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TECHNICAL MEMORANDUM X-64735

HEAT FLOW AND CONVECTION DEMONSTRATION
(APOLLO 14)

SUMMARY

The final results of the Heat Flow and Convection (HFC) Demonstra-
tion experiments conducted aboard the Apollo 14 spacecraft on February 7,
1971, during the lunar flyback indicate significant convection as the result
of heating fluids in nominally zero-g environments. In the case of a liquid
having a free, unbound surface, a cellular convection was observed. The
cause of this convection was conclusively established as surface tension gradi-
ents, as predicted by existing theory. Completely contained liquids and gases
exhibited a small, though significant, amount of first-and second-order con-
vection. The cause of these convections is being investigated.

INTRODUCTION

The HFC Demonstration experiments conducted aboard the Apollo 14
spacecraft were designed to evaluate the effects the spacecraft environment
would have on the mechanism of thermal convection. The basic objective of the
demonstration was to demonstrate the combined effect of various forces on the
kind and magnitude of fluid flows that occur in actual flight. Although normal
convection is suppressed at near weightlessness, some fluid flow will occur
because of acceleration impulses, surface effects, and expansion. Predicting
flows from these effects is like predicting the weather. NASA had received
many industry proposals involving fluid flow in a near weightless environment.
The information obtained from this demonstration will provide some of the
data required to evaluate these proposals for future space applications, as well
as practical knowledge for designing future approved flight experiment and
logical follow-on fluid physics experiments.

The thermal behavior of fluids is a vital part of manufacturing proc-
esses involving liquid separation, precipitation, solidification, etc. The HFC
Demonstration was carried on the Apollo 14 flight as part of the NASA Material
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Science and Manufacturing in Space (MS/MS) Program to obtain data on heat
transfer and convection in fluids in a low gravitational environment. The
apparatus consisted of a box 23 cm by 23 cm by 9.6 cm (9 in. by 9 in. by 3.8
in.), to which an onboard 16-mm Data Acquisition Camera (DAC) was attached
(Fig. 1). Four test configurations, each of a particular geometry and each
containing a specially chosen fluid, were mounted in the apparatus. The re-
quired information was recorded in color by the DAC. The astronauts were
Comdr. Alan B. Shepard, Jr., and Comdr. Edgar D. Mitchell, U. S. Navy,
and Maj. Stuart A. Roosa, U. S. Air Force. Major Roosa performed the
demonstration on February 7, 1971 during the lunar flyback coast period.
Astronauts Shepard and Mitchell also participated in the demonstration. The
g level was typically 10-(;g at the location of the HFC Demonstration during
this period, which was at the lower equipment bay. In this position the small
acceleration force vector was in the same direction as if the box were lying on
a table in 1-g environment.

The unit is a small 3.2-klg (7-lb) box containing three different types of
test cells: the radial cell, the flow pattern cell, and the zone cell. Each cell
contains a small electric heater to heat the fluid being tested (Table 1). Power
for heating is obtained from the 28-Vdc spacecraft system. Seven tests were
made, each requiring 10 to 15 min. The data were recorded by the 16-mm
DAC attached to the unit and operating at a rate of one frame per second. No
recorded data were taken.

TABLE 1. HEATER POWER LEVELS

The radial cell is a circular cell filled with carbon dioxide gas used to
test radial heat flow. The cell, a cylindrical dish with a small electric heater
mounted in its center, is covered by a plastic film coated with a liquid crystal

2

Flow Pattern Cell

Run 1 7.4W

Zone Heating Cell

Run 1 9.8W

Run 2 14.4 W

Radial Heating Unit

Run 1 5.5 W

Run 2 8.7 W



material that changes color as it is heated. This film is divided into quarters,
and the different sectors are sensitive in different temperature ranges. The
changing color patterns map the temperature distribution as it develops and
are recorded by the camera.

The flow pattern cell is designed to test the convective flow pattern
induced in an oil layer by thermal changes in surface tension. The cell con-
sists essentially of a shallow aluminum dish which is uniformly heated from
the bottom. Thin layers of a heavy oil, called Krytox, were introduced from
a reservoir. This oil contains a suspension of aluminum flakes which enables
the oil flow patterns to be viewed. The window to this cell was opened during
the tests to establish a thermal gradient across the Krytox. Therefore, the
heat from the oil was dissipated into the spacecraft atmosphere.

The zone cells are composed of two transparent cylinders with electric
heating elements located in the center of each cylinder. The left tube contains
water and the right, a sugar solution. Strips coated with liquid crystal mate-
rials are located along the central axis of each cylinder and also on the surface.
The presence or absence of convection is based on the temperature color maps
observed on the strips as heat flows in both directions from the center heated
zone.

SECTION 1. THE DATA

Data Reduction Process
The 16-mm DAC film was received, and the reduction of data into

quantitative values has been completed. Since the temperature data were
obtained from liquid crystal colors recorded on ordinary color indoor film, a
lengthy color calibration procedure was used to establish a matrix for conver-
sion to temperature.

To reduce the data, however, the first step was to read the positions
of the color bands on the various strips (identified in Fig. 2), using a compu-
tational telereader. The telereader magnified the image by a factor of 100 and
has sensitive cross hairs which are tied into an electronic counter and card-
punch. Once a frame was read, the cards plus the calibration were read into
the computer, where conversion into isotherms was made. In addition to the
regular output, each isotherm was filtered for output according to a Bessel
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function routine recommended by the MSFC Computation Laboratory. This
essentially filters out the frequency close to the reader frequency (random
error of reading). The filter function is presented in Figure 3. A study was
made to determine the optimum frames to read, i.e., precision versus work-
load. It was found by a least-squares method that one reading every fifth
frame was nominally sufficient. The standard deviations in reader color
determination were also calculated (Table 2).

TABLE 2. STANDARD DEVIATIONS IN READINGS

Standard Deviations

Point First Second Third

Center 0. 022 0. 019 0. 019

Amber 0. 040 0. 052 0. 057

Yellow 0. 021 0. 021 0. 030

Green 0. 025 0. 029 0. 036

Blue 0.035 0.031 0. 034

Perhaps the most significant test run was the comparison of "blue" and
"red" processed film. The differences here were within the above standard
deviation.

Figure 2 shows the face of the Apollo 14 HFC unit and identifies the
temperature strips. The data are given in the Appendix (Figs. A-1 through
A-89).

The g Levels
The g levels were obtained from the spacecraft orbital coordinate data

through the calculation of the acceleration for given motion as well as gravity
gradients. Figures 4 and 5 show the X, Y, Z accelerations for the HFC
unit I1I. These curves do not include movement of the unit relative to the
spacecraft. The unit was accidentally bumped during flight. The time, but not
the magnitude, of these impulses can be determined from the film. Time
data were obtained from film frames showing Major Roosa's wristwatches
(Table 3).
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TABLE :'. THEl RUN TIMES

Time (Start)

Central Standard Apollo Elapsed Frame Number
Run Time Time (First Frame)

Radial Run No. 1 5:22 170 hr, 19 min 0

Zone Run No. 1 5:34 170 hr, 31 min 740

Zone Run No. 2 5:53 170 hr, 50 min 1875

Radial Run No. 2 6:01 170 hr, 57 min 2323

Flow Pattern 11:01 175 hr, 57 min 3705

Liquid Crystal Calibrations
The liquid crystal strips used in this demonstration require a calibra-

tion matrix for conversion of color to temperature. These strips were fabri-
cated from the basic pigment purchased from Hoffman - La Roche, Inc.;
therefore, ground-based calibrations were required. The calibrations used
in the data reduction presented in this report were static, i. e., using con-
trolled heating to constant temperature levels. A copper-constantan thermo-
couple was placed in the center of a liquid crystal strip that was mounted on
an aluminum diffusion plate. A duplicate of the strip that was located near the
unit on/off switch was used in these calibrations. Several runs were made,
care being taken to prevent extraneous heat flow. Table 4 shows the results.

Although liquid crystals have been used frequently in recent years, no
data were found in the literature or through personal contacts in which an
application similar to this one was found. Because of well-known problems
in color matching during photography and the relative newness of using liquid
crystals quantitatively, additional work has been done and is continuing. No
apparent effect caused by film processing was seen. All calibrations were
made under flight-simulated lighting conditions.

Liquid crystals exhibit a change in color with viewing angle. A typical
example of this effect (from Hoffman - La Roche, Inc.) is shown in Figure 6.
The equivalent uncertainty caused by this effect is estimated to be 0.25°C.
Work was done on two other possible effects - transient effects and aging
effects. A change of about 1° C every 3 months has been seen in the-
calibration crystals. This effect has been shown to be a function of time and
light exposure.t.,~ ' L""~
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TABLE 4. TEMPERATURE CALIBIRATIONS a

Range Number

12 1 3 1 4

Temperature Range (°C)

Color of 24 - 31.0 30 - 37 37 - 43.5 43 - 49. 5

Liquid Crystalsb  Temperature [ oC( ° F)I

Brown 25.4 (77.7) 30.9 (87.6) 37.2 (99.0) 42.9 (109.3)

Yellow-Brown 27.5 (81.3) 32. 5 (90.5) 38.6 (101.5) 44.4 (112.0)

Light Green 28.0 (82.4) 33.6 (92.5) 39.2 (102.5) 45.8 (114.5)

Dark Green 28.9 (84.0) 34.7 (94.5) 40.0 (104.0) 46.4 (115.5)

Blue-Green 29.4 (84.9) 35.3 (96.5) 40.9 (105.6) 47.0 (116.6)

Light Blue 30.0 (86.0) 36.3 (97.4) 42.0 (107.6) 47.8 (118.0)

Blue 30.5 (86.9) 36.9 (98.4) 42.9 (109.:3) 48.7 (119.6)

a. Although color references are not included, the interpretation is
relatively clear after the color ranges of the crystals are once viewed.

bo. Black-dark brown -- below sensing range; royal blue (dark) - above
sensing range.

c. The calibrations appear to be readily repeatable within ± 0.250 C (or
0.450 F).

cl. Or light brown.
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NOTES *:P Typed numbers indicate the liquid crystal temperature ranges.

1. 24 to 31.0 0 C

I2. 30 to 37. 3 C

4. 43 to 49. 5 C

right upper side of center rod; C, left upper side of rod;

D, left lower side of rod (seen through mirror).

iNOTESur 2. Panel face of heat flow and convection unit (flight unit).

(Primary data on zone cells are from shaded strips.)

3



i- I 1 1I I I 1 I I 111 I II ! I itt I
(Typical Square Difference Between Raw Data
and Filtered Data) .red Data) III I I I I I I I I

' I Ii!I

- I I - - I - I-

.n2,~ t I I I I I I

mo
TIMiE

4*O

AM4BER

; . 0.0 0.00 T: 1.000 N: 50 FACTR. 0.200 CONSTS 0.000

FREOUENCY RATIO

I I O66
001 ODD

[' 1llllllllllllllllllllIllllllll~llllllI~lllll~ll'll : I N~ yn.i. ;, I IIlilI I i

1~ ~~~~ ~ ~~~ 'TT [XII It II 111 It l II 1 I ll llm ~~~~~(Frequencies Eliminated) [ ;|t011|!1J1|S
T4

1 1 1 - it 1 1 I I I l I s I I I1 1 ]11

= F
l;lllllllllllllllllllllllllllllllllllllllllllllllll

l i i Jl l i I ~ 1 1 1 1 1 1 I I I 1 1 1 1 1 1 1 1 11 1 1 1 1 I 1 1 1 1 1 1 1 1 1 II IIII

LOI PASS SIOOTHNINM FILTER

Fig. 3 THE FILTER FUNCTION

Figure 3. The filter function.

9

AO. RUN I ), RAN1E2 I/$EC 3-0-I1
I : I .

.F

Il03t(
001 000

III I 1
144--

I

E

N

U
A

Ia I0 I I - I I I L I I III
- r ~- I I Ill 1 --.-

-i--4

.0 I
100

m ii r * I q

; , vhSE C'JIVE

i

N
T

I

I

U

l wXi jl jl l l l l

I vtH~fft~

I § I I I I I I 2 I I I I I 1
ll·1 1

I -I I . . . I I I I

l

-4--4m&---4-~

4W1-41*

I
J



-2000 0 2000 4000 6000 8000 10 000 12 000 14 000 16 000

TIME (sec)

Fig. 5: Apollo 14 Gravitational Curve

Figure 4. Apollo 14 gravitational curve (large scale).
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SECTION 2. ANALYSIS AND RESULTS

The Data Analysis
The primary data (the 16-mm film) were received on February 18,

1971. The films were examined and found to be of excellent quality, both in
focus and color, although they had a slight yellow tint. Two radial tests and
two zone tests were performed and the data quality appears, for the most part,
to be excellent. The unit was accidentally jarred on occasion, particularly
during the zone runs. During flight, 4987 frames were taken (out of 5000
available). This means that about 200 000 data points were recorded. Be-
cause of this, the complete set of data curves is presented in the Appendix.

F low Pattern Experiment. The flow pattern cell is designed to test the
convective flow pattern induced in an oil layer by thermal changes in surface
tension. The cell consists essentially of a shallow aluminum dish which is
uniformly heated from the bottom. Thin layers of a heavy oil, called Krytox,
were introduced from a reservoir. The oil contains a suspension of aluminum
flakes which enables the oil flow patterns to be viewed. The window to this cell
was opened during the tests to establish a thermal gradient across the Krytox.
Therefore, the heat from the oil was dissipated into the spacecraft atmosphere.

The flow pattern experiment consists of generating a cellular convec-
tive motion in an open, heated pan of oil. The primary objective of this experi-
ment was to demonstrate that surface tension alone can generate considerable
cellular convection. A secondary objective was to obtain data on the pattern of
convection that is uncoupled from gravity. An explanation of these objectives
is as follows. A relatively thin (less than 10 mm) uncovered layer of oil, when
heated from below in a 1-g environment, will exhibit a cellular form of con-
vection. The flow pattern is made visible by means of fine, flaky aluminum
powder which is dispersed throughout the oil. Liquid upflows or downflows
appear dark, and flows parallel to the surface appear light because of light
reflection off of the flaky, aluminum particles. A hexagonal, cellular pattern
is called Bcnard cells after Henri Benard, who first studied the phenomenon in
1901 [21. Liquid upflows occur at the center of the hexagonal cells and liquid
downflows at the cell peripheries. Very frequently the flow pattern is not
hexagonal but assumes a roll or "wormy" appearance.

Lord Rayleigh's subsequent classic theory of Benard cells assumed
that gravity is the only motive force [31. The general features of the phenom-
enon are adequately described by Rayleigh's theory if the fluid layers thicker
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than about 5 nni aire consid(eredI. In thinner layers ol1 fluids, howeve'r, loc'k

141 shows that surface tension gradients - as the result ol temperature
pgradients - are the predominant cause of cellular convection. However, the
experiments were, of necessity, run under 1-g conditions. The possibility,
therefore, remained that gravity somehow is an indispensable ingredient in all
cellular convection, particularly as some second-order effect. The generation
of cellular convection in the very low-g environment of the Apollo 14 space-
craft would thus provide conclusive confirmation of previous ground-based
experiments.

The results of the flow pattern experiment are shown in Figure 7. A
square-shaped pattern is seen in the oil fillets. In the thin center layer a
pattern of undetermined form is seen. The resolution of the DAC was not
sufficient to resolve the exact pattern in the center region.

It was conclusively demonstrated that surface tension alone can gene-
rate cellular convection. The secondary objective was partially achieved. The
pattern of the convection in near zero-g was partially defined but not in the
desired constant depth configuration. The walls of the flow pattern cell were
designed to be nonwetting by the application of a special silicone grease to a
special liner molded of RTV material (Fig. 8). The Apollo 14 film shows that
the Krytox wetted the liner so that a fillet having a cross section somewhat
similar to a wedge was obtained in flight. Figure 9 shows ground-based cells
for a flat layer of Krytox. Ground experiments on the generation of Benard
cells in a wedge-shaped container of dimensions similar to the flight cell have
shown that approximately square-shaped cells occur only when the heat is
turned( off and the oil is cooling. Upon heating, one long convective cell is
obtained. If the gravity and surface tension force vectors acted in the same
direction as assumed by Nield [51, it would be obtained both on cooling and
heating. The fact that square-shaped cells were observed upon heating in
flight substantiates the conclusion that gravity and surface tension act in oppo-
site directions in cellular convection.

The previous mathematical analyses of surface tension-driven cellular
convection dealt only with those cases in which a thin layer of fluid of large
extent was involved [2-9]. Neither theoretical nor experimental studies have
been available in the literature regarding the edge effects on cellular motion
induced by surface tension forces. To analyze the cellular motion observed
in the flow pattern experiments, an attempt was made to mathematically
formulate the problem of hydrodynamics stability for a corner flow. An in-
clined fluid layer with variable thickness was considered. The fluid was sus-
tained by adhesion force in a two-dimensional corner in a small acceleration
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field. The boundary conditions were such that one side of the corner received
a uniform heat flux whereas the other side was thermally insulated. The free
surface lost heat to the surrounding atmosphere by convection. Surface ten-
sion force was considered to be the primary driving force. This closely
simulated the geometry and boundary conditions of the flow pattern experi-
mental configuration. A mathematical formulation for the considered stability
problem has been completed, and the result is a set of coupled nonlinear
perturbation equations with complicated boundary conditions. Although a
rigorous analytic solution to the derived perturbation equations was not
obtained, the formulation yielded valuable insight into and a further under-
standing of the problem. The analytical analysis used in the computer pro-
gram was performed by the Lockheed Missiles and Space Company [ 101, which
supported the Marshall Space Flight Center in the overall analysis and particu-
larly in the computer analysis.

Radial Heating Experiment. The radial cell is a circular cell filled with
carbon dioxide gas used to test radial heat flow. The cell, a cylindrical dish
with a small electric heater mounted in its center, is covered by a plastic
film coated with a liquid crystal material that changes color as it is heated.
This [ilm is divided into quarters, and different sectors are sensitive in
different temperature ranges. The changing color patterns indicate the temp-
erature distribution as it develops and is recorded by the camera.

The objective of the radial heating experiment was to obtain informa-
tion on thermal flow in a gas in a low-g environment. In this experiment the
rate of temperature propagation in carbon dioxide gas, as the result of heat-
ing with a small heat source, was measured in near zero-g. The radial
heating unit (Fig. 10) consists of a shallow aluminum cup with a stud heater
in the center. Most aluminum parts were anodized; the aluminum surface can
be assumed anodized unless otherwise stated. A glass window covers the cup,
maintaining a gas-tight seal. Just below the window is a temperature-
sensitive membrane, which is divided into four quadrants, each coated with a
liquid crystal layer. The liquid crystal quadrants respond to temperature
changes by changing colors: Each quadrant changes colors upon heating through
the spectrum of red, yellow, green, and blue in different temperature ranges.
The stud heater is turned on, and the rate of propagation of the resulting
spectra of color bands, or isotherms, is recorded by the DAC. Temperature
versus time curves are obtained from the film record by measuring the dis-
placement of the color bands as a function of time.

The data and identifications of the various strips on these cells, as
well as for the entire unit, are given in Section 1. The analytical curve was
obtained with, and data were calculated on, the assumption that conduction and

15



radiation were the only modes of heat transfer. All graphs of the
measured isotherms show similar convective trends (see Appendix).

Comparisons between flight data and analytical predictions are shown
in Figures 11a, lib, and 11c based upon a radiative and conductive heat trans-
fer model. The analytical predictions presented in Figure lb assume an
initial temperature of 23. 90 C (cabin temperature). Nominal effective thermal
conductivity of the liquid crystal membrane (diaphragm) was assumed.
Figure 1c is for a somewhat higher initial temperature (27. 40 C) because
the first data frames show that the 24 to 310 C temperature range was yellow.
In Figure 11c a higher tolerance value for the effective thermal conductivity
of the diaphragm is also assumed. The latter temperature run gave the
better correlation, however, although neither of the cases satisfactorily
explains the fact that the flight data lead the analytical data during the initial
minutes.

It is concluded that convection occurred in the radial cell, causing
faster changes in the temperature than can be attributed to thermal conduc-
tion and radiation. This convection was caused either by low-g gravity
forces or some other unidentified nongravity influence. To distinguish this
convection from the oscillatory kind which is discussed next, the term first-
order is applied. Oscillatory convection exhibiting small-amplitude tempera-
ture oscillations is here called second-order. It was concluded that second-
order convection was the cause of the small temperature cycles observed on
both the heating and cooling of the radial heating unit. These cycles have a
period of approximately 70 see and an amplitude of about 1 mm. Figure 12
shows a typical manifestation of these low-frequency temperature oscillations.
In that figure oscillations of a frequency greater than 0. 03 per second have
been eliminated. Frequencies between 0. 01 and 0. 03 have been linearly
damped (see Section 1). These oscillations were completely unexpected and
are definitely larger than the standard deviations (see Section 1).

The literature on theoretical and experimental studies of thermal
instability (due to gravitation) for completely confined fluids was reviewed.
It was found that the convection heat transfer system investigated by Eckert
and Carlson [11] most resembles the radial heating experiment. Eckert and
Carlson have conducted (ground) experiments for a layer of fluid confined in
a rectangular container having two isothermal vertical walls (at different
temperatures) and insulated plates at the top and bottom. The container has
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a height ii, a width L, and a depth which is much larger than H and L. Eckert
and Carlson determined that for air, the region of pure conduction ended at
Ra > 500 (II/L), where Ra is the Rayleigh number based on L. This experi-
mentally determined stability criterion was used to predict for the possibility
of convective motion in the radial heating unit. It was estimated that for a
maximum temperature difference of 275°C between the heating post and the
cell wall, convection is possible when the magnitude of acceleration reaches
5.8 x 10 - 4 g, where g = 980 cm/sec2 . Since the calculated g value (see Section
1) during the Apollo 14 flight test was of the order of 10- 6 g and only occasion-
ally reached 2 x 10 -4 g, it was concluded that sustained convection in the radial
heating unit caused by gravity is unlikely.

Zone Cell Experiment. The zone cells are composed of two transparent
cylinders with electric heating elements located in the center of each cylinder.
The left tube contains water and the right, a sugar solution. Strips coated
with liquid crystal materials are located along the central axis of each cylinder
and also on the surface. The presence or absence of convection is based on
the temperature change rates as shown by the color pattern observed in the
strips when heat flows from the center heated zone toward each end.

In the zone heating unit, temperature changes, as sensed by liquid
crystals, at the centers and walls of the liquid-filled glass cylinders were
monitored as the cylinders were heated by a hollow cylindrical heater located
at the center of the cell. Figure 13 shows a schematic of the zone heating
units. The heat transfer in configurations of the geometry of the zone heating
units is of interest because this geometry is basic for many projected space
manufacturing processes. The objective of the zone heating experiment was
to obtain data on the mode and magnitude of heat transfer in liquids subjected
to zone heating in low-g environments. In this experiment, one cell contained
distilled water and the other a 20-percent sugar solution. The purpose of the
sugar water solution was to vary the liquid viscosity. The viscosity of a 20-
percent sugar solution is approximately twice that of pure water (Table 5).
The thermal gradients were small because the wattage level of the zone cells
was limited by the fact that water changes phase at 100°C. Consequently,
possible convection effects were sought by using two cells for comparison.
The curves were calculated on the assumption that heat conduction is the only
moide of heat transfer. The zone heating unit run under 1-g conditions showed
extensive convection, which was manifested by temperature changes occurring
first at the upward end of the cell, rather than from the center heater outward.
The raw data from the zone heating experiments showed the same type of
oscillations as were observed in the radial heating runs. The amplitudes of
the oscillations in the case of the zone heating experiments, however, were
not quite as large as those observed in the radial heating runs; average
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ampllitudes of about 0.5 mm were observed. Faster rates of propagation were
observed in the 20-percent sugar water solution.

TABLE 5. FLUID PROPERTIES

20-Percent Krytox
CO 2  Water Sugar Water 143A2

Fluid Viscosities 1.48 x 10-2 1. 002 1.945 32.4
(cP) (20°C) (200C) (200C) (24°C)

Thermal Conductivity 7.00 x 10-2 6.24 x 10-1 5.18 x 10-1 8.38 x 10-2
(W/mOC) (30°C) (41°C) (38°C)

Surface Tension 15.4(210°C)
(dyne/cm) 12.2 (55°C)

On occasion, the liquid crystal strips on the sugared water cell (which
was located on the extreme edge of the unit) were not clearly visible; this
resulted in having isotherms which covered shorter periods of time. Also,
the HFC unit was accidentally bumped during both zone runs. Interestingly, the
spacecraft experienced an acceleration impulse during the second zone run.
A typical isotherm showed a corresponding change (Fig. 14). The heat flow
rates in the zone cells were generally low, and the future experiments, if pos-
sible, should be run at somewhat higher heating rates.

A comparison between flight data and analytical predictions is shown in
Figures 15a, 15b, and 15c. The analytical predictions presented in Figure 15b
were based on an initial temperature of 23. 90C (cabin temperature), which
was the expected temperature of the entire unit before the flight data acquisi-
tion began. Figure 15c is based on an observation of the radial heating unit
diaphragm, which showed that the 24 to 310C temperature range was yellow,
corresponding to an initial temperature of 27.40C. As can be seen from the
figures, the elevated temperature case gave an excellent correlation with the
flight data when the tolerances of the analytical predictions and flight data are
taken into consideration. Because of the construction of the zone cells, no
data were obtained corresponding to the early radial data.

From past experience, thermal models similar to those used for the
analytical predictions have proved to be accurate within ± 10 percent of the
temperature rise or, for the case under investigation, ± 1 to 2° C. (The
100° C limit on water prevented higher wattage values to increase the rise
rate. ) This deviation, in addition to the variation in calibration, could
account for the approximately ± 2° C tolerance in the analytical predictions.
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When appliedl to the analytical predictions, the tolerance accounts fot a

- 0.1 -cm deviation in the curves for a +2° C tolerance or a + 0. 2-cm deviation
in the curves for a -2° C tolerance. If the latter were applied to the elevated
temperature case, then the data are within the tolerance of the analytical
predictions.

A comparison of the flight data for the distilled water and sugar water
units is shown in Figure 15d. It is evident that a small variation exists be-
tween the two cases. The primary difference in these two cells is the viscosity
of the two fluids (Table 5). Viscosity does not play a role in conduction or
radiation.

As a point of interest, the color change along the Teflon rod inside the
zone unit containing distilled water lagged the color change along the glass in
the same cell tube wall by approximately 8° C during the heating process.
l)uring cooling, the liquid crystal strip along the glass tube wall cooled more
rapidly than the other modes. The temperature along the rod continued to
increase, causing the curves to cross. For further evidence of this phenom-
enon, refer to Section 1.

A simple stability analysis was also made regarding gravity-driven
convective motion in the zone heating units during flight test. This analysis
was based on the experimental results of Liu, et al. [121, who performed
ground experiments of natural convection in water and other fluids confined in
horizontal cylindrical annuli. One of the major findings in Reference 12 was
that convective motion occurs when Ra - 1000 (1 + 1.36/Pr), where Pr is the
Prandtl number of the fluid and Ra is the Rayleigh number based on the gap
width between the inner and outer cylinders. Using this result, it was esti-
mated that for the zone heating system with pure water under a maximum
temperature difference of 800 C, gravity-driven convection would not occur
unless the acceleration level exceeded 9.4 x 10- 4 g.

Conclusions
A number of promising hypotheses concerning the nature of low-g

convection observed in the radial and zone heating experiments are being
investigated. One tentative hypothesis is that the observed first-order con-
vections are caused by a nongravity driving force. The two nongravity forces
being considered are the force caused by fluid volume expansion on heating
and an interfacial tension force generated by some sort of a fluid boundary
layer. Sizable increases in heat and mass transfer have been predicted for
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gases in zero-g as the result of volume expansion on heating [131. The motion
is, however, acoustical in nature. The hypothesis that a fluid boundary layer
can cause fluid flow by means of an interfacial tension mechanism is, for the
moment, a speculation requiring theoretical and experimental substantiation.
The possibility appears remote that average gravity levels on the order of
10- 4 g caused the observed first-order convection.

A number of explanations for the observed second-order convection
are being considered concurrently. A motion of acoustical nature caused by
volume expansions does not appear likely because the period of acoustical
temperature oscillations is estimated to be a fraction of a millisecond for the
boundary conditions of the experiments. The observed temperature oscillations
are about a minute. The possibility that random vibrations on the spacecraft
transmitted shear and pressure impulse to the experimental fluids also appears
unlikely. A "bump" should be apparent as a temperature oscillation at the
same time on all of the different temperature isotherms during a given run,
and no such coincident bumps were noted.

The flow pattern experiment confirmed conclusively the theoretical
prediction that surface tension alone can cause cellular convection. However,
the confirmation of theory details, such as cell shape and size, depends on the
results of a mathematical analysis of cellular convection in a corner geometry
which is currently underway and future flight experiments in which a more uni-
form liquid layer is maintained.

The preliminary results have the following implications for projected
space manufacturing processes. Contained fluids under nominally zero-g
environments can sustain significantly steeper temperature gradients than they
can under 1-g conditions. Therefore, manufacturing processes which depend
on carefully controlled thermal environments could be more easily accomplished
in space orbits. The small, though significant, amount of observed first- and
second-order convection, however, indicates that ultra-temperature control
previously envisioned [14, 151 cannot be routinely assumed. In any contem-
plated process where a free or uncontained liquid is subjected to a temperature
or concentration gradient, sizable convection can be assumed under Apollo 14
environmental conditions.
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Figure 9. Ground-based Benard cells
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Figure A-10. Radial cell, run 1, quadrant 4, range 2, amber, power on.
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Figure A-12. Radial cell, run 1, quadrant 4, range 2, green, power on.

48

J 11o066 L
003 000

r



, Io r L
00o 000

LOW PASS SIOOTHIhC, FILTER USED

FtRAW COUNT GUAO. 4 RA6 E IlEAT IILUt

Figure A-13. Radial cell, run 1, quadrant 4, range 2, blue, power on.
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Figure A-14. Radial cell, run 1, quadrant 2, range 2, yellow, power off.
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Figure A-15. Radial cell, run 1, quadrant 2, range 2, green, power off.
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Figure A-16. Radial cell, run 1, quadrant 2, range 2, blue, power off.
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Figure A-18. Radial cell, run 1, quadrant 3, range 3, yellow, power off.
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Figure A-21. Radial cell, run 2, quadrant 1, range 1, blue, power on.
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Figure A-22. Radial cell, run 2, quadrant 2, range 2, amber, power on.
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Figure A-25. Radial cell, run 2, quadrant 2, range 2, blue, power on.
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Figure A-26. Radial cell, run 2, quadrant 3, range 3, amber, power on.

62

a
a
U

T

U
I

A

A

I

,

* g0 ILL

LOW PAMs SMOOhING FILCTR USED

K I

I

I

a

A11
T
A

"1 r

W M il U iNm mI



nTET ?2 TYPE RAO01L cELECTcOR SWITCH HlG 3-26-11

LOW PASS SNOT1IING FILTER USED

.IDO. S IANAM 3 MEAT YtLLOW

Figure A-27. Radial cell, run 2, quadrant 3, range 3, yellow, power on.
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Figure A-28. Radial cell, run 2, quadrant 3, range 3, green, power on.
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Figure A-29. Radial cell, run 2, quadrant 3, range 3, blue, power on.
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Figure A-30. Radial cell, run 2, quadrant 4, range 2, amber, power on.
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Figure A-33. Radial cell, run 2, quadrant 4, range 2, blue, power on.
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Figure A-34. Radial cell, run 2, quadrant 2, range 2, green, power off.
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Figure A-35. Radial cell, run 2, quadrant 2, range 2, blue, power off.
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Figure A-36. Radial cell, run 2, quadrant 3, range 3, amber, power off.
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Figure A-38. Radial cell, run 2, q1adrant 3, range 3, green, power off.
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Figure A-39. Radial cell, run 2, quadrant 3, range 3, blue, power off.
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Figure A-41. Radial cell, run 2, quadrant 4, range 2, blue, power off.
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Figure A-47. Zone cell, run 1, left bottom, left, blue, power on.
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Figure A-53. Zone cell, run 1, left top, right, amber, power off.
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Figure A-60. Zone cell, run 1, right top, right, amber, power off.
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Figure A-65. Zone cell, run 2, left top, left, blue, power on.
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Figure A-76. Zone cell, run 2, right top, right, blue, power on.
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Figure A-77. Zone cell, run 2, left top, left, amber, power off.
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Figure A-78. Zone cell, run 2, left top, left, blue, power off.
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Figure A-79. Zone cell, run 2, left top, right, amber, power off.

115

J
Zrt. TRST 2 4-1 - Is

I0
U
UT
P

T

0
A
T
A

ISo3SS L
01 6000

ii1- C 14m

4

t1 K

I

4

I

4

U

0

A

· ImIa

-I]

ad

-I

34
FrANE COUNT

*IiI ·. M I! l

r

I

I UT.

4

I-A
I I am ai il



J o016 L

Zi. tTi * I 4I-.1-T

U

U

I
A

I

LO -W. P --O ING , ILtE UU

-

11l(i



ole 000
4-1- ?

LOW PASS SMOOTHING FILTER USED

LE TOP LE COO

LEFT TOP RIfT BLUE COOL

Figure A-81. Zone cell, run 2, left top, right, blue, power off.
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Figure A-84. Zone cell, run 2, left bottom, left, blue, power off.

120



s110o L
0.. 000

4- I - I

Im - iI

-i

ISM 90sm 3000i

LOU PASS SI4OOTING FILTER USED

w iE11 I- *I1

LPET OTION RIGHT SRtcN COOl.
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Figure A-86. Zone cell, run 2, left bottom, right, blue, power off.
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Figure A-87. Zone cell, run 2, right top, right, amber, power off.
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Figure A-89. Zone cell, run 2, right top, right, blue, power off.
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