
N A S A TE;CHNIC*;I»
MEMORANDUM

o*»

^ 4 ^ • f - i - \
4 i .* < .* ,*

*

4

S* f. f «-

i- ,«* . * • - * *
*» * f- ..
•i 4 ft <>

4 |

NASA TM X-2840

' »

*• »
* r
<p i -

> «» f '-• • .','• it

STARTUP ANALYSIS
FOR A:HIGH-TBMP]
GAS-LOADED HIAT PIPE

i- i •* *• <s- » i- .« * t

»• f * i' .1 .. f f * 1:

i Ti^
••; • f * <• *

by Peter

Lewis Research Center

Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND S P A C E ADMINISTRATION * WASHINGTON, D. C. • JULY 1973



1. Report No.

NASA TM X-2840
2. Government Accession No.

4. Title and Subtitle . •

STARTUP ANALYSIS, FOR A HIGH -TEMPERATURE GAS-
LOADED HEAT PIPE

7. Author(s)
Peter M. Sockol

9. Performing Organization Name and Address

Lewis Research Center
National Aeronautics, and Space
Cleveland, ,Ohio 44135

12. Sponsoring Agency Name and Address

National Aeronautics and Space
Washington, D. C . 20546

Administration

Administration

3. Recipient's Catalog No.

5. Report Date

July 1973
6. Performing Organization Code

8. Performing Organization Report No.

E-7416

10. Work Unit No.

503-25

1 1 . Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract
A model for the rapid startup of a high -temperature gas-loaded heat pipe is presented. A two-
dimensional diffusion analysis is used to determine the rate of energy transport by
tween the hot and cold zones of

the vapor be-
the pipe. The vapor transport rate is then incorporated in a sim-

pie thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an
argon -lithium system show that radial diffusion to the cold wall can produce large vapor flow
rates during a rapid startup. The results also show that startup is not initiated until the vapor
pressure py in the hot zone reaches a precise value proportional to the initial gas pressure PJ.
Through proper choice of pi; startup can be delayed until py is large enough to support a heat-
transfer rate sufficient to overcome a thermal load on the heat pipe.

17. Key Words (Suggested by Author(s))

Heat pipes
Gas -loaded heat pipes
Heat transfer

19. Security dassif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - unlimited

-

20. Security Classif. (of this page)

Unclassified
21. No. of Pages

19
22. Price'

$3.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151



STARTUP ANALYSIS FOR A HIGH-TEMPERATURE GAS-LOADED HEAT PIPE

by Peter M. Sockol

Lewis Research Center

SUMMARY

A model for the rapid startup of a high-temperature gas-loaded heat pipe is pre-
sented. A two-dimensional diffusion analysis is used to determine the rate of energy
transport by the vapor between the hot and cold zones of the pipe. The vapor transport
rate is then incorporated in a simple thermal model of the startup of a radiation-cooled
heat pipe. Numerical results for an argon-lithium system show that radial diffusion to
the cold wall can produce large vapor flow rates during a rapid startup. The results also
show that startup is not initiated until the vapor pressure p in the hot zone reaches a
precise value proportional to the initial gas pressure p.. Through proper choice of p.,
startup can be delayed until py is large enov
to overcome a thermal load on the heat pipe.
startup can be delayed until p is large enough to support a heat-transfer rate sufficient

INTRODUCTION

A gas-loaded heat pipe contains a fixed quantity of a noncondensible gas in addition
to its working fluid. The introduction of a gas into an ordinary heat pipe has been sug-
gested as a means of aiding its startup. When a high-temperature heat pipe is closely "
coupled to a thermal sink, the very low initial vapor pressure may make it incapable of -
delivering the energy demanded during startup (ref. 1). Some technique must be found to
decrease the coupling between the pipe and the sink if startup is to be successful.

During operation of a gas-loaded heat pipe, vapor flows from the evaporator to the
condenser and the noncondensible gas is carried with it. The gas collects in the end of
the condenser and decreases the effective heat-rejection area. As the temperature, and
hence the vapor pressure, in the evaporator is increased, the gas is compressed to a
smaller volume. If a sufficient quantity of gas is introduced, the heat pipe can be com-
pletely decoupled from the thermal sink until the vapor pressure is high enough to sup-
port large energy transport rates.



Before a gas-loaded heat pipe is incorporated in a larger system it is necessary to
be able to predict its performance during startup. To this end a two-dimensional anal-
ysis of the diffusion of vapor through the gas in the condenser is performed in the present
work. The energy transport rate obtained in this study is combined with a simple ther-
mal model of the startup of a radiation-cooled heat pipe. Numerical results are pre-
sented for a long lithium heat pipe with argon as the noncondensible gas. They should be
of value in the design of experiments with high temperature gas-loaded heat pipes.

SYMBOLS

A. expansion coefficient, eq. (18)

Ar parameter, eq. (31)

A... parameter, eq. (32)

a- expansion coefficient, eq. (23)

Bj expansion coefficient, eq. (19)

bj expansion coefficient, eq. (24)

C heat capacity per unit length

c total molar density

c- initial molar concentration of noncondensible gas

D outside diameter of heat pipe

D parameter, eq. (36)
o

D, parameter, eq. (37)

& binary diffusion coefficient

Ej exponential integral

F (g) function, eq. (16)
\s

F,(g) function, eq. (17)

g dimensionless vapor flux

h* heat of vaporization per unit mass

J Bessel function

L length of hot zone

L length of evaporator



L length of heat pipe

I dimensionless L

Ze dimensionless Lg

Z dimensionless L
r c

M molecular weight of vapor

NQ vapor flux, eq. (3)

NV molar vapor flux

p. initial pressure of noncondensible gas

PV(T) vapor pressure

Q heat input

O heat lost by radiation

Q energy transported by vapor

q dimensionless Q

qr dimensionless Qj.

q dimensionless Q^

R radius

R inside radius of wick
iV

r dimensionless R

T temperature of hot zone

T temperature of cold zone
C«

t time

tj time at which Q is switched on

x mole fraction of noncondensible gas
o

xy mole fraction of vapor

y concentration variable, eq. (9)

Z distance along pipe

z dimensionless Z

a. zeros of J *

/3. zeros of J

y Euler constant



6-. Kronecker delta, eq. (20)
J

e emissivity of pipe wall

0 dimensionless T

) function, eq. (8)

X. parameter, eq. (33)
t7

a Stefan -Boltzmann constant

Subscripts:

c 'cold zone

h hot zone

Superscript:

( ) ' differentiation with respect to argument

DESCRIPTION OF THE MODEL AND ASSUMPTIONS
| I

Thermal Model '

The thermal model has already been applied to the startup of an ordinary radiation-
cooled heat pipe (refs. 2 and 3). When the power is turned on, a hot zone of uniform wall
temperature T forms in the evaporator. Once the vapor pressure pv(T) is high enough,
the front edge of this zone begins to move into the condensor. Despite the steep wall-
temperature gradient at the front, it is assumed that axial heat conduction in the wall is
negligible compared to energy transport by vapor diffusion. The remaining cold zone re-
tains its initial temperature T .

C
, This model is in definite opposition to the results of the steady -state analysis of ref-

erence 4. There it is shown that at the front axial heat conduction in the wall is much
greater than energy transport by the diffusing vapor. The present calculations confirm
that the vapor flow rate past the front becomes quite small as steady state is approached.
They also show, however, that very large diffusion rates accompany the motion of the
temperature front during startup. Such rates are incompatible with a stationary front.

Diffusion Model

The goal of the diffusion analysis is to determine the vapor flow rate past the tern -
perature front as a function of the length and temperature of the hot zone. To simplify



the calculations the local condensation rate upstream of the front is assumed to be neg-
ligible, whereas the cold wall is taken to act as a perfect sink for the vapor. The transi-
tion region between these two boundary conditions is considered to be vanishingly thin.
The nonuniform vapor velocity in the hot zone must produce a secondary flow of noncon-
densible gas. This effect is neglected, however; the upstream velocity is assumed uni-
form over the cross section, and the gas is taken to be stagnant throughout the pipe. The
axial pressure drop is neglected, and the total pressure, gas plus vapor, is set equal to
the vapor pressure pv(T) in the evaporator. This restricts the analysis to cases where
the vapor velocity is much less than the speed of sound during startup. In a long cylin-
drical heat pipe the vapor concentration should relax to a quasi-steady profile in a time

n

of order (R /2.4)/0, where R is the inside radius of the wick and 9 is the binary
vf AV

diffusion coefficient for the vapor-gas mixture. If the distance moved by the temperature
front during this time is small, then steady-flow equations can be used in the diffusion
analysis. In an argon-lithium heat pipe at 1300 K, with R = 1 centimeter, the relaxa-
tion time is about 10 milliseconds. For a typical case (fig. 3) the maximum frontal mo-
tion during this time is 0. 02 centimeter which is small. Finally, the product c&, where
c is the total molar density, is assumed constant and evaluated at the average of the
temperatures T and T .

DIFFUSION ANALYSIS1 I t - -

The molar flux of vapor Ny through a stagnant gas is given by (ref. 5)

Ny = x^ - cQ V Xy = c0 V In xg (1)

where Xy and x are the mole fractions of vapor and gas, respectively. Conservation
of mass requires

V2 In x = 0 (2)
O

* *' *f

A cylindrical coordinate system is introduced with the main flow in the Z direction and
the origin at the interface between the hot and cold zones (fig. 1). It is assumed that the
axial distance over which x departs significantly from 0 or 1 is small compared to L
or L - L where L is the length of the hot zone and L is the length of the heat pipe.
Hence, the boundaries on equation (2) are taken at Z = ±«>. The boundary conditions for
equation (2) are as follows:
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For Z <Q:

Hoi CoU

Figure L - Coordinate system for diffusion analysis with main flow
in Z-direction and origin at interface between hot and cold zones.

— In x - NQ as Z --°° (3)

— In xa = 0 at R = R (4)
8R g w '

For Z > 0 :

x - 1 as Z - °° (5)

xg = 1 at R = Rw (6)

where NQ is an unknown constant flux. Conditions (4) and (6) represent no condensation
and the perfect sink, respectively. The unknown N is determined by specifying the ini-
tial molar concentration c. of the noncondensible gas at temperature T . A mass bal-
ance on the gas gives

•L -L ,-0 /"*> /*L._-L
c dZ

/•v^— /•«_ r r
CiLp= / c x d Z « / ex dZ+ / c(x - l ) d Z + /

«/—L ^* «/_oo ^ •/ 0 *^0

/••" CH /.
where the bar indicates an average over the cross section, and c, and c are constants
obtained by evaluating c at the temperatures T and T , respectively. Note that the
integrands in equation (7), as finally written, go rapidly to zero away from Z = 0.



Dimensionless variables are introduced:

g-N°R*I , ^ , g -
Rw Rw

L ij__ rp
— 7 — P £1 —

Rw P Rw Tc

and

_ [cc(Lp - L) - clLp] _ f _

"v<T>
(8)

where pi is the initial gas pressure. A new dependent variable y is defined by

In xg = -gy (9)

In cylindrical coordinates, equation (2) becomes

Equations (3) to (6) become the following:

For z <0:

as z --« (11)

L = 0 at r = 1 (12)
3r

For z > 0:

y -0 as z -oo (13)

y = 0 at r = 1 (14)



Equation (7) becomes

; Fc(g) - 0'1Fh(g) = \ ( e , l ) (15)

with

r1 r
Fc(g) = 2 / r dr / (1 - e'^dz (16)

JT\ J c\

/:•F,(g) = 2 / r dr / e'ejf dz (17)
n ^0 •/-«>

Once y(r,z) is determined, equation (15) can be solved numerically to obtain g, and
hence the mass flux as a function of T and I.

The solution of equations (10) to (14) is given by the following:

z <0:

.) = 0 (18)

00

•£»,•y
i^l

Note that a^ - 0 and JQ(0) = 1. The Bessel functions Jo(^r) and Jo(^r) satisfy the
following relations (ref. 6, ch. 11):

/ rJ^^
(22)



where 5.. = 1 and 6^ = 0 for i ± j. Requiring y and 3y/3z to be continuous at z = 0
and applying relations (18) to (20) to the results give

(23)

bj = 2 a a a " 0 " + 2"' J = 1, • • • , "° (24)

where aj = AjJ (or.) and b^ = -B.J '(/Sj). A finite subset of equations (23) and (24) with
j = 1, . . . , n can be solved by iteration. Final values are obtained by increasing n un-
til the low order coefficients no longer change. For n = 30 the first few coefficients are

aj = 0.2537 bj = 0.2578
a2 = -0.0761 b2 =0.0638
ag = -0.0336 bg =0.0308
a4 = -0.0201 b4 =0.0188
ag = -0.0138 bg =0.0129

The remaining coefficients decrease quite slowly, but the exponential factors in equa-
tions (16) and (17) ensure adequate convergence away from z = 0.

Once g has been found by solving equation (15), the energy transport by diffusion
from the hot to the cold zone O is given by

(25)

where M ' is the molecular weight of the vapor and h, is its heat of vaporization per
unit mass. For g of order one this corresponds to a very small energy transport. As
an example, in an argon-lithium heat pipe at 1300 K with R = 1 centimeter and g = 1,
equation (25) gives Q^ •« 7.4 watts. For large transport rates to occur it is therefore
necessary to have g » 1. From equations (9) and (19) this corresponds to the bulk of
the gas being pushed far enough into the cold zone to enable the vapor to reach the cold
surface by diffusing radially through a very thin layer of gas.

The functions Fc(g) and Fn(g) must be evaluated numerically. The results have
been approximated by analytical expressions for subsequent use. For g » 1, however,
F is dominant and the following approximation is of interest. If only the first term inc



the series of equation (19) is retained, equation (16) gives

F.(g) « 2 / r dr
70

f1 r ( r -0i*ny r dr y |l - exp ̂ -gB^y^rJe * J|dz

/

I /*gB..J (/3..I
r dr /3"1 /

v, •'O

/" ir/ r dr j31 |y + In [gB,J
JQ (

In g - 1.339) (26)

where y = 0. 5772. The radial integral was performed numerically. Note that the expo-
nential integral (ref. 6, ch. 3) E.,(x) approaches zero for large x. Hence, F (g) has only

1 ts

a weak dependence on g for g » 1.

TIME-DEPENDENT THERMAL ANALYSIS

The time-dependent equations are written for a radiation-cooled heat pipe with a
shielded evaporator. The state of the heat pipe at time t is shown in figure 2, where Q
is the heat input to the evaporator, (^ the heat lost by radiation, and Q^ the energy
transported by the vapor to the cold zone.

When the hot zone is expanding into the condensor, energy balances on control vol-

MM * M M M M t

Figure 2. - State of heat pipe at time t
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umes enclosing the hot and cold zones, respectively, at time t give

C L d I = Q - Q r - Q v (27)

C(T-Tj dI l = Qv (28)
c dt

where C is the heat capacity per unit length of the wall, wick, and liquid. In terms of
6 and I these equations become

Z dn _ _ _, /on\—— = q - q - q (<s5y)
dt r v

( 0 - D - = q v (30)
dt

with q = Q/CR T . The quantities q and q are given by

qr =A r0
4 (I - l e) (31)

qv
 = \S (32)

where Af =irDeaT^/C, 1Q = Le/Rw, and Ay = 7rMy(c0)hf /CTC. Also, D is the outside
diameter of the pipe, e the emissivity, and a the Stefan-Boltzmann constant. The for-
mulation is completed by equation (15) with X(e , l ) given by equation (8).

During the initial startup period, q remains negligibly small until p (T) > p. and
X > 0. For X > 0, there is an extremely rapid transient in which q approaches q
and d0/dt becomes small. Thereafter, both I and 9 increase at moderate rates, and
qy decreases steadily as qr increases. This continues until steady state is approached.
The behavior is illustrated in figure 3 for an argon-lithium heat pipe.

In this latter period, equation (15) causes a severe numerical difficulty. The func-
tion X ( 0 , Z ) has a very strong dependence on 0 and I, while F (g) is a weak function of

\s

g for g » 1. Thus, qy is extremely sensitive to small changes in e and I, which
makes equations (29) and (30) numerically unstable for any reasonable size integration
step (>0.1 sec).

Since Z(d0/dt) is small compared to (q - q ) in this period, equation (29) can be used
to obtain an approximate value of qy and hence g. Equations (30) and (15) can then be
solved simultaneously for I and Q. It is necessary, however, to first obtain a good ap-

11
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-̂  1300
(a) Initial gas pressure, pj( 50torr; time at which heat input is turned on, tj, -12.2 seconds.

i 150

125 — 1450

100

75

50

1400 —

QI— 1350

_ 1

100 125
Time, t, sec

150 175 200 225

(b) Initial gas pressure. PJ, lOOtorr; time at which heat input is turned on, tj, -13.0 seconds.

Figure 3. - Startup behavior for argon-lithium heat pipe with constant heat input Length of heat pipe, L,
300 centimeters; length of evaporator, Le, 30 centimeters; heat input, Q, 5 kilowatts.
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25 —

0L_ 1450
0 25 50 75 100 125 150 175 200 225

(c) Initial gas pressure, PJ, 200 torr; time at which heat input is turned on, tj, -13. 9 seconds.

Figure 3. -Concluded.

proximation to de/dt. Differentiating equations (15) and (8) gives

k - e-2 Fh(g)l & . « = rF -fe) _ ,-i F -fe)i dg
L e n J dt dt I c n J dt

(33)

with A. = T
c^pPiPv/Pv' E^uation (29)» with Z(d0/dt) assumed small and q taken as

constant, gives

dt \ dt dt
(34)

Equations (33) and (34) give

n If _ D, d£
6 dt l dt

(35)

with

(36)

13



(37)

Equations (29), (30), and (35) give

I + (0 - 1)
D,

Finally, equations (29) and (38) give

dt
(38)

(0 - DD
-qJ 6

(6 -
(39)

Equations (30), (15), and (39) form a system of one differential and two algebraic

equations whose solution approximates that of equations (29), (30), and (15) when d0/dt
is small. The stability of this approximate set of equations is much improved over that

of the original set.
Both sets of equations have been incorporated in a numerical integration scheme.

The initial conditions at t = 0 are taken to be I = I and X(0 , Z ) = 0. From equa-
O C \j \j

tion (8) this gives

(40)

At earlier times q =0, q « 0, and 0 = 1 + q(t - where ^ is the time when Q

is switched on. The integration is started using the original set of equations and a very

small integration step. When q is close to its maximum value, the integration is con-
tinued using the approximate equations. The numerical routine automatically varies the
size of the integration step to achieve the maximum value consistent with accuracy and
stability. In a typical case the stepsize varied from 10" second at the start to 10 sec-
onds at the end of the integration. In a few cases the approximation was checked by using

the original set of equations throughout the calculation. The agreement between the two
methods was better than three significant figures in I and 0. Solutions have also been
obtained for a startup in which Q is increased in steps until the final steady state is

reached.

14



NUMERICAL RESULTS

The time-dependent theory of the preceding section has been applied to the startup of
an argon-lithium heat pipe. The specifications of the pipe are as follows: L = 300 cen-
timeters, L = 30 centimeters, D = 1.9 centimeters, R =0 .78 centimeter, C = 1. 99
joules per centimeter per degrees Kelvin, and e =0 .3 . The values for R C, and e

* Wr

were obtained by selecting a 1. 0 millimeter thick tantalum alloy wall, an 0. 5-millimeter -
thick annular liquid return, and an 0. 2-millimeter-thick tungsten screen wick with 50-
percent porosity. The binary diffusion coefficient was evaluated from the Chapman-
Enskog expression (ref. 7) with measured values of the Lennard-Jones parameters for
the argon-lithium interaction (ref. 8).

Figure 3 shows the results for startup with a constant heat input Q of 5 kilowatts
and initial gas pressures p, of 50, 100, and 200 torr. The switch on times t. for these
cases are -12.2, -13.0, and -13.9 seconds, respectively. At t = 0 the vapor energy
transport Q^ increases from near zero to slightly less than Q in less than 0.02 sec-
ond. In this period of time the vapor pressure pv(T) increased by only 0. 7 percent, but
this is sufficient to raise the parameter A. (eq. (8)) from 0 to 2. 2. It should be noted that
it takes about the same length of time to establish a steady-state concentration profile in
an argon-lithium system of the previously given dimensions at these pressures and tem-
peratures. Nevertheless, the figures show that in each case startup is initiated at a very
precise temperature T given by equation (36). This fact can be used to eliminate
startup difficulties in many applications. Since the heat-transfer capability of the heat
pipe increases with the vapor pressure p , the initial gas pressure p. can be increased
to the point where startup is not initiated until p is large enough to support a heat-
transfer rate large enough to overcome the thermal load on the condenser.

Figure 4 shows the results for a startup in which Q is increased in steps to 25 kil-
owatts with p. = 50 torr. In this way the vapor flow rate at the evaporator exit does not
reach a very large value until py is large enough to sustain it.

15
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CONCLUSIONS

A two-dimensional diffusion analysis has been used to determine the energy trans-
ported by the vapor between the hot and cold zones of a gas-loaded heat pipe. This
theory has been combined with a simplified model of the startup process. Numerical re-
sults from the combined analysis show that very large diffusion rates occur during start-
up. Such a result cannot be obtained from a one-dimensional axial diffusion analysis
since the radial flow is an essential part of the process.

The numerical results also show that startup is not initiated until the vapor pressure
p (T) reaches a precise value which is proportional to the initial gas pressure p..
Hence, startup difficulties can be reduced by selecting a value for p. such that the pipe
will not start until p is large enough to support a heat-transfer rate sufficient to over-
come the thermal load on the pipe.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, May 11, 1973
503-25.
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