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I. SUMMARY

The purpose of the tests reported here was to examine the nature and mag-

nitude of the heat generated by a pneumatic tire and to determine how the en-

ergy dissipated was partitioned into the two major avenues of heat generation:

heat generation caused by inter-ply friction and hysteresis in the rubber car-

cass and heat generation at the rubber-road interface caused by friction and

motion between the contacting surfaces.

In one series of tests a full size automobile tire was instrumented by im-

bedding thermocouples in the carcass and the time rate of change of temperature

was measured under conditions similar to the normal operating conditions for

the tire. Simple calculations then yielded a measure of the magnitude and lo-

cation of internally generated heat. The total energy losses were estimated

or measured and some tentative .estimates of the partitioning of the total dis-

sipated energy were made.

In another series of tests attention was given to the nature and magni-

tude of the heat generated at the rubber-road interface. A technique uti-

lizing temperature sensors bonded to the road surface was explored. This pro-

vided a measure of the flux of energy into the road when a full size, fully

loaded automobile tire passed over. The results of these particular tests are

difficult to interpret and some pertinent data is presented but no conclusions

are drawn. A theoretical analysis of the response of the sensor to a step in-

put is presented.

The scratch plate technique was used to study the interfacial motions

between the rubber and the road and some estimates of interfacial heat gen-

eration were made.

In another series of experiments, a tire model was operated on a small

roadwheel which had a cast iron surface. An optical pyrometer was used to

measure steady state surface temperature at various locations around the cir-

cumference of the tire in the sidewall, shoulder, and crown regions. A

similar series of tests was conducted with, a sandpaper-like surface covering

applied to the roadwheel. Both series were conducted over a range of speeds

and drag force was measured.



II. INTRODUCTION

The purpose of the analysis and measurements outlined in this

report is to give a clearer picture of the origin of heat generation

in a pneumatic tire, and of the way in which the heat leaves the tire.

In more detailed form, this question breaks down into several individual

questions or research studies, each v/orthy of substantial effort.

These may be expressed as:

(1) To what extent is heat generated by hysteresis within

the tire tread and side walls, and to what extent by

mechanical scuffing between outer tread surface and

roadway?

(2) What is the distribution of release of heat by hysteresis

relative to depth beneath the outer tread surface?

(3) To what extent does the total heat generated flow to

the atmosphere, and to what extent does it flow through

the contact patch into the roadway?

Subsequent sections of this report attempt to throw light on these

questions by both analytical and experimental means.



III. THERMOCOUPLE MEASUREMENTS

A series of experiments was conducted to examine the internal

heating of a tire carcass under various conditions. The tires were

instrumented with thermocouples bonded into the carcass. The tempera-

ture was recorded as a function of time and from this data the rate

of heat generation could be calculated. This rate of heat generation

can be compared to the mechanical power dissipated.

The experiments were conducted on regular roads using The University

of Michigan Highway Safety Research Institute Mobile Tire Tester, a

truck modified to carry a tire under various loads and alignments at

normal highway speeds.

A total of three tires was instrumented and yielded useful infor-

mation in the tests. Two of the tires, identical li. F. Goodrich

G78-15 bias belted tubeless tires mounted on 6JK pressed steel rims,

were instrumented in the same way. They bore code numbers DG24-0026-5

G598 and DG24-0026-8 G598 and are identified by the abbreviations

G78-15 #5 and G78-15 #8, respectively. These two tires had a solid

tread surface with the same gross contour as the standard production

tire, but without grooves or sipes. The third tire was an FI78-15 of

the same construction as the G78-.15 tires and was mounted on the same

rim. This tire had a standard production tread. All three tires were

load range B tires and the two sizes are both common on domestic

intermediate size automobiles.

The thermocouple locations relative to a cross-section for the

G78-15 tires and the H78-15 tire are shown in Figures 1 and 2, respectively.



The tires carried 1000-lb vertical load and were inflated to

24 psi except as otherwise noted.

The thermocouples were installed in the following way: the immediate

area of the chosen location was frozen with liquid nitrogen, a 1/8 in.

hole was drilled to the proper depth, the tire was allowed to return

to room temperature, the thermocouple was inserted, and the hole was

potted with Duro Plastic Rubber (T.M.). The Plastic Rubber was injected

with a syringe to avoid trapping air pockets.

All holes were drilled from the inside of the tire. In those

locations where the thermocouple was within or beyond the ply structure

it was necessary to drill through the fabric.

Those thermocouples located on the interior wall of the carcass

were glued with Plastic Rubber into shallow dimples machined into the

surface.

The thermocouples were made from 28-gauge copper-constantan twin

lead wire with plastic insulation. The junctions were butt-welded

electrically and that region stripped of insulation during the welding

process was coated with "Gaugecoat," a thin latex rubber waterproofing

agent.

The wire leads extended from the point where they emerged from

the rubber, around the inside of the tire to the common exit holes in

the rim. There were two such exit holes for the G78-15 tires and one

for the more lightly instrumented H78-15 tire. The wires passed

through the holes in a bundle and the hole region was potted with

Plastic Rubber which served as a grommet, seal, and mechanical rein-

forcement.



The lead wires were fastened to the inside of the tire at 6-in.

intervals using tape secured with Eastman 910 adhesive. Preliminary

experiments showed that a small amount of slack between these fastening

points was necessary to permit the lead wires to flex with the tire

and to prevent breakage.

The constantan lead wires were fastened to a common junction

inside the tire cavity and a single constantan lead wire was brought

out from this junction.

After passing through the exit holes the wire bundle was brought

to a slip ring assembly, thence to a 32°F ice bath reference junction

located on the rear of the truck, and finally to the instrumentation

in the cab of the truck.

The instrumentation in the truck consisted of a low resistance

multipole switch, a digital microvolt meter, a stop watch, and a

tape recorder. The switch position and corresponding voltage and time

were read verbally into the recorder for later transcription.

The experiments reported here were performed on three occasions.

The experiments using the 1178-15 tire were performed on November 19,

1970, and December 3, 1970, at Ann Arbor, Michigan, on concrete roads

with air temperatures between 40 and 45 F. The experiments using the

G78-15 tires were performed March 1, 1971, through March 3, 1971,

inclusive, at College Station, Texas, on asphalt roads with air and

o o o o
road temperatures in the ranges 40 - 70 F and 45 - 90 F, respectively.

The experiments were conducted by bringing the truck to the

appropriate speed, at which point the tire was lowered to the pavement

and run under load at a constant speed until the appropriate data



had been taken. The tire was then lifted and allowed to reach a
T

uniform temperature as determined by the thermocouples before a

second experiment was conducted.

The recorded thermocouple potentials were transcribed and con-

verted to degrees Fahrenheit and plotted as temperature vs. time.

The data for the initial 1 to 2 min were examined to determine if

conduction, diffusion, and convection effects were sufficiently small

to warrant further processing of the data. If the graphs were suffi-

ciently straight and did not exhibit curvature or the exponential

leveling off associated with heat flow, then it was assumed that the

rate of temperature increase was representative of the initial input

of heat.

It should be noted that, barring heat flow, the conversion of a

constant mechanical power input to thermal energy yields a constant

rate of temperature increase independent of initial temperature of

the tire, and the ambient road and air temperatures.

The rate of temperature increase was determined by fitting a

straight line to the temperature vs. time graph and determining the

slope of this line or by taking the temperature difference between

two data points spaced 60 or 80 sec apart and directly calculating

AT/At. The two methods are almost equivalent and the choice of method

was subjectively according to the appearance of the graphs. The time

interval in either case was centered about the 40-60 sec region.

The rate of temperature increase can be converted to a rate of

thermal energy release using a simple formula:



Q = AT/At • C • M

where

Q = Thermal energy influx Btu/sec

C = Specific heat capacity Btu/°F Ibm

M = Mass, Ibm

Two schemes were used to perform this conversion. In the first

scheme the simple average AT/At from thermocouples located throughout

the tire was used and the mass was that of the entire tire, The tire

weighed 30 Ib and, using a specific heat capacity of .48 Btu/°F • Ibm,

the formula becomes .

Q = 11200 AT/At . . (1)

where Q is in ft-lb/sec and AT/At in °F/sec.

In the second scheme the tire cross section was partitioned

geometrically into sections centered around the thermocouples and the

sum of the heat generated within each of these sections yielded a

weighted average heat influx over the tire.

The first scheme, although much less precise than the second,

yielded almost the same value and because the first scheme was much

easier to use and because the difference between the values obtained

using the ±wo schemes was less than the.overall projected uncertainty



in the whole experiment, it was decided to use the first scheme for

all the calculations of heat influx.

The second scheme is illustrated in Appendix 2. The partitioned

sections used are shown in Figure 1.

Experiments were conducted with the tires unyawed and rolling

free, with the tires at yaw angles of 4° and 8°, and with brake torques

yielding drag forces up to 460 Ib. The speeds used were 30 and 50 mph.

Drag force could be measured for either nonzero yaw or nonzero brake

torque but was too small to be measured for the free rolling case.

The drag of.the unyawed free rolling tire was assumed to be 20 Ib,

equal to 2% of the 1000-Ib vertical load because it was not possible

to measure the drag. .

Samples of the data and the graphs derived from them are shown

in the figures and tables.

Figure 3 gives an example of the temperature vs. time data for

thermocouples located around the cross section and Figure 4 gives an

example of temperature vs. time data for points within the crown and

on the inside wall; Both these figures refer to a free rolling tire.

Figures 5 and 6 show sample temperature and heat generation

profiles, respectively, through the crown of the tire. The specific

rate of heat generation is the product of the rate of temperature

increase and'the specific heat capacity, neglecting heat flow.

The total heat generation data for the free rolling tire is

presented in Table I along with the power input based on 20 Ib drag

and 50 mph forward speed. The heat generation is calculated according

to Eq. (1). The relatively good agreement between the thermally

8



calculated drag and the assumed mechanical drag may be accidental

since the mechanical drag of a cold tire is not readily available.

The mean deviation for the AT/At data is 9% and it follows that the
- ' ; . i'

same mean deviation is applicable to the Q values. If the drag was

indeed constant for all the experiments the average Q/P value has a

mean deviation of 9%. This fact coupled with the average Q/P value

of 1.035 indicates that the majority of mechanical energy used to

drive a free rolling tire is converted to heat via tire rubber and

fabric hysteresis.

The data in Table II represent the heat generation around the

cross section for various yaw and braking conditions for the G78-15 #5

tire. The drag was measured using the equipment on the. Mobile Tire,

Tester. The power expenditure is meaningful only for the yav/ed

experiments because in the braked experiments the brake mechanism

absorbs an unknown fraction of the total mechanical energy.

However, the yawed experiments may be compared with the unyawed

experiments. Here we see that only 36% of the assumed mechanical

energy is converted into carcass heat whereas the figure for an

unyawed tire was close to 100%. The difference is apparently due to

the increased scrubbing in the contact patch in the yawed case.

Table III contains a summary of some pertinent experiments with

the H78-15 tire which was instrumented in the shoulder region. The

experiments were all conducted at 30 mph with the standard 1000-lb

vertical load and 24 psi inflation pressure. The heat generation rate

Q was determined by using Eq. (1). The thermocouple locations are



referenced in Figure 2. The power figure for the free rolling tire

corresponds to 20 Ib drag.

Note that the drag force may be under-estimated because the 0/P

ratio indicates a surplus of 13%. However, the Q/P data for both the

free rolling and yawed rolling tests compare well with the data for

the corresponding tests with the G78-15 tires considering the extent

of the uncertainties involved in the tests.

Most of the experiments were of less than 5 min to'tal duration

because diffusion and convection effects would only complicate the

determination of heating effects as explained previously. However,

one experiment was conducted for a time sufficient to reach thermal

equilibrium. A summary of the experiments pertinent to this report

is presented in Table IV.

Temperature profiles through the crown showing the approach to

equilibrium are shown in Figure 5. Note that as conduction within

the tire and heat transfer out of the tire become important, the

hottest point in the crown moves from the region close to the surface

inward toward the middle of the cross section. The profile yields

temperature gradient data which indicates that at equilibrium about

78% of the radial heat flow is toward the outer surface and the

remaining 22% is toward the inner surface.

10
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IV. TEMPERATURE SENSOR MEASUREMENTS

An experimental system was designed to measure the heat generation

caused by the scrubbing of the tire. The term scrubbing, as used

here, refers to the horizontal motions that take place within the

contact patch of the tire, which contribute to the energy dissipation

of the tire and which are important in the heat balance near the surface

of the tire. These motions between the tire and the road result in

a heat flux, due to friction, which is partitioned between the tire

and the road. These motions are typically small in a free rolling,

unyawed tire compared with the size of the contact patch; average

values of .02 in were found in the scratch plate experiments described

subsequently in this report.

The experimental system consisted of temperature sensors bonded to

the road surface and an electronic system to measure and record the

temperature during the brief time of contact between a sensor and a

tire rolling over it at normal highway speeds.

The sensors used were thin-film temperature sensitive nickel

grids bonded in a sandwich construction between two thin layers of

polyimide. The construction of a sensor is illustrated in Fig. 7.

The values of thicknesses shown in that figure are manufacturer's

values and were not measured or checked by us. The overall size of

the grid was .125 in x .125 in. Previous experience with the sensors

indicated that the static temperature sensitivity was very uniform

from sensor to sensor and within 1% of the manufacturer's specifications.

Neither a static nor a dynamic temperature calibration was made and the

manufacturer's specifications were usecl.
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The sensors were mounted to the road using the following technique,

The road surface was smoothed using sandpaper until a flat, uniform

satin-like surface was achieved. Then epoxy cement;, was smeared into

and over this region. After the cement had set it was sanded smooth

and the sensors were bonded to this epoxy.surface using a thin layer

of epoxy cement. The surface to which the sensors were bonded was

entirely epoxy with no asperities showing through. The road- to

which the sensors were bonded was an asphalt taxi way at Willow Run

Airport, Ypsilanti, Michigan. Fig. 8 shows a sensor mounted on the ,

road and also shows the size of the aggregate in the asphalt. Four

sensors were placed in the array shown in Fig. 9 on 2.50 in centers . :

on a line perpendicular to the path of the tire and were numbered 1-4

from right to left. ;

The sensors were judged to be insensitive to static strain levels

resulting from a pressure of the same order of magnitude as the mean

contact patch pressure. This was determined by a simple test in

which a piece of rubber was laid on the sensor and the system was

allowed to reach thermal equilibrium, after which a force judged to

provide approximately 10 to 40 psi net, mean pressure was applied.

No significant signal was observed. A lateral force applied under the

conditions of normal loading described above produced no significant

signal up to the point at which slipping took place. The sensors

were individually incorporated into bridge circuits which also served

to compensate for the slightly non-linear characteristics of the

nickel grid. The overall sensitivity of the system was 0,77 mv/°F,

and response non-linearities were estimated to be inconsequentially

small over the range of temperatures recorded.
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The electrical signals produced by changes in sensor temperatures

were measured using a two channel, high gain storage oscilloscope,

and the traces recorded on the oscilloscope were photographed. The

oscilloscope trace commenced at an external trigger signal supplied by

the trigger mechanism visible near the end of the scale in Fig. 9. A

subsequent test of the time response of the system showed that the

electronic components and the readout technique were capable of

resolving details on a time scale much less than the duration of contact.

A G78-15 patternless tire was used at 24 psi inflation pressure

and 1000 Ib vertical load. The tire is described in greater detail in

part III of this report. The tire had, under the conditions described,

above, a static contact patch length on the centerline of 5.5 in and

a gross contact area of 29.6 int This yields a mean contact pressure •:

of 33.8 psi which is significantly higher than the inflation pressure;

probably because of the stiffness of the patternless tread. The tire

was mounted on the Highway Safety Research Institute Mobile Tire

Tester as shown in Fig. 10. This piece of equipment, which will be

referred to as the truck, was equipped with a yoke on which the tire

was mounted, and which could be raised and lowered rapidly. The truck

was also equipped with a system for measuring and recording the forces

acting on the tire. Because the small drag forces associated with

free rolling, unyawed operation were smaller than the resolution of

the system, no drag records were made. .

A heat flux can be caused by the conductive flow of heat between .

the tire and the road due to a temperature difference between the

tire surface and the road surface, as well as by scrubbing, so that



it was necessary to either minimize this source of flux or to separate

the net flux into conductive and scrubbing components in order to

isolate the flux due to scrubbing. For this reason two types of

experiments were conducted. The first was done in such a way as to

minimize the conductive heat flux, by operating with the tire surface

temperature and the road surface temperature as close to one another

as feasible. In this type of experiment the truck approached the

sensor array at 50 mph with the tire held off the pavement by raising

the yoke. At a distance of approximately 100 ft up track of the

sensor array the tire was released suddenly. After a few bounces

the tire rolled smoothly and if the trigger was contacted, indicating

that the tire had passed over the array, the signal stored on the

oscilloscope was recorded photographically. The precise path of the

tire was recorded by a device located down the track from the array.

It was found early in the testing program that it was impossible to

control the lateral path of the truck with any degree of precision,

so that on some trials the tire did not pass over the sensor array

properly or else missed it altogether.

The purpose of releasing the tire very close to the sensors

was to minimize tire heating and to provide a tire temperature close

to the road temperature. The approximately 100 ft of tire-road contact

would yield approximately 14 revolutions of the tire before contact

with the sensors, so that the area which did contact the sensors

had suffered approximately 14 contact episodes with the asphalt pavement

before reaching the polyimide sensor surface. It appeared from the

nature of the signals recorded that the surface of the tire did not



heat appreciably during the run over the pavement. It should he noted

that some uncertainty was introduced by this technique because some

part of the circumference of the tire was involved in accelerating

the tire rotationally. That is, the friction on some nart of the

tire must have been large in order to spin the tire up to speed. The

location of this area, which was the original contact patch, was not

known absolutely nor was it known relative to the area of the tire

which contacted the sensors.

The results of an experiment of this type are illustrated by a

copy of the data sheet for trial 6, July 27, 1971.

The sensor was very sensitive, as can be judged by the oscilloscope

sensitivity used, and the signals which were recorded were very small.

For example, it was necessary to run these tests before the sun had

risen because clouds passing in front of the sun caused temperature

fluctuations large enough to drive the signal beyond the range of the

oscilloscope. The sensors were also sensitive enough to respond to

turbulent air fluctuations caused by placing an obstacle, say 2 ft

square, a few feet upstream of the sensors in the early morning breeze.

The approximate duration of contact, as calculated from the static

contact patch length and the forward velocity, was 6.25 msec which

is approximately 3 cm on the oscilloscope screen.

A second type of experiment which produced a significantly

greater temperature signal was also conducted. In this case the

tire was run approximately 1 mile on the pavement in a straight line

before passing over the sensors. The tread surface of the tire was

consequently significantly warmer than the sensor or pavement surface



DATA FORM 036390
TRIAL NO. 6

July 27,1971

OVERALL
SENSITIVITY

SENSOR #_±_

SENSOR #_JL

^ ms/cm SWEEP RATE

INSTRUMENTATION: ATTEN X SCOPE SENS _J=_m.V/.cm

VELOCITY__50_ mph

TIRE: T n G 78~15 #5

LOAD 1QQQ Ib PRESSURE _24 psi

LES
67

TEMPERATURES °F

AIR

ROAD -

TIRE —

NOTES:
All sDeeds so far: 50 mph
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because of accumulated scrubbing and hysteresis heat. The signal from

one such experiment is shown on a copy of the data sheet for trial 8,

July 27, 1971.

In both types of experiments the tire surface temperature and

the road surface temperature were measured using a simple contact

pyrometer which was referenced against the air temperature as measured

by a mercury thermometer. In both the trials used as examples in this

report only sensors 2 and 3 were used, and they were used to measure

relative temperatures so that the separation of the signals on the

oscilloscope screen represents only a convenient spacing to facilitate

measurement, and does not indicate an absolute temperature difference

between the two sensors. In both trials the upper signal corresponds

to sensor 2 as suggested by the form of the data sheet. The grid of

the oscilloscope screen was composed of 1 cm squares. The paths of the

tire relative to the sensor array for the two trials shown here are

illustrated in Fig. 11 and Fig. 12.

As a preliminary to remarks concerning the results of trials 6

and 8, the results of an analytical treatment of the sensor response

are of interest. The details of the model and the solution of the

pertinent equations are described in Appendix 1. Reference to that

appendix will show that the form of the response as given in En. 5

is sufficiently complicated to warrent solution via a computer program

and to justify the use of a graphical form of output. Figure 13 illustrates

the response of the sensor to a unit heat flux of 6.25 msec duration

as shown in Fig. 14. The response of the sensor up to 6.25 msec is

the response to a unit magnitude heat flux applied as a step function
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DATA FORM 036390
Duration of contact based on contact

patch length and velocity.
TRIAL NO. 8

July 27,1971

OVERALL
SENSITIVITY

.26 F/cm

SENSOR # 2

SENSOR # 3

2 ms/cm SWEEP RATE

INSTRUMENTATION ATTEN X SCOPE SENS

VELOCITY 30

.2 -mV/cir

TIRE: I. D..

mph

678-15 #5

LOAD, 1000 Ib PRESSURE. 24 . psi

TEMPERATURES °F
AIR _ 69.68 at bench
ROAD

TIRE

NOTES:

77
84

Tire down for approximately 1 mile of
continuous running prior to contact.
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to the surface of the sensor. The initial response of the sensor is

instantaneous but very small and the time delay is only apparent, not
A *

real. The maximum of the response shown in FIR.13 is 6.22 x 10~ °F ft

hr/BTU and occurs at approximately 6.5 msec. It should he noted that

this model is sensitive only to a net heat flux and cannot discriminate

between interfacially generated heat, which is partitioned into a

flux into the tire and a flux into the sensor, and a heat flux across

the interface due to the conductive exchange of heat between the tire

at one temperature and the sensor at another. To discriminate between

these fluxes would require a knowledge of the contact resistance which

we do not have and cannot determine using the simple model.

The two types of signals recorded correspond to the two types of

experiments conducted. In the first type, the smallest net conductive

heat flux possible under the experimental conditions is superimposed

on the heat flux due to scrubbing, although we cannot tell how much

each contributes to the sum. In the second type the heat flux due

to conduction is much larger because it represents accumulated heat,

and is presumably larger than the heat flux due to scrubbing. However,

in neither case is it possible to isolate the contribution due to

scrubbing using the model and the analytical tools at our disposal,

although some observations about the gross nature of the results can

be made and explanations offered with some degree of confidence.

In trial 6 the tire was slightly cooler than the road and had

rolled only about 100 ft so that a decrease, in temperature during

contact might be anticipated and indeed this seems to be the situation.

However, the seemingly erratic nature of the signals during contact
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defies our analysis and suggests a flow of heat into and out of the

sensor which we cannot explain in detail. Furthermore, no explanation

can be offered as to why the signals in that trial indicate a temper-

ature drop of approximately .1 F and .2 F but did not rise appreciably

toward their initial values in the 12 msec following contact. On the

other hand the signals in trial 8 show a decided downward trend toward

their initial values almost immediately after contact ceased. The

spike that appears in the signal for sensor 3 near the end of contact

remains an enigma. Spikes of this type appeared in several trials,

most often near the end of contact, and trial 8 contains a similar

spike. The only speculation that can be offered is that it represents

a stick-slip phenomenon that occurs in the trailing edge of the contact

patch.

In trial 8 the tire was significantly warmer than the road and

the sensor response resembles the response of the model to a heat

flux pulse of constant amplitude and 6.25 msec duration, in so far as

the overall shape is concerned. However, the recorded signals have

minor variations in slope which may contain information but which

cannot be analyzed with the model used. The response of sensor 3

near the end of contact and the final spike remain to be explained.

The only conclusion that can be drawn is that a conductive heat flux

of approximately constant magnitude existed during the time of contact

and that some interfacially generated heat caused by scrubbing was

superimposed upon this conductive flux, but nothing can be said about

the form of the flux using this approach.
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Figure 7. Detail of sensor construction.

Figure 8. Sensor mounted on pavement.



Figure 9- Sensor array on pavement

Figure 10. Treadless test tire mounted on truck.
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V. SCRATCH PLATE MEASUREMENTS

One relatively .simple mechanical method for measuring the energy

losses at the surface of a rolling tire is to cause the loaded tire to

roll over a smooth metallic plate upon which carborundum particles have

been sprinkled. The grit embeds itself in the tread rubber and causes

scratch marks on the plate surface as the grit particles pass through

the tire contact patch. These scratch marks are indications of the

amount of surface scrubbing present in the tire contact patch area.

It is difficult to assess the accuracy of this method. Insofar

as is known there is no study presently available comparing the

measured deflections obtained from scratch records with those' obtained

from more sophisticated instrumentation. It must be surmised'that

the scratch records could not, in general, be larger than the dis-

placements undergone by the tire surface in the absence of the grit,

provided that the friction coefficients between the actual road surface

and the metallic plate were the same. This is because the embedding

of the grit particles into the rubber surface would, in general, cause

scratch records to be equal to, or smaller than, the actual distances

moved. In view of the uncertainty between the actual distances and the

resulting scratch records, and the additional uncertainties concerning

equality of the friction.coefficient between a real roadway and a

metallic plate, these scratch records can only be used as an indication.

However due to the possibility of relative motion between grit particles

and the tire tread, it is probable that the tire actually experiences

more scrubbing than is indicated by this study.
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In the specific work reported here, 8.25 x 14 size bias belted

passenger tires furnished without tread pattern by the B. F. Goodrich

Tire Company were used on The University of Michigan Highway Safety

Research Institute flat plank tire testing machine in order to produce

such scratch records. The plates used were ,005-in. brass, and the

grit material was carborundum. The load on the tires was 1000 Ib at

an inflation pressure of 24 psi. These are standard conditions which

have been used on these same tires for other tests.

The tires were rolled in straight line, nonbraking, fashion over

the scratch plates in three separate tests. The scratch plates were

observed under a medium power microscope and the lengths of the resulting

scratches were measured. These lengths were averaged over the width

of the contact area and the total length of a scratch, on the average,

was found to be 0.02 in.

Assuming a pressure distribution equal to the inflation pressure

of 24 psi, assuming a contact patch width of 6 in., and further assuming

a friction coefficient between the tire and brass plate of 0.8, a total

drag force associated with these tires, due to surface scratching alone,

can be computed. This gives a value of drag force due to surface

scrubbing * 2.0 Ib.

In view of the fact that other measurements indicate that the

total drag force associated with these tires at slow speeds is at

least 20 Ib, then one must.conclude from these scratch records that

the surface effects cause a contribution to the total energy loss in

the neighborhood of 10% or more of the total. This implies that only

a small portion of the total^losses can be ascribed to surface scrubbing

directly, at least at these low speeds.
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VI. MODEL TIRE STUDIES

Two basic types of experiments were carried out on a 4.5 in. diameter

tire, scaled down from a Type VII 40 x 12-14 PR aircraft tire. The

tire model and its construction are described in Ref. [3], One

experiment was to measure the drag force of the free-rolling tire, while

the other experiment was to measure the surface temperature of the

free rolling tire, Both experiments were performed on a 30 in. diameter

road wheel using two different surfaces of contact for the tire. One

surface was the cast iron of the road wheel itself, while the other
*

surface was Safety Walk. In a separate experiment these two surfaces

exhibited similar static coefficients of friction. However, since

the Safety Walk is made up of abrasive sand grains bonded by a glue

to cloth backing, it is clear that their thermal nroperties are quite

different. No formal attempt was made, however, to measure the thermal

characteristics of the Safety Walk.

Drag-force measurements were made on the freely rolling tire

by use of small force transducers located in the axle between the

tire and its supporting yoke. At the same time the side force

perpendicular to the wheel plane was measured as a function of yaw

angle. Bearing drag was estimated and subtracted from the drag-force

measurements by use of a Plexiglas model wheel of the same size as

the tire, but of essentially rigid construction and with extremely

low loss characteristics. By subtracting this bearing drag component,

the actual tire drag could be obtained for any set of conditions.

Trade Mark.
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Tire surface temperatures were measured with an Ircon model

CH-34L infrared radiation thermometer which had been previously

calibrated for the emissivity of rubber. For these experiments, the

average image size was approximately 3/16 in. in diameter so that the

temperatures recorded represent averages over that area of the tire.

Although a single individual operated this instrument throughout most

of the experiments reported here, several people made check measure-

ments from time-to-time to establish that there was no gross biasing

in the temperature measurements. Figure 15 shows the positions at

which temperature was measured.

The procedure for recording drag forces and tire temperatures was

kept constant throughout these experiments. Each test began with

the tire and rim in thermal equilibrium with the laboratory. The tire

was then operated at the first test speed (500 rpm) for four minutes,

after which time the drag load and temperature data were recorded.

The tire was then operated at the next successive speed for two

minutes before the data were recorded and this procedure was repeated

until the entire range of speeds had been covered. This procedure

was followed for all yaw angles. A vertical load of 38 Ib and an

inflation pressure of 20 psi were used throughout the tests.

While considerable care was taken in measuring the steer angle

values quoted in the subsequent figures, the mechanism for this was

not as accurate as desired and so one must interpret the resulting yaw

angle data as subject to an uncertainty of approximately +_ 1 .
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Considerable care was also taken to insure that the measurements

of temperature with the two different surface coatings on the roadwheel

were taken under identical yaw angle conditions. This was accomplished

by setting the test tire at a particular yaw angle and carrying out

the measurements of temperature on both surfaces without changing this

yaw angle setting.

Figures 16, 17, and 18 are typical surface temperatures measured

at the three basic positions on the tire for zero yaw angle. On all

three figures, it will be noticed that for both surfaces on the

roadwheel, the center tread position is the coolest, the sidewall is

the hottest while the shoulder surface temperature is intermediate.

As is to be expected, the temperatures and temperature differences at

the three positions increase with speed. Figure 18 is particularly

interesting in that it can be seen that both the center tread and

shoulder positions exhibit higher temperatures while running on the

Safety Walk surface than they do when running on the cast iron surface.

However, the sidewall temperatures are the same for both roadwheel

surfaces.

Figures 19 and 20 show the temperature change through the contact

patch for the center tread and shoulder positions. Shoulder temperature

is taken on the so called tension shoulder as shown in Figure 15. The

tension shoulder temperature shows a definite tendency to increase

on both road surfaces for both the 0° and 2° yaw angle conditions, but

not for the other yaw angle conditions. There does not appear to be

a great deal of speed dependence.
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Unfortunately the arrangement on the experimental apparatus did

not allow us .to measure the temperature on the compression shoulder

of the tire as it passed through the contact patch. Consequently,

little can be concluded about this particular position on a, yawed

tire. Figure 21 shows temperature difference between the compressed

shoulder and the tension shoulder at the entrance to the contact

patch of a yawed tire. On both roadway surfaces the compressed

shoulder is hotter than the tension shoulder in general.

Figure 22 shows the temperature difference between the compression

sidewall and the tension sidewall under identical running conditions.

Here, the compressed sidewall is always hotter than the tension sidewall,

with little influence of roadwheel surface apparent here.

Figure 23 through 28 illustrate particular temperature levels

for various positions on the tire under different yaw angles and speeds,

using the two different roadwheel surfaces. In general, study of this

data leads one to the following conclusions:

(1) Temperatures increase in the tire with an increase in

yaw angle.

(2) Temperatures increase in the tire with an increase in

speed.

(3) Sidewall temperatures are independent of the roadwheel

surface.

(4) Points on the tire coming into contact with the road ;

surface are hotter when run on the Safety Walk than on :

the cast iron.



This latter point is quite clearly demonstrated in Figure 29,

which shows the difference in temperature between the two surfaces

for the center tread and tension shoulder positions.

Figures 30 and 31 illustrate drag force in the wheel plane and

drag force in the direction of motion, respectively, as a function

of speed at several yaw angles. The nonlinearity of the data with

respect to yaw angle probably indicates errors in the measurement of

0 yaw angle position, as previously mentioned. In examining this

data, there appears to be little difference between drag forces measured

on the Safety Walk or cast iron.

Finally it should be noted that examination of this data seems

to indicate that the temperature difference between entering contact

and leaving contact, as measured on the tread of the tire, is the

same for the two surface materials upon which the tire was run. There

appears to be evidence of a temperature rise on the surface of the

tire as it passes through the contact patch at zero yaw angle, but

there also appears to be evidence of a temperature drop on the tire

surface as it passes through the contact area at higher yaw angles.

This does not seem to clearly substantiate the theory advanced by

Schallamach [4] that temperatures rise on the tire surface as it

passes through the contact patch.
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VII. SUMMARY OF RESULTS

Research on this problem has been directed along three major

lines of activity. These are:

(1) An analytical study of the problem of heat conduc-

- tion in the rolling tire as it contacts the roadway.

(2) Experimental measurements on full sized tires.

(3) Experimental measurements on small scale, model tires.

In regard to these three phases of effort, the analytical studies

so far have been the least productive, at least in terms of generating

new information. They have, however, been helpful in interpreting

the results of some of the experiments carried out under this program.

For example, a number of analytical solutions to thermal conductivity

problems have been developed during the course of this one year of

effort. In particular, the problem of two-body contact has been studied

in some detail and a computer program written to give the temperature

distribution in two bodies in contact for a short period of time, under

conditions of heat release at the surface of these two bodies and under

conditions of an elevated temperature of one body with respect to the

other. In general this work shows that for the velocities and thermal

conductivities encountered by an aircraft tire operating on a runway,

the temperature profile caused by surface heating is that of an extremely

thin skin on both surfaces, with the proportion of heat flowing into

the concrete runway and into the tire being governed by their relative

thermal conductivities and specific heats. This gives rise to the

expectation that such a thermal proportioning could be radically

affected by controlling the thermal properties of the runway itself,
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even in the form of a very thin skin or sheet. So far, however, it

has not been possible to calculate in any reasonably sound way the

degree of heat released from the tire due to surface scrubbing on

the runway, and so one must rely upon measured values of this quantity

in order to examine the various temperature profiles exhibited.

Experiments on fully instrumented passenger car tires were carried

out at the Texas Transportation Institute using The University of

Michigan Highway Safety Research Institute Mobile Tire Tester. Instru-

mentation in these tires consisted of a large number of thermocouples

embedded throughout the thickness of the tread and carcass at two

regions, as well as an array of thermocouples around the meridional

section of the tire. These tires were run for fairly long periods of

time at a speed of 50 mph, and both the initial transient temperature

rise profile and the near-equilibrium temperature distribution were

measured. . ,

From the results of the transient temperature work it has been

possible to.show that a large fraction of the total work done in

rolling the tire under straight line, unbraked conditions is made up

of hysteretic heat distributed throughout the tire carcass. However,

for a cold tire far and away the largest fraction of this heat appears

to be located close to the tread surface of the tire, opening up the

possibility that it could be removed by some highly conductive surface

mechanism. ;

The exact fraction of heat so generated cannot be defined quan-

titatively until further experiments accurately define the total drag

force of the tire at the velocity and load conditions used in the

thermocouple measurements. i
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These conclusions based on thermocouple measurements are substan-

tiated by thin film temperature sensor measurements taken directly on

the highway. A series of these measurements shows that the temperature

rise associated with a freely rolling tire of typical passenger car

size, at a speed of 50 mph and loaded with a vertical load of 1000 lb,

was so small as to be barely measurable.

The results of these tests are not easily interpreted. It is

obvious from the data recorded that the temperature of the road does

not increase very much due to the passage of a free rolling tire when

the tire and the road have approximately the same temperature but the

mechanism of scrubbing and conduction during the tine of contact

remains unknown. A method for determining the magnitude and nature

of the heat flux due to scrubbing, which must necessarily incorporate

some scheme for separating the flux due to scrubbing from the flux due

to convection, is beyond the scope of this report.

Slow speed scratch measurements were made using the same tire as

used in the thermocouple measurements. These were carried out on the

flat plank tire testing machine at The University of Michigan Highway

Safety Research Institute, also under the same vertical load as was

used on the highway tests. These measurements showed that the drag

force associated with surface scrubbing of the tire was at least 5%

to 10% of the total drag force of the tire. This implies that at

least 5% to 10% of the energy used to move the tire forward is released

in the form of surface heat scrubbing. This confirms the two previous

experimental conclusions, but still leaves the possibility open that

the hysteretic portion of the tire loss, which appears to be the

largest portion by far, has its origin very close to the surface.
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Recent computational studies on the stress states near the surface

of rolling tires, such as that of Yandell [1], reinforces the idea that

the distribution of hysteretic and frictional losses may be radicallyi

different in a free rolling tire and a tire rolling unbraked and yawed.

Therefore, the conclusions reached so far in this work must he considered

only for the case of the free rolling tire.
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VIII. APPENDIX 1. THEORETICAL ANALYSIS OF SENSOR

In this appendix a simple model.of the sensor is developed for

the purpose of predicting the sensor response to a uniform heat flux

input applied to the sensor surface as a step function. This should

aid in understanding various sensor outputs. The construction and

installation of the sensor are illustrated in Figure 32 and detailed

in Figure 33. The simplified model is illustrated in Figure 34 where

it should be noted that the epoxy layer has been incorporated into

the road and the nickel film has been eliminated. The former simpli-

fication was made because the epoxy layer is very thin and because

epoxy and asphalt have thermal characteristics which are the same to

within the level of precision to which they are known, and to which

the model is sensitive. The latter simplification was made because

the conductivity of the nickel is so much greater than the conductivity

of the polyimide that the thin film of nickel presents no significant

resistance to the flow of heat relative to that presented by the

other materials. The problem is further simplified by assuming that

the system is unidimensional. This assumption is based on the fact

that the width of the sensor (.125 in) is much greater than the

thickness (.0015 in) and also much greater than the depth to which

any significant heat penetrates during the length of time observed

with the experimental equipment.

The following notation is used in the formulation and solution

of the problem.



a a Thermal diffusivity, ft /hr

k a Thermal conductivity, BTU/(sec ft°F)
2

q a Heat flux, BTU/(ft sec)

6 = Temperature, °F '

t a Time, hr

x a Distance from polyimide-road interface, ft, positive downward

L a Thickness of sensor from polyimide-air interface to pblyim'ide-

road interface, ft; L = e + e_, Figure 34

1, 2 » Polyimide, asphalt

1/2

Equations and Solutions

The equations of conduction are

a6j
3F

32e,
-L < x < 0

x > 0

the boundary conditions are
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.39\ = 0, t<0

-k1 -r—I (A step function with q constant)
1 dX/x=-L q , t> 0

x=o

62(0,t)

^j = 6 (x ,0 ) = 0

62(+«,t) = 0

Solving by Laplace transforms gives us

-
x (x,s) = A e " + B e v

x2(x,s) = C e ' *

The constants A, B, C, D are determined from the boundary conditions.

The result is presented as the temperature in the polyimide as a

function of position and time. Solving for x = e = .001 in. yields

the temperature at the location of the nickel film, which in this

model is taken to be the temperature of the nickel film .
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n=0 ?6

(2n+l)Lx
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V 2^F

(2n̂ nL̂ x\1

v̂ /]

The temperature at the surface, i.e. the temperature at the

polyimide-air interface, is found by setting x = - L in the above

expression.

9 (t) - 2 q
i

This is presented for reference only and has not been evaluated

or plotted.

The expression for 9 is most easily evaluated using a computer

and the results are most easily interpreted if presented in a graphical

form. The computer program is straightforward and is not presented here,

The evaluation has been carried out for x = e = .001 in.

68



The results are shown in Figure 35 along with the results of three

related problems in which the road surface is taken to be micarta,

copper, and aluminum. An examination of the first 5 msec indicates

that for these short times the road material has little effect on

the sensor and an examination of the.first 20 msec indicates that the

sensor is only slightly sensitive to the distinction between micarta

and concrete and asphalt. The response to a unit heat flux pulse of

6.25 msec duration has already been presented (Figure 14) and the

first 6.25 msec of that figure can be taken as an expansion of the

initial part of Figure 35 and examined for details if required.
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• Polymide e= .0005"

— Nickel e= .0002"

Polymide e= .0010"

Epoxy

Figure J2. Detail of'sensor installation.

Polymide \f
Nickel ( "

Polymide (§)

Epoxy *—@

Rood © 8

e, = .0005"
>= .0002"

= .0010

Figure JJ>. Schematic of sensor installation.
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"*> ,
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1

O
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1

Concrete (or asphalt etc...}

x=0

Figure 3k. Analog of sensor installation for theoretical analysis,
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Concrete ond
Asphalt

15 20 25 30 35 40
TIME (Milliseconds)

Figure 35 • ' Temperature/flux in nickel as a function of time.
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ix. APPENDIX 2. ALTERNATE METHOD OF CALCULATING HEAT GENERATION

The second scheme for determining the total rate of heat generation

involves partitioning the tire cross section into elements centered

about their representative thermocouples. The elements are delineated

by dashed lines in Figure 1. The sketch below illustrates this parti-

tioning and the names assigned to the elements.

crown
mid region

shoulder

The elements as well
as the tire are
symmetric.

sidewall

bead (nominal)
This region is motionless and is
not represented by a thermocouple.

The areas of the elements and the approximate distances of the

centroids from the axle center can be used to calculate the representative

volumes. The percentage of the total volume represented by each element

becomes a weighting factor in calculating a weighted sum of the rates

of temperature increase. The tire is assumed to be homogeneous so

that volume fractions are equivalent to mass fractions and the specific

heat capacity is taken to be that of the rubber.

The figures given are for a (V78r15. All thermocouples are 1/4 in.

deep. The tire weighs 30 Ib. The data is for a free rolling, 50 mph

experiment.
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. . % Total Volume Thermocouples AT o ,
Location (Le£t + Right sides) Averaged At avg h/sec

Actual Bead 5.1 none 0

Bead 8.7 1,9 .1063

Sidewall 22.3 2,8 .2125

Shoulder 26.9 3,7 .2032

Mid region 22.0 4,6 .1250

Crown 15.0 5 .1188

The weighted average is (5.1x0+8.7x .1063 + ) * 100 or .1566

°F/sec. Then Q = .1566 x 30 x (.48 x 778) = 1750 ft Ih/sec, The average

of all the thermocouples 1-9 = .1570

Q = 1759 ft Ib/sec.

The agreement is quite good, compared with the nonweighted method of

Section III of this report.
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