10 start transient was used as the model of a typical "severe"
‘start transient. Severe effects from the start transient are normally near the

end of the transient.

In a device of this type, it is necessary to consider the gas "breakthrough" of
a screen that is in gas, while the flow is being supplied from a screen in
liquid that is some distance upstream from the screen in the gas. Typical
geometries examined are presented in Fig.1 .3-1. '

The results of the analyses are presented in Fig. 11.3-2. As may be seen from
these analyses, the required head differential pressure capabilities must be
lérge, even for the very large gallery line diameters considered.

In order to lower the sizes of the acquisition device lines, the turbopump
will have to be designed to have a smooth, almost linear, start transient that
‘will reduce the fluid accelerations. This:will undoubtedly require some type
of throttling of the turbine. |

11.3.3.1.2 Auxiliary Power Unit Supply. If the ARU supply is stored sub-
critically and separately from the other subsystems, a pump is required that is

capable of being operated continually and "dead headed" when flow is not
required. i '
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11.3.3.2 Cryogenic-Cocled Electrical Motors. The cryogenic-cooled electrical

motors were examined, and each offered potential applications. As shown,
electrical motors may even be applicable to the ACPS pumps. Further investigation
into the employment of the cryogenic-cooled electricél motor is desirable.
Technology programs are needed to further define the motors and development

requirements.

11.3.3.3 Valves and Regulators. The valves and regulators examined by AiResearch

and IMSC indicated little requirements for technology advancements. Most of

the requirements are for design improvements and testing to establish lifetimes.

One area for specific improvement is to incorporate fail-operational/fail-safe
provisions into the valve actuators. There are a number of applications for

latching solenoid actuators with fail-operational/fail—safe capability.

One class of valves significantly lagging in technology is disconnects.

The disconnects for the cryogenic supply systems are generally bulky; thermal
aspects need improvement to reduce icing and heat input. There is some doubt
regarding the reusability of current disconnects.

11.3.4 Instrumentation and Control

As a class of components, the instrumentation components generally have lower

service 1ife and a higher probability of failure than other components.

11.3;&.1 Pressure Switches. Pressure switches with increased lifetime need to

be developed. These are required for both oxygen and hydrégen systems.

11.3.4.2 Liquid-Hydrogen Pressure Transducers. A satisfactory pressure

transducer that will function immersed in liquid hydrogen is required. The
integrated systems necessitate pressure monitoring without liquid orientation,

and this is currently not satisfactory with existing transducers.
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11.3.4.3 Leakage Detection Devices. A family of leakage-detection devices is

required to detect body gas losses and safety hazards. Sonic devices may be

satisfactory for low leakages.

11.3.4.4 Temperature Control of Venting. As was presented in previous

discussions, control of venting by liquid temperature rather than by ullage
pressure would allow much more control flexibility. This will require techno-

logy advancement in the temperature sensors and the control logic.

11.3.5 Tankage

Tankage has not been identified as a significant technology problem because of
the extensive experience that has been accumulated and the design techniques

available. However, two areas have been selected for technology advancement:

e Composite Tankage

® Vacuum Shell

11.3.5.1 Composite Tankage. The importance of the accumulators in the system

optimizations has been presented in previous evaluations. The lowering of the

accumulator weights can reduce the turbopump requirements in the ACPS subsystem.
High-strength, low-weight tanks are probably best achievable with metal-lined
filament-wound composites. Cryogenic-formed steel (Arde process) appears to be
very attractive for inert gas and oxygen storage. Other composite tank

approaches should be examined.

Tests are required to determine the cycle lifetime of acceptable composite tank

approaches.
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11.3.5.2 Vacuum Shell. The major improvement required in vacuum shells is

weight reduction - with design confidence. If vacuum shells are réquired for
the orbit maneuvering propellant supply subsystem, these are of considerable
size and weight, and weight saving through technology advancement can be
substaﬁtial. '

11.3.6 Feedlines and Feedline Components

Existing stainless steel and Inconel lines do not require significant technology

advancement. The problems are principally related to design problems.

11.3.6.1 Aluminum Feedlines. Significant weight savings are possible through

the use of aluminum feedlines. However, the expansion joints must be of

stainless steel or Inconel and joining with the aluminum is required.

Technology advancement and extensive cryogenic testing are required for the

development of these composite feedlines.

11.3.6.2 Vacuum Sealoff Valves. Vacuum sealoff valves have been identified

for technology development. The seats in ‘the valves must be improved to hold

vacuum for extended periods under flight environments.
11.3.7 Propellant Acquisition

‘Propellant acquisition has been identified as the major shuttle problem related
to cryogenics. Thé development of a satisfactory device is necessary for the
attitude control propellant supply and other subsystems, dependent upon the
degree of integration. Considerations associated with generating this

conclusion are:

e The shuttle adverse acceleration requirehents are high, probably

resulting in multiple screens.

e The required start transients are severe, resulting in large device

 pressure 4drops.
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e Gas ingestion into the devices will be a difficult problem and

complete exclusion of gas may not be possible.

11.3.8 1Insulation

Multilayer insulation was not identified as requiring significant technology

developmeat.

11.3.8.1 Groundhold, Ascent and Reentry Insulation. The groundhold, ascent,

and reentry insulations (which include foams, purged batting, and gas barriers)
require significant development. The problems related to reusability have been

previously discussed.

11.3.8.2 Feedline Insulation. The development of effective feedline insulation

systems that are removable is desirable. For most applications, this system
wocld require multilayer and foam combined in an optimum fashion. Purging of

the insulation to remove the étmosphere is a very likely requirement.

11.3.8.3 Breathing Insulation System. Some of the multilayer insulation

wpplications do not require helium or nitrogen purging during reentry. However,
it is considered desirable to remove contamination and moisture. A drier and
filter system could satisfy the requirements, allowing the insulation to

"breath" without contamination.
11.3.9 Subsystem Technology Development

Several technology developments at the subsystem level were identified as

follows:

Liquid/liquid attitude control

e Electrical integration of the cryogenic subsystems
e Subsystem integrated control

e Cryogenic cooling
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11.3.9.1 Liquig/Liquid Attitude Control. The Liquid/Liquid Attitude Control
Propellant Supply subsystem has been shown to be a potentially satisfactory

subsystem. The requirements for subsystem components are much less severe

than for the Gas/Gas Attitude Control Propellant supply.

Technology examinations of this system are justified on the basis of an
alternate ACPS development. The component development requirements of the
Gas/Gas system may prove to be too costly. The Liquid/Liquid system indicates

potentially a much less development cost.

11.3.9.2 Electrical Integration of the Cryogenic Subsystems. The possibility

of employing electrical motors for pump power, in addition to the other
electrical requirements of the subsystems, indicates that technology examinations

are justified to evaluate integration of the electrical systems.

11.3.9.3 Subsystem Integrated Control. Considerations of subsystem and

integrated system control early in the shuttle program will provide significant
guidance to the subsystem developments. The logical starting point is with
the ACPS subsystem; the control system evaluations would then be expanded to

the entire integrated system.

11.3.9.4 Cryogenic Cooling. The cryogenic-cooling task currently being

conducted under this contract is indicating that radiator replacement or
supplementation is promising., Technology evaluations of the most promising
approaches should continue towards the development of a suitable integrated

cryogenic-cooling system.
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Section 12
REFERENCES

This section of the Interim Report is provided to consolidate reference infor-
mation cited in the discussions and to provide general information. The references,
listed on pages 12-12 through 12-20, are numbered according to the sections in
which they appear.

12.1 GENERAL INFORMATION

The Task Reports are referenced in most of the sections. Brief listings of the
information which is provided in the Task Reports are presented in Tables 12-1
through 12-6. These are the current contents of the Task Reports and will be

modified as more data are generated.
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Table 12-1
PROGRAM/PROJECT MANAGEMENT TASK REPORT
OUTLINE OF CONTENTS

LIAISON ENGINEERING

l:l Phase B Contracts Interfaces and Data Sources
1.2 Supporting Technology Contracts

1.3 Related Technology Contracts

1.4 Source References

REPORTS

2.1 Monthly Progress Reports (three volumes)
2.2 Status Reviews/Minutes (two volumes)
2.3 Subcontractor Reports (five volumes)

2.4  Other volumes will be added, as required
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Table 12-2

MASTER INTEGRATED SYSTEMS TASK REPORT

OUTLINE OF CONTENTS

INTRODUCTION

MISSION APPLICATIONS ANALYSIS
2.1 Nominal Logistics Supply Mission
2.2 Other Space Shuttle Missions

2.3 Representative Vehicle Configurations

SYSTEM CRITERIA AND REQUIREMENTS
3.1 Overall Systems.Critéria

3.2 Interface Requirements and Definitions

MISSION COMPLETION, SAFETY, AND ABORT
4,1 Mission Completion
4.2 Safety and Abort Criteria

INDIVIDUAL SYSTEMS

5.1 Life Support Supply System

5.2 Power Generation Supply System
5.3 Propulsion Supply Systems

INTEGRATED SYSTEMS
INTEGRATED MATH MODEL

GENERAL DATA

8.1 Structural Data

8.2 Thermodynamics

8.3 Thermal Protection

8.4 Fluid Dynamics

8.5 Thermal Control and Fluid Conditioning
8.6 Expendables

GENERAL ANALYSES
9.1 Structural Analyses
9.2 Thermodynamics
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Table 12-2 (Cont.)

9.3 Thermal Protection

9.4 Fluid Dynamics

9.5 Thermal Control and Fluid Conditioning
9.6 Expendables

10 REFERENCES

11 APPENDIXES
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Table 12-3
INTEGRATED SUPPLY SYSTEMS TASK REPORT
OUTLINE OF CONTENTS

INTRODUCTION
REQUIREMENTS AND CRITERIA
2.1 Life Support Supply System Requirements and Duty Cycles

2.2 Power Generation Reactant Supply System Requirements
and Duty Cycles

2.3 Propulsion Supply System Requirements and Duty Cycles
2.4 Safety and Abort Criteria

INTEGRATED SYSTEM DEFINITION

REFERENCES

APPENDIXES

Schematic Symbols List

Comp Symbols List
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Table 12-4
PROPELLANT SUPPLY SYSTEMS TASK REPORT
OUTLINE OF CONTENTS

INTRODUCTION

REQUIREMENTS AND CRITERIA

2.1 Orbit Injection Supply System Requirements and Duty Cycles
2.2 Orbit Maneuvering Supply System Requirements and Duty Cycles

2.3 Attitude Control Propulsion Supply System Requirements and
Duty Cycles

2.4 Airbreathing Engine Fuel Supply System Requirements and
Duty Cycles

2.5 Purge, Inerting, and Pneumatic Supply System Requirements
and Duty Cycles

ORBIT INJECTION SUPPLY SYSTEM DEFINITION

3.1 Definition of Candidate Concepts

3.2 Candidate Systems

3.3 System Tradeoff Results

ORBIT MANEUVERING SUPPLY SYSTEM DEFINITION
(Subheadings same as 3.0 above)

ATTITUDE CONTROL PROPULSION SUPPLY SYSTEM DEFINTION
(Subheadings same as 3.0 above)

ATRBREATHING ENGINE FUEL SUPPLY SYSTEM DEFINITION
(Subheadings same as 3.0 above)

PURGE,.INSERTING, PNEUMATIC SUPPLY SYSTEM DEFINITION
(subheadings same as 3.0 above)

MODULE AND COMPONENT PARAMETRIC DATA

8.1 Storage Tanks and Components

8.2 Fluid Delivery Components

SYSTEMS ANALYSES

9.1 Structural Considerations

9.2 Thermodynamics

9.3 Thermal Protection Analysis

9.4 Fluid Dynamics
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Table 12-L4 (Cont.)

9.5 Thermal Control and Fluid Conditioning

9.6 Expendables Analyses

REFERENCES
APPENDIXES
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Table 12-5
POWER GENERATION REACTANT SUPPLY SYSTEM REPORT
QUTLINE QOF CONTENTS

INTRODUCTION

REQUIREMENTS AND CRITERIA

2.1 Fuel Cell System Requirements and Duty Cycles
2.2 Auxiliary Power Unit System Requirements and Duty Cycles
FUEL CELL SUPPLY SYSTEM DEFINITION

3.1 Basic Fuel Cell Considerations

3.2 Definition of Candiéate Systems

3.3 Candidate Systems

3.4 Fuel Cell Supply Tradeoff Studies

AUXILIARY POWER UNIT SUPPLY SYSTEM DEFINITION

4.1 Auxiliary Power Unit Considerations

L.2 Definition of Candidate Concepts

4.3 Candidate Systems

L.4 Auxiliary Power Unit Supply Tradeoff Studies
MODULE AND COMPONENT PARAMETRIC DATA

5.1 Storage Modules and Components

5.2 Fluid System Components

SYSTEMS ANALYSES

6.1 Hydrazine Auxiliary Power Unit Supply Analyses
REFERENCES

APPENDIXES
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OUTLINE OF CONTENTS

INTRODUCTION

SYSTEM REQUIREMENTS AND CRITERIA

2.1 Metabolic Supply Requirements and Duty Cycle
2.2 T ermal Control System Requirements and Duty Cycle
SYSTEMS DEFINITION

3.1 Definition of Concepts

3.2 Candidate Subsystems

3.3 - Life Support Supply Tradeoff Studies

MODULE AND COMPONENT PARAMETRIC DATA

4.1 Storage Tank Modules and Components

.2 Fluid System Components

CRYOGENIC COOLING IN ENVIRONMENTAL CONTROL SYSTEMS
REFERENCES

APPENDIXES

Schematic symbols list

Math symbols list
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12.2 SECTION 5 REFERENCES

No. - Title

5-1  IMSC-A9891L42 Lockheed Missiles & Space Co., "Study of Alternate Space
Shuttle Concepts"”, NAS 8-26362, 4 June 1971

5-2  PWA PDS-4198, Pratt & Whitney Aircraft, "The RL-10 Engine for Advanced
Space Propulsion"”, 21 Dec 1971

5-3 SDB 2.3.1.3, North American Rockwell Corporation, "System Data Book,
Orbit Maneuvering System for Space Shuttle Program.”

5-4 MDC EO189, McDonnell-Douglas Corporation, "Space Shuttle Program Phase B
Systems Study Data Book - Volume I," 23 Apr 1970, Revised 1 Jun 1970

5-5 McDonnel Douglas, Space Shuttle Propulsion Mid-Term Review Splinter
Meeting, 10, 11 Dec 1970

5-6 SV 71-4 McDonnel Douglas, "Space Shuttle Phase B 180 Day Review",
13 Jan 1971

5-7 SBD 2.3.1.2, North American Rockwell Corporation, "System Data Book,
Orbiter Main Propulsion System for Space Shuttle Program."

5-8 ° 8pec 2289, "Preliminary Model Specification, Rocket Engine, Liquid
' Propellant, Pratt & Whitney Aircraft Model RL10OA-3-3A," 21 Apr 1969

5-9  MSC-02542, "Typical Shuttle Mission Profiles and Attitude Timelines,"
Vol I - Space Station Resupply Missions, 23 Jun 1970

5-10 McDonnell-Douglas Corporation, "Space Shuttle Phase B Quarterly Review
Presentation Charts, 1 Oct 1970

5-11 RFP 10-8423, NASA OMSF, "Space Shuttle Vehicle Definition/Design Study,"
19 Feb 1970
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NO. Title
5-12 NASA ICD No. 13 M 15000-A, "Space Shuttle Interface Control Document."

5-13 SDB 2.3.1.4, North American Rockwell Corporation, "System Data Book,
Attitude Control Propulsion System for Space Shuttle Program.”

5-14 NASA, "Space Shuttle Vehicle Description and Requirements Document,"
(APS Definition), 1 Oct 1970

5-15 SDB 2.3.6.1, North American Rockwell Corporation, "System Data Book,

Power Generation System for Space Shuttle Program."

5-16 Pratt & Whitney Aircraft, "Space Shuttle Fuel Cell Systems" Technical
~ Briefing Handout to IMSC, 2 Dec 1970

5-17 General Electric, "Fuel Cell Technology Program for Future Manned Space
Flights", Technical Briefing Handout, 28 Oct 1970, presented toIMSC by
L. J. Nuttall on 8 Jan 1971

5-18 North American Rockwell Corporation, "Space Shuttle Orbiter Environmental
J

Control and Life Support System Synthesis” prepared by W. F. Dyer, Dec 1970

5~19 North American Rockwell Corporation, " Documentation for Space Shuttle

90 Day Review, Team 7 - Environmental Control and Life Support, 1 Oct- 1970

12-13

LOCKHEED MISSILES & SPACE COMPANY



IMSC-A991396

12.3 SECTION 9 REFERENCES

No.

9-1

9-l

Title

'W. G. Steward, R. V. Smith, and J. A. Brennan, "Cooldown Time for

Simple Cryogenic Pipelines,” Proceedings of the 10th Midwestern
Mechanics Conference, Aug 1967

IMSC-K-14k-67-3, Lockheed Missiles & Space Company, "Cryogenic Container
Thermodynamics During Propellant Transfer," Final Report, Contract NAS
8-20362, 31 Oct 1967 |

J. A. Brennan et al, "Cooldown of Cryogenic Transfer Lines - An
Experimental Report," NBS Report 9264, NBS-CRL, Boulder, Colo, Nov 1966

Lockheed Missiles & Space Co., "Program 827 Hot Pump Restart Limits",
IDC, R. D. Crozier to R. W. Johnson, 22 Feb 1968, (See following pages).
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INTERDEPARTMENTAL COMMUNICATION

[o [} - »
R. W. Johnson perr) 62-50 ac/ 15k rany 1 oam 22 Feb 68
FROM R. D. Crozier 62-22 154 1 2887
B Y O pw e
SUBJECT: PROGRAM 827 HOT PUMP RESTART LIMITS
Ref: (a) Report "Restart Boilout Preliminary NQOM Static Test Results ,

dated 19 February 1968

Near the end of December, Propulsion Systems was requested to evaluate the
effect of 26OOF propellant pump temperatures on the restart reliability of
the Program 827 third burn. During this period, restart boilout tests were
being conducted with the Improved Agena propellants to define the 8533 engine
turbo pump thermal design requirements. The tasks were integrated so that
the 196k SS-01B hot pump test data could be included with the Improved Agena
test data to develop a boilout model to be used for 8533 turbopump thermal
design and for extrapolation of the SS-01B data to the Program 827 flight
thermal conditions. Th1s effort has been accomplished and it is concluded
that the predicted 260°F Program 827 temperatures are in excess of values
allowable for reliable third burn restart.

The boilout model developed is presented in Reference (a) and utilizes both
the SS-01B IRFNA/UDMH and Improved Agena N O test data. The model assumes
that the dominant boilout criteria is the gegree of pump superheat. Super-
heat is defined as the pump housing temperature excess above the propellant
boiling point at the specified tank pressure. A summary of the results is
presented in Figure 12-1. For the Program 827 propellants, it can be seen that
no pump boilout occurs below a superheat of approximately 3OOF Between 30 F
and 75 F the pumps are filled with propellants by tank pressure as the pro-
pellant isolation valves (PIVs) open prior to engine restart. After filling,
the propellants gradually boil and are expended from the pump producing a
vapor locked condition which precludes reliable restart. Initiation of engine
operation during the early portion of the gradual boilout suppresses boiling
and allows normal engine restart.

For superheats above 750F, boilout occurs so rapidly that a combination of
engine and PIV sequencing will not reliably suppress boiling and initiate

normal flow to the thrust chamber (restart). The minimum Program 827 third

burn tank pressure is approxigately 18 psia. With a pump temperature of 260°F
the data point lies on the 100 F superheat line of Figure 12-1. The test data
presented in Figure 12-1 provides substantiation of only a narrow portion of the
boilout model. With the limited data available, it is concluded that extra-
polation of the satisfactory restart region should be limited to the bracketed
portion of the 75 F superheat line. For Program 827, this region can bhe attained
by levering the maximum oxidizer pump housing temperature to about 230°F.
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PGM 827 HOT PUMP ‘
RESTART LIMITS Page two

Elevating the tank pressure to 30 psia will return the 827 point to the 75°F
superheat line but additional pressure must be added to account for uncer-
tainties in the model extrapolation to this new region. Although the tank
Pressure elevation hardware requirements can be defined it is not known what
is required to lower the maximum pump temperature. It is recommended that
additional thermal analyses be conducted to determine the thermal alternatives.

R. D, Crozier, Manager
Propulsion Systems

RDC/SCD:%

cec:

J. J. Cizauskas 62-22/154

S. C. De Brock 62-22/154

C. E. Ellis 62-5U4/152

R. G. Gabalec 55-25/152

M. P. Hollister 55-25/104

' . Hull 62-22/154
M. Swartz 62-59/154

R. 0. Sloma 62-22/154
R. Winquist 65-10/154
E., Yoder 62-59/154
D. Youre 62-59/154
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12,4 SECTION 11 REFERENCES

No. - Title

11-1 List of Manufacturers Supplying Cdmponent Data

In addition to the subcontract with AiResearch, a number of manufacturers
supplied component data without charge. Their assistance was important

to the accomplisiment of this contract.

. Valves, Regulators, etc.

(1) Calmec, Division of Ametek
(2) Parker, Division of Parker Hannifin
(3) Sterer

Tankage

(1) Arde, Inc.
(2) Aerojet General

Feedlines and Feedline Components

(1) Ametek/Straza Corp.

(2) Arrpwhéad Bellows Mfg. Co.

(3) Solar Mfg. Co.

(M) Flexible Metal Hose Co.

(5) Stainless Steel Products Corp.
(6)  Aeroquip Marmon

12-18

LOCKHEED MISSILES & SPACE COMPANY



11-2

IMSC-A991396

Instrumentation

(1)

(2)

(3)
(&)
(5)
(6)
(7)
(8)
(9)
(10)

Bell and Howell

Bourns, Inc.

Travis Corp.

Custom Component Switches, Inc.

Kratos Instruments

Thermal Systems, Inc.

Bendix - Instruments and Life Support Division
Simmons Precision Products

Statham

Giannini Controls

SD 68-490, North American Rockwell Corporation, "A Second Look at the

Exponential Assumption for Reliability Estimating", Jul 1968
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12.5 APPENDIX A REFERENCES

No.

A-1

Title

~

70-6810(2), AiResearch Manufacturing Company, "Space Shuttle APU System
Study, "System Selection Review Charts, Contract NAS 3-14L08, 15 Oct 1970

70-6810(2), AiResearch Manufacturing Company, Space Shuttle APU System
Study Contract NAS 3-14408 System Selection Review", 15 Dec 1970

70-T7014, AiResearch Manufacturing Company, Preliminary Design of an
Auxiliary Power Unit (APU) for the Space Shuttle" Contract NAS 3-14408,
15 Dec 1970

BC 70-73, Rocketdyne, North American Rockwell, "Space Shuttle Auxiliary
Power Unit (APU) - Preliminary System Study

BC T0-175, Rocketdyne, North American Rockwell, "Space Shuttle Auxiliary
Power Unit (APU) Phase 1 Summary", 18 Dec 1970

BC 70-116, Rocketdyne, North American Rockwell, "Space Shuttle Auxiliary
Power Unit (APU) Phase 1 Summary, Supplementary Data", 18 Dec 1970.
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