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1.0 SUMMARY 

A low speed wind tunnel t e s t  was conducted i n  the NASA ARC 12-foot wind 

tunnel. i n  support of the NASA Refan Program. The purpose of t h i s  t e s t  was 
t o  assess the e f f ec t s  of the l a rge r  refan nacelle on the s t a b i l i t y  and control 

charac te r i s t i cs  of the DC-9-30, w i  t h  emphasis on the deep s t a l l  regime. The 
t e s t  was prompted primarily by the f a c t  t ha t  the diameter of the refan nacel l e  
is approximately 22 percent l a rger  than tha t  of the current  production nacelle 
and, if  the current  pylons were used, the  increased overall -span of the 

nacel le-pylons could decrease deep s t a l l  recovery capabi 1 i ty .  Previous DC-9 

wind tunnel t e s t s  have shown tha t  the nacelles and pylons have a major impact 
on deep s t a l l  charac te r i s t i cs .  In ant ic ipat ion of a problem w i t h  the new 

nacel le ,  two possible solutions were investigated during t h i s  t e s t :  (1)  use 
of a smaller pylon span t o  minimize the overall  nacelle-pylon span, ( 2 )  use 
of a new horizontal t a i  1 wi t h  increased span. The t e s t  was conducted i n  a 
manner t h a t  would allow the individual e f f ec t s  of the refan nacel le ,  the pylon 
span, and the horizontal t a i l  s i z e  t o  be determined. 

Analysis of the r e su l t s  of the t e s t  leads t o  the  following conclusions: 
1 .  The refan i n s t a l  1 at ion has a small e f f e c t  on the DC-9-30 deep 

s t a l l  recovery capabi 1 i t y  , reducing the recovery margin by approxi - 
mately 0.015 t o  0.037 i n  pitching moment coef f ic ien t ,  depending 

on f l ap  and s l a t  posit ion and pylon span. Deep s t a l l  character- 

i s t i c s  w i t h  the refan i n s t a l l a t i on  and any pylon span within the 
range tes ted are  acceptable with no additional design changes 
ant ic ipated.  

2. The e f f e c t  of pylon span on deep s t a l l  recovery margin i s  small , 
w i t h i n  the range of spans t es ted  (5.2 inches t o  11.0 inches).  
The recovery margin var ies  by a maximum of 0.010 w i t h  pylon span. 



2 3. A 1  arger  ho r i zon ta l  t a i l  (area increased by 18.6 f e e t  and span 

increased by 20 inches) s i g n i f i c a n t l y  increased the  deep s t a l l  

recovery margi n. The avai 1  ab le  nose -down p i t c h i n g  moment 

c o e f f i c i e n t  a t  the  c r i t i c a l  angle o f  a t tack  was increased due 

t o  the  l a r g e r  t a i l  by from 0.049 t o  0.065, depending on the  f l a p  

and s l a t  p o s i t i o n .  

4. The refan i n s t a l l a t i o n  has no s i g n i f i c a n t  e f f e c t  on e l e v a t o r  

hinge moment charac ter is  t i c s .  

5. I n  t he  nornial f l i g h t  regime, the  re fan  engines cause a  p o s i t i v e  

( a i r p l a n e  noseup)  increment i n  t a i l - o f f  p i t c h i n g  moments and a  

s l i g h t  increase i n  t a i  1  - o f f  l o n g i t u d i n a l  s t a b i l i t y .  

6. I n  the normal f l i g h t  regime, the re fan  engines do n o t  s i g n i f i c a n t l y  

a f f e c t  t he  DC-9 t a i l - o n  p i t c h i n g  moments. The re fan  engines 

apparent ly  a l t e r  the downwash a t  t h e  h o r i z o n t a l  t a i l  such t h a t  

t he  change. i n  t a i  1  c o n t r i b u t i o n s  essent i  a1 l y  o f f s e t  t h e  t a i  1  - o f f  

e f f e c t s  described above. 

Th is  t e s t  was made i n  con junc t ion  w i t h  a  high-speed t e s t  i n  the  NASA ARC 
11- foo t  f a c i l i t y .  The purpose o f  the h igh  speed t e s t  was t o  examine the e f f e c t s  

o f  the l a r g e r  nacel l e s  and the nacel le- fuse1 age 1  a t e r a l  spacing on c r u i  se drag. 

The r e s u l t s  are publ ished i n  a  separate repo r t ,  



2.0 INTRODUCTION 

On a i r c r a f t  tha t  have T-tai ls  and aft-fuselage-mounted engines, such as the 

DC-9, the wing and nacelle wakes can blank out the horizontal t a i l  a t  very 

high angles of attack - a condition commonly referred t o  as "deep s t a l l " .  In 
th i s  condition, which for  the DC-9 i s  well beyond the normal s t a l l ,  the blanketing 
effi?cts of the w i n g  and the nacelles and pylons reduce the effectiveness of the 

horizontal s t ab i l i ze r  and elevator.  In addition, the elevator hinge moments 
are altered so that  i t  is  impossible t o  achieve full-down elevator w i t h  only 
the aerodynamic control tabs. A1 though th i s  condition occurs we1 1 outside 
the normal operating envelope, i t  has been the position of the Douglas Aircraft  
Company to provide positive recovery capability and not rely on any mechanical 

devices which are intended t o  prevent entry into the deep s t a l l .  A1 so,  a 
Doug1 as design requirement was tha t  the a i r c r a f t  must have pitch-down a t  the 
s t a l l  , and good s t a l  ling character is t ics  in general, so tha t  there would be no 
natural tendency to enter  a deep s t a l l .  Various design features insure that  
these goals are achieved on the DC-9. The horizontal t a i l  was sized to  provide 
positive recovery capability f o r  a l l  configurations and a l l  centers of gravity 
within the established l imits .  An elevator power a s s i s t  system provides 

emergency hydraul i c power t o  the elevator to  provide fu l l  -down elevator 
capabi 1 i ty when the . tabs become ineffective.  A1 so, the underwing vortex- 
generating pylons , cal led "vorti lons" , insure pi tch-down a t  the s t a l l  . The 
DC-9 pitching moment character is t ics  are typified in the sketch be1 ow. 
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I n s t a l l  a t i o n  o f  the larger-d iameter  refan nacel l e s  on the  e x i s t i n g  pylons 

would increase the  span of the nace l le -py lon  combination, poss ib l y  c r e a t i n g  

a deep s t a l l  problem. Also, use of the present  py lon  would r e s u l t  i n  a 

l a r g e r  t h r u s t  moment arm, due t o  the l a r g e r  diameter of the re fan  nace l le ,  

thus i nc reas ing  engine-out minimum c o n t r o l  speeds. I n  l i g h t  o f  both the 

deep s t a l l  and engine-out aspects, i t  i s  des i rab le  t o  i n s t a l l  the  re fan  

engines i n  c lose  t o  the  fuselage w i t h  a py lon  o f  s h o r t e r  span. It was 

recognized t h a t  moving the nace l les  i n  c lose t o  the fuselage could in t roduce 

an i n te r fe rence  drag problem a t  c ru i se  speeds. A h igh  speed wind tunnel  

t e s t  a t  the  NASA ARC 11- foo t  f a c i l i t y  was conducted t o  i n v e s t i g a t e  the e f f e c t  

o f  the  l a r g e r  n a c e l l e  and of the nace l le - fuse lage l a t e r a l  spacing on DC-9-30 

c r u i s e  drag. 

The r e s u l t s  o f  the h igh  speed t e s t  a re  repo r ted  i n  Reference 1. One o f  t h e  

conclus ions a r r i v e d  a t  from t h i s  t e s t  was t h a t  no drag pena l ty  i s  experienced 

by shor ten ing  the  py lon  span from 16.7 inches (product ion)  t o  5.2 inches. 

A reduc t i on  i n  py lon  span t o  5.2 inches o f f s e t s  the  11.5 i nch  increase i n  

t h e  re fan  n a c e l l e  diameter, keeping the  ou ter  n a c e l l e  l i n e  a t  the same l a t e r a l  

p o s i t i o n  as the e x i s t i n g  nacel l e .  A cursory py lon  accessib i  1  i ty study showed 

t h a t  t h i s  m igh t  be poss ib le  t o  b u i l d .  However, more d e t a i l e d  s tud ies  showed 

t h a t  a minimum py lon  span i n  the order  o f  7.5 t o  8 inches was requi red.  

A low-speed wind tunnel  t e s t  was conducted du r ing  February and March 1973 

i n  the  NASA ARC 12 - foo t  pressure wind tunnel  t o  i n v e s t i g a t e  the  e f f e c t s  o f  

t he  r e f a n  n a c e l l e  and var ious  short-span pylons. Long i tud ina l  character-  

i s t i c s  were i n v e s t i g a t e d  w i t h  the pr imary areas o f  i n t e r e s t  being the  s t a l l  

and deep s t a l l  regimes. The p e r t i n e n t  r e s u l t s  are analyzed and discussed 

i n  t h i s  r e p o r t .  



3.0 SYMBOLS 

L/H 

MAC 

q 0 

RET 

MAC of the  e l e v a t o r  a f t  o f  the h inge l i n e  

Center o f  g rav i  t y  

E levator  h inge moment c o e f f i c i e n t  , hinge moment , positive 

t r a i  1 i ng edge down qo 'e 'e 

A i rp lane l i f t  c o e f f i c i e n t ,  L i f t /qoSw 

P i t c h i n g  moment c o e f f i c i e n t ,  pitching moment , p o s i t i v e  a i rp lane  

nose up qo Sw Cw 

T o t a l  a i r p l a n e  p i t c h i n g  moment c o e f f i c i e n t  

Cm about t he  wing 114 MAC 

Incremental p i  t c h i n g  moment c o e f f i c i e n t  

MAC o f  the wing 

S l  a ts  extended 

Product ion DC-9-30 h o r i z o n t a l  t a i  1 

Enlarged h o r i z o n t a l  t a i l  - increased span o f  20 inches and 
2 increased area o f  18.6 f e e t  r e l a t i v e  t o  HlZD 

Hor izonta l  s t a b i l i z e r  incidence, deg - p o s i t i v e  t r a i l i n g  edge down 

I n l e t  l eng th  ( f rom engine face)  

Nozzle l e n g t h  

Nozzle length- to -he igh t  r a t i o  

Mean aerodynamic chord 

Frees tream dynami c pressure, 0.7 PoMo 2 

S la t s  r e t r a c t e d  

E leva to r  area a f t  o f  hinge l i n e -  



Wing re ference area 

FAA approved s  t a l  l speed 

Pylon span 

Fuselage angle o f  a t tack ,  deg 

E leva to r  de f l ec t i on ,  deg - p o s i t i v e  t r a i l i n g  edge down 

Flap d e f l e c t i o n ,  deg 



4.0 APPARATUS AND TESTS 

4.1 MODEL DESCRIPTION 

4.1.1 Basic Model 

The model i s  a 9-percent scale representation of the DC-9-30 and i s  designated 

LB-155U. A three-view drawing of the DC-9-30 with the refan-engine nacelle 

i s  shown in Figure 1. The model was tested in the ta i  1 -on and ta i l -of f  

configurations . The fuse1 age, wing , production empennage, and production 

nacelles and pylons have been previously tested in the Ames f a c i l i t y .  A 

1 arger horizontal t a i  1 and the refan nacel les and pylons were fabricated 

specifically fo r  t h i s  t e s t  program. 

4.1.2 Nacelle Geometry 

Because of the larger fan diameter of the JT8D refan engine (higher bypass 

r a t i o ) ,  the nacelle required to  enclose the engine and accessories i s  also 

larger.  The planform diameter i s  about 11.5 inches larger than the existing 

nacelle ( 2  22 percent). The refan nacelle geometry has the following 

character is t ics  : 

1. The i n l e t  length from the engine face to  the highlight i s  

43.0 inches, 

2. The maximum nacelle diameter i s  64.0 inches (plan view). 

3 .  The nozzle L/H  i s  4.30 (L = 75.0 inches). 

4. The overall nacelle length i s  253.0 inches. 

5. The nacelle i s  of long duct design very similar i n  

overall appearance t o  the existing production nacelle. 

6. The stang fair ings required t o  enclose the thrust  

reverser operating 1 i nkage are simulated. 

7. Theaf te rbodyboat ta i l  a n g l e i s  13.0degrees. 

A dimensional sketch of the refan nacelle compared to  the baseline nacelle i s '  

presented in Figure 2. 



4.1.3 Nacel l e  Instal l a t i  on Comparison 

The instal la t ion of the refan nacelle compared to  the production nacelle i s  
shown in Figure 3. The pylon incidence i s  the same for  both ins ta l la t ions .  

The i n l e t  leading edge (highlight) i s  located 30 inches fur ther  forward and 

the nozzle i s  located 21.5 inches fur ther  a f t .  The model provided for  three 
nacell e-pyl on spacings which are described be1 ow: 

1. P ~ ~ , y = 5 . 2 i n c h e s - s t u b p y l o n w i t h t h e o u t s i d e r e f a n n a c e l l e  

1 ine coincident wi t h  the existing nacel 1 e 1 i ne. The pl anfom 
span of the refan nacelle and pylon i s  the same as the 
producti on instal  1 a t i  on. 

2 ,  P ~ g y y = 7 . 5 i n c h e s - m i n i m u m s p a c i n g t o p r o v i d e a d e q u a t e p y l o n  

accessibi l i ty  without major redesign modifications to  fuselage 

s t ructure.  

3. P15, y = 11.0 inches - increased spacing to  account f o r  the 
possi bi 1 i ty that  future structural analyses dictate  a larger 
pylon than 7.5 inches. 

4.1.4 Horizontal Tai 1 Geometry 
Figure 4 shows the two horizontal t a i l  configurations which were tested 
during the wind tunnel t e s t  (the basic production t a i  1 and an enlarged 
t a i  1 ) . The en1 arged t a i  1 has an increased span of 20 inches and an increased 
area o f  18.6 feet2 re la t ive  to  the basic DC-9-30 horizontal t a i l .  The increased 
span i s  achieved by sp l i  t t ing the production horizontal t a i l  a t  the centerline 
and adding a 20-inch span center section which extends the leading and t r a i  ling 

edge lines inboard. This increases the root chord from 132.7 inches to  

136.6 inches and retains the t i p  chord of 46.8 inches. The quarter chord of 
the MAC fo r  the modified t a i l  i s  positioned a t  the same fuselage s tat ion as 

that  of the basic t a i l .  The new center section does not have elevators,  so 
the elevator geometry i s  identical t o  the basic t a i  1 except for  spanwise 
location. 



4.2 TEST APPARATUS 

4.2.1 Facili ty and Model Instal la t ion 
The NASA Ames Research Center 12-foot pressure w i n d  tunnel was used for th is  
t e s t  program. 

The model was instal led with the DAC 6-5000-IB internal balance on the 

tandem two-strut support system as shown in Figure 5. This arrangement 
permitted the model t o  be pitched to  angles of attack ranging from -10 degrees 

t o  54 degrees. The extremely high angles of attack were necessary to 
investigate the deep s t a l l  regime. 

4.2.2 Instrumentation 

Six-component forces and moments were measured by the DAC-6-5000-IB internal 
balance and recorded through the Beckman 210 read-out equipment. The angle 

of attack of the model was s e t  as i ndi cated by a bubble pack instal  1 ed wi thin 
the a f t  fuselage of the model. Each bubble of the pack i s  oriented to  a 
desired angle re la t ive  to the model fuselage reference plane and indicates 
the geometric angle of the model. The switch position which selects  each 
bubble ci rcui t provides a d ig i ta l  input to  the Beckman fo r  recording model 

angle of attack. A1 though the a t t i tude  of the model i n  pitch was s e t  as 

indicated by the bubble pack, the angle of attack of the model f o r  data 
reduction was determined from the output signal of a dangleometer. Two 
standard 60 degree dangleometers were instal  led wi thin the model , one 
oriented t o  indicate angles of attack from -10 to +40 degrees, the other 
oriented to  indicate angles of attack between zero and +54 degrees. The 
analog output of both dangleometers was recorded by the Beckman during the 
t e s t .  

Remote control systems were used t o  s e t  the horizontal t a i l  and elevator 
deflections. Positions of these surfaces were read out and recorded by the 
Beckman, and displayed a t  the control console by a digi ta l  interpretation of 
the voltage output from the position potentiometers. 



Strain gages instal  led on the torque tubes of both the l e f t  and the right 

elevators sensed elevator hinge moments. The analog signal output of both 
a gages was recorded through the Beckman, as we1 1 as displayed by a di gi tal  

voltmeter a t  the control console. 

4.3  TEST PROCEDURE AND DATA ACCURACY 

The t e s t  was conducted a t  an elevated pressure level of 70 psia. The basic 
s tabi  1 i ty  t e s t  runs (normal operating angle of attack range) were made a t  a 

nominal dynamic pressure of 270 psf,  resulting in a Mach number of about 
0.2, and a Reynolds number of 6.0 mil lion per foot. When the model was 
pitched t o  the high angle of attack deep s t a l l  region, the dynami c pressure 
was reduced t o  a nominal 200 psf,  resulting in a Mach number of about 0.18 
and a Reynolds number of 5.2 mil lion per foot. The Reynolds number was held 
constant within - + 100,000 during the t e s t .  

Selected pitch runs were repeated t o  ensure the val idi ty  of the data. The 
data repeatabi 1 i ty was excel l en t  thrqughout the t e s t .  



5.0 RESULTS AND DISCUSSION 

5.1 DEEP STALL CHARACTERISTICS 

5.1.1 Pftching Moments - Recovery Margins 

The wind tunnel data of Figure 6 show pitching moment coefficient (about the wing 
MAC quarter chord) versus angle of a t tack,  and compare the production DC-9-30 
to the DC-9-30 with the refan nacelles and 7.5-inch pylons. These data are 
for  a 50" f laps /s la t s  extended configuration with the s t ab i l i ze r  s e t  a t  -5 
degrees (airplane nose u p ) ,  and with the elevators a t  both 0 and +15 degrees 
( t r a i l i ng  edge down). The data,  as shown, are not used direct ly  to analyze 

deep s t a l l  recovery capabi 1 i ty,  b u t  do i 11 us t r a t e  the typical nature of the 

DC-9 1 ongi tudinal character is t ics  and the effects  of the refan engine on 
those characteri s t i  cs . 

As can be seen in Figure 6 ,  the a i r c ra f t  exhibits strong posi t i  ve s tabi 1 i ty 

(negative Cnla) throughout the angle of attack range fo r  normal f l i gh t .  The 

model s ta l  led a t  approxin~ately 18 degrees angle of attack and displayed 
good pitch-down a t  the s t a l l .  Beyond the s t a l l ,  a t  approximately 20 degrees 

angle of attack, the data show a reversal in pitching character is t ics  which 
ref lec t  i n s t ab i l i t y  f o r  a range of angles of attack up  to 27 degrees fo r  
0 degrees elevator or approximately 35 degrees f o r  15 degrees elevator 
deflection. This in s t ab i l i t y  i s  caused by the t a i l  entering f i r s t  the wing 
wake and l a t e r  the nacelle-pylon wake. A t  approximately 45 degrees angle of 
attack, positive stab11 i ty i s  regalned as the t a i  1 comes out of the bottom of 
the wake. The data also show the sharp reduction in elevator effectiveness 
tha t  occurs in the deep s t a l l  area. The reduction in available nose-down 
pitch control due t o  the refan engine can be seen by comparing the data fo r  
the two configurations with full-down elevator (15") a t  the minimum - Cm - 
margin angle of attack (approximately 40"). The data fo r  other configu- 
rations tested vary in d e t a i l ,  b u t  the trends are  basically the same as 
those of Figure 6 .  



In order t o  evaluate deep s t a l l  recovery capabi 1 i ty  , the  w i  nd tunnel pi tching 

moment data were adjusted t o  represent an a i r c r a f t  trimmed a t  1.3 Ys and the 

l i f t  and drag data were used t o  correct  the pitching moments t o  the a f t  center 

of gravity l i m i t  f o r  the DC-9-30 (34.7% MAC). Figures 7 through 12 show the 

adjusted pitching moment coeff ic ients  versus angle of a t tack f o r  various 

f 1 ap/sl a t  combinations , pylon spans, and horizontal t a i  1 s . 

Figures 7 through 10 compare the baseline Ser ies  30 t o  t h a t  with the 

refan nacelle and the  7.5 inch pylon f o r  four f l a p / s l a t  configurations. The 

data indicate  t h a t  the refan nacelle-pylon reduced the  recovery margins w i t h  

full-down elevator  by from 0.015 to  0.037 in  pitching moment coef f ic ien t ,  

depending upon f l  ap / s la t  configuration. Figures 11 and 12 show the e f f ec t s  

of the 5.2 and 11.0 inch pylons on the  DC-9 w i t h  50 degrees f l aps .  Comparison 

of these data t o  t ha t  f o r  the 7.5 inch pylon indicates  t ha t  the actual span 

of the pylon has l i t t l e  bearing on recovery margin. The e f f ec t  of a l a rger  

horizontal t a i l  i s  i l l u s t r a t e d  i n  Figure 10 which shows data fo r  the refan 

conf i gurati  on a t  50' f l ap s  w i  t h  both the production and larger-than-production 

horizontal t a i  1s.  A gain of 0.060 i n  recovery margin Cm is  real ized due t o  
the  1 arger t a i  1 . 

A summary of the deep s t a l l  recovery margins plot ted as a function of f l ap  

deflection i s  presented f o r  a l l  configurations tes ted i n  Figure 13. 

Examination of t h i s  f i gu re  shows the following: 

1. Recovery margins a re  reduced somewhat w i t h  reduced f l ap  

s e t t i ng .  S l a t  posit ion has a s i gn i f i c an t  e f f e c t  on the 

recovery margins, w i t h  gains of a t  l e a s t  0.15 due t o  s l a t  

r e t rac t ion .  

2 .  The refan i n s t a l l a t i o n ,  r e l a t i ve  t o  the production 

ins ta l  1 a t i  on, reduces the deep s t a l l  recovery margin by 

0.01 5 t o  0.037 i n  pi tching moment coef f ic ien t ,  depending 

on f l a p  and s l a t  posit ion and pylon span. 



3 ,  The deep s t a l l  recovery nlargins f o r  the re fan i n s t a l l a t i o n  

are e s s e n t i a l l y  independent o f  py lon span, showing a 

v a r i a t i o n  o f  on ly  0.010 i n  p i t c h i n g  moment c o e f f i c i e n t  f o r  

t he  range o f  spans tested. 

4 .  The l a r g e r  ho r i zon ta l  t a i  1 s i g n i f i c a n t l y  increased the deep 

s t a l l  recovery margin, as i nd i ca ted  by a gain o f  0.049 t o  

0.065 i n  recovery p i  t c h i n g  moment c o e f f i c i e n t ,  depending on 

f l a p  d e f l e c t i o n  and s l  a t  pos i t i on .  

The deep s t a l l  recovery margins are shown as a func t i on  o f  center  of g r a v i t y  

p o s i t i o n  i n  F igure 14. Based on the trends o f  these data, i t  i s  concluded t h a t  

the present center o f  g r a v i t y  range (5.9% t o  34.7% MAC) and ho r i zon ta l  t a i l  s i z e  

are acceptable fo r  t he  DC-9-30 w i t h  the refan i n s t a l  l a t i o n  i n  so f a r  as deep s t a l l  

considerat ions are concerned. 

5.1.2 E leva to r  Hinge Moment Charac te r i s t i cs  

Comparison o f  t he  e leva to r  hinge moment c o e f f i c i e n t s  f o r  the DC-9-30 basel ine 

and re fan  conf igura t ions  are shown as a func t i on  o f  angle of a t tack  i n  

Figures 15 and 16. As can be seen, the  hinge moments a t  fu l l -down e leva to r  

become very 1 arge a t  h igh  angles o f  a t tack  f o r  a1 1 conf igura t ions .  Previous 
wind tunnel data, which a l so  inc luded t e s t i n g  of the  e leva to r  tab  e f fec t iveness,  

revealed t h a t  the  e leva to r  would tend t o  t r a v e l  t r a i l  ing-edge-up a t  very h igh  

angles o f  a t tack ,  even w i t h  f u l l  t r a i  1 ing-edge-up tab. Since f u l l  down 

e leva to r  i s  requ i  red  f o r  p o s i t i v e  recovery from c r i  ti c a l  deep s t a l l  condi t i o n s  , 
an e l e v a t o r  power a s s i s t  system i s  provided on a1 1 DC-9 a i r c r a f t .  

The data i n  Figures 15 and 16 show e s s e n t i a l l y  no d i f f e r e n c e  i n  the  e leva to r  

hinge moments f o r  t he  two conf igura t ions  up through 45 degrees angle o f  a t tack .  

The minor v a r i a t i o n s  can be considered as normal wind tunne l  data sca t te r ,  

s ince no cons is tent  t rends are  ind ica ted.  Above 45 degrees angle o f  a t tack ,  

the  general t rend  i s  f o r  the  re fan  con f igu ra t i on  t o  have somewhat lower hinge 

moments, b u t  again, no r e a l  consistency i s  i n d i c a t e d  i n  the  data. Based on 
these data, i t  appears t h a t  t h e  present  a u t h o r i t y  of the power a s s i s t  system 

w i l l  be adequate f o r  t h e  refanned DC-9-30. 



5.2 PRE-STALL LONGITUDINAL CHARACTERISTICS 

The e f f e c t s  o f  t he  re fan  nacel les and 7.5 i n c h  pylons on the  DC-9-30 p i t c h i n g  

moment c h a r a c t e r i s t i c s  f o r  the  normal operat ing envelope are shown i n  Figure 

17, Tai 1  - o f f  data are presented f o r  OO/RET, OO/EXT, 25O/EXT, and 50°/EXT 

f l  ap/sl  a t  conf igura t ions .  Tai 1  -on data are shown f o r  OO/EXT and 50°/EXT, 

the  on ly  t a i  1  -on conf igura t ions  tes ted w i t h  the e leva to r  undef l  ected. 

A comparison o f  the t a i l - o f f  data reveals t h a t  t h e  re fan  nace l l e  causes a  

p o s i t i v e  (nose-up) s h i f t  i n  the  p i t c h i n g  moment c o e f f i c i e n t  a t  a l l  f l a p  

s e t t i n g s .  The s h i f t  i s  on the order  o f  0.035 t o  0.05 a t  the  lower l i f t  

coe f f i c i en ts .  The e f f e c t  was expected s ince the nace l les  and pylons on the  

DC-9, being i n  a  reg ion  o f  h igh  downwash, normal ly  experience a  negat ive 

angle o f  a t tack  and a  download. Since the  download acts a f t  o f  the CG and 

the nace l les  have sonie negat ive camber, they con t r i bu te  a  p o s i t i v e  p i t c h i n g  

moment t o  the  t a i l - o f f  a i rp lane.  The l a r g e r  refan nace l les  would the re fo re  

be expected t o  increase t h i s  nose-up e f f e c t .  The t a i l - o f f  data a l so  genera l ly  

show t h a t  the re fan  nacel le-py lons have a  m i l d  s t a b i l i z i n g  e f f e c t .  Th is  too  

i s  caused by the increased s i z e  o f  the re fan nacel l e  and a f t  1  ocat ion o f  the 

DC-9 engines. 

The t a i l - o n  data i n  F igure 17 i n d i c a t e  t h a t  the  s h i f t s  i n  t h e  t a i l - o n  

p i t c h i n g  moments a t  a  constant l i f t  c o e f f i c i e n t  due t o  the  re fan  engine are 

l e s s  than i n d i c a t e d  w i t h  the t a i l  o f f .  Also, the t a i l - o n  data show l i t t l e  

e f f e c t  of the  re fan  nace l les  on s t a b i l i t y ,  i n  terms of CmCL. These char- 

a c t e r i s t i c s  are due t o  t h e  e f fec ts  o f  re fan engines on the  downwash a t  the  

h o r i z o n t a l  t a i l .  The DC-9 nace l les  and pylons reduce the downwash a t  t h e  

t a i l ,  and the  l a r g e r  re fan engines increase t h i s  e f f e c t .  This reduct ion  i n  

downwash produces a  nose-down p i t c h i n g  moment increment which tends t o  o f f s e t  

the nose-up moment w i t h  the  t a i l  o f f .  

The conclusion drawn from these data are t h a t  the a i r c r a f t ' s  l o n g i t u d i n a l  

f l i g h t  c h a r a c t e r i s t i c s  i n  the normal f l i g h t  regime w i l l  be e s s e n t i a l l y  

unchanged by the re fan  i n s t a l  l a t i o n .  Tai 1  - o f f  p i  t ch ing  moment c h a r a c t e r i s t i  cs 

and downwash data w i l l  have t o  be adjusted, as ind ica ted.  



6.0 CONCLUSIONS 

The resu l t s  of the low speed wind tunnel t e s t  t o  deternii ne the impact of the 

refan engines on the DC-9-30 low speed s t ab i  1 i ty and control charac te r i s t i cs  

lead t o  the following conclusions. 

1. The refan i n s t a l  l a t i on  has a small e f f ec t  on the DC-9-30 deep 

s t a l l  recovery capabi 1 i ty  , reducing the recovery margi n approxi - 
mately 0.015 to  0.037 in pitching moment coef f ic ien t ,  depending 

on f l ap  and s l a t  posit ion and pylon span. Deep s t a l l  character- 

i s t i c s  with the refan i n s t a l l a t i on  and any pylon span within the 

range tes ted a re  acceptable w i t h  no add.itiona1 design changes 

anticipated.  

2. The e f f e c t  of pylon span on deep s t a l l  recovery margin i s  

small,  within the range of spans tes ted (5.2 inches to  11.0 

inches).  The recovery margin var ies  by a maximum of 0.010 with 
pylon span. 

2 3. A larger  horizontal t a i  1 (area increased by 18.6 f e e t  and span 

increased by 20 inches) s ign i f ican t ly  increased the deep s t a l l  

recovery margin. The avai 1 able nose down pitching moment 

coeff ic ient  a t  the  c r i t i c a l  angle of at tack was increased due t o  
the l a rger  t a i l  by from 0.049 t o  0.065, depending on the f l ap  

and s l a t  posit ion.  

4. The refan i n s t a l l a t i on  has no s ign i f ican t  e f f ec t  on e leva tor  

hinge moment character is  ti cs . 

5. In the normal f l i g h t  regime, the refan engines cause a posi t ive  

(airplane nose-up) increment in t a i  1 -off pitching moments and a 

s l i g h t  increase i n  t a i l - o f f  longitudinal s t a b i l i t y .  



6. In the normal f l i g h t  regime, the refan engines do not significantly 
a f f ec t  the DC-9 tail-on pitching moments. The refan engines 
apparently a l t e r  the downwash a t  the horizontal t a i l  such that 
the change in t a i l  contributions essent ial ly  offset  the ta i l -of f  

e f fec ts  described above. 
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