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FOREWORD

This document is one of six volumes which comprises the final

report of a contract study performed for NASA, "Study of Quiet Turbofan

STOL Aircraft for Short-Haul Transportation," by the Douglas Aircraft

Company, McDonnell Douglas Corporation.

The NASA technical monitor for the study was R. C. Savin, Advanced

Concepts and Missions Division, Ames Research Center, California.

The Douglas program manager for the study was L. S. Rochte. He

was assisted by study managers who prepared the analyses contained in the

technical volumes shown below.

Volume I Summary

Volume II Aircraft L. V. Mai than

Volume III Airports J. K. Moore

Volume IV Markets G. R. Morrissey

Volume V Economics M. M. Platte

Volume VI Systems Analysis J. Seif

The participation of the airline subcontractors, (Air California,

Allegheny, American and United), throughout the study was coordinated by

J. A. Stern.

The one year study, initiated in May 1972, was divided into

two phases. The final report covers both phases.
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SUMMARY

Aircraft parametric analyses were completed on five different lift

concepts for a short haul transportation system. Design parameters included:

three field lengths, three passenger capacities, various cruise speeds, a

range of 575 statute miles (926 km), and a noise goal of 95 PNdB at 500 feet

(152 m) sideline. More than 200 parametric aircraft were generated which were

then screened for their applicability to the short haul system. Most of the

aircraft were eliminated due to very low wing loadings, very high thrust-to-

weight ratios, or high operating costs. The remainder were subjected to a

systems analysis evaluation from which eight candidate STOL aircraft were

selected for more detailed analysis.

These eight candidate aircraft were resized based on improved

weight and drag information and revised performance groundrules, and then

subjected to detailed economic, market, systems analyses, and airport compati-

bility studies. The results of these studies are reported in the various

other volumes comprising the NASA Systems Study final report. These aircraft

are termed "system analysis aircraft".

Aircraft trade studies were performed on noise level, cruise per-

formance, landing ground rules, avionics, ride quality, alternate missions,

effects of composite materials and feasibility of military/commercial

commonality. After several iterations to refine performance and weights, a

number of final design aircraft emerged that had sideline noise levels

ranging from 95 to 98 EPNdB compared to the 95 EPNdB of the systems analysis

aircraft. Relaxing the design sideline noise goal significantly reduced

aircraft direct operating costs, particularly when engine treatment level



was reduced. Other trade studies showed:

o The landing ground rules and ground effects have a marked

impact on aircraft sizing especially for the shorter design

field lengths.

o A STOL short haul aircraft could be designed to fly extended

ranges with no significant penalty to its basic short range

economics.

o The use of composite materials can .significantly reduce

aircraft size and weight but further cost studies are

required to determine economic viability.

o A commercial STOL aircraft based upon a high degree of

commonality with a military STOL transport appears to be

economically feasible and could produce a viable short-

haul aircraft.

The engine data used in the study were furnished by General Electric

and Detroit Diesel Allison who are the two engine contractors in the NASA

QCSEE study program. Four airlines - Air California, Allegheny, American and

United - cooperated in the study and provided valuable assistance in assuring

airline realism.

The critical technology areas where research and development should

be emphasized include propulsive lift related acoustics, variable pitch fan

engine technology and the aerodynamics of the upper surface blowing concept.



INTRODUCTION

This report summarizes in part the work accomplished under NASA

Contract NAS 2-6994, "Study of Quiet Turbofan STOL Aircraft for Short Haul

Transportation", which began May 8, 1972 and is culminated by this report.

The objectives of the study were:

o Determine relationships between STOL characteristics and

economic and social viability of short-haul air transportation.

o Identify critical technology problems to introduce STOL short-

haul systems.

o Define representative aircraft configurations, characteristics

and costs.

o Identify high payoff technology areas to improve STOL systems.

This volume summarizes the analyses of the aircraft designs which

were generated to fulfill these objectives. The baseline aircraft character-

istics are documented and significant trade studies presented.

The STOL lift concepts studied are analyzed in the context of a

complete STOL transportation system. This system analysis work is presented

in four companion volumes and a summary volume;

Volume I Summary

Volume III Airport Analysis

Volume IV Market Analysis

Volume V Economics Analysis

Volume VI Systems Analysis



THe contracted effort was conducted in coordination with the Quiet

Clean STOL Experimental Engine (QCSEE) study program (Contract NAS 3-16726

and NAS 3-16727) managed by the NASA-Lewis Research Center. Douglas

evaluated the candidate engines studied by both QCSEE contractors (General

Electric and Detroit Diesel All ison) in the framework of the subject system

study. Technical liaison with the QCSEE contractors was maintained through-

out the study.

The contracted effort was equally divided between the aircraft

analyses and the systems analyses efforts. The study consisted of the

derivation of a large number of parametric aircraft representing several

candidate propulsive and conventional lift systems and a wide matrix of

design requirements. These aircraft were evaluated by the systems evaluation

and aircraft design processes and narrowed to eight selected STOL aircraft.

These eight aircraft and an additional advanced CTOL aircraft used for

comparative purposes were then submitted to detailed short haul systems

evaluation. Many aircraft trade studies were also conducted to refine

these baseline designs.



SYMBOLS & ABBREVIATIONS

A Lateral acceleration

A Normal acceleration

APU Auxiliary power unit

AR Aspect ratio

ASKM Available seat kilometer.

ASSM Available seat statute mile '

ATC Air Traffic Control

AW Augmentor wing

BPR Bypass ratio

BLC Boundary layer control

Crv Drag coefficient

CQ Zero lift parasitic drag coefficient - zero lift parasitic
0 drag/q Sw

CG Center of.gravity

C. Jet momentum coefficient - mv/qS
J

C, Lift coefficient - lift/qSw

CTOL Conventional takeoff and landing

Cy Gross thrust coefficient = gross thrust/qSw

CM Ram drag coefficient = ram drag/qSw

Cv Nozzle velocity coefficient

dB decibel

D Drag

DOC Direct operating cost

EBF Externally blown flap

EPNL Effective perceived noise level

EPNdB Effective perceived noise level in decibels

F Thrust force

FAR Federal Air Regulations



SYMBOLS & ABBREVIATIONS (Cont'd)

FL Field length

FPR Fan pressure ratio

fps Feet per second

H Height of duct flow channel

hCRUISE Cruise altitude

HP Horsepower

H (s) Turbulence model along W axis

Hg(s) Turbulence model along Y axis

IAS Indicated air speed

in Inch

IBF Internally blown flap

L Length of duct flow channel

Ib Pound

K.z Normal acceleration gain

KG Pitch rate gain

KIAS Indicated airspeed in knots

kg Kilogram

LFL Landing field length

m Meter

m Mass flow measured

M Mach number

MAC Mean aerodynamic chord

MDOF Multiple degree of freedom

MF Mechanical flap

mps Meters per second

n Load factor

N Newton



SYMBOLS & ABBREVIATIONS (Cont'd)

OEW Operators empty weight

P Pressure

PL Payload, pounds

PNdB Perceived noise level in decibels

PNL Perceived noise level

Psgr Passengers

q Free stream dynamic pressure

S Area; La Place operator

Sw Wing area

SDOF Single degree of freedom

st mi Statute miles

STOL Short takeoff and landing

t Time

T Temperature

t/c Thickness ratio

T-i ,TQ Time to damp to one-tenth amplitude

T-, ,p Time to damp to one-half amplitude

TEU Trailing edge up

TOFL Takeoff field length

TOGW Takeoff gross weight

T/W Thrust-to-weight ratio

USB Upper surface blown flap

v Velocity

V Velocity

V-j Decision speed

V..TM Minimum operating speed

Vp Minimum control speed



SYMBOLS & ABBREVIATIONS (Cont'd)

W Weight

W~ Gust velocity along W axis

w Mass flow

W/S Wing loading

Z.F.W. Zero fuel weight

An Incremental load factor

a Angle of attack

$ ' Side slip angle

B~ Gust velocity along Y axis

Y Flight path angle; static thrust turning efficiency

6 Pressure relative to sea level standard

6^ Aileron displacement

6 Elevator displacement

<5p Flap angle

<5p Rudder displacement

<5~p Spoiler deflection

6, Control wheel deflectionw

t, Dampening ratio .

0 Aircraft pitch attitude; total flap deflection,
relative absolute temperature

0 Aircraft pitch rate

A Sweep angle

x Taper ratio

y Coefficient of friction

v Static thrust turning angle

T Ratio of gross thrust to takeoff gross thrust, static turning
efficiency



SYMBOLS & ABBREVIATIONS (Con t ' d )

4) Aircraft roll att i tude

<j> Rol l acceleration

$- Gross thrust augmentation ratio

$- Ideal gross thrust augmentation, ratio = $« x C

$ Augmentor entrainment ratio

y Aircraft yaw rate

<r Yawing acceleration

ID Undamped natural frequency

Subscripts

A Air , airplane trimmed

CR Cruise

I.E. Tra i l ing edge

T.O. Takeoff

a Ai r

am Ambient

avg Average

ea Elas t ic axis

f Fuel

g Gross

i Isentropically expanded

max Maximum

n Net

o Free stream, standard sea level

r Ram



SYMBOLS •& ABBREVIATIONS (concluded)

t Total

ult Ultimate

w Wing

0,2,3,8,28 Engine station position

STOL Aircraft Model Designation

A
E
M
U

AW
EBF
MF
USB

E - 150 - 3000

\
Passenger

Payload
Field Length

(feet)

10



1.0 AIRCRAFT ANALYSIS STUDY PLAN

The aircraft analysis consisted of the generation and analysis of

a broad spectrum of aircraft based on a number of high lift systems and a

broad range of design requirements. This analysis began with the generation

of a large number of parametric aircraft and progressed with the narrowing

down of these aircraft to a limited set of designs which were subjected to

detailed trade studies and analyses. The selection process was conducted with

the aid of the systems analyses evaluations described in the companion volumes.

At each step in the study, great care was taken to assure that realism in

the designs was reflected.

This process is shown in Figure 1-1 and is described by the

following steps:

o A number of basepoint aircraft were developed and analyzed

at the beginning of the study to assure an in-depth understanding

of the aircraft characteristics such as weight, drag, high lift,

propulsion, and acoustics (Block 1). These aircraft were

designed for 100 passengers and a 2000 foot (610 m) field length

and represented one aircraft each for the EBF, USB, AW and CTOL

aircraft. To insure the use of realistic designs in the study

extensive coordination with the airline subcontractors (United,

American, Allegheny and Air California) was maintained and

the results reflected in the baseline designs (Block 2). Also

the QCSEE parametric study engines resulting from the General

Electric.and Allison contracts with NASA-Lewis were evaluated and

the best engines used for the study aircraft (Block 3).

11
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o Based on the above basepoint analyses over 200 parametric

aircraft designs were generated encompassing the various lift

systems and the specified range of design requirements with the

use of special STOL oriented computer programs (Block 4).

o With the use of screening criteria such as operating costs,

gross weight, wing loading, thrust loading and system analysis

criteria, the parametric aircraft were successively narrowed
i

to 8 specific STOL aircraft designs (Block 5).

o These selected aircraft were then refined and subjected to

detailed systems analyses (Block 6 as reported in the companion

volumes).

o A number of significant trade studies were conducted using

one or more of the 8 selected detailed study aircraft

(Block 7).

o The results of these trade studies were then incorporated into

a refined set of 8 final ;design aircraft for which detailed

substantiation data is presented in the appendices of this

report (Block 8). An additional advanced CTOL aircraft was

synthesized for comparison purposes and use in the system

analysis process.

o Based on the results of the study work, an assessment of the

technological gaps which must be filled before a STOL short-haul

system can be implemented was determined (Block 9).

13



2.0 AIRCRAFT DESIGNS

2.1 Parametric Aircraft

In accordance with the study plan discussed in Section 1.0, pre-

liminary basepoint aircraft were sized to assure a realistic basis for the

aerodynamic, propulsion, acoustic and weight data used in the parametric

study. The major characteristics of these aircraft are summarized in

Appendix A. These aircraft used QCSEE study engines as supplied by General

Electric and Detroit Diesel Allison. The best engine was selected for each

lift concept by the evaluation process discussed in Section 4.0. These

preliminary designs were reviewed with the airline participants and

appropriate changes incorporated.

Parametric aircraft were then generated for the STOL high lift

candidates, and included:

Externally Blown Flap (EBF)

Upper Surface Blowing (USB)

Augmentor Wing (AW)

Internally Blown Flap (IBF)

Mechanical Flap (MF)

The design requirements to which these aircraft systems were designed were:

Payload - 50, 100 and 200 passengers

Field Length - 1500 (457), 2000 (610) and 3000 feet (915 meters)

Noise Criteria - 95 PNdB at 500 feet (152 m) sideline distance

Design Range - 575 statute miles (926 km)

The aerodynamic, acoustic, propulsion and weight methodology is

consistent with that used for the final design aircraft (Appendices B, C,

15



D and E respectively).

The parametric aircraft sizing process involves calculating takeoff

and landing performance to determine combinations of T/W and W/S that meet the

design requirements. A minimum direct operating cost criteria was used to

select the optimum W/S - T/W combination for each set of requirements and

lift system. Over 200 parametric aircraft were evaluated. Some of the more

pertinent ground rules used to size these aircraft are described below.

2.1.1 Performance Ground Rules. - Takeoff field length is defined as the

greater of:

(1) 1.15 x all engine takeoff distance to 35 foot (10.7 m)

height.

(2) Distance to 35 foot (10.7 m) height with critical engine

failure at V-j .

(3) Distance to accelerate to V-| and then decelerate to a stop.

The following constraints were used in calculating takeoff field

length:

(1) Rolling friction, M = 0.025

(2) Fuselage angle of attack - ground limit = 15°

(3) Rotation rate, e - 5°/sec

(5) No deceleration during air run to 35 feet Q O - 7 m)

(6) Five knot .(2.75 m/sec) early rotation may not give greater

takeoff field length

\7) Accelerate - .Stop distance based on three second delay after

reaching V-j followed by a deceleration of 0.4g to a stop.

16 .



Takeoff flap angle settings were optimized in determining the T/W

required for each configuration. Takeoff performance was calculated at sea

level on a 95°F (35°C) day.

Landing field length is defined as landing distance over a 35 foot

(10.7 m) obstacle divided by a 0.6 factor. The landing calculations were

governed by the following constraints:

(1) Approach sink speed = 800 fpm (4.06 m/sec)

(2) Touchdown sink speed = 3 fps (.915 m/sec)

(3) Rotation rate during flare, 0 - 5°/sec

(4) Fuselage angle of attack - ground limit = 15°

(5) Deceleration device effectiveness delay = 1 second

(6) Deceleration rate = 0.35g

The load factor required to perform the flare maneuver was obtained

from the use of direct lift control and rotation of the aircraft. Approach

margins were selected to provide adequate maneuver capabilities in the event

of an engine failure. Landing performance, like takeoff performance, was

calculated for sea level, 95°F (35°C) conditions.

The mission profile used in sizing the parametric aircraft is shown

in Figure 2-1. A computer program was used to iterate the weight, thrust and

drag data to determine the characteristics, such as TOGW, OEW, wing area,

engine size and fuel burned for an aircraft that satisfies the requirements

of the mission profile. Mission performance was calculated for standard day

conditions. Parametric tail sizing, based on previous STOL aircraft analyses

at Douglas, is handled internally in the mission program. When a solution

has been found, the program also calculates a direct operating cost breakdown.

17
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2.1.2 Direct Operating Cost Ground Rules. - Direct operating costs (DOC)

were used throughout the aircraft analysis as one of the prime criteria for

aircraft optimization and selection. Two sets of DOC ground rules are used

in these volumes; those for the aircraft analyses and those for the system

analyses. The aircraft analyses ground rules were used throughout the air-

craft studies reported in this volume. The aircraft analyses ground rules

assume a production run of 300 aircraft and a 20 percent profit margin compared

to 400 aircraft and a 10 percent margin used for the systems analysis work.

The DOCs quoted in the companion volumes will therefore be somewhat lower

than those quoted in this volume. Valid aircraft comparisons, however,

are rendered by the use of the DOC criteria in this volume. Absolute values

of DOC should be obtained from Volume V - Economic Analysis where a complete

dissertation on the ingredients of the DOC equations will be found.

2.1.3 Sizing Results. -

EXTERNALLY BLOWN FLAP

Two typical aircraft sizing plots for the externally blown flap

configuration using All ison and General Electric engines are shown in Figures

2-^2 and 2-3, respectively. In order to keep STOL aircraft competitive in

terms of speed with conventional turbine powered transport aircraft, a

minimum acceptable cruise Mach number of 0.70 at 20,000 feet (6096 meters)

was arbitrarily chosen as a design requirement for the parametric aircraft.

This speed requirement was the critical sizing constraint primarily for the

parametric externally blown flap aircraft with Allison engines. Wing loading

and thrust-to-weight ratio were increased beyond those required for a balanced

takeoff-landing condition in order to provide for sufficient cruise thrust.

Cruise Mach number is low due to the very high thrust lapse rate of the high

19



FIGURE 2-2 EXTERNALLY BLOWN FLAP PARAMETRIC AIRCRAFT
SIZING-ALLISON ENGINES
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FIGURE 2-3.;JXTERNJALLY BLOWN FLAP PARAMETRIC AIRCRAFT

SIZING-GENERAL ELECTRIC ENGINES

21



bypass, low pressure ratio variable pitch fan engine and the acoustic treat-

ment required to achieve the 95 PNdB 500 foot (152 m) sideline noise level.

The General Electric variable pitch fan engines with the same pressure ratio

have a lower bypass ratio (11.5 vs 17.4) and a lower lapse rate. The General

Electric engined aircraft are therefore sized for a balanced takeoff-landing,

minimum direct operating cost condition, and have Mach numbers greater than

0.70. The higher gross weights of the aircraft with General Electric

engines compared to those with Allison engines is due to considerably

higher installed engine weight and SFC.

AUGMENTOR WING

The higher pressure ratio augmentor wing engines give this configu-

ration much greater cruise speed capability than the externally blown flap.

The aircraft were sized for minimum DOC which in these cases occurs at a

balanced takeoff and landing condition as shown in the sample sizing plot

(Figure 2-4). -

UPPER SURFACE BLOWN FLAP

This configuration behaves much like the externally blown flap in

that the aircraft were sized by the 0.70 Mach number limit and are landing

critical. A typical sizing plot is shown in Figure 2-5.

MECHANICAL FLAP

A 1500 foot (457 meter) field length appears impractical for this

type of configuration due to the very low wing loadings required. Aircraft

were therefore sized at 2000 (610, 3000 (914) and 4000 feet (1219 meters).

Aircraft were sized by minimum DOC which occurs at the balanced landing-

takeoff condition as shown in Figure 2-4. The 2000 foot (610 meter) field

22



FIGURE 2-4. AUGMENTOR WING PARAMETRIC AIRCRAFT SIZING
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FIGURE 2-5. UPPER SURFACBBLOWN FLAP PARAMETRIC AIRCRAFT SIZING

24



FIGURE 2-6. MECHANICAL FLAP PARAMETRIC AIRCRAFT SIZING

25



length aircraft are also limited by Mach' number and the 200 passenger, 2000

foot (610 meter) field length aircraft required an increase in T/W to achieve

M = 0.70 in cruise.

INTERNALLY BLOWN FLAP

This configuration is very similar to the augmentor vying and only

one aircraft was sized. The minimum DOC occurs for a takeoff critical

condition as shown in Figure 2-7.

CTOL . .

Two CTOL aircraft were sized for comparison purposes. These air-

craft, of 100 and 200 passenger capacity, are twin engine configurations

designed to meet the FAR Part 36 minus 14 EPNdB sideline noise levels. This

approximately corresponds to a 500 foot sideline noise level of 98 EPNdB.

They are both sized at a wing loading of 120 psf (580 kg/m2) for a 1380

statute mile (1932 km) mission with a cruise speed of M = 0.78 at 30,000 feet

(9150 m).

2.1.4 Parametric Results. - A summary of the basic characteristics of 53

selected parametric aircraft having minimum DOCs while meeting specified

design constraints by the proper choice of W/S and T/W is shown in Tables 2-1

through 2-8. In general, Allison engines were used because more complete

parametric engine data was available from Allison than General Electric.

Both Allison and General Electric based aircraft were generated for the

externally blown flap and augmentor wing concepts.

In some cases resulting aircraft configurations were not considered

practical and were not retained. For instance, the General Electric EBF

26



FIGURE 2-7. INTERNALLY BLOWN FLAP PARAMETRIC AIRCRAFT SIZING
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Table 2-6
AIRCRAFT PARAMETRIC ANALYSIS

INTERNALLY BLOWN JET FLAP
Allison PD287-43 Engines

Field Length
Payload

TOGW
Sw
Fn
W/S
T/W
Mcr
DOC @ 575 st mi

(926 km)

Ft (M)
Passengers

Lb (Kg)
Ft? (M2)
Lb/Eng (Newtons/Enq)
PSF (Kg/M2)

<£/ASSM U/ASKM)

2,000

165,500
2,470

16,760
67

3.48

(610)
100

(75,050)
(229.5)

(74,550)
(327.0)

405
.76

(2.16)
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Table 2-8

AIRCRAFT PARAMETRIC ANALYSIS

CTOL
TWIN ENGINE

1380 STATUTE MILE RANGE

Field Length

Payload

ft (m)

passengers

7,500 (2,286)

100

8,500 (2,591)

200

TOGW

SW

FN

W/S

T/W

MCR

DOC @ 1380 S MI
(1932 km)

lb (kg)

ft2 On2)

Ib/eng (kg/eng)

lb/ft2 (kg/m2)

<£/ASSM U/ASKM)

129,500 (58,740)

1,080 (100)

26,500 (12,020)

120 (586)

0.409

0.78

2.08 (1.29)

220,800 (100,150)

1,840 (171)

40,400 (13,330)

120 (586)

0.366

0.78

1.43 (0.89)
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aircraft for the 1500 foot (457 m) field length - 200 passenger case (Table

2-2) was over 400,000 pounds (181,440 kg) takeoff gross weight and is there-

fore not shown. The mechanical flap aircraft for the 1500 foot (457 m) field

length cases required thrust-to-weight ratios in the neighborhood of unity

and are therefore not shown (Table 2-7). Only a single internally blown flap

aircraft is shown (Table 2-6) because the IBF system is so similar to that

of the augmentor wing.

Variations in thrust-to-weight ratio (T/W) and wing loading (W/S)

data from the previous tables for the 100 passenger aircraft are shown in

Figure 2-8- The externally blown flap and upper surface blown flap configu-

rations show the expected trend, i.e., as field length increases, W/S tends

to increase and T/W. to decrease. The externally blown flap aircraft have

greater T/W ratios than those of the upper surface blown flap aircraft.

Since these aircraft, with similar high lift characteristics, were sized in

the parametric studies by a cruise requirement of 0.70 Mach number at 20,000

feet (6096 meters), the higher lapse rate of the EBF engines results in a

higher required W/S and T/W.

There was almost no variation in T/W with field length for the

mechanical flap and shorter field length augmentor wing aircraft, the

performance being attained by W/S changes alone. These parametric aircraft

were sized at the intersection of the takeoff and landing critical lines, as

illustrated in Figures 2-4 and 2-6 , and the constant T/W is due to the

low landing restricted wing loadings and the relatively low engine thrust

lapse rate. The wing loadings of the mechanical flap aircraft are lower

than those of the powered lift systems of the same field length due to the
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relatively poorer high lift performance in landing associated with the

mechanical flap.

The 3000 foot (914 m) field length augmentor wing is not shown on

the same level as the 1500 (457) and 2000 (610 m) aircraft because the minimum

DOC occurred at a W/S lower than that of the takeoff-landing line intersection.

The augmentor wing aircraft have relatively low T/W and high W/S because of

the very low lapse rate of the high pressure ratio engines and the thrust

augmentation obtained from the augmentor.

These W/S - T/W relationships do not change significantly for other

passenger capacities. The only variations are due to small changes in the

drag levels for different sizes of aircraft.

Direct operating cost and takeoff gross weight as a function of

field length and passenger payload are shown in Figures 2-9 and 2-10,

respectively. Each of the powered high lift systems exhibit similar character-

istics with respect to DOC. The cost values are sufficiently close that the

best configuration for a given field length and payload is not evident. The

slope of the DOC - field length curves for the mechanical flap are steeper

than those for the powered lift systems. Based on the parametric ground

rules, the mechanical flap has higher DOC for field lengths below 2500 feet

(821 m), but a lower DOC for field lengths above 3000 feet (610 m) compared

to the powered systems. This conclusion was modified somewhat by more detailed

analysis of the final design aircraft.
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FIGURE -2r9. PARAMETRIC DIRECT OPERATING COST VARIATION
WITH HELD LENGTH
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2.2 Final Design Aircraft

As a result of aircraft and system analysis work accomplished for

the parametric study, Douglas and NASA jointly eliminated from consideration

aircraft candidates based on criteria of DOC, gross we igh t , wing l oad ing ,

thrust loading and configurat ion considerations. Table 2-9 shows the results

of this selection process with a total of eight short haul aircraft resulted

from this selection process for detai led analysis .

The EBF system was used to provide a comparison between the design

requirements of f ie ld length and of passenger payload because of the

extensive data base exis t ing for this system. The 150 passenger 3000 foot

(914 m) f ield length EBF aircraft was used as a basis for the trade studies

presented in Section 3.0. A comparison of propuls ive l i f t systems is made

at the 150 passenger, 2000 foot (610 m) f i e ld length as shown in Table 2-9.

In addi t ion a CTOL aircraft was synthesized for comparison purposes. This

aircraft was designed for a 150 passenger payload, a range of 1380 statute

miles (2220 km) and a f i e l d length of 7500 feet (2260 m).

As a resul t of the acoustic trade study discussed in Section 3.1,

the 95 PNdB 500 foot (152 m) s ide l ine noise requirement used for the para-

metric aircraft was relaxed somewhat so that the f i n a l design aircraft have

500 foot (152 m) s ide l ine EPNdB values ranging between 95 and 98.

The engine selection rat ionale and a description of the selected

engine characteristics are presented in Chapter 4. Engineer ing data and

methods substant iat ion for these f i n a l design aircraft are contained in the

appendix mater ia l .
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Table 2-9

FINAL DESIGN AIRCRAFT MATRIX

— 4000
~ (1219)
+->
<4-

_C

01

-j 3000
v (914)
O)

ul
c
CD

10

° 2000
(610)

EBF

MF

EBF
MF

EBF
AW
USB

EBF
'

100 150 200

Number of Passengers
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2.2.1 Final Design Aircraft Performance Ground Rules. - The performance ground

rules used for the final design aircraft are the same as those discussed in

paragraph 2.1.1 except for the following:

o Ground effects were included in the takeoff and landing

calculations in accordance with the following restrictions:

C. - 100% of CL in ground effect
l_ iliCL /\

CL - 90% of Ci_max out of ground effect

o The sink speed in approach was increased from 800 to 900 fpm

(4.06 to 4.57 m/sec). Justification for this change is

given later in Section 3.4.

o The sink speed at touchdown was increased from 3 to 10 fps

(0.91 to 3.05 m/sec) to represent landing field length

certification conditions. Justification for this change is

also given in Section 3.4.

The mission profile used to size the final design aircraft is

shown in Figure 2-11. This profile differs from that used for the parametric

aircraft (Figure 2-1) as follows:

o Hold segments at 5000 feet (1524 m) were eliminated. Takeoff

and landing allowances were correspondingly increased.

o Climb and descent speed above 10,000 feet (3048 m) was increased

from 250 to 300 KIAS (129 to 154 m/sec). Climb Mach number
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was restricted to less than or equal to initial maximum

cruise Mach.

o Cruise altitude was optimized for minimum DOC at design range

instead of being fixed at 20,000 feet (6096 m).

A more detailed discussion of the performance methods and ground

rules used in sizing the final design aircraft is presented in Appendix B.

2.2.2 Aircraft Sizing. - The principle criterion used in aircraft sizing

was direct operating cost at the design range. Design wing loading, climb

speed and cruise altitude were selected on this basis. The cruise segment

of the mission was flown at maximum cruise Mach numbers with Mach number

increasing slightly as fuel is burned off. The quoted values for cruise

Mach number are those at the initial cruise weight.

Externally Blown Flap

The. four final design externally blown flap (EBF) aircraft are all

four engine, high wing configurations with a 25 degree swept wing. An aspect

ratio of 8 was chosen based on the results of an aspect ratio trade study

discussed in Section 3.2.

Minimum direct operating cost (DOC) for the 150 passenger 3000 foot

(914 m) field length aircraft occurs at the intersection of the takeoff and

landing critical lines at a wing loading of 102 lb/ft2 (498 kg/m2) as shown

in Figure 2-12. At this wing loading, selected as the design point, takeoff

and landing field length are both 3000 feet '(914 m). The DOC vs wing loading

curve is very flat, an increase of 5 percent in design wing loading increasing

the direct operating cost by less than 1/3 of one percent. The low cruise
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Mach number of 0.69 at 25,000 feet (7925 m) at the selected design point, is

due to the severe thrust lapse of the high bypass ratio prop-fan engine.

The sizing chart for the EBF 200 passenger, 3000 foot (915 meter)

field length airplane (Figure 2-13), is very similar to that for the 150

passenger aircraft. The relative displacements of the thrust-to-weight

ratio vs wing loading curves for the two aircraft are due to the influence

of ground effects on aircraft size. Ground effects are more severe for

the larger aircraft causing the thrust-to-weight line for takeoff to move

downward due to the reduction in drag during the ground roll and the landing

line to move upward due to the decrease in lift during the flare maneuver.

Minimum direct operating cost again occurs at the takeoff-landing inter-

section, at a wing loading of 100 lb/ft2 (488 kg/m2).

Minimum direct operating cost for the EBF 100 passenger 3000 foot

(914 m) field length aircraft does not occur at the takeoff-landinq line

intersection but at a higher wing loading on the landing critical

line as shown in Figure 2-14. This is because the increase in cruise Mach

number more than offsets the increase in takeoff gross weight in determining

direct operating cost. The intersection, at a wing loading of 105 Ib/ft^

(513 kg/m2) was chosen as the design point, however, on the basis of aircraft

geometry considerations. At wing loadings higher than 105 Ib/ft2 (513 kg/m2)

the engine-to-engine and engine-fuselage spacing becomes sufficiently small

to cause large increases in interference drag.

The sizing chart for the EBF 150 passenger 2000 foot (610 m) field

length aircraft is shown in Figure 2-15. The selected design point, chosen

for minimum direct operating cost, occurs on the landing line at a wing
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IgjMaftfrf^^
^fflJ^.ft«rfiSp3^^3&-M

i
_: __*_ •; i i ; I ' t-i-L

H-ttnrrr
H-TT~LLrTVi

mmTUiltri-t
HT."HiI
-x-4. i-jT^.^ ̂ .4!

h^44_H-i-ft
liSliii1

m
TitUHi1

Tli:
tttittrrt
-jj^a.jTfii

44t:!4i7Ul!-it|iiTrt:inntt^t^f;^i:i^^:ji.l;rJMrfi
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FIGURE 2-14. EXTERNALLY BLOWN FLAP STQL AIRCRAFT SIZING
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loading of 70 lb/ft2 (342 kg/m2). The DOC tradeoff between increased weight

and thrust on one hand and cruise speed on the other at these low wing

loadings favors an increase in wing loading above the takeoff-landing inter-

section. Direct operating cost is much more sensitive to wing loading for

the 2000 foot (610 m) field length aircraft than it was for the 3000 foot

(915 m) cases. The steep slope of the DOC vs wing loading for the takeoff

line indicates that a change in landing ground rules could significantly

alter the aircraft direct operating costs. Even though wing loadings are

low compared to the 3000 foot (914 m) field length aircraft, cruise Mach

number for the 2000 foot (610 m) design point is noticeably higher due to

the rapid increase in thrust-to-weight required by selection of the sizing

point on the landing critical line.

Mechanical Flap

The final design mechanical'flap STOL aircraft are high wing,

twin-engine configurations with no flap cutouts. An aspect ratio of 9 was

selected to meet the one engine failed second segment climb gradient require-

ment.

Both aircraft were designed to carry 150 passengers, one from a

3000 foot (915 m) field length and one from a 4000 foot (1220 m) field

length. The sizing-plots are shown in Figures 2^16 and 2-17.. Since these

aircraft have essentially no powered lift, the landing lines are almost

vertical, i.e., an increase in thrust-to-weight ratio will not noticeably

improve landing performance. The takeoff-landing line intersections were

chosen as the selected design points for minimum direct operating cost.

Cruise Mach numbers are similar to those for the externally blown flap STOL
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FIGURE 2-16*MECHANICAi. FLAP AIRCRAFT SIZING
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FIGURE 2-17. MECHANICAL FLAP STOL AIRCRAFT SIZING
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aircraft due to the low thrust-to-weight ratios which in turn are due to

the low wing loadings.

Any improvement in maximum lift capability or a relaxation of the

landing ground rules would increase the design wing loading and reduce

weight and direct operating costs, particularly for the 3000 foot (914 m)

field length aircraft. Further work on this configuration should be channeled

in the direction of improving high lift performance.

Augmentor Wing

An aspect ratio of 6.5 was selected for the AW 150 passenger

2000 foot (610 m) field length aircraft on the basis of high lift data avail-

ability (Ref. 1). The selected design point, chosen to minimize DOC, occurs at

the intersection of the takeoff and landing critical lines at a wing .loading

of 77.5 lb/ft2 (378 kg/m ). The landing line is quite steep, imposing fairly

severe economic penalties if a higher wing loading were selected. The very

low lapse rate of the Allison PD287-43 engine provides a maximum cruise Mach

number of 0.78, about 12 percent higher than that of the externally blown flap or

mechanical flap STOL aircraft. On the other hand, the takeoff gross weight

for the augmentor wing is high due to the poor engine SFC and high propulsion

system weight.

Upper Surface Blown Flap

The USB, 150 passenger, 2000 foot (610 m) field length aircraft

sizing chart, Figure 2-1.9, looks very similar to that for the corresponding

EBF aircraft. The design point, selected for minimum DOC at a wing loading

of 67 psf (327 kg/m2), occurs on the landing critical line as it did for the

externally blown flap aircraft. Also like the EBF, this aircraft would show
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FIGURE 2T19. UPPER SURFACE BLOWN FLAP STOL AIRCRAFT SIZING
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a noticeable improvement in DOC if the landing high lift performance could

be improved or the landing ground rules relaxed.

Cruise Mach number is slightly higher than that for the EBF air-

craft, 0.76 vs 0.74. The weight of the USB aircraft, however, is considerably

more than that of the EBF aircraft and consequently direct operating costs are

noticeably higher.

CTOL Ai rcraft

An advanced.CTOL aircraft was sized for comparison purposes only

and for this reason detailed sizing optimization studies were not performed.

The aircraft was sized to carry 150 passengers for ranges up to 1380 statute

miles (2224 km) and meet FAR Part 36 minus 14 PNdB sideline noise levels. A

wing loading of 110 psf (537 kg/m2) and an aspect ratio of 9 were chosen to

provide a 7500 foot (2286 m) field length capability and a cruise Mach number

of 0.80 at 30,000 feet (9144 m).

2.2.3 Configuration Descriptions. - The brief configuration descriptions

given in this section are based upon extensive configuration studies

conducted during the contract. Engineering three-view drawings of each of

the eight STOL final design aircraft and the advanced CTOL aircraft are

shown in Figures 2-20 through 2-28.

High Lift Systems

Externally Blown Flap - The EBF airplane has flaps extending from

the fuselage side to 75 percent of the wing semi-span and occupy 35 percent

of the wing chord when retracted. Each flap has two segments hinged

independently to give a large chord-wise expansion and 3 percent chord gaps
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between segments. Spoilers are used for direct lift control in the approach

mode and are normally drooped for takeoff. Leading edge flaps are used behind

the engines and leading edge slats outboard. The engines are located well

inboard to reduce engine-out asymmetric effects. The location of the out-

board engine at 50 percent of the wing semi-span allows sufficient spacing

to avoid significant interference drag penalties. The engine fan exits are

located at approximately 10 percent of the wing chord forward of the wing

leading edge and are positioned as high as possible for high turning efficiency

without the fan exhaust impinging on the deflected leading edge flaps or

introducing significant scrubbing losses in cruise flight.

Upper Surface Blowing - The flaps located behind the engines are

similar to the EBF flaps except that the components are arranged to provide

a continuous, smooth, relatively large radius coanda surface without slots.

Outboard of the engines, the flap is similar to the EBF flap except that

the flap gaps are only 2 percent of the wing chord because this part of the

wing is unblown. The engine exhaust is ejected parallel to and close to the

wing upper surface, separated from it by a vented insulating layer which

tapers to zero thickness at the spoiler hinge line.

Augmentor Wing - For the augmentor wing configuration, all of the

fan airflow is diverted to independent plenums in the wing which feed discreet

high aspect ratio flap nozzles and secondary aileron BLC plenums. The aug-

mentor flap technology presented in Reference 1 was used in selecting the

ejector and nozzle geometries. The engines are mounted on pylons to permit

the use of an uninterrupted leading edge slat and to minimize cruise

interference drag.
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Mechanical Flap - The mechanical flap high lift system uses a

large chord ratio two segment flap similar to that of the EBF except that the

gaps are smaller. The engines are mounted low enough to avoid exhaust

impingement on the flaps at takeoff setting. The leading edge has full span

slats similar to those used on the DC-10 airplane.

CTOL - Hinged expanding double slotted flaps, similar to DC-10

flaps, are used and occupy 28 percent of the wing chord when retracted. An

inboard aileron behind the engine serves as a gate to avoid exhaust impinge-

ment on the flap. Leading edge slats are interrupted only by the engine

pylon and are otherwise continuous. A reduction in C[_ requirements with
I HCt /\

the longer field length results in less adverse ground effects and permits

the use of a conventional low wing configuration.

Engine Arrangements

Four engines are used with all propulsive lift systems and are

positioned to avoid significant interference drag. On the EBF airplane, the

outboard engine is limited to 50 percent of the semi span for safe control

with one engine out and on the augmentor wing is limited to 45 percent of

the semi span due to duct size limitations.

Only two engines are required for the mechanical flap and CTOL

configurations. The use of two engines in lieu of three or four has

significant economic and operational advantages including lower maintenance

costs and higher aircraft dispatch reliability.

Wing Configurations

Advanced technology supercritical wing sections having an average

thickness of 13.9 percent are used on all configurations. All front spars
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are located at 13 percent of the theoretical root chord increasing linearly

to 28 percent at the tip to allow the use of a 25 percent tip chord leading

edge slat.

The rear spar location is influenced by the flap system used. It

is at 57 percent chord on the EBF, USB, and 4000 foot (1219 m) field length

MF airplanes. The rear spar is at 52 percent chord on the 3000 foot (914 m)

field length MF airplanes to allow use of an unextended flap chord of 42

percent. The rear spar is located further forward on the augmentor wing

airplane to provide sufficient space for housing the ducting between the

wing structural box and the augmentor flap. It is located at 50 percent

chord at the wing root decreasing linearly to 45 percent at the outboard

engine location then increasing linearly to 60 percent chord at the tip.

The CTOL airplane uses a rear spar location of 65 percent chord.

An aspect ratio of 8.0 was chosen for all four-engined configu-

rations except the augmentor wing. The augmentor wing aircraft was limited

to an aspect ratio of 6.5 so that the wing cross section would be of suf-

ficient size to accommodate ducting large enough to avoid excessive ducting

losses. An aspect ratio of 9.0 was chosen for the two-engined airplanes to

reduce the influence of induced drag on second segment climb performance.

Tail Arrangement and Sizing

Because of the severe downwash conditions associated with propulsive

lift systems, a "T" tail is necessary to achieve satisfactory longitudinal

stability. Empennage surfaces were primarily sized by control requirements

for pitch and yaw acceleration. A double hinged rudder and a leading edge

flap on the horizontal stabilizer are used to help reduce tail areas. A

69



fuselage mounted horizontal tail, similar to that on the DC-10 is used on

the CTOL airplane.

Fuselage Arrangement

The fuselage arrangements described below are the result of extensive

review and coordination^ between Douglas Aircraft and its airline subcontractors,

American Airlines, United Air Lines, Allegheny Airlines and Air California.

These interior designs meet the projected requirements for commercial STOL

transport aircraft by their expected users as summarized in Section 5.

Interior arrangements are shown for the 100, 150 and 200 passenger

fuselages in Figures 2-25, 2-26 and 2-27, respectively. Fuselage dimensions

were selected by the need for sufficient fuselage length for passenger and crew

access and baggage loading relative to the proximity of the large engines.

Longer fuselages also help to reduce the size of the very large tail surfaces

needed for the shorter field lengths.

For passenger comfort, DC-9 seats are used at 34 inch pitch. These

seats are one inch wider per passenger than DC-8 or B707/727/737 seats. An

aisle width of 20 inches was chosen, consistent with current wide body airplanes,

Buffet, lavatory, coat space, entry doors and attendants seats are located

at both ends of the airplane in accordance with airline suggestions. Large

windows are used in every bay as on the DC-10.

The under floor compartments are sized to accommodate standard

belly containers where practical. Bulk cargo only is assumed for the basic

airplane weight empty calculations.
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The cockpits are arranged for operation with two crew members.

Jump seats are provided for an optional third crewman and for an observer.

The third crewman's seat is positioned midway between the pilots seats

behind the center pedestal so that he can reach all center pedestal controls

including throttles and could monitor systems on the overhead panel. In

addition, he could assist in check list procedures and "provide a third pair

of eyes for avoidance of mid-air collisions. The observer's seat position is

suitable, for observing all crew procedures as would be required by a check

pilot.

Gear Arrangement •

The nose and main gear tires are sized for the use of pressures low

enough to achieve acceptable tire wear. Wheel spacing should permit landing

on any airfield usable by a DC-9, such as one having runways with ten inches

(.254 m) of concrete or 25 inches (.635 m) of flexible paving with a C.B.R.

rating of 9.0.

Gear stroke is larger than normal to absorb frequent high energy

STOL landings , to extend aircraft life and to minimize passenger discomfort.

74-



2.2.4 Final Design Aircraft Weight and Performance. -

Performance summaries for the eight final design aircraft and the

CTOL are presented in Table 2-10. Table 2-11 is a summary of the major

weight items which make up these STOL aircraft. More detailed information

on the weight breakdown is available in Appendix E.

An example of off design performance is shown in Figures 2-32 through

2-35. This particular set of data is for the 150 passenger, 3000 foot (914 m)

field length externally blown flap final design aircraft. This type of

information was calculated for all of the systems analysis aircraft discussed

in the next chapter and used extensively in the airline planning, scheduling,

economic and operations analysis work described in the companion volumes of

this report.

Figures 2-36 and 2-37 compare the final aircraft in terms of takeoff

gross weight and operating cost. At a field length of 2000 feet (610 m), the

EBF configuration is lighter than either the USB or AW. The higher TOGW for

the AW aircraft is due to the weight of the complicated propulsion-lift system

and high fuel fraction. The high USB weight results from the heavy propulsion

system installation. The DOC trends for these aircraft follow the same pattern

as the TOGW, but the variation in operating cost between the different con-

figurations is less due to the high cruise speeds of the heavier aircraft.

The EBF is lighter than the MF aircraft at a field length of 3000

feet (914 m), but the reduced initial and maintenance costs associated with

the twin engine MF configuration cause the DOC spread between them to narrow.

The MF is competitive with the propulsive lift systems for field lengths

greater than 3000 feet (914 m).
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FIGURE 2,32. EXTERNALLY BLOWN FLAP STOL AlRCRAFt CRUISE PERFORMANCE
150 PASSENGERS, 3000 FT (914 M) FIELD LENGTH

;FJNAL DESIGN AIRCRAFT

78



FIGURE 2-33. TIME, DISTANCE, AND FUEL TO CLIMB FROM SEA LEVEL
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FIGURE 2-34i TIME, DISTANCE, AND FUEL TO DESCEND TO SEA LEVEL
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FIGURE 2-35, RESERVE FUEL VS. DISTANCE TO ALTERNATE;
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PIGURE 2-36. DESIGN TAKEOFF GROSS WEIGHT-FIELD LENGTH COMPARISON
FINAL DESIGNS/AIRCRAFT
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FIGURE 2-37 DIRECT OPERATING "COST-FIELD LENGTH COMPARISON
FINAL DESIGN AIRCRAFT

83



The W/S - T/W relationship is presented in Figure 2-38. The T/W

ratios do not vary greatly for a given high lift configuration. Variations

in field length are primarily due only to changes in wing loading. The three

3000 foot (914 m) field length EBF aircraft illustrate the effect of

passenger capacity on W/S and T/W. W/S and.T/W decrease as aircraft size is

increased due to the influence of aircraft size on ground effects. Ground

effects are more severe for the larger aircraft, because of the lower wing

height to span ratios. , . .
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FIGURE 2-38. WING LOADING: THRUST-TO-WEIGHT RELATIONSHIP

FINAL DESIGN AIRCRAFT
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2.3 System Analysis Aircraft

2.3.1 Aircraft Configurations. - In accordance with the study plan discussed

in Section 1.0, a family of aircraft were derived (after the completion of the

parametric aircraft) to be used in the derivation and evaluation of the

complete STOL short haul transportation system summarized in the companion

volumes. These aircraft are called the System Analysis Aircraft and differ

in detail from their counterpart Parametric Aircraft (Section 2.1) and Final

Design Aircraft (Section 2.2) . They are based on detailed updated weight,

drag, and acoustic analyses conducted during the parametric study time period,

and are designed to meet 95 EPNdB on the 500 foot (152 m) sideline. The

drag, acoustic, propulsion and weight methods used to define these system

analysis aircraft are compatible in every respect with the Appendices material

which are intended to substantiate the final design aircraft.

A comparison between these system analysis aircraft, which are use'd

throughout the companion volumes, and the parametric and final design aircraft

is shown in Table 2-12. Only two parametric aircraft, however, have a direct

correspondence in terms of payload and field length as shown in the table.

Off design performance was calculated to support the system analysis

of the total short haul transportation system summarized in the companion

volumes of this report. An example of these performance calculations is

contained in Section 2.4.
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2.3.2 Noise Contours. - Noise contours ranging from 75 to 95 EPNdB were

developed for the system analysis airplanes and are used extensively in

Volume III. However, very little flight test noise data exists at the

75 EPNdB levels because of the less objectionable nature of these low noise

levels. Therefore little empirical data exists with which to verify the

EPNL-Distance curves at these long distances from the noise source. This

problem does not affect the validity of the 90 to 95 EPNdB contours.

Spherical directivity was used for all of the short haul concepts

except the EBF systems. For these aircraft the "viewfactor" or non-spherical

directivity between sideline and directly below the aircraft lengthens the

noise contour (see Appendix C for a discussion of the viewfactor for the EBF

concept). The higher noise level below the aircraft compared to the sideline

requires that the aircraft climb to a higher altitude to close the noise

contour then would be predicted based on the sideline noise level.

All of the short haul system analysis aircraft were designed to a

95 EPNdB 500 foot (152 m) sideline noise level. This means that the only

variables which affect the area of the contour are the takeoff and approach

climb angles and the slope of the EPNL-Distance curve. A typical EPNL

distance curve is shown on Figure 2-39 for the EBF and mechanical flap concepts,

The difference in slope between the concepts is caused by different engine

cycles and by the low frequency flap interaction noise generated by powered

lift. This shallower slope is generally applicable to all of the powered lift

aircraft.

Noise contours were developed by combining a fixed distance to the

selected contour with the airplane flight path data. For a straight line
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flight path the resultant shape of the contour is semi-elliptical for either

takeoff or landing. Allowances have been made for ground attenuation and

the time duration correction along the runway during ground roll. Figure 2-40

shows the 75 through 95 EPNdB contours for the EBF airplane. The "coke bottle"

effect along the runway is caused by the ground attenuation and time duration

during ground roll. The minimum width contour occurs near the end of the

runway because the airplane is still on the ground with ground attenuation of

the noise but has a high velocity to shorten the time duration.

The takeoff field length has a major impact on the area of the noise

contour. Figure 2-41 shows the difference for the 3000 foot (914 m) and 4000

foot {1219 m) mechanical flap airplanes. The 3000 foot (914 m) contour is

shortened both because of the shorter ground distance and the higher thrust-

to-weight ratio resulting from the shorter field length. The effect of the

EBF viewfactor discussed above is shown on Figure 2-42 where the mechanical

flap and EBF airplanes are compared. Some of the difference in contour length

is caused by the steeper climb angle of the mechanical flap.

The effect of reducing the level of treatment is shown in Figure 2-43

for the EBF 3000 foot (914 m) field length system analysis and final design

airplanes. The final design airplane is one EPNdB noisier on a 500 foot

(152 m) sideline. Figure 2-44 shows the 90 EPNdB contour for the EBF airplane

designed for a sideline noise level of 95, 100 and 105 EPNdB. Table 2-13 gives

the areas and climb gradients for the system analysis aircraft and for the

final design EBF 150 passenger, 3000 foot (914 m) field length aircraft and

an advanced CTOL aircraft. The 75, 80, 85, 90 and 95 EPNdB contours for all

the systems analysis airplanes are shown in Figures 2-36 and 2-45 through 2-50.

The 100 and 200 passenger 3000 foot field length (914 m) EBF airplane would have

the same contour as the E, 150,3000 airplane.
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î-

CO
LO
CO

CM
CO

LO
CM
CO

IO
r-~

LO
CO
^3-

O
LO

- r-~
CO

[̂
1 —

00
00
CM

«O
r-^
CO

00
CM
cn

•3-
LO

•=1-
ro

^~
cn

o
o
o
oo

o
0

U-
CQ
UJ

^t
LO

< -̂
oo

î-
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ĉn

o
0
o
co

o
LO

LL.
s:

r~.
10

LO
LO

cn

CM

O
o
o
<*

o
LO

u_
•Si

*d-
= -̂

cn
0

O

LO

0
o
o
CM

o
LO

03
oo
^>

5

CM
O
r—

O

LO

o
0
o
CM

0
LO

i

CO
LO

0
cn
CO

r̂
co
CM

O
O
o
f-»

o
LO

_J
C3

o

96



21

o «
CM

z S
ui I

LU
o

UJ g
CM

9'0 f 0 2'0
j i I

IAIX
0 Z'O VQ 9'Q

t 0
000 L >

u. y.

9'L 8'0 0 8'0 9' I

inr̂
CM
LU

0 t-
0001x Id

97



0

O

CM

CM

u
<

*
u §

CM

O
in

9'0

-00

.8
O

90

(O^«
CVI

HI
6 CC

I 0
0001 x J.d

t 1
IA/X §

Vt 9'I 8'0 0 8'0 9-1 VZ *"
i I I 1 l i i x

^ I I—1 1 i_
8 0

0001 x Id
8 "-

98



8-O «>
CM
Q

Q-

CM

^ o
UJ §

CO
li i ..

8
o

9'0 fO Z'O 0 Z'O
I I I 1 I

9'0

I 0
0001 x .

99



3

o
00

S»
CM

o
LU oo

<
CM

> o
LU o
UJ ••

IA)» §

9-0 fr'O Z'O 0 S'O f'O 9'0 "I

H L-^ \ ^-H h ^ s
2 I 0 I £ u- *

n C5

000 L x J.d

9'I 8'0 0 8'0 9'I
. I , I 1 I Ii i i

fr . 0 fr
000 I X J.;)

100



a:
o

CO

CM

O

J
_J
<

LU o
CM

CO

9'0 fr'O 9'0

t 0
0001 x

101



cr
o

o
o
o

o
LU
I-
o
LU
O

00

CD 2

Z 91 8'0 0 8'0 9'I VZ

evi

0001 x J-d
102



3.0 AIRCRAFT TRADE STUDIES

Significant design and trade studies conducted prior to the

establishment of the-final design aircraft are summarized in this section.

Some of the results are incorporated in the final baseline aircraft and some

are left as design options requiring further in-depth investigations before

inclusion in the basic designs. Included in this section are the following

studies:

o Aircraft noise level

o Configuration trade offs

o Performance trade offs such as cruise altitude and speed

o Landing ground rules and their impact upon aircraft sizing

o Avionics trades such as CAT I, II vs. Ill

o Ride quality studies to determine pertinent technology needs

o Extended range aircraft

o Use of composite materials

o Commonality of a military STOL transport with its commercial

STOL derivative
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3.1 Aircraft Noise Study

3.1.1 Aircraft Analysis. - Because of the critical impact of the design noise

level on aircraft sizing and economics, an acoustic trade off study was con-

ducted. The study determines this impact relative to engine treatment level

and engine cycle characteristics for a baseline EBF aircraft. Three engine

cycles were selected for study; a variable-pitch fan engine with a fan pressure

ratio of 1.25, a variable-pitch fan engine with a fan pressure ratio of 1.32,

and a fixed pitch engine with a fan pressure ratio of 1.57. The engine cycle

characteristics of these engines are summarized in Table 3-1. For each

engi/ie, three levels of acoustic treatment were used; none (hardwall), wall

treatment only, and treatment which reduced the rotating machinery noise to

the level of the jet and flap interaction noise.

Nacelle designs were generated for each of the nine above cases

and were developed with the same core as those discussed for the design

aircraft (Appendix D). Cutaway drawings of these designs is shown in

Figure 3-1. A summary of the engine losses is given in Table 3-2. The

methods used to determine these losses are discussed in Appendix D. Engine

pod weight estimates developed for these designs are shown in Table 3-3 for

a constant engine size. These estimates were scaled when used to size

aircraft designs.

Aircraft were sized by the methods presented in Section 2.0 and

Appendix B. The characteristics of the resized aircraft are shown in Table

3-4. One notable effect of the different engine cycles is the significantly

higher Mach number achieved with the high fan pressure ratio engine.
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Table 3-1

ENGINE CHARACTERISTICS FOR ACOUSTICS STUDY

Engine Type

Fan Pressure Ratio

Bypass Ratio

Wafan, Ibs/sec (kg/sec)^ ^2^

Vfan, ft/sec (m/sec) (2 )

WgpH, Ibs/sec (kg/sec) { 1 ) ( 2 )

VpH, ft/sec (m/sec) (2 )

Tip Speed, ft/sec (m/sec)

No. of fan blades

Variable-Pitch

1.25

17

969 (440)

655 (200)

57 (26)

690 (210)

750 (229)

17

Variable-Pitch

1.3?

13

863 (391)

732 (223)

63 (28.5)

700 (213)

900 (274)

23

Fixed- Pitch

1.57

6

570 (259)

939 (286)

98 (44.5)

1324 (404)

1550 (472)

44

1. For 20,000 Ibs (89,000 N) SLS takeoff thrust

2. SL, Std. day, MO = 0.15
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Figure 3-1 NOISE STUDY ENGINE CUTAWAY DRAWINGS

Fan pressure Ratio 1.25

Wall Treatment Only

Extensive Treatment
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Figure 3-1 NOISE STUDY ENGINE CUTAWAY DRAWINGS (Continued)
Fan Pressure Ratio 1.32

Wall Treatment Only

Extensive Treatment
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Figure 3-1 NOISE STUDY ENGINE CUTAWAY DRAWINGS (Continued)
Fan Pressure Ratio 1.57

Wall Treatment Only

Extensive Treatment
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The acoustic results for the nine aircraft are shown in Table 3-5, based

on the acoustic channel definitions tabulated in Table 3-6 and the noise

component breakdown shown in Table 3-7. As with the final design aircraft,

1980 acoustic technology is assumed.

3.1.2 Results. - The results of this trade study are summarized in Figure 3-2,

showing the 500 foot (152 m) sideline EPNdB values resulting from the acoustic

treatment used plotted as a function of takeoff gross weight and direct

operating cost. It is evident that the addition of wall treatment to a

nacelle significantly reduces the noise emitted by the engines at a very small

penalty whereas the inclusion of additional ring treatment yields only nominal

acoustic payoffs at a substantial penalty to the aircraft. This effect causes

a sharp knee in the curve to exist at the wall-treatment-only point. This

characteristic is true for the complete range of engine cycles studied. This

knee in the curve is caused by the engine turbomachinery noise being suppressed

below the level of the flap interaction noise. This flap interaction noise

becomes dominant when extensive nacelle acoustical treatment is used, so the

key to obtaining further noise reduction is to develop a means of suppressing

the noise generated by the flap.

From a TOGW standpoint it is seen that an engine cycle with a fan

pressure ratio of 1.32 is slightly better than the other cycles studied (wall

treatment only case). From the economics standpoint the DOC penalty increases

essentially linearly as the sideline noise is decreased. The lower DOC for

the FPR = 1 . 5 7 engine relative to the other study engines results from the

significantly higher Mach number associated with the low thrust lapse of

that engine and the lower engine cost associated with a fixed pitch engine.
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Table 3-5

EBF STOL NOISE TRADE STUDY
EPNdB @ 500 ft (152 m) Sideline

4 Engines G> 20,000 Ib (44,200N)/Engine

Engine

FPR = 1.25
FPR = 1 . 32
FPR = 1.57

Acoustic Treatment

Hardwall

104
108
117

*Includes 1980 Technology

Wall Treatment*

98
102
111

Extensive Treatment*

95
100
110

Table 3-6

TREATMENT DEFINITION - L'/h

Engine

FRR - 1.25
FPR = 1.32
FPR = 1.57

Inlet

Wall

.44

.5

.6

Extensive

1.5
1.0
2.5

Fan Discharge

Wall

1.3
1.4
4.6

Extensive

3.5
4.0
5.2

Turbine

Wall

2.6
1.7
-

Extensive

3.0
2.0
2.0

Table 3-7

EBF STOL NOISE TRADE STUDY
Engine Hardwall Noise Levels, 500 ft (152 m) Sideline

4 Engines at 20,000 Ib (44,200 N)/Engine

Source

Inlet
Fan Discharge
Turbine Discharge
Jet
Flap Interaction
Total

Maximum Perceived Noise Level, PNdB
FPR = 1.25

. 100
103
98
89
100

106

FPR = 1.32

104
107
99
94
105

110

FPR =1.57

117
116
99
108
113
119
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FIGURE 3-2. NOISE TRADE OFF RESULTS-EBF CONFIGURATION
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3.1.3 Conclus ions . - Unless effective and practical methods to suppress jet

exhaust noise and f lap interaction noise can be developed, the noise from

externally blown (EBF and USB) type of powered l i f t systems exhib i t a f lap

interaction "noise floor". Efforts to achieve aircraft noise levels near or

below this floor by applying extensive acoustic treatment to the engine

nacelle result in larger performance and economic penalties for a rather smal l

decrease in total airplane noise level. The extensive nacelle treatment

does give substantial suppression of turbomachinery noise but the f l ap inter-

action noise dominates the total noise level . The f l ap interaction noise

level was calculated from extrapolations of small scale static test data.

Large scale flyover and static f lap noise testing is required to determine

f l igh t effects and correlate between static and flyover data. The economics

of quiet powered l i f t STOL aircraft is dependent upon an accurate assessment

of f l ap interaction noise.

The results of this trade study, us ing. the f l a p noise est imating

procedures discussed in Appendix C, have been incorporated into the f ina l

design aircraft (Section 2 . 2 ) . Acoustic rings are therefore not inc luded

in the engine pod designs for the f ina l design EBF and USB aircraft and

these configurat ions tend to .have 500 foot (152 m) s i d e l i n e noise levels

somewhat h igher than 95 EPNdB. However, the f i na l design EBF and USB air-

craft have a lower gross weight and better economics than the parametric or

system analysis aircraft which were designed for 95 PNdB or EPNdB, respectively.

3.2 Configurat ion Studies

3.2.1 Aspect Ratio Study - EBF. - The choice of w ing aspect ratio is based

on the tradeoff between increased aerodynamic efficiency and structural
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weight as aspect ratio is increased. The influence of aspect ratio on the

sizing of a 150 passenger, 3000 foot (914 m) field length externally blown

flap STOL aircraft was examined.

High lift aerodynamic data for aspect ratios of 7, 8 and 9 was

used in calculating takeoff and landing performance to determine thrust-to-

weight ratio as a function of wing loading for a 3000 foot (914 m) field

length. Parametric weight data were prepared for the three aspect ratios.

Wing flutter weight penalties, which were a function of aspect ratio, wing

loading, and wing area, were included in the parametric weights data to

reflect any increases in wing box weight needed to satisfy stiffness require-

ments. The primary effect of aspect ratio on high speed drag is a change in

induced drag. Other drag changes are of secondary importance and were not

included. The performance calculations were performed in the same manner as

described for the final design aircraft in Appendix B.

Minimum direct operating cost for the three aircraft occurred at

the intersection of the takeoff and landing critical lines. These aircraft

for the three aspect ratios are summarized in Table 3-8 with a weight break-

down in Table 3-9. Direct operating cost is not very sensitive to aspect

ratio as shown in Figure 3-3. Based on this curve, an aspect ratio of 8.0

was chosen for sizing the final design externally blown flap STOL aircraft.

It should be noted that the earlier parametric aircraft were based on an

aspect ratio of 7.0.
\

Since the aerodynamic characteristics of the upper surface blowing

aircraft are similar to those of the EBF aircraft, a similar aspect ratio

trend for the USB configuration may be expected.
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FIGURE 3-3. EFFECT OF ASPECT RATIO ON AIRCRAFT SIZING
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3.2.2 Boundary Layer Control for USB STOL Leading Edge Protection. - STOL

aircraft landing performance is dependent on the ability to achieve high

Ci values. The upper surface blown flap configuration requires some

type of wing leading edge protection, either mechanical slats or leading

edge boundary layer control (BLC), to prevent flow separation at high angles

of attack.

Two different leading edge USB configurations were considered in

this study. The first configuration incorporates a full span leading edge

slat. The second utilizes a 15 percent chord drooped leading edge with

boundary layer control blowing at the knee.

For the full span leading edge slat configuration, it was assumed

that the losses in maximum lift due to nacelle interference can be reduced

with further development work but, based on Douglas experience, not entirely

eliminated. For this case the upper surface blowing high lift aerodynamic

characteristics are estimated to be identical to the externally blown flap

characteristics except that a penalty of AC|_ = -.20 is assumed for all
IMclX

flap deflections.

Figure 3-4 shows the incremental improvement in maximum lift

coefficient that can be achieved with leading edge BLC. These values are

relative to the EBF Ci levels where the initial value of" ACi at zeroHnax 4nax

leading edge blowing is the sum of the estimated nacelle interference

effects and the result of replacing the outboard slat with a drooped leading

edge. For this case the upper surface blowing high lift aerodynamic character-

istics were estimated as follows:
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1) The EBF aerodynamic characteristics were used where Cy is

based on the installed engine thrust plus a 50 percent recovery

of the leading edge blowing.

2) Maximum lift coefficients are the sum of the EBF levels plus

the incremental values from Figure 3-4.

In addition to the improvement in Ci that can be achieved with

a BLC system, there is a possible weight advantage since the BLC nozzles and

associated ducting may weigh less than a full span slat.

High pressure air is required to choke the flow at the nozzle.

This air must be bled from the engine core rather than from the fan ducts

due to the low fan pressure ratio of the PD287-22 engine. This will result

in a loss in engine thrust which will tend to offset the gain in Ci

Figure 3-5 shows the thrust-to-weight ratio required to attain

2000 foot (610 m) field length performance at a W/S of 65 lb/ft2 (317 kg/m2)

as a function of CM at the slot. The calculations for the blown leading

edge system are based on the following assumptions:

1. 15 percent pressure drop in duct

2. 90 percent nozzle coefficient

3. 50 percent thrust recovery.

The minimum required T/W with leading edge blowing occurs at a

CySLOT of °-010- Tnls T/w is still higher than that required for the leading

edge slat configuration. Table 3-10 shows that the weight advantage of the BLC

system just about offsets the T/W penalty.
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The differences between these two aircraft are sufficiently small

that the best solution is not apparent considering the accuracy of the

analysis. Other considerations such as anti-icing, noise, maintenance, etc.

would probably be deciding factors. If lower bypass ratio, higher pressure

ratio engines were used, the blown leading edge system would appear more

favorable than it does with the PD287-22 engine because the thrust loss due

to bleed would not be as severe.
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3.3 Performance Trade Offs

Trade studies including the optimization of cruise altitude and

Mach number and aircraft sizing sensitivities are discussed in the following

paragraphs.

3.3.1 Cruise Performance Optimization. - The selection of cruise Mach number

and altitude for the sizing mission was based on the minimization of direct

operating cost (DOC). Figure 3-6 shows the variation in direct operating

cost with cruise Mach number for a 150 passenger, 3000 foot (914 m) field

length, externally blown flap STOL aircraft. Minimum DOC occurs when the

aircraft is sized to fly at maximum cruise Mach number.

The variation in direct operating cost with cruise altitude for this

same aircraft is shown in Figure 3-7. There is an optimum cruise altitude,

in this case 26,000 feet (7,925 m), for minimum DOC. This altitude corresponds

to that for maximum Mach number.

Optimization studies of this type were performed during the sizing

of all the final design aircraft.

3.3.2 Trade Factors. - Table 3-11 shows the sensitivity of takeoff gross

weight and direct operating cost to five percent incremental changes in the

significant parameters affecting aircraft sizing. These factors were calculated

for the final baseline 150 passenger, 3000 foot (914 m) field length EBF

aircraft but similar trends would be shown for the other configurations.

Growth factors, defined as ATOGW/AEmpty Weight, are presented in

Table 3-12 for several of the final baseline aircraft. The higher growth
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FIGURE 3-6. DIRECT OPERATING COST VARIATION WITH CRUISE MACH NUMBER
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FIGURE 3-7. CRUISE ALTITUDE OPTIMIZATION
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Table 3-11

SIZING TRADE FACTORS

Externally Blown Flap STOL
150 passengers, 3000 foot (914 m) field length

A 5 percent increase in will produce changes in

TOGW and DOC of

Airframe Weight + 5.1 %

Propulsion System Weight + 1.2 %

Parasite and Compressibility Drag + 0.4 %

T/W + 1.6 %

Maximum Continuous Thrust + 0.4 %

SFC - + 0.9 %

Tail Volumes + 0.2 %

+ 3.2 %

+ 0.6 %

+ 1.5 %

+ 0.4 %

- 0.7 %

+ 0.8 %

+ 0.2 %

Configuration

EBF

EBF

MF

CTOL

Table 3-12

GROWTH FACTORS

Pay load
pax

150

150

150

150

Field Length
ft (m)

2000 (609)

3000 (914)

4000 (-1219)

7500 (2286)

Growth Factor

2.40

1.85

1.90

1.75
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factors associated with the shorter field lengths indicate that the change

in aircraft weight due to the use of composite materials, for example,

will be more dramatic for shorter design field lengths.
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3.4 Landing Ground Rules Study. - The landing ground rules, as originally

specified for the study were found to have an adverse effect on aircraft

sizing and are evaluated in this section. The ground rules as specified were:

- 800 fpm (4.06 m/s) approach sink rate

- flare to 3 fps (.915 m/s) at touchdown

- one second delay before deceleration device effectiveness

- decelerate at 0.35g to a stop.

Landing distance calculated using the above rules is divided by the conventional

0.6 factor to determine field length. This approach represents a major departure

in certification philosophy. To date, certified landing field length has been

based on a maximum performance landing divided by the 0.6 factor. The above

ground rules represent a normal operational landing which is then divided by

0.6. The results of this procedure are to cause STOL aircraft to be landing

critical by substantial margins. Figure 3-8 shows landing field lengths as

a function of wing loading for thes'e ground rules for 1500 (457), 2000 (610)

and 3000 foot (914 meter) takeoff field lengths. The resulting wing loading

for balanced field lengths produce large weight and cost penalti.es, particularly

for the shorter field lengths. This penalty is shown in Figure 3-9 for the

'2000 foot (610 meter) case. These weight and cost penalties, 10 to 15 percent

in this case, will unduly bias the study results in favor of.longer field

lengths.

These ground rules are compared to previous requirements in

Table 3-13. The parametric study requirements are usually more restrictive

than any of the others. Figure 3-10 shows the effect of approach sink

rate on landing field length. Increasing the approach sink rate above 800 fpm

(4.06 m/s) increases the design wing loading only slightly.
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FIGURE 3-8. LANDING FIELD LENGTH VERSUS WING LOADING
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Table 3- 13

COMPARISON OF VARIOUS LANDING GROUND RULES

Approach Sink Rate

Touch Down Sink

Braking Devices Delay

Deceleration

Factor

STOL Study

800 fpm
(4.06 mps)

3 fps
(.915 mps)

1 sec

0.35 g

1/0.6

FAR Part 25
& Part 121

None

None

Those "that may
reasonably be
expected in
service"

None

1/0.6

Part XX

None

3 fps
(.915 mps)

Same as
Part 25

None

—

Breguet
941

None

Deleted

Same as
Part 25

None

1/0.6
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An increase in approach angle is offset by a longer flare distance. An

approach sink rate of 900 fpm (4.57 m/s), as selected for final design work,

provides a small but useful benefit in aircraft sizing and is below the

accepted operational limit of 1000 fpm (5.08 m/s).

The touchdown vertical sink speed of 3 fps (.915 m/s) is restrictive

even for normal STOL operations. Average normal operation sink speeds for

the Breguet 941 are 4 (1.22) to 5.5 fps (1.28 m/s) as shown in Table 3-14.

Figure 3-11 shows the impact of touchdown sink speed on the design wing

loading for a 2000 foot (610 m) field length externally blown flap aircraft.

Increasing touchdown sink rate from 3 fps (.915 m/s) to 10 fps (3.05 m/s)
n O

allows a 10 lb/ft^ (48.7 kg/m ) increase in W/S and is more in line with

conventional practice. The DC-8, DC-9 and DC-10 series aircraft have a

structural design sink speed of TO fps (3.05 m/s) and landing field length

performance was certified using the design limit. The STOL aircraft have a

gear design limit of 15 fps (4.57 m/s) so that use of 10 fps (3.05 m/s) is

quite conservative.

Deceleration time delay and average deceleration rate achieved

during certification tests of recent Douglas commercial transports is shown

in Table 3-15. Figure 3-12 shows the effect of deceleration rate on design

wing loading. Large benefits are available if the deceleration rate can be

increased. The specified one second delay and 0.35g deceleration represent

reasonable, if somewhat conservative, values based on recent experience, but

efforts to increase deceleration capability and/or reduce the actuation delay

have potentially large rewards.
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Table 3- 14

BREGUET 94.1 SINK RATE COMPARISONS

FAA NAFEC Flight Program Average (74 Landings) - 4.1 FPS (1.25 MPS)

x + 3o ' - 10.2 FPS (3.11 MPS)

Breguet Operational Data Average (32 Landings) - 5.5 FPS (1.68 MPS)

Table 3- 15

DC - SERIES AIRCRAFT DECELERATION CAPABILITY

Aircraft

DC- 9.- 30

DC- 9- 30 '
(improved anti-skid
system)

DC-10-10

Equivalent
Time

Delay (Sec.)

0.6

~

1.6

Average
Decel
Rate (g)

. -39g

.47g

.39g
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FIGURE 3-1TJEFFECT OF TOUCHDOWN SINK RATE ON LANDING FIELD LENGTH
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FIGURE 3-12. EFFECT OF DECELERATION RATE ON LANDING FIELD LENGTH
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The 0.6 time-honored field length factor has been substantiated

by studies using the Breguet 941 as shown in Table 3-16. This aircraft

demonstrated a factor of 0.64 between operational and maximum effort landings,

Figure 3-13 shows the direct relationship between this factor and design

wing loading. Much additional actual flight experience with STOL aircraft

is necessary to justify any change from the 0.6 factor.

On powered lift STOL aircraft, the ground effect phenomenon has

been shown to be adverse in landing. A loss in lift experienced during

the flare maneuvers when approaching the ground necessitates high flare

heights and consequently long air run distances to achieve low touchdown

sink rates. The impact of ground effects on an externally blown flap STOL

aircraft are shown in Figure 3-14 for a 3 fps (.915 mps) touchdown sink rate.

There has been some concern, however, about the use of wind tunnel

ground effects data for the prediction of aircraft flare characteristics for

the following reasons:

(1) There is an aerodynamic time lag required for the wing

lift distribution to readjust to a height change of the

wing above the ground plane. This time lag will be

manifested as an effective reduction in the ground effects

as the aircraft enters the ground proximity during approach.

(2) The attitude of a flight aircraft relative to the ground

plane and flight path angle differs from that in a wind

tunnel. This difference is also expected to reduce the

effective ground effects of the flight aircraft.
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Table 3- 16

COMPARISON OF OPERATIONAL AND MAXIMUM PEPFORMANCE
LANDING DISTANCE ON BREGUET 941

(43,000 Ibs (94,600 kg) Gross Weight, 35 ft (10.7 m) Obstacle)

Operational Landing Distance
(Mean + 3a value from 154 landings)

Maximum Performance (17 landings)

Maximum Performance Distance
Operational Distance

1,450 ft. (442 m)

930 ft. (283 m)

.64
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FIGURE 3-13. EFFECT OF FIELD LENGTH FACTOR ON LANDING FIELD LENGTH
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These effects are generally recognized by NASA and contractor personnel

but are not fu l ly understood nor quant i t ized at the present time.

The parametric s i z ing calculations do not inc lude ground effects

in order not to be unduly pessimistic. Ground effects are included in the

f ina l design work but are not as s igni f icant due to the compensating

effects of the h igher touchdown s ink rate of 10 fps (3.05 m/s) in l i eu of

3 fps (.915 m / s ) . A comparison of the parametric and f ina l ground rules

are shown in Figure 3-15. E l i m i n a t i o n of ground effects from the parametric

sizing calculations results in the parametric aircraft being similar to the

f ina l designs.
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3.5 Avionics Studies

3.5.1 Avionics Baseline. - A determination of the avionics, requirements for

STOL aircraft has been made from studies based on trends and forecasts in

equipment characteristics, performance, reliability and costs. Included in

the studies was an analysis of the navigation, guidance, control and flight

management requirements for conformance with applicable ARINC specifications.

Table 3-iy shows an equipment list for the STOL avionics referenced to present

commercial and ARINC standards. This avionics system will provide category

III A Fail Operational All Weather Operations (including Autoland).

3.5.2 Avionics Tradeoffs. - A trade-off study was made to reduce the avionics

sophistication to meet the minimum requirements for Cat. II and IFR. The

reduction was achieved as follows:

Cat. II (Fa i l Safe)

1. Third channel of the triplex Flight Guidance and

Control system deleted.

2. Third vertical gyro deleted.

3. Third Air Data Computer deleted.

4. One Radio Altimeter system deleted.

I . F . R .

1. One Flight Guidance system deleted.

2. Simple Head-Up Display system only.

3. Delete remaining Radio Altimeter system.

4. One Microwave Landing System deleted.

5. One I.L.S. receiver deleted.
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î»

t t , ir— LOJ
cc: to
a. r3

2C

C
t— 4

ex.
X.
o
00
UJ

H- U j

iss
».- ~ 1

p ?j
* — <

«
0
o
CO

**
r—t

o
o
CO

i-H

H

,
ĈO
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Table 3-18 provides a summary of the weight and cost savings per

a i rp lane by these reductions in avionics sophist icat ion.

3.5.3 STOL ATC Environment . - Operating the STOL aircraft w i t h i n the

framework of the FAA's Na t iona l Avia t ion System Plan w i l l require it to

funct ion w i t h i n the same air t ra f f ic control (ATC) environment that w i l l exist for

CTOL aircraft in the 1980/85 time period. Plans for the upgraded third

generation ATC system scheduled for implementat ion dur ing 1980/85 stress

increased automation, two way data- l ink t raff ic f low control , computer aided

rerouting, area navigat ion and microwave l and ing guidance systems. Reference

to Figure 3-16shows the th i rd generation ATC system now being developed

for the 1980's.

In the 1980/85 centrally managed ATC system, the responsibi l i ty

for nav iga t ing STOL and CTOL aircraft w i l l rest w i t h the p i lo t and the

responsibi l i ty for o rgan iz ing a safe and expedit ious f low of STOL and CTOL

traff ic into the terminal area w i l l rest w i th the ATC controller. W i t h

the appl ica t ion of automatic controls, the controller on the ground and the

STOL and CTOL pilots in the air w i l l manage the air traffic navigation and

control us ing automatic, semi-automatic or manual methods based upon computer

derived p l a n n i n g information.

Dur ing automatic operation, the computer w i l l determine and communi-

cate ATC instruct ions to the STOL p i lo t . Semi-automatic operations w i l l

invo lve the automatic control of controller-delegated functions and/or require

controller 's approval of computer derived ATC instructions before they

are transmitted to the aircraft .
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Ô LO
CM
CM

-"

LO
f̂r~-
cn
co
<̂

CTir̂ x»
D̂ LO

r*"* "̂̂
CM
A

"~

cn
LOp—
CO
CO

LO
to

to ̂ o
to —Ĵ-««
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The STOL pilot will have the option to direct his aircraft in

response to ATC clearances by an automatic, semi-automatic or manual

operation. An automatic operation will allow ATC instructions to be fed

directly into the airborne computer and simultaneously display instructions

to the pilot. The ATC instructions will not control the STOL craft until

verified by the pilot. Semi-automatic operations will require pilot accept-

ance of the displayed ATC instructions before they are given to the air-

borne computer. Manual operation relates to the pilot receiving and complying

with ATC instructions without the aid of an automatic airborne device. The

1980/85 ground systems will be capable of communicating simultaneously via

a universal air-ground digital communications system and a Discrete Address

Beacon System (DABS) to accommodate the different and varying needs of STOL

and CTOL aircraft users.

In this time period, closely spaced non-conflicting flight paths

'will be established to maximize capacity in congested areas. STOL aircraft

will need to be equipped with airborne guidance and control systems capable

of accurately following such paths and each other. The number and use of

closely spaced flight paths within any given area (arrival, departure, trans-

ition, enroute) will depend upon the associated ATC procedures and whether

STOL aircraft diverge from or converge to a particular location and the amount

of airspace that is available.

The ability of one STOL aircraft to follow another, referred to as

"station keeping" will be utilized by ATC when in-trail operations are

required.
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Improved avionics air data systems will allow the use of one

thousand feet vertical separation criteria in both low and high altitude

corridors.

Airborne computers, area navigation and microwave landing systems

will provide the STOL aircraft pilot with the ability to follow any ATC

assigned four dimensional flight path including high angle curvilinear

approaches to touchdown.

160



3.6 Ride Qualities Study

The major objective of this study was to investigate the ride

qualities characteristics of a typical low wing loading EBF type aircraft

and to explore the effects of various stability and control augmentation

concepts on aircraft response in turbulence. The intention was to identify

some of the potential problems which arise in attempting to provide satis-

factory ride qualities for STOL aircraft with low values of wing loading.

This section is a summary of the conclusions of this study with

the technical justification presented in Appendix G.

This initial study concentrated on aircraft dynamic behavior in

the approach mode and used the Dryden turbulence model from the flying

qualities specification MIL-F-8785B (Reference 2 ) to provide external dis-

turbances. A basic RMS value of 10 ft/sec (3.05 m/s) was chosen for the

turbulence model as representing a realistic level of gust activity for the

approach mode.

Use of the elevator for gust suppression was investigated utilizing

pitch rate and normal acceleration feedback. Normal acceleration feedback

to elevator although providing reduced aircraft activity in turbulence

created basic stability problems unless the gains were maintained at a

relatively low value thus limiting system effectiveness.

A much more effective technique for reducing aircraft normal

acceleration activity in turbulence was to use normal acceleration feedback

to spoiler surfaces and to utilize pitch rate feedback to elevator as a means

of providing the necessary damping signals. Since the use of spoiler

surfaces for this function is feasible only for the approach mode it is
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necessary to explore alternate solutions for cruise and transition flight

regimes.

For the lateral/directional axes for the approach mode, several

stability and control configurations were investigated. Lateral acceleration

feedback to rudder was found to be undesirable for the approach mode due

primarily to destabilizing effects on the basic airframe spiral and dutch

roll mode.

The use of roll rate and roll attitude feedback to the ailerons in

conjunction with a conventional yaw damper (yaw rate feedback to rudder)

proved to be very effective for reducing aircraft lateral acceleleration

activity in turbulence. This type of system also provides adequate stability

for basic airframe apiral and dutch roll modes in the approach configuration.

Since the basic airframe spiral mode normally has adequate stability in the

cruise flight regime, lateral acceleration feedback to the rudder may

prove to be an effective technique for these flight conditions.
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3.7 Alternate Missions

The capability of extending the range of a STOL aircraft by flying

from longer runways with increased fuel load would provide an airline with

increased marketability and scheduling flexibility. This capability is not

free, however, since a penalty in structural weight must be paid to maintain

aircraft design load factor at the higher gross weights.

Two 150 passenger externally blown flap aircraft were synthesized

for comparison to the final design EBF 150 passenger, 3000 foot (914 m')

field length aircraft. They were designed with 3000 foot (914 m) STOL capa-

bility for ranges up to 575 statute miles (926 km) and, by loading extra fuel,

to fly from longer fields with maximum ranges of 1035 and 1380 statute miles

(1668 and 2224 km) with maximum payload.

The fuel allowance for the reserve hold segment of the sizing

mission was increased from 0.25 hours at 575 statute miles (926 km) to 0.50

hours at 1035 statute miles (1668 km) and 0.75 hours at 1380 statute miles

(2224 km) to provide contingency fuel comparable to CTOL aircraft at the longer

ranges. Operational items were increased at the two longer ranges by 480 and

960 pounds (218 and 435 kg), respectively, to provide additional passenger

services normally associated with longer flights.

A performance summary comparing the three aircraft is shown in

Table 3-19 and a weight summary in Table 3-20. Increases in manufacturers

empty weight (MEW) of 820 and 1215 pounds (372 and 551 kg) respectively were

necessary to provide the required structural beefup for the 1035 and 1380

statute mile (1668 and 2224 km) range capability. The associated cost penalties

at 575 statute miles (926 km) for the two aircraft, 0.4 and 0.6 percent, are
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extremely small as illustrated by the DOC-Range curves of Figure 3-17. On the

longer range routes, however, they are not very efficient when compared to an

advanced CTOL aircraft. The 27 percent increase in direct operating cost

(DOC) over the CTOL aircraft at 1380 statute miles (2224 km) is due to a

number of factors including higher gross weight of the EBF aircraft, increased

initial and maintenance cost of four engines vs two, different design noise

criterion, and the large difference in cruise speed (primary effect).

Initial cruise Mach number for the EBF STOL aircraft was 0.69 at the 575

statute mile (926 km) design range. This drops to 0.65 at 1380 statute miles

(2224 km) due to the decrease in thrust-to-weight ratio at the higher gross

weights compared to 0.80 for the CTOL. Direct operating cost becomes

increasingly sensitive to cruise speed as range is increased.

The takeoff field lengths for the extended range aircraft, .4090

feet (1247 m) at the takeoff gross weight for a 1380 statute mile (2224 km)

flight, are still shorter than most existing airport runways.

In summary, the cost penalties to a STOL aircraft for providing

extended range capability are very small, but these aircraft will tend to

be at an economic disadvantage on longer routes when compared to a CTOL

aircraft. If an airline's route structure demands range flexibility it may

be better from a total airline cost viewpoint to occasionally use a STOL

aircraft with extended range capability on a few longer range routes rather

than to buy two types of aircraft.
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3.8 Advanced Composite Materials Study

This section presents results of a study to assess the impact of

appl ica t ion of advanced composite materials to a typical STOL aircraft

structure. The f ina l design EBF 150 passenger, 3000 foot (915 m) f ie ld length

aircraft was used as a base for the study. The informat ion summarized in

this section is based on an extension to the prime contract enti t led "A Study

of the Costs and Benefits of the Appl ica t ion of Composite Materials to Civ i l

STOL Aircraf t" , Contract NAS2-6994-1. The details of the composite study may

be found in its f i n a l report.

Materials considered in the study are l imi ted to advanced composites,

a l though other materials show advantageous appl ica t ion as demonstrated in

References .3 and 4. Comparison of specif ic strengths and stiffnesses of

metals and composites demonstrates a marked advantage for composite. W h i l e

specific properties do not present a complete picture for assessment of

material app l i ca t ions , when the leverage of resizing due to. reduced structural

weight is considered, composite mater ia ls have a greater potential than metals

and jus t i f ies their detailed consideration.

3.8.1 Aircraft Res i z ing . - Us ing the detailed structural analyses performed

for the above referenced composite study, the base l ine 150 passenger, 3000

foot (914 m) f i e ld length EBF aircraft was redesigned u s ing advanced compo-

sites. The composite aircraft was designed to meet the same performance

requirements as that of the f i n a l design convent ional metal structure

ai rp lane .
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A summary size and weight breakdown for the composite airpTa'ne is

given in Table 3-21, and is compared to the baseline metal airplane. A summary

of performance characteristics for the two airplanes is given in Table 3-22.

It is seen that the gross weight is reduced from 149,000 pounds (67,600 kg)

to 132,300 pounds (60,000 kg), or approximately an 11 percent reduction.

A planview comparison of the composite airplane compared to the baseline

airplane is shown in Figure 3-18. It should be noted that the fuselage size

is constrained by passenger requirements and cannot be physically reduced.

3.8.2 Structural Description. - The approach to structural design for the

composite study considered a wide application of composite materials in the

airframe primary structure. The applications developed are shown in

Figure 3-19, Design concepts considered are keyed to manufacturing capa-

bilities that are improvements of existing procedures, rather than develop-

ment of new techniques. Despite the necessary remaining development required

to realize the anticipated applications, the designs discussed are felt to

be practicably obtained within the study time period.

The composite fuselage has honeycomb skin panels with an aluminum

core and graphite/epoxy face sheets. No stringers are required and the

honeycomb panels are supported on fiberglass zee-section frames. Frame caps

are reinforced with unidirectional graphite.

Major frames for landing gear support and wing attachment utilize

aluminum fittings and the adjacent portion of the frame is also fabricated

of aluminum. This portion is in turn spliced to composite upper and lower

frame segments.
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CO r— O CM CO i — i — tO LOi — L

*~" ' ^~"̂ ' "~^ *-* ~- ' ^ "~* '

o o LO LO o r- en o o LO oo r-. o o o o o o o o c
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The wing consists of a multi-rib structural box, two-segment flaps,

ailerons, and leading edge structure with leading edge slats and an inboard

drooped leading edge. The wing structural box is of composite construction

with graphite/epoxy faced honeycomb sandwich skin, spars, and ribs. Bulk-

heads support flap and aileron loads. These control surfaces are supported

by aluminum fittings which are attached by bolts to the composite structure.

The skin panels are made from an aluminum honeycomb core with

graphite/epoxy face sheets. Inserts of unidirectional graphite in the spar

cap areas assist in carrying bending loads. Spar caps are fabricated from

a graphite/epoxy layup with a predominance of 0° fibers. Spars and ribs are

also fabricated as honeycomb panels and bonded on assembly. The upper skin

panel is bolted and bonded to the assembly of the ribs, spars, and lower

panel. Engine pylons are attached to their support bulkheads through

aluminum fittings bolted to the pylon and wing structure.

Control surfaces are primarily full-depth honeycomb construction

with a thin composite skin for the smaller surfaces, such as rudders and

elevators. Large control surfaces such as the flaps are built of honeycomb

spars and skin panels. Metal components shown were selected primarily for

lightning protection and environmental considerations with the spoiler and

aileron designs chosen from cost considerations.

The empennage is also fabricated from graphite/epoxy composites.

The horizontal stabilizer is a multi-rib, two spar design consisting of

a multi-rib substructure, and upper and lower skins. The vertical stabilizer

is a multi-rib design with front and rear spars to support the horizontal
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surfaces at the upper end of the vertical s tabi l izer . This construction is

s imilar to that of the wing with skins, spars and ribs fabricated as honey-

comb panels.

3.8.3 Conclusions. - The use of composite mater ia ls for primary aircraft

structure w i l l produce a s ign i f i can t reduction in TOGW compared to an all

metal a i rplane. It is expected that even greater weight savings would exist

for those configurat ions wi th h igher all metal weights or shorter f i e ld

lengths due to their h igher growth factors. Growth factors are discussed in

Section 3.3.

Final data from the STOL Composites Study are not complete, but

preliminary results indicate that the composite airplane w i l l develop a

s l ight ly lower DOC than the baseline design. In general, manufactur ing costs

for the composite a i rp lane are less than the basel ine a i rp lane , but are

nearly offset by increased material costs. Maintenance costs for the

composite a i rplane, w h i c h may be s ign i f ican t ly higher than those for an

all metal aircraft, are currently being evaluated.

W h i l e detailed conclusions must await completion of the economic

analysis, it is tentatively concluded that under the ground rules of the

STOL Composite Study, appl icat ions of advanced composites to primary airframe

structure can be cost-effective.
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3.9 Mil i tary/Commercial Commonality

An analysis was made to investigate the economic tradeoffs of

mili tary/commercial commonality. A typical aircraft designed to meet a

mi l i t a ry STOL transport miss ion is shown in Figure 3-20. This aircraft is

designed to operate from 2000 foot (610 m) f i e lds , based on mi l i t a ry takeoff

and l a n d i n g requirements, w i t h a payload of 28,000 pounds (12,700 kg) and

fuel for 575 statute mi les (926 km) plus normal mi l i t a ry reserves. From this

design, a commercial transport was derived having the same general dimensions

as shown in Figure 3-21. The commercial transport would carry 151 passengers

for a design range of 575 statute mi les (926 k m ) , and can operate from 2700

foot (823 m) length f i e lds based on the takeoff and l a n d i n g cri teria used for

the f ina l design aircraft . The mi l i t a ry STOL transport is an externally

blown f l a p conf igura t ion powered by four advanced technology engines rated

at 18,900 pounds (84,000 N) at sea level standard (SLS) day condit ions. This

engine has a bypass ratio of s ix , and the in s t a l l a t i on has no acoustical

treatment.

The commercial derivative airplane (Model 24C) has an engine which

uses the same engine core as the mi l i t a ry transport. The m i l i t a r y engine,

w h i c h has a fan pressure ratio of about 1.6, is replaced for commercial use

by a var iable pi tch fan wi th a 1.32 fan pressure ratio. The resul t ing eng ine

has a bypass ratio of about 13.5 and is rated at 24,000 pounds (106,700 N) at

sea level standard day condit ions. The var iable pitch fan is used for thrust

reversing on this aircraft . Wi th acoustical treatment l i n i n g the internal

nacelle w a l l s , but wi thout treated r ings, the aircraft has an estimated side-

l i n e noise level of 102 EPNdB at 500 feet (152 m) assuming 1980 technology.
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Adding acoustically absorptive rings in the inlet and fan discharge ducts

would reduce the overall noise only slightly but DOC would be increased

approximately ten percent.

The military STOL transport fuselage has a diameter of 216 inches

(5.5 m) which allows a double aisle and 151 passenger 8-abreast seating in

the commercial version. The military aircraft is typical of cargo configu-

rations featuring low cargo floors to facilitate loading through a rear clam-

shell door. A comparison of the military and commercial cross sections is

shown in Figure 3-22. The military configuration does not permit landing gear

retraction into the belly compartment and leads to a sponson type gear fairing.

Although the same shell size is used in the commercial aircraft, the floor is

located higher which permits space for baggage, cargo, and landing gear

retraction into the belly compartment. The wing, vertical and horizontal

tail are 100 percent common. Some of the other components, such as, wing and

tail attach structure in the fuselage, the pilot's conipartment, flight

controls, and the various systems have commonality in varying degrees. The

engine pylon stations in the military version were located slightly further

outboard than normally would be required in order to provide proper spacing

for the larger diameter engines of the commercial derivative.

Table 3-23 is a detailed weight breakdown of the two aircraft and

shows that 44.5 percent of the commercial cost weight and 48.6 percent of

the military cost weight are common parts of the two aircraft. Table 3-24

compares the characteristics of the military STOL transport and the commercial

Model 24C. The T/H ratios are based on the uninstalled sea level standard

engine thrust ratings. The high cruise Mach number of 0.78 compared to 0.69
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'~ M-
CM

i-
**^

•""

^_>

C^ O c/)
C -i- 3
•r- 4-> i-

CO ~O 'O <~*
oi « a: i—

"O i- O
(O «C — 1 -M O)
o o c

i — O> O^ CO *i—
>, C C Q. CT> 3
ITS • ! - • ! — «/1 C .
Q. 3 3 «=C LU 1 —

CO ^±
CM CO
00 LO

CO
^— *

0 OO O
o r^ o
r — . • o

* o ^
CM OC

CM

^3 ^J"
r— ^"
<^> i—
1« -̂-' »*

O^
x—^

1

O LO O
o r^ o
0 • O

o «
CM O

co

'E' "^
-|— > 4-5

<4- M-

CU
o -a

•Z. 3
-C 4->
4.3 c" •r—
C7) O +J
c fo i —
<u s: «c

<1) O>
"O t/> </)

O) 3 3
••- S- J_
LJ_ (_> O

^

co
•

d-

LO
r—

•

CM

1
1

2:
oo
^^"-̂

^
oo
oo
•a:

'E'
•̂
CO
CM
O^

^ ^"*"̂
(/)

LO

LO

(2i

<_j
o
Q

182



for the final EBF design aircraft results from the large engine thrust

available which results from the use of a core common with the military engine.

It should be noted that the Model 24C is quite different from the

150 passenger, 3000 foot (915 m) field length final design aircraft, (see Table

2-11). There are differences in fuselage cross section, wing area, aspect

ratio, thrust to weight ratio, and wing loading to name a few. A comparison

of the DOC show the final design aircraft value to be 2.08 <£/ASSM (1.29 <£/ASKM)

and the Model 24C to be 2.15 tf/ASSM (1.34 <£/ASKM). The final design aircraft

is closer to optimum for the short-haul mission, while the Model 24C with its

extra thrust, larger wing, and wider fuselage has a far greater potential

for stretching both range and passenger payload.

In a stretched version of Model 24C, the seating capacity could

increase to 220 seats with a fuselage length increase of only 26 feet (7.9 m),

while the range could be increased to 1500 statute miles (2420 km). Previous

Douglas studies have shown that with such an increase in design range and

passenger payload the direct operating costs could be reduced by 63 percent.

Economic studies (Volume V) showed that an aircraft such as the

Model 24C would cost approximately 5 percent less in a combined military/

commercial program and that airframe development costs could be reduced by

approximately 50 percent. These costs are based on a 400 unit production for

the commercial aircraft and assumed engine commonality only in the engine core.

These costs do not include engine development. The commercial program, for
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noise reasons, w o u l d have to bear the costs of development of a h igh bypass

ratio var iable pi tch fan engine thus reducing somewhat the potential cost

savings . The attractiveness of commonality could obviously be enhanced if

the mi l i t a ry and commercial aircraft could be so designed as to use the

same power plant.

184



4.0 QCSEE COORDINATION AND ENGINE SELECTION

4.1 Engine/Airframe Coordination

Close coordination was maintained with the QCSEE study program

engine contractors. A primary purpose was to mutually identify the most

suitable engine for the various propulsive lift concepts studied. The engine

companies provided parametric engine data. These data were evaluated and

engine cycles selected for the study aircraft. Part of this coordination

was providing the engine companies with information on engine/airframe inter-

faces. One of the items 'of concern was the engine thrust response required

for powered lift aircraft. The NASA Ames S-16 three degree of freedom moving

base simulator was used by NASA, McDonnell Douglas and Lockheed pilots to

evaluate different engine response rates. The conclusion reached by McDonnell

Douglas is that rapid engine response is beneficial. Some form of warning to

the pilot showing that an engine failure had occurred is necessary since the

engine instrumentation was outside of the pilot's normal field of view. It

would be difficult for the pilot to initially differentiate between a gust and

engine failure, and if stability augmentation was used there could be a time

delay unless some warning occurred. It is possible the warning could be tied

into existing engine instrumentation.

4.2 Engine Selection

4.2.1 Engine Selection Criteria. - Studies and analyses were conducted to

select propulsion systems for two basic purposes. The first was to evaluate

the parametric engines of the "Quiet Clean STOL Experimental Engine Study

Program" (QCSEE) Task I. The second purpose was to define the propulsion

systems for further study and use in the Douglas aircraft study.

185



The engine selection criteria used to fulfill the basic study

objectives were:

(1) A design noise level of 95 EPNdB on a 500 foot (152 m)

sideline for the aircraft.

(2) Minimum aircraft direct operating cost for a 575 statute

mile (926 km) range mission.

(3) Engine installations that are suitable for commercial airline

operations and practices.

The first criterion is established in the RFP and represents a

noise level that is significantly below present aircraft levels. It is a

common belief that aircraft noise levels of this magnitude may be required in

order to have corrmunity acceptance of aircraft at terminals close to populated

areas.

The second criterion is used to identify the most economical engine

cycle. Since the short haul aircraft will have to compete with other means

of air and ground transportation, minimizing the operating costs is essential.

Direct operating costs were used to identify the most suitable engine for a

given powered-lift system.

The third criterion is used to ensure that the selected engines,

if.developed, could be used by commercial airlines. For this, judgment,

based on past and present experience and knowledge of airline operations and

practices, was applied. As part of this effort, study results were reviewed

with airline personnel for their comments.
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4.2.2 Selection Approach. - Engines were selected from quantitative and

qualitative assessments for each lift concept. The engines defined by the

two QCSEE engine contractors were evaluated, and typical engines were used to

determine installation factors. Douglas conducted these engine installation

studies to make realistic evaluations of the propulsion system on a commercial

aircraft. Conceptual design drawings were made in sufficient detail to enable

reliable performance and weight estimates to be made. Aerodynamic lines are

based on the present design practices used on the DC-10, with modifications

for differences associated with the short haul aircraft. Since there are no

known means to significantly improve subsonic nacelle aerodynamics, existing

technology was employed.

The installation configurations also provide required volume allo-

cations for the power plant subsystems including ice protection, hydraulic

pumps, generators, starters, actuators, and pneumatic ducting. Inherent in

the configurations is the ability to meet present commercial aircraft require-

ments for maintenance and inspection while achieving maximum nacelle and

pylon commonality to minimize production and spare parts costs. The weight

estimates include allowances for all necessary components, accessories, and

access panels, though these are not all indicated on the drawings.

The installed performance and weights based on these installation

drawings were used in aircraft studies to determine relative direct operating

cost. The direct operating cost calculations are with the modified ATA

formula specified by NASA and used throughout this volume.

The cycle parameters which were varied were fan pressure ratio,

turbine inlet temperature, overall pressure ratio, and primary exhaust velocity.
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(With these values specified, the bypass ratio becomes a dependent variable.)

Installed engine performance for each cycle combination considered was

estimated from the uninstalled engine performance values supplied by the

engine manufacturer and available at the time the study was conducted. Losses

included were inlet and fan duct pressure drop, bleed, exhaust nozzle losses,

and drag of the engine pod and pylon.

4.2.3 Engines for Final Design Aircraft. - The engines selected for the final

design aircraft and their respective thrust levels are shown in Table 4-1.

Thrust level determination is described in Section 2.2 and Appendix B. Engine

cycle selection is discussed below.

4.2.4 Engines for EBF Aircraft. - The goal that the aircraft sideline noise

not exceed 95 EPNdB at 500 foot (152 m) was the most influential factor in

determining the engine cycle for aircraft using the EBF lifting system. By

the method currently used to estimate flap interaction noise level (Appendix C),

the magnitude of this source is 95 PNdB when the fan exhaust velocity is about

650 ft/sec (198 m/sec). At an aircraft speed of 0.15 Mach number, this

velocity is reached with a 1.25 fan pressure ratio, as shown in Figure 4-1.

For the engine selection study, all engine installations were designed to meet

the 95 EPNdB limit. A velocity decayer nozzle was used when the fan pressure

ratio was greater than 1.25 to reduce the exhaust impingement velocities on

the flap.

For engines with variable pitch fans from 1.15 to 1.25 pressure

ratio, and with fixed-pitch fans from 1.3 to 1.5, installed performance and

weight were estimated, and direct operating costs calculated using the modified

ATA equation. The variation of DOC with engine fan pressure ratio is shown
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î
CO

CM

^-r—
cn
* — '

0
o
o
CO

0
LO
1—

o
•

cr>

LO

r~

co
CM

1

^^CO
CM
o
o_

Li_
s:

0
o
LO

ft

r*^
?
^
0
LO
1 —

ro
CO

CM

cn
r-*
CM

Z ,̂

0
CD
O

"*

O
LO
^~

O
•

cn

LO

•~

co
CM

1
r-.
CO
CM

CL

u_
s:

189



FIGURE 4-1; FAN EXHAUST VELOCITY
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in Figure 4-2.

An engine with a variable-pitch fan with a fan pressure ratio of

1.25 resulted in the lowest DOC. The variable-pitch fan type engine has a

lower installed weight because the variable-pitch feature permits the

elimination of a thrust reverser.

Figure 4-3 shows the effect of varying turbine inlet temperature,

overall pressure ratio, and primary velocity. The optimum turbine inlet

temperature is in the 2200-2400°F (1200-1320°C) range. Increasing turbine

inlet temperature above this range does not increase performance or thrust/

weight significantly because of the necessity of compromising the engine

cycle to keep the primary exhaust velocity low. Also, the higher turbine

inlet temperatures result in greater maintenance costs.

DOC is relatively insensitive to overall pressure ratio as shown

in Figure 4-3. A primary jet velocity of 900 ft/sec (274 m/sec) resulted.in

the lowest DOC. It is believed that this velocity can be compatible with a

95 EPNdB noise limit, if the primary jet is directed so as not to impinge

on the flap at takeoff.

The study results show that the variable-pitch fan engine with a fan

pressure ratio of 1.25 is the best engine of those considered for the externally

blown flap aircraft. Increasing the fan pressure ratio above 1.25 will further

reduce the direct operating cost by reducing the sensitivity of performance

to inlet and nozzle losses and allowing increased cruise speeds. The limit

of 1.25 was established due to the flap interaction noise. It is too early to

state unequivocally that this is a true limit due to the numerous possibilities

of modifying the flap to reduce the noise source strength.
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FIGURE 4-2. EFFECT OF FAN PRESSURE RATIO ON DIRECT OPERATING COST
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FIGURE 4-3. EFFECT OF ENGINE CYCLE PARAMETERS
ON DIRECT OPERATING COST OF
EBF AIRCRAFT
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4.2.5 Engine for Upper Surface Blown Flap. - The highest fan pressure ratio

consistent with the noise level requirement will result in the minimum DOC,

over the range considered. Early model tests indicated some shielding effect

from the wing for flyover noise. If subsequent studies show the wing also

provides some shielding for sideline noise, the fan pressure ratio may go

as high as 1.3 and still meet a 95 EPNdB requirement. It was assumed that

this will be the case, and an engine with a fan pressure ratio of 1.3 was

used for the upper surface blowing aircraft.

While a variable-pitch fan shows an advantage over a fixed-pitch

fan for an EBF installation because of the reverser weight saving, the

situation is different for the USB installation. In this case a mixed flow

engine exhaust was found to provide the lighest weight approach since the

complexity of separating the fan and the primary flow during reverse operation

eliminates the weight savings of the variable pitch feature. A fixed-pitch

engine was selected to minimize DOC for the USB.

4.2.6 Engine for Mechanical Flap. - The mechanical flap airplane was designed

for a two-engine configuration, which put a constraint on the engine selection

that was not a factor for the powered-lift systems. This was a limit on the

maximum diameter, involving two factors: (1) the maximum diameter which can

be shipped routinely and (2) engine ground clearance. The maximum diameter

which can be shipped without special permits in many states is 96 inches

(2.44, m). This proved to be a more difficult requirement than the ground

clearance for which a certain amount of flexibility is possible. The maximum

diameter limitation was imposed on the DC-10 and is expected to be mandatory

with short haul aircraft with their more widely distributed airports with

minimum maintenance facilities.
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The engine which meets the diameter limitation in the 36,000 pound

(160,000 N) thrust range is one with a fan pressure ratio of 1.5.

There may be payload/field length combinations where a four engine

MF aircraft using lower fan pressure ratio engines and a corresponding lower

acoustic treatment level would be competitive with a two engine aircraft with

1.5 FPR engines. This could be a subject for subsequent study.

4.2.7 Engines for Augmentor Wing. - The selection of the fan pressure ratio

for the augmentor wing aircraft is constrained by the available duct volume

in the wing and pylon. (The ducting installation is discussed in Appendix D.)

Past studies and those conducted as a part of this contracted effort have

shown that for a two-flow engine in which all the fan air is ducted to the

wing (fan thrust is about 80 percent of the total thrust), a fan pressure

ratio of 3.0 can barely be accommodated. Reducing the pressure increases the

duct volume required. Boeing design studies under NASA Contract (Reference 1)

show that augmentor nozzles with pressure ratios at or below 2.8 are acceptable

for noise. Since the drop between the engine and augmentor nozzles is about

14 percent, the fan pressure ratio of 3.0 results in a pressure ratio of 2.6

at the augmentor nozzles. For the two-flow engines, it is concluded that a

fan pressure ratio of 3.0 is acceptable whereas a value of 2.5 would result

in significant wing penalties.

The effect of other augmentor wing engine cycles parameters on DOC

is shown in Figure 4-4. The augmentor wing engine should have the highest

primary jet velocity consistent with meeting the noise limit. The direct

operating cost varies insignificantly between an overall pressure ratio of
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20 to 25. The higher value of overall pressure ratio implies some benefit

for use over longer ranges.

The complexity of the three-flow engine is greater than that of

the two-flow engine. Although the duct volume limitation in the wing is

relieved, the same components in the wing and pylon are required, with their

size somewhat reduced. Within the engine pod, the complexity increases.

Douglas studies show that a three-flow engine will require a thrust reverser

for the wing flow (the forward thrust of this stream is 40 to 60 percent

of the total), and for the low pressure fan flow (50 to 30 percent of the

total), and possibly a spoiler on the primary flow as well. In a two-flow

engine, the cascades for reversing the wing flow occupy the nacelle space

ordinarily used for low pressure fan reverser cascades. A suitable means for

reversing the fan flow in combination with the forward thrust wing flow has

not been identified. Another area of increased installation complexity is

the access to the gas generator. The means by which visual inspections can

be readily accomplished are complicated on the three-flow engine because of

the multiple ducting required.

The three-flow engine is different from any known turbofan engine

in present use. This in itself presents the possibility of unforeseen

difficulties which may result in significant performance or weight penalties.

For example, a back pressure change on the wing flow will affect the forward

thrust fan flow due to aerodynamic coupling. The proper exit area match can

be accomplished at takeoff power setting by a trial and error process. The

discharge coefficients of the augmentor flow and the fan flow, however, are

likely to change at a different rate as power is reduced. This combined
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with the increased inlet distortion characteristic of STOL aircraft due to

the wing upwash may result in engine dynamic stability problems.

Since the two-flow engine can be integrated with the airframe in

a reasonable manner, there was no reason to prefer the three flow engine

with its increased complexity.
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5.0 AIRLINE COORDINATION

In order to ensure airline realism in the study aircraft, four air-

lines evaluated the candidate designs and applied airline requirements to the

aircraft designs and layouts. In order to obtain an airline cross section in

the evaluation, two trunk lines (American and United Air Lines), a local

carrier (Allegheny Airlines) and an intra-state airline (Air California) were

contracted by Douglas.

Communication was maintained with all airline subcontractors

throughout the study in order to ensure this realism in the aircraft designs.

The airline comments have been most helpful and instructive in the study work.

A primary impact has been in the structuring of the interior arrangements of

the aircraft. Strong suggestions concerning the operational aspects of STOL

aircraft were also received.

Some of the major operational suggestions resulting from this

coordination are:

o It is believed technically possible to certify the STOL aircraft

with a flight crew of two.

o STOL aircraft must have unusually high reliability because of

their economic vulnerability to other modes of transportation

in the event of excessive delay time,

o A strong preference has been expressed for low wing aircraft.

This comment is primarily motivated by customer appeal

considerations and ditching requirements.

A summary of the more detailed airline comments which affect the

vehicle configuration are summarized as follows:
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WING LOCATION

o A high wing configuration is undesirable from the ditching
standpoint.

o Overhead hatches are required for escape with a high wing.
(not incorporated in study aircraft).

o High wing disadvantages may be compensated to some extent by
greater passenger appeal, due to the improved view.

o Airframe maintenance is easier and more economical with
low wings.

ENGINE/FUSELAGE CONFIGURATION

o Additional cabin insulation may be needed because of the
proximity of the engines to the passenger cabin.

o Shielding may be needed to protect the passengers against
failure of rotating engine components.

o Engine foreign object damage is more likely with a low wing.

o Engine intakes should be well clear of the passenger entry
door for safety and rapid passenger loading.

o Areas of specific consideration but no distinct airline
requirements

- Wing mounted engines are preferred

- Fuselage mounted engines are better for boarding
and evacuation

- Engine access for maintenance should be at eye level

- Engine removal - straight down

PASSENGER SEATING ARRANGEMENT

o Flexibility in seat pitch between 34-38 inch (86-97 cm) is
desirable. 34-inch (86 cm) pitch with 20 inch (51 cm) aisle is
below current standard for short haul operations. Seat pitch
requirements will vary with individual airline operations.

o Provision for movable cabin divider is required

o Single 20-inch (51 cm) aisle is satisfactory depending on
capacity

o All-coach 6-abreast single aisle seating is acceptable but dual
aisle is preferred.
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o 5-abreast seating with doubles and triples similar to DC-9
is acceptable

PASSENGER AMENITIES

o Lavatories required forward and aft;

- Minimum 2 lavatories for 75 passengers

- One lavatory/50 passengers for one hour flight,
one lavatory/40 passengers for more than one hour

- Two lavatories minimum required for 100 passengers,
with one lavatory forward and two aft desired.

o Buffets required forward and aft;

- Two buffets required with space for supplies, meals
and beverages for 100 passengers.

- Two coffee/beverage units required per 100 passengers
for up to one hour. For more than one hour add hot
meal service.

o Coat space required;

- One required near each main entrance with one inch of
coat rod per passenger.

o Air stairs are necessary at main passenger entries.

DOORWAYS

o FAR should permit 2 type "A" exits for each side with credit for
a total of 4 type A exits. Present rules do not permit double
width door fed from a single aisle.

o Minimum door width is 34 inches (86 cm) for a passenger
carrying a.bag.

FLIGHT CREW

o With adequate systems aids the airplane should be certified for
operation with 2 crew members.

o Design systems for two man crew, calculate DOC for both two
and three man crew.

BAGGAGE AND FREIGHT

o Rapid baggage loading and unloading capability with convenient
passenger drop-off and pick-up is desired.
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o Carry-on garment and baggage provisions are desirable. These
provisions may be limited to under seat and coat space provision
only or combined with enclosed overhead stowage depending on
individual airline requirements.

o Cargo Provisions

- Should not compromise passenger compartment.

- Cargo containers are not required, but could be optional
with consideration for interchangeability with other
aircraft models.

- Weight and balance characteristics should be compatible with
varying passenger/cargo configurations.

- Unlikely to be used with quick turn-around operation.

- Provision for mail is required.

These requirements and suggestions have been incorporated where

possible in the aircraft design arrangements as described in Section 2.2.3.
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6.0 STOL TECHNOLOGY ASSESSMENT

The broad nature of this study coupled with the in-depth analysis

of the aircraft systems, provides an excellent basis for an assessment of

STOL. technology. In the following paragraphs, the assessment is divided into

"critical technology" requirements which must be satisfied before a STOL

system can be implemented and "high payoff technology" which will yield

significant benefits if developed. This division is in keeping with the

basic study objectives presented in the introduction.

6.1 Critical Technology

6.1.1 Critical Acoustic Technology. -

Noise Design Criteria - The single most important technical problem facing

the aircraft industry today is reducing aircraft noise. The most widely

used aircraft community-noise design criterion available today is Part 36 of

the FAR with the effective perceived noise level (EPNdB) as the noise-rating

scale. While this criterion is clearly an improvement over the previous

chaotic situation, it is inadequate for future airplanes, especially those

intended to serve a new short-haul market. Although there are at present

certification noise standards for transport aircraft, these standards do not

take into account community acceptance factors such as the psychoacoustics -

the characteristics and the duration and time frequency of the noise source.

The present three-point measuring system may be acceptable, however, if

appropriate adjustments of the distances to the measuring points reflects the

community acceptance aspects of future short-haul STOL aircraft operating .

from airports near population centers. The 500 foot (152 m) sideline criteria

used for this study is clearly inadequate from a community acceptance standpoint.
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Research is required to establish proper noise-rating scales and

noise-measurement locations to ensure minimum community reaction and to

permit more accurate evaluation of alternative aircraft designs. The research

should include laboratory and operational evaluation and social surveys with

the goal of relating severity of annoyance and number of people annoyed to

appropriate aircraft design parameters.

Noise of Powered-Lift Systems - For airplanes that generate propulsive lift

by blowing on, over, or through the wing and flap surfaces, significant noise

is generated by mechanisms that today are poorly understood. No effective,

economically feasible method has been developed to achieve substantial re-

ductions in any of these sources of noise. Preliminary indications are that

large suppressions may well be needed to achieve acceptable community noise

levels. Laboratory and large scale tests (static and flyover) are required

to identify sources of noise and their directivity patterns under and to the

side of the flight paths, and to develop practical noise-suppression systems.

6.1.2 Critical Propulsion System Technology. - The various propulsive lift

concepts have different technology advancement requirements. General improve-

ments such as lighter, quieter engines are beneficial to all transport air-

craft and are not identified here.

Variable Pitch Fan Technology - All of the lift concepts except the externally

blown flap use turbomachinery essentially similar'to existing turbofan engines

albeit with quieter fans. The externally blown flap, however, shows perfor-

mance improvements by the use of a variable pitch fan. This type of fan has

been developed for low thrust and low fan pressure ratio by the Europeans

and model fan testing has been conducted in the U. S. Technology
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advancement is required to establish the capability to produce variable

pitch fan engines of the thrust level required for short haul transport air-

craft. Concomitant with the need to advance the technology is the need to.

demonstrate that a variable pitch fan will perform as intended with flight-

weight hardware. Such a demonstration would be required before such an

engine could be committed to production.

The variable pitch fan requires a variable area nozzle to change

the engine match between takeoff and cruise. In addition, this variable

area nozzle should open and function as an inlet in the reverse thrust mode.

The use of a variable area nozzle changes the design requirements. Current

fixed-area nozzles are designed to maintain a fairly constant discharge

coefficient to obtain good cruise performance. The variable area feature of

the high bypass ratio engine eliminates this requirement, and permits a more

flexible approach to nozzle design. The means of using this to advantage

requires exploration.

Augmentor Wing Ducting and Nozzle System - The augmentor wing requires tech-

nology advancement in order to be able to design the wing flow ducting with

its multiplicity of discharge slots to assure the necessary level of noise

reduction. Since the wing nozzles have a large perimeter-to-flow-area ratio,

the means for engine matching needs to be established. The effects of thermal

expansion, duct pressure and wing deflections on the engine match should

be determined. This system also requires a flow diverter valve for transition

between the powered lift and cruise modes. The valve must maintain its

functional position in the event of an actuation system failure. Pressure

losses need to be minimized and inspection and maintenance provision included.
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Thrust Reverser - All lift concepts require advancements in thrust reversing

technology. To improve low speed reversing capabilities, directional flow con-

trol to minimize re-ingestion and ground impingement at very low forward speeds

is needed. Each of the lift concepts requires a different type of reverser.

a. The externally blown flap aircraft uses fan pitch change to obtain

reverse thrust. The variable area fan nozzle associated with the

variable pitch engine must be designed to act as an inlet in the

reverse thrust mode.

b. The augmentor wing uses a low bypass ratio engine and has a takeoff

thrust-to-gross weight ratio of about 0.4. With only fan flow

reversing and an effectiveness of 50 percent, the static reverse

thrust-to-aircraft gross weight would be only 8 percent. This com-

bination of a relatively low bypass ratio and aircraft thrust loading

results in the need for both fan and primary flow reversers with a

high degree of efflux directional control. The augmentor wing fan

reverser also requires a forward thrust flow blocker which is remote

from the reverser cascades. This flow blocker must be synchronized

with the reverser cascade covers.

c. The mechanical flap aircraft requires a fan thrust reverser similar

to present CTOL concepts except for the need to have improved low

speed capabilities of minimum re-ingestion and flow ground impinge-

ment.

d. The upper surface blowing concept can use either a fan-only

thrust reverser or a reverser in the common fan and primary

duct section. A fan-only reverser could be similar to that

required for the mechanical flap aircraft. A common-duct

reverser was selected in this study since the required variable
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area nozzle can also function as a reverser/flow diverter.

Although common-nozzle reversers are in existence, present

designs are not suitable for operation below 60 knots (31 m/sec),

and the possibility of combining the thrust reverser and

variable area nozzle appears attractive for the USB installation.

Upper Surface Blowing - Further investigations are required to define nozzle

shapes, chordwise nozzle positions and Coanda flow turning relationships

which produce acceptably low cruise thrust scrubbing losses and good high-

lift characteristics at low noise levels. Boundary layer control on the

trailing edge flap may be useful in achieving the high turning angles

necessary for landing. Chordwise fences used on the cambered upper surface

of the wing/flap may help to achieve a more two-dimensional Coanda flow with

resulting higher turning angles. USB wash effects on the emoennage, with

engines on and one engine out, should be evaluated. Both chordwise and span-

wise BLC on the leading edge should be investigated for achieving high Ci „max
values.

6.2 High Payoff Technology

6.2.1 High Payoff Propulsion System Technology. -

Emissions - Although aircraft operations add only a minor amount of pollutants

to the atmosphere, primarily during ground operations and while flying at low

altitudes, the release of engine exhaust emissions has become a major

environmental issue. The presence of irritating oxidants in the urban atmos-

phere has been ascribed to the interaction of hydrocarbons (HC) and nitrogen

oxides (NOX) in the presence of sunlight. It may be easier to reduce emissions

of hydrocarbons than NOX, and such action may be sufficient to reduce smog
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irritants. Additional studies should be made to determine the impact of

NOX on the environment, in the presence of varying amounts of reactive hydro-

carbons. Engine combustor design, and research and development, should be

continued on a high priority basis directed toward the reduction of all

harmful jet engine emissions. Special emphasis should be placed on the

reduction of nitrogen oxides. One possible way to control NOX emissions is

to restrict the cycle pressure ratio of the engines. However, restricting

the pressure ratio below that required by other considerations will have a

serious impact on the performance of the airplane and, therefore, the direct

operating costs to the airlines. A study should be made to assess direct

operating, cost as a function of NOX control by pressure ratio variations.

6.2.2 High Payoff Aerodynamic Technology. -

Ground Effect - Accurate knowledge of the ground effects during takeoff and

landing has a major impact on the design of propulsive lift systems.

Additional research is required to determine the influence of ground effect

on the landing flare maneuver, the use of direct lift control systems, the

margin of approach speed to stall speed, and available load factor required

for conmercial operations. The aircraft with shorter design field lengths

tend to be more sensitive to ground effects stnce their design wing loadings

are limited by landing performance. In addition to weight and cost penalties

associated with these low wing loadings, ride quality is only marginal in

turbulent air. At present, no upper surface blowing (USB) high lift aero-

dynamic wind tunnel data in-ground effect are available. Test information is

needed pertaining to the stability of the USB Coanda turning process in

ground effect and in the dynamic ground effect maneuver.
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Hybrid Configurations - Hybrid configurations using a combination of high

lift concepts should be investigated. For example, as stated in the previous

section, the USB with blowing on the trailing edge flap is essentially a

combination of USB with the jet flap principle. This hybrid could possibly

produce, high turning efficiencies.

Canard configurations could offer advantages in longitudinal trim

and maneuvering capability. Control configured vehicles utilizing a combin-

ation of controls such as wing flaps and canards might prove very efficient.

Studies should be made to determine whether canard and multiple control

systems can be coupled mechanically or electronically to achieve longitudinal

control throughout the aircraft lift range. Canard-wing position and various

planform studies are necessary to determine configurations with acceptable

canard - wing Interference effects. Use of sensors and electronically-

activated flaps, canard surfaces, elevators, and engine thrust may be a

means to provide the highest possible climb rate to minimize climb-out noise

footprints.

6.2.3 High Payoff Structure and Materials Technology. - Reduction of

structural weight through the application of new emerging materials has a

great potential for improvement of system economics, as demonstrated in

Reference 5. The weight saving potential of advanced composites is signifi-

cantly greater than that of other materials, as discussed in the Structures

and Materials section of that report. As discussed in Reference 6, principal

barriers to extensive application of advanced composites to aircraft structures

are high costs and lack of experience for broad applications on primary

structure.
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An area that requires attention is the validation of advanced

composites to promote acceptability, both to manufacturers and airlines.

Generally, this validation will require implementation of a wide range of

programs that develop production and operating experience. Expected payoffs

for this technology application include reduced weight, improved manufactur-

ability, and increased reliability through improved fatigue behavior. However,

if an economically viable composite aircraft is to evolve, a breakthrough in

composite economics is required.

6.2.4 Ice Protection. - All commercial aircraft for which all-weather

certification is desired must comply with the ice protection provisions of

Part 25 of the FAA regulations. STOL aircraft will normally fly shorter ranges

than CTOL aircraft and thus spend a higher percent of their operating time

at lower altitudes where severe icing is more frequently encountered. Thus,

icing conditions which exceed the specified standards will be encountered

more often. For example, freezing rain/drizzle, that is found more often at

the lower altitudes, is not covered in the current regulations. There is

concern, therefore, that STOL aircraft requirements for visibility, control-

lability, and performance may be more sensitive to ice accumulation than

CTOL aircraft and that current regulations may not provide proper safety

margins for STOL.

The meteorological standards and methods of showing compliance

with safety regulations will require a thorough study as applied to the new

STOL aircraft. Tests are also required to show the effects of icing on the

various lift system components, such as: leading edge flaps and slats, high

deflection trailing edge flaps, direct lift and direct drag controls, and the

leading edge of the augmentor wing upper flap.
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7.0 CONCLUSIONS

This study has provided a broad basis upon which each aircraft

concept was evaluated in the environment of a complete short haul transpor-

tation system. In addition, an in-depth analysis in each engineering

discipline provided a basis of validity in the aircraft designs. Airline

subcontractors and engine company discourse also helped to provide design

realism. It is felt therefore that the conclusions drawn from the study are

valid and that they will serve as a guide to the development of the short

haul market.

Major conclusions of the study are:

1. Work reported in this and the other companion volumes indicates

that the first generation STOL/short haul aircraft should be

designed to no less than a 3000 foot (914 m) field length

and to a payload of 150 passengers or more. The economic

penalties for designing to 1500 to 2000 foot (457 to 610 m)

field lengths are large and the definitive requirement for this

type of STOL performance is not well substantiated. The

passenger size is primarily a tradeoff between frequency of

service and operating economics.

2. The'sensitivity of aircraft operating costs to design noise

level places a high priority on continuing research directed

toward the development of accurate methods of predicting the

levels and spectral content of STOL aircraft noise sources

and the development of efficient methods of reducing the noise

from dominant sources. Noise radiated from the powered lift
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system is currently the least understood of the major noise

sources, and its study warrants the most emphasis. Large-

scale static and flight testing of powered lift systems is

recommended to improve the understanding of powered-lift noise.

3. The externally blown flap, upper surface blowing and mechanical

flap systems are competitive at the 3000 foot (914 m) field

lengths and require more detailed study in order to select the

best high lift approach. Augmentor wing designs are the most

complex systems evaluated in the study.

4. A new, quiet, clean, high bypass ratio, variable-pitch fan

engine is required for the STOL system. This engine is most

applicable to the EBF, upper surface blowing and mechanical

flap systems.

Additional conclusions are:

o For all STOL aircraft studied, significant reductions in community

noise are possible by the selective use of operational techniques

as discussed in Volume III of this report. These techniques can

be highly variable depending upon specific airport environments.

For the EBF and USB systems additional considerations should be

given to the use of configuration changes during takeoff because

of the prominence of propulsive lift noise.

o Weight growth factors (e.g., change in gross weight per change

in dead weight) are greater for STOL aircraft than for con-

ventional CTOL aircraft. Thus larger weight reductions and
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economic payloffs are possible from weight savings techniques

(e.g., composite applications) for STOL aircraft than for

CTOL designs.

o Ground effects for propulsive lift systems based on wind tunnel

data are large and adverse, particularly in the landing mode.

Until these effects are better understood, high wing designs

such as those proposed in this report are considered to be the

more conservative approach.

o STOL certification requirements need to be developed and must be

firm before a STOL system can be implemented. The nature of

many certification requirements is such that a flight demon-

stration program will be necessary.

o The greatest STOL technology gaps are for the development of

the aerodynamic and acoustic characteristics of the upper surface

blowing concept and for the reduction of flap interaction noise

for the externally blown flap concept.

o The airlines believe that short haul aircraft can be certified

for a flight crew of two with adequate systems aids. Emphasis

should therefore be made to increase cockpit automation for

checklist procedures and system control to reduce crew work load.

o Short haul aircraft must have unusually high dispatch reliability

because of their vulnerability to competitive modes of transpor-

tation in the event of excessive time delays. As a design goal,

213



more maintenance action should be deferrable for short haul

aircraft than for long haul aircraft because of the short stage

lengths of the short haul system.

o The extensive use of advanced composite materials will result

in significantly lower aircraft weight and a slight decrease in

operating cost as compared to a conventional metal structure

aircraft based on preliminary study results. Offsetting these

advantages are the high risks involved in the development of

new primary structure materials.
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APPENDIX A

PRELIMINARY BASEPOINT AIRCRAFT

To insure a high degree of realism in the parametric aircraft,

preliminary basepoint aircraft designs were generated for the matrix mid-

point design requirements of 100 passengers and 2000 foot (610 meters) field

length for each of the lift systems:

Externally blown flap (EBF)

Upper surface blowing (USB)

Augmentor wing (AW)

Internally blown flap (IBF)

Mechanical flap (MF)

For the EBF and AW aircraft both General Electric Company and Detroit Diesel

Allison Task I QCSEE engines were used making a total of seven hard point

design aircraft. An additional basepoint CTOL design was studied. The

selection of the proper QCSEE Study engine for each case is discussed in

Section 4.0 of the report.

These basepoint aircraft incorporate the results of coordination

with the airline subcontractors as discussed in Section 5.0.

Three-view drawings of these designs are shown in Figures A-l through

A-3 for the externally blown flap,.upper surface blowing and augmentor

wing aircraft, respectively. A performance summary of these hard point

aircraft including the CTOL design is shown in Table A-l.

The basepoint airplanes were designed for a cruise speed of not less

than M = 0.7 and a range of 575 statute miles (926 km). Each airplane was

designed to meet the noise target of 95 PNdB at a sideline distance of 500

feet (152 meters).
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APPENDIX B

AERODYNAMIC SUBSTANTIATION - FINAL DESIGN AIRCRAFT

B,1 PERFORMANCE ANALYSIS METHODS

B.I.I Takeoff

STOL takeoff performance was estimated by calculating the time

history of the takeoff flight path. This method allows for recognition of

changes in aerodynamic characteristics and flight limitations which occur

during the maneuver. The calculations are governed by the following

assumptions:

1. The aircraft is assumed to be a point mass, i.e., second

order rotational dynamics have been ignored and the analysis is essentially

two dimensional.

2. The forces acting on the aircraft are summed in the longitudinal

and normal directions and are a function of true airspeed, flight path angle,

angle of attack and height above the ground.

3. Any restriction on speed, acceleration, attitude, etc. may

be imposed as desired.

4. The path is generated by numerical integration of the forces

acting on the aircraft over small increments in time using a digital computer.

The time history of a typical takeoff case is shown in Figure B-l.

In this example, engine failure occurs prior to the start of rotation and

limitations on angle of attack and longitudinal acceleration are recognized

during the air run.

Takeoff field length is defined as the greater of:

1. 1.15 x all engine takeoff distance to 35 foot (10.7 m) height.

2. Distance to 35 foot (10.7 m) height with critical engine failure
at V-|.

3. Distance to accelerate to V-, and then decelerate to a stop.
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The following constraints were used in calculating the takeoff

field lengths for the final design aircraft.

1. Rolling friction, y = 0.025

2. Fuselage angle of attack - ground limit = 15°

3. Rotation rate, e - 5°/sec

4. C, - 90% of Ci „ out of ground effect
L fflaX

5. C, - 100% of Ci av in ground effectL max
6. No deceleration during air run to 35 feet (10.7 m) height

7. Five knot (2.57 m/sec) early rotation may not give

greater takeoff field length

8. Accelerate-stop distance based on three second delay after

reaching V-j followed by a deceleration of 0.4g to a stop.

The takeoff computer program, in addition to calculating takeoff

time histories, will automatically vary rotation and decision speeds to de-

termine takeoff field lengths as defined above and illustrated in Figure B-2.

Additional capabilities exercised during the sizing of the final design

aircraft include optimization of flap angle and the ability to select the

thrust loading required for a given wing loading and field length. Takeoff

performance was calculated for sea level, 95°F (35°C) conditions.

B.I.2 Landing

The methods and assumptions used in calculating landing field

lengths are essentially the same as those used for takeoff performance. The

landing maneuver consists of three segments; approach, flare and ground roll

as shown in Figure B-3. Landing field length is defined as the landing dis-

tance over a 35-foot (10.7 m) obstacle divided by a 0.6 factor, i.e., a 3000

foot (914 m) field length requires a landing distance of 1800 feet (549 m).
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FIGURE B-2. TAKEOFF FIELD LENGTH DEFINITION
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Approach margins, selected to provide adequate maneuver capabilities in the

event of an engine failure are summarized in Table B-1 for the nine final

design aircraft. These margins in addition to the 900 fpm (4.57 m/sec)

approach sink rate define the approach conditions.

The flare maneuver is governed by the following constraints:

1. Fuselage angle of attack - ground limit = 15°

2. Rotation rate, - 5°/sec

3. C, - 100% of C. in ground effect
Siax

A typical flare time history is shown in Figure B-4. The flare

maneuver was accomplished by retracting the DLC spoilers at the flare height

and rotating the aircraft at 5°/sec. As the aircraft approaches the ground,

C. and CD tend to drop off due to ground effect.

The ground roll consists of one second at constant speed from touch-

down to deceleration device effectiveness followed by a constant deceleration

of 0.35g to a stop. Landing, like takeoff, was calculated for sea level,

95°F (35°C) conditions.

B.I.3 Aircraft Sizing

The sizing process is illustrated by Figure B-5. Thrust-to-weight

and wing loading combinations which satisfy the takeoff and landing field

length requirements together with parametric weight data (OEW = f(T06W, W/S,

T/W)) , installed thrust and fuel flow maps, and drag and tail sizing informa-

tion are used as inputs to a computer program which performs the aircraft

sizing calculations. This program was specifically developed by Douglas

Aircraft Company during the last five years for the sizing of STOL aircraft

in the advanced design stage. The methods used are essentially those of

classical airplane performance. The mission profile used for airplane sizing
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is shown in Figure B-6. The computer program was used to calculate 2 degree

of freedom mission time histories, iterating on the weight, thrust, drag

and tail sizing data to determine the characteristics such as.TOGW, wing area,

engine size, OEW, fuel burned, etc. of an aircraft which satisfies the re-

quirements of the mission profile with the desired payload. When a solution

has been found, the program calculates a direct operating cost (DOC) break-

down. The computer printout of a mission segment summary and a DOC breakdown

for a typical sizing mission are shown in Figures B-7 and B-8.

Cruise altitude and climb Mach number were optimized to minimize

DOC for the final design aircraft. Mission performance was calculated for

standard day conditions.
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B.2 High Lift Configuration Aerodynamic Characteristics

The high lift system concepts evaluated during Phase II of this

study may be grouped into two broad categories:

I. Externally Blown Flap and Mechanical Flap Systems:

a. Classical externally blown flap (EBF) systems with engines

generally forward of and below the wing, with significant

exhaust impingement on the flaps.

b. Upper surface blowing systems (USB) involving exhaust

flow over the wing and Coanda flow turning.

c. Conventional mechanical flap systems with little or no

exhaust impingement.

II. Internally Blown Flap Systems:

a. Ejector-augmented flap systems currently being developed

as the augmentor wing.

In the first category, the Douglas externally blown flap powered

wind tunnel model data, with appropriate modifications, represents a suitable

baseline for estimating the high lift aerodynamic characteristics of EBF, USB

and the 3000 foot (914 m) field length mechanical flap configuration. The

USB characteristics may be considered to be adequately represented by the

externally blown flap powered data with small adjustments, based on compari-

sons between Douglas EBF data and the USB data presented in Reference 7. The

mechanical flap system characteristics may be derived from unpowered (zero

thrust) externally blown flap configuration data. DC-10 type flap high lift

characteristics were used as the base for the longer field length mechanical

flap configurations.
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The second category contains a variation of the classical jet flap.

The system involves ducting all of the fan airflow through the wing to nozzles

near the flap knee. The ejector-augmented system exhaust is turned partially

by Coanda effect, but primarily by the wal ls ,o f the inclined ejector. This

system delivers a relatively uniform jet sheet to the flap trailing edge.

The ejector-augmented flap system characteristics have been derived from

the ejector-augmented flap configuration data from Reference 8.

B.2.1 Externally Blown Flap. - The externally-blown flap high lift longi-

tudinal aerodynamic characteristics were estimated based on Douglas powered-

model low speed wing tunnel data acquired in the Canadian National Research

Council (NRC) 30 foot V/STOL wind tunnel.

These data were adjusted to reflect a reduction of flap chord/wing

chord ratio from 0.42 on the model to 0.35 on the aircraft using the

Elementary Vortex Distribution (EVD) powered lifting surface theory and related

Douglas static test data. The EVD method was also used to adjust the aspect

ratio from 7.0 to 8.0.

No corrections were applied for Reynold's number. The increase in

Reynold's number to airplane flight values will probably improve the wing

section maximum lift values, especially outboard of the flap and engine

exhaust region, and possibly result in some improvement in aileron effective-

ness at high angles of attack. Accurate evaluation of these effects is not

possible and neglecting them is believed to be conservative.

The trimmed lift and drag characteristics for the aspect ratio 8 EBF

configurations are presented in Figures B-9 through B-17. Figures B-9

through B-14 present the all engines operating case, with and without DLC

spoilers. Figures B-15 through B-17 present an outboard engine out (three
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engines running) case, which are trimmed longitudinally, laterally and

directionally.

B.2.2 Upper Surface Blowing. - A detailed comparison has been made between

the aerodynamic characteristics of the USB configuration presented in

Reference 7 and those of a Douglas EBF model. The results of this comparison

indicate that the major differences are:

(1) The power-on nose down pitching moments produced by the USB

model are lower in magnitude than those of the Douglas EBF

model.

(2) The USB model data indicated a relatively severe loss in

maximum lift capability, presumably due to the interference

effects of the over-wing nacelle installation.

(3) The effectiveness of the USB flap in turning the engine

exhaust decreases sharply at high flap deflections.

The lower values of negative pitching moments (Figure B-18) due to

the application of power for the NASA USB configuration appear to be primarily

due to the shape of the Coanda surface, or flap. The flap is a simple-hinge

plain flap with a trailing edge extension approximately as long as the flap

chord. The extension is tangent to the relatively flat upper surface of the

flap. The resulting surface consists of an abrupt bend (small radius) at the

leading edge of the surface, followed by a long flat run. The loading due to

exhaust turning on this type of shape is probably concentrated near the point

of turning, or the leading edge of the flap. The blown portion of the USB

flap does not extend as far outboard as that for the externally blown flap

configuration, which would further decrease the severity of the nose down

pitching moments due to power in this swept-wing comparison.
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FIGURE B-l 8. COMPARISON OF PITCHING MOMENTS

EBF AND UPPER SURFACE BLOWING CONFIGURATIONS
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The loss in maximum lift capability of the USB configuration

indicated in the comparison shown in Figures B-l 9 and B-20 is probably due to

the interruption of the leading edge device by the over-wing nacelle. It is

anticipated that this loss could be reduced through further developmental

wind tunnel testing.

The USB static turning characteristics presented in NASA LWP 1022

(Reference 7) indicate that a severe loss in turning effectiveness occurs

between the takeoff and landing flap deflection levels. This loss in turning

effectiveness of the NASA model is considered to be a direct result of using

a very small Coanda turning radius on the flap upper surface.

The Douglas USB flap design concept involves flap components similar

to the externally blown flap, but arranged behind the engines to form a

smoothly cambered flap with a large Coanda radius value. The flap outboard

of the engines is identical to that used on the mechanical flap configuration.

It is anticipated that this flap will maintain a high degree of turning

effectiveness over the required ranges of flap deflection and thrust with no

requirement for supplemental slot blowing on^the flap. The similarity between

the Douglas upper surface blowing and externally blown flap contours, in

conjunction with the similar planforms .and engine spanwise locations, suggest

that the pitching moment characteristics for the two concepts will be very

similar.

A full span leadinn pHne siat is provided to prevent flow

separation at high angles of attack,
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It was assumed that the losses in maximum lift due to nacelle

interference can be reduced with further development work but based on

Douglas experience, not entirely eliminated. For this case the upper surface

blowing high lift aerodynamic characteristics are estimated to be identical

to the externally blown flap characteristics except that a penalty of

AC, = -.20 is assumed for all flap deflections,
max

B.2.3 Conventional Mechanical Flap Systems. - Aircraft sized to 3000 foot

(914 m), 4000 foot (1219 m), and CTOL field lengths are included in this

study. THe following paragraphs describe the high lift aerodynamic

character!'stucs used for these field lengths.

B.2.3.1 3000 Foot ( 9 1 4 m ) Field Length - For this field length, it is

appropriate to use high lift aerodynamic characteristics derived from a large

flap chord (high flap power) configuration. Douglas externally blown flap

(Cy = 0) model data with a nested flap chord/wing chord ratio of .42 were used

as the data base. These data were adjusted to reflect the effect of Reynolds

number on maximum lift coefficient, the effect of an increase-in aspect ratio

from 7.0 to 9.0 using the EVD method, -and the following differences between

the mechanical flap configuration and the externally blown flap model.

(1) The mechanical flap aircraft has smaller flap gaps than

those used on the EBF. . . : :

(2) The mechanical flap engines are located further from the

wing than the engines on the EBF configuration.

(3) The mechanical flap u s e s ^ a full span slat leading edge

device, whereas the externally blown flap configuration

uses a leading edge flap inboard and a slat outboard.
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The effect of flap gap on the unpowered model lift, drag, and

pitching moment were extracted from flap arrangement studies conducted on a

Douglas EBF model and applied to the model data used to predict the aero-

dynamic characteristics. The typical effect of reducing the flap gaps to

conventional values is a small increase in lift with no change in the

lift-to-drag ratio.

The nacelle height for the mechanical flap configuration has

been selected so that no exhaust impingement occurs at the highest nominal

takeoff flap setting Up = 25 degrees). It is estimated that the inter-

ference effects resulting from minor exhaust impingement on the landing

flaps can be neglected in this study.

The effect of replacing the inboard leading edge flap with a slat

was estimated using relationships derived from wind tunnel tests of similar

configurations utilizing full span slats.

The effects of Reynolds number on maximum lift coefficient are
»

based on comparisons of low Reynolds number wind tunnel test data and

flight test data for the DC-9 configurations. It is considered appropriate

to apply this adjustment to the unpowered lifting system, whereas it was

not applied for the externally blown flap system. The uncertainties

related to nacelle interference and exhaust flow entrainment on the sen-

sitivity of the externally blown flap system to scale effects led to the

conservative assumption that the Douglas EBF model maximum lift capability

is representative of that which will be demonstrated by the full scale

externally blown flap configuration.
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The estimated longitudinally trimmed lift and drag characteristics

for the 3000 foot (914 m) field length mechanical flap high lift configurations

are presented in Figure B-21. The lateral-directional aerodynamic engine out

trim increments are not included in Figure B-21 since the thrust effects are

handled separately in the performance analysis. The estimated engine out

lateral-directional trim increments used in the performance analysis are

tabulated in Table B-2.

B.2.3.2 4000 Foot (1219m) Field Length - As field length increases, it is

appropriate to use a more conventional mechanical flap configuration. Esti-

mated aerodynamic characteristics for a DC-10 type flap system with a nested

flap chord ratio of .35 and a wing aspect ratio of 9.0 were used as the

data base.

The estimated longitudinally trimmed lift and drag characteristics

for the 4000 foot (1219m) field length mechanical flap high lift configu-

rations are presented in Figure B-22. The lateral-directional trim in-

crements presented in Table B-2 are applicable for these configurations.

B.2.3.3 CTOL Field Length - This field length is representative of existing

mechanical flap configurations. Estimated aerodynamic characteristics for

a DC-10 type flap system with a nested flap chord ratio of .28 and a wing

aspect ratio of 9.0 were used as the data base.

The estimated longitudinally trimned lift and drag characteristics

for the CTOL field length mechanical flap high lift configurations are pre-

sented in Figure B-23. The lateral-directional trim increments presented

in Table B-2 are also applicable for these configurations.
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TABLE B-2

MECHANICAL FLAP ENGINE-OUT LATERAL-DIRECTIONAL TRIM INCREMENTS

IN DRAG COEFFICIENT

"F Cy = 0.25 0.50 0.75

ACD = 0.006 0.017 0.032

10° 0.006 0.017 0.033

20° 0.007 0.018 0.035

B.2.4 Augmentor Wing - The aerodynamic characteristics of the augmentor

wing high lift configurations were estimated using the data from References

1, and 8 through IV. The model test data presented in Reference 8 were

adjusted to reflect the differences between the model and the current study

configurations, and interpreted as outlined in the following paragraphs.
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The model test data presented in Figures 18 through 22 of

Reference 8 were adjusted to reflect the aspect ratio and flap chord ratio

changes, using the EVD method. These corrections were limited to lift, drag

and pitching moment changes in the unseparated wing flow regime. The effects

of body-to-span ratio, flap span ratio, and taper ratio are small and were

estimated to be compensating in nature, and were therefore neglected.

In the non-linear portion of the lift curves, the wing planform

effects on maximum lift were estimated to be negligible. The effect of

reducing the flap chord ratio of 0.27 was evaluated by assuming the change

in maximum lift was one-half the change in flap power at zero angle of attack.

The cruise configuration zero-lift angle of attack for the study

vehicle was based on high speed wind tunnel test results for a similar con-

figuration. The lift curves presented in References were shifted 3.5 degrees

to a lower angle of attack to account for the differences in zero-lift angle

of attack in the cruise configuration.

The static calibration data presented in Referenced were used to

calculate the trailing edge momentum coefficient, Cy-.-r-, as a function of the

isentropic jet momentum coefficient, C, . The sum of the losses in the
Ji

aileron blowing system, due to nozzle Cv, scrubbing and turning, was estimated

to be 19 percent, so the equation for CyTF is:

CpTC = .95 C, $r + .05 C, (.81)TE J. 6. J.

where $G = ideal gross thrust augmentation ratio.

The ejector entrainment ratio, $ , was calculated using one-

dimensional full-mixing ejector theory. The estimated forward speed effects
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on 4>p and $ for the model are small and were neglected.

The ram drag of the augmentor model was estimated and removed

from the adjusted model data, and the results were compared to theoretical

characteristics predicted by the EVD method. The model data, interpreted as

described, did not correlate well with theory. Specifically, the ratio

A(CD-Cy )/ACyTE was not consistent with theory, which suggests that the

forward speed values of $r obtained with the model were significantly largerbi
than those calculated using simple ejector theory. Based on the higher static

augmentation ratios reported in References 10 and 11 for this flap geometry,

the estimated values of CyyF for the adjusted model test data were increased

by 10 percent and again compared to theory. The correlation was improved.

The values of $r and $ used to transform the model data from jet
b • W

momentum coefficient and simple drag coefficient form into trailing edge

momentum and (C^-Cy ) coefficient form were based on the static calibration

data presented in References 10 andl 1.

The full scale airplane values of $G and $ • are based on the

technology reported in Reference 1. The 1978 technology level values of

$P presented in Reference! were adjusted for forward speed effects using

ejector theory and the corresponding values of $w were estimated.

The values of $G and $ used in this study are presented in Table B-3.
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TABLE 8-3

ESTIMATED EJECTOR PARAMETERS

VQ = 80 Knots

Nozzle
6C Pressure Ratio $« $

r h • w

32° 1.6
2.1
2.6

41° 1.6
2.1
2.6

51° 1.6
2.1
2.6

61° 1.6
2.1
2.6

71° 1.6
2.1
2.6

The estimated longitudinally trimmed lift and drag characteristics

for the augmentor wing high lift configurations are presented in Figures B-24

and B-25. A small lateral-directional trim penalty of ACQ = 0.005 due to a

slight engine out asymmetry was included in the engine out performance

calculations.

B.2.5 Ground Effects. - The free air aerodynamic characteristics previously

presented were corrected for the influence of ground by two sets of empirical

equations.

The first set of empirical equations were derived from power-on EBF

model data obtained in the Langley Research Center Wind Tunnel with a moving

ground plane, as reported in Reference 12. The effect of ground on the
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1.38
1.33
1.30

1.34
1.31
1.28

1.31
1.27
1.25

1.28
1.24
1.23

1.25
1.22
1.20

3.05
2.94
2.74

2.96
2.85
2.70

2.90
2.80
2.63

2.80
2.70
2.55

2.68
2.58
2.48
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aerodynamic characteristics including the effect on longitudinal, trim are

summarized in the following equations which are applicable to all the powered

high lift systems.

C, < 1.59 , AC,
Lp, - L

GROUND
EFFECT

= K(0.072)

C, > 1.59 , AC,
Lr L

K[-0 .1(C. -1.59T + 0.072]
Lp.

GROUND
EFFECT

where

if

if

-5.728(h/b - 0.179)

K = e

h = Height above ground

b = wing span

C, = C.
Lr Lh/b =

- (tC ) sin (ac + v)
» h

M = thrust at the trailing edge

v = static thrust turning angle

AC L > 0.096K , ACD = 0

GROUND GROUND
EFFECT EFFECT

GROUND
EFFECT

0.096K2 , ACD

GROUND
EFFECT

ACL -0.096K
2

-2.34 - 0.23U-K)

-, 0.675

"STALL
IN GROUND

'STALL + [22.6 - 0.1 x <5F 1blALL h/b = co L FTOTJ
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where
r

1
^ = °'1372 h /b - 0 5 4 - '

if aSTALL > aSTAL|_ h/b = „ , C, = C

IN GROUND IN SOUND h/b - - asTALLh/b -

1f aSTALL * "STALL, ,, ' CL = 3 / 4 x 1 + 1 / 4 x 2, ,,
IN GROUND h/b = °° max
1IN bKUUINU IN GROUND

where

1 = I C, + ACL
GROUNDJ a

IN GROUND

2 = C, + ACL
GROUNDJ
t r r t L 1 I y hi rtnruiMrt I ~ '

/"STALL V .
yiN GROUND^ "

The second set of empirical equations were derived from power-off

data of Reference 12. The effect of ground on the aerodynamic characteristics

including the effect on longitudinal trim are summarized in the following

equations which are applicable to mechanical flap systems.

0.104K?'5 - 0.27 AC.
L LTO,

AC, = AC. +
TO 3 5

GROUND IUG J'°
EFFECT

where AC. • = incremental tail off lift coefficient due to ground effects.
TOG
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where

C. < 1.0 , AC, = K. (0.045)
» " LTOr

 L

b

CL > 1.0 , ACL = KL I -0.092[cL - l.ol2 + 0.045 }
GO TH ' «- no -J

KL = 1.53 e

-T0&

-h/b(3.5)

GROUND
EFFECT

AC. - 0.08K,
LTOn

 L

(i
2.1

0.8

The in-ground-effect stall angle of attack and C equations of
max

the previous section also apply to mechanical flap systems.

B.3 High Speed Aerodynamic Characteristics

The cruise drag characteristics for the final configurations

have been estimated by the well-established Douglas drag prediction

procedure for jet transport aircraft. The cruise drag consists of the

zero-lift parasite drag and the drag due to lift at Mach numbers below those

at which compressibility effects exist, plus the drag due to compressibility.

The zero-lift parasite drag and the drag due to lift are evaluated at 0.5 Mach

number, but at the Reynolds number corresponding to the design cruise points;

in this way, the compressibility drag, which accounts for any drag increase

at Mach numbers above 0.5, does not include a Reynolds number variation with

Mach number.

A breakdown of the estimated zero-lift parasite drag and a tabulation

of the induced drag efficiency factors for the final configurations are
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shown in Table B-4. The total estimated trimmed cruise-configuration drag

characteristics (zero-lift parasite, lift-dependent, and compressibility

drag) for the final configurations are shown in Figures B-26 through B-29

for a wide range of lift coefficients and Mach numbers.
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FIGURE B-27., ESTIMATED CRUISE-CONFIGURATION DRAG CHARACTERISTICS
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FIGURE B-28?-ESTIMATED CRUISE-CONFIGURATION DRAG CHARACTERISTICS

273



FIGURE B-29. ESTIMATED CRUISE-CONFIGURATION DRAG CHARACTERISTICS
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APPENDIX C

ACOUSTIC ANALYSIS - FINAL DESIGN AIRCRAFT

C.I Introduction

In order to develop acoustical treatment compatible with the noise

goals of the program it was necessary to consider each of the propulsion system

noise sources and the amount of suppression required for each. An airplane

sideline noise goal of 95 EPNdB at 500 feet (152 m) at takeoff power was

used for the final design aircraft. This goal was estimated to be a 2 PNdB

relaxation of the goal of 95 PNdB used for the parametric aircraft because,

at the relatively close 500 foot (152 m) sideline distance, the duration

correction factor in the EPNL calculation reduces the maximum tone corrected

perceived noise level by approximately 2 PNdB.

The following sections discuss the noise sources, duct lining

treatment, 1980 technology factors and the propulsive lift flap interaction

noise of each of the candidate STOL high lift concepts.

C.2 Acoustic Technology

C.2.1 Noise Sources. - Noise from turbofan engines consist of turbomachinery

noise, combustion noise, and jet exhaust noise. Turbomachinery noise is pro-

duced by the fluctuating pressure fields on the various rotor and stator

assemblies; it contains broadband and discrete frequency spectral components

that are radiated from the. inlet, fan discharge, and turbine discharge ducts.
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Combustion noise consists of low-frequency broadband components radiated from

the turbine discharge duct. Jet exhaust noise is generated outside the engine

within the jet efflux and contains acoustical energy over a wide range of fre-

quencies. Estimates of the maximum perceived noise levels for these sources

were based on data supplied by the engine manufacturers, and supplemented by

Douglas-developed techniques for predicting aircraft flyover noise levels.

Noise radiated from the inlet is a maximum in the forward quadrant

and decreases rapidly in the aft quadrant after the airplane has passed the

closest point of approach to the observer. The maximum values of the noise

from the fan discharge, turbine discharge, and iet noise sources occur in the

aft quadrant of acoustic angles between 100 degrees and 130 degrees from the

inlet.

The maximum PNL produced by all the noise sources on the airplane

was determined by combining, logarithmically, the contributions from all

sources peaking in the aft quadrant. The contribution of inlet noise to the

total aft-quadrant noise level was considered to be at least 9 PNdB less than

the,peak inlet noise level in the forward quadrant. The peak inlet noise was

also considered to occur several seconds before the peak aft-quadrant noise.

C.2.2 Duct Linings. - An assessment of the acoustically absorptive duct linings

and the number of splitters required in each engine installation was developed

from various studies of duct Linings for turbofan engines. The Douglas duct-

lining design procedures are based on the results of laboratory impedance-tube

and flow-resistance tests, duct-transmission-loss tests, static engine tests

(JT3D, JT8D, JT9D, and CF6), and flyover-noise tests (DC-8, DC-9, and DC-10).

Some of these test results are reported in References 13, 14, 15, and 16.
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Analytical studies, References 17 and 18, are used, when feasible, to guide

the selection of the acoustic design parameters.

The various studies mentioned above concentrated on single-layer

designs with only one porous face sheet and an impervious core. The variables

that were studied included the acoustic impedance and the construction of

the lining, the airflow over the surface of the lining, and the geometric

arrangement of the treated surfaces within the duct. Tests were also conducted

on multi-layer lining designs with impervious-core supports. The general

result of these tests was the conclusion that somewhat larger attenuation

bandwidths could be achieved with multi-layer designs.

A compilation of the test results for a variety of acoustically

lined ducts is presented in Figure C-l. The JT3D results are from those

reported in References 13 and 15. The NASA results are from those reported

in References 19 and 20. The JT9D, CF6, and JT8D test results are unpublished.

Results are presented for engine operating conditions where the

level of the blade-passage discrete-frequency fan noise was significantly

above the level of the broadband fan noise at that frequency, that is, on the

order of 20 to 25 dB. Results for a variety of duct-lining designs are

included. The abscissa, in Figure C-l, is the average ratio, for a given

treated duct, of the length of treatment (L) to the duct-passage height (H).

The PNL reductions are all relative to the noise radiated from a

hard-walled reference inlet or fan-discharge duct. The inlet noise reduction

for each configuration was taken at the corresponding angle of maximum PNL

in the forward quadrant along a sideline; the reduction in fan discharge

277



O

o
^2 JD J2 J3 ro -O

E E E E EQ E
O O.O O O LJ O <»
O O O O O . . . o j r
» » >.£ >g.
CD fl> Q) 0> Q) ̂  09 if,
C C C C C D C . E
O O O O O O O i ;
I I I I IQIM

</>

8
illsllii
O.O.U. > U-

tr a
5 Q
o

en
LU

00

o
I-(fl
n
o:
a

o
Q

CM <
rH UJ

cr.

O
<a:

O
UJ
CC
D

a:
a.

o
ID
o
LU
a:

o
LU
>

o

278



noise was taken in the aft quadrant. The dashed lines represent extrapolations

beyond the measured data. The cross-hatching indicates the uncertainty in

these extrapolations.

The data presented in Figure C-l were used to evaluate the nacelle

treatment designs that were developed in this study. The treated ducts that

formed the basis for most of the test results had duct linings of the type

known as single-degree-of-freedom (SDOF) linings with a single porous face

sheet, an impervious supporting core, and an impervious backing sheet.

Recent developments by Douglas and General Electric have shown that duct

linings with porous cores can achieve greater attenuation bandwidths and

greater PNL reductions that SDOF linings with the same average L/H ratios.

Depending on the details of the acoustical design, the new type

of lining, sometimes termed multipie-degree-of-freedom (MDOF) lining, was

considered to give one to three PNdB more noise reduction than equivalent SDOF

duct linings at the same engine operating condition, the amount of increase

depending on the L/H ratio of the duct in which it was installed. In evaluating

the noise reduction of the duct lining, an additional credit was therefore

allowed for the use of the MDOF type of lining.

The Douglas concept for a duct lining with the acoustical advantages

of the MODF approach is described as integrally-woven polyimide-impregnated

fiberglass. The concept has evolved from a series of investigations conducted

as part of a continuing Douglas program to develop improved acoustically

absorptive duct linings. The new lining has an X-shaped porous core and is

woven from fiberglass yarn on a loom that is capable of weaving in three

mutually perpendicular planes. The loom simultaneously weaves the porous face
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sheet, the porous X-core, and the impervious back sheet. The woven structure

is then impregnated with a polyimide resin and cured in an oven. The porosity

of the face sheet and core is determined by the diameter and twist of the yarn,

the resin content, and the curing cycle. The result is a structure that is

lightweight, strong, and durable. The woven fiberglass linings can be designed

to be primary structural elements capable of carrying loads.

The lining designs envisioned for the treated ducts have the

flexibility to permit the installation of linings with different acoustical

resistances along the length of the lining. This technique of tailoring the

acoustical impedance to match the varying characteristics of the acoustic

and the aerodynamic fields has been successfully used to reduce JT3D fan noise,

Reference 13, and the noise from the NASA Engine A, Reference 19.

An acoustic evaluation is presented in the following pages for each

of the five STOL aircraft concepts with the engines selected for each. Esti-

mates of the noise levels for the various sources in an unsuppressed airplane

are shown, together with the levels for an airplane with noise-suppression

treatment.

C.2 .3 1980 Technology Factors. - Since the engine/airplane designs are to

be consistent with the technology of the 1980 time period, estimates of

improvements that could reasonably be expected to occur in noise-reduction

technology were made. The noise-reduction goals are shown in Table C-l.

Credit for appropriate noise reductions due to technology improvement was

included in arriving at suppressed noise levels. The maximum credit shown

in Table C-l was not always used; ins.tead, allowances were dependent on the

amount of treatment involved.
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It should be noted that the 1980 technology assumptions are highly

important in achieving the STOL noise goals.with reasonable levels of

acoustic treatment. The technical risk associated with the technology factors

and the lack of flight noise data for the study engines requires that a

tolerance be placed on the absolute aircraft noise levels and that development

be continued to realize these 1980 noise levels. The economic viability of the

STOL concepts is highly dependent upon the stated noise goals and the 1980

technology assumptions because, at the high levels of treatment required,

the additional noise reduction achieved by adding more and more treatment

becomes less and less per unit of L/H ratio. A disproportionate amount of

treatment would therefore be required to offset any increases in source

noise.

C.3 Aircraft Noise Levels

C.3.1 EBF Concept. - Flap-interaction noise results from the impinge-

ment of the turbulent engine exhaust upon the wing and flap surfaces and from

interaction with the leading and trailing edges of these structures in an

externally blown flap configuration. NASA investigators, References 21-28

have conducted various model and full-scale tests of this phenomenon

associated with EBF STOL airplanes and have estimated, for various flap

deflections, the flyover noise levels that might be expected from engines

with different exhaust velocities. The results of Douglas tests conducted

under an in-house program have confirmed the general trends noted by the NASA

investigators for engines with round exhaust nozzles.

PNL estimates for flap-interaction noise were based on the extra-

polations given in References 21 and 24. The NASA data considered the
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problems of extrapolating the sound-pressure levels measured around a model-

scale test rig with unheated air to a flight condition for a full-scale EBF

airplane. Use of the NASA extrapolations was considered reasonable for

these study airplanes, because a flap located approximately four nozzle

diameters downstream of the nozzle exit plane from an engine having a round

exhaust nozzle would have a peak flap-impingement velocity approximately

equal to the jet exit velocity.

The following equation for flap-interaction noise at takeoff power

was developed from the relations given in the NASA data for estimating the

maximum PNL on a 500-foot (152 m) sideline for the flap-interaction noise

generated by a four-engine EBF airplane. The eighth power variation shown for

the exhaust velocity term represents an average value for the data presented

in Reference lg.

PNLT 0 = 80 log(VE/500) + 10 log(F6/10,000) +6p/10 + 86

where VE is the exhaust velocity, in feet per second, at the nozzle exit

calculated from the gross thrust and exhaust mass flow; Fg is the gross thrust

per engine, in pounds, at the desired flight condition; and <5p is the total

flap deflection in degrees. This empirical relation was considered suitable

for advanced design use until better information becomes available, and is

applicable only to engines having round or annular exhaust nozzles.

The thrust term was included to scale the estimated PNL values to

thrusts other than the 10,000 pounds (44,500 N) per engine value shown for all the

NASA data. Gross thrust at the flight condition was chosen, rather than static

gross thrust as in Reference 21, because inflight gross thrust (representing

the momentum flux out of the nozzle measured relative to the wing) is a

283



measure of the force applied to, the flaps and hence should be directly related

to the level of flap-interaction noise.

Inclusion of the 6p term permitted small adjustments to be made for

takeoff and approach flap deflections different from those tested by the NASA.

The constant, of 86 PNdB, was obtained by fitting a mean straight

line through the "flyover" data presented by NASA from measurements made at

locations below the wing and subtracting a 2-PNdB factor to obtain equivalent

"sideline" noise levels. The viewing angle expected for an externally blown

flap STOL transport at the location of maximum PNL on the 500-foot (152 m)

sideline during climbout made the 2-PNdB viewfactor more appropriate than the 5-

PNdB viewfactor noted in Reference 21. The sideline data in Reference 19 were

obtained with a viewing angle corresponsing to that of an airplane on the

ground at the time of the maximum PNL.

The viewfactor is highly important for determining whether the EBF

can meet the sideline noise goal. The assumed viewfactor of 2 PNdB requires

that the 3 PNdB 1980 technology assumption for flap interaction noise be used

to meet either the parametric or final baseline noise goals. A more optimistic

viewfactor would have meant that less acoustical treatment would have been

required to reduce the turbomachinery noise so that the total aircraft noise

would meet the noise goal. However, the noise beneath the aircraft and the

length of a given noise contour around an airport during takeoff or approach

would remain the same independent of the viewfactor. The flap noise levels

for 1980 include a 1.0 PNdB reduction for a single slotted flap and a 1.5

PNdB reduction for forward.velocity. These factors were estimated from

model scale test data.
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Table C-2 shows the hardwall component noise levels and the treat-

ment required for 95 PNdB and 95 EPNdB 500 foot (152 m) sideline noise levels

for an EBF aircraft. Estimates are also given for wall treatment only with

1980 technology. These estimates are valid for all of the EBF aircraft using

the Allison PD287-3 engine. Different field lengths or passenger capacities

would change the engine size from that shown. However, the effect of this

change can be estimated by modifying each component noise level by 10 log

(F/Fref), where Frgf is 20,000 pounds (89,000 Newtons) rated takeoff thrust.

This correction would be a maximum of approximately 1 EPNdB for the

airplanes considered in this study. Small changes to the treatment level

(L/h) would be sufficient to adjust the noise level for small changes in

thrust. Such accuracy would be misleading considering the 1980 technology

factors, the lack of information on the effect of forward motion on flap-

interaction noise, and the fact that the engines considered here have never

been flown.

The calculations show that an external mixing nozzle was necessary

to meet the goal of 95 PNdB at a 500 foot (152 m) sideline for the parametric

aircraft. This nozzle would cause substantial penalties to be imposed on the

aircraft. The external mixer was not included because the goal of 95 EPNdB

for the final design aircraft made it unnecessary.

Possibilities of reducing the EBF flap interaction noise include

lined ejector-shrouds around the nozzles, acoustical treatment of the flaps,

rec.ontouring of the flap and reduction of the number of separate flap

segments. Table C-2 also shows the influence of the flap interaction noise

"floor" on the effectiveness of acoustic treatment. As the flap noise floor
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en en co co en

CM CM

*
*LO

•
c\j en co cn <3-
en oo oo oo en

un LT> 10
. . . i i

i— CO CM

*
*
*CM f̂ «=l~ en CM

en oo co co . en

LT) LD LO

r- VO «»•

ez> PO oo en o
o o en co o
r— • r— r— •

cu
en c
S- O
ro ••-

cu -c: 4->
cn o o
S_ to +-> 03
ro -1- to S-
^: Q 3 cu
O ra •!->
co cu x: c:

•r- C X , 1— 1
•(-> Q •!— UJ

CU JO D.
r~ c~ ^. | * ro
c: ro 3 eu i—

l— i U. 1— rO U-

oo
cn

^^
en

Lf>
en

vo
o
r—

CO
cu
CJ
s_

ô
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is approached, additional treatment gives a very small reduction in overall

noise. The economic penalties associated with acoustical treatment increase

dramatically with small decreases in total aircraft noise as the noise floor

is approached. For the reasons previously stated, this noise floor is some-

what uncertain so the treatment was reduced to investigate the effects of

acoustical treatment on the airplane configuration. These noise levels are

shown on the third column of Table C-2. Reducing the treatment in the fan

discharge duct by an amount equivalent to 4 PNdB increases the total aircraft

noise by one PNdB.

C.3.2 Upper Surface Blowing Concept. - The major acoustical feature of the

upper surface blowing concept is the shielding of the aft generated turbo-

machinery noise. The existing model data, References 29, 30, and 31, is

incomplete and assumptions had to be made concerning the amount of shielding.

The data from References 29, 30, and 31 tends to show that the thrust deflector

devices used to ensure attachment of the nozzle flow over the wing increase

the noise level over the level of the jet alone. However, the wing gives

some shielding of the high frequency jet noise. This phenomenon was approxi-

mated by assuming that the noise of the deflector device was equal to the

lower surface blowing flap impingement noise. A noise reduction of 5 PNdB

was then used to simulate the wing shielding. It was also assumed that the

fan and turbine discharge noise would be reduced 5 PNdB by the wing shielding.

1980 technology factors were assumed for the turbomachinery noise and 5 PNdB

was assumed as a technology improvement for wing-flap interaction. This flap

noise level would be representative of an USB system without the noise of

a separate flow attachment device.
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Table C-3 shows the USB noise levels with an Allison PD287-22

engine. This engine cycle had higher tip speeds than the PD287-3 used for

the EBF concept resulting in higher source noise. The wing shielding of the

aft turbomachinery noise reduces the requirement for acoustic treatment for

these sources. The USB concept, then, with the PD287-22 engine tends to be

more inlet noise dominated. The configuration with wall treatment and 1980 . .

technology assumptions is inlet noise dominated. Experience with the DC-9

and DC-10 aircraft (unpublished) has shown that the inlet noise is lower

during flyover than during static operation. The inlet noise, however, is

estimated from static test stand data. The noise levels in parentheses on

the right hand column of Table C-3 exclude the inlet to show the contribution

of the aft noise sources. The inlet noise for this case could be reduced by

the addition of treated inlet rings.

The USB concept requires more large scale test data before the

concept can be properly evaluated. One specific area of uncertainty is the

magnitude of the turbomachinery noise shielding as a function of wing and

nozzle dimensions and sideline versus overhead flight position. Another is

the feasibility of attaching the flow of large diameter, low pressure ratio

jets to the flap surface.

C.3.3 Mechanical Flap Concept. - The mechanical flap STOL concept is rela-

tively straight forward from a noise assessment viewpoint because powered

lift is not used. The PD287-23 engine chosen for the mechanical flap has a

fairly high tip speed and therefore high turbomachinery noise. Extensive

acoustic treatment is required to meet the noise goals. Table C-4 gives the

noise level of the mechanical flap concept for several levels of treatment.

The inlet noise is based on static test stand data. The high tip speed gives
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a large multiple pure tone (MPT) component to the inlet noise. Past Douglas

experience with static and flight noise data (unpublished) shows that the

use of a flight inlet operated in the flight mode reduces these MPT noise

sources. Therefore the "all source" noise on Table C-4 was estimated with the

inlet contribution shown. A degree of risk, however, exists until an engine

of this type is actually flown.

C.3.4 AugmentorWing Concept. - Investigators at NASA and Boeing have con-

ducted several tests to study noise characteristics of augmentor-winq ejector-

flap systems. Noise from augmentor flaps is primarily generated during the

turbulent mixing process that occurs between the jet sheet exhausting through

the ejector flaps and the secondary or ambient flow.

Data presented in References 32-35 shows that noise from augmentor

flaps is broadband in character and highly directional, with ttie peak noise

radiated at an angle of about 45 degrees on both sides of the exhaust flow

direction. Considering operational flap settings, aircraft angle of attack,

and climb gradient, the peak noise is therefore directed nearly straight

downward during takeoff.

Experimental results from References 32, 3:3 and 35 showed that the

noise from slot nozzles used with augmentor flaps is proportional to the exit

area of the nozzle and increases with increasing jet velocity. Above the

critical nozzle pressure ratio, the sound contains discrete-frequency com-

ponents related to turbulence in the exhaust flow interacting with the shock

cells downstream of the nozzle. These components have a raucous sound

characterized as 'screech.
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Recently, extensive studies of the noise from augmentor flap systems

have been reported in References 10, 36 and 27. In these reports, maximum

PNL's on a 500-foot (152 m) sideline for a four-engine STOL airplane were

derived from available model-scale test data scaled to represent the noise

from an airplane with engines having a takeoff thrust rating.of 20,000 pounds

(89,000 Newtons) and a wing slot airflow of approximately 500 pounds per

second (227 kg/sec) per semi-span. .For a nozzle pressure ratio of 2.6, the

500 foot (152 m) sideline noise level was predicted to be 116 PNdB with a

plain high-aspect-ratio slot nozzle at an airspeed of 100 knots (51.4 m/sec).

The noise suppression design recommended to suppress the jet

noise from the augmentor flaps was developed from the results of the many

tests described in References 10, 36, 37 and 38 and the results of previous

Douglas tests on jet-noise suppressors and acoustically lined ducts.

Effective suppression of the noise from the augmentor flaps involves

a combination of the proper choice of the geometry of the flaps and nozzles

and the addition of acoustically absorptive treatment to the inner surfaces of

the flap, shroud, and intake door. Addition of an acoustical shield below

the nozzles is expected to produce at least some of the large noise reductions

noted in Reference 35 that were associated with completely sealing off the

lower flap. The principal features of the designs that were developed are

discussed in Appendix D.

Data from References 10, 36, 37 and 38 showed that significant

reductions in low-frequency noise can be achieved by replacing the long two-

dimensional augmentor slot with a mixer nozzle consisting of a large number

of nozzle elements. It has been shown that a lobed nozzle array achieved
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greater noise reductions than a tubular nozzle array. A multi-element slot

tends to shift the acoustical energy toward a frequency region where some of

the energy can be absorbed by acoustically absorptive linings placed within

the flaps. Therefore, although practical mixer nozzles tested to date have

achieved only relatively small reductions in perceived noise level, when used

in conjunction with absorptive treatment they have proven to be effective in

achieving a substantial reduction in augmentor flap noise. In order to

interrupt the acoustic feedback mechanism and suppress the screech sounds,

screech shields consisting of rectangular plates extending downstream of the

nozzle exit on one side of each nozzle were also included.

Acoustic design requirements for the suppression of augmentor flap

noise were derived from the results presented in References 10 and 38. The

values that were assumed for the various design parameters are given in

Table C-5.

The absorptive linings on the flap surfaces require a wide absorp-

tion bandwidth to maximize the noise reduction. Within the constraint of the

space available, a design was developed that uses a unique two-layer welded

and bonded structure. Two-layer absorptive linings were also placed on the

acoustic baffle door below the nozzle exits and ahead of the flap leading

edge, the thickness of the lining constituting the total thickness of the

door, except for the leading and the trailing edges.

C.3.5 Internally Blown Jet Flap Concept. - The internally blown jet flap is

similar to the augmentor wing except the upper shroud is removed from the

augmentor flap. References 23 and 19 were used to evaluate the jet flap. The

internally blown flap noise levels are shown on Table C-6.
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C.3.6 Conventional Takeoff and Landing Aircraft (CTQL). - A conventional

aircraft for the 1980 time period was developed to use as a comparison to the

STOL concepts. This aircraft has very extensive acoustical treatment compared to

current aircraft. The noise sources were treated to exceed present FAR Part

36 noise levels. The treated noise level is about 98 EPNdB on a 500 foot

(152 m) sideline measuring point. The noise levels at the FAA measuring points

are summarized on Table C-7 for the hardwall and treated configurations. The

EPNL values reflect CTOL airspeeds and measuring distances.
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APPENDIX D

PROPULSION INSTALLATION SUBSTANTIATION - FINAL DESIGN AIRCRAFT

This appendix contains the results of propulsion installation studies

conducted on the engines selected for the final design aircraft. A summary of

the propulsion installation losses pertinent to the calculation of aircraft

performance is also given.

Thrust levels shown in the installation drawings were selected prior

to final aircraft sizing and do not necessarily match the final engine thrust

size.

D.I Propulsion Installation

D.I.I Externally Blown Flap. - The final design externally blown flap engine

installation is shown in Figure D-l. The drawing is made for a 20,000 pound

(88,964 N) S.L.S. thrust variable-pitch fan engine with a fan pressure ratio

of 1.25.

Engine/Airframe Interrelation - The final design engine installation

is snown matched to a wing cross section corresponding to the 50 percent semi-

span cut of an 1800 square foot (167 m2) wing with 7.0 aspect ratio,0.3 taper

ratio and 25 degrees of sweep at the quarter chord. These values were derived

from previous studies and test experience as being typical for meeting exter-

nally blown flap wing requirements for high lift with minimum weight.

The nacelle is positioned relative to the wing by horizontally

locating the fan exhaust plane forward of the wing I.E. by an amount equal

to 10 percent of the wing chord at the inboard nacelle station; the vertical

position is fixed by locating the top of the fan exhaust in the same horizontal

plane as the lowest extremity of the drooped wing leading edge section.
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Engine Inlet Geometry - The engine inlet throat area is sized to

give an average throat Mach number no greater than 0.6 at takeoff power at

sea level static conditions. The inlet is configured with a leading edge lip

thickness that varies from 11 percent at the top to a maximum of 20 percent

at the bottom. This lip design is consistent with maintaining acceptable

inlet distortion levels at high angles of attack. The inlet length is dictated

by the L/H ratio required to attain the desired level of acoustic attenuation

as listed in Appendix C.

Nacelle External Shape - The maximum nacelle radii are sized

primarily with regard to engine fan case clearance and with the accommodation

of a fan exhaust duct which has been designed to the prescribed acoustic wall

treatment L/H ratio. The nacelle/fan case clearance includes a volume

allocation for the engine accessories and engine-mounted airframe system

components such as C.S.D./generators, hydraulic pumps and pneumatic system

controls and ducting. Size estimates of these components were based upon

past experience with airplane requirements on the DC-8, DC-9 and DC-10

production programs. The diameter of the fan cowl trailing edge is dictated

by boat-tail angle considerations. This diameter, in conjunction with the fan

nozzle area requirements of the engine, sizes the core cowl maximum diameter.

The core cowl afterbody length is held to a minimum consistent with

keeping the boat tail angle at a value that results in low aerodynamic drag.

Exhaust Duct Geometry - The fan duct flow area is sized to maintain

duct Mach number below 0.45 through the acoustically lined duct between the

engine fan case and the leading edge of the variable area exhaust nozzle vanes.

At this point a reduction in duct area is initiated which continues to the
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fan exhaust nozzle plane. A variable area is required at the fan nozzle in

order to attain the proper match between takeoff and cruise performance. This

is accomplished by having the last 19 inches (.483m) of the fan cowl broken

up into finger^!ike vanes which can be actuated radially to demarcate varying

nozzle diameters.

The primary exhaust duct has been kept to the minimum length con-

sistent with meeting the nozzle area requirement and core cowl boat-tail

angle drag considerations. An acoustically treated center plug is shown which

is shaped to minimize flow losses as well as provide good acoustic L/H

characteristics.

Accessibility - Access to the engine accessory section, located

around the periphery of the engine fan case, is provided by fan cowl doors

which are hinged at the top from the pylon structure. The accessory gear box

is shown located on the bottom of the engine fan case since comparative

experience of commercial airlines between this location and one on the engine

core case demonstrates the superiority of the fan case location with respect

to both accessibility and accessory service life due to the cooler environment.

Engine core case access is provided by splitting the fan duct

vertically into half sections which are hinged from the pylon structure.

This concept is basically the same as that which has been demonstrated in

the DC-10 program.
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Thrust Reversing - Reversed thrust is obtained by rotating the

fan blades into reverse pitch. The effect of this feature upon the overall

engine installation is the need for variable geometry in the nozzle

to allow it to function as an inlet in the reverse mode. This requires an

increase in area variation beyond that required between the takeoff and cruise

values.

D.1.2 Upper Surface Blowing. - An upper-surface blowing lift concept engine

installation using a 1.30 fan pressure ratio, fixed-pitch turbofan engine

with a common-flow exhaust system is shown in Figure D-2. This instal-

lation matches a 27,500 pound (122,000 N) thrust engine to a wing cross-

section corresponding to the 35 percent semi-span chord of a 3390 square foot

(315 m2) wing with an 8.0 aspect ratio, 0.3 taper ratio and 25 degrees of

sweep at the quarter chord.

Engine Airframe Interrelation - The positioning of the engine with .

respect to the wing was fixed with the following considerations:

o The engine should be kept as far aft as possible to minimize

installation weight, but should not be so far aft as to prohibit

engine removal in a vertical plane forward of the primary wing

structure.

o The vertical positioning of the engine should be low enough

• to permit the nacelle dorsal line to conform to optimum

boat-tail angle criterion (15 degrees maximum) while still

permitting an acceptable fan duct flow transition from the

underside of the gas generator to the upper surface of the wing.
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o The plane of the aft turbine should be forward of the wing spars

and fuel tanks to comply with Federal Airworthiness Regulations

requiring consideration in the design for rotor failures.

Engine-Inlet Geometry and Nacelle External Lines - The engine inlet

for the upper surface blowing engine installation follows identical guidelines

listed for the externally blown flap installation. Similarly the external

lines of the nacelle forward section are sized by the clearance requirements

around the engine fan case and the fan exhaust duct for the accommodation of

engine accessories, thrust reverser actuators and associated plumbing. Size

estimates for these components were based on previous experience with the DC-8,

DC-9 and DC-10 engine/airframe integration. The aft nacelle section external

shape is primarily influenced by the requirement to spread out and attach the

exhaust flow to the upper surface of the wing during hi-lift mode operations.

This is accomplished by fairing the aft end of the nacelle to a D-shaped

exhaust nozzle as shown in Figure D-2.

Exhaust Duct Geometry - To minimize duct pressure losses, the fan

duct adjacent to the engine core is sized for 0.45 Mach number flow. This

portion of the duct is lined with acoustic treatment as dictated by the L/H

ratio required for the desired acoustic attenuation listed in Appendix C.

As the junction of the fan duct with the primary duct is approached, the area

of the fan duct is tailored to adjust the flow velocity to accomplish a

match in static pressures of the fan and primary exhaust flows. The common

flow exhaust duct is designed to accommodate the thrust reverser and variable

geometry exhaust provisions with a flow area that minimizes duct pressure loss.
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Thrust Reverser/Variable Geometry Nozzle - Thrust reversing is

accomplished by diverting the combined fan exhaust and primary exhaust flow

through a stationary cascade which is wrapped around the top half of the

nacelle. The forward thrust flow path is blocked off by means of finger-like

vanes, which in the retracted position form the cruise nozzle. These vanes

in a partially extended position act to deflect and spread out the flow

against the top wing surface during high lift mode operations

Engine Support Structural Arrangement - The location of the engine

support structure relative to the engine has a very strong impact on engine

maintainability. Commercial airlines have expressed a strong preference for

keeping the engine removal/installation path completely vertical. In

addition, direct access to the borescope ports located on the engine casing

without removal of any nacelle components is required. Compliance with the

first constraint virtually precludes the use of the most direct structural

load path from the wing to the engine, (i.e., a structural beam cantilevered

straight forward from the front spar to support the engine from its underside)

and forces the use of side supports, top support, or a combination of both.

A comparison of the advantages and disadvantages of the various engine

support schemes is shown in Table D-l. The combined top and side support

approach was selected for the baseline installation since it has the most

favorable combination of low weight and ease of maintenance with the greatest

overall torsional rigidity. The top support pylon structure attaches to wing

primary structure commencing at the wing front spar and extending back along

the upper wing skin approximately half way to the rear spar. An internal

wing rib is required to carry the cantilevered load couple back to the rear

spar of the wing. A fixed external fairing is required aft of the engine
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exhaust nozzle plane to house the upper engine support pylon where it attaches

to the wing.

Accessibility - Access to the engine accessory section, located

around the periphery of the engine fan case is provided by fan cowl doors

which are hinged from structure projecting forward from the engine support

pylon buried within the top of the nacelle. The accessory gearbox is

located on the bottom of the engine fan case since comparative experience of

commercial airlines between this location and a core case mounting demonstrates '

the superiority of the fan case with respect to both accessibility and accessory

service life due to the cooler environment. Engine core case access is

provided by splitting the fan duct into three sections arranged as follows:

A duct section on the outboard side of each nacelle enclosing one half the

total fan flow area is hinged from the top pylon and latches to an adjacent

duct section along the bottom center line of the nacelle (similar to the DC-10

arrangement). Oh the inboard-upper quadrant of the nacelle, a fan duct

section enclosing twenty five percent of the total fan flow area is hinged

from the top pylon and latches to the side pylon structure. The remaining

twenty five percent of the flow area is enclosed in a duct section in the lower

inboard nacelle quadrant, which is hinged from the side engine support pylon, and

which latches to the bottom of the fan outboard .duct section. Engine removal

is accomplished by opening the previously mentioned doors and fan duct sections

together with an additional nacelle door, located beneath the primary exhaust

duct. The remainder of the nacelle including the thrust reverser cascade

(exclusive of the translating variable geometry exhaust nozzle assembly) is

fixed cowl structure attached to the wing.
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D.I.3 Augmentor Ming. - The final design augmentor wing lift concept engine

installation using a 3.0 fan pressure ratio, two-flow turbofan engine is shown

in Figure D-3 at a rated thrust of 13,000 pounds (57,SOON). This installation

shows the nacelle matched to a wing cross-section corresponding to the 45

percent semi-span (outboard engine location) of a 1,444 square foot (134 square

meter) wing with a 6.5 aspect ratio, 0.3 taper ratio and 25 degrees of sweep

at the quarter chord.

Engine Airframe Interrelation - The criteria for positioning the

engine relative to the wing are:

(1) The primary exhaust plane is located no further aft than 25

percent of the wing chord to minimize nacelle/wing interference

drag effects.

(2) Vertical separation of the nacelle from the wing is kept to

the minimum amount that permits the augmentor wing duct, sized

for a cross-sectional area consistent with 0.45 Mach number

flow, to fit between forward and aft pylon spars.

The leading edge of the pylon is shown cut back to permit installation

of a continuous wing leading edge slat.

Engine Inlet Geometry - The engine inlet design is primarily driven

by the noise attenuation needs which are satisfied by use of a variable geometry

sonic inlet with a translating center bullet. The bullet is positioned in a

forward position for takeoff, in which mode, the throat area is sized to produce

near sonic velocity. In the cruise mode the bullet translates aft resulting

in a larger throat area, lower air flow velocities and consequent lower pressure

losses.
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Nacelle/Pylon External Shape - The external dimensions of the nacelle

and pylon are primarily influenced by the unique requirement that all fan flow

be diverted into the wing and discharged through nozzles to energize an ejector

wing flap system. When the flaps are retracted, flow to these nozzles is

blocked off by means of a diverter valve which directs the fan stream through

a nozzle adjacent to the lower surface of the wing in the aft end of the pylon.

The pylon thickness is dictated by the fan air duct dimensions which are sized

for a duct flow Mach number of 0.45 in an effort to hold the duct pressure

losses to practical values. Nacelle contours are set to accommodate the fan

ducting and clearances around the engine accessory/gearbox located on the bottom

of the engine fan case. Access to the engine accessory section for maintenance

and inspection is provided by large nacelle access doors hinged from the pylon

structure.

Thrust Reversers - Thrust reversing is accomplished with the use of

a cascade type fan exhaust reverser and a cascade type primary exhaust spoiler.

The fan exhaust reverser cascades are mounted on the sides of the engine nacelle

alongside the engine high pressure compressor section. Upward reversed flow

directivity (to minimize reinjestion and reverse flow ground impingement) is

accomplished by keeping the cascades within the top 210° portion of the

nacelle perimeter and by tailoring the cascade vanes. The forward thrust fan

flow stream is shut off by means of a blocker valve located in the fan duct

through the pylon.

The primary spoiler is shown with an aft cowl section which translates

aft to unport cascade vanes to the exhaust stream. Blocker doors hinge inward

against a center bullet to close off the forward thrust flow path.
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A considerable study effort was made to locate the fan reverser

on the pylon where, it would seem, ideal reverse flow directivity could be

attained (upward and forward), but wi thout success. Locating the thrust

reverser on the sides of the pylon would not only result in addit ional pylon

w i d t h , but would preclude the use of the pylon wa l l s as shear members and

result in s izable structural weight penalties. Locating the thrust reverser

in the pylon leading edge would be unacceptable since this would block the

only ava i lab le path through the pylon for engine/airframe sub-system ties

( i .e- . , fue l , bleed air , hydraul ics , electrical, controls and instrumentation).

. Augmentor W i n g Ducting - Although the design of augmentor w ing

f l ap system components was not w i t h i n the scope of the study, certain

conceptual design features of such a system had to be ident i f ied in order

to make airplane weight and performance estimates. These features were

derived from study experience gained in the NASA QUESTOL design studies and

from the Boeing studies under NASA Contract (Reference 1). The resul t ing duct

system arrangement is shown in Figure D-4 and features:

o a four-engine independent-duct system which cross-flows

27 percent of the fan exhaust from each engine to the

opposite side of the a i rplane to ma in ta in reasonable roll

moments dur ing an engine-out condition.

o a fan exhaust nozzle arrangement in which the nozzles from each

engine pair (outboard pai r , inboard pa i r ) are interwoven along

the augmentor f l ap entrance as recommended in the Boeing/NASA

study (Reference 1).
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o the wing ducting system broken into 50-inch segments joined

by flexible couplings to allow for thermal expansion and

wing bending deflections. Each duct section would be

independently anchored to the wing structure with respect to

airplane inertia loads, duct thrust, and axial and torsional

loads resulting from duct pressurization.

o ducts and nozzles to be fabricated from 2219-181 aluminum

alloy, heat treated after welding.

An alternate to the independent-duct arrangement is the common-

duct scheme in which the fan flow of all four engines is manifolded together.

Despite its advantages with respect to wing ducting volume limitations, this

arrangement was not selected because a satisfactory solution for maintaining

the proper back pressure" with an engine out has not been found. With a

common duct, the augmentor discharge area would have to be reduced during an

engine out condition and backflow into the failed engine prevented. Knowledge of

which engine had failed and controls for the appropriate corrective action

are also required. A common-duct system is undesirable also because of

possible serious consequences of a single duct rupture, causing possible loss

of more than one engine. Present commercial practice is to have independent

operation of each engine so that failure of one will not result in loss of

another. This is accomplished by complete system separation which starts

at the fuel tank and is carried into separate nacelles and exhausts.
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D . I . 4 Mechanical Flap. - A mechanical f l ap l i f t concept engine

ins ta l l a t ion u s i n g a 36,700 pound (163,000 N) thrust 1.50 fan pressure ratio,

turbofan engine is shown in Figure D-5. The nacelle is shown matched to a

wing cross-section corresponding to the 26 percent semi-span cut of a

2950 square foot (274 m2) wing wi th a 9.0 aspect ratio, 0.3 taper ratio, and

25 degrees of quarter chord sweep.

The mechanical f l ap engine ins ta l la t ion follows identical guide-

l ines to those described for the externally blown f lap ins ta l la t ion except

that:

o The nacel le is not close coupled to the w i n g lower surface

as in the externally blown f lap concept but rather, is

located relative to the wing in accordance wi th a t ta ining the

best nace l le /wing drag characteristics for the i n d i v i d u a l

a i rp lane design.

o Although there is no f l ap interaction noise on the mechanical

f l ap , a higher noise level is inherently associated wi th the

selected engine cycle which requires the use of acoustic rings

in the inlet and fan exhaust duct.

o Since a fixed pitch fan is used (as opposed to the variable

pitch fan for the externally blown f l a p ) the fan duct must

be designed to accommodate a thrust reverser.
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The fan duct thrust reverser shown on Figure D-5 is a fixed cascade

type with external cowl doors that are hinged at the aft end and

which can thus be used to assist the cascade vanes in imparting a forward

directivity to the fan exhaust flow. In response to the requirement for

improved low speed capability of minimum re-ingestion and reverser flow

ground impingement, upward directivity is imparted to the reversed thrust

fan exhaust stream by limiting the cascades and external cowl doors to only

the top 200 degree portion of the nacelle circumference. Blocker doors

which hinge inward from the outer wall of the fan duct at the cascade

trailing edge station are used to close off the forward thrust flow path

during reverse thrust.
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D.2 Installed Engine Performance (General)

Installed engine performance data were generated by correcting the

engine manufacturer's reference engine performance values for the effects of

installing the engine on the airplane.

To accomplish this, an existing general thermodynamic cycle

matching computer program (SMOTE) was adjusted to match the cycle of each

engine considered in the study. The quoted reference performance of each

engine was successfully duplicated after a series of iterative adjustments

to SMOTE. The installation effects, described below, were then mathematically

described and combined with SMOTE to calculate installed propulsion system

performance. This program was derived from Reference 40.

The installation effects are:

o Inlet and exhaust system total pressure loss, including the

applicable losses due to acoustic treatment.

o Exhaust system nozzle performance differences relative to

that included in the reference performance.

o Scrubbing drag on those external surfaces that are. washed by

the engine exhaust flow.

o Engine compressor airbleed and mechanical power extraction to

supply the airplane accessory system requirements.

o Fan airbleed to cool the compressor airbleed to acceptable

values.

o Those particular to a specific propulsive lift system.
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D.2.1 Inlet Pressure Loss. - The inlet total pressure loss, shown in

Table D-2, is calculated as flat-plate skin-friction loss on all surfaces,

plus the form drag for the acoustic rings and supporting struts. A friction

coefficient, 40 percent higher than that for smooth surfaces, was assumed for

all acoustically treated surfaces. The increase in loss at low reciprocal

mass flow ratio (takeoff condition) is due to high local velocities near the

inlet leading edge at static conditions and low forward speeds. Also shown

in the table is the effect of altitude on the inlet pressure loss. The skin

friction coefficient increases with increasing altitude (decreasing Reynolds

number). The method used to estimate the inlet pressure loss has been

correlated with test data obtained from wind tunnel and full-scale boundary

layer surveys on the inlets of DC-8, DC-9 and DC-10 aircraft.

D.2.2 Fan Duct and Nozzle Losses. - The exhaust system losses were evaluated

using skin friction and form drag calculations for acoustically treated wal ls ,

rings and supporting struts in the same manner as for the inlet.

D.2.3 External Aerodynamic Losses. - The drag of the isolated nacelle at the

typical cruise condition is included in the installed engine performance.

The skin friction coefficient used to calculate drag is a function of the

local Reynolds number. Local Reynolds number is calculated for both the

freestream cruise condition and the fully expanded exhaust flows for both fan

and primary exit conditions. Drag coefficients, D/q, are then calculated for

the nacelle and pylon in the three flow regimes; free stream, fan nozzle dis-

charge, and primary nozzle discharge. Depending on the nacelle configuration,

the fan cowl and part of the pylon are exposed to free stream flow, while

parts of the pylon and engine core cowl are exposed to fan nozzle discharge.

Also, parts of the pylon may be exposed to primary nozzle discharge flow.
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Drag coefficients for these three flow regimes are shown in Table D-2.

D.2.4 Airbleed and Mechanical Power Extraction. - Engine compressor air-

bleed is used for air conditioning and pressurizing the flight deck and crew

compartment. Precoolers located in the pylons use fan bleed to cool the

compressor airbleed. Figure D-6 shows the fan bleed requirement. Airbleed
o

requirements are based on 14 CFM (.0066 m /s) per passenger, where flow

density is calculated using the DC-10 maximum cabin pressure schedule and a

temperature of 70°F (21°C).

Mechanical power extraction is based on a statistical study of

system requirements in several modes of flight. For all configurations,

150 HP (112 kW) per airplane was used for takeoff conditions, while 110 HP

(82 kW) per airplane was used for cruise conditions.

D.3 Installed Engine Performance Particular to the
Augmentor Wing

The performance of the augmentor ejector flap is based on the

results of work accomplished by the Boeing Company under contract to NASA,

with adjustments to these results to account for differences between the

Boeing and Douglas configurations.

D.3.1 High Lift Configuration. *- During high lift operation, gross thrust

is calculated -at the exit of the wing augmentor ejector flap, at the exit

of the aileron blowing nozzles, and at the engine primary nozzle exit.

The ram drag of the ejector flap secondary airflow is included in the

installed engine performance.
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FIGURE D-6. FAN BLEED-HEAT EXCHANGER EFFECTIVITY
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The augmentor wing ducting system is designed so that approximately

95 percent of the fan flow is supplied to the augmentor ejector flap primary

nozzles. The remaining 5 percent is used for aileron blowing.

The gross thrust generated by the fan air exhausted through the

aileron blowing nozzles is included in the thrust performance of the augmentor

wing. A momentum recovery coefficient of 0.86 was used for the aileron

blowing nozzle. The procedure for calculating the augmentor flap performance

is illustrated in Appendix B. Appendix B also presents the ejector flap

gross thrust augmentation and flow entrainment ratios for flap angles that

are representative of takeoff and approach conditions.

D.3.2 Cruise Configuration. - During cruise operation installed net thrust

is defined in the conventional manner by subtracting the ram drag of the

engine inlet air flow from the gross thrust of the fan and primary exhaust

streams.

D.3.3 Fan Exhaust Losses. - Performance losses due to the fan exhaust system

are divided between those losses in the fan duct, .from the fan exit to the

flow diverter valves, and losses in the fan exhaust nozzle. The total pressure

loss in the fan duct to the diverter valve was estimated to be 5.5 percent.

Fan nozzle performance is based on a nozzle velocity coefficient of 0.975.

During high lift operation, an additional pressure drop of 9.9 per-

cent was estimated from downstream of the flow diverter value to the plenum

just upstream of the ejector nozzle.

D.3.4 Primary Exhaust System Losses. - The primary exhaust system is a con-

ventional acoustically treated tailpipe and convergent nozzle, except that
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the tailpipe has an 18-degree bend so that the nozzle flow will not impinge

on the flap during high lift operation.

D.4 Installation Loss Analyses

Tables D-3 and D-.4 are summaries of the installation effects on

engine performance at takeoff and cruise conditions for the baseline nacelle

configurations considered in the study. The losses in each case are refer-

enced to the required uninstalled thrust, Fn . The uninstalled sea level

static takeoff thrust value for the selected engine size is denoted by

D.5 Installed Propulsion System Performance Data

Installed propulsion system performance data for all significant

aircraft operating conditions is shown in Figures D-7 through D-14. Perfor

mance for takeoff (maximum power) is presented in terms of gross thrust and

ram drag in Figures D-7 through D-10. Installed fuel flow for any condition

can be obtained from Figures D-ll through D-14 which show the generalized

fuel flow parameter as a function of net thrust and Mach number.
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FIGURE D-7. GROSS THRUST AND RAM DRAG AT TAKEOFF POWER
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FIGURE D-8. GROSS THRUST AND RAM DRAG AT TAKEOFF POWER
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FIGURE D-9. GROSS THRUST AND RAM DRAG AT TAKEOFF POWER
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FIGURE D-IV. GENERALIZED NET THRUST AND FUEL FLOW
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FIGURE D-13. GENERALIZED NET THRUST AND FUEL FLOW
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APPENDIX E

MASS PROPERTIES DATA

This appendix presents the results of the detailed mass properties

analyses of the eight final design aircraft. These data evolve through a

multi-step process described as follows:

1. An initial aircraft functional weight breakdown is derived

based on a three-view and preliminary design inputs for each

point design. These preliminary design inputs have been

developed during the parametric and systems analysis

aircraft sizing studies. A preliminary balance check is also

made.

2. Factors are derived from these first cycle weights for input

into the parametric weight sensitivity program. The resulting

matrix of weight-values is integrated with the aerodynamic

performance sizing program, and aircraft design weights are

generated based on mission objectives.

3. The detail weights developed from step 2 are examined based

on the degree of deviation from those of step 1. These refined

functional group weights represent the final design aircraft.

4. Functional weights are distributed into five major sections

(wing, fuselage, H-tail, V-tail, and power plant). This

information is used to calculate final balance and moment

of inertia values.

The data presented herein represent the final cycle 3 and 4 values

and are divided into three sections. Section E.I consists of the weight,
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dimensional and structural data compatible with AN-9103 format. A brief

weight substantiation of the final .design aircraft, based on trend and com-

parative data, is given in Section E.2. The balance and moment of inertia

data presented in Section E.3 include charts and nomographs to provide mass

properties information for any combination of payload and fuel.

E.I Weights, Dimensional and Structural Data

Table E-l presents the summary weights for the eight final design

aircraft, and Table E-2 contains the corresponding dimensional and structural

data. Engine weights are based on those provided by the engine companies.

The remaining weights are based on methodology developed from various

commercial and military STOL programs (References 41 through 45) and from

existing in-house efforts committed to the advancement of transport aircraft
•

weight estimation techniques. Aircraft detail weights are calculated for

over 400 components based on 300 inputs consisting of criteria, loads,

geometry, and system descriptions. The weight equations utilize parametric

relationships isolated during post design analysis of production transport

aircraft. The weights for major structural components are derived by multi-

station analysis techniques. The resulting accuracy analysis for predicting

operational empty weight reflects a 0.8 percent deviation of the mean with

a standard deviation of 1.8 percent.

E.2 Weight Substantiation

A brief substantiation example based on first level comparative

weight trend curves is presented in this section. Deviations of the STOL

vehicle component weights which are considered beyond normal tolerance, are
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ĵ- cn
O CO

1

rv co
CO CM

*a- o>
r^ to
O CO

1

(
AV

IO
N

IC
S 

(B
LK

 
BO

XE
S)

A
IR

C
O

N
D

IT
IO

N
 

U
N

IT

tO •—
US CO

o

lf> IO

8

tO to

*? g

Lf> in
^ Ol

o>

tO tO

f K
S

•«t O
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further evaluated by considering second level parameter effects. The aircraft

used in this example is the 150 passenger, 3000 foot (914 m) field length

externally blown flap final design aircraft (Table E-l, Column 5). The

statistical relationships given by these first level trend curves were not

used to derive the final design weights but are presented only to show the STOL

mass values relative to current production transports. If these first level

trend curves were used to derive the weight, an 8.4 percent reduction in

M.E.W. would result. A further M.E .W. reduction of 5.2 percent would result

if the vehicle was resized based on constant mission performance.

E.2.1 Wing Structure. - Figure E-l presents a correlation of wing box

structure weight with a primary bending material index. The structural box

includes all primary load carrying structure and associated splices, fasteners,

bulkheads, and fuselage attach. The correlation of total STOL wing weight,

Figure E-2, reflects the greater control surface (aileron, flap, leading

edge flap, leading edge slat, and spoiler) requirements for this type of

aircraft. These surfaces are 50 percent of the STOL wing area compared to

only 36 percent of the DC-10 or DC-9 wing, areas. The weight of the STOL

control surfaces and secondary structure, 8,204 pounds (3,721 kg), is 5.6

pounds per square foot (27 kg/m^) of wing area. This compares to only 4.4

pounds per square foot (22 kg/m^) for the DC-10.

E.2.2 Tail Structure. - Figure E-3 presents a correlation of tail structure

weight versus tail area. The unit weights for T-tail configurations are

•higher-than for those with-fusel age mounted horizontal- surfaces , "but usually

T-tail arrangements require less total tail area. Note that the STOL tail

weight includes 382 pounds (173 kg) for the addition of leading edge slats
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FIGURE E-2. WEIGHT TREND-WING GROUP
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FIGURE E-3. WEIGHT TREND-TAIL GROUP
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to the horizontal tail, but this increment is offset by a reduction in the

required horizontal tail area.

E.2.3 Fuselage Structure. - Figure E-4 presents a correlation of fuselage

structure weight with number of passengers. Passenger count is based on an

all-coach configuration with a seat pitch of 34 inches (86 cm). The STOL

point falls above the line reflecting a weight penalty for features unique

to STOL. This penalty is explained in Table E-3 and includes the effect of

a higher STOL wetted area per passenger due to the double aisle seating

"arrangement. Penalties in the wing, main landing gear and tail attach due

to the high wing, fuselage mounted gear and large T-tail are also given.

Weight penalties given as a function of wing and tail areas are based on

detail calculations involving many parameters.

E.2.4 Landing Gear. - Figure E-5 presents the correlation of landing gear

weight with takeoff gross weight. The STOL point falls above the normal

trend curve due to the higher design sink speed of 15 fps (4.6 m/s) for

STOL operations. The production transports shown on the correlation curve

have design sink speeds of 10 fps (3.0 m/s) at landing gross weight and

6 fps (1.8 m/s) at takeoff gross weight.

E.2.5 Flight Control and Hydraulics. - Figure E-6 shows the weight trend of

the flight control and hydraulic systems as a function of total control

surface area. These are combined due to the inter-relationship between the

systems and the differences in weight allocation among airframe companies.

The systems are some of the hardest to correlate due to the number of surfaces,

relative sizes among the surfaces, types of actuation; (i.e., screwjack,

hydraulic cylinder, manual), and safety or redundancy requirements. The STOL
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Table E-3

STOL FUSELAGE WEIGHT PENALTIES AND UNIT RATIOS

Weight Penalties

Fuselage Wetted Area Parameters

(34.9 ft2/pass - 30.6 f t2/pass)x
(2 .4 Ib/ft2)(150 pass)

(3.24 m2/pass - 2.84 m 2 /pass)x
(11.7 kg/m2)(150 pass)

Wing & Gear Support

[( 9.7 ft2/pass)(1.89 lb/ft2) -
(12.5 f t2 /pass)(.58 Ib/ft2)](150 pass)

[( .90 m2/pass)(9.23 kg/m2) -
( 1.15 m2/pass)(2.83 kg/m2)](150 pass)

Main Gear Pods and Doors
[( 9.7 f t2 /pass)(.85 lb/ft2) -
(12.5 ft2/pass)(.23 Ib/ft2)](150 pass)

[( .90 m2 /pass)(4.15 kg/m2) -
( 1.15 m2 /pass)(1.12 kg/m2)](150 pass).

Tail Support
[(2.1 f t2 /pass)(2.66 lb/ft2 -

(1.8 ft2/pass)(2.10 Ib/ft2)](150 pass)

[( .20 m2 /pass)(12.99 kg/m2) -
( .17 m2 /pass)(10.25 kg/m2)](150 pass)

TOTAL WEIGHT

-Unit Ratios

Fuselage Wetted Area Parameters
STOL Wetted Area per Passenger
Statistical Wetted Area per Passenger
Average Fuselage Unit Weight*

Wing Area (Trapezoidal) per Passenger
STOL
Statistical

V-Tail Area (exposed) per Passenger ,
STOL
Statistical

Wing & Main Gear Support Weight/Wing Area
High Wing (STOL)
Low Wing

Main Gear Pod and Door Weight/Wing Area
High Wing (STOL)
Low Wing

Tail Attach Weight/Tail Area
STOL
Statistical

*Fuselage shell plus floors.

Ib/airplane

+1,548

+1,664

+ 806

+ 270

+4,288

34.9 ft2/pass
30.6 ft2/pass
2.4 Ib/ft2

9.7 ft2/pass
12.5 ft2/pass

2.1 ft2/pass
1.8 ft2/pass

1.89 lb/ft2

.58 Ib/ft2

.85 lb/ft2

.23 lb/ft2

2.66 lb/ft2

2.10 lb/ft2

kg/airplane

+ 702

+ 755

+ 366

122

+ 1,945

(3.24 m2/pass)
(2.84 m2/pass)
(11.7 kg/m2)

( .90.m2/pass)
(1.15 m2/pass)

( .20 m2/pass)
( .17 m2/pass)

(9.23 kg/m2)
(2.83 kg/m2)

(4.15 kg/m2)
(1.12 kg/m2)

(12.99 kg/m2)
(10.25 kg/m2)
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FIGURE E-5. WEIGHT TREND-LANDING GEAR
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systems are not quite as heavy per unit area as the DC-10 systems.

E.2.6 Nacelle, Pylon, and Propulsion. - The engine weights are based on

values supplied by General Electric and Allison. Figure E-7 shows the

relationship of pylon unit weight to the size of the pylon and to the weight

of the demountable power plant and its location relative to the wing. Note

that the STOL values are higher than the average due to the unique positioning

of the engine relative to the wing plus higher load factors, additive

vectorally in three directions, during the STOL landing condition.

The nacelle weights are based on detailed component estimates which

include the .nose cowl lip, inner and outer inlet barrels, inner and outer fan

cowling, and core cowls. A few representative nacelle unit weights are shown

in Table E-4 for comparison with the final design aircraft values. Unit

values include the exhaust section weights and are based on a wetted area

derived from the maximum nacelle diameter and the length from the nose cowl

lip to the end of the tailpipe. Note that the thrust reversers are not

required for the example aircraft because reverse thrust is accomplished by a

change in fan pitch. This feature requires a variable-area nozzle.
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TABLE E-4. STOL NACELLE WEIGHT CORRELATION

Model Unit Weight
(Nacelle Plus Exhaust Section Minus Pylon)
Ib/ft? of nacelle kg/m2 of nacelle

DC-8 Series 55 (JT3D-38)

DC-10 Series 10 (CF6-6D)

DC-10 Series 40 (JT9D-20)

C-5A (TF39)

STOL Final Design Aircraft

Less penalty for Sound Treatment

Less variable-area Nozzle
Installation

Less portions of the Cowling normally - .7
replaced by Thrust Reversers ——

STOL ADJUSTED TO COMPARABLE CONFIGURATION 1.9

wetted area

1.9

1.8

2.2

1.5

3.2

- .2

- .4

wetted area

9.3

8.8

10.7

7.3

15.6

- 1.0

- 1.9

- 3.4

9.3

E.2.7 Instruments. - The STOL instrument weights are based on detail design

requirements for instruments and warning systems monitoring flight, cabin,

engine, and fuel activity. Since the weight of the instrument group is a

function of many parameters, the trend curves shown in Figure E-8 indicate

considerable scatter. Note that the curve titled "Flight, Navigational and

Miscellaneous Instruments Weight" includes all instrument and warning sub-

systems other than the fuel and engine subsystems which are shown separately.

The STOL flight/navigational instruments weight is higher than the average

due primarily to the heads-up display system (HUD) and the requirement for the

horizontal tail slat position indicating system.
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E.2.8 APU, Pneumatics, and Air Conditioning. - Figure E-9 represents a weight

trend of pneumatic related systems which are combined for the same reasons as

given for the flight controls and hydraulics. All the aircraft shown in

Figure E-9 have an APU; however, all of these aircraft have less than four

engines. Therefore, a STOL weight exceeding the norm is attributed to the

longer pneumatic duct runs between the four wing-mounted engines, the APU in

the aft fuselage and the air conditioning units in the forward fuselage. Note

that the fuselage pneumatic ducting also serves the STOL ice protection system.

E.2.9 Electrical System. - Figure E-10 shows the correlation of electrical

system weights with maximum passenger load. The weights include AC and DC

power supply and distribution systems and exterior/interior lighting systems.

E.2.10 Avionics. - Avionics weights are largely dependent on design definition

and customer requirements. Table E-5 presents a tabulation of the DC-9, DC-10

and STOL avionics systems and their weights. STOL avionics requirements are

discussed in Section 3.5

E.2.11 Furnishings. - The furnishings weight breakdown for the 6-abreast

passenger seating configuration of the example aircraft is tabulated in

Table E-6. The STOL furnishings weight is in close agreement with the

statistical trend as shown in Figure E-ll.
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FIGURE E-9. WEIGHT TREND-APU. AJR CONDITIONING, PNEUMATIGS
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TABLE E-6. STOL FURNISHINGS WEIGHT

Ib kg

Cockpit and cabin seats and tracks 5,152 2,337

Lavatories (3) and water systems 861 391

Coffee bars (2) 540 245

Crew and passenger oxygen systems 304 138

Floor covering 530 240

Insulation above and below floor 1,224 555

Cabin window equipment 223 101

Cabin ceiling 785 356

Lining - above floor 716 325

Lining - below floor (cargo area) 919 417

Stowage and coatrooms 1 ,104 501

Partitions and doors . 280 127

Instrument panels and consoles 104 47

Firex system 305 139

Emergency equipment 22 10

Cargo loading system 400 181

Miscellaneous furnishings 221 100

STOL FURNISHINGS WEIGHT 13,690 6,210
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E.2.12 Ice Protection. - Ice protection is provided for the wing and

horizontal tail leading edges, nacelle inlet lip, and windshield. Engine

hot bleed air is used to deice the wing and stabilizer leading edges and

to anti-ice the nacelles. The wing leading edge is protected outboard of

the outer pylons only. The anti-icing system in the cockpit consists of

electrically heated windows, electrically operated windshield wipers, and a

rain repellent system. De-icing of the pitot tubes is also accomplished

electrically. Table E-7 compares the STOL ice protection system weights

with those for the similar DC-9 system. Differences between the systems

are noted on the weight breakdown.

E.2.13 Operational Items. - Table E-8 presents the weight breakdown of the

operational items for the example aircraft. Provisions are made for coffee

service, plus normal passenger supplies such as newspapers and magazines. The

weight allowances are based on DC-9 commuter experience.
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Table E-7

WEIGHT SUMMARY - ICE PROTECTION SYSTEM

DC-9-30 STOL

Ib kg Ib kg

Ducts & Valves in Wing^ 122 55 105 48

Ducts & Valves on Tail^b) 75 34 100 45

Ducts & Valves in Eng. Nacelle 70 32 186 84

Ducts & Valves in Fusel age^c ' 80 36 Part of Pneu System

Controls 20 9 25 11

Cockpit Window Anti-Ice^ 27 12 46 21

Windshield-Wiper System^ 15 7 48 22

Windshield - Rain Repellent^ 12 6 11 5

Pi tot De-ice 9 4 9 4

TOTAL WEIGHT 430 195 530 240

Notes:

(a) Wing: The STOL slat leading edge is de-iced outboard of the outboard
engine pylon. The DC-9 entire slat leading edge is de-iced.
The STOL aircraft uses titanium ducting versus steel on the
DC-9.

(b) Tail: Although the STOL aircraft uses titanium ducting to de-ice the
horizontal tail slat, the weight is heavier than the steel
ducting on the DC-9 due to the larger horizontal tail.

(c) The STOL pneumatic system ducting runs from the wing engines to the
APU in the aft fuselage and to the. air conditioning units
in the forward fuselage. This ducting also serves the wing ice
protection system. On the DC-9, the engines, APU, and air
conditioning units are located in the aft fuselage. Therefore,
ducting is required.from the engines to the wing, ice pro-
tection system.

(d) Cockpit window anti-ice, wiper system, and rain repellent system:
The STOL windshields are the same size and.design as those on
the DC-10 and are therefore larger than on the DC-9. DC-10
weignts are used for the STOL aircraft.
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Table E-8

OPERATIONAL, ITEMS WEIGHT SUMMARY
(150 Passenger Aircraft)

OPERATIONAL ITEMS

Pilots (2 @ 170 Ibs each) (77.1 kg each)
Observer
Cabin Attendants (4 @ 130 Ibs each)(59.0 kg each)
Crew Luggage
Briefcases
Galley Service Equipment & Beverage*
Cabin Supplies**
Lavatory Supplies
Oil (CSD, engine & APU)
Potable Water
Toilet Chemicals
Evacuation Slides
First Aid Equipment
Unusable Fuel

TOTAL OPERATIONAL ITEMS WEIGHT

WEIGHT

Ibs kq

340
0

520
120
50

231
258
30
195
375
126
225

25
345

154
0

236
54
23

105
117

14
89

170
57

102
11

156

2,840 1,288

*Galley Service Equipment & Beverage

Galley service equipment (cups, silverware,
paperware) =

Refreshment meal (cookies, dry stores
& liquids)

Coffee Makers .(3) =

**Cabin Supplies (Newspapers, magazines, coat
hangers, headrest covers, sickness bags,
kleenex and toilet tissue, towels and
miscellaneous lavatory items.)

.5 Ib/pax (.2 kg/pax)

.5 Ib/pax (.2 kg/pax)
81 Ib/airplane

(37 kg/airplane)

= 1.72 Ib/pax (.8 kg/pax)
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E.3 Balance and Moments of Inertia

This section presents the balance and moments of inertia data for

the eight final design aircraft. Table E-9 gives the weights and center of

gravity (eg) locations for the major O . E . W . components. The aircraft balance

location and the inclination of the principal axis for the O . E . W . , Zero Fuel

Weight and Takeoff Gross Weight are also included. For aircraft balance

considerations, the payload is assumed to be loaded along the resultant of

the passenger and belly cargo eg vectors (see Figure E-12).

An almost infinite number of aircraft balance and inertia conditions

can be defined for each vehicle depending upon the payload and fuel loading

desired. Therefore a series of charts and nomographs are presented to give

the user the capability of investigating various payload, fuel, and gross

weight combinations. These charts, Figures E-12(a) through (h), give the

loading diagrams for a variety of weight conditions for each of the vehicles.

In these figures moment is plotted against weight, and thus the loading

vectors may be transferred to any part of the diagram so that the horizontal

eg position for any combination of passengers, cargo and fuel can be easily

determined'. Forward and aft eg limits are shown on each figure.

Vertical eg positions are presented in Figure E-13. This nomograph

is representative of all eight final design aircraft and provides the means

for determining the delta vertical eg from the O.E.W. values shown in Table E-9.

A sample calculation is given below.

Nomographs for determining aircraft pitching and rolling moments

of inertia for the eight final aircraft are given in Figures E-14 and E-15.
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cw î-5

CM r—
VO CM
r-. un

0 0
• *

0 UO
o o
CO CM

VO CTi
CO CM
CO VO
CO CO

oo en
cr> co
CM CM
to «3-

cr> co
"3- 0
1— 01

00 0
co en
if> en
CM r—

_l —1
1— < t— \

•5?
i >

^<— O.i.

c^10
1

o o
•«* CM

1

CO 00
to o
to co

"3- 0

co to
vo to

CM •*
o en
10 CO

«!»• en
CM

r»- CM
5 CO

SJ- T-

UD CM

jj
CD

*\D

_l

*_1
0
•zz
^•~

UJ _J
co a:<c
_J CC
UJ UJ
00 S
^> 0
U. 0.

•filSSiC,

CT) tC
r-~ CT
r̂ o-

CM «*
o cc

O C*
^cd

co a
co *d
vo vo

O VO

to to
•5f "S*1

vo vo

CO •—
f a

r^ cc
CM Cv.

<r> n
en o
to CM
CO CVJ
**• VO

o o
co co
r— r—

r»* r̂
o co
w— r— •

D
:̂

CO
0
VO

0

CO

9

oa
_j
o
0
<D

a
O
CO
II
a.

• o

S 3:
u! u!
CD ivj

STSSSSl

CO
VTt

co

vo
en

vo
•i>*

CO

o
»*
VO

l>>
9

to
«*
vo

CM

CO
CM

O
r^
VO

o
r^

o
o
CO

to
to

•

•

CD
•

0
jj-

-̂K-.i.-'

1

ia-w.-ii

' •

- i

izsr J

-

-

k

[

t

ii
iii

CTSlJ

372



PREPARED BY,

DATE:

REVISED

PAGE NO..

MODEL .

DOUGf-AS
REPORT NO.

iipkt^; Eirt:ifi^^Lnd±tithw. -t-

3!f*ttfJf£M!#;g$
n Jiir^rJlOtHl S2;ii ciS fyrtiiiti

to mUiife+itteB- ̂ UW.M*mli±=i Mfijih^i_.™-t--i.i>-f.,-w^_ii.j_i^ii^;ij^.^.j^.

tttflim
•t--rH-rH '*•''

fti

(REV. s.7i>
373



PREPARED BY:

DATE:

-f t' t i i '' i * *

^, 4wT7cM_*_ ar^-l_JjLLl±U/-.j vt.

t̂*SS1JW
X^S^Mfe
H ^ i r f T V-il-t!

ii-tUi-li isfffi+fr Ut-tmr^xC^JW+fir^V.)

<BEV. B-71)
374



PREPARED BY:

DATE:

PAGE NO._

MODEl

i ; >*.,-?••'. ?-j-rj - * * ; ' i 1 I IW **i > r i

t^m^m^^f^mmm^ **
:qmSFF 4£uT<Sa5^TTR^?*:Hj^F Iff?
^S^^^&Kn^f^^m^^f



PREPARED BY!

DATE:

"!-l-f- -r>-r^-?-T^ir< t-tH-rH-rf-rH^-rV-H-r-t- -rHr' ! r i I T-^-rt-rr—*

-t-*-rT-riit-»" •t-t--r"T-*~T~tT~ T-t-r^'^-T-r-t-" f-?— -- *-* -j — -

(REV. 6-71)
376



PREPARED BY.

DATE;

L -H-H-H -t-H-H-H-H-H+H-m-g ka-H-f

-M-H-rr mr rftTf?T^-TS^^tT»-t-y"sr!»s~

. i !

ifilpJtuOTffimMBg^

•i-t-t-T1 -f-rj-rt-rtT "*TT-TTI-Tr' i-jTpi-f-vt-*

Ii4.i .4J33. J.*.hVlH*f 44—r-f -J4-H-1-! *-!-f

(BEV. 6-71}
377



PREPARED BY,

DATE:

. .

. 6-70
378

TH19I3/V\~



mm
«:iT-tti±i jift

-

^ •=*?•; i >- i H+HtTTTIfffi

(REV. c-7i)
379



PREPARED BY> PAGE NO._

DATE: MODEL.

CREV. 6.?!}
380



i:::j

r--f—; -•
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Principal axis values are not given since variations over those shown in

Table E-9 have been found to be negligible. Full payload is distributed

throughout the cargo compartment in accordance with the following unit

loading chart:

fr<
CO

03
^3

o

r ' • '"
10 Ib ft3 (vol)

. ft^ A in. of Fus. Sta:

160 kg m3 (V0lj

m^ cm of fus. sta.

Belly • >_

Cargo

Same
Calculation as

Forward
Compartment

Passengers • • . ' •

No. of Abreast Passengers x 165 Ib (7̂ .8 kg)
3l4 in (86 cm) Seat Pitch

FUSELAGE STATION

The moment of inertia nomographs assume the payload is homogeneously

distributed throughout the cargo compartments. ,

In order to illustrate the use of the preceding charts and nomo-

graphs, a sample problem is given as follows: Balance and moment of inertia

values are desired for the 150 passenger, 3000 foot (914 m) field length,

final design EBF aircraft, for 50 percent load factor and baggage at

35 pounds (16 kg) per passenger at the maximum takeoff gross weight. The

weight breakdown is as fol lows:
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Weight . l_b_ k£

O.E.W. (Table E-7) 102,610 46.543
i

Passengers 75 x 165 Ib ea. (74.8 kg ea) 12,375 5,613

Baggage 75 x 35 Ib (16 kg) 2,625 1,191

Fuel 31 ,390 14,238

Takeoff Gross Weight 149,000 67,585

The pertinent tables and charts required for the example are

reproduced in Figure E-16. From the loading diagram (E-16(b)), the T06W

horizontal eg is 27.9 percent MAC using nominal eg vectors. From the weight

and balance summary (E-16(a)) , the OEW vertical eg location is 49.4 inches

(125 cm) above the,fuselage reference plane. In the nomograph (E-16(C)),

the approach line shows the delta eg value for payload/OEW (15,000/102,610)

and fuel weight/OEM (31,390/102,610) is shown to be 4.0 inches (10 cm).

The TOGW vertical eg for this condition is therefore 49.4 + 4.0 or 53.4

inches (136 cm).

Moment of inertia K factors for pitch and roll can be found in

a similar manner by following the example arrows shown on the inertia

nomograph (E-16(d) & (e)) . Pitch, roll, and yaw values can therefore be

determined as fol lows:
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Pitch (K = .204)

English: IpITCH = (.204)2 (149,000 Ib) (1500 in)2 (4632 mg

= 3.01 x 106 slug - ft2

Metric: IpITCH = (-204)2 (67,585 kg) (38.1 m)2 = 4.08 x 106 kg-m2

Roll (K = .167)

English: IRQLL = (.167)2 (149,000 Ib) .(1297 1n)2 (4632 t^ft/sec

= 1.51 x 106 slug - ft2

Metric: IRO|_L = (.167)2 (67,585 kg) (32.9 m)2 = 2.04 x 106 kg-m2

Yaw

English: IyAW = (.94) (3.01 + 1.51) = 4.25 x 106 slug-ft2

Metric: IyAW = (.94) (4.0.8 + 2.04) = 5.75 x 106 kg-m2
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APPENDIX F .
FINAL DESIGN AIRCRAFT CONTROL SYSTEM, HANDLING QUALITIES, AND FLIGHT ENVELOPE

The discussions which follow describe in general terms the control

systems, handling qualities and flight envelopes to which the final design

aircraft have been designed. These descriptions are based upon the extensive

research that the McDonnell Douglas Corporation has accomplished on STOL

aircraft during the past five years. This experience is represented and inte-

grated into the final designs.

F.I Control System.

The flight control systems consist of the mechanical flight control,

trim, and fuel systems and a stability and control augmentation system. All

control surfaces are operated by irreversible hydraulic actuators.

Longitudinal control is derived through a trailing-edge elevator: .

Longitudinal trim is achieved through adjustable stabilizer incidence, and

control feel is supplied by an elevator load feel system in which force

gradients are provided as functions of airspeed and stabilizer incidence.

Lateral control is derived through ailerons and spoilers. There

are three spoiler segments on each wing panel. All three spoilers on both

wing panels are used for direct lift control, landing spoilers, and speed

brakes, but only the outboard two spoilers are used for lateral control.

Lateral control forces are provided by a simple bungee system. There is a

lateral control dead band equivalent to ±5 percent of the total lateral

control over which the spoilers do not operate. Most lateral trim require-

ments are thus accomplished by aileron deflection alone through the. lateral
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fee] system.

Directional control is derived through a double-hinged rudder.

Rudder pedal forces are supplied by a simple bungee system, and trim is

accomplished through the feel system.

Direct lift control (DLC) is achieved through the symmetrical

actuation of the spoilers which are located immediately forward of the wing

flaps. When the wing flaps are lowered to the landing approach setting, the

spoilers are raised to approximately 45 degrees TEU to provide a lift decre-

ment of 0.15g at approach speeds. During the landing approach, the positioning

of the spoiler can be varied to provide glide path control. The spoiler is

lowered to its original position to provide a lift increment of 0.15g during

the flare maneuver. DLC spoiler deflections are commanded by thumb switch

on the throttle lever or a thumb switch on the control wheel/stick. DLC is

primarily used for precise flight path control during the final part of

landing approaches and is the primary landing flare control.

The Stability and Control Augmentation System (SCAS) consists of

pitch and roll attitude stabilization with pitch and roll rate command pro-

portional to control force and turn coordination and Dutch roll damping

augmentation in the yaw channel. Although primarily designed for STOL mode

operation the SCAS is operable throughout the flight envelope with appropriate

gain changes with airspeed.
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F.2 Flying Qualities

F.2.1 Longitudinal. -

Longitudinal Control Effectiveness

The critical longitudinal control effectiveness considerations in

the STOL mode are takeoff rotation and landing flare. The 35-percent chord

Single-slotted elevator is designed to provide takeoff rotation capability

at 90 percent of the desired rotation speed with the center of gravity at the

forward permissible limit, 20 percent MAC.

The pitching acceleration capability in the STOL mode is 0.40

rad/sec2. This is somewhat below that specified in MIL-F-83300, AGARD 408A,

and TN D-5594 (References 46 through 48) but is considered to be adequate.

Sufficient control is available to rotate the airplane as required to achieve

desired short takeoff performance. The critical landing control requirement

is satisfied by direct lift control.

In regard to the landing flare, aerodynamic ground effects in the

form of reduced.lift curve slope, reduced maximum lift, and nose down pitching

moment change due to reduced downwash make the landing flare particularly

difficult. The results of flight tests sponsored by NASA, flight simulator

studies conducted by the contractor, and open-loop dynamic analyses indicate

the landing flare is an open-loop process and that aircraft rotation alone

does not provide sufficient lift to accomplish the flare. The results of

contractor studies also indicate that flare control through thrust is not

sufficiently precise with readily achievable thrust responses characteristics

but that relatively precise flare control can be achieved through DLC with a

0.15g authority if consistent flare initiation heights between 30 and 40 feet

(9.1 and 12.2 m) can be achieved.
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A calculated time' history of a typical DLC flare is shown in Figure

F-l. The aircraft is rotated to a 10-degree nose-up attitude by longitudinal

control application when the flare is initiated.

Static and Maneuvering Stability

The aircraft is stable with respect to angle of attack to angles

well beyond the conceived operating envelope with the center of gravity

at the aft permissible limit, 35 percent of MAC.

The longitudinal control feel system is designed such that control

deflection force gradient are a function of airspeed and stabilizer incidence

(thus center-of-gravity position) to provide relatively constant maneuvering

force gradients with minimal effects of center-of-gravity location.

Dynamic Longitudinal Stability

The dynamic longitudinal stability of the unaugmented aircraft in the

STOL mode is characterized by a relatively sluggish well-damped short period

mode, a relatively high-frequency lightly-damped phugoid mode, and relatively

strong coupling between the longitudinal modes. The frequency and damping of

the two longitudinal modes are summarized as follows:

STOL MODE DYNAMIC LONGITUDINAL STABILITY
SCAS OFF

Frequency Period Damping Ratio
rad/sec sec

Short Period 0.281 22.3 0.917 T I / IQ = 3.9 sec

Phugoid 0.288 21.8 0.047 T-,/2 = 50.9 sec
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In addition to the relatively sluggish short-period mode and the

associated sluggish response to pitch commands, the aircraft has a

low effective lift curve slope in the STOL mode. As a consequence of these

low lift curve slopes and the strength of the coupling between the short-

period and phugoid modes, longitudinal control of flight path is particularly

poor. The strength of short-period and phugoid mode coupling can also be

characterized by the vertical speed stability or slope of the flight

path angle - speed curve (dy/dV). The aircraft'is well on the backside of

the speed-drag or thrust required curve. As might be expected, it is necessary

to control flight path angle and altitude through thrust and speed through

longitudinal control under such conditions.

The longitudinal SCAS is designed to hold pitch, attitude and provides

pitch rate control proportional to longitudinal control force. As a consequence

of the attitude-hold function, the SCAS effectively decouples the short-period

and phugoid modes and provides excellent static stability. The effect of

SCAS on the dynamic longitudinal stability is illustrated in the following

tabular summary of the frequency and damping of the short-period and phugoid

modes with SCAS on.

STOL MODE DYNAMIC LONGITUDINAL STABILITY
SCAS ON

Frequency Period Damping Ratio
rad/sec sec

Short Period 3.96 1.59 0.35 T I / ]Q = 3.88 sec

Phugoid 0.33 19.0 0.91 T-j / 2 = 0.5 sec
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It should be noted that flight path and altitude are still controlled

by thrust, and speed is still controlled by longitudinal control with the SCAS

on. Where as thrust is the primary altitude and flight path control, it is a

relatively sluggish and gross control. Precise altitude control during the

final approach is achieved through DLC.

F.2.2 Lateral- Pi recti onal. -

Control Effectiveness

Lateral control effectiveness in the STOL mode can be characterized

in terms of rolling acceleration capability, one-second bank-angle change

capability, or time required to accomplish a specific bank angle change (30

degrees, for example). These characteristics are summarized as follows for

nominal STOL approach conditions:

Rolling Acceleration (Bad/sec2): $ = 0.54

One Second Bank Angle Change (Deg): A$, = 8 . 4

Time to Bank 30 Degrees (Sec): t™ = 1.8

Directional control effectiveness can be characterized by the

yawing acceleration capability; the steady-sideslip capability, and the

asymmetric thrust control capability. Yawing acceleration capability in the

STOL mode is primarily an indication of the ability to decrab during cross-

wing landing flares; however, STOL cross wind landing approaches preferably

would be made without rapid decrabbing prior to touchdown. A gradual

transition from a crabbed approach to a steady' sideslipping approach

should be accomplished at an altitude of 100-150 feet, well before flare

initiation. Steady sideslip capability is thus a much more meaningful

directional control consideration.
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The yawing-acceleration and steady-sideslip capabilities in the STOL

mode are surrmarized as follows:

Yawing Acceleration (Rad/sec2): y = 0.15

Steady Sideslip Angle (Deg): 3m,v = 20
(TlaX

Engine out, asymmetric thrust control in the STOL mode is of

particular concern with externally-blown flap (EBF) STOL transport configu-

rations and can be illustrated by the minimum speed at which maximum thrust

asymmetries can be controlled and by the dynamics of the aircraft following

an abrupt engine failure with the pilot attempting to maintain control. The

minimum control speed in the takeoff and landing waveoff configurations is

approximately 65 knots (33 m/sec). This speed is the minimum at which there is

sufficient lateral and directional control to balance the maximum thrust

asymmetry associated with one engine inoperative. Lateral control is a major

consideration and the conventional 5-degree bank angle limitation is generally

not critical. The minimum control speed quoted above provides a speed margin

of 15 to 20 knots (7.7 to 10.3 m/sec) from anticipated STOL operating speeds.

A net rolling acceleration capability of 0.20 rad/sec2 exists at antici-

pated STOL operating speeds after balancing the lateral asyrmietry.

Contractor experience indicates a minimum rolling acceleration capability

of at least 0.15 rad/sec2 should exist under these conditions.

Time histories of the aircraft response to abrupt asymmetric engine

failures obtained from fixed base flight simulator studies are shown in

Figures F-2, F-3, F-4 and F-5 in takeoff and waveoff configurations with and

without SCAS operation. The "SCAS-off" data show adequate control of the

thrust asymmetry although the Dutch roll damping is particularly poor. The
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"SCAS-on" data show very little disturbance and relatively little pilot control

activity as a result of the engine failure. Both the steady state and dynamic

engine failure control characteristics appear to be satisfactory. In light of

the tendency of the SCAS to mask an asymmetric thrust failure, auditory warning

of the failure may be necessary.

The static lateral-directional stability characteristics as indicated

by the lateral and directional control deflections and bank angle per unit

sideslip angle in steady sideslips in the STOL mode are summarized as follows:

Directional Stability: -rp =1 .01

dfi
. Lateral Stability: -^ = 0 . 2 2

Side force curve slope: ^|- = 0.30

These data show that the airplane possesses positive controls fixed

static directional stability and dihedral effect and has negative side force

curve slope. For example, increasing left rudder, right aileron, and right

bank angle are required for increasing right steady sideslips.

The maximum attainable steady sideslip angle is 20 degrees. This

permits steady sideslipping approaches in 90 degree cross winds in excess of

25 knots (12.9 m/sec) at normal STOL approach speeds of 85 knots (43.7 m/sec).

A bank angle of 6.5 degrees is required in this situation. Crabbed cross-

wind landing approaches require excessive directional control power to decrab

the airplane rapidly prior to touchdown unless cross wind landing gear are

used. In view of the improved visibility and control precision associated

with sideslipping approaches, transition to sideslipping approaches is
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accomplished on final approach at an altitude of 100 to 150 feet.

Dynamic Lateral-Directional Stability

The dynamic lateral-directional stability characteristics in the

STOL mode at normal STOL operational speeds without SCAS are summarized as follows

1. The Dutch roll mode has a period of 7.9 seconds and damps

to half amplitude in 5.5 seconds.

2. The spiral mode is unstable and doubles amplitude in 8 seconds.

3. The roll mode time constant is 1.2 seconds.

These characteristics are not sufficiently good to be considered

satisfactory but are considered acceptable for emergency operation.

The result of fixed base flight simulator tests conducted by the contractor

confirms this conclusion.

SCAS operation improves these characteristics appreciably:

1. Dutch roll damping with SCAS on is increased to the point

that the time to damp to half amplitude is reduced to

0.78 seconds. The period is reduced to 2.95 seconds.

2. The spiral mode is stabilized by SCAS operation to give a

2.7 second time to damp to half amplitude. This represents

a major flying quality improvement.

3. The roll mode time constant is reduced from 1.2 to

0.8 seconds.
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F.3 STOL Flight Envelope

Typical STOL mode operating conditions are illustrated in the speed-

flight-path-angle (V-Y) envelope of Figure F-6 in which constant angle of

attack and thrust lines are presented. The desire to continue an approach

after an engine failure makes it necessary to limit thrust level in the

approach to a maximum of 65 percent. Pilot perception of altitude and sink

rate requires limitation of the approach sink rate to a maximum of 1000 feet

per minute (5.1 m/sec). Maneuverability considerations require some maneuvering

margin from the stall. Although there is little flight experience upon which

to base such criteria, the contractor feels the available maneuvering load

factor should be at least 1.2 and has thus established a requirement for 1.2g

at 0.9 Ci „„• Inasmuch as DLC is the primary maneuvering device, themax

maneuvering margin is established with the DLC spoilers closed. An angle-of-

attack margin from the stall of at least 10 degrees is also considered to be

desirable. This corresponds to a 25-foot-per-second (7.6 m/sec) vertical gust

at a nominal approach speed of 85 knots (43.7 m/sec).

It is essential that anticipated operating speeds be well above

minimum control speeds with maximum thrust asymmetries associated with an engine

failure. However there are no established criteria regarding how large the

speed margin should be. -It is suggested that minimum operating speeds be at

least 5 percent or 5 knots (2.6 m/sec) above the minimum asymmetric thrust con-

trol speed. Inasmuch as the minimum control speed is 64 knots (33 m/sec) this

criterion does not appear to be critical. It is also recommended that a net

lateral control power of at least 0.15 radians per second squared exist with an

engine out at minimum operating speeds. A net rolling acceleration capability
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of 0.20 radians per second squared exists with an engine inoperative at

recommended minimum STOL operating speeds.

As indicated in Figure F-6, one-g stall speed (VMIN) is greatly

affected by thrust. In this case the recommended minimum STOL landing approach

speed, 82.7 knots (42.5 m/sec), is 12.5 knots (6.4 m/sec) above the approach

power stall speed. Maintenance of adequate maneuver and stall angle margins

appears to provide adequate stall speed margins.

F.4 Conclusions

The flying qualities of unaugmented propulsive lift STOL transport

aircraft are not satisfactory for operational use. A fairly sophisticated

stability and control augmentation system is therefore required to improve

the basic handling qualities to the currently acceptable standards. The

summary presented in this appendix is characteristic of all propulsive lift

systems. The mechanical flap type of aircraft will exhibit much of the

handling quality characteristics of conventional aircraft with the exception

of degradations which occur as a result of lower flying speeds. Difficulty

in achieving satisfactory handling qualities increases as the field length

or operating speeds are decreased. Existing state-of-the-art concepts,

however, are available and adequate to provide excel lent handling qualities

for all aircraft of this study.
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APPENDIX G

RIDE QUALITIES

G.I Introduction Ride Qualities

Aircraft with relatively low wing loadings are more responsive to

turbulence upsets than high wing loading aircraft at comparable airspeeds.

The primary objective of this s'tudy was to investigate the ride

quality characteristics of a typical low wing loading propulsive lift (EBF used

as typical) aircraft and to explore the effects of various stability and

control augmentation concepts on aircraft response to turbulence. A complete

design study of the ride qualiteis of all the final design aircraft is beyond

the scope of this study. Rather the work reported in this section is intended

to identify some of the potential problems which must be addressed to provide

satisfactory ride qualities for low wing loading STOL aircraft.

The aircraft chosen for the study had a wing loading of 65 psf

(317 kg/m2). This is close to the value of 70 psf (342 kg/m2) for the

EBF 2000 foot (610 m) 150 passenger final design, aircraft (Section 2.3). This

initial study concentrated on aircraft dynamic behavior in the approach mode

and used the Dryden turbulence model from the flying qualities specification

MIL-F-8785B (Reference 2) to provide .external disturbances. A basic RMS value

of 10 ft/sec (3.04 m/sec) was chosen for the turbulence model as representing

a realistic level of gust activity for the approach mode. Ride qualities

characteristics were evaluated on the basis of normal acceleration activity

for the longitudinal axis and lateral acceleration excursions for the lateral/

directional axes.
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The systems discussed in this report apply specifically to the

approach mode. Cruise and transition flight regimes may require different

system configurations due to restrictions on the types of control surfaces

available and the change in aircraft dynamic characteristics.

G.2 Longitudinal Axis

Longitudinal transfer functions for augmented and unaugmented

aircraft are shown in Table G-l. Figure G-l shows an example block diagram

of the type of augmentation system studied. This particular configuration

utilizes pitch rate feedback to spoiler surfaces. The turbulence model is

shown as providing vertical gust disturbance inputs to the closed loop

system (Wg).

The basic unaugmented aircraft frequency response characteristic

for normal acceleration due to vertical gust is shown on Figure G-2. A peak

in the acceleration response occurs at a frequency of 0.3 rad/sec due to the

lightly damped phugoid mode of the basic aircraft. This characteristic shows

the magnitude of the aircraft normal acceleration for sinusoidal vertical gusts

applied at each frequency value. The gust model then applies the appropriate

frequencies pertinent to atmosphere turbulence in the vertical plane and an

estimate of aircraft normal acceleration excursions can be made from the power

spectral density characteristic as discussed below. Figure G-3 shows a power

spectral density plot of normal acceleration activity for the basic aircraft.

The corresponding standard deviation or RMS normal acceleration value (calcu-

lated from the area under the power spectral density curve) is approximately

4.2 ft/sec2 (1.3 m/sec2) or 0.13g for this case. The effect of pitch rate and

normal acceleration feedback on aircraft response to a vertical gust is shown

in Figure G-4. Curve A shows the effect of pitch rate and normal acceleration
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Table 6-1

LONGITUDINAL TRANSFER FUNCTIONS

APPROACH CONDITION

Wt = 121,875 Ibs (55,281 kg), Wing loading = 65 lbs/ft2 (317 kg/m2)

VEAS = 73 kts (3 7 > 5 m /sec)> C - G - = 25%

a = 6.7° , y = -6.7°

VERTICAL GUST MODEL Hu(S) = 10-° (s + 0-144)
(S + 0.25T

Az
T-. (Basic Aircraft)
WGUST

0.65 (S2 + 0.034S + 0.123)(S + 1.2)5

(S2 + 1.87S + 1.16)(S2 + 0.027S + .08)

Az
rr= (Basic Aircraft + 0/6 + A7/6 loops closed)
"GUST L

= 0.65 (S2 + 0.12S + 0.02)(S2 + 7.4S + 57.6)(S + 23.7)(S + 10.0)S

(S2 + 0.098S + 0.02)(S2 + 7.085 + 89.4)(S + 22.7)(S+7.4)(S+ .6)

A . .
rr= (Basic Aircraft + 0/6 + A7/6C loops closed)
WGUST e L sp

= 0.65 (S
2 + 20.S + 100.)(S + 1Q.)(S + 10)(S -4.) (S + 0.16) (S - .12)S

(S2 + 9.8S + 107.)(S2 + 18.0 + 89.5)(S + 20.) (S + .56)(S + .09)(S + .03)

(Normal Acceleration Measured at C.G.)
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feedback to the elevator. Curve B illustrates the effect of pitch rate feed-

back to the elevator and normal acceleration feedback to spoiler surfaces.

It is evident that although the basic aircraft dynamic modes are fairly well

damped in either case, feedback of normal acceleration to spoilers produces

lower levels of aircraft acceleration in the critical frequency range 0.1

to 10.0 rads/sec.

Power spectral density plots for the above two cases as shown in

Figure G-5 also indicate much less activity with acceleration feedback to

spoilers, the standard deviation for Case A (acceleration feedback to elevator)

being approximately 0.13g and for Case B (acceleration feedback to spoilers)

being in the region of 0.05g.

Acceleration activity was computed for forward, mid and aft aircraft

locations and the results are summarized in Figure 6-6. For the purposes of

comparison a basic acceptance criterion for normal acceleration activity was

extracted from Reference 1. This criterion states that acceptable levels of

normal acceleration should be less than O.lg and the boundary is indicated in

Figure G-6. It will be observed that both the basic aircraft and the aug-

mentation system utilizing pitch rate and normal acceleration to the elevator

have acceleration levels higher than O.lg. Feedback of normal acceleration

to spoiler surfaces, however, provides sufficient gust suppression to lower RMS

acceleration values to less than O.lg for the three aircraft locations studied.

G.3 Lateral/Directional Axes

Lateral/directional transfer functions for unaugmented aircraft are

shown in Table G-2. It will be observed that the basic aircraft has a lightly
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Table 6-2

LATERAL TRANSFER FUNCTIONS

LATERAL GUST MODEL H.(S) = 3-° (S+0.12)
P (S+0.21T

A
-/• (Basic Aircraft)
^GUST

= 0.41 (S
2-0.36S + 0.167)(S-0.03)S

0.99(S2+0.095S + 0.63)(S+0.98)(S - 0.035)

DUTCH ROLL ROLL UNSTABLE
MODE MODE SPIRAL

(?o=0.06)
 CONSTANT MODE

A
-/- (Basic Aircraft + Yaw Damper + A /6 loops closed)
PGUST y r

= 0.41(S2-.075S + 0.003)(S + 0.65)(S - 0.42)S

0.99(S2 + 0.3S +0.45)(S+0.94)(S+0.5)(S-0.016)

(Basic Aircraft + Yaw Damper + $/6.fl + $/6« loops closed)

= 0.41 (S2 + 0.1S +0.18)(S + 6.0) (S + 1.2) (S +0.065)S _

0.98(S2 + 7.4S + 16.7)(S2 + 0.38S +0.4)(S +0.47)(S +0.057)

(Normal Acceleration Measured at C.G.)
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damped dutch roll mode (? = 0.06) and an unstable spiral mode which doubles

amplitude in 20 seconds.

An example of the type of augmentation system studied for the

lateral/directional axes is shown in block diagram form in Figure G-7. Washed

out yaw rate feedback to rudder is used to provide damping of the dutch roll

mode. The basic aircraft unstable spiral mode is stabilized by means of a

combination of roll rate and roll attitude feedback to ailerons. The turbu-

lence model is shown as providing external sideslip type disturbance inputs

to the aircraft

The basic aircraft lateral acceleration response characteristics

to side gust is shown in Figure G-8. Peak response activity occurs at. the

frequency of the lightly damped dutch roll mode (w, =0.8 rad/sec).

Figure G-9 shows a power spectral density plot for basic aircraft

lateral acceleration activity. The standard deviation is approximately 1.6

ft/sec2 (0.49 m/sec2) or 0.05g.

The effect of utilizing yaw rate and lateral acceleration feedback

to rudder is shown in Figure G-10. The dutch roll mode is now fairly well

damped although lateral acceleration gains are still relatively large in the

frequency range of 0.1 to 1.0 rad/sec. If a desired level of dutch roll

damping is maintained using yaw rate feedback to rudder and the basic aircraft

spiral mode is stabilized with a combination of roll rate and roll attitude

feedback to rudder, then the results are as shown in Figure 6-11. Lateral

acceleration response for this case is less than for the previous case with

lateral acceleration feedback to rudder (critical frequency range of 0.1 to

10.0 rad/sec).
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The corresponding power spectral density plots are shown in

Figure G-12. The standard deviation values for roll rate and attitude feed-

back to rudder (0.6 ft/sec2 (0.18 m/sec2} versus 1.22 ft/sec2 ( .37 m/sec2))..

Results are summarized on Figure G-13 for RMS lateral acceleration values

measured at three aircraft locations.

It will be observed that the aft CG location produces the largest

values of RMS lateral acceleration. Basic aircraft activity is in the region

of 0.18g at the aft location. A basic acceptance criterion of 0.06g was

extracted from Reference 49 and is shown on Figure G-13 for purposes of

comparison. The augmentation system with roll rate and roll attitude feed-

back to aileron represents the only case where lateral acceleration activity

is less than 0.06g at the aft location.

G.4 Conclusions - Ride Qualities

Use of elevator surfaces for improvement in longitudinal ride

qualities for the STOL approach mode does not appear to be very effective.

This study has indicated that an effective method of reducing

normal acceleration activity in turbulence is to utilize normal acceleration

feedback to spoiler surfaces and to use pitch rate feedback to elevator as a

means of providing the necessary damping signals. Since the use of spoiler

surfaces in cruise or transition flight regimes is not feasible, it will be

necessary to explore alternate solutions for those conditions.

In the lateral/directional axes lateral acceleration feedback to

rudder appears to be undesirable for the following reasons.
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o The spiral mode is destabilized.

o The basic damping of the dutch roll mode is reduced,

o This type of feedback is not sufficiently effective to reduce

lateral accelerations at the aft position to an acceptable level

The use of roll rate and roll attitude feedback to the ailerons in

conjunction with a conventional yaw damper does reduce lateral acceleration

levels to an acceptable level and also provides adequate stability for the

basic aircraft spiral mode. Since the basic spiral mode is normally stable

in the cruise flight regime it is possible that lateral acceleration feed-

back to rudder would be sufficiently effective to provide satisfactory ride

qualities in this condition.
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