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RETRIEVAL OF DISPERSIVE AND CONVECTIVE TRANSPORT PHENOMENA
IN FLUIDS USING STATIONARY AND NONSTATIONARY

TIME DOMAIN ANALYSIS

SECTION I. BACKGROUND

A. Introduction

New algorithms have been developed which permit the separation and consistent
interpretation of the simultaneously occurring kinematics — convection and dispersion —
associated with stationary and nonstationary fluid transport.

The separation of the fluid kinematics of the transport process poses both an
experimental and an analytical problem. The experimental problem is to retrieve sufficiently
detailed local information for a field description of the scalar quantities without introducing
probe interference on the field or the modes of transport. The solution utilized was to
remotely sense by optical means — that is, using radiometers — a local flow field by
crossed-beam triangulation. The temporal information thus retrieved contains the signature
of the space-time variations, of the transmission coefficients (absorption, scattering, and
emission)! 1].

The analytical problem is to extract a description of the transport kinematics in
terms of the field parameters that are related to the accepted description of turbulence
flows. A description of the convective component of the transport can be retrieved from the
temporal histories of the fluctuations by using two radiometers and cross-correlating these
histories. This cross-correlation results in the average temporal relationship between events
occurring at two different points along the streamline. This transit time is used in
conjunction with the transit distance — the distance along the streamline between the points
of observation — to calculate the convection speed. This experimental and analytical
procedure is called the crossed-beam correlation technique.

Fluid transport investigations with the crossed-beam correlation technique have been
conducted in cold jet flows [2], in tropospheric turbulence flows [3], in glow
discharges [4], and in combustion processes [5]. The analysis used to interpret these
experimental results accounted for only the convective component of the transport.-
Consequently, an incomplete description was obtained in that it failed to account for the
dispersive transport component. This analysis also failed to afford a systematic classification
procedure and failed to establish the probability for the transport retrieval occurring along a
common streamline.

The description developed here compresses the temporal fluctuations into a wave
packet; whereas, the presently accepted description uses an infinitely long wave description.
A wave packet is recognized by its finite coherence length, whose value can be determined



from correlation analysis. The key to the separation of transport phenomena is the
recognition that the characteristics of the wave packet obtained from the finite data
record contain the signature of the component of the transport phenomena as viewed in
a moving reference frame. The accumulative time averages obtained from the summation
of piecewise estimated statistical averages will provide results that differ according to the
sensitivity of the accumulation procedure for the various transport phenomena. Analysis
of data sequences in terms of the characteristics of the wave packet and the temporal
averages of the accumulative procedures results in enhanced signatures for the desired
separation of the simultaneous but different transport phenomena.

Section II reviews the ordinary correlation techniques used for stationary data and
includes additional criteria that have been developed for the recognition and processing of
nonstationary data in a fixed reference frame. Section III illustrates the transformation of
the covariance curve into a wave packet description in a moving reference frame. When
the convection signature is suppressed, the covariance curve is then fitted with an
algorithm that affords a wave packet description of the experimental time histories from
more than one probe. The parameters obtained for this wave packet afford a systematic
classification procedure of the process in terms of a bandwidth-frequency ratio. The rate
of change of the average frequency in the moving frame gives the signature whereby the
dispersion is calculated. This unique description affords separation of the components
associated with the transport phenomena.

In Section IV, this change analysis is applied to data obtained from both
laboratory and field test experiments, representing stationary and nonstationary
ensembles, respectively. Since dispersion tends to make any data record nonstationary for
large scale waves, a discussion of nonstationary data is mandatory. Considering all data
that have been evaluated, the effectiveness of the proposed methods is then assessed from
an evaluation of all the results.

B. Fluid Model

An analysis of the turbulent transport process which describes the coupling
between the mean transport and the turbulent fluctuations enables us to demonstrate the
need for a semiempirical, statistical technique in the investigation of fluid transport. Our
fluid model (Fig. 1) assumes a flowing turbulent fluid that is both inhomogeneous and
stationary. The inhomogeneities are primarily a result of velocity and density fluctuations
in the fluid generated by the shear stresses associated with the transport process. The
density, p , and the center of mass velocity, v , can be described in terms of a mean
component, (~) , and a fluctuating component, ( )' , as

p(t) =p + p(t) ' (1)
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Figure 1. Space-fixed control surface in a flowing fluid.

and

v(t) = v + v ( t ) T . (2)

The condition of stationarity implies that the mean values are independent of
time. This description is applicable to multicomponent fluid transport such as that
associated with moving striations in a glow discharge — the shear layer formed by the
exhaust of an air jet, and the atmospheric transport phenomena — all of which will be
considered later as the empirical results of convection and dispersion are evaluated.

To analytically establish the significance of a description for the fluid transport
involving both a convective and dispersive component of transport, we must first define a
space-fixed control surface. The control surface is assumed to lie along the axis of a
streamline, where the streamline is defined to be the path of the center of mass which .is
generated by the motion of a small fluid volume. While this discussion will be limited -to
the motion of the center of mass, this streamline can be defined more generally so that it
includes any conservative property [6]. The control surface will be the stream tube in the
flow selected such that the mass average flux across the mantle is zero. This directly
implies that:

1. The mass flux entering one end of the control surface is exiting at the other
end.



2. In an expanding flow, the area of the exit of the tube is greater than the
area of the entrance.

In addition, we can assume that within the stream tube, a local isotropy exists.

The continuity equation for the fixed system is

—£ = div pv . (3)
at

This equation, when written for the stream tube in terms of the mean and fluctuating
components, becomes

3
/_! r p ~ + p ( t ) ' ] [v~. + v(t) ' j dV.

V j=l 9xj 3 ]

(4)

When the time average is taken, the last equation reduces to

///if d V = / / / di
v at

since the mean component is time-independent and the time average of the fluctuating
component is zero. This follows since

— T
p' = - / p' (t) dt = 0 , (6)

0

i Z T

P1 v = ;» v / p' (t) dt = 0 , (7)
0



and

rp

3"^ 1 r —
P V = — p j v ( t ) ' dt = 0,

0
(8)

if we assumed a self-stationary flow. By utilizing Gauss' theorem, the right side of the
continuity equation for the mean motion, equation (5), can be rewritten as the stream
tube surface integral:

/// T7 dV = // p 7 dS + J'f p' v' dS .
v at s s

(9)

Consider now the significance of the terms of this equation.

Term 1

v

since the flow is constant.

Term 2

(10)

//
S

dS

end

(11)

The term is the flux of the time-averaged to volume concentrations which are
convected with the time-averaged mass velocity v" in the stream tube. By definition- of
the stream tube, the mass transport from this term across the mantle is zero. The integral
over one end of the stream tube represents the flow measured by a probe in a fixed
reference frame and will be referred to as convection.

Term 3

//
S

1 —~ / P1 (t) V (t) dt dS (12)



The average longitudinal component of this term is zero, since the backward expansion of
a small fluid element will be cancelled by the forward expansion of the next small fluid
element as a result of the time averaging. This is why a probe, which is a space-fixed
observer, in the flow cannot measure this fluctuating longitudinal transport. The
transverse component is the dispersive transport which results in the lateral expansion of
the stream tube. This term represents the covariance between the convecting and
convected properties as measured simultaneously at the same spot by both a space-fixed
observer and an observer moving with the convected fluid.

This dispersive term in the continuity equation for the mean motion is the term
that has remained analytically unsolved [7]. The new approach introduced in this report
to solve the problem is the employment of empirical information retrieved by a remote
optical detection system which monitors the density fluctuations, and it is coupled with
new statistical correlation techniques to extract the dispersive information. When the
cross-covariance curves are obtained for two path lengths along a common streamline, the
change in the wave packet represents the signature for the mean longitudinal fluctuations
of the mass transport as seen by the moving observer. Since we are assuming local
isotropy, this mass transport is the dispersion. To verify that the measurements are taken
from probes on a common streamline, it is necessary to calculate the transport
probability.

Before discussing this probability calculation, it is necessary to define our basic
statistical techniques. To begin, we will examine the single-probe averaging techniques,
which are fundamental to this information retrieval analysis.

C. Fundamental Averaging Techniques

The averaging techniques are used to establish probe moments. The single-probe
averages used are the mean and variance, and the two-probe average used is the
covariance curve. Although N-probe averages do exist, they are beyond the scope of this
investigation. Our immediate attention will be focused on an evaluation of the first and
second moments for single-probe averages.

Assume that the behavior of a physical parameter in the fluid model can be
expressed as the time history of the amplitude fluctuation, x(t) , of this parameter. This
temporal history is thus a function of the running parameter t (Fig. 2), the relative time.
The range of the relative time is from zero to T. The interval between discrete samples is
giv,en by the sampling interval, At , such that

= N A t , (13)

where the integer N is the total number of discrete samples in the data record. For
easier analysis and manipulation, the total data record can be subdivided into equal time
segments, AT , called pieces, such that
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Figure 2. The notation of the time series.

T = T = M AT,
M (14)

where the integer M is the total number of pieces available in the data record. This
piecewise subdivision of the total data record not only affords more computational
flexibility, but this piecewise subdivision also affords an opportunity to apply statistical
techniques for information enhancement and analysis. In fact, this piecewise analysis is
the cornerstone in the evaluation of nonstationary data records. Each piece of data
record contains n discrete samples, such that

N = M n (15)

or

AT - nAt. (16)

The accumulative results of a summation of a number of pieces of the data are signified
by the subscripted lower case m . For example, Tm means the interval time from ,the

start of the data record to the end of the mth piece, or Nm is the number of data

points from zero to the end of the mth Apiece of data. The accumulative result will be
precisely contrasted to the piecewise result, which is given by the subscript i .

The first two moments of the single probe averages are schematically shown in
Figure 3. The first moment x is
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Figure 3. The first two moments about the mean.

i AT
Xi AT

x,(t) dt (17)
(i-l)AT

which is known as the mean value of the ith piece of data record. The integral is used
here as a shorthand notation for the summation when the summation represents a
continuous sum. In electrical terms, Xj is the dc component of the time series,

and [Xj(t) - Xj] is the ac component of the time series.

The second moment x^2 is

i AT
Xi( t ) 2 d t (18)

which is the mean-squared value of the ith piece of data record.

The mean-squared deviation about the mean, (Ax)j2 , is

2r
iAT

dt
(i-l)AT

(19)

commonly known as the variance. The square root of the variance is the standard
deviation (or the rms value of the ac-coupled signal). This gives a measure of the
dispersion of the data about the mean.



We now introduce some subtleties in notation to show how the mathematical
manipulation is carried out between the different pieces of the data record. If we use a
direct summation of data points, then the double bar notation is used; e.g.,

— T

*r
m= 7 / *(t)2dt. (20)

If the results of the individual pieces are summed, the notation is

m
<x~5> = — 7] x2 . (21)

m m fj, i

Usual methods of time series analysis assume that the accumulative average should
approach a limiting value, a condition referred to as self-stationarity. Section II introduces
a two-probe test of stationarity which is sensitive to the signatures associated with
convection and dispersion rather than with the level of activity.



SECTION II. COVARIANCE OF SEPARATED PROBES

A. Introduction

The one-probe averages just discussed will now be extended to a two-probe
average known as the covariance curve. It will be demonstrated how the coherence length
and the transit times are retrieved from the covariance delineations. In addition,
techniques to establish the confidence level of the covariance curve along with the period
of stationarity are discussed. These concepts are then extended so that we can obtain the
probability of retrieving the transport phenomena for a common streamline.

B. Accumulative Covariance Technique
»

' Correlation techniques are employed to compare the measurements from two
probes which are separated in space and in time. In this technique, the average product at
a time delay between two time series results from one time series being advanced or
delayed in starting time relative to the other time series. Hence, the correlation curve
gives a comparative measure of the degree of similarity as a function of time delay [8,9].

To accomplish the above product integration, the total data record is subdivided
into pieces in the manner discussed in Section I (Fig. 2). Each piece of the data record
affords a piecewise product mean value as a function of time delay. These values are
usually normalized with the geometric mean of the mean-square value. The result of such
normalization is called the piecewise correlation coefficient. We have

y.(t) dt , (22)

where the presuperscripts x and y of the correlation coefficient signify that this is the
cross correlation of the ith piece of the x and y data records. The presubscript T refers
to the functional dependence on time delay, T , and the postsubscript i refers to the ith
piece of the data record whose length is AT_^_The R signifies the correlation coefficient
over this ith interval. The terms Xj2 and yj2 are the mean-square values of the ith

-interval, equation (18).
t

When a data record is correlated with itself, the correlation is called an

autocorrelation. The piecewise autocorrelation coefficient, x*Rj , for the ith piece of
the x data record at the time delay ^ is

10



ATr
J x.(t + r) x.(t) dt, (23)
0 * *

which has a maximum value of one at zero time delay. That is, when r = 0 , there is an
exact match between the data record and itself. The unnormalized autocorrelation
coefficient is the mean-squared value at T - Q .

The correlation function [equation (22)] has an inherent limitation. When there is
a large mean value associated with either (or both) the x and y data records, then the
small fluctuations are swamped out by this large constant mean. When the swamping
effect exceeds the dynamic range of the systems, the meaningful intelligence cannot be
retrieved.

This swamping effect associated with the correlation coefficient can be
surmounted by computing the correlation coefficient about the mean of the data records.
This form of correlation coefficient is referred to as a piecewise cross-covariance

coefficient, x^.r^, and is defined as

AT _
t x . ( t + T ) - x ] [ y ( t ) - 7 J d t

(24)

where the autocovariance coefficient is

AT
^ = - i - f [x.(t + r) - x.] [x.(t) - xjdt . (25)

T1 AT(Ax)] 0 X 1 l L

The unnormalized autocovariance coefficient at r = 0 is the variance.

The traditional time average is a straight time integration over the entire data
record [8]. For self-stationary data, this straight time integration is more meaningful
since the average is approaching its limiting value as more information is processed.
However, very often the boundary conditions for the experiment cannot be controlled by

11



the investigator, and the time integration becomes ambiguous because of the changes in
boundary conditions which can prohibit the averages from reaching asymptotic values
with an increase in integration time. Accumulative covariance techniques, where the data
set is subdivided into segments, provide an opportunity to recognize and account for
these changes in boundary conditions.

Sometimes a short segment of the data completely dominates the data record and
prevents an intelligent evaluation of the experimental results. Such domination can be
reduced by a simple quantization technique where each segment of the data record is
normalized relative to itself [10,11]. This quantization affords only an estimate for the
accumulative covariance. The choice of the mean value and the normalization factor
provides the different accumulative covariance estimates. This discussion uses the
following definitions for the accumulative covariance techniques:

1. Sequential covariance where the means and the variances refer to the time
integration over all the preceding record; i.e.,

m AT

i=1 '/Kn^m (26)

where m is the accumulative total of pieces that have been processed.

2. Quantized covariance where the means and variances are recomputed for
each segment of the data record before accumulation; i.e.,

ixv— 1 v xy—
r> - — ). Jr. (27)z-' v '

The piecelength of the data segment of the quantized covariance acts as a low
frequency filter which suppresses the information associated with frequencies of periods
greater than the piecelength. This is not true for the sequential covariance, since the time
averages are not restricted to intervals less than the total accumulative integration time. If
a specific reference is not made to the accumulative technique used, it implies that both
techniques afford equivalent results.

12



In Section I (Fig. 2), the interval between samples was defined to the At, where

At. (28)

The maximum time delay, rm, will be one-third the piecelength. '

To select the piecelength of a data segment, let us examine the effect of
piecelength duration on a cosine wave. The resultant autocorrelation curve of a cosine
wave obtained over the finite interval AT is

XXR. = cos (27T f T) - E, (29)

where the truncation error, E , is obtained directly from a table of integrals as

E _ 2 sin2 2?rfAT sin 2?rfT . (30)
sin47rfAT+ 4?rfAT

This term could introduce as much as 12.7 percent distortion in the amplitude of
the correlation curve. We would like to remove this distortion caused by the truncation
error, because this truncation distortion introduces a distortion in the wave packet
description. Let us examine the conditions necessary for no, or at least minimum,
-truncation distortion. When the integration time, AT , is infinite, no distortion exists; but
the data of interest in this discussion are always of finite duration, rendering this
condition unattainable. When the integration time is

AT= ~ , n= 1, 2, 3, ... , (31)

again no distortion exists. The infinite integration time and the multiple period
integration times are the limits of integration normally found in statistics texts [8,9].

Since random processes normally involve data with a finite bandwidth, the
multiple period integration time is not directly applicable. The problem is that the
integration time can be selected to eliminate only the distortion from a single frequency,
thereby leaving a degree of distortion in the remaining frequencies in the bandwidth. The
solution is to select a multiple period of the mean energy-bearing frequency to reduce the
principal distortion. As just pointed out, the truncation error can be reduced by
increasing the integration time; therefore, the distortion caused by the bandwidth can be
reduced by selecting a relatively large multiple of the period of the mean energy-bearing

13



frequency. Analysis shows that, when n is eight, the maximum truncation error is less
than 2 percent. Thus, the duration of the piecelength should be at least four times the
period associated with the mean energy-bearing frequency to minimize the truncation
error introduced in narrow and broadband data.

C. Transit Time and Coherence Time

The covariance curve contains the signatures for the transit time and the
coherence time. The transit time is that time required by the transport phenomenon to
pass between the two points of observation [12] . The coherence time is that period of
observation for which the transport can be treated as belonging to the same wave
packet [ 13].

To demonstrate the concept of transit time, the elementary model is illustrated in
Figure 4 [14]. The data collection system is an optical detection system [15] comprising
two independent units (Fig. 4a). Each unit has a photodetector which receives collimated
radiation modulated by events occurring at the point where the beam and the streamline
intersect. These modulations form the temporal history of .the intensity fluctuations. To
illustrate the operation of this system, a test object is moved along the streamline to
produce the sequential temporal histories of the intensity fluctuations (Fig. 4b). A
correlation of these two time histories provides a covariance curve that indicates the
temporal relationship between the x and y data records as the x data recorder is
advanced or delayed in time (Fig. 4c). By inspection of the covariance curve, we observe
that the maximum correlation between the temporal histories is 2 seconds — the time
required for the phenomenon to traverse the distance along the streamline between the
beams. Utilization of this transit distance accompanied by a knowledge of the transit
distance between the two beams thus affords us the convection speed of the test object.

While this example of transit time retrieval is rudimentary, it is the conceptual
basis of correlation statistics and illustrates the principle applied in complex data records
containing both dispersive and convective information. A more typical data record that
can be expected in this work is the initial example given in Figure 2.

The coherence time is obtained from the covariance delineation. The coherence
time, which is a direct result of the application of the uncertainty principle [13], is
readily obtained from a covariance phase diagram (Fig. 5). This is a plot of the covariance
and the time derivative of the covariance as a function of time delay. The time delay
corresponding to the first radial minimum of the phase diagram is defined as the
coherence time. The rate of radial decay is a measure of the damping of the covariance
and is directly related to the bandwidth-frequency ratio. That is, the phase diagram shows
that the greater the bandwidth-frequency ratio, the shorter the piecelength required to
obtain a wave packet description. We observe that the coherency time for a periodic
process is infinite. In practice, some data sets must be truncated; therefore, the maximum
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piecelength will be set at four -times the period associated with the mean frequency,
unless the coherence time is less than half that value. In that case, the piecelength can be
reduced to twice the coherency time without an information distortion.
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D. Statistical Error and Period of Stationarity

To facilitate the evaluation of the covariance curve and to establish the stability
of the data set, it is necessary to utilize a set of statistical criteria. These criteria will now
be developed.

The sequential covariance curve is the basis' for testing the stability of the
boundary conditions. The first class of stability test is the statistical error of the
accumulative covariance that is produced as a result of the deviations of the covariance
coefficient, at a particular time delay, between the different pieces of record. The
statistical error is

'XyF. - <Xy?> I' . (32)T i T mj

The confidence interval, < 6 < xyr»m , can then be written as

xy— . xy—'Jr» = <A< J
r» t , (33)T m T m P,m v '

where tp m is the "s tudent ' s t" coefficient for a probability level, P,

with m pieces [15] . The normal distribution would be used when there are more than
30 pieces of data record.

Briefly, let us examine the significance of this criterion with regard to the
evaluation of the stability of the covariance curve. Assume that we have a ^ s e t of
piecewise covariance curves which contain some undesirable signal (noise). When these
piecewise covariance curves are averaged together, we obtain the quantized accumulative
covariance curve, together with the confidence limits, as shown in Figure 6. Only those
parts of the covariance curve that are greater than the confidence limits are statistically
significant to the probability level selected. Equations (32) and (33) are providing an
estimate of the reproducibility of a covariance coefficient at a particular time delay.
Since the noise has a low reproducibility compared to the information bearing signal, the
noise lies below the confidence level and is thereby rejected.

A second type of stability test is based on averaging the statistical error, from the
accumulative averages, over the time delay range. The accumulative error,

m

(
1

2r mm

m
E <

T=-T m
r m

<A<Xy?» = /—^— V <A<Ajr?»z , (34)
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Figure 6. Accumulative quantized covariance.

implies that the average piecewise variance of the piecewise covariance curve is converging
at the rate of 1/m with the variance of the accumulative covariance curve. This
convergence can also be interpreted in terms of the bandwidth in the following manner.
The variance about the mean of the piecewise covariance curve can be written in terms of
the power spectrum as
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-i2vrfTA<Xyr>. = / <S^fT>e-l27rtT df, (35)
1 0

where we are assuming a boxcar spectral distribution where all frequencies have the same
amplitude. The limits of integration of this integral can be reduced to the effective
bandwidth, B e f f . This means that there are just l/Beff realizations per piece. Since the

data record is T long, there are T realizations resulting from averaging. Thus, the rate of
the convergence between the variance of the piecewise covariance and the accumulative
covariance for stationary data is l/BeffT . In terms of the accumulative error, which is

the square root of the variance, the rate of convergence is l/\/B^ff~. When the

accumulative error is plotted as a function of the inverse of the square root of integration
time, we should obtain a straight line for a stationary process, whose slope is the square
root of the inverse effective bandwidth (Fig. 7). This has been demonstrated rigorously
by Jayroe and Su [ 11 ].

The accumulative error can also be plotted as a function of integration time to
determine the integration time needed to retrieve the enhanced covariance curve. When
the accumulative error stops decreasing as a function of integration time, then we are no
longer enhancing the accumulative averages. At that point, we can terminate the
integration. The period of enhancement can be clearly distinguished in the cold jet data
shown in Figure 8, where we observe that the integration of additional data did not
significantly enhance the results after 3 seconds of integration. The bottom diagram in
Figure 8 clearly shows how stationary the boundary conditions were in this experiment.

An important question still remains with regard to stationarity: "When does the
data record become too nonstationary to correlate?" The statistical nonstationarity of the
data does not imply it is meaningless. Consider, for example, the atmospheric wind
velocity. Generally, over a 24-hour period the wind velocity is nonstationary, but for
short intervals of time it is stationary. Thus, it is desirable to know when to create a new
ensemble, since we are interested in isolating changes in environmental conditions that
would result in a nonstationary data record. The chi-square test enables us to establish
the limits of stationarity for the accumulative error [ 10]. The limits of stationarity are

il_ < .A.xy«_ < - -* . (36)
rn

nWB AT' mN/ B A T'

The envelope defined by these chi-square limits (Fig. 9) sets the region of stationarity
such that, when the accumulative error is within this envelope, the data record can be
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Figure 7. Accumulative error curve.

considered analytically stationary. It is important to recognize that this is simply a
restriction on the amount of variation of the bandwidth that can be tolerated.

20



A.
ACCUMULATIVE ERROR

f
.12-

.06-

^OOOCXDOOOCXXJOOOOOOOOOOOOO

B.

2-0

ACCUMULATIVE ERROR

.12-

4.0 6.0 8.0 10.0
INTEGRATION T I M E . T sec

.06-

1.2 2.4 3.6
-ir (sec'1")

Figure 8. Accumulative error curve from cold jet data
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E. Probability of Retrieving Information About Transport Phenomena

Utilizing the statistical tests that were just discussed, criteria will be established
whereby an estimate can be obtained for the probability of retrieving significant transit
time information concerning the local transport phenomena.

The retrieval of transport information requires the detection of the common
information contained in the temporal fluctuations from two spatially separated probes.
The criterion of commonality requires the two signals to always maintain the same sign
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over the period of integration. The probability of transport retrieval is thus identical with
the probability that the accumulative covariance exhibits commonality and exceeds its
statistical error. The degree of commonality between the average product can be treated
as student's t distributed if the data set is stationary, which is to say that this distribution
applies only to processes which belong to the same population as indicated by the
chi-squared test. Under these conditions, the probability of retrieving the transport
information can be computed directly from the student's t distribution [ 16] .

The degree of commonality is obtained for the student's t from the ratio of the
accumulative covariance and its statistical error, which is

xy
< J r > -

t-r, T mr P , m = - . (37)xy—J
T m

The probability of commonality associated with this student's t is then given by

1 +
X2

fm - ^
V 2 /

-m/2

dx ,

(38)

where T < > is the gamma function [17]. The probability of commonality can now be

plotted as a function of time delay (Fig. 10) and subdivided in accordance with geometric
constraints into an information region and a noise region. The commonality probability
because of noise, Pnojse , is the maximum probability that exists in the noise region. The

probability of transport retrieval, Ptrans > is

„ imf
trans ' P. + P .

irnl noise

where Pjmf is the maximum information commonality probability. The probability of

transport retrieval must be

P. ^ 50% (40)
trans
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Figure 10. Probability of commonality.

for the transport signature to be significant. This now affords an interval estimator for
selection of the significant transit time signature by providing the probability that the
common information from the two probes is obtained from the same'streamline.
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SECTION III. WAVE DESCRIPTION OF THE TRANSPORT PHENOMENA

A. Introduction

Experiments using correlation analysis [2-5,18] clearly show that the covariance
curve contains signatures of the transport phenomenon, which cannot be retrieved or
interpreted using the traditional time-series analysis. To extend the analysis, it is
necessary to augment these analytical techniques with a new three-parameter wave
description of the covariance curve.

This description enables us to determine how the parameters of the wave packet
are described in the covariance curve and thereby to develop a systematic classification
procedure for the different kinds of turbulent transport processes. The wave description
permits an interpretation of the covariance curve which separates the transport
phenomenon into a convective component and dispersion component.

B. Wave Description of the Covariance Curve

The wave description will be obtained from a new wave packet algorithm, which
will provide a three-parameter description of the signature associated with the
fluctuations in the fluid transport. In the crossed-beam correlation technique, fluctuations
are essential, in that their signature affords a time-dependent information element that
enables us to retrieve the convection kinematics. The frequency description of the
covariance delineations provides a field description of the affluence of the fluctuations
present in the wave packet which, as was shown in Section I, are the signature of the
dispersive kinematics. Before developing the wave description, the limitations of the
Fourier frequency spectrum with regard to transport analysis will be considered.

The covariance curve can be transformed from the time domain to the frequency
domain using the Fourier analysis procedures outlined in the appendix. To demonstrate
the effectiveness of this transformation, we can construct a covariance curve by the
superposition theorem, which represents a wave packet, so that we know the input
spectrum. For this example, suppose we obtain the covariance curve of our wave packet
by superimposing 21 cosine functions of equal amplitudes which are equal frequency
intervals apart over the range of 0.5 to 1.5 Hz (Fig. 11). The resulting covariance curve,
shown in Figure 12, is damped because of the destructive and constructive interference
introduced by superimposing the cosine functions. The energy density spectrum shown in
Figure 13 is obtained when this covariance is transformed into the frequency domain. On
inspection of the spectrum, we observe that, while the bandwidth of the output spectrum
is identical with the input spectrum, the amplitude distribution of the output spectrum is
not constant. This spectrum is correct.

25



INTENSITY

ENERGY
^SPECTRUM

1.6 ,

5

2.8

I

î
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Figure 12. Autocovariance curve in time domain.

The explanation is as follows. The gain of the input energy density window was
4.77 percent for each of the 21 frequencies. The entire bandwidth of these data occupies
only nine wave numbers in our energy space, implying a mean gain of 11.11 percent.
Figure 11 shows the input in terms of the output spectrum obtained. This discrete
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spacing between the wave numbers, which is required for an orthonormal spectrum,
causes an overlap and results in a distortion of the intensity distribution. (The wave
number is that integer multiple of the inverse of the sampling interval that gives the
frequency.) If there were integral multiples of wave numbers between frequencies, this
would not happen. Thus, the price paid for obtaining the orthonormal frequency space is
a loss in the resolution of the input spectrum. From this demonstration, we can conclude
that the reproducibility of the actual frequency domain from the energy density
spectrum, without either a foreknowledge of the desired results or a focusing of the
spectrum, can be misleading. This forces us to seek a new parametric description that
eliminates the masking effects of a Fourier analysis which resulted from the degree of
uncertainty due to frequency quantization.

This new frequency description of the time domain will be reduced to a
description of the size, density, and location of an average envelope about a wave packet.
Since the frequency domain is subject to distortion, our analysis is performed in the time
domain. An algorithm for this wave packet description will be generated as a function of
the average frequency <f> , the bandwidth B , and the number of frequencies N present
(Fig. 14) in the wave packet. The superposition of N frequencies equally spaced and
with the same amplitude, which is a boxcar distribution, is given by (for N-odd):

-, N
1 71\T i-lN

COS OJ .T = —
i N

N-l
2

E cos (<o) >T - AOJ .T)
'

N-l

cos <co >T >T

j

(41)

where

a;. = 27rf. , (42)

N
(43)
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and

A co. = «jj > - co . .
i i

(44)
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Figure 14. Spectrum of the wave packet algorithm.

Next, the cosine relationship for the difference and sum of angles gives

N

N .-
.

N-l
2

(cos <co> T cos AO>.T + sin <co> T sin ACO.T)

N-l
£t

+ cos <co >r + ^ (cos <o; >T cos Au> .r - sin <o> >r sin Aco .T)

(45)
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Simplifying the above relationship, we obtain

— /. COS 0) .T = — COS <U> >T
N H i N

N-l

1 + 2 cos Aw .T (46)

Now consider the summation in the above relationship:

N-l
2

N-l
2

cos Aco .T = cos / 27TkBT

\ N-l
(47)

where

27TB = (48)

and k is an integer. To remove the summation, the following strategy is used:

N-l
2 cos

/ 67TBT \ , .
+ cos I •' I + ... + cos (TTBT) (49)

However, for the kth term,

m]
(50)
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then, for the (k + l)th term,

„ . [TrEr] [27r(k+ 1) BT"! . [,„, 0, TrBrl
Sin N-T C°S — N-l = Sin ^ + ^ N-l I

- sin ^(2k + 1) Hj . (51)

That is, only the first and last terms in the summation remain, or

2 sin

N-l
2

S N-
= sm

NTTBT!
[TP-J -S1sin

"vrBr 1
N-lJ '

(52)

or

N-l
2 r i
V 27rkBT^ cos ijirk=l i L J

cos /N+1 \_27rBr 1 .( --- 1 -- sin
\N-1/ 4 J 4

•sm _2TrBr~|

4 J

(53)

Returning to equation (47) and using the above results, we obtain

1 V 1
— / COS OJ .T = — COS
N .^ i N

1+ 2
f/N+1 \27rBrl

^Ub LU-J 4 J
• 17 2 ^LU-1/

r i
3111 L 4 J
27rBT~|

* J
(54)

This algorithm provides a wave description of a packet of sinusoidal waves as a function
of the average frequency, bandwidth, and number density. This can be interpreted, in
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accordance with the superposition theorem, as an autocovariance curve that is a time
domain description of the wave packet; that is,

1
-cos27r<f>T 1 + 2

r/N+iCOSL\^
sin i

27TBT~|
"I

' 2 \
,N-l j

. [27TBT 1 .sin h-j
27rBT~|

4 J
(55)

Since this autocovariance curve is the result of the wave description in the frequency
domain being transformed to the time domain, we shall refer to it as the wave packet
algorithm. This algorithm can only be used to analyze a single wave packet description in
the transport process. Where several different wave packets are occurring simultaneously,
frequency discrimination techniques must be utilized to isolate the wave packet
associated with each process. This relation is the wave description for the signatures of
those fluid kinematics associated with the parametric fluctuations resulting from the
dispersive transport process. The parameters (<f>,B, N) of this wave description are
retrieved by the use of the least-squares fit of the wave packet algorithm to the
autocovariance curve which is obtained from the suppression, of the transit time
information in the cross-covariance delineation of two spatially separate probes.

A more general form for the wave packet algorithm compresses the original three
parameters into two, by redefining the time axis such that

9 = <:f> T (56)

and defining the bandwidth ratio to be

• (57)

These will be referred to as the similarity relations. Then, by this similarity transform,
the wave packet algorithm, equation (55), becomes
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= — C O S (27T0)
N

<f>, B, N

2 cos
1 +

/N+l \ 27rj30"|
AN-1/ 4 J

.
Sm

27TJ30

4 J

(58)

which is the same as if the frequency were 1 Hz.

A computer comparison of the wave packet algorithm with the equivalent
description obtained from the superposition theorem shows that more precise results were
obtained with the algorithm, especially when the number density of sinusoidal functions
was high. The discrepancy between the two descriptions (maximum of 2.19 percent)
which occurred for small covariance coefficients in the wings of the curve was a result of
truncation errors induced by summing large numbers of sinusoidal functions. It can be
concluded from this analysis that the wave packet algorithm is not only a faster but a
more sensitive means of attaining the wave description than by using superposition
techniques.

C. The Wave Packet Interpretation for the Covariance Curve

The parametric effects of the wave packet on the shape of the covariance curve
will now be considered.

Statistical processes are commonly grouped into three classifications: periodic,
narrowband, and broadband processes [8]. Typical examples of the autocovariance curves
associated with these processes, using data obtained from glow discharge experiments [4],
are shown in Figure 15. The distinguishing characteristic between these different processes

• is the degree of damping associated with each process.

To interpret the mechanism responsible for the damping, the wave packet
algorithm will be reexamined. We observe that, when the algorithm is written in the form

B, (27r<f>T)
(59)

where

1 +

•sm
(60)
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we obtain a periodic cosine function of the average frequency and a time delay dependent
factor, D(r) , which is clearly the damping factor in the wave description.

Now consider the limiting case where the bandwidth of the wave packet is zero.
Then the damping factor using FHopital's rule is

(61)

for all time delays. This results in a periodic covariance curve of the average frequency, as
we would expect. We can further conclude from an examination of the damping factor
that the damping of the average frequency is a result of the number density and the
bandwidth. In fact, to a first-order approximation, we can attribute the damping
primarily to the bandwidth.

Obviously the damping factor is a suppressing agent of the cosine function of the
average frequency such that the bounds for the cosine function are set by the damping
envelope. Using the same parameters in the wave packet algorithm that were employed
with the superposition theorem (Fig. 11) in generating the covariance curve (Fig. 12), we
can generate the autocovariance curve in Figure 16. This covariance curve generated with
the algorithm has an important analysis impact in that it affords us the opportunity to
examine the effects of the damping envelope. By inspection of this covariance curve, we
can observe that the damping envelope defines the level of suppression for the cosine
function of the average frequency.

It is desirable to be able to obtain, by inspection, the average frequency of the
wave packet directly from the autocovariance curve, as we would, for example, in the
case of a periodic function. From an analysis of the wave packet algorithm, it follows
that our freedom to retrieve the average frequency by inspection becomes more restricted
as the bandwidth increases, because it will result in an increase in the suppression of the
characteristics of the average periodicity. In fact, there is a point where the bandwidth
suppression of the covariance is so strong that even the first quarter cycle of the average
periodicity is suppressed, thereby preventing the retrieval by inspection of the average
frequency associated with the wave packet.

It is thus necessary to establish a classification system which divides the statistical
processes into those processes that are amenable to a direct information retrieval scheme
and those processes that require a more sophisticated information retrieval scheme. This
is the objective of the next section.

D. Classification of Covariance Curves

A procedure for the systematic classification of covariance delineations is
developed that enables us to group statistical processes in accordance with the minimum
data processing required for the retrieval of the wave packet description.
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There is a classical system defining the classification of statistical processes, as
pointed out in the last section. No damping implies a periodic process, some damping
implies a narrowband process, and strong damping implies a broadband process — thus a
heuristic definition. While this definition is an aid in grouping data, it lacks an analytic
formalism. More specific definitions of the processes are to be found in optics [13], but
they do not directly apply to our discussion.

The behavior of the damping envelope, as pointed out in the last section, is our
primary concern. The principal factor governing the damping envelope is the bandwidth
of the statistical process. From the similarity transform of the wave packet algorithm
[equation (58)], we observe that a behavior pattern for the damping envelope also can be
obtained in terms of the bandwidth ratio [equation (57)]. The beauty of the
dimensionless bandwidth ratio lies in its ability to render a generalized damping model.
Since we would like our classification system to have significance in the frequency
domain as well as the time domain, we will initially direct our attention to the behavior
of the spectral envelope as a function of the bandwidth ratio.

The range of the bandwidth ratio is from zero to two for the defined boxcar
spectral envelope. If the bandwidth exceeds two, then the spectrum folds (Fig. 17)
because of the even property associated with cosine functions. It follows that the three
analytical classifications, from the spectral standpoint, of the correlation curve based on
the bandwidth ratio, 0 , are:

1. Periodic processes: (3 = 0.

2. Narrowband processes: 0 < 0 < 2 .

3. Broadband processes: 0 > 2 .

With this proposed classification system as a guide, a closer examination of the time and
frequency domains is in order.

To facilitate this examination, the computer program, whose flow diagram is given
in Figure 18, was used to generate a set of covariance curves to demonstrate the effects
of the bandwidth ratio on the damping envelope. Our objective is to illustrate that the
classification system just defined not only has significance in the frequency domain, but
that this system also groups covariance curves such that in periodic and narrowband
processes the average frequency can be retrieved by inspection in accordance with

(62)
FCP
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Figure 17. Schematic representation of the envelope for the
spectrum from narrowband and broadband processes.

where Tp^p is the delay time of the first crossing point which is taken as the delay

corresponding to the initial zero value of the covariance coefficient. This relation
[equation (62)] indicates that the first quarter cycle of the covariance curve corresponds
with the first quarter cycle of a cosine wave of the average frequency.
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Figure 18. Flow diagram of spectral decomposition program.
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The results for mappings of the autocovariance curve over the bandwidth ratio
range of zero to eight, of which three typical results are given in Figure 19, clearly
indicate that the average frequency can be retrieved by inspection in periodic and
narrowband processes. However, in broadband processes, where the bandwidth ratio
exceeds two, the damping envelope always suppresses the first quarter cycle of the
average frequency, making information inspection retrieval impossible. This behavior is in
accordance with our original classification model objectives in which we wanted to
differentiate between the statistical processes where the average frequency could be
retrieved by inspection from those processes where analytical techniques are required.

Analytical techniques for ascertaining the wave packet parameters include spectral
decomposition (Appendix) and regression analysis of the wave packet algorithm. Link 2
of the computer program (Fig. 18) was used to test the information retrieval capabilities
of the energy density spectrum. The covariance curves subjected to this spectral
decomposition were generated by the wave packet algorithm. This means that the output
spectrum should be identical to the boxcar input spectrum (Fig. 14). The boxcar
spectrum is obtained when there is an integral wave number spacing between each of the
input spectral frequencies (Fig. 20). This is a special case, and in general we would not
have this integral spacing. Therefore, it is much more difficult to obtain the wave packet
description directly from the spectrum. To demonstrate this point, observe the
narrowband spectrum shown in Figure 21. In this example, the quantization effect caused
by discrete sampling has suppressed the information regarding the distribution and the
number density. It can be shown that the description of the time domain in the
frequency domain is limited to the same number of unique representations, as pointed
out in the explanation of the spectrum in Figure 12. Thus, in addition to the distortion
illustrated in this figure, there is also an uncertainty associated with the spectrum which
is equal to the wave number spacing. This uncertainty in the spectral description renders
the spectrum unsuitable for the detection of small changes in the average frequencies
between different covariance curves. Therefore, the application of change statistics of the
average frequency for periodic and narrowband processes requires either inspection
retrieval or wave packet regression analysis.

In broadband processes, the Fourier spectral description of the autocovariance
curve will deteriorate. Using the same spectral input model as used in the narrowband
discussion, but with a broader bandwidth, we obtain the integral wave number spectrum
shown in Figure 22. We would expect a result similar to that shown in Figure 20, except
it would be folded. Instead, we get a spectrum with a marked ringing signature in the
folded region. The deterioration results from the fact that the Fourier spectrum, which is
a correlation between the covariance curve and a sinusoidal function, is being calculated
for a covariance curve which no longer has a dominant signature of the average
frequency. This signature has been suppressed by the bandwidth damping. Naturally, the
broadband nonintegral wave number spectrum of the autocovariance curve (Fig. 19c)
results in even more deterioration for the output spectrum (Fig. 23). Unlike the
nonintegral narrowband distribution, the average frequency of the wave packet will not
tend to dominate the broadband spectrum, and must be retrieved in terms of a model. In
fact, our whole analysis of a broadband process requires a model to interpret the wave
packet parameters.
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and broadband processes.

41



6.741

FREQUENCY
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

c
o>
o
0>
Q.

3.370

O-1

BANDWIDTH

T O T A L ENERGY:
99.87%

PARAMETERS:
FREQ RANGE:

0.125 TO 1.875

BANDWIDTH /
FREQUENCY:

1.75
NO. OF WAVES: .

15
AVG FREQ:

1.0 hz

WHITENOISE
L E V E L

I.
5 10 15 20 25 30

WAVE NUMBER

Figure 20. Transform of square input with integral spacing.

42



F R E Q U E N C Y
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

71.24

o>
o
v_
<D
Ou

35.67--

CO

1 I I 1 1 I
1

—

-

_

-

_

— *•
-

—

-

pi 1 1 1 1 1

1

1f

1i

i1

1
1*:

1ii§
1$1
v»i*
1
i
'K
'••

Ji

|

1

ll

1

1

i
ir:

r:'

1
1

1

1

*

&

'1

îg
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To verify the validity of the wave packet description, we must examine both the
phase diagram (Fig. 5) and the accumulative error (Fig. 7). The phase diagram affords an
independent test for the average frequency of the wave packet, since the derivative is
normalized by the average frequency. The effect of this normalization is to remove the
oscillation in the radial vector resulting from the average frequency; therefore, only the
proper frequency normalization removes the oscillations. The average frequency defined
by the wave packet description is compatible with the restrictions imposed by the phase
diagram. The effective bandwidth (Fig. 7) obtained from the accumulative error can be
shown to be the equivalent of the bandwidth in the wave packet description. It can
therefore be concluded that the wave packet description is compatible with our overall
statistical model. Thus, it is a valid model for interpreting the spectra from any process.

Since our model for interpreting the spectrum is valid, our problem in broadband
analysis is again the quantization uncertainty introduced by discrete data. To circumvent
this problem, which is inherent to the frequency spectrum, the least-squares criterion for
fitting the wave packet algorithm to the autocovariance curve was used. To demonstrate
the effectiveness of this criterion, the residue error mapping of the algorithm fit to the
covariance curve was made. A typical example of the residue mapping from fitting to the
algorithm to covariance curves of boxcar spectral inputs is shown in Table 1. The wave
packet algorithm retrieved the exact parameters for the average frequency, bandwidth,
and number density in all cases. When the narrowband process was simulated using an
elliptical input spectral window, the exact average frequency was retrieved and the
bandwidth retrieved gave an equivalent area under the spectral curve (Fig. 24). Similar
results were obtained for broadband processes (Fig. 25) using the algorithm. The greatest
error in the parameters of the wave number algorithm was found in the number density,
where a unique value was not always clearly determined. In spite of this limitation of the
wave packet description, the results were always reproducible with the original covariance
curve to less than 2.61-percent deviation for narrowband processes and less than
3.46-percent deviation for broadband processes. In general, the deviation between the
known covariance curve and the one generated by the algorithm parameters occurred in
the far wings of the curve. The number density can be viewed as a fine-tuning
adjustment, since it only slightly affects the damping function. A comparison of results
obtained with the wave packet algorithm provides the sensitivity and dependability
required for transport analysis.

Thus, the classification system which has been just developed not only is an
analytical guide to the statistical techniques applicable to the analysis, but it also affords
an index to the spectral type. While Fourier analysis affords a parametric estimate for the
wave packet description, it lacks the necessary precision for change detection which is
obtained with either the direct inspection retrieval or the wave packet algorithm. A
degree of care must be exercised with the direct retrieval of the average frequency
because its application is limited to periodic and narrowband processes.

With this basis for the retrieval of the wave packet information, we can now
examine the analysis of the transport process.
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TABLE 1. MAPPING OF ALGORITHM DEVIATION RESIDUE
FOR AN AVERAGE FREQUENCY OF 5 Hz

NUMBER
OF WAVES

22

24

26

28

30

32

34

36

38

40

42

BANDWIDTH (Hz)

5.400 5.600

0.00312 0.00217

0.00316 0.00225

0.00320 0.00232

0.00323 0.00237

0.00326 0.00242

0.00328 0.00247

0.00331 0.00250

0.00333 0.00254

0.00335 0.00257

0.00337 0.00259

0.00338 0.00262

5.800

0.00091

0.00103

0.00113

0.00121

0.00129

0.00135

0.00141

0.00146

0.00150

0.00154

0.00158

6.000

0.00050

0.00033

0.00020

0.00009

0.00000

0.00008

0.00015

0.00021

0.00026

0.00031

0.00036

6.200 6.400 6.600

0.00174 0.00273 0.00331

0.00158 0.00259 0.00321

0.00144 0.00247 0.00313

0.00133 0.00237 0.00306

0.00124 0.00229 0.00300

0.00116 0.00222 0.00295

0.00109 0.00215 0.00290

0.00103 0.00219 .0.00286

0.00097 0.00205 0.00283

0.00093 0.00200 0.00279

0.00088 0.00196 0.00276

6.800

0.00363

0.00356

0.00351

0.00346

0. 00342

0.00339

0.00335

0.00333

0.00330

0.00328

0.00326

STANDARD DEVIATION BETWEEN ALGORITHM

Parameters of Test

AND

<f>

Curve: B

N

TEST CURVE

= 5 Hz

= 6.0 Hz

= 30 waves

E. Separation of Convective and Dispersive Transport Phenomena

The various statistical techniques that have been discussed will now be unified to
obtain a method of separating the convective and dispersive transport information from
the signatures contained in the covariance curve.

Assume that the temporal histories of the fluctuations in the optical density of a
flowing fluid have been retrieved at three points along the streamline (Fig. 26). Three
cross-covariance curves can be obtained by cross-correlating the temporal information
obtained from the x-probe with the temporal information retrieved from the three
yj-probes.' This set of three curves provides a mapping along the streamline of the

time-averaged transport. To establish the validity of this transport description, the
accumulative error is examined to determine whether the process is stationary. If we have
a stationary ensemble, then peak identification procedures are used to determine the
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Figure 24. Wave packet algorithm fit of elliptical envelope.

probability of retrieving the transport and of isolating the transit time of the transport.
The two transit times thus retrieved are plotted as a function of their transit distance.
The slope of the straight line passing through these points is the average convection
velocity along the streamline.

To obtain the dispersive signatures, it is necessary to transform the covariance
curve from a fixed representation to a representation moving at the convective velocity.
Two techniques can be used to obtain this transformation. The first is to suppress the
convective information by transforming the gain spectrum into a fourth-order covariance
curve. The second technique is to directly obtain a fourth-order covariance curve of the
cross-covariance curve by the relation

T m

r - T
_P

m T + T m
P _

(63)
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Figure 25. Wave packet algorithm fit of broadband process.

where T is the transit time. This second suppression technique will be used in these

discussions because of its simplicity. (The computer program in Figure 18 is designed to
use the first technique.)

This fourth-order covariance curve contains only dispersive information since this
suppression technique has effectively suppressed the transit time information concerning
the convective process. The dispersive information is retrieved from the fourth-order
covariance by fitting the wave packet algorithm to it and obtaining the parameters for
the wave description.
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The dispersive velocity, v^ , can be expressed in terms of the change in the

average frequency of the wave packet, the convective velocity, vc , and the transit

distance. The following argument is used. The change in the packet size, As, due to
dispersion is

i
4

(64)

where the quarter cycle spread represents the change in the packet shape. The time
interval, rp , over which this change occurs is

P V
(65)

It follows then from the elementary laws of kinematics that the dispersive velocity is

(66)

The convective and dispersive velocities can thus be separated by first retrieving
the convection from the second-order cross-covariance curve, then suppressing the
convective information and determining the wave description of the fourth-order
autocovariance. The change of average frequency as a function of transit distance affords
the dispersion. Returning to the continuity equation [equation (9)], the convection is the
mean transport; whereas, the dispersion is the turbulent flux.
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SECTION IV. APPLICATIONS TO REMOTELY SENSED DATA

A. Introduction

The empirical evidence of applicability of the statistical techniques, which have
been discussed, to remotely retrieve the transport kinematics will now be demonstrated.
Since heuristic arguments regarding the crossed-beam test arrangement have thus far been
presented, we begin by presenting the analytical arguments that demonstrate the
crossed-beam correlation technique's potential to remotely utilize detected optical
modulations to obtain local information regarding the turbulent transport process.

The applicability of the kinematic description obtained with these techniques will
be illustrated under three different environmental conditions. The analysis of moving
striations in the glow discharge is an example of one-dimensional flow which illustrates
ensemble grouping, process identification, and transport analysis. The analysis of the
convective and dispersive transport associated with the plume of an air jet is used to
show the applicability of these techniques to a stationary, two-dimensional turbulent flow
in a fixed direction. The third illustration involves transport phenomena in the
troposphere where the turbulence flow is nonstationary, and, because the flow direction
is a variable, it is also three dimensional.

B. The Crossed-Beam Test Arrangement

The fundamental crossed-beam correlation method which was initially conceived
by Krause et al. [1] can be perceived most readily by examining Figure 27. Assume that
a region of turbulent flow is contained within the broken line and is being convected in
the direction normal to the plane of the diagram. Two optical systems consisting of a
radiation source and a radiometer are arranged so that collimated beams of radiation pass
across the flow in two mutually perpendicular directions and the beams intersect at the
point to be investigated. The wavelength of this radiation is selected so that it is
modulated by one or more species of the flow, allowing fluctuations of the concentration
or density of the selected species to be reflected in changes in the intensity of the
radiometer [19]. Each beam alone reflects only an integral of the appropriate
fluctuations along its entire path length; however, it will be shown that the covariance of
the signals from the radiometers does yield local information about the point of
investigation.

The retrieval of this local information can be explained intuitively as follows: The
instantaneous signal at each detector is the resultant of all modulating influences along
the path of the beam at a particular time. These modulations of the source radiation can
be categorized into two groups:
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Figure 27. Schematic cross section for the crossed-bearn
monitoring system in a turbulent flow.

1. Those which occur sufficiently close to the point of beam intersection to
introduce a related (i.e., correlated) modulation in both beams.

2. The remaining modulations that occur at a sufficient distance from this
point and are uncorrelated because they introduce an unrelated effect on the beam
intensities.

The correlation of the two signals will yield an average value of zero for those
portions of the modulated signal created by the unrelated flow fluctuations; whereas, the
related flow fluctuations will yield a finite average product. In principle, then, the
measured covariance is a function of only those fluctuations that modulate the beams in
the correlation area around the beam's intersection point.

To analytically demonstrate that the covariance of the two detected modulations
yields a measure of required turbulent properties, we will introduce the following
coordinate system. The point of beam intersection has the coordinates (\, y, z) where
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the x and y axes are oriented parallel to beams one, Si RI , and two, S2 R2, respectively.
The distances measured from the point of beam intersection are denoted
by f , T? , and £ in the x , y , and z directions, respectively.

For beam one, the intensity of the radiation recorded at detector RI at
time t is

exp {-/ K ( x + £ , y, z, t) d£^ , (67)
Si

where I0 denotes the initial intensity of the beam and K is the appropriate extinction
coefficient. Here, "extinction" is any possible mode of beam attentuation. Two common
forms of extinction are pure absorption by a flow constituent and scattering by
particulate matter in the flow. The extinction coefficient, K , is also a function of both
the wavelength of the radiation and of the thermodynamic parameters of the
constituents [19]. Since this dependence does not add enlightenment to the present
discussion, it will not be explicitly shown.

Whatever the actual mechanism of extinction, it should be selected such that the
extinction depends on a required flow property. Since the flow properties are functions
of both position and time in a turbulent flow, the extinction coefficient will be similarly
dependent, and thus we can just refer to fluctuations or modulations of the extinction
coefficient. Since these changes are linearly related to fluctuations of a flow property,
statistical properties of the flow do represent statistical properties of the extinction
coefficient.

The instantaneous extinction coefficient, K , can be written as

K(x + £ , y, z, t) = k(x + f , y, z, t) + K(x + f , y, z) , (68)

where k is the instantaneous fluctuation of the extinction coefficient about the mean
value, K . The detected intensity [equation (68)] can now be written as

.
Ij(t) = Io exp \ - / K(x + f , y, z) df > exp < - / k(x + f , y, z, t)

Si

(69)
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If the extinction process is such that the integral of the fluctuations [/k(x +
f, y, z, t)df] is sufficiently small to permit linearization of that portion of the exponential,
using the series expansion of an exponential to first-order approximation, the intensities
can be written as

Ri
exp , y, z)

x 1 - / k(x + £, y, z, t) d£
Si

(70)

This assumption does not restrict the crossed-beam correlation technique to applications
with small modulation of the optical beam because of the following:

1. The integral in question represents a sum of a number of statistically
independent events, which will tend to reduce the value of the integral.

2. It was shown [20] that if the integral of the fluctuations is of the order of
10 percent of the mean integrated value or less, then an optimum value for the mean
attenuation is given by

J K ( x + £ , y, z)df = 1 .
Si

(71)

For this magnitude of fluctuation, the linearization would be acceptably accurate.

3. If larger fluctuations relative to the mean value are experienced, it would be
acceptable and indeed desirable to reduce the mean absorption, by reducing the gain, so
that linearization is still possible.

If the intensity at the detector is now written as the sum of its time
average Ii and a fluctuation component i., (t) relative to the average value, it can be
shown that

_

ii(t) = - Ii J k(x + g, y, z, t) d£
Si

(72)
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Within the limits of the above discussion, we obtain the expected result that the
fluctuation of the intensity at the detector is proportional to the instantaneous integral
of the modulations of intensity along the entire light path.

By inspection, we can write similar results for the other beam:

R2

/ k(x» y + t), z, t) drj . (73)

If we now take these two fluctuating intensities, il (t) and i2 (t) , and determine their
time-average product, we obtain the covariance in a piecewise form similar to
equation (24); i.e.,

i
J J ^ / k(x + ^» y, z» t)k(x, y + T)» z, t) dt
Sj S2 0

where the spatial and temporal integration has been reversed. This now gives us the
covariance as a function of the modulations of the extinction coefficients, or in terms of
the statistical flow parameters of the fluid.

To most conveniently understand how spatial resolution is obtained with the
cross-covariance, we will initially consider just the temporal integration at T = 0:

P(x + £, y + T), z)
1 r-= T" J k(x + ^» y» z» t)k(x» y + T J » z» t) dt-

T=0 0

(75)

This term clearly represents the covariance of the fluctuations occurring at the two points
(x + f, y, z, t) and (x, y + 77, z, t). If one or both of these points are sufficiently far
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from the beam intersection point in an inhomogeneous flow, the fluctuations will be
mutually random and the resulting covariance will be zero. Only those points contained
within the correlation area around the beam intersection point will contribute to the

measured value of the covariance. Therefore, the value of the covariance, l f j ? r > does not

change if these limits are replaced by those limits of the locally correlated area, although
formally the limits of spatial integration in equation (74) extend from source to detector.
Because of our prerogative in establishing the limits, we can view the measured quantity
as reflecting only the local modulating information and thus providing spatial resolution.

To retrieve the transit time between beams, the two beams must be separated in
the z-direction a distance £ (Fig. 28). To the flow, there still appears to be an
intersection point for the beams, which we shall refer to as a "virtual crossing point."
This virtual point is the only point at which a particle moving in the z-direction can pass
through both beams; therefore, the intersecting beam argument for spatial resolution still
holds except that the information is correlated now at a time delay. The time delay r,, ,
corresponding to the maximum covariance, is a measure of the transit time between the
beams.

RADIOMETER

SUPERSONIC

COLD JET

RADIOMETER

INTERSECTING

BEAMS

x^EPARATION

Figure 28. Crossed-beam test configuration for the cold jet.
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This now provides an analytic association of the extinction coefficient with the
crossed-beam correlation model. This model could be easily expanded to include
spectroscopic emission and absorption [19], but for this discussion, our attention can be
focused on just the kinematics of the flow.

C. Ion and Electron Transport in the Glow Discharge

To empirically demonstrate the feasibility of the retrieval and separation of
convective and dispersive fluid transport, the application of the crossed-beam correlation
technique to an investigation of moving striations in the flow discharge will be discussed.

The striation is the disc of ionized and excited gas found in the positive column
of the glow discharge (Fig. 29). Since the ions normally give the striated gas a net
positive charge, these striations, which we will call forward-moving striations, move
toward the cathode (Fig. 30) [21,22]. This emission process is the signature for the ion
transport.

Figure 29. Experimental setup for glow discharge.
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A N O D E C A T H O D E

Figure 30. Forward-moving striation.
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There exists in the glow discharge a second transport; namely, an electron flow
from the cathode to the anode. The electron flow is an extinction process whose
signature modulates the ionization and excitation of the striation resulting in detectable
undulations in the emission. When the striations are weakly ionized compared to the
electron flow, the backward-moving striation exists (Fig. 31). Other investigators have also
made this observation [23,24]. The importance of the backward-moving striation lies in
the fact that it demonstrates the dispersive and convective transport characteristics of the
electron flow. The glow discharge consequently provides an excellent stationary
one-dimensional data source to demonstrate the effectiveness of the statistical method
and algorithms used for fluid transport analysis.

The transport process in the glow discharge was monitored by the crossed-beam
configuration shown schematically in Figure 29. While a wide range of different kinds of
transport was observed [4], our primary interest in these discussions is the data obtained
when both electron and ion transport were simultaneously detected. A typical segment of
such a data record is shown in Figure 32.

The initial step in the data analysis was to cross-correlate the data and obtain the
accumulative covariance, the accumulative error, and the transport probability in
accordance with the data reduction scheme shown in Figure 33 [25]. The accumulative
error was used to determine when the discharge was in equilibrium. It was found that
about a half-hour warmup time was required for the transport process to reach its first
stage of equilibrium. Once this stage was reached, the data could be treated as stationary
until there was a discrete transition to the next lower mode. These transitions continued
until the ground mode was reached. The physical significance of these modes will be
explained. For now it is important to recognize that the accumulative error did permit us
to differentiate between the different modes and to group coherently the data in its
proper mode.

The transport probability showed:

1. A high probability that two different transport processes were occurring
simultaneously in different directions — one a high frequency transport, the other a low
frequency transport. Retroactive filtering [26]1 was used to separate these two transport
processes.

2. A high probability that the fluctuations in the discharge current were related
to the transport moving toward the anode. Spatial mappings of the backward-moving
striations showed there was indeed a correlation between these striations and the current

1. Essentially, retroactive filtering is where the covariance curve is transformed to the
frequency domain. The gain of the frequencies to be filtered are suppressed by setting
them to zero and transforming the remaining energy density spectrum back to the time
domain. Thus, the covariance curve is filtered without reprocessing the data.
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A N O D E C A T H O D E

Figure 31. Backward-moving striation.
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Figure 32. Separation of electron and ion transport.

fluctuations. Thus, the transport probability in these experiments served to isolate the
different processes occurring in the glow discharge during a time interval which has been
shown, using the accumulative error, to be stationary.

Based on the transport probability, if we retroactively suppress the high frequency
information by filtering the processed results, we obtain a field description of striations
moving toward the cathode. The results of the forward-moving striations are summarized
in Figure 34. The spatial mapping of the covariance curves affords a representation of the

62



EXPERIMENT — DATA

.

•»•

•

DIGITIZATION

"™" \ f

COMPUTER OUTPUT
OF

Figure 33. Data reduction block diagram for MLTCOR.

63



HORIZONTAL
RADIOMETER

SECOND ORDER COVARIANCE

VERTICLE RADIOMETERS

BCATHODE
TIME k TRANSIT DISTANCE, { | I

DIRECTION OF PROROGATION {-)

TRANSIT DISTANCE,

»c ~ 1.5 km/sec

TIME DELAY, T

TIME DELAY,

100%--

FOURTH ORDER COVARIANCE

*0' *ii S

2kc FREQUENCY

PRESSURE R A N G E = 1 TO 10 mm Hg OF A R G O N

Figure 34. Ion striation model.

behavior of the ion striation, in terms of the average time, as a function of the transit
distance between the optical beams. The transit time corresponding to the maximum
significant covariance, when plotted as a function of the transit distance for a number of
beam separations, can be fitted with a straight line whose slope is the average convection
velocity for the forward-moving striations. The positive slope of this line means, in
accordance with the test configuration, that the transport is from the anode to the
cathode. The convection velocity obtained for these striations ranged from 0.5 to
10 km/sec.
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The fourth-order autocovariance mapping in which the observer is in a moving
frame where the transit time information has been suppressed indicates that the
longitudinal length scale of the forward-moving striation was invariant as it was
propagated along the positive column of the discharge. The proof of this invariance is
obtained from the spatial independence of the wave description. The longitudinal length
of the ion striation is obtained from the relation

(76)

where vc is the convection velocity and <f> is the average frequency obtained from the

wave packet algorithm. The experimental results for this striation length varied from 5.3
to 10.2 cm as a function of the electrical energy supplied to the discharge. These length
scales are in keeping with values obtained from high speed movies of the discharge.

The repetition frequency, which is the rate at which an event occurs at a point,
can be retrieved either directly from the crosscovariance or from the frequency spectrum
of this curve by retroactively suppressing the wave packet description. The remaining
energy density spectrum is due to the rapidity of the process. (If no spectrum exists,
then the average frequency is the repetition frequency.) Using the repetition
frequency, ff , and the convection velocity, vc , the longitudinal wavelength is

v

The longitudinal wavelength of the ion striation was always an integral multiple of the
length of the positive column, £pc ; i.e.,

Si = nX where n = 1, 2, 3, 4 . (78)
pc

The highest mode measured was four. The most stable mode was n = 1 and will be
referred to as the ground mode. Experimental observations revealed that there was always
a discrete transition between the modes, which could be detected by changes in the
accumulative error. These changes appeared when the power supplied to the discharge
was changed, whereupon a nonground mode would occur. This higher mode would decay
back to the ground mode in discrete transitions. For standing striations, the wavelength
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relation changed such that the ground mode corresponded to a wavelength equal to the
distance between like points of adjacent striations rather than the length of the positive
column.

The signature of the electron transport was enhanced by suppressing the lower
frequencies (Fig. 35). The analysis used for the ion striations was' repeated for the
electron transport. Since the test configuration has been reversed, the positive convection
velocity (Fig. 36), which is obtained from the plot of the transit time as a function of
transit distance, implies that the flow direction is from the cathode to the anode. This
flow was identified as an electron transport by first obtaining a cross-covariance between
the optical fluctuations in the ionized gas and the fluctuations in the discharge current,
and then calculating the transport probability. Close analysis of the temporal histories of
these fluctuations revealed that there was not a continuous flow but rather a discrete
transport; therefore, the electron transport can be more accurately referred to as a flow
of electron packets which are propagated toward the anode.

When the transit time information was suppressed [equation (63)], the mapping
of the fourth-order autocovariance curves (Fig. 36) showed that the electron packet's
shape was not invariant during its propagation toward the anode. This observation was
supported by a change in the average frequency obtained from the wave packet
algorithm. The electron packet's dispersion velocity [equation (66)] was calculated to be
approximately 260 m/sec compared to the ion convection velocity of 16 km/sec. Using
the relation for the longitudinal length scale [equation (76)], the electron packet size
changed, on an average, from 1.0 to 1.5 cm over a transit distance of 30 cm. The major
problem encountered in this work was that the dispersive effect required a resolution of
one part in 107 per centimeter to retrieve the changes in the average frequency. Thus,
only by the use of averaging techniques and the wave packet algorithm was it possible to
obtain the consistent results required for this change detection.

These typical results demonstrate the feasibility of the analysis procedure used.
Systematic analysis afforded by statistical techniques enhances the results and thereby
reduces the amount of interpretation required. Since moving striations and turbulence
eddies are both treated as moving packets of molecules, we can, in our next discussion of
turbulent transport, conceptually approximate the turbulence eddies as being moving
striations.

D. Convective and Dispersive Transport in a Supersonic Jet Shear Layer

The supersonic cold jet transport will be used as an empirical illustration of the
applicability of the convective and dispersive transport model to stationary
two-dimensional transport problems. To obtain a two-dimensional coordinate system, the
axial streamline is assumed to be an axis of symmetry. This two-dimensional model is a
direct extension of the one-dimensional description used with the glow discharge except
that it accounts for lateral kinematics that could be neglected in the one-dimensional
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Figure 35. Electron packet flow in the glow discharge.
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Figure 36. Convection and dispersion velocities for electron flow.

flow using the constraints of the system. Our conceptual view must become more
sophisticated for transport processes which are not subjected to the constraints of a
one-dimensional flow. The shadowgraph of the cold jet flow clearly shows the How
expansion, which must be accounted for in any complete description of the kinematics.
To this end, Corrsin's spherical description is introduced to account for this transport
behavior [27]. The applicability of the spherical model was demonstrated in the
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discussion of the fluid model. The implications of this assumption are a discrete flow
formed from a collection of expanding spheres emanating from a point source. These
spheres are referred to as "turbulence eddies," and are assumed to be of constant mass
with a changing volume due to thermodynamic and force gradients. The current state of
the statistical information retrieved prohibits a detailed consideration of these gradients,
thus limiting the predictability of any of the algorithms to a local description. This means
that the long-range kinematics can be extrapolated only from a spatial mapping.

The cold jet is schematically shown in Figure 28. Again, we will assume a fan
beam test arrangement, which is obtained by making a series of measurements along the
streamline under similar test conditions. Using those data obtained along a streamline, by
Fisher and Johnston [2], the spatial mapping of the covariance curves shown in Figure 37
was obtained. When Fisher and Johnston plotted the transit time as a function of transit
distance, they obtained a convection velocity of 347 m/sec. They further showed that the

ACCUMULATIVE COVARIANCE

TRANSIT DISTANCE , cm

TRANSIT DISTANCE
BETWEEN THE TWO
BEAMS

VP - 347 m/sec

-100 0 100 200 300. 400
TRANSIT TIME, Tp (microseconds)

-25 50 100

Figure 37. Space-time correlation curves for cold air jet.

150 200 250
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data were stationary by using the accumulative error (Fig. 9) to establish the reliability of
their results. The decay in the amplitude of the peaks of the covariance curves as a
function of transit distance is a signature indicating the presence of a dispersive transport.
To emphasize the need for a more sensitive wave description, we show the typical
frequency spectrum of these covariance curves in Figure 38. Upon inspection of this
spectrum, it is obvious that a resolution of one part in 107 per centimeter for the change
in the average frequency, which is required to retrieve the dispersive transport, cannot be
obtained. Thus, we are again, as with the glow discharge, forced to use regression analysis
of the wave packet algorithm [equation (55)] for each of these covariance curves to
retrieve the parameters for the wave description.

The bandwidth ratio did change as we moved radially outward across the shear
layer from 1.47 to 1.92. While the plume of the jet involves a clearly narrowband
process, we observe that, as we move out of the jet's flow, the process tends to approach
a broadband process. This is the expected result since atmospheric turbulence is
characteristically a broadband process.

Using the average frequency obtained with the wave packet algorithm, in the
dispersion relation [equation (64)], an average radial dispersion velocity of 19.7m/sec
was obtained with a convection velocity of 347 m/sec. If we assume that there is
spherical expansion from a point source, in accordance with Corrsin's model and our
fluid model, then we can obtain a lateral mixing rate, L , given by

(79)

Applying this relationship to this data set, we obtain a lateral mixing rate of 0.1135. This
rate implies a radial plume expansion of 11.35 cm/m downstream. This expansion rate is
plotted on the shadowgraph of the jet plume, along with the locations of the points from
where the local turbulent information was retrieved (Fig. 39). The outer plume cone is
drawn so as to include all of the plume; whereas, the inner cylinder represents no plume
expansion. It is clear from studying this shadowgraph that the cone defined by the rate
of radial expansion is the average rate of expansion. This follows logically, as would be
expected, since the source of the statistical information is obtained from the covariance
curve, which is an averaging process, and is in accordance with the average turbulence
flux [equation (12)]. Thus, the rate of dispersive transport obtained from the wave
description affords an accurate analytical description of the physical situation associated
with the cold jet plume.

It is recognized that this prediction of convective and dispersive transport is only
short range, since long range prediction would require an accounting for shear and
gravitational forces [6,28,29]. In spite of this limitation, this new description of
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turbulent transport is a significant contribution to turbulent investigations, because, for
the first time, it accounts for the turbulent flux in the jet flow.

E. Convection and Dispersion in the Atmosphere

The crossed-beam correlation technique has been applied to the measurements of
both clear air turbulence [3] and smoke stack emission.2 The experiments involving the
retrieval of clear-air turbulence convection velocities and scales served to establish the
statistical models for recognizing and interpreting nonstationary data. The geometric
constraint imposed by using just two single-beam radiometers (Fig. 40) prohibited the
application of change statistics which are required for the retrieval of the dispersive
transport [30,31]. This limitation was overcome in the smoke plume experiments by
introducing a fan-beam radiometer which enables us to retrieve the local data at five
different positions along the streamline.

THE LIGHT SOURCE IS SCATTERED SOLAR RADIATION (PASSIVE SOURCE)

BEAM A

FLOW IS NORMAL TO THE
PLANE OF THE PAGE

PHOTO-
DETECTOR

ANEMOMETERS
RADIOMETER

A
METEOROLOGICAL

TOWER

SIGNAL FROM
BEAM BRADIOMETER

B

SIGNAL FROM BEAM A

TAPE RECORDER

THE FLUCTUATIONS IN LIGHT
INTENSITY ARE RECORDED

Figure 40. Atmospheric crossed-beam detection
system for clear-air turbulence.

2. Bilbro, J.W., et al.: Passive Remote Detection of Smoke Plume Height and Velocity
using Correlation Techniques. To be published as a NASA Technical Memorandum.
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To apply the statistical techniques discussed for cold jet experiments, we must
first obtain a covariance curve which affords a stationary description of the transport
process. In the jet plume and the glow discharge experiments, the test for stationarity
was done primarily as an aesthetic step to obtain completeness. Such is not the case for
atmospheric transport phenomena, because the interval of stationarity in the atmosphere
is usually less than an hour in duration [32]. Therefore, the accumulative error must
always be checked to determine whether it remains within the error bounds set by the
chi-square test. Normally, the accumulative covariance is checked for stationarity and is
used when it meets this requirement. If the accumulative error curve indicates that
accumulative covariance is nonstationary, then we normalize each piecewise covariance
curve and average them to obtain the quantized covariance. The accumulative error of
this quantized covariance curve is then checked for stationarity to determine where these
results are reliable.

Since the duration for atmospheric stationarity is relatively short even when
quantization techniques are used, the local information must be enhanced. Enhancement
is obtained by using the statistical error to identify the significant transport information.
Such results are shown in Figure 41, where the covariance is plotted as a function of the
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Figure 41. Crossed-beam and anemometer comparisons.
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convection velocity and compared to the anemometer velocities taken at the point of
beam intersection. To establish the reliability of these results, the probability of retrieving
the transport information [equation (39)] is calculated. In this case the probability was
57 percent. In general, the probability of transport retrieval ranged from 50 to 58 percent
in the clear-air turbulence experiments, where the transit distance ranged from 0 to
100 meters. The empirical results show that the transport probability decreases as the
transit distance increases. These clear-air turbulence measurements were all broadband
processes with bandwidth ratios ranging from 4.1 to 6.3 and with an average frequency
ranging from 0.01 to .0.02 Hz. The eddy size was determined to range from 73 to
102 meters. The significance of these parameters for the clear-air measurements will
become apparent when they are compared with the smoke transport in the atmosphere.

The smokestack emission experiments are similar to the clear-air turbulence
experiments in that both are atmospheric experiments and, in addition, the clear-air
turbulence experiments are the limiting case for the smoke plume. However, the smoke
plume is a dominant source of optical modulations, at least in the near field, and the
smoke plume can, like the cold jet, be treated as having a point source origin. These
differences permit the baseline of the radiometers to be aligned parallel with the axis of
the smoke plume (Fig. 42) rather than perpendicular to the flow, as is done in the
clear-air turbulence experiments. As a result of this test configuration, the transit height
of the local information being retrieved is a variable which is'uniquely determined from
the transit time of the convective transport for a given set of geometric parameters. The
reason for the different test arrangement is that for clear-air turbulence, which occurs at
all altitudes, we wanted to isolate the altitude at which the transport phenomena are
being measured; whereas, in smoke-plume measurements, which occur at a unique height,
we want the velocities of transport and the height of transport [12]. Outside of these
transit height considerations, the statistical retrieval of the convection speed is the same
for the smoke transport as for the clear-air turbulence transport.

Figure 43 shows a spatial mapping of the accumulative covariance curves resulting
from smoke transport. The mean convective velocity was found to be about 3.2 m/sec at
an altitude of 299 meters. Since we obtained a spatial mapping of these covariance curves
along the streamline, we can obtain a dispersion velocity. In this case, the average
frequency of the first covariance curve according to the wave packet algorithm was
0.0491 Hz and decreased to 0.029 Hz for the last covariance curve. The bandwidth ratio
was approximately 1.9 to 3.6, which is clearly smaller than that obtained in clear-air
turbulence measurements. The mean dispersion velocity was determined to be 0.6 m/sec
which means a lateral mixing rate of 0.2102. The eddy size increases from 34 to
58 meters over a transit distance of 148 meters. This point of observation was about
360 meters from the point of emission. This information for the convective and dispersive
transport was incorporated into the smoke plume picture shown in Figure 44. The
dispersion cone shown in this figure is in agreement with the observed average rate of
dispersion.
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Figure 42. Crossed-beam test arrangement for fan system.

Comparing the smoke plume dispersive transport parameters for the average
frequency and the eddy size with the parameters obtained for clear-air turbulence, we
infer that the smoke plume is approaching the clear-air parameters. In fact, a linear
estimate says that, at about 700 meters downstream of the source, the smoke plume
should obtain comparable scales with the atmospheric turbulence.

Our transport probability has an additional function in these measurements, since
it serves as a check to verify that the data are from a common streamline. The transport
probability ranged between 64 percent for the shortest transit distance to 51 percent for
the maximum transit distance. These data show that the probability of retrieving
transport information always decreased as the transit distance increased. It is interesting
to note that the probability of retrieving transport information is higher for intersecting
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Figure 43. Smoke-plume convection and dispersion transport.
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Figure 44. Remote mapping of high stack emissions.

beams in smoke plumes than in clear-air turbulence. This is logical since the smoke
signatures are more intense. This higher probability means that the integration times
required for correlating the smoke data can be shorter than those required for clear-air
turbulence.
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SECTION V. SUMMARY AND CONCLUSIONS

The present investigation is the first study of dispersion and convection patterns
of fluid transport phenomena using the crossed-beam correlation technique for the
analysis of both stationary and noristatiohary fluids. This new analysis scheme, as has
been demonstrated, permits the separation of the dispersive parameters without extending
significantly the data retrieval requirements. This separation of fluid transport was
achieved by associating changes in the time domain with convection and changes in the
frequency domain with dispersion.

This new information retrieval scheme can be summarized as follows:

1. The data source is the crossed-beam data collection system, which collects
the temporal history of the optical fluctuations occurring in the field of view from the
beams where they are in sufficient number to ensure spatial mapping. While the retrieval
of the convection velocity does not require a spatial mapping, this mapping is highly
desirable because it improves the statistical reliability of the results. On the other hand, it
is mandatory that a minimum two-point mapping exist for the retrieval of the dispersive
parameters. This spatial mapping is the only additional data collection requirement
imposed by this analysis.

2. This temporal history of the optical fluctuation is compressed into a
correlation curve, from which the convection velocity and scales are directly obtained. To
establish the stability levels and to employ statistical discrimination, it is necessary to
subdivide the data record into pieces and to use the piecewise accumulative covariance
technique. If the data tend to be of a nonstationary nature — that is, if short data
recorders are used and thus rapid convergence is required — then it is advantageous to
obtain piecewise independence by using the quantized accumulative covariance technique.
This technique prevents any segment of the short data record from dominating the
accumulative result. The stability tests were extended by the new concept of a transport
probability, which affords an integral estimate for the minimum acceptable probability
level for the retrieval of significant transport information and a check to determine
whether the information is from a common streamline.

3. The second-order cross-covariance is then analyzed for gradients in the
average frequency composition. The gradients are the dispersive signature. This analysis is
performed by suppressing the temporal information associated with the convective
transport, which is the equivalent of changing from a fixed to a moving reference frame.
In this way, the second-order covariance curve is transformed into a fourth-order
covariance curve. The fourth-order covariance curve is curve-fitted, using regression
analysis with the wave packet algorithm to obtain the frequency content in terms of the
average frequency, the bandwidth, and the number density. This wave description is then
used to obtain the dispersive transport, the lateral mixing scale, and the mixing rate
characterizing the transport process.
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4. The ratio of the bandwidth to the average frequency affords a systematic
procedure for the classification of the various transport processes in accordance with their
bandwidth ratio.

This new information retrieval scheme was successfully applied to the analysis of
transport phenomena in the glow discharge, cold jet plumes, and air quality
investigations, where it was demonstrated that this procedure could meaningfully retrieve
the dispersive and convective characteristic of the transport process. The most significant
contributions of thi's analysis procedure are:

1. The dispersion and convection phenomena were precisely defined from the
equations of motion in terms of the normal and parallel fluxes of the stream tubes in the
average velocity field.

2. In the glow discharge, the ability to associate the longitudinal length scale of
a moving striation to the length of the positive column, and the longitudinal length scale
of a standing striation with the distance between striations was achieved. This length scale
was also an index to the equilibrium of the discharge.

3. The dispersion rate and the lateral mixing scales of the plume in the cold jet
were predicted analytically. It was shown that this was in accordance with the empirical
observations.

4. In clear-air turbulence measurements, the procedures of suppression of
nonstationarity and of peak identification were demonstrated, which resulted in the
enhancement of the covariance curve.

5. In the smoke plume studies, the convection and dispersion transport
information was again retrieved from the crossed-beam data and was in agreement with
the experimental conditions.

From these demonstrations, we can conclude that this information retrieval
procedure has successfully made an original contribution to the recognition and
interpretation of dispersive and convective transport phenomena in both stationary and
nonstationary fluid transport processes.
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APPENDIX

THE ENERGY DENSITY WAVE NUMBER SPECTRUM

The objective of this appendix is to establish the requirements for a conservative
wave number spectrum, which will be referred to as the energy density wave number
spectrum.

It can be shown [33] that the orthogonal form for the Fourier amplitude
coefficients about the mean is

= V r / 2?rki „ . 27rki
a = 2 /, i m I 6 ,, cos + 6. sinj m ._ \ j, odd n j, even n

m = n- 1

j = 1, 2, 3, ... , rn

k = 5" + * 6j, odd ,

where i is the time delay index, j is the amplitude index, k is the wave number,
and 6: xxxx is the Kronecker delta used to switch between the sinusoidal functions.

The Fourier transpose from the frequency domain to the time domain is

m
F r I = A I I 6 ^ cos ̂ ^- + 6. sin
i m •-[ J m \ J» odd n J» even n

(A.2)

where the brackets indicate the frequency transpose of the covariance coefficient. The'
last two. equations form a Fourier transform pair, which permits the interchange of
information between the time and frequency domains.

The odd presubscripted amplitude coefficients are commonly referred to as the
cospectra (real part),

.C = . ,,a , (A.3)
k m j -* odd m
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while the even presubscripted amplitude coefficients are referred to as the quadspectra
(imaginary part),

, Q = a . (A.4)km j -* even m

These amplitudes are normally converted to a polar coordinate system whose radius
vector, the gain, is

and the phase angle is

whose function is similar to that of the time delay in the time domain.

The restrictions imposed on the frequency description of a finite, discrete
correlation curve by the orthogonal wave number representation are a bandwidth and a
number, density. Specifically, the lower frequency limit is set by the total time interval
subject to the transformation, while the upper frequency limit is set by the interval of
time, AT, between the covariance coefficients in accordance with the Nyquist
uncertainty principle. The number of covariance coefficients, n, that describe the
correlation curve sets the number of parameters in the frequency description. Since one
parameter is required for the mean value of the correlation curve, there must be less than
n-1 equally spaced amplitude coefficients.

Next, we shall establish suitable requirements for the spectral normalization. To
achieve this, consider the significance of the variance of the covariance

curve, (A Tr^) 2 , in terms of the amplitude coefficients ;am , of the Fourier series.

Let us observe that the variance under consideration is not the data
variance, (Ax)m [equation (19)], commonly used in spectral normalization [8, 34], but is
the variance of the correlation curve that is actually being transformed into the frequency
domain:
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In accordance with equation (A. 2), the quantity in parentheses can be expressed as

x .- / I, .a <5. cos"i m \ T m/ -li ] m j, even n

6. ,. sin^ •— , (A.8)
j, odd n J

which is the Fourier transpose. The above result is now substituted into equation (A.7),
and the resulting matrix is reduced. When the arguments of the sinusoidal products are
different, the uncorrelated terms are zero; thus, we obtain a diagonal matrix of the form

rjt .3 n p.
i >» \= 7 ' / I A or»Q^/ I / I \ \J \^\JO

j=2 n i=0 L J» 6Ven

7r(1 - 1) I I
n J (A'9)

where the summations have been interchanged.

Since a squared sinusoidal function over an integral number of waves is one-half,
it follows that equation (A.9) reduces to the form

*?r V = 5 Z -T m/ 2 .±1 Jj -» - m
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Obviously, the same result is obtained when the time lag range is extended to include
negative time delays. Equation (A. 10) enables us to define an orthonormal wave number
spectrum:

T m

We can now define the terms describing the spectrum. When the amplitude
coefficients are squared, they will be called intensity coefficients (same terminology as in
geometric optics). Since the intensity coefficients describe the relative energy content in
the covariance curve as a function of wave number, this spectrum is referred to formally
as the energy density wave number spectrum. This is a conservative spectrum.

The maximum number of linearly independent wave numbers in the
representation for the frequency domain is ( n - l ) / 2 , where n is the number of
covariance coefficients being transformed. This can be demonstrated by the following
argument. The amplitude of the gain is

- -^7 S -n + l Jj=

k = 1, 2, 3, ..., n - 1 ' , . (A.12)

where i stands for the square root of minus one. In complex notation, the amplitude of
the gain can be expressed in terms of the cospectra and quad-spectra as

= kC + A kQ •

The amplitude of the gain [equation (A.12)] can then be expressed in trigonometric form
as

1 v / 2?rk1 _,_ . . 2_7rki_\ ,A ,„,
,G = 7 /, .r (cos.——*- + i sin—-1- I . (A.14)
k n + l r j \ n + 1 n + 1 /
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For manipulative ease, we now write this equation [equation (A. 14)] in terms of the real
and imaginary parts:

i V /27rk1 \C = ——• /, .r cos —7, I
n + 1 .^ j Vn + V

(A. 15)

Q = (A. 16)

Observe that when the wave number is zero (k = 0) , then the amplitude gain is

k=0
G .r , (A. 17)

which is the mean. This is why the wave number spectrum starts at one and has
only n - 1 terms; i.e., one parameter of the spectrum is used for the mean value of the
covariance curve.

Next, consider the cospectra [equation (A.I5)]. The cospectra for the nth wave
number is

(A. 18)

Using the trigonometric angle-sum relation, the above equation can be written

n
C =

n j=o

where

cos(27rj) cosf -] + sin(27rj) sinf\n + l/ \n + 1

(A. 19)

COS 27TJ = 1 (A.20)
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and

sin 2Trj = 0

Substituting the last result into equation (A. 19), we obtain

C - -f- £ .r cos 27r * . j , (A.21)
n n + 1 tjj J n + i

which is simply

. C = , nC . (A.22)
k=n k=l

It logically follows then that, in general,

,C= . ^C , l ^ k i . (A.23)
k n-k+1 2

The quadspectra [equation (A. 16)] has the same interrelationship as the
cospectra. This is readily seen upon examination of the nth term that results from the
application of the trigonometric angle-sum relation:

n. r

nQ = ;rTT |0 jr [cos(27rj) sinn-rr

+ sin(27rj) cos ^ . (A.24)

Again using the relations given in equation (A.20), we obtain the fact that

k=nQ = k=lQ (A.25)

86



or in general that

Q =
(A.26)

This derivation just proves the limits placed on the wave number representation.

Incorporating the normalization and limits just derived, we can write the Fourier
transform for the wave number spectrum for the amplitude density and intensity density
representations as:

1. Amplitude density representation,

a. Cospectral amplitude density:

kCm (2n + 1) /Ar \
v. r ny

b. Quadspectral amplitude density:

m

s }-j my COS"
27rkj

n

(A.27)

(2n+ 1) /A
\ T

•-J
sin

27Tkj

n
(A.28)

where k = 1, 2, 3, ... , n/2.
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The lower case spectral coefficients indicate the normalization of the coefficients;
whereas, the capital spectral coefficients are the unnormalized coefficients. The
rectangular coordinate system discussed above has the following counterpart in the polar
coordinate system:

c. Gain amplitude density:

,g =' /.c2 + ,q2 . (A.29)
k m V k m k m

d. The phase:

kqm
, 4> = arctan . (A.30)
k m =

k m

2. Energy density representation,

a. Cospectral intensity density:

,X = ,c2

k m k m

b. Quadspectral intensity density:

k*m =

c. Gain intensity density (in polar form):

+ * ' (A'33)

d. Phase:

= km , . _ . .
,0 = arctan—:— . (A.34)km =

kXm
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The energy density gain has the property that

-2

y = 1 . (A.35)
k=l m

It should be recognized that the averaging notation and the post subscript are carried
over from the covariance coefficient to indicate the way this coefficient was obtained.

These formulations for the spectra were tested by transforming the correlation
curve in Figure 12 into the frequency domain. The results are shown in Tables A-1
through A-4 (the details of the calculations will be discussed later). From an inspection
of these results, we can see that the majority of the calculations are insignificant. The
next objective is to reduce the calculations of these insignificant coefficients.

By using the properties inherent to the energy-density representation, a criterion
for the minimum level of acceptable spectral intensity can now be developed. The
spectral energy of the correlation curve in Figure 12 was concentrated in 9 of the 400
wave numbers in this description, while the remaining 391 wave numbers contained less
than 1 percent of the energy associated with the covariance. From a comparison of the
known input parameters with these results, it is obvious that these 391 wave numbers
represent the intensity level of calculation noise affording no insight into the behavior of
the phenomena; therefore, a set of criteria to discriminate the significant energy bearing
wave numbers from the noise bearing wave number is essential.

The term "noise" is the key to the establishment of this cutoff level. A white
noise process is a purely random one characterized by a time series, consisting of random
impulses, that results in a cross-covariance curve of zero magnitude at all time lags and an
autocovariance curve with a delta function at zero time delay. Since a preferred
frequency would not result in this kind of correlation curve, the intensity of the gain
must therefore be of the same magnitude for all wave numbers. Because the energy
density representation has the property that the sum of the gain intensities is one
[equation (A.35)], it then, intuitively, follows that the intensity of the white noise gain
is

7 . .. - = - • (A-36)white noise n

This result represents the white noise level which is composed of an equal
distribution of energy between all wave numbers; therefore, an energy less than the white
noise level can be viewed as a lack of significant energy. Thus, the intensities that are less
than the white noise level can be legitimately rejected as being below the intelligence
cutoff.
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85
86
87
86

90
91
92
93
94

5
6
7
t)
9

130

a*

1., *"•

2.,'0.'., ? as
2.1257, **

2 . 3 V 3 J 3 a*

2 . / 5 . / C * =

3 . 1 2 > _ J **
'3.25;- J a*

4.375.0 **

6.123J;- a*

6.62500 aa

7.125-.J *»

B.125CC aa

d. 375-0 *«

6.67300 as

13.37VJJ aa

11. Ui,J«J **

U.123CJ *«

11. 7sjCO a»
1 1 .fa7?-;0 a*

12.125,:, aa

III
j. 069181

O . C O O L l l

-C . 3 3 0 ^ 7 6

•oI.NJO.63

-:-.000-b2

-y.oco.39

-0.000'-33

0.000026
-C.C?0;27

&.000:2S

O . O O C C 2 1
-0.300C-20

0.0 007-2 C

;-.ooo:i9
-3.003018

-c.:ooci7
3.000J17

CAKTtSUN

" U.30J •• O.-.OCO'-O

» 11. 19<! ** — :'. ? C O O !•

e ".^3^ ** O.JOJOCO

* . .o'jj ** o. :oco'-.1

» v.OOj ** -C-.i-OOfJ" -J
* 2.0-3. •* :-.*.-jco.v:'

* j.i->- ** -O.OOOO'J

I TOO!; " "o:.:oo?-j

• :*C?^ ** ~°"'OGO-

a j .OOJ- aa -0._000:O

a f.-.OOi ** -C . l-GOO-'-j
a O.COO ** t* .''0030^
* 0.000 •• -0.-: 53000

* :-.oo-. ** o.ooco:-o

* 0.000 aa -G.jfOO rJO

* 3 . 000

* J.J03

a C.C03

* 0.003

* D!ODO

* O.C03

• 0.000
* 0.003

• O.jOJ
• o.oro
• 0.003

a O.C03
* O.C03
a 0.033

a 0.3C3
* 0.003

a j.C-CO
a 0.00?

**

•<UMDfcR OF

POLAR

** :•. 114251

•* :o:,:227
** 3.00:21'

** 3.0; j l3L

»» I.:-: .-ii7

** O . O J V 0 8 2

•* 'J.03J066

•" O.O'JOOS'*

** -3. 0)1023
•" O.OOC027

** 3. 031:025
** 3.0:302*

** O.OOOC21

•* O.OOCC2.

• « 0.0"OOU
*• 0.033018

** o.o?-:c-i7
*» 0.000017

a 11.192

a :.-..- JO
a 0 . 000

a C . 300

a 0.0-30

a 0 -OCO

a 0.00?
a 0.010

a 0.030

a 3. COO

a O.:03

* 0.000

a 0.000
a C.OOO
a J.OOO

• J . 300
• 0.000

a 0.-300
a' 3.000

fcLUOl AMPLITUDE CUSlNE HAVES = 21

• a
aa PEtCtNI OF

** H t - A S c

:::-

**-r

"i"

..-:

..->

«Io

..-•

«*--J

*a-0

**_c

*a-^

. jo;

.,0^

. O J ~

.GO-;

. O J ^

.00''.

. jj:

.jo:

oi:

.j-j''.

.300

.ooc

.00.'
00?
000

000
30-:
3C.C-

300

000

*•

aa

aa

::

**

a«

aa

','.

a*

aa
aa

aa
aa

aa

aa

aa

aa

aa

aa

aa
• a
aa
aa
a«

7RG*

2'. 3359
31.261-'

uo. 67',
79. 196

i'). 992

•H. 69?
'•;>.& 693
9'>.a903

9V. 6917
99.691(1
99.8918

99.8921

99.6922

99.6922
99.H922
Vi.6922

9 .8922
9 ,8922

V .£922
9 .8922
99.8922

99.6922

99.6922
99.6922

99.1)922

•y'J.6922
99.8922
'J9.6922

99.C92J
99.6923
9-3.8923
99.E.923

99.8923

99.8923

99.6923
99.8923

99.6923
99.8923
99.8923

99.6923
99.8923
99.3923
99.5923
99.6923
99.8923

99.8923
99.8923
99.&923
99.8923
99.6923
99.E923
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RESULTING OUTPUI SPtCTRUM

131
132
103

135

137
138
139
110
111
112
113
114
115
116
117
118

120
121
122
123
124
125
120
127
12o
129
133
131
132
133

135
130
137
138
139

143
144

147

149
153

155
156

158
159
163
161
162

164
165
166
167

169

171
172

174
173
17o
177
178
179
180
181
182
163
164

166
167
168
189
190
191
192
193
194
195
196
197
198
199
233

12.6250:

12.675--;

13.123-.I

13.6230:

13.S7v.-J

14.125UO
14.25.'03

-14.375--J

15.93030

1S.3J333
15.6250.

15.H73J3

16.375.0

16.02501

16.675:-,'

17.1299V

17.6750-J

16.625CV

19.30;;;

19. 75:-.'0

2J .J75C]

21.U5J.
21.25JJJ
21. J750C

22..0.'J-J
22.1250C

22.87500

23.373^2
23.5J300
J3.625C3

23.875 J3
24.00333
24.123C3
24.25J03
24.37530
24.50JCD
24.625JO
24. 75330
24.87333
25.-J03CU

H 1 .4 1 hu

** cooc.uir</»re
•« CJVRIES1AN

«•

"

**

-

**

**

**

**

**

**.

**

**«*

**
**
**
**
**
**

AMPLITUDE "I

-0.000-16 *
0.000.. 15 »

v. 00-3. 14 «•

-0.053.12 •
G. 030-12 «

0. 90301 L •
-3.030.10 *

-00003C7 *

-OOC0007 *
j.oc-o:;-7 *

-G.OOG^.ft *

;.ooo-;j5 *

OOCOD.-5 •

OOOCC34 •

-0.000004 •

-0.000 .-04 *

COOOO3 •

O.OOOOJ3 «

-O.OOJ- 03 "

-OO03C.-3 •

-0.000- «3 *

-C.003-.03 •
0.003J03 •

-G.OOOJC3 •

«*,<>,•*::
JO30 *•

'..CQC- **
-.-.00, **

'«U'3. ••

C.OO'J «•

0.00.- •*.

O.SO'J **

C.GO^ *•

O.uOO •*

3.00. ••

-..03. ••

O.OOu ••
v.OOir ••

O.OC-C ••
O.ODw ••

C-.OO-' ••

O.OC-J **
0.0.) -j **

i . ocii • •
C.003 *•
C-.030 ••

u.JOO ••
C.C.OL ••
V.OO- ••
O.OOu ••

AMPLITUDE

•.JC.C-0.-.-
-C.JG0003

j. /.Co;-:

-C.'.OOO' ,'

3 . C O C O C Q

o.ooooo;

-c.c-yoo:.:

-O.OOOO'J

-00000^0

-o.oooooo

-3.CJ30-..'

-c- . :,c-oo- ..;

-00000.13

0.000030
-0. - J O O ' 3

3.0000-3
-D.-/000.-',

OOQCO^J
-0.OC.3JOv

-O.OOOO^O
O.OOGO'.J

J.COOO'w

S Y S T E M

**

• INTENSITY**

• Too:

* J.C-C3

* C-003
* 0.000
« '0.003
* o.oo:-

* ' 0033

» 0.000

» 3.003

* 0.003

• V003

* 0033

* C03D
* 0'. J03

* O . O C 3

* 0.003
* 0.003

« 0 . 303

• 0.003
* 0003
* j.003

* 3. 303

* OO33

• 0.003

* 0.003

• 0.003

• 0003

* O.COO

» C.003
• O.OCJ
* 0030

• C.033
• O.OOJ
* 0.003
* OO33
* UOCO
• 0.033

* 3.033
• OOC3

*«

**

••

**

»

**

*«
**

**
**«*

**
**

**
**

AMPLITUDE

3O?JC16

3.000013

3. SCOOIZ

oocoeii

o. 3^001;

0.30001.)

o.orocoa

3.0.3008

0.333007

,3. 330007

303C.OO&

0.330C06

0.300005

3.00000 5

0.0000-35

0.300005

3. 0. -0035

a. 033034

3.0-3004

3.300034
3003324

C.3--OC33
3.013003
3O---3333
0.9D0033

OOC.CI033
3.033033

O.OC0003
0.030003
30^3033
3.330033
3.00CCOJ
0.030033
O.OC0003

U UMBER OF
FREQUENCY

PULAR

ECUAL AMPLITUDE COilNE WAVES • 21
INTERVAL BETWEEN *AVES - &.05 HZ

**

AIN •* PHASE **
• INTENSITY** UEGRL'E**

* 3O&-3
* 3.0'JO

* 3OCJ3
• 0.000

* 3 . JOO

* OOCO

* 0033

* O.'JOO

• 3.000

* 0.030
* O.COO

* 0.003

* 3.003
• G.OSO

• 'j . 000

* 3.000

• 0.000

• 3.000
• 003J

• eojo

* 0.003

• G.OOO

• 0.33'J
• 00-33
« 3.300

• 0.003
• 0.000

* 3.000
* 0.030
• 3.000
• 3. COO

• 3030
• 0.000
• 0.000
• 3.000
• 3. COO
• O.OOJ
* 3 . 000
• 0 . 300
* 3 . 000
• 0.000

•*-C'. OiT **

••-c-.ooo **

**-','. 03J **

**-•;. ooo **

• •-C.-300 •*

**-oooc •*

••-3.000 ••

••-J.3J3 *•

••-c-oo:- ••

••-oooc ••

**-oooc- ••
*»-;.oa3 •*

••— O.OvO **
•*— ). 30? **
••-^.001 ••

••-0.030 ••
••-3.302 •*
••-J.OOO **

*•-; oo> ••

••-J.CO, •*

PERCENT OF

FNEhtY

99.B923
99.8923
99.8923
99.8923
99.8923
99 .8923

9:;.&923

99,8923

^9,6923
99.8923

99.6923

^9.8923
99.8923

, '/'J.8923
99.6923

•V9.8923

99.6923

99.8921
99.6923

99.8923
9V. 8923
99.6923

Vi.6923

99.B923

99.8923

99.8S23

99.8923

99.8923
99.8923
99.8923
99.8923

9'). 6923
99.6923
99.6923

99.6923

99.6923

99.8923

.99.8923
9 9. 892 'i

99.8923
99.8923
99,8923

9). 8923
99.8923

99.8923

V9.6923
99.8923
99.6923

99.8923

99.8923
94.8923
V9.8923
^9.8923

S9.6923
99.8923

99.6923
99.6923
99.6923

99.8923
99. »•"
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1 VPUI SPcI Tft^M

%t$UL!I.1l* UUTfUT

-FREQUENCY RANGE - ;.533 Mi TO 1.500 HZ
NUMBER OF LgUAL AMPLITUDE COSINE WAVES • 21
FRtujENct I..IERVAL QETWEEN WAVES » j.os HZ

MINIMUM ACCEPI-bLE GAIFl WcNSITY

,,«,,

2.n
27 £

234

207
20o

21 1
212

213

217
21o
21 <
22-
221
222
223
22-.
225
226
227
22o
2 2 *
23 W

231
232
23s

235
23o
237

23-y
24;
2*1
242

244
2 4 j
24o
247

2 4 >

251
252
253

25o
257
25b
25 -i
25.'

254
263
266
267

26-,
270
271

273
274
275
27o
277

23.
231
282
283
2B4
285
296
2 d /
28o

291
292
293

296
2 9 7
296
299
300

25.125--,

26. ofciv:

27. jSAO
2 7 . 1 2 X .
27.25, ' .

27.5,-, .

28. J f» - ' .

29. >?i i.

2o.n25. - j

29.37? J
2V. 5.,:-!. J
29.b2-j.-0

29.675,^

3D.250.0

31.12500

31.t>25.'0

32.125-0

32. J j j . J

3 -375C-.

3 .625-jj

3 . a 75.K-

35.375 jj

35.875CC

36.373JJ

37. J O . ' . j
37. 1250-t
37.25JC-J
37.37500

*•» C A R T E S I A N ** P O L A R

** :'.^.*'-'l

** -J-.303..-2

** 0. Jj"3"31

** C.C-03. C-l

** -;. jCQ 1

** O . O O O . C - l

*= C. 000131

«« 3.0C3-JI

*» O.OOGu-', 1

** 0.030)01
** -O.'JOO^Ol

«t -c. 000:0 i

«* -j.OOo! .-L

:.00". »* O. ' .OOO i « J.OO ** 0.000032

V . O J , ** -O. .3v0 ' . . * C. 'J- .O *» J.OCOC02

-..y-'. ** o. 3.:-,',. * j..,:,3 ** o .oc ;c j2

j .oj j *« -: ..-iC'oo~-i * O.J03 «* o.oooooi

, . w O O *• -0 . J5 jO. - J * 0.00) ** 0.000001
.•.UO; *» C .COOC") * 3.303 ** 3.3:0001

.-.ojj ** o.:c-co . * 0.003 ** 3.0:0031

•*.03j ** -3. ""JOG -" * j . J O J ** 3.050031

J.03U *• J . . O O O - J « 0.303 ** 0.030001

,1.00w ** ;. -:C'C3JJ » 0.203 ** 3 . 3 C O C D 1
?.00j ** - T . ^ O C J . ; * 0.003 ** 0.300031

).co; ** -3.;oiO'-j * ).«« »« 3.o-.o.:3i
-. JO^ ** O . . J O O " ! * -J.003 *» 0.3v0001

J.COc ** j . ,000-. * U.JCO *« 0.303031
...(jOy ** -D.10CO' j * 0. 03 ** O.Oj ' jCOl
'.03v *« 3.5300-'} * C. 03 *• 0.000031

'.t-O.1 •* -O.^OiO':- * 0. 03 *' 3.0"."3C-C'l
:-.wO'. ** o.^ooo •:• * o. 03 ** 0.0:300,
'-.«3,- «* -J..?-33JJ » -3. 03 »* 3.3C020.

3.000

3.030

3. CM

.,.033
0.0:3

C-.C30

3..V/3

o.ooc

0.300

2.000

0.000

3. COO

3.003

3.030

c.ooo
3.030

3.C30
a. ooo

3.C50
3.000

S.OOC
0.0 JO
3.000

3.0 30
O.C03
0.000

«*- .OC". **

«*-:.jc;.' **

**-:.oao **

••-C.03G **

••--J.C/OT *«

• •-3.JOC- **

**-•?. oo ;• **

**--*. oo: **

**-; . jCr. **
• «-;. . j j~ »»
••-i.OOC *•

*»-J.OGO **

**-C.3CC- *"

**-c.3o-:- *«

**-O.COJ *«

P E R C E N T OF

9.8923

9.8923
9.8923
',.£923
9.8923
9.8923

^9.8923

99.8921
99.8923
99.6923
99.6923

9-J.8923
99.8923
99.8923
99.8923
99.6923
99.8923

.•9.8923

99.8923
99.8923
99.8923
-.9.6923
99.8923
99.6923
99.6923
49.8923
99.8923
99.8923

9.8923
9.8923
9.6923
9.8923
9.8923
9.8923
9.8923
9.8923
9.8923

99.8923
99.8923

9.8923
9.B923

99.8923

49.8923
99.8923
99.8923
99.8923

97.8923

99.8923
99.8923
99.6923
99.8923
99.8923
99.8923
99.8923
99.8923
99. £923
99.8923
99.8923
9 .6923

9 .8923
9 .6923
9 .8923
9 .8923
9 .8923
9 .8923
9 .8923
99.6923-
99.6923
99.8923

99.8923
99.8923
99.6923

99.8923
• 99.8923

99.8923
99.8923
99.8923
94.6923
99.8923
99.8923
99.8923
99.8923

3.C33 **-.'. 00') »* S9.6923
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RESuuiat OUTPUT iPtcrauM

HJMBtR

331
332
333
334
335
3n&
33 /
33«

31J
311
312
313

- 315
316
317

31*
320
321

323
324

327
32b
329

331

333

336

33V
33d
33-y

343

342
.. 34j

34<t

35-

352
353
354
355

35Q
35",

363
3il

363

3t>7
368
369
370
371
372
373
37*

370

38 J
381
382

334
38 5
13 6
387
386
389
393
391
392
391
394
39*

- 397
' 39a

399
430

** COORUINArE
FREUuthLY ** CAKTESI AM

3^.67^;:-

43.37i.^

4J.B730J

-S073JJ

46. 103. 3

46.375T)

46.62*J3
4a.7s.i-.;

47.625JJ

47.07*;.,

4B.2S..-JJ

4tJ.S75C3
4^.002.: 3
49.Ui.-3

*K37500

49.623.'*
4-S.7SCJO
44. 875.. 3
5J. CJuO

•* AMPLITUDE

** -C.JOOO'30

** -j. 000000
** C.OOO.-Otr

** -3.eoo",'0i>
** o.ooocoo

** -O.OOOvCiJ

*" -3.300COO

*«• -3.C0300C

** - O . O O O C O Q

*» -O.OOC^'.'O

*« 3.003.yO
** --j. 003:^0

•• 0.000000

** 0.003CCO

** 0.300UOO

** :,. ooo-.. ..-•:•

*• -0.000-r-G

*« C.3COV3C
•* -V.003COO

•» -3.000COO

•* 3. ooo:. co
•• 0.000 00
• * -0.030C-J3
.. -o.ooooco
•• 3.00033C

•• -3.300COO
»* -0.300003
•• -0.303003
• • 3.0-300C-0

*

•

•

*
*

*

*

*

*

«

*

*

*

INTENSITY** AMPLITUDE *

O.OOJ ** 0. :000'w *

•J.iOO •* -Li. 50000: *

j.OOO *• -0.._>C?Ojj •

C . O O O •• O.OOCiO.-O *

C . O Q w ** -00 0303 *

y.oo: ** o..-.oco>'). *

J .ODO ** 0. ,000'^ »

0.000 ** -O.-VJGO' 0 •

c-.ooo •« o. : -oooc3 •
' .03. •• -:-.:.ooo:,.- *

•>.QOf •• 3. :;j3..- *

?.03j •• 3 .3JOOS *

O.OOt; .•• -O.OOCO .j *

o.ooo ** -o.cooo:-.- *

5.00'J ** -O.CO'JO... *
0.03-- ** 0. 300QC 3 *

C.OO'j ** -3.C3COOO •

3.C3X •• O.OOOOC-j •

7.00o •• 3.COOOC-0 •

ITV • 0.

SYSTEM

**

INTENSITY**

J.OC-3
O.D33

C.OCO
0.033

J.C03

0.003
0.003

0.003
0.003

0.003

0.000

O.OC3
0.003

0.033

•3.003

O.Q03
•J.JO 3

3. COO

LOCO
J.C-C-3

-3.003

0.003

o.ono
O.C03

•-..103

0.033

0.0-33
•0.303

3.3?3

0.303

0.003

O.CC-3
0.003
3.0:O
o.:o3
0.003
O.C03

3.013
G.003
3.003
3.003

*«

**

**

**
**

**

**

**

«

*•
*•

•*
••
••
••
*•
••
•«•*
•«••

FREQUENCY

POLAR

INTERVAL BETUEEN WAVES - 0.05

• *
•» PERCENT OF

21
«

GAIN *• PHASE *• ENERGY
AHPUTUDE ' INTENSITY** DEGREE'*

0.03000:
3.00000',
O .OOCOO)

0.00003)

o.or.oooi
O.OOOOOJ

O.OOU03J

0.030COC

0. 33000 J

o.oc-ooo:
3.000033

3.030003

0.00000'J
o. ooooo :-

D.ODOOO.;

o.aocooo
0.013CO?

a.ocooo;
3.00300.'
3 .0COOO'-
3.300003

0.3J003:-

o.oc-ooo;

0.00000

D.00300-.

0.33300.1
3.3:300;

3.3.-.JOO.
3.0:003'

3.0300Jn

o.oooooc

0.03000:-
0.3C003J
3.0;033J

0.0-30003

3.33000:-
0.33000:-

• O.C03

• 3.0UO
• O.OOG

• 0.003

• O.COO
• 3.000

• 3.030

• o.oo:-

« 0.000
• J.COO
* 0.003

• 3. COO
* 0.30-3

• 0.000

» o.ooc.

* 3.000

* 0.003

* J.OOO
* 0.000

» 0.000

« 0.000
» 0.00)
• 0.030
* 0.000
• • o.ooi

• c.ooo

• 3.000
• 0.030
• 0.000

* 0.000
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The intelligence cutoff criteria, along with the conservative property associated
with the energy density representation, are the ingredients for a spectral intelligence
bandwidth which prevents blind data ingurgitation. When the sum of the gain intensities
is

Z
k=l

cut-off

kym = 1 - 7 .white noise
(A.37)

then, by the conservative property [equation (A.35)] afforded by this representation, we
know that the remaining gain intensities will not afford any additional significant
intelligence. This implies that we have found the upper limit of the intelligence
bandwidth, and that the spectral calculations can be safely terminated without a possible
loss of significant information. The lower limit of the intelligence bandwidth is set by
where the spectral intensities first exceed the intelligence cutoff.

Applying the concepts developed in this appendix to the transformation of a
correlation curve obtained from atmospheric turbulence data, we obtained the energy
density spectrum shown in Figure A-1. Use of the traditional Fourier spectrum analysis

INTENSITY, <y>m , PERCENT

10-
STATISTICAL

ERROR

INTELLEN6CE
CUT-OFF

10-4

0.01 1.0 *" 4.0
FREQUENCY (Hz)

Figure A-l. Atmospheric energy density spectrum.
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techniques [8,34] would require an explanation of the entire spectrum. Use of the
intelligence cutoff criteria isolates the spectrum into two regions: from 0.01 to 0.26 Hz
and from 1.0 to 2.4 Hz.

The significant point which has been established is that the intelligence cutoff
criterion affords a systematic noise suppression which enhances the spectral intelligence.
The intelligence termination point, on the other hand, is just a labor-saving scheme,
permitting us to reduce the amount of wasted time and energy in searching regions in
wave number space void of significant information. In this example, computational time
could be reduced by one-third if we stop calculating the spectral coefficients after we
reach the intelligence termination point.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama, October 20, 1972
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