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SUMMARY

Analysis of free turbulent shear flows inherently requires the utilization of con-
ceptual and quantitative formulations concerning the exchange mechanisms. The effort
has essentially been directed to classes of problems where the phenomenologically
interpreted effective transport coefficients could be absorbed by, and subsequently
extracted from (by comparison with experimental data), appropriate coordinate trans-
formations. The transformed system of differential equations could then be solved
without further specifications or assumptions by numerical integration procedures.

An attempt has been made to delineate different regimes for which specific eddy
viscosity models can be formulated. In particular, this will account for the carryover
of turbulence from attached boundary layers, the transitory adjustment, and the asymp-
totic behavior of initially disturbed mixing regions. Such models have subsequently
been used in seeking solutions for the prescribed two-dimensional test cases yielding
apparently a better insight into overall aspects of the exchange mechanisms.

Considerable difficulty has been encountered in the utilization of computer
programs dealing with axially symmetric geometry as they presently exist at the
University of Illinois at Urbana-Champaign. Consequently, only a brief account of
these methods and programs has been included — mainly in the form of references.

INTRODUCTION

Much progress in understanding flow separation, separated flows, and wakes
has been made since the mutual dependence between viscid and inviscid flow regions
has been properly recognized. Development of an attached boundary layer, its sepa-
ration from solid boundaries fcrming a free shear layer capable of mass entrainment

*This work was partially supported by NASA through Research Grant
No. NsG-13-59 and subsequently through NGL-14-005-140.
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from the wake, and energy transfer to and across individual streamlines have been
related to the recompression process at the ehd of the wake and thus have allowed the
analysis of previously not understood flow problems of practical importance.

Over more than a decade, work at the University of Illinois at Urbana-Champaign
has been focused on propulsion problems relating to base pressure, base heating, and
ejector nozzles for thrust augmentation, and so forth. In support of a comprehensive
systems approach (based on the understanding of constituent flow components) much
attention had to be given to free shear layers which has resulted in both analytical and
experimental programs. These efforts have, however, been clearly guided by, and sub-
ordinated to, practical objectives.

When called to the task of participating in the present effort, the authors were
restricted, naturally, to what had already been developed for serving their own programs.
The response is, therefore, selective inasmuch as some of their computer programs have
not been found flexible enough to handle all the cases submitted to the predictors.

SYMBOLS
c concentration of species
Cp specific heat at constant pressure
C Crocco number
d viscosity index
D energy defect thickness
f dimensionless stream function (similarity solution)
g function of transformed x-coordinate
h enthalpy
I integrals defined in reference 6
k thermal conductivity
L reference length
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Prt

Rex

SCt

5**

*kok

T

molecular weight or Mach number
turbulent Prandtl number

radius

gas constar“lt‘

Reynolds number based on X, ugX/vy
turbulent Schmidt number

temperature

longitudinal velocity component
transverse velocity component
dimensionless center-line velocity defect
longitudinal coordinate

shifted origin position

transverse coordinate

boundary-layer thickness

momentum thickness of boundary layer
energy thickness of boundary layer

eddy diffusivity

where ry, is the radius of the central jet

similarity variable

static temperature ratio
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A stagnation temperature ratio

il dynamic viscosity

v laminar kinematic viscosity

¢ dimensionless x-coordinate

T transformed coordinate

o} density

o spread rate parameter

(o7 spread rate parameter for incompressible flow
o) dimensionless velocity

Y stream function

v dimensionless stream function

Subscripts:

a faster free stream

asy asymptotic condition

b slower free stream

c center-line value

d particular viscosity index value, or the dividing streamline
e error function

4 laminar state

o] stagnation state
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RA large value of 7
t turbulent or transitional state

1,2,4 integrals in reference 6
ANALYSEB

This analysis is restricted at the outset to constant-pressure mixing. Any addi-
tional assumptions, as they will affect the mathematical rigor or impose physical restric-
tions on the solution, will be discussed as they are introduced.

It will be useful to differentiate between kinematic and dynamic similarity when
single-independent-variable solutions are utilized. The former refers to nonasymptotic
mixing profiles which can be related to similarity profiles by accounting for initial dis-
turbances through appropriate coordinate shifts. Normally, such profiles will not exhibit
dynamic similarity as the initial exchange mechanism is not consistent with that of the
""matched" solution. On the other hand, when the initial profile of the mixing region
results from a strong expansion of an attached boundary layer, there may be nearly
dynamic similarity within a newly started shear region at the very edge of the expanded
profile, while the growth of the dissipative shear regions occurs within a vortex layer
and thus does not exhibit kinematic similarity.

TWO-DIMENSIONAL MIXING

Fundamental Equations

The conservation equations for a pure substancel are

9 9 =
3o + W(DV) =0 (1)
ou ou _ 3 f ,du
U SR+ 5y ay<etp 8y> (2)
2
8T 8T _ 8 (i, 0 )
pucp 5 + pvep & = g5l ) + o) ©

The stream function is now introduced

W _ .0 Wy_ _p
T 5X T Dp ¢

1An extension for gas mixtures is discussed subsequently. For a more detailed
account, see Hurt (ref. 1%.
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and new dimensionless variables defined
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where J, related to the stream function ¥, is to be used as an independent variable in
the Von Mises plane. Accordingly, after introducing the free-stream Crocco number,

2 _ ua2
2cpToa

(5)

Ca

and accounting for the transport mechanisms by the kinematic viscosity ¢ = —-t and the
effective Prandtl number Pry, the following equations are obtained:
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A far reaching simplification of the analysis can be achieved by setting (ref. 2)
utp(l'd) = £(£) ®)

where d=1-w (w being the exponent of the Sutherland equation for the dynamic vis-
cosity of a gas) corresponds to the laminar mixing problem.

The transformation

dE=-L. L g 9)
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then produces a pair of parabolic simultaneous partial differential equations which can be
solved without reference to any specific assumption concerning exchange mechanisms
(except d and Pri). These equations are

% . %(P— 9%) (10)
5 oy\ed oy

§0§.=L_@_<££0:>+2_Caz_ ¢ %)2 (11)
3 Priag\ed oy 1. c,2 6y, |
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For given initial conditions, step-by-step integrations using implicit iterative pro-
cedures for better convergence (see ref. 3) can be carried out with the help of high-speed
digital computers.

- Results appear in the form of ¢<'§,W) and G(E,W) and the coordinate y/L is
found from

v= 5 gl a

Similarity Solutions

"Exact solutions'.- By starting with equation (10) and following the development for
nonisoenergetic mixing of two uniform streams having identical compositions (ref. 4), an
effective Prandtl number of unity, and satisfying the boundary conditions

y - -, u - uy, T0-~Tob

Y = +o, u - ugy, Ty = To,
leads to
2,24
A -C,°t "
£+ [—-—a 5 } ff - d(A' - ZCazf'f")__———f 5 =0 (13)
1- Ca A - Ca £
where f(n) = l_, f'(n) = ¢, n is the independent similarity variable defined by
g(%)
on __fg (14)
%l e
| - L (15)
852 gf'

and primes indicate differentiation with respect to the respective independent variable,
From the assumption of similarity, it follows that one may set
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and the transformation to physical coordinates can be accomplished with

foor-{ Lot

By adopting Goertler's formulation (ref. 5) of o,

& 1 X
—— Re; % (18)
L
VGZ'd 4ord2 L :
one obtains
o1
204 % =5 6 dn (19)
5

where the origin of y is placed at the zero streamline where f(n.}=0. The notation

oq has been introduced to stress the fact that the similarity parameter o depends not
only on the procedure of matching between an experimental and an analytical profile but
also on the choice (if one is needed or indicated) of the analytical formulation (ref. 4).

An extension to analyze the mixing of two streams having different gas constants
R, and Ry, is easily accomplished for Prandtl and Lewis numbers of unity by the

N
1-ca2L (1'%)2

(See discussion of test case 3, also.)

expression

Py _ 2
2= - $2Cy (20)

Error function solution.- Proposed as a first-order approximation for solving equa-
tion (10) under the conditions of incompressible flow with d =0 by Goertler (ref. 5), the
error function distribution for the velocity profile is

1-
¢ = %(1 + ¢b) + 2¢b erf n (21)

where 7= oe@-{-). The error function solution has been widely used for momentum inte-
gral methods devised to deal with compressible, diabatic (ref. 6), and even reactive

(ref. 7) free shear layers. Auxiliary integrals for determining mass, momentum, and
energy transfer, as well as shear stress, dissipation rates, and property distributions,
have been tabulated (ref. 6) or made subroutines of more comprehensive programs deal-
ing with propulsion problems (ref. 8). A discussion of differences between spread rate

parameters (ore, 04 etc.) has been included in reference 4.
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Initially Disturbed Mixing Region

Similarity solutions are reached asymptotically as the influence of initial distur-
bances (in velocity and property profiles and in the exchange mechanism) decreases.
The gradual approach to similarity profiles can be represented in its latest stages by a
lateral shift of mixing profiles, that is, by satisfying the momentum integrals. This still
leaves open the question of how to interpret properly similarity parameters such as ¢
when the exchange mechanism is to be evaluated at other than far-downstream locations.
Attention will be given to the latter problem in the section on "Eddy Viscosity Concepts."

Origin-shift methods.- Utilization of similarity solutions for initially disturbed
profiles by origin-shift methods has been suggested in different forms by various authors,
and the work of Hill and Page (ref. 9) and Kessler (ref. 10) may be consulted for further
details. Use of the momentum integral for determining lateral and longitudinal coordi-
nate shifts will, however, become unfeasible when wakes or mixing between streams of
nearly equal velocity in the presence of relatively large initial disturbances have to be
considered. It should be noted that virtual origins for exchange coefficient growth have
been found useful in connection with eddy viscosity models employed in finite-difference -
integrations of the fundamental equations (see the section "Eddy Viscosity Concepts™).

Local similarity.~- The restriction on the type of viscosity models consistent with
the longitudinal coordinate transformation expressed by equatior {9) will be found most
unrealistic for cases where a relatively thick boundary layer undergoes a rapid expan-
sion (such as in base flows) before the onset of constant-pressure mixing. This can lead
to effective quenching of the turbulence level in the expanded profile (which is then rota-
tional but not strongly dissipative) while the dissipative exchange mechanism remains
confined to a much narrower shear region (refs. 11 and 12). This shear region exhibits
features of local similarity and is initially laminar before undergoing transition. Growth
of such transitional shear regions, for single-stream mixing, has been analyzed in some
detail by Gerhart (ref. 13), and there seems to be confirmation that the similarity param-
eter ¢ retains its qualitative relevance and quantitative value. Since turbulent mixing
now appears to originate well downstream of the "expansion corner," agreement with
origin-shift methods concerning the energy levels of the dividing streamline is surprising
but can be supported by detailed calculations.

Numerical integrations.- Computer programs have been developed to perform the
step-by-step numerical integration of the system of equations (refs. 1 and 2), and an
implicit iterative method of integration is utilized which improves the economy of the
calculations while retaining accuracy and assuring numerical stability.

The integration uses initial and boundary conditions given in physical coordinates
x and y but proceeds with calculations in the transformed t¥-plane. Dimensionless
. _u’ _ "_]_‘_ . . . .
velocity <¢ = ua)’ temperature (0 = Ta>’ or density (p /pa> distributions are then found as
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functions of ¥ (or y/L) for parametric values of the variable Z. Location of the T
value with the x-scale depends upon the viscosity law as contained in the transforming
equation (eq. (9)) which can be written

z 1 € X
g = ds

Attempts have been made to gain information on the integrand by matching of calculated
and experimentally determined profiles, for example, by the dissipation integral (ref. 2)
or other unique features (such as minimum velocity in wakes). (See section concerned
with determination of the eddy viscosity.)

I"or wie problems at hand, however, one needs this information as input, and cer-
tain speculative assumptions on the behavior of the turbulent eddy viscosity still are to
be specified in the section "Eddy Viscosity Concepts' in order to explain their use for
obtaining solutions to the test cases.

AXIALLY SYMMETRIC MIXING REGIONS

An extension of the theoretical analysis and the resulting computer program for jet
mixing dealing with axisymmetric geometries and nonhomogeneous gases has been made
by Hurt (ref. 1). Like many others (e.g., refs. 14 and 15), he utilizes the system of global
conservation equations as well as conservation of species without chemical reactions.

The simplifying assumptions are consistent with boundary-layer approximations but, in
addition, he assumes a turbulent Lewis number of unity which implies that the turbulent
Schmidt and Prandtl numbers are equal to each other yet not necessarily equal to unity
individually. Also, specific heats at constant pressures are assumed to be functions of
concentrations but not of temperature, which limits his analysis to moderate temperature
variations even though it attempts to cope with compressibility, In this sense, and with
regard to improved numerical integration procedures, Hurt's work is an extension of that
by Donovan and Todd (ref. 15). The resulting set of equations is in analogy with those of
the preceding sections except for the accounting for species and the use of a dimensionless
enthalpy rather than temperature in the energy equations:

% _ 2 [r5224 2 )
b e 2
8&:2_{_3_-2 2 aix]

ZiSc P = 22
¢ oSt o )iy N (22)
oh_ 8 | E 2,4 8h |, 2Ca® -—a,2 <%>
2 aw[Prt“d’anH- el
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Here,
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Ca is the Crocco number of the internal stream, and € = were r, is a reference

radius of the coaxial stream, 7= pﬁ-, and h = 1}11
a a

In addition, the perfect gas law for isobaric mixing of a multispecies mixture

1
p=—= (23)
p T
was utilized, where
N
E L5
M
i=1 1
Y= (24)

12
Tk

1 i

-
1

M; is the molecular weight of the ith species,and T = Tl The static temperature
a

ratio T was evaluated from the energy equation and then the stagnation temperature
ratio was found by using the following formulation developed from the relationship
between stagnation and static enthalpy:

_ 2¢.2
A=T( - Ca2) + <%> (25)
where
N
Z CiCpi
N L S (26)
N
Z ©a{°Pa;
i=1

and A is the local stagnation temperature ratio. In contrast to the two-dimensional
case, the transformation of the streamwise coordinate ¢ (to eliminate the eddy viscosity
from the equation) was not included in Hurt's analysis. This was due to evidence that the
effective turbulent exchange coefficient could not be considered, with sufficient accuracy,

to be a function of the streamwise coordinate only. His program, thus, can accommodate

as input suitable eddy viscosity models. At this stage, however, there do not appear to be
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sufficient experimental data and insight into controlling mechanisms to expect a simple
yet universal formulation for a phenomenological eddy viscosity model.

It is of interest to note the efforts of Spalding and his coworkers at Imperial College
(e.g., ref. 16) and others to gain a better insight into turbulent exchange mechanisms by
use of multiparameter models involving the kinetic energy of turbulent motion.

EDDY VISCOSITY CONCEPTS

Within the restrictions imposed by the coordinate transformation (eq. (9)) and the
resulting coupling of the viscosity to the density for two-dimensional mixing problems,
there is still the possibility of coping with fully laminar, fully turbulent, and transitional
cases. The initial conditions have first to be examined.

INITIAL CONDITIONS RELATED TO APPROACHING BOUNDARY LAYER

A mixing region can be the result of flow separation associated with
(i) Constant pressure (wake behind a flat plate)

(ii) An acceleration (as in the supersonic base pressure problem)
(iii) A pressure rise (due to an adverse pressure gradient)

In any one of these cases, the attached boundary layer will cause an initial disturbance
for the mixing region. Each case, however, will be different in its kinematic and dynamic
effects.

The constant-pressure case appears to be the simplest. One would expect that both
the flow profile and the viscous structure remain virtually unchanged. The acceleration
causes a change in the velocity profile (which could possibly be accounted for by a stream-
line expansion method), but it also tends to quench the turbulent mechanism (refs. 11
and 12). This can lead to the situation discussed in the section ""Local Similarity' which
produces a transitional problem in a ""mixing sublayer' imbedded in a vortex layer.

Separation associated with a pressure rise presents the most complicated problem
and points to the need for a momentum integral approach (ref. 17) and origin-shift treat-
ment of the mixing zone (e.g., ref. 10).

INITIAL EXCHANGE MECHANISMS

It is evident that a mere description of velocity, temperature, and concentration pro-
files will, in the turbulent case, generally not be sufficient to solve the problem of comput-
ing the development of the mixing region. What is missing could be most important — at
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least for the early stages of the mixing process - namely, its initial mechanisms. Only
case (i) does provide such information if one uses the work of Maise and McDonald

(ref. 18). Case (ii), on the other hand, generates local similarity — provided the expan-
sion is sufficiently "strong'" — first in the laminar (or "laminarized') mixing sublayer
and then in its turbulent continuation where one depends on information on transition
Reynolds numbers, such as given by Chapman, Kuehn, and Larson (ref. 19). Case (iii),
because of its complexity, raises special interest for exploring how quickly initial condi-
tions become submerged in the mechanisms generated by the mixing process itself. In
the next section a tentative model for developing turbulent shear layers is projected.

FULLY TURBULENT MIXING BETWEEN TWO STREAMS ORIGINALLY
SEPARATED BY A FLAT PLATE

As each stream approaches the trailing edge of the plate, it possesses its individual
boundary layers having thickness, momentum thickness, and energy thickness, the corre-
sponding shape factors, and an eddy viscosity distribution as given by Maise and McDonald
(ref. 18) or determined with more precision by extensions of their method (e.g., to account
for heat transfer).

Initial Level of Eddy Viscosity

If conditions in the two streams are very dissimilar, the eddy viscosity level in one
of them may be dominating at the point of confluence, As the restraint on fluctuations
imposed by the wall is removed, it seems logical to assume that the peak value of the
eddy viscosity will originally prevail. It is of interest to note that such peak values can
be correlated, for a wide range of Mach numbers, by the simple relation

0.896
& _Resg ™ @27)
V Ipeak 120

Filling of the Wake

Breakup of the laminar sublayer and the large velocity gradient generated in the
attached boundary layer control the next phase. If this process can be considered (at
least for that portion of the profile where the mixing mechanism is most effective) to be
reasonably close to the asymptotic single-stream jet mixing condition,

€=-L-Re X (28)

may be selected where o is related to the flow conditions in the faster stream, and the
origin for x is at the point of confluence. (This scheme is akin to the concept of local
similarity.)
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Approaching the Asymptotic Solution

With the jet mixing mechanism thus building up, it will eventually approach the
asymptotic case for both the kinematic and dynamic aspects.

At the matching conditions, after selecting an appropriate similarity profile, one
has to account for both the momentum and energy defects at x = 0.

This can be achieved by applying an origin shift x, and by utilizing the concept
of equivalent bleed (ref. 6). By using the integrals defined and tabulated in reference 6
for the error function profile, one relates the mechanical energy defect in the approach-

% %k % 3 k 3k
ing streams at x=0, D= % i ;bb 6b through
20— = [l (1ma) - (1)) - 9,7) - L(rma) 29)
(-Xo)Ua"p,

while the momentum defect is accommodated through the concept of equivalent bleed
which determines

Il(nd> =3 -1¢>b [11 (”RA) -Ip (nRA> - o(Aa + Ab)} (30)
where
Aa - Ga**
(-%o)
) p_b 5 éb**
ab = pa d)b ('XO)
and
p # 1

Combining equations (29) and (30) yields, for the origin shift,

] (1 + ‘bb)[ﬁa** + % ¢b25b** _ (53.*** N %3%***)
Ii(npa)(t - #p%) - L(7ga) - (1 + %p)[1(Ra) - 12(7Ra )]

The similarity parameter ¢ refers here to the two-stream case (ref. 6).

o=

It is necessary to comment on the manner in which the asymptotic case is
"approached.” If the "filling of the wake' (in the sense of the preceding section) becomes
pronounced due to ¢y, > 0, the increase in eddy viscosity described by equation (28) will
initially prevail over that related to the asymptotic solution. Hence, an overshoot will be
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experienced so that the approach to the asymptotic profile occurs in the sense of relaxa-
tion rather than amplification of the mixing mechanism.

For the case where ¢, =0, such an overshoot should be less pronounced. The
energy defect integral, as utilized for determining the origin shift x,, differs from the
dissipation integrals defined in reference 2)

1= (780 ol g
or

400 :
DI = S' 1- - ¢ \ay 33
- 0)(9 - o )aP | -Gy
only by a constant value (due to the fact that the momentum of the mixing streams is pre-
served once external forces such as wall shear friction are not present). The dissipation
integral has been evaluated and presented in graphical form as shown in figure 1 for a
variety of flow conditions.

Use of both forms (eq. (32) for the experimental profile and eq. (33) for the analyti-
cal solution) is then convenient for establishing the relation between x/L and £ and

¢/v(x/L).

Wake Problem — Both Streams Having Identical Velocities
and Initial Boundary Layers

For wake flows, the asymptotic solution shall be represented by a constant level of
the eddy viscosity (Schlichting (ref. 5)) so that, with reference to the momentum thickness
of one approaching boundary layer,

* %k

5
5 = 0.0888Rey, - (34)

Proposed Models for Turbulent Eddy Diffusivity

A schematic presentation of eddy viscosity models as used in the present study is
shown in figure 2.

RELATION BETWEEN THE STREAMWISE COORDINATES x AND %

The proposed eddy viscosity model establishes a relation between the transformed
coordinate % and the physical coordinate x, and thus allows identification and location
of the calculated mixing profiies
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F=\—&£__1 4%
3 S. ~2-d Rep, d<L> + Constant (35)

DETERMINATION OF THE EDDY VISCOSITY FROM MATCHING OF
EXPERIMENTAL AND ANALYTICAL PROFILES

The concepts developed for ¢/v in the preceding sections are essentially conjec-
tures. Indeed, the analytical model and the calculation procedures have been worked out
in such a way as to remove the need for depending on a specific viscosity law. Actually,
one can utilize equation (9) for determining the viscosity law.

To accomplish this, it is necessary to define the matching of profiles for value
pairs of x and £, which leads to a unique % = E(x) relationship which then can yield,
for d=2

e = 9L | Rer (36)

Obviously, only single parameters can be matched for both the calculated and the experi-
mental profiles.

Two possible choices are

(i) The minimum velocity, as it is well defined in wake problems
(ii) The dissipation integral given by equations (29), (32), and (33)

An illustration of this procedure is given in the section "Test Case — Solutions."
EDDY VISCOSITY IN AXIALLY SYMMETRIC MIXING REGIONS

Much uncertainty exists concerning suitable turbulent exchange coefficient formula-
tions for axially symmetric flow. The appearance of the transverse coordinate r in the
conservation equations also complicates the situation since it would restrict the possibili-
ties of a transformation (e.g., eq. (9) for the two-dimensional case) to the unattractive
form where a singularity in the exchange coefficient could occur as r - 0. Empirical
relations, therefore, still are favored in dealing with individual cases (ref. 1) but appar-
ently cannot be expected to give satisfactory results when applied to widely different flow
conditions. (See discussion of test case 11.)
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TEST CASE - SOLUTIONS 2

TEST CASE 1: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameter for a Fully Developed Incompressible Free Shear
Layer (Inﬂuence of qbb)

The effect of the free-stream velocity ratio 3—2 = d’b on the spreading parameter
o for similarity mixing profiles has recently been reviewed by Yule (ref. 20). Shown in
figure 3 is the relation

%_1"%

o 1+ ¢)b !

as presently used in computer programs at the University of Illinois and which also has
been utilized for calculations of asymptotic mixing regions in the discussion of test
case 4.

TEST CASE 2: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameters for a Fully Developed Turbulent Free Shear Layer With
Zero Velocity Ratio (Influence of Mach Number)

Much uncertainty exists as to the effects of Mach number on the mixing mechanism,
as can be illustrated by the large discrepancies for observed or predicted values for o
(ref. 9). Shown in figure 4 is the simple linear relationship

o =12 + 2.76M,

as proposed for use in the lower Mach number range Mg <3 (ref. 6).

TEST CASE 3: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameter for a Fully Developed Low-Speed Free Shear Layer With
a Velocity Ratio of 0.2 and Density ratios py /p, of 14,1/2, 1/7, and 1/14

It is the judgment of the authors that conclusions concerning spread parameters
must be based on more extensive and reliable experimental data than appears to be pres-
ently available, Evaluation of earlier experiments by Pabst (ref. 21) conducted for a sin-
gle temperature ratio of 2.3 did not show an appreciable effect on o¢. To facilitate future
correlations, theoretical calculations for od(Ay/x) based on the procedure outlined in
the section ""Similarity Solutions' with a selected value for d =2 are presented in fig-
ure 5. The abscissa in figure 5 represents either the ratio of Ty, /Ta or p, /pb since

24 =2 for all calculations presented.
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low-speed flows are being considered. According to equation (20), the effects of the
stagnation temperature ratio and gas constant ratio should be equivalent,

TEST CASE 4: TWO-DIMENSIONAL SHEAR LAYER
Influence of Initial Boundary Layers, Incompressible Flow, ¢, = 0.35

As requested, results of theoretical calculations for the velocity profiles are shown
in figure 6. The corresponding shear stress distributions are given in figure 7. The
correlation procedure between the physical and transformed dimensionless streamwise
coordinates x/L and £ is illustrated by the use of the dissipation integrals according
to equations (32) and (33) in figures 8 and 9. The extracted information on the effective
turbulent eddy viscosity ¢/v is shown in figure 10.

This figure also compares these viscosity coefficients with those resulting from
the concepts developed in the section "Eddy Viscosity Concepts." A strong overshoot as
a continuation of the wake-filling mechanism over the asymptotic solution is clearly
evidenced.

TEST CASE 5: TWO-DIMENSIONAL SHEAR LAYER
Initial Development of a Turbulent Compressible Free Shear Layer

The requested theoretically calculated velocity profiles are shown in figure 11.
One must note that the y-scale in figure 11 reflects conservation of momentum, while
the experimental data require a translation to satisfy this physical constraint. Fig-
ures 12 and 13 have been added to show the degree of agreement between the eddy vis-
cosity distributions based on the dissipation integral correlation and the concepts pro-
posed in the section "Eddy Viscosity Concepts." Again, an overshoot is noted, but it is
rather moderate since no wakelike contribution exists for ¢ = 0.

TEST CASES 6 TO 13, 15, AND 17 TO 23: AXIALLY
SYMMETRIC FLOW CASES

Considerable difficulty has been encountered in attempts to obtain numerical com-
puter solutions by using the approach and programs of reference 1. This situation has
been caused primarily by communication problems (Dr. Hurt had left the University of
Illinois) and by difficulties encountered in switching to a different computer system with
limited storage capacity. Consequently, attention is directed to reference 1 as containing
specific examples for program capabilities. In addition, calculated center-line velocity
distributions as they apply to test case 11 are shown in figure 14.
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TEST CASE 14: TWO-DIMENSIONAL WAKE - LOW SPEED

Shown in figure 15 is the center-line velocity development as a function of the
transformed coordinate £ Figure 16 illustrates the use of the presently proposed
viscosity model for the three regimes described previously. This produces the plot
of 1/W2 as a function of x/éa** (fig. 17), which is the required answer to this test
case. Agreement with experimental data was found to be reasonably good.

TEST CASE 16: TWO-DIMENSIONAL WAKE - SUPERSONIC
ADIABATIC FLOW

With transition at station 1, the present viscosity model assumes the form shown
in figure 18 with experimental ¢/ values (obtained with the help of dissipation function
correlation) also presented. A strong overshoot along the trough-concept-rise is noticed
with subsequent relaxation towards the asymptotic (constant ¢) solution. It must be noted
that the theoretical calculations for 1/W2 as a function of x/D (fig. 19 (required))
and T, /ITa as a function of x (fig. 20) have been obtained by following the trough-rise
portion. The difference between the '"relaxing' and the "rising" e/v branch should, how-
ever, not produce significant differences, especially in view of the rather large scatter of
experimental data. Overshoot and subsequent relaxation of ¢/v is experimentally —
albeit indirectly — evidenced by figure 1 of reference 22. Computer results (qbc and
Tc/Ta as a function of 7;’) are presented in figure 21.

TEST CASE 24: TWO-DIMENSIONAL WAKE — COMPRESSIBLE
DIABATIC FLOW (TRANSITIONAL)

Prandt]l number for this case has been selected as 0.72 throughout. This is con-
sistent with the expectation of a significantly long laminar mixing region followed by
transition and turbulent mixing for which Pr; =0.72 is incidentally a reasonable
approximation. Based on theoretical calculations, and with the use of information on
transition in free shear layers (ref. 19), one arrives at a transition location of 7.01 cm
(2.76 in.) corresponding to Reyx = 180000 where

i Req (x¢/L);
T (Te/ Ta);”

The resulting relation between ¢/y and x/L is shown in figure 22. Correlation
between ¥ and x/L by the integration of equation (9) and the finite-difference calcu-
lations (¢c, Tc¢/Ta as a functionof £ in fig. 23) then produce figure 24 which shows
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1/W2 as a function of x/D and figure 25 which is a comparison of calculated and mea-
sured center-line temperature ratios. It is of interest to note the effects of transition
as they appear in both the calculated and experimentally determined data.
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(a) Turbulent free jet mixing.
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/-Fuﬂy developed wake

Wall boundary layer

= /L

(b) Turbulent wake flow.

Figure 2.- Viscosity model.
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Figure 4.- Influence of free-stream Mach number on
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Figure 6.- Calculated velocity profiles at specified downstream
locations for test case 4.
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Figure 7.- Calculated shear stress profiles at specified downstream
locations for test case 4.
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Figure 10.- Presentations of ¢/v for test case 4.
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Figure 11.- Calculated velocity profiles at specified downstream
locations for test case 5.
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® Experimental Data
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Figure 19.- Predicted and experimental center-line velocity
defect for test case 16,

225




226

© Experimental data
-
N
1 1 I 1 L ’
0 2 4 6 8 10 X, CMm

Figure 20.- Predicted and experimental center-line temperature
ratio for test case 16,
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DISCUSSION

Professor Goldschmidt: Iam sorry, I must not have understood very well. How did you
define your shift in the origin — this x5 —is it completely arbitrary or is it computed

somehow?

W. L. Chow: No, first I said it is a matching of energy defect of the mean flow of the
actual mixing profile to a fictitious one with a shifted origin, and meanwhile we have to
also apply an equivalent bleed concept. In other words, if we have an initial boundary-
layer flow, we always have a developing flow even far downstream. The flow looks sim-
ilar, still shifted somewhat, so we have to use the initial boundary-layer effect to corre-
late it and we call that an equivalent bleed concept. It is described in the paper and it is
long so I would rather not go into it at this time. If you would like to discuss anything
else I would be glad to answer your question in detail, in private.
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