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SUMMARY

This report describes the formulation and development of a computer
analysis for the calculation of streamlines and pressure distributions around
two~dimensional (planar and axisymmetric) isolated nacelles at transonic
speeds. The computerized flow field analysis is designed to predict the
transonic flow around long and short high-bypass-ratio fan duct nacelles with
inlet flows and with exhaust flows having appropriate aerothermodynamic pro-
perties. The flow field boundaries are located as far upstream and down-
stream as necessary to obtain minimum disturbances at the boundary. The far-
field lateral flow field boundary is analytically defined to exactly represent
free-flight conditions or solid wind tunnel wall effects.

The inviscid solution technique is based on a Streamtube Curvature
Analysis, The computer program utilizes an automatic grid refinement proce-
dure and solves the flow field equations with a matrix relaxation technique.
The boundary layer displacement effects and the onset of turbulent separation
are included, based on the compressible turbulent boundary layer solution
method of Stratford and Beavers and on the turbulent separation prediction
method of Stratford.

This computer program has the capability of calculating the pressure dis-
tributions and flow fields, including viscous displacement effects, on a variety
of internal and external shapes. The location of incipient turbulent boundary
layer separation is identified, if and when the calculated pressure gradients
are sufficient to cause it. The computing times are relatively short (2-6
minutes on a CDC 6600) depending on the complexity of the problem. The pre-
dicted pressure distributions have been compared with the through-flow nacelle
test results from the NASA-Langley 16-foot tunnel.

xi




ANALYTICAL METHOD FOR PREDICTING THE PRESSURE DISTRIBUTION ABOUT A NACELLE
AT TRANSONIC SPEEDS

PART I - STREAMTUBE CURVATURE ANALYSIS
J.S. Keith, D,R. Ferguson, C.L. Merkle, and P.H, Heck
General Electric, Aircraft Engine Group
Evendale, Ohio 45215

1.0 INTRODUCTION

Aircraft are being designed with the NASA-developed supercritical wing
to fly at cruise Mach numbers approaching one, The need for low-installed
drag and high-drag-divergence Mach number nacelle installations is extremely
critical to the success of this design. Design techniques are required to
evaluate these nacelles on an isolated basis and then on an installed or
integrated basis.

For this reason NASA has begun a program to provide design information
for low-drag, high-drag-divergence Mach number isolated nacelles suitable
for use with advanced high-bypass-ratio turbofan engines. One element of
such a program is the development of a method to predict the inviscid pres-
sure distribution and flow field about an arbitrary axisymmetric ducted body
at transonic speeds. The prediction technique will provide the means to
conduct parametric studies so that the nacelle design criteria could be
evaluated to select configurations for further experimental investigations,
The prediction technique would provide guidance during wind tunnel testing
to develop nacelle shapes which would minimize drag within given design
restrqints.

Several techniques of solving the inviscid equations of motion about
arbitrary two- or three-~-dimensional bodies at transonic speeds are presently
available; however, there are no computer programs available which treat air
inlet or nacelle configurations, The objective of the development of this
computer analysis was the prediction of flow fields about isolated nacelles
at transonic conditions, The solution technique was further specified to
give accurate results consistent with the requirement of relatively short
computing time per input case as compared to that required for a time-
dependent finite difference method of solution. The method utilized to com~
pute the flow field is the Streamtube Curvature Relaxation technique.

The Streamtube Curvature Method (STC) of solving planar and axisym-
metric external flows has not been discussed significantly in the literature;
however, the method is a very natural one. For example, engineers frequently
rely on one-dimensional compressible flow relationships for a first-order
solution to ducted flows., The STC approach is similar except that a number
of confluent streamtubes, with slightly different properties, are added to-
gether to obtain the total flow in the channel, Each streamtube is handled
in much the same way as is the one streamtube in the one-dimensional problem.
In the limit, as the size of the individual streamtubes approaches zero, the
STC method satisfies the inviscid equations of motion exactly.



This report describes the method of analysis used to apply the Stream-
tube Curvature Relaxation technique, the numerical procedure for computer-
ization of the analysis, and examples of correlations of predicted flow
fields on nacelles at transonic speeds with wind tunnel test data.

The computer program source deck, together with a user's manual, is
available from COSMIC (Computer Softwear and Information Center), Burrows
Hall, University of Georgia, Athens, Georgia 30601. The program is written
in CDC Fortran 2.3 source language, except for three subroutines in Compose
1.1 language. The computer program has been checked out for the CDC 6600

machine,



2,0 SELECTION OF THE METHOD

Known methods for solving transonic flow fields may be divided into two
categories ~- time-dependent and iterative. Time-dependent methods have
achieved much popularity because both the subsonic and supersonic portions
of the flow field, in most cases, are solved by the same algorithm. Thus,
with a rather simple calculating procedure a difficult mathematical problem
is computed. In the iterative method, however, the calculation formula must
reflect the mathematical nature of the equation and a switching, depending
upon Mach number, to the appropriate formula is required at each calculation
point, It is in this way that the different physical characteristics of the
subsonic and supersonic regions come into play.

Iterative methods are quite new. To the authors' knowledge, the first
demonstration of a general, numerically consistent, iterative method for
solving transonic flows occurred in 1970 (ref, 1), This was the small per-
turbation method of Murman and Cole for flow past airfoils without 1lift.
Recently, extensions to the method have been presented by Stegger and Lomax
(ref. 2).

Although there undoubtedly are many variations, we may think of an
iterative method as one in which the equation for the unknown fluid dynamic
property at each of the net points is solved by: (1) writing a linear ap-
proximation to this equation and, (2) solving the resulting system of equa-
tions simultaneously, Because of the linear approximation, this process is
repeated several times (say 3 to 10) before convergence is obtained,

In contrast to solving the field simultaneously, time-dependent methods
compute the wave motion of a disturbance as it travels from one part of the
flow field to the other, A steady-state result is obtained only after all
wave reflections have dissipated to a relatively small level., Although the
time-dependent method of updating the flow properties can be likened to an
iteration process, clearly the most rapid solution will be obtained when
the flow field variables are all corrected simultaneously and when this cor-
rection is not limited by (computationally) slow wave transits, Therefore,
as a rapid analysis tool, the iterative method is most attractive.

Of the many different representations of the fluid dynamic equations,
the number which can be solved by the iterative method across the transonic
region are, perhaps, limited., Here the simplest and most general forms of
the equations are chosen, namely, those which apply along streamlines (Y =
constant lines) and those which apply along lines which are orthogonal to
the streamlines (£ = constant lines),

Across the streamlines, the continuity and momentum equations are:

Continuitz:

(€ = Const) (1)
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Momentum:

(a) Normal form:

op = vaz (€

n = Const) (2a)
(b) Crocco form:

13023 _ 42, M _ .38 _

5 3n = -CV& + >n T n (€ = Const) (2b)

Along the streamlines the energy and momentum equations are:

Momentum:

%% =0 (Y = Const) (3)
Energz:

%S‘ =0 (¥ = Const) (4)

where, the independent variables s and n are the distances measured along
and across the streamlines, respectively,

The solution method is an extension of the streamline curvature method.
It may be briefly described as follows: First, a crude grid of streamlines
and orthogonal lines is assumed (refer to Figure 1); second, the curvature
of the streamlines at each of the grid points is evaluated; third, the mo-
mentum equation is integrated along a line normal to the streamlines to
obtain velocity, and the continuity equation is integrated to determine the
"correct' streamline positions (for the assumed curvature field)., These
are indicated by the "x" in Figure 1. Fourth, an adjustment (6n) is com-
puted by considering: (1) the difference between the computed and assumed
streamline positions and, (2) the effect of the implied curvature modifica~
tion in the integrated momentum equation. Finally, the streamlines are re-
positioned by the 6n values,

Because the movement of any one grid point alters the velocity at
nearby points through a change in curvature, it is highly desirable to
account for these interrelating point adjustments simultaneously. The
utilization of a simultaneous soluytion procedure, employed here, is not
part of the classical streamline curvature method (refs. 3, 4, 5), In
comparison, the classical method yields calculation times which are very
slow, especially for a closely spaced calculation grid. In concept, the set
of simultaneous equations for the normal streamline adjustments is formulated
from the finite difference equivalent of the following egquation:



1. Assume a Crude Grid

2. Evaluate Curvature

3. Integrate the Cross-Stream
Momentum Equation and the
Continuity Equation to Determine
the "Correct" Streamline Positions.

4, Solve the Matrix Equation for
5n and Move the Grid Points,

Figure 1. Solution Technique,



22(6n) . (1-M2) 32(én) _

e L 5
VI T NZT T ag2 )

where:
dn = Required streamline adjustment in the normal direction
Y = Stream function
s = Curvilinear distance along a given streamline
M = Mach number
pV = Flow per unit area
F = Driving (or error) function derived from the solution to

the integral continuity and normal momentum equations

This equation is derived in Appendix A for the special case of isen-
tropic two-dimensional flow, (These limiting assumptions are utilized only
to maintain simplicity of illustration; they are not part of the computer
program.) From a mathematical point of view, the above equation is similar
to the small perturbation form of the velocity potential equation employed
by Murman and Cole (ref. 1).

323 528
-5 + (1-M2) — = 0 (6)
oy dx2

v
2 <<1, Ma~
a a

In either case, it is possible to numerically solve the equations for either
subsonic flow or supersonic flow by changing the finite difference star from
a subsonic representation to a supersonic representation as illustrated in
Figure 2, Notice that the supersonic representation includes no points down-
stream of the cross-stream line, reflecting the physical reality that dis-
turbances downstream will not be felt upstream. The star-switching process
is directly related to the coefficient (1—M2); and, because this coefficient
is zero at unity Mach number, the switch from one star to the other is per-
formed smoothly.

The extended streamline curvature method, here referred to as the
Streamtube Curvature (STC) method, appears to have the advantage that it is
applicable to the calculation of nonsmall perturbation transonic flows,
Considerable complexity is introduced when Equation 6 is expanded to allow
the vertical component of velocity, v, to be the order of magnitude of the
axial component u, In this case when the grid system is not aligned with
the flow direction, a cross—-derivative term:



- M<l

mp M>]

Figure 2. Finite Difference Stars for Subsonic
and Supersonic Flow.




uv 32
a2 dxdy

appears in the differential equation, and the star-switching concept (as
explained above) cannot be applied., On the other hand, with the intrinsic
coordinate system utilized in the STC procedure, the arms of the star are
always oriented in the streamwise and cross-stream directions, and the star-
switching algorithm is always appropriate,

Star switching is one of the requirements for the numerical solution
to either Equations 5 or 6 in a mixed subsonic and supersonic region. A
second requirement is _a reasonably accurate evaluation of the nonlinear
coefficient term (1-M2). In this respect, the velocity potential method
is superior., During the current contract, it has been found that the coef-
ficient term in the differential equation (Equation 5 above) cannot readily
be evaluated to the accuracy necessary for a convergent transonic solution
when the streamwise spacing between the calculation points is too small,
This evidently is due to the method used for evaluating the velocity (and
Mach number) at field mesh points. The velocity calculation, using Equa-
tion 2b, requires the evaluation of curvature by a second-order numerical
differentiation which is subject to large errors (order of l/ASZ) when the
streamwise spacing (AS) is small,

Aside from the limitation just cited, the streamtube curvature method
is extremely powerful as indicated by the following features:

e No additional complexities arise when the flow is rotational,

o The slip line between an exhaust jet and the external flow can
be handled precisely. (The procedure is to consider two coincident
streamlines, Their position and pressure are the same; their
velocity and stagnation properties may be different.)

e The streamline/orthogonal line grid provides a mapping of the flow
field into a rectangular domajin, This is helpful from the stand-
point of computer program organization,

The STC Program has also been designed to:

e Handle multiple streams

® Place grid points at locations in the flow field where they are
needed, as determined by local variations of the dependent
variables .

e Allow external flow analysis by incorporating matched near-field

and far-field solutions, The far-field solutions are obtained
analytically utilizing small perturbation theory.



3.0 AN OUTLINE OF THE CALCULATION STEPS

The operations performed by the STC Program may be outlined as follows:

1, Define the flow regions and locate (approximately) the "primary"
orthogonals and the streamlines which divide the internal and
external flows,

2. Refine the grid as required by inserting additional streamlines
and orthogonal lines between those already existing,

3. Compute the streamline angles and curvatures,

4, Compute the orthogonal line angles and move the grid points along
the streamlines to obtain orthogonality,

5. Compute the velocities on the "far-field" boundary.

6., Adjust the flow rates in the exhaust streams, if any, to meet the
calculated choking flow rate,

7. Integrate along each orthogonal the momentum and continuity
equations (Equations 1 and 2).

8. Determine if the streamline positions are within a 'rough tolerance."
If so, return to Step 2 for additional grid refinement (unless grid
refinement limits have already been reached), Otherwise, continue
to Step 9.

9, Determine if the streamline positions are within final tolerance,
If so, jump to Step 13, Otherwise continue to Step 10,

10, Set up the matrix equation for the streamline correction, én,
11. Solve the matrix equation,
12, Modify the streamline positions by dn, and return to Step 3.

13, Calculate and print the output quantities; then return to Step 1
for the next case, if any.

The first operation includes reading the card input for a description
of the geometry and flow properties. The computer program has been written
to have general capability for analyzing a great variety of configurations,
The first step in the programmed logic is to develop a table of orthogonals
or calculation stations for each of the several flow regions, The regions
are determined as illustrated in Figure 3, so the calculation can proceed
from upstream to downstream., The boundary of each region is defined as a
primary orthogonal, As shown in Figure 4, the initial grid which is de-
veloped contains only the primary orthogonals and the double streamlines
which separate the various streams.
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The second step in the computational procedure is the grid refinement,
The very crude grid, obtained in Step 1, is refined before the first solution
of the flow field equations is executed. A new orthogonal is placed within
each region and, likewise, a streamline is inserted in the middle of each
channel, 1In the external channel, additional streamlines are placed close
to the body. After the solution has been obtained for this net, the grid
intervals are halved as required. This may be likened to the steps taken
when one '"flux plots" a flow field by hand. First, major flow lines and
normals are sketched in, and then more and more streamlines and orthogonal
lines are added until the desired resolution is obtained. At each step in
the process, the positions of the lines are adjusted to meet the correct
solution requirements. The procedure automatically provides for grid re-
finement in regions of high curvature and high acceleration or deceleration.
The streamline and orthogonal lines which are added between existing lines
are not required to span the field if only local refinement, near the body,
is required. The refinement procedure presently built into the program uses
a criteria involving the distance and velocity increment between grid points.
These refinement criteria are discussed in detail in Reference 16,

The third step in the method is to determine the angles and curvatures
of the streamlines at each grid point. For subsonic portions of the flow
field, this is 'performed by fitting a piecewise continuous cubic polynominal
in a coordinate system which is locally rotated for each interval, The re-
sulting fit is analogous to the curve produced by a beam which is loaded by
discrete forces to pass through the given grid points, The locally rotated
coordinate system removes the restriction that requires the slope to be
small. For grid points located in a supersonic region, backward difference
formulas are employed. Either 3-point or 4-point formulas may be
optionally selected., Again the coordinate system is rotated so that slopes
in the curve-fitting coordinate system are small,

In the fourth step, the orthogonality of the grid points is checked and
points are moved along the spline curve as required to achieve normal in-
tersections between the two sets of lines. Also, the normal distance, n,
is computed for each grid point as measured from the lower boundary of the
orthogonal.,

When the initial grid is set up, a boundary is placed some distance
away from the body. This boundary becomes the interface between the near-
field and the far-field solutions. The near-field is computed by the stream
tube curvature method, and the far-field is computed by linear small per-
turbation theory, In the process of iterating, this boundary (which is
also a streamline) will float so that its shape and velocity distribution
are matched by both the inner and outer solutions. In practice, the shape
of the interface streamline (also referred to as the far-field boundary) is
first assumed, Using the far-field equations, the velocity distribution is
calculated. This is Step 5. These velocities are subsequently employed in
the near-field analysis and from this comes a revised shape for the inter-
face streamline, Revised velocities will then be computed in Step 5 during
the following iteration cycle, and so forth,

12



Step 6 is the modification, as required, of the flow rates of the ex-
haust streams. For boattail analysis of nacelles, the internal geometry
of the exhaust passage 18 required input to the STC program. Because of
streamline curvature effects, the discharge coefficient for the nozzle will
be somewhat less than unity. The user, however, may input a flow rate based
on unity discharge flow coefficient or, for that matter, any approximate
value, Determination of the velocity distribution across the throat of the
nozzle will be determined within the STC framework, and the evaluation of
the maximum "choked" flow rate is Step 6 of the calculation procedure.

Step 7 is the solution of the flow field equations per se, This section
of the program is referred to as the "flow balance;'" Equations 1 and 2 are
integrated. 1In the external regions of the field, the momentum equation is
integrated from the far-field interface boundary to the body (or to the
centerline or lower boundary, whichever exists). The integral form of the
momentum equation is:

ny

2 2

IV ® - 1oV = 2 S Cdn (7N

Dy

where:
Vy = Velocity as determined in Step 5 along the far-field streamline
Vi = Velocity at any streamline with orthogonal distance n,
hy = Distance measured along the orthogonal to the far-field

streamline

Although not reflected in Equation 7, the effect of varying total pres-
sure behind a shock wave is also included., The method for handling this is
presented in Section 5.5. Also, if a slip-line occurs in the field, the ve-
locity jump equations

_xi _J%
N -
S ~\T
T+ \ T, ™
ve
(cp+ TT+) + = H, (8b)

H_ - (8c)

2
v
(Cp- T—) T2

are employed where the subscripts (+) and (-) denote conditions on the
streamlines above and below the slip-line, respectively.
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The velocity, total temperature, and total pressure allow determination
of the density at each grid point, and the inverse product of density and
velocity is integrated to find flow area.

Yo
oY

The cumulative flow areas calculated by Equation 9 are compared with
the geometric areas of the streamlines used in Step 3. The difference be-
tween these two values is used as a convergence check (Steps 8 and 9) and
in the streamline correction equation, Step 10,

For internal flow orthogonals, the velocity at the outer boundary
(VFF in Equation 7) is not known, Instead, an iteration process is employed
whereby the outer boundary velocity is varied to obtain a match in the cal-
culated geometric passage area, ’

In Steps 10 and 11, the proper adjustment of the streamline positions
is determined; and, in Step 12, the grid points are moved in the normal
direction by this computed adjustment,

The iterative sequence is to start with a crude grid, as noted above,
and to repeat Steps 3 through 12 until the flow balance error is small,
This is often accomplished in one or two iterations., The grid is then re-
fined to the next level, and the field is reconverged. The refinement/con-
vergence process is continued until the grid refinement criteria is satis-
fied, or alternately, until computer storage limits are reached. At this
point, additional loops through Steps 3 to 12 may be performed until the
flow balance error is satisfactory.

In the next section, examples are shown of STC predictions; and, in
Section 5, the details of the numerical procedures are presented.

14



4,0 EXAMPLE RESULTS

4,1 SHORT DUCT FAN INSTALLATION

The development of this computer analysis has been addressed to tran-
sonic preséure distributions on typical jet engine installations in isolated
nacelles, The analysis was required to handle inlet flows and exhaust flows
with correct aerothermodynamic properties. An example which demonstrates
the capabilities is the short duct fan installation,

The installation and the predicted flow field at M, = 0.5 are shown
in Figure 5. Four flows are present in this example: 1) the free-stream
or external flow at Mg = 0.5, 2) the inlet flow for a mass-flow ratio of
1,0, 3) the fan nozzle flow, and 4) the core nozzle flow. The fan nozzle
and core nozzle flow have temperature and pressure profiles typical of this
type of jet engine,

The details of the fan nozzle flow at a supercritical nozzle pressure
ratio are shown in Figure 6, The external flow is at M, = 0.02 to represent
a near-static nozzle expansion. The radial shifting of the streamlines due
to flow curvature is very evident,

4.2 TWO-DIMENSIONAL INLET

The two-dimensional inlet with the ramp adjacent to the aircraft fuse-
lage (typical of two-dimensional fighter-type inlet with boundary layer
bleed) is shown in Figure 7. The flow field for this inlet was calculated
with three flows. The initial free-stream Mach number was Mg = 0,8, The
inlet flow was choked at the inlet throat,

The pressure distribution on the external surface of the cowl is
shown in Figure 8, The maximum surface Mach number was 0,998,

The pressure distributions on the ramp and the upper wall of the
inlet are plotted in Figure 9. The local Mach numbers exceed unity as
the ramp turns toward the axial direction in the throat, The walls down-
stream of the throat were defined as straight in this example, and the
pressure levels show uniform flow at Mach = 1,0,

4.3 DATA COMPARISONS - AXISYMMETRIC INLETS

The NASA inlet No. 8 (NASA 1-85-100), with an internal contraction
ratio of AgL/AThroat = 1.093, was selected as the configuration for data
comparisons. This inlet represents a typical flight-type installation for
high transonic flight Mach numbers. The geometry consists of a NACA 1
series external contour with an x/Dpgx, = 1.0 and a Dyp,/Dpax, = 0.8535 as
shown in Figure 10, The projected area distributed is shown in Figure 11.
This inlet was tested in the 16-foot transonic wind tunnel at NASA-Langley.

15
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The inlet No, 8 was analyzed with the streamtube curvature analysis for
three Mach numbers and two mass flow ratios, The selected Mach numbers
were nominally 0.8, 0.85, and 0,90, and the mass flow ratios were nominally
0.8 and 0.88, The actual values were set to match the measured test results
for Mach number and mass flow ratio. No mass flows below 0.80 were considered
because inspection of test data indicated that flow separation was present
on the external surface lip.

The STC analysis is an inviscid flow prediction. Viscous effects such
as boundary layer displacement thickness and separation have to be
accounted for in a separate analysis. A turbulent boundary layer technique
(SAB) has been incorporated in the transonic analysis (see Addendum). Some
of the predicted results shown here will include viscous effects. These
results will be discussed more fully in the Addendum.

A typical predicted flow field, after 12 grid refinements, is shown in
Figure 12 for the inlet at Mg = 0,92 and a mass flow ratio of 0,88, This is
not one of the Mach numbers included above, but is used for demonstrating the
calculation results. The extra grid refinement in the lip stagnation region
is evident,

The comparison of the predicted pressure on the cowl surface with the
measured pressures is shown in Figure 13, The measured pressures consist
of three lines of static taps at three circumferential positions (0°, 90°,
and 180° forward looking aft). Note that the flow is symmetric over the
nacelle cowl. The comparison plot is arranged so that the highlight diameter
occurs at an axial distance of zero, and the internal surface of the cowl
lip is shown as a negative distance. Thus, the surface pressure distribution
can be represented as a continuous curve.

The predicted results from STC show that the stagnation point is located
exactly, and that the pressure distribution is predicted quite accurately.
The sonic pressure coefficient, Cp*, is indicated, and the comparison shows
that a shock is present on the inner surface, The mass flow ratio is rela-
tively high so that there is little acceleration over the external surface.

The comparisons of predicted pressure distributions from the STC
analysis with the NASA-Langley test results from the 16-foot wind tunnel

are shown in Figures 14 through 20. These cover the range of Mach numbers
and mass flows listed above.

At Mo = 0,8, the comparisons are generally good for a solution repre-
senting 700 grid points (solid lines in Figures 14 and 15.) When 1100 grid
points were used for a mass flow ratio of 0.81, the local oscillations in
the inviscid flow were evident. The test data indicate that viscous effects
on the wall eliminate this pressure fluctuation. Later analysis with the
viscous analysis predicted local separation (see Addendum).

At My = 0,85 and a mass flow ratio of 0,8819, the correlations between

measured and predicted still show good agreement (Figure 16), For a mass
flow ratio of 0,8064 at M, = 0.85, the effects of compression waves and
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viscous interactions are evident (Figure 17). The inviscid pressure dis-
tribution predicted by the STC analysis indicates compression waves, both
with 700 grid points and with 900 grid points including viscous effects.
Also, local 'separation is predicted after the first compression wave. From
the experimental pressure measurements, it is not evident that the flow
separation exists over a large region, Once the flow reattaches, there is
excellent agreement between the measured and predicted pressures. 1In the
local region on the cowl lip, there is evidence of viscous shock interac-
tions, and the inviscid flow calculated by the STC analysis will not cor-
relate with the test data,

The comparisons at Mg = 0.90 indicate that viscous effects are more
important. The predicted flow field at a mass flow ratio of 0,885 agrees
much better when boundary layer displacement thickness is included (Figure
18). At a mass flow ratio of 0.81 (Figure 19), the predicted pressure dis-
tribution shows several strong compression waves, and separation is indi-
cated, From the experimental pressure measurements, there is evidence that
the flow separation exists over the initial portion of the cowl 1lip., The
measurements appear to show a gradual recompression followed by a weaker
wave at an axial distance of 1.5. The viscous effects are very evident,
and the inviscid analysis needs to be augmented with a detailed boundary
layer analysis,

For a fully subsonic flow, the inviscid analysis by STC predicts the
wall surface pressures excellently, Figure 20 shows a comparison of Mo =
0.70 and a mass flow ratio of 0,87,

The integrated pressure forces, both measured and predicted, are sum-
marized in Table I. The integrated pressure drag on the external surface,
normalized by free-stream dynamic pressure and maximum nacelle area, is
noted as Cpp. For STC, the integration starts at the calculated stagnation
point and extends over the external surface to the maximum diameter. The
integrated pressure drag from the NASA-Langley test data is the sum of the
pressure integrals from the three rows of static taps (0°, 90°, and 180°)
applied to the complete nacelle (where the 90° row is assumed for the 270°
row), The equation is as follows:

_ J(P - po)d AProJ

Cp, = (10)
P q AMax,

The total pressure drag on the inlet is predicted by summing the
pressure integral on the stagnation streamline (additive drag) and the
pressure integral on the external surface. This total force is again
normalized by the free-stream dynamic pressure and the maximum area.
There are no comparable measured drag data, since the force balance in-
cludes the friction force on the external surface. Also shown in Table
I are the number of grid points used in the solution and whether the
viscous effects (SAB) were included.
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Table I, Integrated Pressure Forces,

M A /A Cpp Cpp Tgtal Grid

o o HL Measured Predicted Dp Points SAB
00,6974 0.8715 -0.023 -0,034 -0,008 715 No
0.8021 0.8754 -0,025 -0.023 0,006 626 No
0.8008 0.8093 -0.039 -0,044 0,009 656 No
-0.039 -0,040 0.010 1091 No

0,8008 0.8093 -0,039 -0,047 0,004 997 Yes
0.8510 0.8819 -0.025 -0,030 -0.001 758 No
0,.8497 0.8064 -0,044 ~-0,053 0,003 906 Yes
-0.044 -0,059 -0,028 717 No

0.9007 0.8852 -0,0257 -0,022 0,009 700 Yes
-0,0257 -0,031 -0,001 928 Yes

0.9001 0.8073 -0.050 -0.054 0.009 782 Yes
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Overall, the inviscid analysis by STC is in general agreement with the
test measurements, except where viscous interactions are significant. The
need to include viscous effects is obvious. Further work is necessary to
properly define the separation bubble and the point of reattachment.

4.4 AFTERBODY WITH SHOCK

A nacelle afterbody with a 24° boattail angle was analyzed with the
Streamtube Curvature Analysis, The geometry, shown in Figure 21, represents
the high subsonic cruise configuration of a nacelle afterbody designed for
supersonic operation. The afterbody model was tested with a sting-mounted
forebody at a Mach number of 0,90, A comparison of the experimental results
and the predicted pressure distribution is shown in Figure 22,

The predicted pressures indicate a pressure drop or local acceleration
around the radius onto the 24° boattail, then a sharp compression or shock.
The location of this compression is a result of the numerical star-switching
procedures built into the STC analysis, when the velocity changes from
supersonic to subsonic. The strength of the shock is related to the local
change in curvature across the orthogonal line defining the star switch.
The exact Rankine-Hugoniot equations are not included in order to not over-
constrain the problem. The entropy rise across the shock or compression
wave on any streamline can be defined, based on the static pressure rise
defined by the flow field, In this particular case, the upstream Mach
number was 1,31 and the downstream Mach number was 0,78. This corresponds
to a normal shock at the body surface, Thus, without including the exact
shock relations, the predicted compression represents the location and
strength of a normal shock,

The experimental results show that the predicted compression wave or
shock is correctly positioned, but that the boundary layer separated at the
shock, Once the flow separates, the static pressure is nearly ambient over
the remainder of the boattail and no effect of the remaining boattail
geometry or jet plume compression is evident., Thus, the STC analysis can
locate the shock position and specify its approximate strength.
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5,0 DETAILS OF THE NUMERICAL PROCEDURE

In this section the details of the numerical procedures employed in the
Streamtube Curvature program are presented,

5.1 GRID COORDINATE SYSTEM

When the original grid is established (as shown in Figure 4) §; and
€9 coordinates are assigned to each orthogonal line and streamline. These
values remain attached to the same line throughout the calculation procedure.
€1 generally has a value of zero at the upstream boundary and increases by
8.0 or 16.0 across each region. Similarly, the &5 coordinate is zero on the
lower boundary and is incremented by 8.0 across each channel, Double stream-
lines are used to separate the channels and each has the same value of &3,

As the grid is subdivided during the refinement process, the new lines
are given coordinate values half way between those on either side., As a
result, each grid point has a &1, £9 coordinate., However, these coordinates
are for notational and bookkeeping purposes only, &3 and g9 values do not
enter into the solution of the equations. They are employed in the STC
Program because, with the conventional counting system (such as the stream-
line number or the orthogonal line index) the value associated with a given
line would be changed when new lines are inserted into the field, whereas
the £3, §2 values are not,

The £, values always increase in the downstream direction, and the g9
values always increase when one proceeds across the field (to the left after
facing downstream). Because of the possibility of multiple channels, the
streamline and orthogonal line index values are not so ordered.

Reference will be made to the §] coordinate in Section 5.3, where the
€1 value is used to establish the relative spacing between orthogonal lines,

5.2 CURVATURE OF THE STREAMLINES

5.2.1 The Beam Fit

The third step in the calculation procedure as outlined in Section 3 is
the determination of the streamline curvatures, angles, and cumulative curvi-
linear lengths at each grid point. An accurate and rapid method for accom-
plishing this is to fit a draftsman's spline or, equivalently, to use the
formulas which apply to a beam loaded at discrete points. The classical
relation which is applicable here is that the moment, M, varies linearly, or:

2

a4y M _ . (11)
2 T EI

dx
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In Equation 11, y is the vertical displacement, E is the modulus of
elasticity, I is the cross-sectional moment of inertia, and b is a constant,
A limitation on Equation 11 is that:

2
(@)«
dx

To ensure that this condition is satisfied, the coordinate system in
which the equation for the beam centerline is written is rotated as shown
in Figure 23, As indicated, the curve-fit equations utilize a different
coordinate frame for each interval, For the interval between point i and

i+1, the origin is placed at point i and the x-axis passes through point
i+1,

The displacement equation for a beam with point loading is a cubic
polynominal and may be expressed as:

3
y = bix + cix2 + dix (for the ith internal)

A more convenient form of the cubic which passes through both points i and
i+l is:

X =va (-33 + gz) + ¥y (f3 - £2) (12)
where:
yé = Slope at x = 0
yg = Slope at x = Ax
f = x/Mx
g = (Ax - x)/bx = 1-£f

The cubic fit to the adjacent intervals must be matched so that, at the
Jjunction points, the angle and curvature are the same. As is illustrated
in Figure 23, this requires:

tan_1 [yé(i-l)] = tan.-1 [yé(i)] + Moy (13)

Yb-1) . Ya (1)

- = -3
[1 * yé?i—l)l—z ll ¥ y'Z(i)]—z

Good approximations to Equations 13 and 14, providing Aa is 10° or
less, are:

(14)
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yI;(i) = y;(1+1)-+ Bo(i4+1) (15)

and:
Ypi-y . Ya)

1 + é '2 B 1 + § 12
2 Yb(i-1) 2 Ya(i)

(16)

Substitution of Equation 15 into Equation 12, and the result dif-
ferentiated gives:

d2 1 ) ’

At point i, but for the i-1 interval, it follows from Equation 17
that:

1 ’ ’
Yo(i-1) = Bigpony 32ya(i-1) 4 vyt AOLi]} (18

For the same point, but for the ith interval, we have:

1"

1
Ya(i) = Tx z-4y;(i) -2

y;(i+1) + Bo(i+1) s (19)

Equations 18 and 19, substituted into Equation 16 and rearranged, give
the following recurrence equation for y;(i) = bi :

(i = 2,3,4.....N-1)

where:
_ y'2 ‘
Ay = 8% [1 *3 Ya(i) (21a)
Mgy = 8x(51) [1 2 yb(i—l)] (21b)

Note that bj is used in place of ya(i) to simplify the notation,
Notice that because of the ya and Yb dependency, the values of A cannot
be evaluated directly; instead, they are determined by iteration, However,
because y; is always very small, two passes (one correction pass) are
generally sufficient for their determination,
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Given A;; and A31’ together with the boundary condition equations pre-
sented below, the set of equations given by Equation 20 yields a tridiagonal
matrix equation which is solved by standard procedures. yg is then evaluated
using Equation 15, Likewise, the ordinate at any intermediate point can be

computed by Equation 12; and Equation 16, together with Equation 19, gives
the curvature at each point,

The curvilinear distance over the interval is given by the expression:

i+1

J

| ds = b S: (1 + y’)é dt (22)

The first two terms of the binominal expansion are:

(1+y')%=1+ﬁy'+.... (23)
Using Equations 12 and 23 in Equation 22 yields:

- _ 2 /AN 12)
S(i+1) Si = Axill + (ya + iyayb + ¥p 15] (24)

This equation is employed to calculate the cumulative curvilinear dis-
tance along the streamlines,

5.2,2 Beam End Condition Options

Three different end options are available with the beam curve fit:
e The angle may be specified.

e The curvature may be specified,

e The ratio of y" (the rate of change of curvature) at the end point
to the value at the next-to-end point may be specified,

As a ground rule, the second option is used for fitting the streamlines.
For those streamlines which extend to the flow inlet or flow exit boundary,
the end curvature is taken as zero, (A constant value of curvature, dif-
ferent from zero, can also be enforced by user input,) If a streamline
terminates within the field, the end curvature is interpolated from the
curvature of the streamlines above and below,

The equations for the three end options, derived from the formulas
listed in Section 5.2.1, for the first end are given below:

a) Specified Angle:
b, = tan (¢1 - al) (25)
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b) Specified Curvature:

4b) + 2bp = ~28a, + &%, € |1 + ya(l)] (26)
¢) F specified where yi'"m =F yz'"
(8X2)2b, +[(AX2)2 - F(8%X1)2|bg - F(AX;)2bg 27N

= F Dog(8X))2 - Bap(AXp)?2

where:
¢1 = Specified angle
c] = Specified curvature (= - d2y/dx?)
01 = Angle of the chord between points 1 and 2,

The parameter F can be given the following interpretation. When F = O,
the curvature in the end interval is constant. Hence, the end interval
polynominal in this case reduces to a parabola, When F = 1, the third
derivative in the first interval is equal to the third derivative in the
second interval., In this case, since angle, curvature, and y'" are all
continuous at the second point, the same cubic equation spans the first
two intervals (at least to a good approximation for small Aag).

Similar equations to Equations 25, 26, and 27 can be written for the
downstream (or second) end of the beam fit. However, they are omitted here
for brevity,

5.2.3 The Stagnation Point End Condition

The curvatures for points on a body surface are computed from the input
geometry data, as will be discussed in another section. The curvature at a
trailing edge point is taken to be the same as the body surface curvature;
although, in reality, there may be a weak singularity at this point because
of a finite wedge angle, Just downstream of the trailing edge, if the flow
is subsonic, the curvatures are computed by the beam formulas where, at the
trailing edge point, the third option (F = 0) is used for the upstream end
condition,

The leading edge is handled in a slightly more complex way., It is a
requirement in the STC Program that the leading edge be rounded and that a
complete numerical description of the 1eadiﬂg edge shape be supplied, At
the stagnation point, then, the streamlines are required to turn a 90°
corner, Two coincident stagnation streamlines are employed, One turns up
and goes over the body; the other turns down and goes below. The location
of the stagnation point is found iteratively., As shown on Figure 24, the
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point is moved along the contour so that the intersection angle with the body
surface is 90°, The streamline angle at the stagnation point is found by
utilizing the spline fit with the third option (F = 1) for the downstream
end condition,

5.2.4 Backward Curve Fits for Supersonic Regions

When the flow at a particular grid point is supersonic, the "complete"
beam fit (or central difference) formula is not appropriate for the evalua-
tion of curvature. To be consistent with the physical character of super-
sonic flow, the curvature at point 1 cannot be influenced by any points down-
stream of that point, such as the i+l or i+2 points.

Therefore, to evaluate curvature at supersonic points, the "beam' is
fitted to only 3 or 4 points to obtain a curvature at the last of these
points, The beam—fit is moved along (by dropping a point at the upstream
end and picking one up downstream) to calculate the curvature at sequential
points on the streamline., Used in this way the beam formulas essentially
represent either a parabolic (3-point) or a cubic (4-point) curve fit. The
cubic fit is obtained when F at both ends, for the 4-point fit, is set to
unity. Actually, more favorable agreement with theory (in the case of a
two-dimensional Prandtl-Meyer turn) is obtained when F is set to about 0,75,
and these are the standard values of F present in the STC program for the
4-point formula, F is automatically set to zero when the 3-point option is
selected.

For pure supersonic flows, the 4-point curve fit (which is second
order accurate) gives much better results than does the 3-point (first
order accurate) formula, But for mixed flows, it is found that the 4-point
formula generally leads to divergence and, therefore, the 3-point formula
is always used for transonic cases.

5.2,5 The Evaluation of Curvature Very Close to a Sonic Line

In the STC method, the curvature must be known at the sonic (or near
sonic) points just as at any other point in the field for use in the cross-
stream momentum equation, Equation 7., This is in contrast to the velocity
potential method of Murman and Cole where the second streamwise derivative
of ¢ is insignificant because the coefficient (1-M2) is zero. Therefore,
the following procedure is used to evaluate the streamline curvature at
points close to a sonic line,

The point at which the sonic line crosses each orthogonal is identified
by referring to the value of velocity (or, in reality, the coefficient B)
from the previous iteration. Then, for some distance above and below the
sonic line, the curvatures are taken to vary linearly between the values cal-
culated according to Sections §,2.,1 to 5.2,4, This is illustrated in
Figure 25. The extent of this linearly assumed variation is controlled
by an input variable (TSIC),
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5.,2,6 Special Interior Points at Orthogonal Ends

As mentioned earlier, it is not required that a newly inserted orthog-
onal line span the field if the numerical resolution near the boundaries
is already satisfactory. In this case the orthogonal line will terminate
within the field on a streamline, These are considered special points and
they are not used in the curve fits described in Sections 5.2,1 and 5.2.4.
Instead, after the curve fit is obtained, the position, angle, and curvature
at the special points are interpolated.

Another place where this procedure is used is in the positioning of
points adjacent to a stagnation point, as indicated by the solid circle in
Figure 24, In this case the interpolation procedure replaces the integra-
tion of the momentum and continuity equations in the interval containing
the singularity at the stagnation point.

5,3 POSITIONING THE ORTHOGONALS

The cross-stream momentum and continuity equations are written in a
direction normal to the streamlines., Hence, before these equations are ap-
plied, it is necessary to move the grid points along the streamlines to ob-
tain orthogonality, This is easily accomplished as follows (refer to Figure
26). In each region a boundary or dividing streamline is chosen as a "control"
streamline, Along this line the spacing between orthogonals is chosen pro-
portional to AEj;. To correct the nonorthogonality, the points on each orthog-
onal are first fitted with a spline (using the equations of Section 5.2 and
the end condition F = 0) to obtain the angles ¢2. The angle deviation from
the streamline normals is then integrated with respect to the cross-stream
distance n, from the control streamline to the point in question, to obtain
the relative movement Dg, The points are then moved to the new positions by
utilizing the streamline curve-fit equations., The coordinates, ¢; angles,
curvatures, and cumulative s-distances are modified as appropriate, The
constant of integration, Apg, in the integral for Dg positions the orthog-
onal on a control streamline so that a reference position is maintained,

5.4 FAR-FIELD SOLUTION

The boundary condition on the external flow is that the velocity approach
the undisturbed velocity, V4, and the flow angularity approach zero as the
spacial coordinates approach infinity. To economically meet this condition,
the field is divided into an "inner" and an "outer" region, illustrated in
Figure 27. The inner region is the region near the body where flow distur-
bances are large and/or the typical nonlinear transonic effects are encoun-
tered. Flow properties in this inner region are calculated by the streamtube
curvature technique which uses the full nonlinear equations of motion.

The outer region is the region extending from the outside edge of the
STC integration domain to infinity. In this region, an asymptotic form of
the equations of motion is applied. These asymptotic equations are solved
analytically, On the interface boundary between the two regions, it is re-
quired that the velocities, as calculated in the two separate regions, must
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match in both magnitude and direction. Consequently both the velocity on the
boundary and the shape of the boundary are matched. This manner of applying
the boundary condition is analogous to the familiar inner-outer expansion
method of asymptotic theory (ref. 6),

To achieve a matched solution on the interface boundary, there are
really two questions to be answered., First, for a particular interface
streamline shape, what is the velocity distribution? The determination of
this velocity distribution is the fifth step in the calculation procedure
outlined in Section 3,0, and these velocities are used as boundary conditions
on the momentum equation in the sixth step. The second question is: if the
interface streamline position is altered slightly (by moving the points out-
ward or inward), what will be the change in velocity at any given point?

This is required in the matrix formulation of the streamline correction equa-
tion, Section 5.6.,4, In this section only the first question is considered.

In the present procedure, the far-field region is approximated by a
linear differential equation, the solution to which can be computed very
rapidly. The linear formulation, however, also requires that the distur-
bance of B2 be small in the outer region compared to the free-stream value,
B2, where B2 = (1-M2), Thus, the far-field boundary must be sufficiently
far from the body to satisfy this condition, (Alternate far-field solution
procedures which allow a relatively large 82 disturbance could, perhaps, be
employed as mentioned at the end of this section,)

The calculation method is a simplified version of the Douglas-Neumann
procedure which was developed by Smith and co-workers (refs, 7 and 8) at the
Douglas Aircraft Company. Two separate versions of the analysis have been
formulated, one for axisymmetric flow, the other for two-dimensional flow,
Both of these analyses are similar in nature, but the mathematics of the two-
dimensional solution is much simpler, In fact, the two-dimensional analysis
degenerates to a simple thin airfoil calculation. Because it is simpler, the
two-dimensional analysis will be presented first.

Since the "body" of interest in the outer region really represents the
outer streamline of the STC numerical integration domain, it is reasonable
to expect that its "thickness" (i.e., the vertical displacement of the inter—
face streamline from its undisturbed state) will be small. Further, all
angles on the "body" surface (i.e., flow angles on the interface streamline)
are also expected to be small, The assumption of small deflections and
angles and the assumption of small transonic effects allows us to use the
classical small perturbation equations of subsonic flow theory to describe
the outer flow field, Thus, the problem of finding the velocity on a surface
which is only slightly perturbed from a straight line is just the thin air-
foil problem,

As discussed in any aerodynamics text (for example, see ref, 9, Chapter

7), the velocity potential for the flow past a thin airfoil is governed by
the equation:
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2 2
237¢ 3% _ .
B _ax2 + ——ayz =0 (28)

which can be converted to Laplace's equation, ve % = 0, by a Prandtl-Glauert
transformation. The solution, for the thin airfoil approximation, is obtained
by putting a series of mass sources on the original unperturbed straight line
and matching the velocity tangency condition there rather than on the actual
perturbed boundary which describes the body shape. We can then write the
solution for the velocity potential, ¥, and the perturbation velocities u-uw
and v as:

1 2 2 213
d(x,y) = B ILE c(€) 1n[(x—§) + B4(y-n) ] dE (29)
TE
3% 1 o(€) (x-€)
—U = - = o dg (30)
w x  Bm ILE (x_§)2 + 82(y_n)2
TE
_2% _1 o(€) B(y-n)
M T ILE =02 7 BZ(y-m2 0 (31

where £, 7 is the location of the source point and where x, y is the field
point at which the potential (or velocity) is being calculated.

In the case of the far field, all mass sources are placed on the straight
line which corresponds to the undisturbed interface boundary. We are in-
terested in finding the velocity on this same line. Thus all calculations are
made on the line 1 = yg. (The subscript, s, refers to the location of the
undisturbed interface streamline,) The velocity distribution on the body
can be found by evaluating Equation 30 at y = Yg» and M = yg. Thus, we have:

TE
I § o(g)dEg
u(x,yg)-uwc = B j;E ) (32)

We now subdivide the interface streamline into a series of N equally spaced
intervals, Thus the integral in Equation 32 becomes the summation of N
integrals: '

N Xj+3
U = — . a8
u(x,yg)-uw = B g; olxy s e E (33a)

Performing the indicated integration and writing the field point x as the
subscripted point x;, we have:
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N X . - X,
j-3 i

u(xi,ys)-um = %ﬁz g(xj) 1n U (33b)
J i+ i
i

The sum of integrals in Equation 33a includes one integral in which the
integrand is singular, namely that interval in which x., lies, By considering
the Cauchy principal value of the integral in this interval, it can be shown
that the singular interval's contribution to the velocity is zero. For this
reason, the suymmation in Equation 33b indicates that the interval j=i is to
be discarded when calculating the velocity.

A shorthand notation for some of the terms in Equation 33b is now intro-
duced, Let:

x - x
in —J:L——i (34)

1
X. . = =
1) Brr xj+£ - xi

so that Equation 33b becomes:
U - Up = X554 0j (35)
where u; and oj represent u(xj,ys) and o(xj), respectively.

Determination of the source density is simple in the two-dimensional
case. The density is given bhy:

oj = 2vJ (36)

where v is the vertical component of velocity on the body. This relationship
can be obtained from Equation 31 by a careful consideration of the limiting
process as y approaches the location of the source, m. Again, the derivation
can be found in standard aerodynamic texts. By using the small perturbation
assumptions:

Vo= Uy (EY) 37

Finally, for reasons which will become apparent in the axisymmetric analysis,
Equations 36 and 37 are combined to define the matrix Yjj such that:

<%’X‘)i,s =Yi5 9 (38)

where Yij is a diagonal matrix,
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We now combine Equations 35 and 38 to obtain a direct equation for the
u-velocity component:

Uy - e = Xy [YJ;(I (%)s kl (39a)
or:

Uj - Uo = Zij(gi)sj (39b)
where,

23y = Xyk Vi (40)

-1
Of course in the thin airfoil approximation where Yij (like Yi ) is a
diagonal matrix, Zij is identical to xij except for a constant.

It is interesting to note that if the sources were placed on the body
surface instead of on the line y = yg, the matrix Yij would be a completely
dense matrix so that finding its inverse would not be trivial. However, for
very thin bodies, the off-diagonal terms are very small,; i.e., the matrix
is strongly diagonally dominant; and, in the limit of a very thin body,

Yij will approach a diagonal matrix, (In the axisymmetric analysis, the
matrix Yjj will also be a completely dense matrix,) Placing the source dis-
tribution on the body surface, makes the two-dimensional analysis identical
with the Douglas-Neumann analysis (ref, 7).

During the iteraction procedure for the Streamtube Curvature solution,
the matrix Z;; is calculated only once. Thus, even though the "body" (i.e.,
the interface streamline) changes shape, the matrix Zi remains unaffected.
This is because the thin airfoil approximation allows sources and the tan-
gency condition to be placed on the straight line y = yg, not on the per-
turbed interface streamline. The entire effect of the body geometry enters
through the vector, (dy/dx)sj, which represents the slopes of the body
surface.

Before the calculation procedure can be implemented, the upstream and
downstream limits of the integration must be specified. We have chosen to
place the "leading" and "trailing' edges of the interface streamline upstream
and downstream of the numerical (inner) integration boundaries, respectively.
This spanwise lengthening of the outer domain over the inner domain is done
to ensure that the velocities which are calculated by the outer analytical
solution are reasonable and well-behaved at the streamwise extremities of the
STC (numerical) integration domain., To allow the streamwise extension of the
interface streamline, a quadratic addition is fitted to both ends of the STC-
calculated interface streamline, These quadratics are defined by requiring
that they have both zero deflection and zero slope at their outer ends, and
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that they join continously (but allowing discontinuities in slope) with the
ends of the STC streamline.

The analysis of the axisymmetric version of the analytic outer region
solution is identical in philosophy to that of the two-dimensional solution.
The generation of the matrices xij’ Yij’ and Zi" however, is more compli-
cated. The details of the axisymmetric analysis have been given by Smith and
Pierce (ref. 7). Consequently, only the results will be included here.

In axisymmetric flow, the interface streamline cannot be thought of as a
thin airfoil, and it certainly cannot be considered to be a slender body.
Instead, the interface streamline appears as an outward perturbation on what
would otherwise be a right circular cylinder. As in two-dimensional flow, we
assume that a series of mass sources can be placed on the straight surface of
the cylinder itself rather than exactly on the interface streamlines. These
sources must not be simple mass sources, but rather must be '"ring" sources.
The potential field which is induced by a ring source of radius a, at the
axial location {, is:

T

d¥(z,r) = 2agd( “' do
(o]

[(Z-Q)2 + r2+a2 - 2ar cos éj%

(41)

By placing a continuous distribution of these sources on the cylinder r = a,
and then breaking it up into a number of small segments as in the two-
dimensional case, we obtain the following equations for the matrices xij,
Y.. (see refs. 7 and 8):

ij
Jj+3 :
Xy = -4a E (m) d% (i#3) (42)
i3 [22 + (21297 (220
xij =0 (i=j)
and:
j+3 _
Yi5=-2 fn) - Bm) _ ¢ (i#3) (43)
-3 [4a2 + (2;-0)2)%
3
Yij = =27 + 2D ln% "l—; (1 + 1nl—;) (i:j)
where:
4a2 Ziv}3 ~ %i-3
m = 48.2 " (zi_g)z s D = ———-—-———za

and where K(m) and E(m) are the complete elliptic integrals of the first and
second kind, respectively.
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As in the two-dimensional theory, we now calculate the u component of
the velocity in the outer region from Equation 39b:

dr
uj - Uy = ZiJ(EZ)sJ (repeat of Equation 39b)

where, as before:

-1
ZiJ = xik ij (44)

Ng e in this axisymmetric case, that ij is not a diagonal matrix, and that
ij must be found from a numerical matrix inversion algorithm, However, the
only geometrical terms which enter the Yjj matrix are the undisturbed radius
of the outer streamline and the total axial length of the outer region.
Again, as in the two-dimensional theory, the effects of the displacement of
the interface streamline enter only through the vectors (dy/dx)sj. This is
a direct result of placing the ring sources at the constant radius a, rather
than exactly on the interface streamline itself. Consequently, the Zij
matrix can again be calculated once for an entire STC iteration history,
despite the fact that the shape of the interface streamline is changing.

It is helpful to compare the approximations in the above formulation to
those of Murman and Cole (refs, 1 and 10), Their formulation is similar to
the one described above, except that their solution domain includes both the
near and far fields. They include the nonlinear term by means of a series of
transonic sources distributed throughout the numerical integration domain.
But in the region which corresponds to the far field, the transonic source
terms are neglected, (In fact, they cannot be included because the infor-
mation required to compute the distributed source strength is not available,)
Therefore, their method, like the method presented here, neglects the non-
linear effects in the outer region.

Despite these justifications, some inclusion of the nonlinear effects
in the far-field solution would be advantageous. The local linearization
method of Sprieter (refs, 11 and 12) would allow these effects to be in-
cluded in an approximate manner, and could be included in future program
development activity.

Typical results of the far-field matched solution are now illustrated.
As anticipated, the proximity effect of the numeric field outer boundary
is small when the analytic far-field solution is employed. Figure 28 illus-
trates the variation of peak Mach number on a body of revolution as the
position of the outer boundary is changed. Notice that, for this test case,
the induced Mach number error is less than 0,01, even when the outer boundary
is reduced to twice the body radius (R,,4ep = 1.0).
Also illustrated in Figure 28 are the solutions obtained by utilizing

hard wall and constant pressure boundary conditions as a function of Router
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By comparison, the utilization of the far-field solution allows a significant
reduction of boundary radius, for the same accuracy, yielding an efficient
computational procedure.

5.5 INTEGRATION OF THE CONTINUITY AND MOMENTUM EQUATIONS

In this section the numerical procedure for integrating the full non-
isentropic and variable energy form of the equations of motion is developed.
Only a portion of this generality is required, since external flows are
isoenergetic and only slight entropy variations arise downstream of shock
waves, For completeness, however, the formulation for general flow proper-
ties is retained.

The "heart" of the STC method is the integration of the momentum and
continuity equations, which are repeated here:

Momentum:
193(2) .o OH 38
20 - V' rm T, (20)
Continuity:
- oW
aA—pv 69

Equation 2b is the basic Crocco form of the momentum equation containing the
variables H and S (enthalpy and entropy). These variables may be replaced
by total temperature and total pressure for greater engineering convenience.
If it is also assumed that the specific heat is constant, then the following
equation is equivalent to Equation 2b:

32 _ g2, 1 VZ23TT RgT 3PT
‘Cv+2TTan+pTaT (45)

The above momentum equation is integrated by parts. First, we rewrite
Equation 45 as:

dp,

1 2 1 T
= av2 = = v2 (-2c4d le) — 46
5 > ( n + dlnT, ) + RgT P (46)
The formula for integrating by parts is:
\' 1
dv = - S du + pr d(uv) (47)

By comparing Equation 47 with Equation 46, it follows that:

1
v = —2' V2 (48a)
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du 7

i 2Cdn - dlnTyg (48b)
and, ‘
dP,
1 T
5 d(uv) = RgT By , (48c)

Since the total temperature and streamline curvature are assumed known,
Equation 48b can be integrated from the first to the kth streamline to

obtain: x
. 2S Cdn
_-h 1
Uk =g © (u; = 1) (49)
k

Equation 48c is then integfated to yield an expression for the product
of u and velocity squared.

1 o 1 9 k dPT
> uka -3 uk+1vk+1 = S u RgT e (50)
k+1 T

Equation 50 represents the integration across one streamtube bounded
by streamlines k and k+l. The integration is performed from the outside
toward the center because, frequently, the velocity is known on the outside
boundary. The finite-difference form of Equation 50, employed in the com-
puter program, is:

2 2 T Tk
B Pr, * Pry iy (PTk - ka+1) (51)

Note that this expression is explicit when no total pressure gradient exists;
otherwise the expression (Equation 51) is implicit because the static tempera-
ture which appears on the right-hand side is a direct function of velocity.

v2

k
T = T ™ 3c (52)
P
However, the implicit nature is very weak up to transonic speeds, and a
simple successive approximation procedure is utilized to update the right-hand

side until the computed fractional velocity change (on each streamline) is
less than 1 X 1079,
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The numerical integration of the momentum equation, then, is a two-step
process: first the integration of Equation 49 is performed followed by the
integration of Equation 50, In Equation 49, the integral of curvature is
evaluated by fitting a second-order polynominal in each interval., (The
second derivative of that polynominal is established by a least square fit
to the two nearby points,) Implied in the integration is the fact that total
temperature and total pressure are known as a function of the streamline index
k and, hence, as a function of the cross-stream distance n,. This is in slight
contradiction to the streamwise momentum and energy equations, Equations 3 and
4 of Section 2,0, since total properties are correctly related only to the cumu-
lative flow rate (Y = W), However, this slight error is automatically corrected
in the later stages of the iteration when the assumed streamline positions are
effectively coincident with the true streamlines,

As noted above, the integration starts from the outer boundary and pro-
ceeds inward. For external flows, the velocity on the outer boundary is ob-
tained from the far-field equations of Section 5,4. For internal channels,
this outer boundary velocity is found iteratively as will be discussed below,
Velocity changes across slip lines are obtained by Equations 8a, 8b, and 8c
as discussed previously.

Following the momentum equation, the continuity equation is integrated
by the algorithm:

W1 ~ Yk

Ak+1 - Ak = —W } (533)

The average value of mass flow per unit area, in the denominator of Equation
53a, may be approximated two ways:

(53b)

%[(pV)k + (pv)k+1]

'GP

3
V) [(pv)k (pV)k+1] (53c)

If the variation of (pV) between streamlines is small, then the two expres-
sions give similar results. Although Equation 53b is somewhat faster to
compute, Equation 53¢ has been found more reliable for some special cases.
Consequently, an approximation to Equation 53c is employed in the computer
code.

If the cumulative cross-stream areas are being computed for an internal
station, it is required that the last area, Ay, equal the geometric area of
the passage at that location, To accomplish this, the value of VN used as an
initial condition in the momentum integration is varied. Figure 29 shows a
typical variation of Area, Ay, with velocity, Vy. Obviously, there are two
solutions -- one for the subsonic branch and another for the supersonic

branch. Although the choice of branch may be controlled by user input, the
subsonic branch solution is always employed with an inlet/nacelle configuration,
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A third possibility is that the geometric passage areg is below the
minimum computed area, Ay. In this case, the flow is said to be choked,
and the flow is adjusted so that the minimum calculated area will be exactly
equal to the geometric area, This logic is utilized, for example, in the
throat of the nozzle discharge passage.

5.,5.1 Stqggation Points

If a sharp concave corner is encountered, the flow velocity is known to
be zero. Such a situation cannot easily be handled with the equations as
formulated above. Hence, the integration of both the momentum and continuity
equations is omitted in the interval adjacent to the body, and the first point
away from the body is interpolated as indicated in Section 5.2.6.

To replace the omitted equations at the leading edge stagnation point,
the derived condition that the stagnation streamline intersect the body
at a 90° angle is utilized as discussed in Section 5,2.,3. The streamline
angle at the stagnation point is, of course, double valued., Consequently,
the orthogonal line which passes through the stagnation point is made per-
pendicular to the average of the two angles, a requirement which is derived
from potential theory.

5.5.2 Wakes From Blunt Trailing Edges

Because it is much easier to obtain a valid numerical solution if the
flow streamlines are smooth and the curvatures are not excessive, a dead
region is allowed to exist behind a trailing edge which has thickness, As
shown in Figure 30, the thickness of the "dead" region is gradually reduced
to zero as one proceeds downstream. The derivative, db/ds, has a nominal
value of 0,1,

To include the wake displacement effect, the wake area is added to the
right-hand side of Equation 53a if a channel boundary streamline is crossed,.
In this way the cumulative streamtube flow area includes the wake displace~
ments, No correction is required in the momentum equation because pressure
continuity is always enforced across a slip line.

5.6 STREAMLINE CORRECTION EQUATION

5.6,1 General Formulation

In the STC calculation procedure, we start with an estimate of the
streamline positions, that is, a set of z ,r_. For the second iteration
cycle, 2,:To will be the coordinates determined by the first iteration, and
so forth, These "assumed' streamline coordinates are used to compute the
cumulative width of the streamtubes (ny), curvature, velocity, and density
and, then, a second set of cumulative streamtube widths (nx). This is
illustrated in the following listings:
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Given Operation Compute

2,3%0 Streamline Curve Fitting Co
ZgsT, Orthogonal Line Curve Fitting no,A0
Cosllo Momentum Equation Vo
Vo Energy, Entropy, and Eq. of State Po
posVo Continuity Equation A ,ny

If nx equals ng, the solution is converged. If n_ is different from no, then
the streamline positions must be adjusted so that the difference between ny
and n, is reduced. The amount by which the streamlines are to be adjusted

is denoted by én, the equations for which are formulated in the present
section,

The calculation formulas to this point have utilized the full nonlinear
equations of motion., Now we employ an approximate set of linearized equations
which will provide for the computation of 6n; and, through repeated appli-
cation, bring the discrepancy (ny-n,) to some small neglectable value, The
final coverged flow field solution, of course, will be the solution to the
nonlinear equations (i.e., Equations 1 through 4).

The continuity equation for one streamtube méy be expressed as:

k+1
where,
A = 52 mr dn (axisymmetric)
A=n (plane)

(pV)k 3 = average flow per unit area for the streamtube
*2  bounded by the k and k+l streamlines

For two adjacent streamtubes:

T (55)
Wil " Y <Py
A= A1 2 (56

Ve ™ Wit ) <pv>k-§
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The previous two equations are subtracted to obtain the second difference for
A, defined as:

a2 A1 T A AT Aq

AW W ~ W W o W

(87)

A2A 1 1
AW <pv>k+% VD -

(58)

Variables A, p, and V (i,e., those without subscripts) will be used in this
section to represent the "corrected" (or true solution) values, Thus,
Equation 58 represents the "correct' solution.

An equivalent expression can be written to represent the continuity
equation which was used to predict the x-subscripted areas from the velocities
and densities associated with the assumed streamlines, That is:

2
A Ax _ 1 _ 1 (59)
AW <povo>k+§ (povo>k-%
Equations 58 and 59 are now_substituted into the following identity:
A2(A-AQ) L A%y A% AZ(Ay-Ag) (60)
AW Aw aw Aw

to obtain:

2 - ~—
42(A-40) _[ 1V S S ] +[L_ -1 J: A2Ax-A) 614y
AW Vi PVl 1Dy V-3 aw

The difference between the ''correct'" value and the value associated
with the assumed streamlines is denoted by 6 ( )., In particular:

6A = A-A,
6n = n-ng
8V = V-Vo

G(p—lv) = <§v> i <pf,vo>

6C = C-Cq
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Then Equation 6la can be rewritten:

This equation represents a difference correction form of the continuity
equation.

To eliminate the pV terms in Equation 61b, the momentum equation is
introduced. In regions where the rotationality is zero, the momentum equa-
tion is:

v = -Cdn (62)

As illustrated in Figure 31, the outer boundary of the field is denoted as
the Nth streamline; and, it is assumed that, between the kth streamline and
the Nth streamline, there is a slip line with index j. Integration of
Equation 62 from the kth to the jth streamline and then from the jth to the
Nth streamline yields:

J N N
nVy - 1nVj, + 1nVyy - 1oV = -{: Cdn - Sj Cdn = -§( Cdn (63)

where V. and V,, are the velocities just below and above the slip line., For
the assumed curvatures, Co, the momentum equation is:
N
InVoy = 1V, .+ 1oV o - oV, = -{ C,dn (64)

Equation 63 is subtracted from Equation 64, and it is assumed that the
lengths of the orthogonals from k to N are not appreciably different.

N

1n(¥—) - ln(%—) =S (C—Co)dn + ln(%-) - ln(%—) (65)
o'y o/x k o/ jb 0/j
Since V = V, + 6V we use:
1n(l'—) = ln(l + ﬂ)z v (E’X << 1)
Vo V0 Vo Vo

as a first-order linear approximation, and Equation 65 can be written as
follows:

(), - (), - f e+ (§) - (&)

k ja
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or,

N
(ﬁ‘_’) - (;,5_‘.’) = [ scan + qj (66)
Voly O/N k
The parameter G,J is introduced to simplify the equations, where:
& v
- () - ()
°/3p °/ja

Equation 66 is the difference correction form of the momentum equation.
With it we can approximate the velocity corrections for the (k+3) and
(k~3) streamtubes as follows:

N
(%’) = S 8Cdn + (%X) + ay
° K+3 o/N

k+3
N k+3
%I 6Cdn - f §Cdn + <-\§,‘—’) + ay
k k O'N
j'N 8Cd oV '
~ n - §(nk 1" nk) GCk * v )+ od (68a)
k o]
and
N
(TGIX) z“ 6Cdn + %(nk - nk__l)GCk +(—%Y)+ aj (68b)
o/k-3 k o

For any given streamline the flow is isentropic, and it can be shown that:

) =

where Bz = 1-M2, A discrete linear approximation to Equation 69 is:

2
_6(%‘;) k+3 ) (%ﬁ)lwé (%)k+£ (702)
and:
2
(&) k-3 (gfivo) k- (v2) - (7o)
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Equation 70a is subtracted from Equation 70b, and Equation 68 and 68b are
substituted into the result. This yields the following expression for the
pV-terms in the continuity difference correction equation:
[ N
1 1 8 1
—6(—) + 6(—) = (——-0—) '[ 8Cdn - —(nk - ) 8C, + 6V) +
+1 7 k) Pk (= 3
PV crd V-3  \PoVolx,y L 2 Vol
- N
Bo ) 1 (GV)
- 6Cdn+—(n—n )GC +|— + O
k k-1
(poVo k-3 I 2 k Vo N J
L k
Rearranging the above, it follows that:
N
-5(—1—) 4 s(l- = -B, 6C,_ + By|[ éCdn +(—61’) v ooy (71)
pV k+3 pv k-3 k k Vo N J
where:
_ 1|{Bo Bo
By =3 (pov0 3 Py ~ ™) * (pV (M = Meq) (722)
+ k-3
B, = Bo ) —(—-5-9— (72b)
PoVo Kk+} poVo k-3

The term Qj, which represents the difference between the velocity
correction across a streamline, is now to be evaluated. The definition
of aj, given by Equation 67, is repeated:

% =\v, "V,
b a /j

" _n

The subscripts "b" and "a" are used to indicate the value of velocity

just below (b) and above (a) the slip line along streamline j; the subscript
1" 1"

o has been dropped:
ava) (y_a 5V )
a, =l=—— -_ -1 (73)
J (V . \V oV .
a/j b a j

The equations which apply at the slip line are:

1.2

i Yy = Cp(TTb - st) (74a)
1.2
-éva = cp('rTa - Tsa) (74b)
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<

These equations are differentiated to obtain:

Y1,
Y

X P dP

S
= Vp dV, = =dTgy = =Ty l=— —=
Cp PTo PTo

1 Ps Y dPs
- Vv = - = - —_
C a 4Va dTsa TTa P ) P

p Ta

Dividing one by the other:

X1
Y
Vp dVy T (pTa)

= (76)
Va dva TTa PTb

An approximation to Equation 76 is:

77)

and Equation 73 can now be written as:

-1

2
o =ee) |2 lm(Fra) Y, (78)
J "\Va /. ly2 T P .
J b J

Ta Tb

Just above the slip line, the velocity variation is given by the integral
of the momentum equation (see Equation 66):



6V N
(V_E) = (é!) + S 6C dn (79)
o/, o i
J

X1
[v2 "
v T P
aj = ; Tb (PTa) -1 (%!) + S 86C dn
be Ta Tb /N j
N
o/ N J
where: -1 X:l
2 Y Y
Bai = va PTa M PTb -1 (81)
33 7 T T .
: Ta Tb J

Equation 81 is now substituted into Equation 71:

1 1 N 8V
_zs(—pﬁ)k)ré + 6(—5‘-’)1{_;- B 0C, + By Ik 6C dn + B, (1 + BBJ.)(-V—(-))
N

132333-_';60 dn

N

And this result is substituted into Equation 61b:

2 N N
A" (BA) &6V
T - Bléck + stk 8C dn + Bg (1 + st)(-v—o-)N + BZBBJ I 8C dn
J
2 (Ax=Ao)
= A_(-A_w__& (82)

where, again:

1 |/{Bo Bo
T [(povo)mé (oryy = Pox) * (po"o)k-g oy~ n°k~1)]

70



- (), 6,

-2 ¥1 oo
vip Y vip Y
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3 Tp Ty
Ja Jb

Equation 82 is the desired correction equation., The coefficients Bl’
B2, and 83 are all based on flow properties calculated from the assumed
curvatures, They are known quantities, The unknown quantities are 6A,
6C, and the velocity variation on the outer boundary 6VN. Each of these
quantities must be expressed in terms of 06n,

Remember that for axisymmetric flow:
6A = 21 r, &n (83a)

and for plane flow:

0A = 61’1 (83b)

Thus, for axisymmetric flow, the second difference of 6A is:

82(88) _ 5 (rk+1 dmpgyy - Ty Omy  Tydmy T, 6“k—1> (842)
aw Werr ~ W Y ™ k1
and for planar flow:
A_ZSQQ =u - énk _ 6nk'1 (84b)
AW W - W W - W
k+1 k k k~1

The curvature correction is:

D2(8nk)
6Ck ~ Ds2

where s is the curvilinear distance measured along the kth streamline. For
any selected curve fit (or finite difference second-derivative formula),
the influence coefficients can be represented as follows:
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2 L
D“(8nk)
——BEE__ = G38n) k + Gpdng k + Gzéng k + Gydng,k + Gsbns k (85)
+ Ggdng k

Here the numbering scheme shown in Figure 31 has been used. Generally the
influence coefficients, G, are computed by assuming a spline curve repre-
sentation, If the velocity is subsonic, a central point difference
equation is used; and, if the velocity is supersonic, a backward difference
parabola equation is used,

With Equations 84 and 85 substituted into Equation 82, there
results a set of equations for the variables éni,k where i is an orthogonal
line index and k is the streamline index, These equations, together with
the boundary condition equations presented below, form a solvable set of
linear simultaneous equations,

However, this resulting equation is quite cumbersome. The integral
terms which appear in Equation 82 lead to a dense coefficient matrix and
a computer solution is impractical. Therefore, the terms in Equation 82
which have coefficients Bz and B3 are neglected, and the following approxi-
mate form of the correction equation is utilized:

2 2 2 -
ALé%él + By DD;gn) - A (Agw Ao) (86a)

This form is equivalent to the differential form of the correction equation
derived in Appendix A, For most flow conditions Equation 86a produces
rapid convergence, Hence, the omitted terms seem unnecessary for these
cases, In a few cases the direct use of Equation 86a does lead to diver-
gence. This is surmounted by correcting the streamline position by an
amount smaller than the calculated én, or by utilizing an additional

factor P in Equation 86a where p. is a constant which is greater than or
equal to unity.

2 2 2
A%(6A) D4(6n) _ A%(Ax - Ap)
N T aw (860

The effect of setting p, to a value larger than one, say 1.5 or 2,0, is
to reduce the curvature change between successive iterates and in an ap-
proximate manner account for the items which were dropped from Equation
82,

5.6.2 Flow Inlet and Flow Exit Boundaries

Options are provided for two types of boundary conditions at the upstream
and downstream field boundaries. Either the flow angle can be specified or
the curvature can be specified. The recommended boundary condition for
general usage is that the curvature is zero (or, equivalently, the static
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pressure is constant). In either case, Equation 86a is applicable. However,
for an upstream boundary, the coefficients Gj, Gg and G3 in Equation 85

will all be zero, That is, the curvature correction at the central point
will be related to the downstream points 4 and 5 only., If a curvature
boundary condition is employed, then the curvature correction necessarily
will be zero., Hence, all the G coefficients are zero, and the equation is:

A2(6A) _ A2(Ax - Ag)
AW - AW

(87)

The solution to this equation is simply:

5A = Ay - Ag (88)

5.6.3 Body Surface Points

The correction equation for the grid points on a body contour is
trivial, The streamlines are already correctly positioned so:

én = O (89)
for each such point.,

5.6.4 The Far~Field Interface Streamline Correction Equation

In this section the correction equation for a constant pressure or
far-field boundary is formulated. The notation is similar to that of Section
5,6.1 and is illustrated in Figure 32,

Again we begin with the continuity equation. The desired solution is
(AN - AN_I) <pV>N_ 3 = Wy - Wy (90)

But for the velocity, V., associated with the "assumed" far-field boundary,
the equation is:

(A = Axn-1) <PoVorpy = WN - ¥y (91)
Equation 91 is subtracted from Equation 90,

(AN = An-1)KPON 3 = (Aav ~ Axen) $roVolyy = © (92)
The identities:

Ay - Ayq = (AON - AON_l) + SAg - 8Ay (93a)

An =~ Aol = (Aon - AoN-1) *+ (Ax - Ag)y - (Ax - Ao)N-1 (93b)
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and:

)]

6 <pV>N_% <pv>N_J‘, = <p°v°>N-§ (93c)

are introduced into Equation 92 and the result rearranged to give:

[<p°V6>N;i + 5<pV>N_é](6AN - 8An_1) + (Aon = Aon1) 8V 3

= {PoVody 3 KAx =Ao)N ~(Ax - Ao)N—l] (94)

!
Equation 94 represents the continuity form of the correction equation
for the outermost streamtube,

The velocity correction is approximated as follows. The average
velocity, vN—i’ for the streamtube is related to the boundary velocity
by the identity:

SVy.g = 8Vy + 8 (Vy-y - vx) (95)

For a constant pressure boundary § VN is zero; for the far-field interface
streamline:

&V YoN 3 e 5 (96)
N = < n
jﬁﬁjﬁ;: iz  9FFi °M4,N
0
0.865 "1
1=2,5 '3

Equations 96 and 97 relate the change in velocity at point (i = 4) to the
local ordinate changes of the streamline (énj N). Included in this for-
mulation is the contribution from the movement of the point itself and the
two upstream and two downstream neighbors., The coefficient (0.865/AS) and
the relative factors of [0, -1, 2, -1, 0] were determined (as reasonable
approximations) from numerical solutions. AS is the average local spacing
between points along the interface streamline, and the coefficient (l—Mg)‘
corrects for the compressibility or Mach number effect,

The second term on the right-hand side of Equation 95 is evaluated,
as before, by the cross-stream momentum equation:

1V
V dn c
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Approximately, for the constant streamtube:

VN - Vn1

Z(VN + vN_1)= -} (oy - ny-1) (en + CN-1) (98)

Define Vy_j3 = 3 (Vg + Vy.1) and Cy-j = 4 (Cy + Cy_y), then Equation 98
can also be expressed as follows:

(VN;i - VN) =3 Vn-3 (nN - nN—l) Cn-3 (99)

The differential (or small variation form ) of Equation 99 is:

6(V -3 - VN) =% VN_§ (nN - nN_l) GCN__& + 3 CN—% G[VN.Q(nN - nN_l)l
=} VN._é(nN - nN_l) 5CN-} (100)
+4 CN—-!{B’;T; 5["N—i VN—%("N - “N—l)] -
Vn-3 (o = Py
N (pN_; Y oo }

From the continuity equation, the first term in the braces is zero, (For
the outer streamtube, the effect of a change in radius is neglectable,)

The density variation in the second term can be related to the velocity
variation:

5pN_é 2 6 VN'J}
TR Yy

(101)

Thus, Equation 100 can be written:

(Vg = V) = % Va (ox - ny-1) 6Cn-3 + MR-} On-d (on - M1)oVyy (202)

Equations 96 and 102 are substituted into Equation 95 to obtain:

VoN 5
QN-3 8Vn-3 = By ‘152 Ggpy OBy y *+ 2 VN_é(nN - “N-l)f’CN—é (103)
where:
2
Qn-4 = 1 - My 3 On-4 (nN - nN_l) (104)
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The product of curvature and streamtube thickness is expected to be very
much less than unity, therefore QN-3 is approximately equal to unity.
Also:

8Py 3 = eﬁ_ 3 PN-3 V-3 (105)

This together with Equation 103 substituted into Equation 94 gives the fol-
lowing for the interface streamline correction equation:

v
(pv)N'i(GAN'l - oay) - (Aon - AoN-l) (Eg.e)n_% [f 1%2 Gpp Sny,N

+ 3V, (n.N - nN_1)5CN-§] = (pv)N__gt [(Ax - AO)N_l - (Ax - AO)N] (106)

Equation 106 presumes:

<pov0>N..§ + 6<°v>N.§ ~ {PoVo)y-3 N<pv>N_5
Also, to a reasonable approximation:

By-3 ~ BN

PN-3 =~ Py

Equation 106 is divided through by (pV)Nh ; and, with the above approxima-
tions, the far-field boundary correction zquation becomes:

BN 5 BN
GAN—]. - GAN - (AON - AON"'].) 'Q—'N 152 GFFi Gni’N - 'Q—N GCN_#

= (Ay = Agdng = (Ax - Aoy (107)

where:
By = i(AoN - AoN-l) B2 (nN - nN_1) (108)

In the present STC code, we further approximate QN as unity.
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The average streamline curvature is taken to be equal to the boundary
curvature:
-GCN;é = —GCN = Gzénz,

+ Gybng N + G46n4’N + Ggbn + Ggbn, (109)

N 5,N ,N

where the G's are the influence coefficients relating streamline point
movement to the negative of curvature. Also, it follows that:

6AN—1 - 6AN = anN_l 6nN_1 - anNGn (110a)

for axisymmetric flow, and that:
GAN;I - 6AN = 6nN—1 - 6nN ) (110b)
for two-dimensional flow.

With Equations 109 and 110, the left-hand side of Equation 107 involves
only the streamline correction quantities, 6n, and the right-hand side is the
error term computed in the flow balance section. Equation 107 is used with
Equations 86, 87 and 89 to obtain the matrix equation for Smy for M = 1,

2 .... NM where NM is the total number of grid points in the field.

5.6,5 The Curvature Influence Coefficients

To complete the formulation of the system of correction equations,
it is necessary to relate the change in curvature to the movement of the
streamline. Specifically the values of G in Equation 85 (repeated below)
are desired,

—8C4,k = G10my k + Gadna x  Ggdnz x + Gybny  + Ggdng i

+ G66n6’k = EGiéni’k

An illustration of the notation is provided in Figure 33. To a very good
approximation, the curvature variation is equal to the variation of the
second streamwise derivative of 6n.

D25nk)
4

—6C4 K =(——1r- (Repeat of Equation 86)
3 DS

To evaluate this second derivative, the linear spline equations are employed,
maintaining compatibility with the beam curve fits of Section 5,2, The
method for calculating the spline influence coefficients is presented in
Appendix B, Since only small adjustments from the given curve are to be
made, the arc length along the curve, s, and the normal point adjustment,
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n, are replaced by x and y in that development, The resulting values of the
influence coefficients are tabulated in Table II for the specific case of a
uniform spacing where Ax = As = 1.

As indicated in Table II, the influence coefficients for a point on a
spline curve involve all of the other points on the spline, That is, the
movement of any one point affects the curvature at all of the points, al-
though the effect on the curvature at distant points is small. To include
the entire set of spline influence coefficients is impractical, because it
would lead to a completely dense, rather than sparce, coefficient matrix for
the correction equation. Therefore, the curvature influence coefficients are
always truncated to 5 points, or less near boundaries, The method of trun-
cating is to simply replace the one long spline with a series of short
splines. Each short spline passes through only the point in question and
the two upstream and two downstream neighbors, if they exist, If the local
velocity is supersonic, then three (or two) upstream points and no downstream
points are included to duplicate, in effect, the supersonic curve fit of
Section 5,2.3,

Artificial boundary conditions are enforced at the upstream and down-
stream ends of this truncated spline. For subsonic flow, the selected
boundary condition is that y"' = O at each end (remember y = én). However,
if the truncated spline end point is also a streamline end point, then the
boundary condition is chosen to agree with the curvature end condition dis-
cussed in Section 5.2,2, For supersonic points, the end options are again
chosen to be equivalent to those used for the calculation of curvature,

It is interesting to notice how different the spline coefficients are
from those of a polynominal, This is illustrated in Table II. Although
the 3-point parabola formula is commonly used for subsonic flow, the spline
formula is found to be considerably different and, we believe, more
accurate,

5.7 MATRIX SOLUTION PROCEDURE

In the previous section, equations for the streamline position cor-
rection, 6n, were developed for each grid point., At interior points and
flow inlet/exit boundary points, Equation 86 is used together with
Equations 84 and 85, And either Equation 89 or Equation 107 through
110 are used at the orthogonal line boundary points. This yields a system
of simultaneous equations where at any "central" point the applicable
equation can be written in the form:

(1

A1dy + Aga + Agdg + [A4 Aiz)] 6, + A565 + Agbe + ALb, + Agdg = RHS

8°8
(111)

The notation § is used in place of 6n for brevity and the subscripts refer
to neighboring points as indicated in Figure 34, If the velocity at point
4 is subsonic, then point 1 is not included (A1=0); if the velocity is
supersonic then points 5 and 6 are both omitted (A5 = A6 = 0),
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Figure 34, Arrangement of Neighboring Points for the General
Subsonic/Supersonic Star,



It should be noted that points 1 to 6, as shown in Figure 34, never
include any of the special points which terminate a partial orthogonal,
These points are skipped by extending the star, as required, to the next
point in either the downstream or upstream direction.

In all cases, A;, Ag, A3, Aél), Ag» and AG are the curvature influence
coefficients times the coefficient Bj. For example:

(1) _
A4 = B1 G4
etc.

The values of A_, A_, and A;Z), for interior points, are related to the

flow difference between streamlines. These coefficients, given by Equation
84 for axisymmetric geometry, are:

PR ™ U RS
- - - - s
L M 8 W1 ™ %
(112)
(2) 1 1
A ==-2Tr e —— +
4 k [wk+1 Y Y ™ V-1

For a two-dimensional configuration, the (2m r) factors are replaced
by unity. Double streamlines (which separate two adjacent channels) are
disconnected; the finite difference equation of the form of Equation 111 is
only written for the second of the two coincident lines. For the first line,
the following equation is employed:

64b -8

4a = @x = nodap - (y = 15y,

The "4b" and "4a" subscripts indicate the points which belong to the
lower and upper channel, respectively, For noninterior points, the values
of A; to A8 are similarly defined according to the equations of the previous
section,

The set of equations defined by Equation 111 are solved by a "block"
relaxation method, In this procedure, an initial guess for the values of
§ is successively relaxed until the solution does not change; viz, the
solution is constant within a specified tolerance, The options available
for sweeping the field are:

83



a) Solving orthogonal line blocks, sweeping upstream to downstream

b) Solving streamline blocks, sweeping from the centerline to the
outer radius (or from small y to large y)

¢) Alternate use of a) and b)

Included in the relaxation procedure is an acceleration factor, p, which
serves the same purpose as the overrelaxation factor in the point-relaxation
method. For the two types of block relaxation, Equation 111 is rewritten
as follows:

Orthogonal Blocks:

(2) (1) _
A767 + [A4 + pA4 ]64 + A868 = RHS - [Al 61 + A262 + A363 +

(L

(1-p) A4

5, + Agby + A666] (113a)

Streamline Blocks:

(1) 2 _
A161 + A262 + A363 + [é4 + pA, ] 6y + A565 + A666 = RHS
~la s, + (-0) A® 5, + a6 (113b)
7°7 P) By 4 8’8

The terms involving the streamline adjustments on the modified right-
hand side of each equation are evaluated using the results of the previous
iterate, Orthogonal line blocks require the solution of a tridiagonal
matrix, while streamline blocks require the solution of a pentadiagonal
matrix, In both instances, the solution is obtained by a left-right de-
composition of the coefficient matrix followed by back-substitution
The solution is assumed to be converged when the maximum change from one
iteration to the next is within a specified tolerance. Specifically it
is required that:

Max|A5| € TOLRL * Max |6 |
where A5 is the change in 6 between two successive sweeps at a given point.

The acceleration factor, p, may be either taken as constant or allowed
to vary with the sweep number. Using the results of Peaceman and Rachford
(ref. 14), the acceleration factor is determined as a function of the sweep
number and the total number of points in the field. The latter parameter
is tentative, since the STC program uses a nonuniform grid, and the
Peaceman-Rachford relation was developed for a uniform grid.
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P=1pB+ 2p5 sin’ zmn" (114)

where:
n = swecp number
pg = base acceleration factor
py = half of the amplitude of the sinusoidal variation
NM = number of grid points in the field

The standard mode of operation is to alternate between the orthogonal
and streamline block sweeping, When the sweep number reaches the stage
where n = zvﬂﬁyn then n, as used in Equation 114, is reset to 1, The re-
sulting variation in convergence factor is depicted in Figure 35.

As in the case of successive point overrelaxation (SOR), an optimum
value of p corresponding to the minimum problem convergence time, may be
determined, Selection of the optimum acceleration factors is discussed
below,

An internal flow test case with M_ = 0,09 was chosen to optimize the
acceleration factor for the alternating direction solution procedure. The
matrix solution time vs. p_, was established by systematically reducing PB
from unity to a minimum value of 0.45. The results are depicted in Figure
36.

As indicated, the optimum pg setting occurs somewhere in the vicinity
of 0.5 to 0.6, With pgp = 0.4, the block relaxation diverged. For pg = 0.5,
the matrix solution time was 42.4 percent of the total iteration cycle time
which includes one pass through Steps 3 through 12 of Section 3.0,

Based on this test and other results similar to this, pg and p, have
both been initialized to 0.5 in the computer code. Alternate values may be
input by the user,

5.8 STREAMLINE ADJUSTMENT

To adjust the streamline position, the coordinates are moved in the
normal direction by the computed 6n's.

p+l _ p i
z° - C, én sin ¢1

N
I

p+l P
r +C, én cos ¢1

s |
"
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The streamline angles, ¢1, are those found from the curve fits of Section
5.2. The superscript p is the iteration sequence number, and Cv is a con-
vergence factor which is generally equal to unity,

The new values of z and r then form the basis for the next iteration, or
for the solution which is printed out. The next step in the procedure is to
again compute the curvatures and from these compute the velocities and flow
balance errors.

5.9 BOW SHOCK WAVE

The original intent of the analysis development was to include the
approximate bow wave method of Moeckel (Reference 15,) With the inclusion
of the bow wave, it would have been possible to analyze nacelles at transonic
Mach numbers above 1.0. During the development of STC with the bow wave,
serious difficulties were found and a reliable computer solution was not
practical. Accordingly, two versions of the STC computer program were fur-
nished; 1) a standard, fully functional STC computer analysis without the
Moeckel bow wave and 2) a status level program incorporating the bow wave
which was provided for the purpose of future investigation,

Technically, the approximate nature of the Moeckel method compromises
the quality of the STC solution, The assumed hyperbolic shock shape and the
empirically specified stand-off distance force continuity to be violated
between the shock and the body. In addition, once the Moeckel bow shock
is added to the flow field (after three initial flow field refinements to
stabilize the streamlines and orthogonals), further refinement of the flow
field in the vicinity of the shock is stopped. At the same time, streamline
curvature near the shock is preset to zero, The good features of STC are
not part of the bow wave solution, Hence, the STC results are not enhanced
by including the approximate bow wave solution,

The STC solution with the bow shock has been programmed as a separate
computer program since extensive changes were necessary. The difficulties
that developed during checkout preclude a useful solution, but Volume I1I
of the User's Manual (Reference 16) shows how to use this version of STC.

For Mach numbers up to 1,2, it is recommended that the standard version
of STC be run in the supersonic mode with grid refinement suppressed near
the shock., At Mach 1.2, the nominal streamline deflection through the shock
is 4° with a maximum total pressure loss coefficient of 0.007, These con-
ditions can be approximated using the standard STC program,

5.10 INTEGRAL MOMENTUM CHECKS AND PRESSURE DRAG EVALUATION

The STC Program evaluates the thrust/drag on each boundary surface and
then verifies these forces by performing ''overall" momentum balance checks
for each of the fluid streams. For a typical nacelle configuration, a
momentum balance is computed for the inlet stream, the external stream, and
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the jet exhaust stream, For the inlet stream, as an example, the entering
momentum (or ram drag) calculated using fluid properties at the most upstream
station is first determined., Second, the pressure times the projected area
of the cowl stagnation streamline is computed. This is added to the axial
pressure force on the underside of the inlet lip from the stagnation point
to the last calculation station (near the fan face). Third, a similar
pressure-area integration to include the axial forces on the spinner is
performed. Finally, the sum of the entering momentum and the integrated
upper and lower boundary forces (including the additive drag of the cowl
approach streamline) is compared to the integrated axial momentum flux at
the last station inside the inlet., A discrepancy will indicate inaccuracies
in the computed pressure distributions or, perhaps, insufficient refinement
of the calculation grid for adequate resolution, It has been found that
these momentum checks are quite valuable for quickly assessing the computed
result,
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6.0 CONCLUSIONS

The Streamtube Curvature Analysis has been developed and a computer
golution has been utilized to solve the transonic flow field over an iso-
lated nacelle. The analysis includes the capabilities to:

e Analyze the stagnation region of an inlet with grid refinement
as needed so that the stagnation streamline is properly predicted.

e Handle multiple streams of differing stagnation properties with
a static pressure balance at the interface.

® Predict the location and strength of imbedded shock waves on the
external nacelle surface,

e Define an analytical far-field boundary so that free-flight con-
ditions are predicted.

@ Achieve greater solution economy for the transonic flight speed
regime in that the computational times are 5 to 10 times faster
than state-of-the-art time-dependent methods for the same number
of grid points. ’

e Provide a user-oriented design analysis tool for responsive
solutions to engineering problems.

The inviscid pressure distributions predicted by the Streamtube Curva-
ture Analysis compare very well with test results when viscous interactions
are minimal. When shocks are predicted, the viscous interactions and bound-
ary layer separation regions prevent good correlations with test data.

The computer analysis fills a void in that several techniques are
available for solving the inviscid equations of motion about arbitrary two-
or three-dimensional bodies at transonic speeds, but none have handled the
complete nacelle with inlet flow and exhaust flow. The Streamtube Curvature
Analysis provides the capability to predict the transonic flow field about
typical aircraft engine installations in isolated nacelles at transonic
speeds. The solution technique provides a design analysis tool which will
provide guidance for wind tunnel testing to develop nacelle shapes to min-
imize drag within given design restraints,

The details of the computer program operation, usage, and structure
are documented in the Users Manual (Reference 16).
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7.0 APPENDIX A

SECOND-ORDER STREAMLINE CURVATURE EQUATIONS FOR
ISENTROPIC PLANAR FLOW

!

In this section the second-order equation which describes the shape
of the streamline is derived. An orthogonal system is chosen. The variable
n is a measure of the distance across the streamlines and s is the distance
along a streamline. The partial differential operator J indicates that the
direction of differentiation is normal to the streamline. The operator D
indicates that the direction of differentiation is along a streamline. The
basic equations are:

Continuity: PV an = ¥ (115)
Crocco Form of Normal 9!._ -cv
Momentum Equation for dn (116)

Irrotational Flow:

where:
V = velocity
P = density
C = streamline curvature = - gﬂ
s
s = streamwise coordinate
n = cross-stream coordinate
¢ = streamline angle measured from horizontal

Equation 115 is differentiated as follows:

1
an_ L (117)
3%n 1 (1 13p)\dV 3n
w - wE e R (118)
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Equation 117 is substituted into Equation 118 and the result rearranged:

2 . ' f
2°n 1 ( vV ? ) 1 3V

+ 1+= 20} 2 2 _ o (119)
Jy2 (pv)z p d3V/) V an

Now Equation 116 is substituted into Equation 119:

2 B
ag._ .12 (1+_\£ '55)0=0 (120)
oY (pV)

Equation 120 is the desired second-order equation for n, where the curva-
ture is analogous to a derivative of the form (D2n/Ds2)., Since the flow is
isentropic, the coefficient in parenthesis may be expressed as follows:

Y (20 - 1-m2 121
1+ 5 (BV)S = 1-M ( )

thus, the equation reduces to:

- C=0 (122)

Clearly, the elliptic and hyperbolic nature of the equation is evident
when the Mach number is less than and greater than unity.

Equation 120 is now written in the following abbreviated form:

2
_a_g - BC=0 (123)
oY
where:
1 ( \'J .éf)
Bz —— {1+-=
(pV)2 p oV

The equation in its present form cannot be applied directly to obtain
a solution for n because of the difficulty of relating the radius of curvature
to the second streamwise derivative of n., Instead, it is used to calculate
the streamline adjustments (in the cross-stream direction) for an assumed
streamline pattern.

91



To illustrate, we consider an assumed set of streamlines which pass
through the small circles in the adjoining sketch.

Points Calculated

’//—by the Flow Balance
’/

-

Orthogonal

Streamline Assumed Points

By a curve-fitting process, the values of streamline angle and curva-
ture, C,, are determined. (The circle points are also orthogonalized.
That is, they are moved along the streamlines so that the "orthogonal
lines" are truly normal to the given streamlines.) Equations 115 and 116
are integrated along the orthogonal lines, assuming the value of Co is
valid, and from this "flow balance" the x-positions of the streamline are
determined. We have then the following equation satisfied:

aznx
- B C,
ay2

=0 (124)

The "o" subscript denotes values related to the assumed streamline
positions and curvatures. The "x" subscript refers to the streamline posi-
tion as calculated by the continuity equation, The true solution to

Equation 123 is sought; "true solution values' are unsubscripted.
Equation 124 is subtracted from Equation 123, The result is:

azn aznx (
- + B|l-C+ Co) =0
av? ay2

The adjustment to be made in streamline position is 6én = n-n . Hence,
the above can be written:

2
2 9%(n -n )
a—a‘:-'g_nl +B(_C+C°)= _522‘-—0 (125)

Finally, we note that:
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®
- - D¢ ___o
Co + Co = g D, (126)
_ D(g - )
=~ Ds
D |D D2(6n)
Ds
7~
e s
7~
@
_ $o
6n
So the differential equation becomes:
2 2 2
3%(bn) 5 DZGm) _ 3% ) (127)
2 2 2 x 7o
oY Ds oY
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" 8,0 APPENDIX B

SECOND DERIVATIVE INFLUENCE COEFFICIENTS FOR A SPLINE

For the interval between points i and i+l, a cubic equation may be
written in the form:

y o=y, o+ bi (x - xi) + 1/2 ¢3 (x - xi)2 + 1/6 dy (x - xi)3 (128)

Alternately, this same cubic may be expressed in terms of the ordinates
(yi and yj,1) and the second derivatives (cj and c3,1) at the points x; and
Xj,1» hamely:

1
Y = 6bx; [ci(xi+1‘x)3 + °i+1(x'xi)3]

Y, c.Ax, y c. Ax.\
i __1 1 _ A+l i+l i)
'+<Axi 5 ) (x5,1 X) + (Axi | 3 )(x xi)

(129)

where Axy = Xj+1 ~— Xj. By requiring a match in the 'first derivative at the

interval boundaries, Equation 129 may be used to derive a set of N-2
equations for the c's: '

Axi_l cj_1 + 2(Axi_1‘+ Axi)ci + Axy ci_'_1

6 I 6 6 6
= Awe 1 i - . < S——— s 1
bxj_3 Vi-1 (Axi_l + Axi>y1 + Ax; Yisl (130)

Two additional end conditions then yield a total of N equations, A
variety of end conditions is possible, The following are available as
standard options: : '

(1) The first derivatives y;' and/or yy' are zero:

6 6
2Axyc1 + Ax.c, = - 55— V1 Yt 5 Y v (131
11 1%2 A%y Y1 T By Y2 : (131)
Axy_1C + 2Axpy_1C -5 -5 ' : t - (132)
N-1°N-1 N 1T Ty, N



(2) The second derivatives y;" and/or yy" are zero:

cy =0 . (133)

(134)

I
o

N

(3) The third derivative of the end polynominal is a specified
fraction, F, of the third derivative of the polynominal second
from the end: ‘

1 1 F F
-Ecl+(-si;. +'K2)02—-A—;503=0 (135)
F c (== + 22—\ - cN=0 (136)
Mxyg 27 \bxyg x| N1 Ay

(4) Same as Option 3 except that yy is not chosen arbitrarily.
Instead it is required that yy* = -ayy. (Note this option
is coded only for the downstream end of the spline.)

bxN-2 + F<A,&F1)2 (3 : GAKN'I) c
T8 bxyg (1 + obxy 1) w2

F(ax,_ 2 (3+ an 3ax, . (2 Ax,
R ]

Equations 130 through 136 can be written in matrix form:

Aj,1¢5 =By, vy (138)

where A and B are square coefficient matrices, and ¢ and y are column
vectors of length N. If Option (4) is used, then Equation 137 replaces
Equation 130 for i = N-1, and the size of the arrays are reduced by one.
Generally, splines are fitted to given sets of data and Y is known, Here,
we find the influence coefficients G by premultiplying Equation 138 by
the inverse of A,
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where:

G=A"1B (140)

G is the array of coefficients which give the influence of vy i=1, 2,..N
on the second derivative cj.

We comment that G, as used in this section, is a square matrix., The
desired set of influence coefficients for the second derivative at point j
is the jth row of the matrix. In section 5.6.5, the notation G; is used to
indicate a vector which is the jth row of the matrix Gj j of this section.
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9.0 APPENDIX C

NOMENCLA TURE
Symbols
A flow area measure normal to the streamline = Iznrdn
A coefficient matrix
AO/AHL mass flow ratio
a unperturbed interface streamline radius
B, Bl’ X B3j coefficients in the streamline correction equation
b first derivative
C curvature, = - d¢1/ds
c second derivative
CD inlet drag coefficient
CP pressure coefficient
cp specific heat at constant pressure
CDP integrated pressure drag coefficient
DhL/DMax. diameter ratio
F streamline curvature curve-fitting parameter, see Section 5.2.2
f fractional position in the interval
g 1-f
G curvature influence coefficients
H enthalpy
M Mach number
Mo free-stream Mach number
n distant measure along an orthogonal

97



va 3 ¢y <X @

(U]

98

matrix relaxation sweep number
pressure

parameter defined by Equation 104
dynamic pressure

perfect gas constant

radius

entropy

distance measured along a streamline
temperature

axial component of velocity
vertical component of velocity
total component of velocity
cumulative flow rate

normalized inlet length
rectangular coordinate axis

axial position

angle of the chord between two adjacent points on the
curve

parameter relating velocity corrections on the two
sides of the jth slip line

compressible similarity parameter, (l—Mz)}é
ratio of specific heats

dummy z-variable

dummy y-variable

dummy x-variable

coordinate system in the streamline direction



g coordinate system in the direction normal to streamline

p fluid density

P matrix relaxation acceleration factor (Section 5.7)
g source density

¢1,¢ streamline angle

¢2 orthogonal line angle

¢ velocity potential

Y stream function

w vorticity

Subscripts

a first end of the interval

a evaluated above a slip line

b second end of the interval

b evaluated below a slip line

FF far-field interface streamline

i orthogonal line index (Section 5.5 & 5.6)
k,j ) streamline index

M field point index

o initial or assumed values

@ free stream

s static

s unperturbed interface streamline position
T total

x calculated by using the assumed streamline curvatures
1 streamline direction

2 orthogonal line direction




Superscripts

(1) Denotes streamwise connection

(2) Denotes crosswise connection
! 1st derivative

" 2nd derivative

' 3rd derivative

P iteration sequence number
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10.0 ADDENDUM ~ PART II, TURBULENT BOUNDARY LAYER AND TURBULENT SEPARATION
PREDICTION METHODS, By D,J. Lahti and P,H. Heck, General
Electric, Aircraft Engine Group, Cincinnati, Ohio 45215

10.1 INTRODUCTION

The current state of the art of computing the development of turbulent
boundary layers on arbitrary axisymmetric and/or planar bodies does not allow
for the complete solution of the governing equations without some assumptions
being made. These assumptions define the relationship of the fluctuating
quantities to the mean flow quantities in determining the turbulent transport
properties., As a result, many computational methods have evolved over the
past few years, each method depending on the closure assumptions and, to some
extent, the limited data available to support those assumptions. Without
enough valid data to positively substantiate or disprove these closure as-
sumptions it becomes difficult, if not impossible, to assess their true
merits.

Although there is general wide-scale agreement that the finite difference
methods do possess several advantages in computing turbulent boundary layers,
they also possess some disadvantages. The primary disadvantages from the
practical or engineering point of view is their relatively long computational
times and the attendant higher costs.

There is general agreement within the General Electric Aircraft Engine
Group that not all problems require the detailed solutions provided by the
finite difference boundary layer methods. A large majority of the design de-
cisions made can be accurately and confidently supported by the less expensive,
yet accurate, integral boundary layer solutions. As a direct result of their
rapid computational times and demonstrated accuracy, they are very attractive
for coupling with inviscid flow analysis programs. This coupled inviscid/
viscous computer program provides a very valuable and efficient engineering
tool. The integral boundary layer method selected for coupling with the
Streamtube Curvature Program incorporates the method of Stratford and Beavers
(Reference 17) and is discussed in the following section.
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10.2 TECHNICAL DISCUSSION

10.2.1 Turbulent Boundary Layer Method

Reference 18 examines several well-known integral methods for calcu-
lating the boundary layer characteristics and correlates the results as
functions of free-stream Mach number and Reynolds number based upon an equiv-
alent flat plate length (see References 18 through 25). This examination
finds that all the methods concur in the conclusion that the momentum thick-
ness may be expressed in the form:

8-f (xR ™" (141)
where:
x
1
X== Pdx (142)
P
0
For the flow on a flat plate, the Mach number, and thus the function P, would
b

be constant so that X = x and 8 = £ (M) x Rx- . In effect, then, all the

methods agree in saying that the momentum thickness in a flow with pressure
gradient may be obtained from the expression for a flat plate, provided that
actual distance x is replaced by an equivalent distance X, according to
Equation 142. Consequently, the methods can only differ from one another in
the expression for the flow on a flat plate and in the value of the function P.
The only part of the result which can differ due to differences in each of the
analytical treatments is, therefore, the function P.

Five of the methods employ transformations, each being some form of
Stewartson's transformation from compressible to incompressible flow. There-
fore, differences in P are due to differences carried over from incompres-
sible solutions. Stratford and Beavers then conclude that rather than trying
to assign any priority due to the merit of the incompressible solutions, they
rather choose to represent P by a reasonable average of all the solutions.
This is the concept employed by Thwaites (Reference 26) for incompressible
laminar flow, and it proves to be the most expedient method under the
circumstances.

In summary, the calculation procedure is as follows.
The boundary layer momentum thickness is expressible in the form:

8-t (mxR® (143)
where X is the equivalent flat plate length. It is defined as the length
over which a boundary layer growing on a flat plate at the given Mach number

would acquire the same thickness as the real boundary layer at that given
location.
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Stratford and Beavers propose the following equations as the pro-
visional working formulas from which the following integral parameters may
be calculated.

For 1 x 108 S Rx €1 x 107

1/5

8 = 0.036 (1 + M2/10)7%"7 XR, (14ka)
5 = 0.37 x&, "1/ (14
= 0.37 XRy 144b)
6*= 0.046 (1 + 0.8 Mz)o‘l‘l* xnx'l/s (14kc)
For 1x10° <Rxg1 X 108
8 = 0.022 (1 + M2/10)70°7 xpx‘l/G (144d)
§ = 0.23 x:ax'l/6 (14ke)
5*= 0.028 (1 + 0.8 M*)0-44 xpx'l/G (14h£)
1 X
where X = T f P dx for planar flow (145a)
0
X
and X = _1 f Pr? dx for axisymmetric flow (145b)
Pra 0
P=LMQ + Mz/s)]‘* (146)
6
1.25 for Ry ~ 10
and a = { 2 (147)
1.20 for PX =~ 10
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Having these expressions, the distributions of 8 (x) and 0*(x) can be cal-
culated, given the boundary layer edge pressure distribution. Once the dis-
tributions of 0 (x) and 0*(x) are known, the integral momentum equation
can be solved numerically to determine the local skin friction coefficient.

That is:
ab 2 du 2 dr 28 dp
- — 2 = 0 L == Ll =
Cf =2 YU (28 + &*) + € = + 5 (148)

0 for planar flow
where, e = (149)

1 for axisymmetric

Equations 144 through 149 are those employed in the boundary layer
solution,

10.2.2 Example Cases - Boundary Layer

The simplicity of the above method is quite obvious; and, as discussed
in the Introduction section, it provides accurate and reliable estimates of
the boundary layer effects so long as the assumptions of an adiabatic wall
and turbulent flow throughout are not violated. In particular, it is ideal
for calculating the integral displacement thickness distribution along a
surface when an inviscid/viscous iterative calculation is being performed.

Several sample cases which demonstrate the ability of this integral
method to predict turbulent boundary layers are discussed in this section.
In the examples which follow, the predictions of the Stratford and Beavers
method are designated S-B. 1In order to provide some comparison of relative
accuracy of this method with a finite difference solution, some of the exam-
ples were also analyzed using the General Electric Aero Boundary Layer
Program. This program, designed B.L., is very similar to the program de-
veloped at NASA-Langley by Beckwith and Bushnell (Reference 27). The results
of the B.L. solutions on the various example cases are shown to provide a
reference from which the quality of the S-B solutions can be judged.

10.2.2.1 Incompressible Flat Plate

The incompressible flat plate data of Wiegart (Reference 28) is shown
in Figure 37 along with the S-B and B.L. predictions. The agreement is good
over the full range of momentum thickness Reynold's numbers. Reference 28
suggests that the first data point is at about the minimum Reynolds number
for turbulent flow.

This is further verified by the B.L. solution which shows this to be
at about the same location as the downstream end of the transition region.
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10.2.2.2 Flat Plate with Pressure Gradient

Reference 29 reports the results of a study to experimentally de-
termine the Reynolds Analogy factor on a flat plate mounted in the diverging
section of a supersonic nozzle. Although most of the data taken in this
study contained the effects of wall heat transfer, measurements of the mo-
mentum and displacement thickness distributions were made for the adiabatic
wall case. These data are shown on Figures 38 and 39 along with the S-B
predictions. The experimental pressure distribution started about 25% of
the length of the plate from the leading edge. Therefore, the experimental
pressure distribution was extrapolated to the leading edge, and the boundary
layer was assumed to start from there. The predictions indicate good agree-
ment with the data.

10.2.2.3 Vaisted Body of Revolution

Figure 40 is a sketch of the waisted body tested by Winter, Rotta,
and Smith (Reference 30). This work is usually recognized as one of the
best available sources of compressible turbulent boundary layer data on a
surface other than a flat plate. In addition, these data are frequently
used as a basis for comparison for the various boundary layer prediction
methods. Therefore, it serves as a standard reference from which the quality
of these methods may be compared.

Figures 41 through 43 show the S-B and B.L. predictions of momentum
thickness, displacement thickness, and skin friction coefficient, respectively,
for a free-stream Mach number of 0.597. 1In general, the agreement with the
data is very good for the momentum thickness and displacement thickness dis-
tributions of both S-B and B.L. However, at this Mach number, the skin fric-
tion predictions tend to be somewhat higher than the data. The B.L. predic-
tions are closer to the data between X/L = 0.3 and X/L = 0.7, and the S-B
predictions are closer between X/L = 0.7 and X/L = 1.0.

Similar predictions are made for free-stream Mach numbers of 1,404,
1.7, and 2.0. These predictions are compared with the data in Figures 4
through 52. In general, it can be said that in all cases the agreement is
very good for both the S-B and the B.L. predictions. For engineering pur-
poses, the primary advantage to using the S-B method is its extreme simplicity
and almost negligible expense as compared to the finite difference method.

10.2.2.4k Supersonic Ramp - Adverse Pressure Gradient

Reference 31 reports the results of measurements of the turbulent
boundary layer on each of three supersonic compression ramps. Although not
a large quantity of data was taken, the skin friction coefficients were
measured. Predictions using S-B are shown in Figure 53 along with the test
data. The agreement is seen to be very good in all three cases.
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10.2.3 Separation Prediction Method

In general, the prediction of turbulent boundary layer separation is
best accomplished by performing a finite difference boundary layer solution
over the given body surface. Separation is predicted at the point where the
local skin friction coefficient becomes zero. Although this method provides
reasonably accurate results, it requires a complete boundary layer solution
which may not always be desired or necessary.

In the past the only other alternatives to a complete finite difference
boundary layer solution were: 1) a complete integral boundary layer solution,
or 2) the determination of some pressure gradient parameter which takes on a
certain value at or near the separation point. The integral boundary layer
solutions were known to give relatively large errors in skin friction co-
efficient near the separation point; and, as a result, predictions of sepa-
ration were unreliable and inconsistent. Subsequent improvements in the
integral methods allowed more accurate boundary layer skin friction calcu-
lations and,; thus, separation predictions; however, they were accompanied
by increased cost and complexity. The simple pressure gradient parameter
methods of predicting separation have been used with some success for some
flows. However, they have not received widespread use because they also have
been unreliable and inconsistent.

Reference 32 reviews several methods for calculating incompressible
turbulent boundary layer separation, and concludes that the Stratford method
(Reference 33) quite satisfactorily predicts it. However, as is often the
case, there is very little information regarding its usefulness for compres-
sible flows. Therefore, the Stratford method was modified for compressibility
and exercised on several compressible flow configurations where boundary layer
separation was measured. In addition, General Electric's finite difference
AERO Boundary Layer program was also run on several of these configurations
to establish some sort of reference from which the quality of the Stratford
predictions could be judged. Finally, this method has been incorporated into
the NASA-Langley version of the STC/viscous analysis program.

Reference 33 presents the complete development of the basic theory for
predicting the separation of an incompressible turbulent boundary layer.
Only the basic ideas will be discussed here.

The method postulates that the turbulent layer can be divided into two
distinct regions. In the outer region, the pressure rise just causes a
lowering of the dynamic pressure profile, but does not change its shape.

The losses due to shear stresses within this region are assumed to be almost
the same as those on a flat plate under the influence of the same pressure
rise. In the inner region, however, the inertia forces are too small to
overcome the pressure gradient, and the velocity profile is distorted. 1In
this region the pressure forces are balanced primarily by the tranverse
gradient of shear.
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Basically, Stratford pieces these two regions together, describing
the outer region using the similarity power-law profile:

%= (-g-)l/n (150)

and the inner region using the reduced boundary layer momentum equation:

_g_ =§ (151)

Utilizing Equation 150 and the definition of the stream function

Y -  Sfudy, one can arrive at the following expressions for the outer
region:
1/n - 1
au UO (
sy~ (% 152)

1/n
us=U_ ({) (153)

and,
1 +1/n

n Uo§
Y=n+1(§) (154)

Integrating Equation 151 and utilizing Prandtl's mixing length expression,
one can arrive at the following expressions for the inner region when the
shear stress is equal to zero:

1/2
%u;=( 211(2 .g.gﬁl;) (155)
1/2
u =(52:2 'g_i %) (156)
. 1/2 y3/2
Y.3 (DB;KZ gf’c- ) (157)
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The K is the Karman constant, and B is an empirical constant intro-
duced to account for the fact that Equation 151 is only approximate near
the wall and exact only at the wall. In addition, the mixing length ex-
pression changes with increasing distance from the wall. Therefore, it is
expedient to account for these effects by incorporating the single empirical
factor B, whose value is determined by experiment.

At the interface between the inner and outer layers, u, du/dy, and k4
must be continuous. Therefore, equating them and performing some algebraic
manipulations one finally arrives at the expression:

(2n-4)/n
(%) = 3(k8)" (158)
(n + 1)(n6 fp_)z
dx
"
where Cp = E:Eg——z = 1 - -é} for incompressible flow.
1/2 PU g,

If it is assumed that:

5 -1/5

~— = 0.37 Re_ (159)
B = 0.66
K = 0.41 and n = 6

then Equation 158 can be written as:

4 1/2 6 -0.10 '
C (x CE) (10' Re ) = F(x) ¥ 0.35 (160)
P ax X

This equation assumes turbulent flow throughout and is only appli-
cable in an adverse pressure gradient. When there is a region of favorable
pressure gradient or the turbulent boundary layer starts at other than a
leading edge, ?he surface length coordinate X is replaced by S = X + x'.
The distance X represents the virtual origin of the turbulent boundary
layer at the minimum pressure point prior to the start of the pressure rise
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or adverse pressure gradient. The virtual origin X' is calculated by using
Equation 145a or 145b as shown in Figure 54. Hence, the upstream history
of the boundary layer is included in the definition of the separation
parameter.,

According to the analysis, Equation 160 will predict separation when
F(x) = 0.35 for incompressible flow. However, for a typical turbulent
boundary layer flow, F(x) increases prior to separation and decreases after
separation, Therefore, after applying this method to several flows with
turbulent separation, Stratford observed that if the maximum value of F(x),

a. 1is greater than 0.4, separation is predicted when F(x) = 0.4,
b. 1lies between 0.35 and 0.4, separation occurs at the maximum value,

c. 1is less than 0.35, separation does not occur.

This method works quite well for incompressible flows as shown in
Reference 32. However, in order that the method be useful for solving prob-
lems of more current interest, it must be extended to account for compres-
sibility. The approach taken here is one dictated by expediency and physical
reasoning rather than mathematical rigor. Basically the philosophy of the
approach is as follows.

The physical ideas postulated for the incompressible case are expected
to apply in the compressible case. Therefore, rather than quantitatively
alter the formulation of the problem to account for variable density, assume
that Equation 160 is still valid but with the following exceptions. First:

. 2
Cp =1 - ue2 is replaced by Cp =1 - Me , and second, the
u 2 M 2
o o

critical range of the function F(x) is now different from that for incom-
pressible flows.

Now, the only remaining task is to determine the new critical range
for F(x). This is accomplished in the following way. By computing F(x)
using Equation 160 and the pressure distribution for a compressible separated
flow, determine the value of F(x) corresponding to the measured separation
point. Once this is done for a number of cases, one can determine the upper
limit for F(x). The lower limit is determined in the same manner, however,
this time the calculations are done for compressible flows with adverse
pressure gradient where it is known that the boundary layer does not separate.
The greatest difficulty encountered in trying to determine the appropriate
critical range for F(x) is the general lack of good compressible separated
flow experimental data. Even though this difficulty exists, it is felt that
there is enough good data available with which to determine this critical
range. Figure 55 was derived from the data of References 32 through 38.
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It shows the critical range of F(x) for determining if separation occurs.
The only region for which no data were found is that region between M = O
and M = 0.354. This region is bracketed by the dashed lines; however,
it is gxpected that, for peak Mach numbers within this range, reliable engi-
neering estimates can be made using the assumed linear variations shown.

10.2.4 Example Cases - Separation

The Stratford method has been used to evaluate several experimentally
derived pressure distributions to determine how well it predicted the mea-
sured separations. Cases have been found between incompressible flows and
compressible flows at Mach numbers as high as 4.92. Each of these cases
will be discussed.

10.2.4.1 Airfoil - Incompressible Flow

The well-known airfoil-type body tested by Schubaur and Klebanoff
(Reference 34) was selected to check out the program. First the S-B boundary
layer program was run using the test pressure distribution. At the minimum
pressure point, the equivalent flat plate length is obtained directly from
the boundary layer output. This then serves as the length to the boundary
layer virtual origin which is required in the separation calculation.

Figure 56 shows the airfoil, measured pressure distribution, and the pre-
dicted and measured separation locations. The agreement is seen to be very
good. The AERO Boundary Layer Program did not predict separation to occur
on the airfoil.

10.2.4.2 Forward Facing Step - Subsonic Flow

The subsonic compressible data of Chapman, Kuehn, and Larson (Ref-
erence 35) is ideal for determining how well the Stratford method is able
to predict separation because the exact boundary layer origin is known. The
measured pressure distribution and predicted and measured separation locations
are shown in Figure 57. The agreement is seen to be excellent.

10.2.4.3 Circular Arc Airfoil - Subsonic Flow

The circular arc airfoil data of Reference 36 were analyzed in a manner
similar to that of the Shubaur and Klebanoff airfoil. That is, the measured
pressure distribution was used to compute the boundary layer origin at the
minimum pressure point. This equivalent flat plate length is then input into
the STRIFD (S-B) program. This procedure was used for each of the four free-
stream Mach numbers shown in Figure 58. The fact that the predicted separa-
tion locations are closer to the measured ones for the 0.354 and 0.663 free-
stream Mach numbers is probably due to the somewhat uncertain initial boundary
layer conditions. Since the airfoil is just a bump on the wind tunnel wall,
with suction and blowing slots upstream of the leading edge, the actual bound-
ary layer height:'is not known as accurately as is desired. This affects the
equivalent flat plate length which is calculated at the minimum pressure
point on the airfoil, which, in turn, affects the value of the predicted
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separation point. Even though these differences occur, they introduced
only small inaccuracies.

10.2.4.4 Flat Plate Shock Boundary Layer Interaction - Supersonic Flow

Seddon (Reference 37) has studied the shock boundary layer inter-
action on a flat plate. The mechanism for introducing the pressure gradient
on the flat plate is the normal/oblique shock created by a second plate lo-
cated above the first. The incident shock wave interacts with the plate
boundary layer and causes a steep, but not discontinuous pressure rise. The
measured pressure distribution and measured separation point are shown on
Figure 59 along with the predicted separation point. Again the agreement
is seen to be excellent.

10.2.4.5 Wedge - Supersonic Flow

An experimental study of the conditions necessary to promote boundary
layer separation in the compression corner created by the intersection of
a wedge and a plane wall at very high Reynolds numbers is reported in Ref-
erence 38. In this study the wedge/wall intersection was formed by a for-
ward hinged plate in the wind tunnel floor. Changing the wedge angle was
accomplished by simply swinging the hinged plate through the desired angle.
There were many conditions simulated in this test, and only three were ana-
lyzed with the Stratford method. These were selected randomly from all the
available cases. Figures 60 and 61 show the measured pressure distributions
along with the predicted and measured separation points for a free-stream
Mach number of 2.95. The only difference between the two figures is the
wedge angle. Figure 62 shows these same variables at a free-stream Mach
number of 4.92. These cases were selected to demonstrate the ability of
the method to predict turbulent separations even for very high Mach numbers
and Reynolds numbers. One should also note in Figure 62 that the finite
difference Boundary Layer Program tends to predict separation sooner than
does the Stratford method.

10.2.5 Data Comparisons - Axisymmetric Inlets

The predicted pressure distributions on the NASA ATT inlet No. 8
(NASA 1-85-100) have been compared with the measured surface pressures re-
corded on the through-flow nacelle during testing in the 16-foot tunnel at
NASA-Langley. In Section 4.3, at the beginning of this book, the emphasis
was on the predicted results from the Streamtube Curvature analysis. It
was evident then that the boundary layer displacement effects and separation
had a significant influence near the leading edge of the inlet lip. Now,
the viscous characteristics will be discussed in more detail. Two figures
from Section 4.3 at the beginning of this book will be repeated with ad-
ditional information noted.

At a free-stream Mach number of M = 0.8 and a mass flow ratio of

0.81, the streamtube curvature analysisowith viscous effects included pre-
dicts the surface pressures shown in Figure 63. On the internal surface
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of the cowl lip, the comparison with test data is excellent and the effects
of the boundary layer displacement thickness are not noticeable (see Figure
15). On the external surface, the initial acceleration around the cowl lip
is followed by a sharp pressure rise, and incipient separation is predicted.
Once the separation point is predicted, the boundary layer displacement
thickness becomes a constant from there on (the viscous analysis is not ap-
plicable to flow in a separation region or reattachment). The streamtube
curvature analysis oscillates in the region where the test data indicate
a separation bubble has been formed. When the flow reattaches the predicted
pressures and the measured pressures agree very well. Overall, the measured’
pressure force on the cowl outer surface was CD = -0.039 and the predicted
pressure force was CDP = -0.047. P

The predicted and measured cowl pressures are shown in Figure 64, at
M = 0.85 and a mass ratio of 0.81. The trends are very similar to those
a% M = 0.80 in that a separation bubble is still present but it is extended.
The pressure comparison is very good on the surfaces where attached flow
exists.

The NASA No. 8 inlet was analyzed at M = 0.9 and a mass flow ratio
of 0.885 with the viscous effects included. °Mhe flow reqained attached on
the outer cowl surface. On the internal surface, the flow became supersonic
locally and then shocked back to subsonic. Again, the comparison between
measured and predicted surface pressures is excellent (Figure 65). The over-
all integrated pressure force on the outer cowl was measured as -0.026 and
predicted as -0.031. The streamtube curvature analysis, with viscous effects
included, matches the test results more closely than the inviscid analysis
alone.

10.3 CONCLUSIONS

The Stratford and Beavers integral boundary layer analysis has been
integrated \with the Streamtube Curvature inviscid flow analysis. The analysis
has been linked so that the inviscid flow field provides the free-stream bound-
ary conditjons, including pressure gradients, for the boundary layer analysis.
The viscous analysis, in turn, modifies the nacelle geometry for boundary
layer displacement thickness effects. The comparisons with test data and
another finite difference analysis show that the method 1s an accurate and
reliable pred1ctor of turbulent boundary layers. :

The Stratford separation method, modified for compressibility, has
been developed to predict incipient separation in the adverse pressure gradi-
ent associated with the flow about a nacelle and that associated with embedded
shocks. 1Its validity has been demonstrated by theory to data comparisons for
two Reynolds numbers. This combined set of flow analysis methods provides a
very useful and reliable engineering analysis tool.
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10.4 NOMENCLATURE

Symbols

& *

ex

142

Description

Empirical constant

Skin friction coefficient

2

O:zl\)lzZ

Boundary layer thickness

Boundary léyer displacement thickness
Karman constant; K = 0.41

Mach number

Exponent in power law profile

Pressure; also a function of Mach
number (see Equation 146)

Stream function
Radius from centerline

Reynolds number based on reference
velocity and local x

Reynolds number based on local velocity
and local x

Density

Shear stress

Boundary layer momentum thickness
Velocity

Velocity at outer edge of boundary layer
Reference velocity

Coordinate along wall



Equivalent flat plate length

Coordinate normal to wall

SUBSCRIPTS
Conditions at outer edge

Denotes free-stream or reference
conditions

Stagnation condition
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