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ABSTRACT

Model test results were used to define the failure mechanism associated
with the static penetration resistance of cohesionless and low-cohesion
soils, Knowledge of this mechanism has permitted the development of 'a new
analytical method for calculating the ultimate penetration resistance which
explicitly accounts for penetrometer base apex angle and roughness, soil.
friction angle, and the ratio of penetration depth to base width. Curves
relating the bearing capacity factors‘Nc and Nyq to the soil friction angle
are presented for failure in general shear.

Strength parameters and penetrometer interaction properties of a fine
sand were determined and used as the basis for prediction of the penetration
resistance encountered by wedge, cone, and flat-ended penetrometers of
different surface roughness using the proposed analytical method. Because
of the close agreement between predicted values and values measured in
laborafory tests, it appears possible to deduce in-situ soil strength para-
meters and their variation with depth from the results of static penmetration
tests.

A procedure for determining the soil cohesion and friction angle from
the results of static penetration tests is proposed. This procedure is
illustrated by application to model test results, to penetration data
presented by other investigétors, and to penetration data obtained for the
lunar surface by the Apollo 15 self-recording penetrometer and the Soviet

Lunar Rover Lunokhod-1l.
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PREFACE

This report presents the results of one phase of the research under-
taken as a part of National Aeronautics and Space Administration Grant
NGR-05-003-406, "Lunar Soil Properties and Soil Mechanics.". The in-depth
study of the static penetration resistance of soils described herein was
made as a background study in support of the Apollo Soil Mechanics Experi-
ment (S-200) to aid in the analysis and interpretation of penetration data
obtained on the lunar surface.

The major part of the material presented in this report was developed
by H. T. Durgunoglu for a dissertation in partial fulfillment of the
requirements of the degree, Doctor of Philosophy in Geotechnical Engineering
at the University of California, Berkeley.
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CHAPTER ONE

INTRODUCTION

If has been recognized since early in the lunar exploration program
that a knowledge of lunar soil properties is essential for satisfactory
solution of a number of scientific and engineering problems. As examples
are questions related to (1) formation and compaction of surface layers,

(2) characterization of different materials, (3) slope stability and down-
slope movement of soil and rock, (4) prediction of seismic velocities and
analysis of seismic data, (5) estimation of thermal behavior, (6) character-
ization of dielectric properties for use in radar and electrical studies,
(7) gas diffusion through the lunar surface, (8) strength and deformation
properties for use in engineering studies, and (9) definition of conditions
for terrestrial simulation studies.

To help in the development of this knowledge a soil mechanics investi-
gation was included as a part of Apollo missions 11 and 12, and a formal
Soil Mechanics Experiment was assigned to missions 14 through 17. As a
part of this experiment it was desired that quantitative data be obtained to
the extent possible within the constraints of lead time for apparatus
development, spacécraft payload, and astronaut time and capability on the
lunar surface. A self-recording penetration test device was selected for
this purpose and included as a part of the Apollo 15 and Apollo 16 missions.
A penetration test was selected because (1) it is simple, (2) it can be done
by hand, (3) conditions can be explored to depths of several tens of centi-
meters, and (4) there is much available terrestrial experience with this
type of test.

At the same time a number of limitations in the understanding of
penetration resistance of soils in relation to soil strength and compressi-
bility properties were recognized. Thus a basic investigation of pene-
trometer—-soil interaction was undertaken for the development of a suitable
analytical technique for expression of the static penetration resistance of
soils in terms of penetrometer base apex angle, base roughness, depth of
penetration, and soil cohesion and friction angle. The specific objectives

were:



(1) To develop an improved understanding of the soil failure mode
during a static penetration test,

(2) To determine the influence on penetration resistance of pene-
trometer base apex angle, size, and roughness, relative depth of
base, and angle of internal friction and compressibility of soil,

(3) To develop an analytical technique which will allow prediction of
static penetration resistance of soils in terms of physical
properties of the penetrometer and basic soil properties or,
alternatively, determination of in~situ soil properties from the
results of penetration tests,

(4) To explain previous test results, many of which cannot be
adequately accounted for in terms of existing theories.

This report presents the results of these studies, Initially, the
state-of-the-art was critically reviewed (Chapter Two). The failure
mechanism associated with deep static penetration in soils was determined
using model tests (Chapter Three). Knowledge of this mechanism permitted
development of a new theory for determining the ultimate base resistance of
a penetrometer in terms of factors that depend on soil friction angle,
penetrometer base apex angle, depth to base width ratio, and penetrometer to
soil friction (Chapter Four). The strength and penetrometer interaction
properties of a fine sand were then studied (Chapter Five) and the results
were used as a basis for prediction of resistance to penetration by wedges,
cones and flat-ended penetrometers of different surface roughness. Labora-
tory penetration tests were conducted to provide a basis for comparison
with predictions. The effects of each variable, (base apex angle, base
roughness, relative depth, soil friction angle, and soil compressibility)
were further investigated both experimentally and theoretically (Chapter Six).

Finally, a procedure for deduction of in-situ soil properties from the
results of static cone penetration tests is outlined. This procedure is
illustrated by application to model tests, to penetration data obtained from
the literature, and to penetration resistance data for the lunar surface
obtained during the Apollo 15 and Siviet Rover Lunokhod-1 missions (Chapter

Seven).



CHAPTER TWO
BEARING CAPACITY AND
PENETRATION RESISTANCE THEORIES
THEORETICAL CONSIDERATIONS
General

Most theories for ultimate bearing capacity are based on the fundamental
formula of Prandtl, which is valid for the case of a rigid-plastic, incompres-
sible, weightless material whose shear strength characteristics are given by

the Mohr-Coulomb failure criteria:

Te=c¢ + otan¢ (2.1)
where Te = shear strength
¢ = soil cohesion
‘0 = normal stress
¢ = angle of internal friction of soil

The solution of Prandtl (1921) for the bearing capacity under a strip

load on a rigid-plastic, incompressible and weightless material is:

q = CNC (202)

where

Ttan¢

NC = cotd [e tanz(%-+ %9 - 1] (2.3)

Reissner (1924) considered the effect of a surcharge, g, and concluded that

the bearing capacity was increased by an amount qu where:

= eﬂtan¢ tanzcg + %) (2.4)

It can be seen that the bearing capacity factors NC and Nq are related by the

following equation:
Nc = (Nq - 1) cotd (2.5)
A widely used bearing capacity equation which considers soil cohesien,

friction, and surcharge was first presented by Terzaghi (1943) by combining

Equations 2.3 and 2.4 and adding a friction term (1/2°YSBNY), giving:



qg = N, + 1/2:Y BN, + qN_ (2.6)

where 9 = ultimate bearing capacity or unit resistance under an

infinitely long foundation of width, B

c = goil cohesion

YS = unit weight of soil

q = surcharge

Nc’ NY’ Nq = primary bearing capacity factors, £(¢).

Inclusion of soil weight considerably complicates the mathematical
solution. To handle this difficulty, many approximate methods have been

proposed.

Numerical Techniques

The finite difference approximation based on the method of characteris-
tics is widely used in the numerical analysis of differential equations of
the type applicable to the bearing capacity problem. Lundgren and Mortensen
(1953) used this method to obtain a solution of the strip footing bearing
capacity problem. The same method was used for the axially symmetric
circular footing problem by Cox et al (1961), Cox (1962), and Larkin (1968).

In recent years, the same technique has been applied to deep foundations.
Strip loading conditions were analyzed by Graham (1968) and solutions were
provided for axisymmetric circular foundations by Nowatzki (1971) and
Nowatzki and Karafiath (1972).

Numerical methods have both advantages and disadvantages when compared
to other methods for the calculation of bearing capacity. They may be

summarized as follows:

Advantages:
(1) Soil weight can be considered easily and properly.
(2) Dependence of soil friction angle on mean normal stress along a

failure surface can be considered in the solution.

Disadvantages:
(1) The angle of internal friction and the unit weight of the soil are
usually considered as independent variables, although, in fact, they

may be interdependent.



(2) They are not conducive to development of simple graphs or
formulations.

(3) The Haar and von Karman hypotheses used in the analysis of axi-
symmetric problems is not a good assumption (see Chapter Four).

(4) For deep foundations, the extensions of slip lines are arbitrary,
e.g. Nowatzki (1971) has assumed that slip surface reverts to the
penetrometer shaft as was assumed by Meyerhof (1951) (Fig. 2.1b);
however, Nowatzki and Karafiath (1972) in the analysis of the same
problem assumed that slip surface ends at the base level, which is
equivalent to neglecting the shear strength of overburden, as was
assumed by Terzaghi (1943) (Fig. 2.la).

(5) Statically correct solutions found by the method of characteristics

are kinematically inadmissible.

Consequently kinematically more acceptable slip surfaces were introduced,
e.g. Jumikis (1961), Balla (1962), Hu (1964), and Gorbunov-Possadov (1965).
As yet, however, there is no completely correct theoretical solution for
the friction (NY) factor for the simple shallow footing problem., In view of
this, Meyerhof (1955) and Brinch Hansen (1961) suggested the use of following

empirical formulas for the calculation of the bearing capacity factor N ¢

Meyerhof N
v Y

Brinch Hansen NY

(Nq - 1) tan(l.49) (2.7)

lGS(Nq - 1) tan¢ (2.8)

Slip Surface Assumptions for Shallow Foundations

The bearing capacity equation (Equation 2,6) generally includes three

bearing capacity factors (Nc, N_ and Nq)o Commonly, the wvalues of Nc and N

Y
are those corresponding to the slip surface valid for weightless soil

q

i.e., q/(YSB)=°°)° Further, the value of NY used is that corresponding to a
slip surface valid for q/(YSB) = 0 (footing at the surface).

This situation leads to calculated ultimate bearing capacity values (in
which NY and Nq are supposed to be determined independently) which are somewhat
on the conservative side. This is due to the linear superposition of two
terms, each of which is determined from a statically admissible rupture surface
which is different from the surface which actually applies for values of
q/(YSB) other than zero or infinity.

If there is no surcharge other than the overburden, q/(YSB) becomes equal

to D/B., In fact, when q/(YSB) is greater than zero and less than infinity,
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the slip surface is unique and intermediate to the two limiting slip surfaces
shown at the top and bottom of Fig. 2.2,
DeBeer (1967) has suggested the following correction formula for the

bearing capacity calculated assuming two different slip surfaces:

qe = v(l/Z‘YSBNY + qu) (2.9

where NY and Nq are bearing capacity factors calculated for two different
slip surfaces and V is a correction factor that depends on ¢ and D/B. The
correction factor for ¢ = 30° is shown in Fig. 2.3a. Its maximum value is
1.17 and occurs for q/(YSB) or D/B equal to 0.4. Hansen and Christensen
(1969) calculated the same correction factor for a smooth strip footing, with

the results shown in Fig. 2.3b.

General Bearing Capacity Equation

In Equation 2.6 the term (q Nq) represents the increase in bearing
capacity caused by overburden pressure. This term does not consider the
effect of the shear strength of soil above the foundation level if the primary
bearing capacity factors (which are wvalid for D/B = Q) are used. Therefore,
for deep foundations new bearing capacity factors should be calculated,
Meyerhof (1951). However, Brinch Hansen (1961) has suggested that this effect

can be taken into account by depth factors (dc, d dq)o Also, because the

Y’
general bearing capacity equation is formulated for strip foundations, shape

factors (EC, EY’ Eq) must be employed when considering other foundation con-
figurations. With these modifying factors Equation 2.6 can be written in the
following form:

4 = cNCECdc + 1/2 YSBNngd + YSDNqEqd (2.10)

Y q

where Ec, EY’ Eq = shape factors for the cohesion, friction, and
surcharge terms.
dc’ dy’ dq = depth factors for the cohesion, friction, and

surcharge terms.

Values of the primary bearing capacity factors, Nc’ Ny’ and Nq are given in

Fig. 2.4,

Depth Factors

Skempton (1951) proposed a depth factor for the cohesion term as

follows:
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dc = 1.0 + 0.2 (D/B) (2.11)

for purely cohesive soils (¢ = 0) and values of D/B up to 2.5. A constant
depth factor dc = 1.5 was suggested for depths greater than D = 2.5B.
Brinch Hansen (1961, 1966) suggested the approximate relationship:

dc = 1.0 + 0.35 (D/B) (2.12)
as an average value of dc for D/B smaller than 1.0 and values of ¢ between

0 and 40 degrees. Brinch Hansen (1961) has also proposed the following

generalized and semiempirical equations for the depth factors:

d =1.0+ 9.3>

c (B/D) + [0.6/(1+7tan*¢)]

d, = 1.0 (2.13)
dq =d, -5

These relations are shown in Fig. 2.5. The factors dc and dq approach
the indicated limiting values with increasing relative depth, D/B for a
given value of ¢.

Meyerhof (1963) proposed the following equations for the depth factors:

o
]

1.0 + 0.2 (D/B) tan (F + %) (2.14)

for ¢ = 0°:

d =4d

1.0
q Y

for ¢ > 10° and D/B<1.0:

d =d
q Y

1.0 + 0.1(D/B)tan(f + %) (2.15)

The values of dc are slightly larger, whereas those of dq are smaller than
the values proposed by Brinch Hansen.

DeBeer (1967) suggested the following depth factors:

d
q

1 + [tan?(45° - %)e'"tam _ 1] o~tan (8/D)

(2.16)

d
Y

1.0

11
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Ultimate depth factors are estimated using the bearing capacity factors
given by Meyerhof (1951) for shallow and deep foundations. A comparison with
Brinch Hansen's ultimate values is given in Table 2.1, where it can be seen
that Meyerhof's values are much higher. This is due to the nature of the
failure mechanism assumed by Meyerhof (1951) for deep foundations, (see
Fig. 2.1b). It should be noted that Biarez et al (1961) showed; from the
results of model tests, that the slip surface reaches vertical tangency

provided that the relative depth is sufficiently large.

Table 2.1 ULTIMATE DEPTH FACTORS FOR COHESION TERM

Ultimate depth factor
Angle of internal for cohesion term, (dc)ult.
friction, ¢-~degrees o
Meyerhof Brinch Hansen
20 3.3 1.6
25 4.8 1.7
30 6.3 2.0
35 8.7 2.6
40 14.4 3.5
45 23.4 5.7
50 36.2 9.9

Shape Factors

Early suggestions by Terzaghi (1943) and Skempton (1951) concerning

the shape factors may be summarized as follows:

Circular Areas Square and Rectangular Areas
g, = 1.3 g, =1+0.2(8/L)
= 0.6 =1-0.2(8/L
EY EY (B/1)

where B is the width and L is the length of contact area.

Meyerhof (1951) presented a diagram for the determination of combined
shape and depth factors that are functions of B/L, D/B, and ¢. Based on
Meyerhof's diagram Brinch Hansen (1961) developed the following semi-empirical

13



equations for the individual shape factors that are independent of depth:

g, =1+ (0.2+tan®¢) (B/L)
Ec -1
F,q = F,c - =5 (2.17)
q
£, =1- % (0.24tan®¢) (B/L)

Meyerhof (1961b, 1963) also proposed the following empirical expressions for

the individual shape factors:

E_ = 1+0.2 tan®(45° + %) (B/1)
Eq = €Y = 1.0 for ¢=0° (2.18)
£ = &y = 1+0.1 can®(45° + %) (B/L) for $>10°

DeBeer (1967) presented the results of tests for determination of shape
factor EY. From these test results it was concluded that the shape factor
EY has a value of 0.6 independent of the soil density. In a recent study,

DeBeer (1970) proposed the following empirical formula for the shape factor

€q=
Eq = 1 + (B/L) sing (2.19)

Further evaluation of the proposed shape factors is made in Chapter Six.

ADDITIONAL FACTORS INFLUENCING BEARING CAPACITY

Dependence of Angle of Internal Friction on Mean Normal Stress

According to Mohr—-Coulomb yield criteria, soil strength may be char-
acterized by Equation 2.1l. However, Terzaghi (1925) and others have pointed
out that the angle of internal friction (¢), for sand varies not only with
density but also with the mean normal stress (Om), at a given density. Due to
the fact that along a possible sliding surface underneath a foundation the
values of normal stress are variable from point to point, the strength char-
acteristics of a sand are not likely to conform to the simple linear function

indicated by the Mohr-Coulomb yield criteria.

14



As listed under the advantages of numerical methods, it is more difficult
to use a non-linear function than the linear Mohr-Coulomb equation.
Yareshenko (1964) has suggested the following non-linear relationship be used

instead of the Mohr-Coulomb criteria:

/n

1 .
T = (kcm) (2.20)

where k and n are constants and functions of the angle of internal friction.
The yield function given by Equation 2.20 has been employed in thé solution

of a plane footing problem by Berezantsev and Kovalev (1968). Later, Kingston
and Spencer (1970) presented a solution procedure for a genéral non~linear
function.

An average value of mean normal stress along the slip surface is
generally considered in analytical solutions. Meyerhof has shown that the
average mean normal stress is approximately equal to one-tenth pf the
ultimate bearing capacity. The symbol Qg,M will be used to denote the mean
value of mean normal stress along a slip surface: As shown in Fig. 2.6, the
angle ¢' corresponding to the secant connecting the origin to the point
og,M was used (DeBeer, 1967) for the calculation of the ultimate bearing
capacity. Thus the true curved strength envelope OMN ghown in Fig. 2.6 is
replaced by the straight line OPQ intersecting the true curve at point P with

an abscissa value of:

O = 9g/10 (2.21)

DeBeer (1967) gave the following empirical expression for the average mean

normal stress along the slip surface:

q. + 3q

O, M= (1-sin¢) —r

g, (2.22)

The dependence of angle of internal friction on mean normal stress
along a potential slip surface is of great importance in the interpretation
of the results of model tests of shallow foundations. As the ultimate
bearing capacity increases with the width of the footing for shallow founda-
tions, so does the mean value of mean normal stress along the slip surface
increase with the footing width, thus the secant angle ¢' decreases in value
as may be seen by inspection of Fig. 2.6. As a result of this influence,

the results of laboratory tests on very small shallow footings may lead to

15
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an overestimation of the bearing capacity of much larger actual shallow

footings.

Progressive Rupture

It may be inferred from the previous discussion of the influence of
mean normal stress that it would be desirable to conduct loading tests on
shallow footings with footings of actual full size. Such tests have been
performed on a large scale by Muhs (1963). The values of NY determined
from these tests are shown in Fig. 2.7. When comparing these values to
those determined in small scale tests, DeBeer (1967) points out that the
large scale tests give larger values of N?‘than the smgll scale tests
at low densities, while at high densities the reverse is true.

This occurrence can be éxplained by the phenomenon of progressive
rupture,

The progressive rupture phenomenon is due to the fact that during the
gradual increase of load on a soil, the shear strength is not immediately
mobilized at all points on the potential slip surface, but initially only at
the points where the shearing stresses are largest. From these points, the
rupture gradually extends to other points along the slip surface. This
gradual progression causes modifications and variations of the soil properties
along the slip surface.

In loose soils, because of the compressional deformations which occur
before the rupture load is reached, the density of the soil in the highly
stressed zone is already increased before rupture, and the same is true for
the shear strength, which increases with increased density. Therefore, at
rupture, the shear strength corresponding to the initial density no longer
governs, but there exists some variable shear strength along the rupture
surface.

In dense soils, the reverse occurs. In the highly stressed zones, the
dense soil begins to dilate, causing a decrease in density and thus a
decrease in shear strength to take place. Therefore, when the state of
rupture along a slip surface in a dense soil is reached, the shear strength
corresponding to the original density is not available along the entire
rupture surface.

DeBeer (1967) further states that the progressive rupture phenomenon

is scale dependent for shallow footings because the relative settlement at

17
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rupture increases with the width of the footing. This dependency may be
inferred from Fig. 2.8, which relates relative settlement at failure to

footing size.

Influence of Base Roughness

The primary bearing capacity factors shown in Fig. 2.4 apply only to
perfectly rough bases (8/¢ = 1). Investigations by Meyerhof (1955) and
others indicate that in cohesive soils the roughness has little 'influence
on the bearing capacity. However, in cohesionless soils, the bearing
capacity of a surface footing with a smooth base is significantly less
than. that for a footing with a rough base. To account for this difference,
Meyerhof has suggested that the NY factor be multiplied by a roughness
factor»(ry), expressed as:

- Lo, 2
rY =n_ + 5 (1 n ) (2.23)

where n is the degree of roughness, defined by the ratio of the tangents

of the angle of base friction (8), and the angle of internal friction (¢):
n_ = tand/tan¢ (2.24)

Equation 2.23 applies only to plane, horizontal bases at the soil
surface,

Hansen and Christensen (1969) calculated NY values for different
values of base roughriess and angle of internal friction. Their results are
shown in Fig. 2.9, which indicates that the values of NY for perfectly smooth
footings (8=0) are approximately one-half the values of NY for perfectly
rough footings (6=¢).

Recently, Graham and Stuart (1971) presented solutions showing the
influence of base roughness and various assumptions as to the distribution of
friction along the base upon NY factors. A graphical summary of their

solutions compared to other theoretical solutions is given in Fig. 2.10.

Influence of Base Configuration

The influences of various non-planar base configurations (e.g., wedges
and cones) on bearing capacity factors have been obtained, with certain
assumptions and under certain conditions, by Meyerhof (196la). As an example,
the bearing capacity factors for shallow strip loading on smooth and rough

wedges in a soil with ¢=30° are shown in Fig. 2.11.
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For perfectly rough wedges, there is little dependence of bearing
capacity factors on the total apex angle (20) for values of 20 greater
than 90°., That is, for rough wedges and cones with obtuéé apex angles,
the bearing capacity factors are nearly equal to those for plane and hori-
zontal contact areas. However, for perfectly smooth wedges, the values
of Nc and Nq increase with increasing total apex angle,

Values of Nc as a function of apex angle for perfectly smooth and
rough cones at shallow and great depths in purely cohesive (¢ =0) soil
as presented by Meyerhof (196la) are shown in Fig, 2.12.

Influence of Soil Compressibility

Vesic (1967) has suggested that the relative compressibility of a sand
mass may be expressed in terms of its rigidity index, Ir’ defined as:

E

Ir = (1+V) (etqtand)

(2.25)

where E = elastic modulus
c = soil cohesion
¢ = soil friction angle
g = overburden pressure
Vv = Poisson's ratio
Bearing capacity factors calculated by Vesic (1967) using the assumption
that the ultimate pressure on the soil cone under a foundation is equal to
the ultimate pressure needed to expand a spherical cavity inside the same
soil mass are given in Fig. 2.13.

Vesic (1963) has also suggested that, for compressible soils, local (or
punching) shear failure, rather than general shear failure, occurs. Based
on the shear pattern shown in Fig. 2.l4a, the following expression for Nq

was developed:

N = e3:89 tand 2450 4 %) (2.26)

This equation is plotted and compared to the classic Reissner equation for
Nq for general shear in Fig. 2.14b. It may be seen in Figs. 2.13 and 2.14 that
for compressible soils (local shear conditions), the bearing capacity factor

Nq is much lower than for incompressible soils (general shear conditions).
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APPLICATIONS OF DIMENSIONAL ANALYSIS TO STATIC PENETRATION

General

Many problems may be analyzed by considering model tests that are
assumed to give a true representation of prototype phenomena, but at a
reduced scale. In order to apply classical dimensional analysis geometric,
dynamic, and kinematic similarity requirements must be satisfied.

The static penetration problem may include the following variables:

9 = unit base resistance
= unit weight of soil

= base width of the penetrometer

Y
B

D = penetration depth

¢ = soil friction angle

¢ = soil cohesion

§ = penetrometer to soil friction angle

20, = penetrometer base apex angle (wedges or cones)

Geometric similarity requires that

(D/B) = (D/B) (2.27)

model prototype

Dynamic similarity however, demands that:

qf/(YsB)model - qf/(YsB)prototype (2.28)
Considerations of kinematic similarity may be ignored in the static
penetration problem because the velocities iInvolved are insignificant.
Lundgren (1957) states that, in order to represent the static pene-
tration test in dimensionally correct form, the following relationship

should be used:

D/B = £la /(v B)] (2.29)

Hvorslev (1970) indicates that consideration of the dimensionless ratio
qf/(YSB) from the general bearing capacity equation is convenient in the

investigation of data for different penetrometer sizes and soil conditions.

Cohesive Soils (¢=0)

The bearing capacity equation for cohesive soils is normally expressed
in the following form:

q¢ = Cchc + YSDquq (2.30)
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For purely cohesive soils (¢=0), Nq = 1.0 and dq = 1.0. Also, for D < 5B, and
assuming that dc is a linear function of relative depth (D/B), Equation
2,30 may be rewritten in dimensionless form:

YB
qg/c = N d, +-— (D/B) (2.31)

For Ys and ¢ constant, but variable B, Equation 2.31 will yileld families
of curves in terms of the parameters qf/C and D/B. For shallow depths and
small footing widths, the second term in Equation 2.31 is negligible and
the equation may be written in the following form:

qf/c = chc (2.32)

which, fepresents a single curve for different sizes as shown in
Fig. 2.15a. However, Equation 2.32 should not be used for high values of
D and B or very small values of cohesion without first estimating the relative

influence of the second term in Equation 2.31.

Cohesionless Soils (c=0)

The bearing capacity equation for cohesionless soils is normally

expressed in the following form:

+

+1 BN a4

2.33
q T 2v SNy (2.33)

dg = Y DN d

As shown in the analysis of depth factors, dY = 1.0 and for small depths
(D<5B) dq 1s a linear function of relative depth (D/B). Then Equation

2.33 can be written in dimensionless form:

D

. D ,1
g/ (VB = N d § + 5N (2.34)

Y

Therefore, a plot of the parameters qf/ysB vs. (D/B) yields a single curve
independent of the value of B, as shown in Fig. 2.15b. 1In recent years,
various investigators have used these dimensionless parameters for graphical
representation of the results of plate bearing tests on cohesionless soils.
This equation does not, however, consider settlements that occur before the

bearing capacity is developed.

Cohesion-Friction (c-9) Soils

The bearing capacity equation for c-¢ soils is normally expressed in

the following form:
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DEPTH (After Hvorslev, 1970)
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1
+ 5 'YSBN d (2.35)

q = cN_d_ + y_DN d 2y

94

For small depths, dc and dq are linear functions of relative depth (D/B). The
factor dY equals 1.0 for all depths. Therefore, Equation 2.35 may be written

in dimensionless form as follows:

Wl

+-2]¥-N (2.36)

qg¢/ (v B) = [e/(yB)IN 4 + N d .

94

For c~¢ soils, the ratio qf/(YSB) is not independent of B, because ¢ is a

soil constant and the ratio C/(YSB) decreases with increasing values of B,
That is, results of bearing capacity or penetration tests with penetrometers
of various sizes will form a family of curves, and the values of qf/(YSB) for*
a given value of D/B will decrease with increasing values of B. However,
Equation 2.36 can be used to estimate ¢ and ¢ separately by having
penetration data with two different sizes of cone. A proposed procedure for

this calculation is outlined in Chapter Seven.

STATIC PENETRATION TEST AND ITS APPLICATIONS

Description

Although static penetrometer equipment and procedures have not been
standardized, some generally accepted practices have been developed. The
Dutch Cone (Fig. 2.16a) is widely used. It has a base area of 10 sq cm and
apex angle of 60°., The rate of penetration is from 15 to 20 mm/sec. The
normal sounding test (early version) has the following procedure:

The tube is pushed together with rod and cone (see Fig. 2.16a) into
soil for about 0.3 meters. Subsequently, only the inner rod is pushed
downward while the tube is retained by the skin friction of the soil. The
resistance to cone penetration is generally measured by a hydraulic gage.
After penetration of the cone for about 125 mm, the tube is pushed down
without pressure on the inner rod and cone. When the tubes are pressed
further into the soil the cone moves down with the tube so that full
frictional and cone resistance will be obtained. Tube and cone are
advanced 75 mm after which the procedure is repeated thus giving measure-
ments of total friction and cone resistance every 0.2 m.

The sounding equipment was improved by Vermeiden (1948), who developed

the sleeve cone (see Fig. 2.16b) because of difficulties experienced with
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the original cone associated with friction between tube and rod due to
sand particles. In the procedure used by the Department of Municipal
Works of Rotterdam, tube and rod are advanced simultaneously while the
forces on tube and rod are measured separately. The measurements are
generally performed automatically at the top of the rods by means of an
electric pressure-gauge.

Begemann (1965) reported the development of a friction cone (see
Fig. 2,16c) enabling the measurement of local friction along a sleeve.
The ratio of friction to cone resistance was found to be dependent on the
type of soil, thus permitting an approximate determination of the soil '
profile. Later, electric strain gage penetrometers were developed, as
described by De Ruiter (1971).

Determination of Soil Type

Begemann (1965, 1969) has shown that there is a definite relationship
betweeén the ratio of unit frictional resistance (fs) to unit cone resistance
(qc) and the soil type as shown in Fig. 2.17. Schmertmann (1967) proposed

the following ratios:

Soil Type fs/qc )

soft rock or shells 0.0 - 0.5
sand 0.5 - 2.0

silt 2.0 -~ 5.0

clay > 5.0

Determination of Soil Compressibility

There have been many attempts to relate compressibility of soils to
the cone resistance. Bachelier and Parez (1965) gave the following relation-

ship for oedometer modulus (E), and cone resistance for silty and clayey soils:
E=2.3 (qc/a) (2.37)
where o is a soil constant.

The values of o for different types of soil tested were in the range of
0.33 to 1.0.
Schmertmann (1970) proposed the following relationship between

compressibility modulus of cohesionless soils and the cone resistance:
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E, = 2.0 q (2.38)

Young's modulus for sand in kg/cm?

2
®
H
]
]
[

Dutch cone bearing capacity in kg/cm2

(=]
[

Determination of Shear Strength of Cohesive Soils

There have been many attempts to relate undrained shear strength of
cohesive soils to cone penetration resistance. Gawith (1952) proposed the

following relationships:

c qc/lO for soft clay (2.39)

c qc/l4,8 for firm compact clay (2.40)

where ¢ cohesion in kg/cm?

q Dutch cone bearing capacity in kg/cm2

c

Later, Begemann (1965) gave the following relationship based on friction

cone data:

c = q /14 (2.41)

where ¢ cohesion in kg/cm?

Dutch cone bearing capacity in kg/cm?

£
L]

SUMMARY

Primary bearing capacity factors based on classical Prandtl-~Reissner
solutions are widely used in Equation 2.6 to compute the ultimate bearing
capacity of shallow foundations. The utilization of two different slip
surfaces for the determination of the different bearing capacity factors
(Nc, Nq, and NY) has been shown to underestimate the bearing capacity, in
some cases by as much as 17 percent.

The ultimate bearing capacity of deep foundations is generally
determined using primary bearing capacity factors and ignoring the shear
strength of the overburden as proposed by Terzaghi (1943). However, in
general shear failure the shear strength of the overburden cannot be
neglected. Brinch Hansen (1961) proposed modification of the primary
bearing capacity factors with empirically determined depth factors for
the determination of the unit bearing resistance of deep foundations.

Many slip line geometries have been assumed for determining the

bearing capacity of deep foundations,and the range of bearing capacity
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values obtained from the different assumed failure mechanisms is large.
Experimental justification for a proposed slip line geometry at failure

for deep foundations has been provided by Biarez et al (1961) who showed
that the slip surface reaches vertical tangency provided that the relative
depth of the foundation is sufficiently large. The validity of the slip )
line geometry proposed by Biarez should be further investigated for the
continuous deep penetration of penetrometers with different base configu-
rations. Further, because of the large deformations involved, the
fundamentals of the progressive development of failure surfaces during
continuous penetration must be investigated.

Meyerhof (196la) investigated the influence of base configuration on
the slip line geometry in the vicinity of the base. It was postulated
that a soil cone (or wedge) forms under rough, blunt bases and that a plane
shear zone forms adjacent to smooth, sharp bases. However, the validity
of these assumptions needs experimental justification. Further, the
influence of base configuration on slip line geometry in the vicinity of
the base for intermediate base roughnesses (0<8/¢<1l) should be studied.

The extent of the plane shear zone, if any, should be formulated in terms
of soil friction angle (¢) and base roughness (§/¢) and the validity of
any theoretical considerations should be justified by observations.

The only analytical solution available for the determination of the
bearing capacity of wedges (or cones) is given by Meyerhof (196la).

This solution is wvalid only for very shallow and very deep foundations and
perfectly rough or smooth bases. In this solution bearing capacity
factors are given as a function of base apex angle and soil friction angle.
The shortcomings of this solution can be summarized as follows:
(1) Bearing capacity will be overestimated, even in general shear
failure, due to the invalidity of the assumed failure mechanism
for deep foundations (see Table 2.1).

(2) For a given relative depth (D/B) of foundation, the bearing
capacity can only be determined by linear interpolation between
solutions for shallow (D/B<l) and deep foundations. Such inter-
polation is later shown to be incorrect,

(3) For a given intermediate base roughness (0<6/¢<1), the bearing
capacity can only be determined by linear interpolation (later
shown incorrect) between solutions corresponding to perfectly rough

and perfectly smooth bases.
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(4) No solutions are provided for determining Nc when the soil

friction angle is larger than 30°.

Meyerhof (1955) and other investigators have indicated that for
cohesive soils the roughness of a plane and horizontal contact area has
little influence on bearing capacity. However, in cohesionless soils,
the bearing capacity of a surface footing with a smooth base is only
about half of that for a footing with a rough base.

Numerical solutions utilizing the Haar and von Karman hypothesis
have been developed to determine the bearing capacity of circular shallow
and deep foundations. However, these theoretical calculations are open
to doubt, because the validity of Haar and wvon Karman hypothesis for soils
is questionable. For this reason, it is concluded that theoretical calcu~
lations of bearing capacities developed for circular foundations are still
so uncertain that the best estimates are made by the application of
empirical shape factors to the bearing capacity factors for strip founda-
tions. Many empirical relationships for shape factors have been proposed,
however, resulting in great range of values. Therefore, it is concluded
that the validity of these relations over the range of interest should be
investigated experimentally.

Since general shear failure cannot reasonably be assumed for compres-
8ible soils, the influence of soil compressibility should be considered in
determination of the bearing capacity (or unit penetration resistance) of
foundations. There have been some empirical methods proposed which account
for soil compressibility, but their general validity has not yet been
established.

For cohesionless soils, stress-strain relationships are stress,
strain and density dependent. Because of progressive rupture, the proper
selection of soil friction angles in the determination of the penetration
resistance should be investigated.

Many empirical relationships have been proposed to relate soil shear
strength parameters, soil compressibility, and soil type to penetration
resistance. However, no theory heretofore available has explicitly
accounted for the influence of such important variables as base configura-
tion, base roughness, and relative depth over the range of values of
interest. The analytical procedures developed in this study which are
presented in detail in the following chapters should provide a basis for

overcoming some of these deficiencies,
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CHAPTER THREE

FAILURE MECHANISM ASSOCIATED
WITH STATIC PENETRATION

PREVIOUS STUDIES

The failure mechanism assoclated with static penetration has been
previously investigated both theoretically and experimentally. Terzaghi
(1943) and Meyerhof (1951) both proposed that the slip line of the radial
shear zone under a strip foundation (see Fig. 2.1) may be approximated by
a logarithmic spiral (theoretically correct for weightless soils).

Meyerhof (196la) reasoned theoretically that a plane shear zone exists
adjacent to the penetrometer base, Biarez et al (1961) observed experi-
mentally that a rigid wedge (or cone) develops under the base of rough
flat-ended penetrometers for relative depths greater than one (D/B>1)., The
fact that for great relative depths the slip line of the radial shear

zone reaches vertical tangency was experimentally shown by Blarez et al
(1961) and applied to pile foundations (flat-ended) by Hu (1965). To

date, no model studies have been reported which consider the effects of
base configurations other than flat. Also, the effect of base roughness on
the failure mechanism associated with wedge-shaped and conical penetrometers

has not been studied.

MODEL STUDIES

General

Model tests were performed to establish a rational basis for theoreti-
cal developments and to improve the understanding of penetrometer-soil inter-
action. The effects of penetrometer configuration, penetrometer to soil
friction, soil relative density, and relative depth on the failure mechanism

were investigated.

Materials and Equipment

The models were constructed in a special lucite box with inside
dimensions of 15"x15"x15" (0.38m x 0.38m x 0.38m). The box consisted of
three sections, each 5.0 inches (0.13m) wide, held together with tie bars
and made watertight by a sealant tape. The box was so designed that the
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tie bars can be removed and a section of box can be separated. A steel
plate and electrical vibrator were used to densify samples. To prepare
loose samples, the éand was deposited above a screen which was then slowly
raised. In order to level the successive sand layers during placement a
special leveling plate (screed) was used. During trimming, the sample box
was placed on a tilted platform in order to safely trim the desired
sections. A spatula and a sharpened trowel were used to trim the sample.
The soil used in all the tests described herein was a fine air-dried
sand, Monterey Sand No. 0 (engineering properties are given in Chapter
‘Five) . In order to facilitate observation of the failure mechanism,
alternate horizontal layers of clean and colored sand were placed. The
sand was colored using dye and carbon tetrachloride, a technique which

minimizes the change in the characteristics of the sand.

Model Preparation and Testing Procedure

The models were prepared and tested as follows:

(1) A filter paper was placed inside the box on top of the water
exit, to serve as a drain and to prevent piping during later
saturation and drainage of the samples.

(2) The initial and subsequent alternate layers of clean and colored
sand were placed and leveled carefully with the leveling plate.
Changes in soil density due to placement of additional layers of
sand were found to be insignificant.

(3) The elevation of soil was measured and the average density was
calculated.

(4) Various penetrometers were pushed into the sand at a constant
rate, 0.2 in./min. (5 mm/min.) and the resistance was measured
with a load cell and recorded using an electronic recorder print-
out system. Penetration was measured by movement of a marker on
a ruler. The test was stopped upon reaching the desired base
elevation.

(5) The penetrometer was disconnected from the load cell without dis-
turbing the soil and left in the model.

(6) The sand was then water-saturated slowly from the bottom under
a very low hydraulic gradient. About four hours were required.

The settlement due to saturation was negligible.
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(7

(8)

The model was then allowed to drain overnight., The capillary
tensieon remaining in the wet sand after drainage allowed the sand
to be safely trimmed when the box was clamped to a wooden platform
inclined approximately 35° to the heorizoental.

The removable portion of the box was detached and the model trim-

med along any desired section. Each section was photegraphed.

Results and Observations

More than 15 medel tests were performed. The results of some of them

are analyzed in the following paragraphs and summarized in Table 3.1. g

Photegraphs of the center sections of the models are given in Figs. 3.1

through 3.8. Observations based on studies of the center sections may be

summarized as follews:

&9

(2)

(3)

(4)

(5)

For the tested range of relative depths (D/B) and relative densities,
only general shear type failures were observed for tests using
wedges. These test points are plotted on Fig. 3.9 which alse shows
the boundaries proposed by Vesic (1963) for different failure modes
at various relative depths and relative densities. It may be seen
that the limits of the general shear zone indicated by this research
are wider than those proposed by Vesic for another sand. This
difference is apparently due to the fact that the two sands do not
have the same compressibility characteristics.

A plane shear zone exists adjacent to the penetrometer base and

the topmost angle of this zone varies with the roughness of the
base as may be seen in Figs. 3.4, 3.5, and 3.6.

Figs. 3.4, 3.5, and 3.6 also show a radial shear zone adjacent to
the plane shear zone. It may be seen that the radial shear zone
extends to the surface of the sand. Fig. 3.10 indicates that the
slip surface of this 2zone may be closely approximated by a
logarithmic spiral.

Figs. 3,4 shows that, for penetrometers whose base dimension
exceeds the shaft dimension, a zone of loose soil is created

along the shaft.

The approximate volume change of the soil during shear was calcu~
lated by studying the cress—-section phetegraphs. It -appears that

the soil dilated during shear in each case, The dilation zenes
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FIG. 3.1a CENTER SECTION- PHOTOGRAPH
OF MODEL NO.
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FIG. 3.1 b PENETRATION RESISTANCE
CURVE FOR MODEL NO. t

42

@



OVERALL VIEW

)

a

(

-UP VIEW

CLOSE

)

b

(

PHOTOGRAPHS

SECTION
MODEL

CENTER
OF

2

3

G

F

2

L)

NO

43



(a) OVERALL VIEW

(b} CLOSE-UP VIEW

FIG. 3.3 CENTER SECTION PHOTOGRAPHS
OF MODEL NO. 3
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(o) OVERALL VIEW

(b) CLOSE-UP VIEW

FIG. 3.4 CENTER SECTION PHOTOGRAPHS
OF MODEL NO. 4
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{(a) OVERALL VIEW

{b) CLOSE-UP VIEW

FIG. 3.6 CENTER SECTION PHOTOGRAPHS
OF MODEL NO. 6
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FIG. 3.7a CENTER SECTION PHOTOGRAPH
OF MODEL NO. 7

FI6. 3.7b CENTER SECTION PHOTOGRAPH
OF MODEL NO. 8
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FiG. 3.8a - CENTER SECTION PHOTOGRAPH
OF MODEL NO. 9

FIG. 3.8b CENTER SECTION PHOTOGRAPH
OF MODEL NO. 10
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were determined by measuring the distance increases between the
dark-colored interfaces.

(6) Very small rigid wedges were observed (Figs. 3.2 and 3.3) for the
case of flat—ended penetrometers. This is believed (Abdul-Baki and
Lewis, 1970) to be due to the fact that penetrometer to soil friction
does not become fully developed for the flat-ended case. The low
developed friction also causes the volume of the failed soil to
be smaller than expected (see Table 3.2).

(7) All of the photographs show that there are many shear surfaces
developed during penetration. Each failure surface corresponds to
a certain relative depth. The discontinuous, step-wise development
of the shear surfaces is due to the fact that further penetration
is required in order to develop the full shear resistance of the
soil along another shear surface.

(8) 1t may be seen from Figs. 3.7 and 3.8 that the soil zone undergoing
shear is much smaller in the case of axisymmetric strain conditions
than in plane strain. This is due to the fact that the deformations
developed at any given section are much smaller than in plane
strain. The three dimehsional nature of axisymmetric strain condi-
tions is also the proBable cause of the fact that no distinct shear
surfaces were observed for this case.

(9) The affected volume of soil increases with an increase in the rough-
ness of the penetrometer base (see Table 3.2).

(10) The affected soil volume increases with a decrease in the base apex

angle of the penetrométer (see Table 3.2 for Models 4 and 5).

PROPOSED FAILURE MECHANISM FOR WEDGE LOADING

A failure mechanism under strip loading by wedges which satisfies all of the
observed features of the model tests as well as the knowledge obtained from pre-
vious studies for the range of relative depths considered is shown graphically
in Figs. 3.1la and 3.11b. A plane shear zone exists adjacent to the base of
the penetrometer (see Fig. 3.11B). A logarithmic spiral approximates the slip
surface of the radial shear zoné and either intersects the ground surface at
point E (see Fig. 3.1la) or becomes vertically tangent to line EF (see Fig.
3.11b). A similar failure mechanism was proposed for flat-ended piles by Hu
(1965) and by Abdul-Baki and Lewis (1970).
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Referring to Fig. 3.11lb for the more general deep penetration case, it
has been shown by Abdul-Baki and Lewis (1970) that the point 0 is the center
of the logarithmic spiral. The zone bounded by OCEFG is one in which the
state of plastic equilibrium has been reached at every point. The earth
pressures developed along vertical faces EF and 0G are considered. It is
assumed, as proposed by Hu (1970) that no shear stress develops along the
vertical face EF. This implies that for penetration depths greater than DB’
all the soil deformation is accommodated below plane HE. The effects of the
angle of internal friction and the penetrometer to soil friction on the
magnitude of the topmost angle of the plane shear zone (Y) are considered in
the following section. Further, for blunt, rough (§=¢) bases, model tests
show that a rigid soil wedge (or cone) will be developed in front of the tip
having a base angle of 45°+¢/2.

A comparison of predicted and observed geometric features of the failure

surfaces for the model tests is presented in Table 3.2.

THEORETICAL CONSIDERATIONS

Determination of the Topmost Angle (y) of the
Plane Shear Zone ‘

The geometrié configuration of the plane shear zone adjacent to the
wedge (Fig. 3.11b) is determined by the known wedge semi-apex angle (o), the
topmost angle (y), and the included angle ACO which is equal to (90% - ¢).
As the roughness (8/¢) of the wedge increases, the angle Y at point 0
decreases and vanishes for a perfectly rough (8=¢) wedge. Means for calcu~

lating this angle are given in the following paragraphs.

Cohesionless soils (c=0)

As shown in Fig. 3.11b, the logarithmic spiral starts from point C.
According to plasticity theory OC should be a plane along which full mobiliza-

tion of shear strength of soil takes place. In other words:
T, = 9 tan¢ (3.1)

in which T, = shear stress on plane 0C, Cb = normal stress on plane OC, and
¢ = angle of internal friction of soil. It should also be noted that the
stresses on plane OA should satisfy the following relationship:

T, =0, tand (3.2)
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in which T, = shear stress on plane OA, Oa = normal stress on plane OA,

and § = penetrometer to soil friction angle.

It can be seen from Fig. 3.12a that the following relationships can be

written:
O, .~0
_ . 1f "3f, _
T, = (———E———) cos (2y-¢)
(3.3)
and
o, t0 O, ~0
= (. 1f 3f 1f "3f _
0, = (50 + (5= sin(2y-9)
where glf'= major principal stress at failure, °3f = minor principal stress

at failure and Yy = the topmost angle of the plane shear zone. By substituting
Equation 3.3 into Equation 3.2, the following relationship may be obtained.

(olf—c3f) cos{(2y-0)

tan$ = - (3.4)
(clf+03f) + (Glf—03f) sin(2y-9)
or
!(01/03)f-l] cos(2y-9)
tand = TGl F (6,5 1T slaCzy-p )
By introducing K = (01/03)f, Equation 3.5 becomes:
tané cos (2y-0) (3.6)

T TEFD/K-1) 1 + sin(2y—9)

From Fig. 3.12a, the ratio of major principal stress to minor principal

stress at failure can be written as follows:

_ _ 1+ sind
K= (03793 ¢ = T"ing (3.7
By substituting Equation 3.7 into Equation 3.6:
= cos (2y~-¢)
tan$ = (1/sin¢) + sin(2y~9) (3.8)
or
tand [l+sind sin(2y-¢)] - sind cos(2y-¢) = O (3.9)
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Equation 3.9 indicates that for cohesionless soils, there is a unique value
of angle Y, for given values of § and ¢.
For perfectly smooth wedge (6=0) in cohesionless soils, Equation 3.9

becomes:
sind * cos(2y-9) = O (3.10)

For ¢#0, cos(2y-¢) =0 or 2y-¢ = (2n+l) gi and consequently (for n=1);

Y = 45° +% (3.11)

This may be seen directly from Fig. 3.12a. For §=0, the line OL coincides
with the 0 axis and 2Y becomes equal to 90°+¢.
For a perfectly rough wedge (8=¢), Equation 3.9 becomes:

tand [l+sind sin(2y-¢)] - sind cos(2y~¢) = 0 (3.12a)
or for ¢#0:

1 + sin¢ sin(2y-9¢) = cosd cos(2y-¢) = 0 (3.12b)
or

1 -rcos(2y) =0
and consequently;

Yy=10

This also can be seen from Fig. 3.12a. For 6=¢, lines OL and 0S coincide

and the angle vy vanishes.

Cohesive soils (¢=0)

For cohesive soils (¢=0), Equation 3.8 does not apply. In this case,
the angle ¥ can be calculated as follows: The roughness of a wedge for
¢=0 soils is defined as:

fc = ca/c (3.13)

where ngcgl is the roughness factor, c, is the adhesion (cohesion between
wedge and soil), and ¢ is the cohesion. From Fig. 3.12b:

c

AA1 a
m - (3.14)

sin (g— -2y) =
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oY

-1

Y = %-—'% sin (fc) (3.15)

For perfectly smooth wedges, fc = 0 and Y becomes equal to 45°, and for

perfectly rough wedges, fc = 1 and Yy becomes equal to zero.

Cohesion—friction (c-9) soils

Similar to cohesionless soils, the shear stresses on plane OC are given
by (see Fig. 3.13):

T, = ¢ + 0, tand (3.16)

b b
and the shear stresses on plane OA are given by:

T =¢ + 0 tand (3.17).

a a a

Also, from Fig. 3.13, T, and o, are given by Equation 3.3, By substituting
Equation 3.3 into Equation 3.17:

(Olf-USf) cos(2y—¢)==2ca4-[(Olf+03f)+(01f—03f)sin(2y—¢)]tanG

(3.18)
The major principal stress at failure clf is given by:
O1¢ = = 21213 + ic-cgiiq; (3.19)
By substituting Ulf into Equation 3,18:
E_(ca, c, 8, O, Y, 03f) =0 (3.20)

which implies that for c-¢ soils, the angle Yy is a function of O3f. It can

be seen, however, that for a perfectly rough wedge Y=0, and for a perfectly

¢

smooth wedge Y = 45° +5 .
It can be shown that the dependency of the angle Yy on 03f vanishes under
the following assumption:
ca/c = tan$/tan¢ (3.21)
and that functional F becomes:
g_(ca, c, 8, ¢, V) =0 (3.22)
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Equation 3,21 implies that lines TS and T'L intersect at point 0' on the
axis (see Fig. 3.13). It can thus be seen that functional F may be
calculated.

Geometrically it can be seen that 00' = ¢ cotd = cacotﬁ or that
ca/c = tan8/tan¢, which is a reasonable assumption for most c¢-¢ soils. With

this assumption, Fig. 3.13 yields the following:

MB = KB/cos¢
(3.23)
and AA, = MA cos(2Y-¢)
Since MA=MB=radius of Mohr's circle:
AA = KB cos (2y-¢) (3.24)
1 cosd
From Fig. 3.13:
O'K = KB cotd
KM = KB tan¢ (3.25)
MA = AA tan(2Y-9)
TA = AA
0] Al AAl cot§

By substituting Equation 3,25 into O'A = O0'K + KM + MAl’ the following

relationship is obtained

AA1 cotd = AAl tan(2y-¢) + KB(cotd + tand) (3.26)

By substituting Equation 3.24 into Equation 3.26:

cot§ = tan(2y-¢) + EB§%§$%$T (cotd + tand)
or,
tand [1 + sin¢ sin(2y-¢)] - sind cos(2y-¢) = 0 (3.27)

It can be seen that Equation 3.27 is exactly the same as Equation 3.9.
In other words, the angle Y satisfies the same relationship in both
cohesionless and cohesion-friction soils provided that Equation 3.21 is
satisfied.

Values of the angle Y for different values of roughness and angle of
internal friction may be calculated from Equation 3.9 using Subroutine ANG

(See Appendix A). An iterative procedure was used to calculate values of
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Y to an accuracy of 0.1°. These values are tabulated in Table 3.3. Fig. 3.14
shows the variation of angle Y with roughness for different values of angle
of internal friction.
The following conclusions can be drawn from the analysis of Table 3.3
and Fig. 3.14:
(1) The effect of angle of internal friction on the angle Y is much
more pronounced for low values of roughness than for high values.
(2) For high values of roughness, there is a considerable increase in Y
values for a small decrease in §/¢ values.
(3) The theoretical curve for Yy versus §/¢ is well above the linear
variation curve, indicating that linear interpolation for Yy values
between 0° and 45°+¢/2 for different roughness values is not

permissible.

Determination of Critical Relative Depth

The vertical tangency point of the shear surface coincides with the
ground surface (see Fig. 3.11b) for a certain relative depth depending on
base apex angle, base roughness, and angle of internal friction of the soil.
This relative depth is defined as the critical relative depth, (D/B) .. If
the relative depth of the penetrometer base is greater than the critical
relative depth, the angle B (see Fig. 3.11b) will be equal to the angle of
internal friction (¢); otherwise it will be smaller than the friction
angle and must be calculated by iterative procedures. The iterative technique
used is described in Chapter Four. A summary of calculated critical
relative depth values is given in Table 3.4. The significance of these
values can be summarized as follows:

(1) If the relative depth is greater than the critical relative depth:

(a) For further penetration, there will be no change in the
bearing capacity cohesion factor (Nc) values (see Chapter
Four).

(b) For further penetration, the increase in friction-
surcharge bearing capacity factor (NYQ) will be propor-
tional to the increase in depth. In other words, NYq
values for larger depths can be calculated by linear
extrapolation (see Chapter Four).

(2) They are used as the basis for the calculation of depth factors (see

Chapter Four).
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Table 3.4 VALUES OF CRITICAL RELATIVE DEPTH, (D/B)cr

65

a=15° a=30°
6/9 /9
0.0 0.5 1.0 | o 0.0 0.5] 1.0
25 | 1.37| 1.91| 2.36 25 |0.80| 1.12| 1.38
30 | 2.06| 2.98| 3.77 30 | 1.24| 1,79 2.27
35 | 3.10| 4.71] 6.15 35 [ 1.93] 2.93| 4.01
40 | 4.75| 7.68{10.41 40 | 3.06| 4.95| 7.38
45 | 7.551/13.20(18.79 45 | 5.08| 8.86(14.48
50 |12.72({24.55(37.34 50 8.99‘17.34 31.34
_a=45° a=90°
6/9 6/9
0.0/ 0.5{ 1.0 | o 1.0
25 | 0.64| 0.89| 1.31 25 | 1.31
30 | 1.02| 1.48) 2.27 30 | 2.27
35 | 1.64 2.49l 4.01 35| 4.01
40 | 2.70| 4.,36| 7.38 40 | 7.38
45 | 4.66| 8.14|14.48 45 [14.48
50 | 8.68[16.75|31,34 50 [31.34




Determination of Lateral Extent of the Radial Shear Zone

The lateral extent of the shear surface is a maximum for relative
depths equal to or greater than the critical relative depth. The lateral
distance from the pole of the logarithmic spiral to the shear surface at
the point of vertical tangency is denoted by r, (see Fig. 3.11b). Table 3.5
summarizes the maximum lateral extent of the slip surface, in terms of the
dimensionless variable rc/B, for various values of base semiapex angle (o),
base roughness (8/¢), and soil friction angle (¢).

The importance of considering the lateral extent of the failure surface
has recently discussed by Nowatzki and Karafiath (1972). The soil volume
affected in the two dimensional (plane strain) problem will be proportional
to r, and the volume affected in the three dimensional (axisymmetric) problem
is proportional to rcz. Volumetriec considerations are particularly important
in compressible soils because to develop full frictional resistance along a
larger failure surface larger soil volume must be compressed. Consequently,
indices obtained with penetrometers whose configurations result in large
affected soil volume are likely to be more representative of soil compressi-

bility than of soil shear strength properties.

SUMMARY

Previous studies of the failure mechanism associated with static
penetration have been reviewed. Model tests have been performed and the
results used to further define the mechanism of failure. The effects of
penetrometer configuration, penetrometer to soil friction, soil friction angle,
and relative depth on the failure mechanism have been investigated. A
proposed failure mechanism for wedge penétration based on the interpretation
of features observed in the modél tests and the results of previous studies
is presented. The geometric features of the propésed failure mechanism have
been formulated in terms of base semiapex angle, base roughness, soil friction

angle, and relative depth of penetrometer base.
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Table 3.5 SUMMARY OF rc/B VALUES FOR D/B_>,(D/B)cr

a=15° a=30°
6/q1 ) ‘ 6/@ '

| 0.0 0.5 1.0 | o 0.0/ 0.5| 1.0
25 | 2.94| 4.09| 5.05 25 1.1.72] 2.39| 2.95
30 { 3.57| 5.16| 6.53 30 | 2.15| 3.11| 3.93
35 | 4,43 6.73| 8.78 35 | 2.75| 4.18] 5.73
40 | 5.66| 9.16|12.40 40 | 3.65| 5.90( 8.79
45 | 7.55{13.18/18.78 45 | 5.07| 8.86(14.47
50 |10.66|20.57|31.13 50 | 7.54 |14.54 26,22
a=45° a=90°
6/9 6/¢9

0.0 0.5/ 1.0 | o 1.0

25 | 1.37] 1.91| 2.80 25 | 2.80
30 | 1.77 2.55]| 3.93 30 | 3.93
35 | 2.34| 3,55 5.73 35 | 5.73
40 | 3.21| 5.20| 8.79 40 | 8.79
45 | 4,66 8.14|14.47 45 [14.47
50 | 7.28(14.05 /26,22 50 (26,22
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CHAPTER FOUR

THEORETICAL CALCULATION OF STATIC
PENETRATION RESISTANCE

INTRODUCTION

Both the results of model tests (Chapter Three) and additional experi-
mental results (Chapter Six) show that for wedge (or cone) penetrometers,
the ultimate penetration resistance depends strongly on the base semiapex
angle (a), base roughness (§/¢), and relative depth (D/B). No theory avail-
able heretofore has considered these three parameters explicitly over the
ranges of interest. Knowledge of the failure mechanism has now permitted
development of new relationships for the ultimate base resistance which
account explicitly for these parameters. The development of the these
relationships is described in this chapter, and curves showing bearing
capacity factors versus angle of internal friction for several values of the
parameters 0, /¢, and D/B are presented. The importance of various para-

meters is discussed.

GENERAL CONSIDERATIONS

The general bearing capacity equation for a plane, horizontal strip

foundation is:

1
qe = ch + Z/YSBNY + qu (4.0

where 9 = ultimate bearing capacity, q = surcharge, ¢ = cohesion, Yg =
effective unit weight of soil, B = width of loaded area, and Nc, NY’ and

Nq are bearing capacity factors for cohesion, friction and surcharge
respectively., When the general bearing capacity equation (Equation 4.1)

is applied to square, circular or any other contact areas of limited extent,
the primary bearing capacity factors must be modified by shape factors

(EC, EY, Eq) which are usually determined empirically. With these modifying

factors, Equation 4.1 is expanded to:

- 1
9 = cNE +35 yanng + qugq (4.2)
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It is customary (Meyerhof, 1951) to calculate Nc and Nq for one assumed
failure surface and NY for another., As discussed in Chapter Two, the use
of factors determined in this manner may lead to a significant underestimat-
ion of the ultimate bearing capacity. As an alternative to the customary
procedure, the factors Nq and NY may be combined (NYq) and a proper single
failure surface may be considered for the calculation of Nc and N

Y
1951 and Hu, 1965). Consequently, Equation 4.2 may be rewritten as:

q (Meyerhof,

9 = eNE, *+ VBN E (4.3)

where NYq is the bearing capacity factor for the friction-surcharge term
and qu is the corresponding shape factor. As previously mentioned, for
wedge or cone penetrometers, both Nc and NYq are functions of the following
variables:

(1) Soil friction angle (¢)

(2) Base semiapex angle (a)

(3) Base roughness (5/¢)

(4) Relative depth of penetrometer base (D/B)
Thus:

N , N

c = fl’ fz (¢, o, 5/¢, D/B) (4.4)

Yq

DETERMINATION OF BEARING CAPACITY FACTORS

General
Fig. 4.1 shows the free body diagram for the calculation of the bearing
capacity factor NC. The following expression for Nc may be derived (see

Appendix A for details):

_ [1+sind sin(2y-¢)] 206 tand cos(2y-¢) tany -6 tand
= - e” o + e” o
c sind cosd cos¢

[sin(2&+¢)-sin¢][1+sind sin(2y-¢)] 20 tandp _1
cos?¢[cosdp-tand[sin(2E+d)-singd]] e o tang

tan¢ tany cos(2y-9)[sin(2E+9)-sind] ezeotan¢

cosd[cosd-tand{sin(2&+d)-sind]] (4.5)
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OF BEARING CAPACITY FACTOR Ng
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FIG. 4.1 FREE BODY DIAGRAM FOR DETERMINATION



Because it is assumed (Hu, 1970) that there is no shear stress developed

en the vertical plame CD, the angle & vanishes, and Equation 4.5 simplifies

to:
o ltsin¢ sin(2y-¢) 26 tand 1 cos (2y-¢p)tany .6 tand
Nc - sind cosd ¢ ° tand * cos¢ e o° (4.6)
where ‘Nc = bearing capacity factor for cohesion term,
¢ = soil friction angle,
Y = the topmost angle of the plane shear zone,
Y = 90°-0 (0 = semiapex angle),
0, = 180°-(Y+y)+B
Equation 4.6 can be written in functional form as:
N, = F(6, ¥, ¥, B) ‘ (4.7)
or because Y=90°-a, Y=£($,8/¢) and B=§1(¢, /¢, a, D/B), Equation 4.7 can
be restated as:
NC = fl (¢3 Oy 6/¢o D/B) (4.8)
Fig. 4.2 shows the free body diagram for the calculation of bearing
capacity factor NYq. From static equilibrium eof body OCEFG:
z MO =0 (4.9a)
or , Fyly * Pgilgq = Bgolgp * Pyly + Pploa * Wiy (4.9b)

The following expression for NYq may be derived (see Appendix A for details):

N = cos(Y~08) [1+sind sin(2y-4)] { coSZ(Y‘¢)

Yq cosd cosd cos(y-¢) bcos?P cos?d Ie +
3cos (Y=$) cos?B 6 tand _2 cosy cos¢
4ecosy cosd e o (m 30 ) Ko cos (y-9)
. (e 2 ' cosy cos 3\ _ tanm
(m-m')* (m+2m') + K o5 (7-9) m} A (4.9)



LSZ

FIG. 4.2 FREE BODY DIAGRAM FOR DETERMINATION
OF BEARING CAPACITY FACTOR Nyq
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where Nyq = bearing capacity factor for friction-surcharge,

¢ = angle of internal friction of soil,

Y = 90°-0 (o=semiapex angle),

§ = base to soil friction angle,

Y = the topmost angle of the plane shear zone,

6, = 180°-(Y+y)+8,

K = lateral earth pressure coefficient (see the discussion later
in this chapter for proper selection),

= relative depth (D/B),

m' = DB/B’

DB = the vertical distance of point E on the failure surface
above base level [a function of B (see Fig. 4.3)],

wo-§ tmbeon(re) ey

and Ie is given by:

1 390tan¢

Yo = THgeanzg | 2tentle

cosB—cos(Go—B)] +

+ [eseotan¢ sinf+ sin(@o—B)]} (4.10)

Similarly to Nc’ NYq is a function of four parameters:

NYq = f2 (¢, a, §/¢, D/B) (4.11)

Determination of the Angle 8

In order to calculate the bearing capacity factors Nc and NYq from
Equations 4.6 and 4.9, the value of the angle B (see Fig. 4.1) must be known.
For relative depths equal or greater than the critical relative depth, the
angle B is equal to the angle of internal friction (¢) of the soil. For
relative depths less than the critical relative depth, the failure surface
will intersect the ground surface before reaching vertical tangency. In
this case, B will be smaller than ¢ and must be calculated by iterative
procedures., The procedure used for the calcualtion of B is described in the

following paragraphs.
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From Fig. 4.3:

AB = B/(2cosy) and AC = AB-* Eegégéil (4.12a)
or _ _ _Beos(y-9)
ro = AC = -2—(5—5'5—%52@- (4.12b)

Also from the same figure:
D = AE+sinf (4.13a)
and from the property of a logarithmic spiral:

AE = Ac-edotand (4.13b)

By substituting Equations 4.12b .and 4.13b into Equation 4.13a:

Becos(y-¢) sinf eeotan¢

Dg = 2cos¢ cosl (4.14a)
or D
B _ _+ _ cos(y-¢) sinB 6 tand
B " 2cosd cosy €0 (4.14D)

The value of B is known if m' < m (w=D/B) and is equal to the angle of
internal friction. For m' > m, f will be smaller than ¢. The following
method is used to determine whether or not m' is smaller than m.

(1) Bl

(2) This value is substituted into Equation 4.14b and the correspond-

= ¢ is assumed.

ing m' value is calculated.

(3) If m' <m (m=D/B), the correct value of B is ¢. If m' > m, the
correct value of B is smaller than ¢ (see Fig. 4.3) and can be
found by itefative procedures.

For B=Bc (Bc=the correct value of B for the given variables), m' = m,

or from Equation 4.14b:

cos(Y—Cb)'sinBc

2cosd*cosy

eGOtan¢ =m (4.15)
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For given values of ¢, 8/¢, o, and D/B, the angle B is the only unknown in

Equation 4.15. Thus, the following iterative procedure can be used:
(1) From Fig. 4.3, n= 180°-(y+Y) and AD=AC°entan¢ and by substituting
Equation 4.12b for the value of AC:

Ap = —Beos(y=¢)  ntand (4.16)

2cos8$ cosy
and as a first guess:

tanBo = DD'/AD

or B = tan™? 2mcos¢+cosy ] (4.17)
° [COS(Y-¢)°entan¢

Thus, Bo can be calculated explicitly from Equation 4.17 because n is known.

(2) This value of B = Be‘is substituted into:

2mcosd cosy
sinf =
cos(Y—¢)e§otan¢

where 50 = 180° - (Y+w)+8o and the new value of B, (B=Bn) is
calculated from:

B = sin™t 2’?‘°°S¢‘S°:‘§n¢ (4.18)
cos(Y—¢)eeo
(3) 1Iteration is stopped after the first step 1if:

|8, - 8, <0.1°

and the value of Bn is taken equal to Bc' If not, for the second

iterationg
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arithmetic average of first guess and first iteration values is
used, and the same procedure is repeated until the error in Bc
is equal or smaller than 0.1°.

In most cases only few iterations were necessary. Fig. 4.4 is an example of

the convergence of this iterative procedure.

Procedure

Once 8 is known, the factors Nc and NYq can be calculated from Equations
4.6 and 4.9, respectively, for given values of ¢, o, 6/¢, and D/B. A
computer program was written to calculate Nc and NYq separately for different
values of these four parameters. The complete program consist of Program
NC Program NGQ and one subroutine, ANG which calculates angle Y (the topmost
angle of the plane shear zone). The angle Bc ig calculated in the main
program. A flow diagram for the program is given in Fig. 4.5, and a listing
is given in Appendix A.

Example curves showing NC and NYq versus ¢ for a=15° to 90°, §/¢=0.0,
0.5, and 1.0, K=Ko=l—sin¢, and for D/B=10.0 are given in Figs. 4.6 and 4.7. It
should be noted that the break points in Fig. 4.6 for Nc are a functien of
relative depth. The dashed lines indicate the Nc versus ¢ relationship for
higher D/B values than indicated on the figure. For the relative depths
indicated, solid lines should be used. A complete set of curves for several
values of o, /¢, and D/B for general shear failure is presented in Appendix
A,

Effect of Base Apex Angle

Theoretical and experimental (see Chapter Six) results both show that
the ultimate penetration resistance of soil to wedge (or cone) shaped penetro-
meters depends strongly on the base apex angle (20). Fig. 4.8 shows the
effect of the base semiapex angle on the bearing capacity factors NC and
NYq for various base roughnesses, for given values of soil friction angle
(¢=30°) and relative depth (D/B=10.0).

For rough bases, Fig. 4.8 indicates that the bearing capacity factors
do not change for semiapex angles larger than approximately 15°. This is due
to the fact that a soil wedge (or cone) develops in front of blunt rough
bases during penetration. However, the bearing capacity factors for rough
bases do increase with decreasing values of o below 15°.

For smooth bases, the bearing capacity factors are strongly dependent

on the value of the base semiapex angle., Fig. 4.8 indicates that the values
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From Equation 4.17
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FIG. 4.4 AN EXAMPLE OF THE CONVERGENCE

OF ITERATION PROCEDURE FOR
THE CALCULATION OF ANGLE B,
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READ PARAMETERS

a, Y%, Y

+

ASSIGN ¢ VALUE

~

CALL SUBROUTINE ANG

AND CALCULATE 7 ANGLE

ASSIGN A NEW ¢
VALUE

'

CALCULATE B, BY

ITERATION

PRINT ITERATION

STEPS

Y

CALCULATE BEARING

CAPACITY FACTORS

AND PRINT DESIRED
INFORMATION

STEP = STEP +1

"END [

FIG. 4.5 FLOW DIAGRAM FOR DETERMINATION OF
i BEAFI?ING CAPACITY FACTORS
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Bearing capacity factor = Nyq
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of the factors increase sharply with increasing apex angles.

Effect of Base Roughness

The bearing capacity facters Nc and NY are dependent not only on a,
but also on the base roughness (8/¢). Therefore, knowledge of o alone is
insufficient information from which to draw conclusions regarding penetra-
tion resistance.

As presented in Chapter Two, the base roughness has little influence
on the penetration resistance encountered by a plane and horizontal contact
area in cohesive (¢=0) soils. However, at the surface of a cohesionless
soil, a smooth flat-ended penetrometer will encounter less penetration
resistance than one having a rough base. The effect of roughness on the
penetration resistance of flat-ended penetremeters in cohesionless soils
diminishes for relative depths greater than 4.0 as can be seen from Figs.
A.7 through A.10,

It can be seen from Fig, 4.8 that the effect of base roughness is
specially important for sharp (small o) wedge or cone shaped penetrometers.
However, this effect vanishes for larger values of base semiapex angle.

Fig. 4.9 shows the variation of the bearing capacity factors Nc and
NYq with base roughness for a base semiapex angle of 15°. It can be seen
that the bearing capacity factors for a given intermediate roughness should
not be estimated by linear interpolation between perfectly smooth and
perfectly rough values. However, linear interpolation between §/¢= 0.0
(perfectly smooth) and 6/¢= 0.5 (semi-rough) and between 6/¢= 0.5 and
8§/¢= 1.0 (perfectly rough) yields a very good approximation to the correct

values of N and N_ .
c Ya

Effect of Initial Stresses

It can be seen from Equation 4.9 that the bearing capacity factor N
is dependent upon the value of lateral earth pressure coefficient (K). The
value of K is determined by the penetrometer shape (relative sizes of
penetrometer base and shaft), soil density, and initial stresses. An increase
in the initial lateral stresses means an increase in the value of K, It has
been shown that, for example,vibration of cohesionless soils will cause an
increase in the value of K (D'Appolonia, et al., 1969). Therefore, the
effect of initial lateral stresses on penetration resistance can implicitly
be studied by assigning different values for K. As an example, Fig. 4.10

shows how the value of NYq increases with increasing values of K,
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Comparison with Other Available Solutions

As discussed in Chapter Two, Brinch Hansen (1961) proposed that bearing
capacity factors corresponding to D/B=0 be modified by depth factors in
order to calculate bearing capacities corresponding to larger relative depths.
Based on that study and investigations by Meyerhof (1951, 1955), Skempton (1951)
and others, Brinch Hansen proposed the following generalized, semi-empirical

depth factors:

_ 0.35
D (1+7tan¢)
dc-l.O
dq =d, - —5 (4.19b)
q
d =1.0 (4.19¢)
Y

It is obvious that dc and dq approach limiting values with increasing
relative depth for a given value of ¢. Also, for ¢>25°, Brinch Hansen (1961)
noted that the second term of Equation 4,19b approaches zero. Thus, for
$>25°:

d =4d (4.20)

For high values of relative depth, the factor dc approaches an ultimate value

given by:

_ 0.35 (4.21)
ddu1e. = 10+ G657 +7can"d)

Ultimate depth factors may also be calculated theoretically from
Meyerhof's (196la) values of Nc corresponding to shallow and deep founda-

tions by taking the following ratio:

Nc ("deep" foundations)

(d) (4.22)

felule. T Nc ("shallow" foundations)
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Further, the theory proposed in the current investigation may also be used

to formulate ultimate depth factors as follows:

N (for D/B>(D/B) )
) __c - cr
c’ult. Nc (for D/B = Q)

(4.23)

It should be noted that in Equation 4.23 the value of Nc remains constant
for relative depths equal to or greater than the critical relative depth. Cal-
culated values of the ultimate depth factors %or the cohesion term obtained
from Equations 4.21, 4.22, and 4.23 as a function of ¢ are compared in
Fig. 4.11. It can be seen from Fig. 4.11 that there 15 a very close agree-
ment between the values calculated from the theory developed in this
investigation and the values proposed empirically by Brinch Hansen (1961).

The influence of base roughness and base apex angle on the ultimate
depth factors were also investigated. It can be seen from Fig. 4.12 that

the effect of roughness is relatively insignificant.

BEARING CAPACITY OF CIRCULAR PENETROMETERS

The calculated bearing capacities are applicable to strip foundations.
In practice, however, most penetrometers are circular in shape. Further, as shown
in Chapter Three, the deformations around a circular penetrometer are
different than those observed for strip foundations. The failed soil zone
was restricted to a smaller volume and no distinct failure surfaces were
observed in the case of the circular penetrometers.

There have been some attempts (Larkin, 1968, Nowatzki, 1971, and
Nowatzki and Karafiath, 1972) to treat this three-dimensional problem the-
oretically by assuming that the Haar and von Karman hypothesis is valid;
i.e., by assuming that the circumferential stress is equal to the minor
principal stress. However, according to Hansen and Christensen (1969),
theoretical calculations of the bearing capacities éf’circular footings or
penetrometers are open to doubt because the Haar and von Karman hypothesis
is incompatible with the proportionality between the plastic strain and
deviator stress tensors, Also, the assumed slip surface; i.e., convergence
back upon the penetrometer shaft (Nowatzki, 1971) with a discontinity at )
base level (Nowatzki and Karafiath, 1972) is incompatible with that observed

in model tests.
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For these reasons it was concluded that theoretical calculations of the
bearing capacities of circular foundations are still so uncertain that best
estimates are made by the application of shape factors, found empirically,
to the bearing capacity factors for strip foundations,

Many empirical shape factors have been proposed. Those recommended by
Brinch Hansen (1961) were adopted in this study, because they agreed very
closely with the experiﬁentali& determined values (see Chapter Six). The
following equations, determined semi-empirically, were presented by Brinch

Hansen (1961) for the individual shape factors:

£, = 1.0 + (0.2 + tan®¢) (B/L) (4.24a)
Ec -1
N (4.24Db)
q
£, = 1.0 - %-(o.z + tan®¢) (B/L) (4.24¢)

Brinch Hansen (1966) later suggested that EY be given by:

EY = 1.0 - 0.4 (B/L) (4.25)

Brinch Hansen also pointed out that for ¢ > 25°:

§q = Be = 10+ [(0.2+ tan®¢) (8/1)] (4.26)
It may be seen from Equation 4.26 that the shape factor Eq is inde~
pendent of relative depth. However, because the contributions of friction
and surcharge were considered together in fermulating the bearing capacity
factor Nyq’ it may be shown that the corresponding shape factor ng is
dependent on relative depth.
The procedure discussed below is used for the calculation of the shape
factor ng. As previously discussed, the unit resistance of strip and

circular (or other than strip in shape) foundations may be expressed as:

=1
@) gppsp = 5 VBN, *+ YDV, (4.27a)
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1

(qf)general = E-YSBNYEY + YSDngq (4.27b)
or _—1. 2
qf/(YsB)strip =7ty Ny (4.28a)
a./(Y_B) =iye +2y¢ (4.28b)
£f"*'s"’general 2 "YY¥ B q’q .

The ratio of qf/(YSB) to qf/(YsB)strip is the shape factor EYQ and

general
is given by:

1
5 N + mN
- 2 YEX q;ﬂ
qu 1 (4.29)
5 N_Y + qu
where m = D/B.
At the surface (D/B=0) and the contribution of surcharge due to over-
burden will be zero, consequently;
= = 1.0 - 0.4 (B/L 4,30
ng EY (B/L) ( )
or EYq = 0.6 for circular penetrometers.

For large values of relative depth, however, the contribution of the
friction term can be neglected compared to the contribution of the surcharge

(overburden) term, yielding the following expression from Equations 4.26 and
4,29:

Eyq = Bg = 10+ (0.2 4 tan®¢) (B/L) (4.31)
Values of the shape factor EYQ may be calculated from Equation 4.29 for

different values of ¢ and relative depth (m=D/B). The factors EY and Eq are

determined from Equations 4.25 and 4.26, and the bearing capacity factors NY

and Nq are taken from Fig. 2.4. The calculated values of EYq are presented

in Fig. 4.13.

However, in order to apply the procedure suggested in Chapter Seven
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for the determination of in-situ strength properties from the results of
cone penetration tests, it is necessary to formulate the variation in ng
analytically. The following empirical relationship has been obtained which
agrees closely with the values calculated theoretically from Equation 4,29

for the range of interest:

g = 10 - 0.4(0/1) + 5— L (4.32)
D (0.6+tan®¢) (B/L)
where ng = shape factor for the friction-surcharge term
B = width of penetrometer base
D = depth of penetrometer base
L = length of penetrometer base ( =B for circular penetrometers)

¢ = angle of internal friction of soil

At the surface, (D/B=0), Equation 4.32 becomes:

= = 1.0 - 0.4 (B/L 4,33
EYq EY (B/1) ( )
Further, it can be seen that, for large values of relative depth (D/B),

Equation 4.32 becomes:

Eyq = &g = 1.0+ 0.2+ tan®¢) (B/L) (4.34)
Therefore, it can be seen that Equation 4,32 satisfies known relationships
(Equations 4.25 and 4.26) at the limits (D/B = 0 and *).

Table 4.1 presents a comparison (over a wide range of values of ¢
and D/B) of values of qu by Equation 4.32 and by Equation 4.29. It can be
seen that the agreemént is quite good, and thus it may be concluded that
Equation 4.32 may be satisfactorily utilized in the analysis of cone penetra-

tion data.

SUMMARY
Knowledge of the failure mechanism associated with static penetration
(see Chapter Three) has permitted development of a new relationships for
ultimate resistance to penetration of wedges which account explicitly for base apex

angle, base roughness, soil friction angle, and relative depth. The derivation of
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the bearing capacity factors Nc and Nyq in terms of these parameters and
curves relating these factors to the angle of internal friction of soil for
several values of a, §/¢, and D/B for strip foundations were presented.

The values of ultimate depth factors calculated from these relationships
agree closely with the empirical values given by Brinch Hansen (1961). The
shape factor EYq was calculated in terms of relative depth using the wvalues
of EY and Eq proposed by Brinch Hansen (1961). Based on the results of
these calculations, an empirical relationship was proposed which relates

EYq to the angle of internal friction of soil and relative depth.
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CHAPTER EIVE

EXPERIMENTAL INVESTIGATION - SOIL PROPERTIES

INTRODUCTION

In order to evaluate the proposed theory experimentally, accurate
values of the angle of internal friction of the soil and the penetro-
meter to soil friction must be determined. Comprehensive series of drained
triaxial and direct shear tests were performed to measure the strength
properties of the test soii, and a series of direct shear tests was done
in order to determine the penetrometer to soil friction. The results of
these tests enabled the formulation of:

(1) The soil friction angle (¢) in terms of the pre-shear void ratie
and mean normal stress (or confining pressure),

(2) The penetrometer to soil friction angle (§) in terms of the pre-~
shear void ratio and normal stress for various penetrometer
materials and,

(3) The variation of roughness (§/¢) with pre-shear void ratio.

These results were used to predict the penetration resistance of the

soil using the proposed theory, thus enabling a comparison between predicted

and measured values (see Chapter Six).

SOIL CLASSIFICATION
A fine, clean, air-dried sand (Monterey Sand No. 0) was chosen for

this study. Classification data for this sand are summarized below:

Mean diameter 0.36 mm
Coefficient of uniformity 1.45
Specific gravity of grains 2.648 g/cm?
Maximum veid ratio 0.825
Minimum void ratio 0.558

The gradation curve of Monterey Sand No. 0 is given in Fig. 5.1. Microscopic
observation of the sand showed that the particles were sub-rounded and that

quartz and feldspar were the predominant minerals with a trace of mica.

STRENGTH PROPERTIES FROM TRIAXIAL COMPRESSION TESTS

Test Procedure

Specimens were prepared in a triaxial cell to the desired uniform

initial densities. The desired chamber pressure (pressures used were
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29.4, 58.8, 98, and 294 kN/m?) was applied by air pressure on the chamber
water and the specimen was tested 30 minutes later in a Wykeham-Farrance
strain-controlled testing machine at a deformation rate of 0.006 inches
per minute (0.152 mm/min). During the test, measurements were taken of
the axial load with a load cell, axial deformation with a dial gage and
change in volume of chamber water with a volume change device of the type

developed by Chan and Duncan (1967).

Test Results

A total of 16 drained triaxial shear tests was conducted. The results
of these tests are plotted in Figs. 5.2 and 5.3 which show the values of
principal stress ratio (01/03) versus axial strain for the conditions
investigated., The peak values of soil friction angles were calculated

from the results of these tests using the equation:
= ain ! -
¢ = sin"{[ (0, /05); - 11/[(0y/04) . + 11} (5.1)

The triaxial shear tests were carried to axial strain values of 10
to 15 percent., In the determination of residual triaxial friction angles,
principal stress ratios corresponding to axial strains of from 8 to 12
percent were used. The change in principal stress ratio beyond these
axial strain values was negligible for the range of confining pressures
and soil densities used.

Peak and ultimate triaxial friction angles are presented in Table
5.1 and are plotted against pre-shear void ratio (ec) for the various
confining pressures in Fig. 5.4. Values of the peak friction angles deter-
mined from plane strain tests by Lade (1972) for the same sand are also
plotted on Fig., 5.4 for comparison.

It can be seen that the difference between peak and ultimate values
of friction angles obtained from triaxial shear tests is not great, with
almost no difference for loose soil conditions.,

Peak principal stress ratios were found to decrease with increasing
confining pressures (or mean normal stress) for a given pre-shear void
ratio. As a result, the failure envelopes shown in Fig. 5.5 are slightly
curved, indicating that an increase in mean normal stress causes a reduc-

tion in soil friction angle values.
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Table 5.1 SUMMARY OF TRIAXIAL PEAK AND ULTIMATE FRICTION

ANGLES FOR MONTEREY SAND NO. 0

Peak Friction

Confining Pre-shear Ultimate
Pressure Void Ratio Angle Friction
03—kN/m2 e ¢ ~deg., Angle.
c P
¢ -deg [}
by
0.802 36.4 35.9
0.760 39.0 -
29.4
0.692 41.2 39.8
0.585 46.5 44,0
0.802 36.0 35.7
0.736 39.0 -
58.8
0.692 40.9 -
0.585 46.5 44,5
0.797 35.1 35.0
0.735 38.0 -
98.0
0.669 41,2 -
0.585 45,2 42.3
0.783 33.6 33.5
0.731 35.8 -
294.,0
0.681 37.3 36.5
0.575 42.1 40.6
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As suggested by Banks (1968), the triaxial ¢ values were plotted
against the logarithm of confining pressure as shown in Fig. 5.6. It may
be seen that the relationships can be represented by straight lines for
the range of confining pressures used. This variation of ¢ with 03 may be

expressed in the following form:

9(e,,05) = ¢,(e ) ~m(e) log (94/p,) (5.2)

in which ¢l(ec) is the angle of internmal friction at a given pre-shear void
ratio and at a confining pressure of P, (atmospheric pressure) expressed

in the same units as O3s and m(ec) is the reduction in ¢ per log cycle
change in confining pressure. For the range of confining pressures

(29.4 to 294 kN/m?) used, m values are between 3.5 and 6.0. The triaxial
friction angle of Monterey Sand No. O can be determined from the Figs. 5.4
and 5.6 for any value of confining pressure (or normal stress on the

failure surface) and pre-shear void ratio.

STRENGTH PROPERTIES FROM DIRECT SHEAR TESTS

Penetrometer to soil friction angles () were determined from the
results of direct shear tests. A series of direct shear tests was
also done on the sand in order to obtain values of the soil friction
angle for determination of §/¢.

The results of soil to soil direct shear tests are shown in Fig.
5.7 and indicate the variation of shear strass with relative shear
displacements for normal stresses of 168, 353, and 535 kN/m?. The
corresponding direct shear friction angles were calcualted and are pre-
sented in Table 5.2, These values can be compared with the values obtained
from triaxial tests, as shown in Fig. 5.8. Because the values are stress
dependent, comparisons should be made at same normal stress values. The
normal stress on the failure plane in a triaxial test is calculated from

the following relationship:

o ./

nf = 1 4 sin¢ (5.3)

93¢

Fig. 5.8 shows the average ¢ versus void ratio relationship which will be

used for the calculation of §/¢ in the following section.
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Table 5.2 SUMMARY-OF SOIL TO SOIL DIRECT

SHEAR TESTS
Normal Stress Initial Void Angle of
on failure plane Ratio, "e ‘ Internal
o_~kN/m? Friction
mf

¢‘deg .

0.748 35.0

168 0.632 42.6

0.550 50.1

0.759 34.2

353 0.608 43.2

0.555 47.8

0.761 34.8

535 0.619 41.4

0.560 46.0

PENETROMETER TO SOIL FRICTION

To determine the friction angle between the penetrometer material and
soil, and establish a basis for the variation of §/¢ with void ratio, tests
were conducted in a similar manner teo the standard direct shear test. The
upper half of the shear box was filled with Monterey Sand No. O at a desired
initial density, and the lower half of the shear box was replaced by a solid
sample of penetrometer material. A section through the shear box with the
samples in place is shown in Fig. 5.9. The three differenct penetrometer
materials tested are listed below:

(1) Polished hard-anodized aluminum

(2) Hard-anodized aluminum

(3) Sanded aluminum (sand particles glued to aluminum).

The tests were conducted in a Karol-Warner direct shear machine connected
to a variable speed motor in series with a gear reduction box so that the rate

of shearing could be maintained at 0.0015 in/min (0.048 mm/min). A total of
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15 tests at various void ratios was conducted using normal pressures of 168,
353, and 535 kN/m?, and the results are summarized in Table 5.3 and presented
graphically in Fig. 5.10. The follewing conclusions may be drawn based on
the test results:

(1) A wide range of penetrometer to soil friction angles may be obtained
depending on the penetrometer material,

(2) Penetrometer to soil friction angles are strongly affected by the
initial void ratio of the soil, as are also the sgil to soil friction
angles,

(3) Penetrometer to soil friction angles decrease slightly with increas-
ing values of normal stress on the failure surface as in the case of
soil to soil friction tests. However, this effect can be neglected
by employing an average value of (6) for the range of normal stress
values.

The friction angle § between various penetrometer materials and the soil,
as well as the angle of internal friction (¢) of the soil can be determined
from Figs. 5.8 and 5.10 for given values of soil void ratio. Values of &/¢
were calculated and are presented in Table 5.4 and Fig. 5.,11. It can be seen
that an essentially unique value of /¢ exists regardless of the soil density
or soil friction angle (¢). Values of /¢ were found to be approximately
equal to 0.3, 0.5, and 0.9, respectively, for polished hard-anodized aluminum,

hard-anodized aluminum, and sanded aluminum,

SUMMARY

The internal friction angle of Monterey Sand No. 0 was determined from
the results of triaxial -and direct shear tests. In addition, a series of direct
shear interface tests has been performed to determine the penetrometer to soil
friction for three different penetrometer materials., Using these results,
both ¢ and § have been formulated in terms of soil void ratio over a range of
normal stresses. These results are used in the next chapter to predict the
penetration resistance of Monterey Sand No. 0 in accordance with the relation-

ships developed in Chapter Four.
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Table 5.3 SUMMARY OF PENETROMETER TO SOIL FRICTION

TESTS IN DIRECT SHEAR

Friction

Nature of Normal Stress Initial
Friction on failure glane Void Ratio Angle
omf—kN/m e S-deg.
0.776 10.1
168 0.680 11.9
0.510 18.4
0.722 9.7
Soil to
polished 353 0.665 10.8
hard-anodized
aluminum 0.551 15.4
0.792 9.1
535 0.672 10.5
0.545 13.2
0.760 16.1
Soil to
hard-anodized 353 0.620 20.9
aluminum
0.555 23.8
0.743 31.7
Soil to
sanded 353 0.587 40.2
aluminum
0.535 44,2
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CHAPTER SIX
EXPERIMENTAL INVESTIGATION -

LABORATORY PENETRATION TESTS

COHESIONLESS SOIL

Introduction

In order to check the accuracy of the theoretical predictions, carefully
controlled laboratory tests were conducted. This section presents the results
of controlled penetration tests using Monterey Sand No. O and comparisons of

these results with predicted values.

Equipment, Facilities, and Penetrometers

Penetration tests were conducted in a test box 3.5 feet (~1.05 m) wide,
7.0 feet (~2.1 m) long, and 4.0 feet (~1.2 m) deep. The wooden test box is made
up of two 2-foot high removable sections. The loading equipment included a
hydraulically activated loading apparatus consisting of a 4.0 inch (102 mm)
diameter double acting cylinder and a flow control system. The load was trans-
mitted to the penetrometer by a shaft rigidly connected to the piston. The
system was designed for pressures up to 150 psi (~1035 kN/m?), and has a
maximum loading capacity of 1800 pounds (~7650 N). The available piston stroke
was 20.0 inches (0.508 m). (For deep penetration tests, a different cylinder
with a stroke of 5 feet (~1.50 m) was used). The hydraulic system allowed
application of the load either incrementally or continuously at any desired
loading rate or at a constant penetration rate.

The penetration test equipment also included a supporting frame consisting
of two aluminum channels spanning across the test box. The heavy supporting
frame acted as a reaction for the loading piston. The supporting beam for
the cylinder is connected by bolts teo two channeled aluminum columns, which
are individually supported on wheels and are therefore easily movable. The
elevation of the supporting beam is easily adjusted to allow testing of any
depth of soil deposit in the test box.

The two basic types of penetrometer tips used in the laboratory penetra-
tion tests were rectangular (strip) and circular in section. The rectangular
tips had a length-to-width ratio of approximately 6 to 1., The tips were
detachable from the shaft and had various semiapex angles and roughness. A

complete listing of the penetrometer tips used in the tests is given in Table 6.1.
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Table 6.1 SUMMARY OF PENETROMETER TIPS USED IN PENETRATION
TESTS OF MONTEREY SAND NO. O

Section Base semi-apex Tip Roughness
Shape Angle, o Material (§/)
Hard-anodized
aluminum 0.5
15
Sanded
aluminum 0.9
Hard-anodized
Rectangular® aluminum 0.5
30
Sanded
aluminum 0.9
90 Hard-anodized
aluminum 0.5
Polished hard
anodized
aluminum 0.3
15 Hard—-anodized
aluminum 0.5
Sanded
aluminum 0.9
Circular*#* Polished hard
anodized
aluminum 0.3
30
Sanded
aluminum 0.9
Hard-anodized
aluminum 0.5
90 =
Sanded
aluminunm 0.9

*Tips have dimensions of 0.8" x 5.0" (20.3 mm x 127 mm), and penetrometer
shaft dimensions are 0.625" x 5.0" (15.9 mm x 127 mm).

**Tips are 0.8" (20.3 mm) in base diameter, and the shaft is 0.625" (15.9 mm)
in diameter.
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Samples of different but uniform densities which were reproducible from
test to test were required. While many sample preparation techniques are
available (screen technique for loose, vibration technique for dense samples),
pluvial compaction offers one of the most convenient means of preparing large
uniform sand deposits at any required relative density. In pluvial compaction,
air-dry sand is allowed to fall through the air in order to build up the
required layer. Experiments by Kolbuszewski (1948) have shown that the factors
controlling the final density are height of fall and intensity of sand rain,
The method has some limitations, because it tends to produce layering in well-
graded materials and it induces some cross anisotropy. The problem of layering
can be eliminated by using uniformly graded materials. (The uniformity co-~
efficient of the sand tested is around 1.5).

In addition to the ability of pluvial compaction to deposit uniform sand
layers, the method also allows the deposition of large quantities of sand
quickly and easily. In fact, the entire operation can be automated with a sand
spreader box such as that shown in Fig. 6.1l. The spreader box is similar to
the device described by Walker and Whitaker (1967) and used by Silver (1970),
and consists of a 1/3 cubic yard (0.26 m®) wooden hopper sloping down to an
opening at the bottom which is closed off by an aluminum roller. A rubber
seal prevents sand from falling from the front of the box while the roller is
stationary. The roller is driven through a chain drive by a variable speed
motor. Limit switches make it possible to start and stop the roller at pre-
determined leocations.

Thé spreader box is mounted on a frame that spans over the test box. The
frame is chain-driven by an electric motor.

During operation, the roller rotates and sand is ejected from the box in
a uniform sheet as shown in Fig. 6.1. The rate of deposition can be varied
by changing the roller speed. The uniform rain of sand, the constant feorward
speed of frame, and the constant height drop cause uniform layers of sand to
be deposited. As the soil deposit builds up, the spreader box is elevated to
maintain a constant height drop.

Measurements of sand layer density showed that relative density did not
vary more than 5 percent from the desired value throughout the layer (see
Appendix B). TFor the sand used in this investigation, it was found that rela-
tive densities of from 35 to 100 percent could easily be obtained using the

spreader box.
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Test Procedure

Soil densities ranged between 35 to 100 percent relative density. The
test box was large enough to allow 4 to 5 separate penetration tests on one
sample., Penetrations were spaced so as to minimize test box side effects and
the influence of other penetration tests. The load transfered to the penetro-
meter was measured with a load cell and recorded with an electronic recorder-
print out system. The skin friction resistance of seil along the penetrometer
shaft was insignificant due to smaller shaft diameter than the base diameter.
The vertical penetration was measured by observing the relative movement of a

fixed marker on a ruler.

Prediction Method

General
As described in Chapter Four, the unit penetration resistance can be

determined for cohesionless soils by:

= y BN 6.1
1 = VeByalyg (6.1)

in which 9 = unit penetration resistance

Ys = unit soil weight
NYq = bearing capacity friction-surcharge factor
= shape factor
qu p
B = width of penetrometer base

In dimensionless form, Equation 6.1 may be written:

qf/(YSB) = NquYq (6.2)

Equation 6.2 indicates that, because both N_  and EY are functions of relative
depth, the penetration data should be presented in the form of qf/(YsB) versus
D/B.

Estimation of mean normal stress

As discussed in Chapter Two, the approximate average value of mean normal

stress along a failure surface can be estimated from:

Oy = q./10 (6.3)

in which Og M is the average mean normal stress, and 9 is the unit penetration
]

resistance.
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Determination of proper soil friction angle

The penetration problem in cohesionless soils is complicated by the
fact that during the gradual load increase on the soil the shear strength is
not immediately mobilized at all points of the slip surface, but at first only
at the points where the shearing stresses are largest, with gradual extension
to other points. This gradual progression causes modifications of the soil
properties along the slip surface, especially in dense soils. In highly
stressed zones, the soil begins to dilate and a decrease of density and thus
a decrease in shear strength takes place. Therefore, when the state of
rupture along a slip surface is reached, the shear strength corresponding to
the original density is not available along the whole surface.

Further, the stress-strain characteristics of the soil must be considered
in addition to the strength properties. Typical stress-strain relationships
for plane strain and triaxial tests and dense and loose sands are shown in
Fig. 6.2. 1t can be seen that if deformations at some points along the failure
surface before rupture are sufficiently large to surpass the peak points of
the stress-strain curves, the shear strength will drop to ultimate (residual)
values. Consideration of stress—strain characteristics is most important in
the case of a dense sand under plane strain conditions, because the stress-
strain curve has a very distinct peak as shown in Fig. 6.2. Consequently,
the use of friction angles corresponding to plane strain peak values should
cause overestimation of the penetration resistance of cohesionless soils.
Because the ultimate values of shear stresses control the resistance at
large deformations, friction angles corresponding to ultimate values of shear
stresses (ultimate friction angle) should be used in the analysis of the
continuous penetration problem.

It is common practice in shear testing to obtain only peak values of the
frictioﬁ angle and to terminate the test before accurate ultimate values are
obtained. However, as shown in Table 5.1, the triaxial peak and ultimate. values
for loose sands are the same and, for dense sand, the ultimate values are only
slightly less than peak values. Therefore, as shown in a subsequent section,
the use of peak triaxial friction angles for dense sands should cause only a

small overestimation of the unit penetration resistance.

Procedure
The penetration resistance was predicted for different values of relative
depth using the following procedure. For a given test, the following information

is known:
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(1) Unit weight (or void ratio) of seil deposit,
(2) Unit penetration resistance (qf) versus penetration (D) relationship.
The following information is needed for the calculation of penetration resistance
using Equation 6.1:
(1) From Equation 6.3 the average mean normal stress corresponding to a
given value of relative depth (D/B),
(2) From Fig. 5.4, the angle of internal friction of the soil corresponding
to given (determined) values of void ratio and normal stress,
(3) From Equation 4.9, the bearing capacity (penetration resistance)
factor NYq as a function of o, ¢, 8/¢, and D/B,
(4) From Fig. 4.13 shape factor EYq as a function of ¢ and D/B. (For

wedges a shape factor of 1.0 is used).

Test Results and Predictions

The results of penetration tests performed using wedge-tipped penetro-
meters are shown in Figs. 6.3 through 6.7 in the form of unit penetration
resistance versus penetration depth and also in the dimensionless form of re-
sistance parameter qf/(YSB) versus relative depth (D/B). Predicted values using
peak values of triaxial friction angles are also shown in Figs. 6.3 through 6.7.

The results of penetration tests performed using cone-tipped penetrometers
are shown in Figs. 6.8 through 6.11 in the form of unit penetration resistance
versus penetration depth and also in the form of the resistance parameter
qf/(YSB) versus relative depth (D/B). Predicted values using peak values of
triaxial friction angles and Equation 4.32 for the shape factors are also shown
in Figs., 6.8 through 6.11,

It may be seen in Figs. 6.3 through 6.11 that the agreement between pre-
dicted and measured values is quite good. This suggests that the proposed
analytical method may be confidently used to predict the penetration resistance

of cohesionless soils, at least to the relative depths tested.

Determination of Shape Factors

The bearing capacity factors determined theoretically for strip foundations
must be modified by empirically determined shape factors when computing the unit
penetration resistance of circular penetrometers. Empirical formulas for the
shape factor Eq proposed by different investigators are summarized in Table 6.2,
It can be seen that the range of calculated values is quite large. However, it
is possible to determine the proper shape factor for Monterey Sand No. 0 by

comparing the resistance values for cones and wedges. The average values of the
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Table 6.2 SUMMARY OF VARIOUS EMPIRICAL FORMULAS
FOR SHAPE FACTOR Eq

Angle of

internal Brinch Hansen Meyerhof Vesic DeBeer

friction (1) (2) (3 (4)

¢—-deg.
25 1.21 1.25 1.67 1.42
30 1.24 1.30 1.78 1.50
35 1.32 1.37 1.90 1.57
40 1.55 1.46 2,04 1.64
45 2.20 1.59 2.20 1.71

1) £, =1.0+ 0.2+ tan®¢) (B/L)

(2) £ = 1.0+ 0.1 tan®(45° + $ @/

(3 Eq = 1,0 + (0.2 + tan¢) (B/L)

4) €q = 1.0 + sin¢(B/L) for D/B<1

shape factor qu for the relative depth range (D/B=10 to 15) determined by this
ratio procedure are shown in Fig. 6.12. The computed values of qu using
Equation 4.32 which were derived from the equation (Equation 1 in Table 6.2)
proposed by Brinch Hansen (1961), (see Chapter Four) are also shown in Fig.
6.12, The close agreement between the calculated and measured values of Eyq
indicates that Equation 4.32 for shape factor ng may be used for in the
prediction of cone resistance.
Some conclusions drawn from the test results may be summarized as follows:
(1) The penetration resistance is sensitive to soil density. It should
therefore be possible to use the penetration resistance of cohesion-
less soils for estimating the in-situ soil density as well as shear
strength properties.
(2) Penetration resistance increases with increasing semiapex angle for
§/¢=0.3.

(3) Penetration resistance increases with increasing penetrometer roughness

(6/9).
132



24

" 2.2

g
o

Shape factor E),q

®

>

14

1.2

10

0.50

| I | | L

Monterey Sand No. O

determined from
Equation 4.32
for Org =10 10 15

average measured /\\

curve for D/B 10 to 15 \

/\
avergge values determined

from cone and wedge test
results

1 ] ] | ]

0.60 0.70
Void ratio , e

FIG. 6.12 COMPARISON OF MEASURED AND

CALCULATED SHAPE FACTOR Eyq

133

0.80



(4) Penetration resistance increases with increasing relative depth (D/B).
There was no indication of a decrease in the rate of resistance
increase with depth even for relative depths as large as D/B=20.

(5) Other factors being equal, the unit penetration resistance for cones

was higher than for wedges.

Deep Penetration Tests

To establish the applicability of the proposed method and te investigate
the penetration versus resistance relationships for high relative depths
(D/B up to 40) a series of déep penetration tests was conducted. It was ob~-
served that there was no distinct change in resistance versus penetration
relationship. The summary of the test results is given in Fig. 6.13. It can
be seen that measured values of penetration resistance can be predicted reasonably

well by the proposed method for relative depths as high as 40.

COHESION-FRICTION SOIL

Introduction

The close agreement between predicted and measured values of the penetra-
tion resistance of Monterey Sand No. 0 indicates the validity of Equation 4.9
for the determination of the béaring capacity factor NYq for failure in general
shear. Because lunar soil has cohesion, the validity of the proposed method
must be further established for a cohesion-friction soil., The penetration tests
with Lunar Soil simulant No. 2 (LSS No. 2) described in this section were
performed in order to determine the validity of Equation 4.6 for the determin-
ation of the value of Nc’ which is needed to apply the proposed method te
such seoils. At the same time the influence of soil compressibility on penetra-

tien resistance was investigated.

Equipment, Test Procedure, and Soil

Static penetration tests were conducted in a test box 2.0 feet (~0.6 m)
wide, 2.0 feet (~0.6 m) long, and 3.0 feet (~0.9 m) deep. Uniform loose and
medium dense deposits were prepared using the constant height of drop method;
dense deposits were prepared using a vibratory technique, The loading system
and test procedures used were the same as previously described for cohesion-
less soil.

The soil used was a crushed basalt known as Lunar Soil Simulant No. 2
having the gradational characteristics of a silty fine sand (Fig. 6.14). A

comparison of the one-~dimensienal compression characteristics of this soil
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and Monterey Sand No. 0 are presented in Fig. 6.15, which indicates that the
simulant is much more compressible than the sand. Cohesion was obtained in
the simulant by maintaining a small moisture content of about 2.0 percent.
The relationship of cohesion to void ratio at various moisture contents for
the simulant was determined by Mitchell et al. (1971) and is shown in Fig.
6.16.

The relationship between plane~strain friction angle of the simulant and void
ratio is shown in Fig. 6.17 (Mitchell et al., 1971). These plane-strain values
were converted to triaxial values according to the procedure recommended by
Cornforth (1964). The estimated triaxial friction angle values for the simulant

are also shown in Fig. 6.17.

Prediction Method

As discussed in Chapter Four, the unit penetration resistance can be ex-

pressed for cohesion-friction soils by:

= -+ .
q; = eN &, YSBNquYq (6.4)
or, in dimensionless form:
= <L .
qc/ (Y B) = V.5 Nc£c+NngYq (6.5)
in which qe = unit penetration resistance
Ys = unit weight of soil
¢ = cohesion

B = width of base
Nc’ N = bearing capacity factors fl’ f2(¢, §/¢, o, D/B)

Yq
Ec, ng = ghape factors, f3(¢), f4(¢, D/B)

The following procedure may be used to predict the ultimate penetration
resistance of the simulant for known average values of void ratio and water
content:

(1) Enter Fig. 6.16 with the known values of e and w, and determine the

cohesion value.

(2) Enter Fig. 6,17 with the known average void ratio, and determine

corresponding triaxial friction angle (¢) value.
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(3)

(4)

(5)
(6)

N

At a given relative depth (D/B) and known values of o, and §/¢, enter
the corresponding figures in Appendix A and determing Nc and Nyq.

For the ¢ value determined in step 2, use Equation 4,24a to
calculate Ec. #

For the known values of ¢ and D/B use Equation 4.32 to calcualte EYq.

Substitute the wvalues of c, NC’ s Ys’ and B into Equation

N )
va’ e’ Syq
6.4 or 6.5 to determine the ultimate penetration resistance (qf) or
the dimensionless resistance parameter qf/(YSB) for the particular
D/B.

Repeat steps 3 through 6 for other values of D/B.

Test Results and Predictions

A series of penetration tests in the LSS No. 2 were conducted using a

cone-tipped penetrometer (0=15°, B=0.8 in., and 6/¢=0.5). The soil was pre-

pared over a wide range of demsities in order to evaluate the applicability of

the proposed method for both dense and loose conditienms,

Penetration test data are presented in Fig. 6.18 in the form of penetra-

tion resistance (qf) versus relative depth (D/B). The ratios of predicted

to measured ultimate penetration resistance are presented in Table 6.3. It may

be seen from Table 6.3 and Fig. 6.19 that, for dense deposits, these ratios

are close to unity, indicating the validity of the prediction procedure and

the values of Nc for general shear failure conditions. However, for low

densities, the ratios are larger than one, indicating the significant in-

fluence of soil compressibility on penetration resistance. This influence

can be anticipated by noting in Fig. 6.15 that the simulant is much more

compressible than Monterey Sand No. O at high void ratioes, Therefore, the

use of bearing capacity factors formulated for general shear failure condi-

tions will cause overestimation of the penetration resistance of compressible

deposits.

As a result, of soil compressibility, the shear surface is restricted

to a smaller zone around the penetrometer tip as shown in Fig. 6.20. Vesic

(1963) suggested that the angle which defines the extent of the failure surface

may be represented empirically by:

0 = 1.9 ¢ (6.6)

By substituting the value of O determined from Equation 6.6 inte Equa-

tions 4.6 and 4.9, values of Nz and N$q may be obtained for compressible
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" Table 6.3 RATIOS OF PREDICTED TO MEASURED PENETRATION
RESISTANCE FOR LSS NO.2 USING GENERAL SHEAR
FATILURE MECHANISM FOR ALL DENSITIES

Test No. Void Ratio Water ﬁredicted(qf)
€ave Content, w Measured(q,_)
. (2) qf

D/B=5 D/B=10 D/3B=15
A-1% 1.030 1.66 3.12 2.95 2.85
B-1%* 0.745 1.60 1.25 1.43 1.30
B-3 0.684 1.75 1.15 1.20 1.25
B-2 0.570 1.40 1.03 1.02 1.02

*Average of (2) tests.

soils. However, the general validity of this semi-empirical procedure has not

yet been established.

SUMMARY

Comparisons of unit penetration resistance values measured in controlled
laboratory tests and predicted by the proposed analytical method have been
made for both cohesionless (Monterey Sand No. 0) and cohesion-friction (Lunar
Seil Simulant No. 2) soils. The agreement between measured and predicted
values for the sand and dense simulant were quite good, suggesting that the
proposed analytical method may be used confidently for the prediction of the
static penetration resistance of relatively incompressible soils. A method
has been suggested for determination of bearing capacity factors Ng and N*
for compressible soils, However, the general validity of this method has

not yet been established.
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CHAPTER SEVEN

DETERMINATION OF IN-SITU SOIL PROPERTIES

INTRODUCTION

Because the static penetration resistance to a given penetrometer is:con-
trolled by the soil shear strength and compressibility chardcteristics, it
should be possible to deduce the in-situ properties from the results of static
penetration tests. A procedure for doing this is described in this chapter.
This procedure is illustrated by application te laboratory model tests, to
penetration data obtained frem the literature, and to penetration data for
the lunar surface obtained by the Apollo 15 self-recording penetrometer and

the Soviet Lunar Rover Lunokhod-l.

PROCEDURE
As discussed in Chapter Four, the ultimate penetration resistance (qf)

may be calculated using the following equation:

qe = cN E_ + Y BN & (7.1)

5 Yq'Yq

where ¢ = cohesien
Y_ = unit weight of soil (pg)

B = width or diameter of penetrometer base

Ec, qu = ghape factors
Nc’ NYq = bearing capacity or ultimate resistance factors, fl’ f2
(¢, 8/¢, a, D/B)
¢ = angle of internal friction (triaxial residual values)
§ = friction angle between penetrometer base and soil
0 = base semiapex angle
D/B = relative depth of penetrometer base .

Cohesionless Soeils (c=0)

For cohesionless soils (c=0), Equation 7.1 simplifies to:

= v BN 7.2
U = YBNgbyq (7.2)

or, in dimensionless form:

qf/(YSB> = NquYq (7.3)
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For a given static penetration test, the following information will be known:

(1) Cone resistance versus penetration depth or, in dimensionless form,
the resistance parameter qf/(YSB) versus relative depth (D/B).

(2) Cone semiapex angle (o) and cone roughness (8/¢). (Cone roughness
can be approximately estimated from previous experience, from direct
shear interface test results, and from the surface characteristics
of the penetrometer material.

It can be shown that strength properties calculated from Equation 7.1 are

not very sensitive to soil unit weight, hence any reasonable value can be
assumed for the calculations. Therefore, the value of NquYq can be calculated

from Equation 7.3, In functional form, Nquyq may be expressed as follows:

NquYq = F(¢, 6/¢9, o, D/B) (7.4)

The only unknown in Equation 7.4 is the angle of internal friction (¢), and
thus ¢ may be estimated from this expression for known values of o, §/¢, and
D/B using the following procedure:
(1) Assume a value of ¢
(2) Enter figures in Appendix A relating NYq to ¢ for the given para-
meters (o, 8/¢, D/B) and find corresponding value of NYq
(3) From Equation 4.32 determine the value of ng for the assumed ¢ and
kinown relative depth
(4) Repeat steps 1 through 3 for other values of friction angle (¢)
(5) Prepare a plot of N & versus ¢ (for the specific values of D/B)

Y47Yq

(6) Having already calculated the actual value of NquYq
enter the plot prepared in step 5 and determine the correct value of ¢

from Equation 7.3,

This procedure may be repeated for different values of D/B to obtain the varia-
tion of ¢ with depth., 1Implicit in the use of the values of NYq from Appendix A
is the assumption that the at rest lateral earth pressure coefficient, K = l-sin¢,

For other values of K new values of NYq should be determined using Equation 4.9.

Cohesive Soils (4=0)

For purely cohesive soils (¢=0), Equation 7.1 simplifies to:

qp = N & + YD (7.5)

or, in dimensionless form:
YsB D
qf/c = Ncgc + c ||B

(7.6)
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As mentioned previously, Ncgc may be expressed in functional form as:

N_E, = F(6, §/9, a, D/B) (7.7)
For ¢=0, Equation 7.7 simplifies to:

NCEC = F*(a, fc’ D/B) (7.8)

where fc is equal to ca/c (ratio of adhesion to cohesion)-.

Utilizing depth factors, Equation 7.8 may be rewritten as:

NE, =d N ¥, £)IE (7.9)

' %
where Nc(u, fc)

bearing capacity cohesion factor for shallow foundations

obtained from Fig. 2.12a

£c = shape factor for cohesion term (equal to 1.2 for ¢=0)
dC = depth factor for cohesion term
= 1.0 + 0.3> (from Equation 4.19a)

B/D + 0.6

Thus Equation 7.5 may be rewritten as:
= %
e cdC Nc Ec + YSD (7.10)

From static penetration data, 4 is known for the range of relative
depth tested. Consequently, from Equation 7.10, cohesion may be calculated
directly for known values of Qs b/B, o, and fC° This procedure may be
repeated for other values of D/B to obtain the variation of cohesion with

depth.

Cohesion-Friction (c-¢) Soils

For cohesion-friction soils, the problem of determining in-situ soil
properties from the results of static cone penetration test is more com-—
plicated for the following reasons:

(1) There are two unknowns, ¢ and ¢, instead of one

(2) Most c-¢ soils are more compressible than most cohesionless soils

For c~¢ soils, the ultimate static cone penetration resistance may be written
in dimensionless form as follows:

g/ (YgB) = (/Y BINE +N E (7.11)
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For static penetration tests performed with & given cone there are many
combinations of ¢ and ¢ which satisfy Equation 7.11 for a given value of
qf/(YSB)° The procedure for developing the c-¢ relationship for given values
of o, 6/¢, and D/B is as follows:

(1) Assume a ¢ value

(2) Enter figures in Appendix A relating Nc and NYq to ¢ for the

given parameters (o, §/¢, D/B) and find the corresponding values

of Nc and NYq
(3) From Equations 4.24a and 4.32 determine the values of Ec and

ng for the assumed ¢ and known D/B

(4) Substitute the values obtained in steps 2 and 3 into Equation 7,11

and solve for cohesion

(5) Repeat steps 1 through 4 for other values of ¢

(6) Plot the resulting c-¢ relationship
Steps 1 through 6 may be repeated for other values of relative depth to
obtain the variation of the c¢-¢ relationship with depth.

It is obvious that in order to estimate ¢ and ¢ separately, more
information must be provided. The most convenieé%iway to obtain this in-
formation is to perform an additional penetration test in the same soil
deposit using a cone of a different size but having the same values of 0. and
§/¢ as the first. With the penetration resistance data from two sizes of
cones at the same relative depth (D/B), the following relationships may

be written from Equation 7.11:

Y B

) - S6P1 " Mgy (7.12)
YSB 1 N £ *
cC
(q./Y B), - N_ &
c _ £ '8772 Yq
( )2 - g (7.13)

NCgC

where the subscripts 1 and 2 indicate data from the small and large cones
respectively (B2=kBl). It is of interest to note in the above equations
(7.12 and 7.13) that the unit penetration resistance for a large cone will
be less than for a small cone at a given depth D. Assuming that there is
no significant variation in cohesion over the depth range of D=mBl to kmB1

(m=D/B) the following relationship may be obtained from Equations 7.12 and 7.13:
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€
Yq (7.14)
g

N
YqYq

N
Y4q

By (ap/Y By -
B

An expression for N_ &

Ya©yq may be obtained from Equation 7.14 as follows:

Yq _
B, - B,

3 (7.15)

N
Yq

The value of Nquyq may be calculated directly from Equation 7.15. The
procedure for the determination of ¢ from a known value of NYQEYQ was
given previously for the case of cohesionless soils. From Equatioms 7.12
and 7.13 the following relationship may be obtained for the determination

of cohesion:

Y Alqe/v B)
c = . (7.16)
NCEC A(1/B)

or, in dimensionless form:

k
c_ _ [E:EJA(qf/YsB) (7.17)
Y B, - "
sl NCEC

where k

2 to Bl

difference for given D/B

ratio of B

>
]

It should be noted that the value of cohesion obtained by two-size cone
method using Equations 7.16 and 7.17 for a given relative depth represents
an average value of cohesion for depths in the range of D—mB1 to kmBl.
It is also possible, if the penetration data from the two-size cone
method is presented in the form of q¢ versus D, to estimate the soil friction
angle and cehesion at a given depth. The following relationships may be

written from Equation 7.11:

e (qf/YsB)l - OB D 7.18)
VgB|1 N E)q '
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(q./Yy B), - (N_E )
(c)2= £''s772 (7.19)

Yq9°Yq 2
(Ncgc)z

where the subscripts 1 and 2 indicate data from the small and large cones
respectively. The following relationship may be formulated from Equations

7.18 and 7.19 by noting that.Ec is independent of relative depth:

B, [l - g 0] @, 20
R [CR NS YU N

In order to determine ¢ from Equation 7.20, the following procedure may
be used:

(1) Assume a value of ¢.

(2) Determine values of Nc and NYq corresponding to the assumed value

of ¢ from the figures in Appendix A for the given paramenters
(o, 8/, D/B). It must be remembered that the values of (D/Bl)
and (D/Bz) are not the same.

(3) Determine the values of qu from Equation 4.32 corresponding to

the assumed value of ¢ and known D/B.

(4) <Calculate the ratio BZ/Bl'

(5) Repeat steps 1 through 4 for other assumed values of ¢.

(6) Prepare a plot of BZ/Bl versus ¢.

(7) Enter plot with known value of B2/B1 and find the correct value

of ¢.
This procedure may be repeated for different values of D to determine the
variation of ¢ with depth. It should be noted that because the contribution
of cohesion relative to friction-surcharge decreaseés with increasing depth,
the method is not expected to be a sensitive technique for determination of
cohesion at large depths.

It should be noted that same method could be applied even if there are
only data available for one size cone. In this case penetration resistance
values (qf) corresponding to two different penetration depths should be
considered. The ratio (Bz/Bl) in Equation 7.20 will be equal to unity.
Application of the method for this special case is only valid for homogeneous

s0il deposits.
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From Equations 7.18 and 7.19, the following relationship may be obtained
for the determination of cohesion:

Map) - YA@N E )

Yqa-Yq
c = (7.21)
AN E,

The values of Nc, NYq’ and ng obtained in order to calculate the differences
(A) in Equation 7.21 must, of course be selected at the appropriate relative
depths (D/B).

It is also possible to estimate c and ¢ separately at the same penetra-
tion depth (D) if the two cones used are not only different in size but also
have different values of o and 6§/¢. The procedure for determining ¢ is the
same as described previously using Equation 7.20. However, in step 2 of the
procedure, the correct values of o and §/¢ must be used. Cohesion may also be
determined using Equation 7.21.

The procedures for determining the friction angle and cohesion of relatively
homogeneous soils using penetration data obtained by the two-size cone method
needs experimental verification. Also, the bearing capacity factors employed
in these procedures are valid only for general shear failure conditions. For
compressible soils the bearing capacity factors will be smaller than those
corresponding to relatively incompressible soils. Consequently, the use of

general shear bearing capacity factors in problems involving compressible soils

will lead to an underestimation of shear strength parameters.

APPLICATIONS

Introduction

The procedure for cohesionless soils is illustrated by application to
laboratory penetration tests data for Monterey Sand No. O and to data presented
by Green (1970) for Yuma and Mortar sands. The procedure for cohesion-friction
soils has been applied to laboratory penetration data for LSS No. 2, to lunar
surface penetration data obtained during the Apollo 15 mission, and by the
Soviet Lunar Rover Lunokhod-l. Where possible, comparisons are made between

actual (measured) and deduced in-situ soil properties.

Cohesionless Soils

Monterey Sand No. O

The procedure for the determination of the in-situ properties of
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cohesionless soils was applied to the results (see Chapter Six) of static
wedge and cone penetration tests in Monterey Sand No. 0, The results for
wedges are summarized in Table 7.1 and presented in Fig. 7.1. The results
for cones are summarized in Table 7.2 and presented in Fig. 7.2. As can be
seen in Figs. 7.1 and 7.2, the agreement between the predicted and actual
values of seil friction angle is quite good.

Yuma and Mertar Sands

The procedure was applied te measured average penetration resistance
values presented (see Fig. 7.3) by Green (1970) for Yuma and Mortar sands
using rough flat ended penetrometers (plates) in the range of 5.08 cm to
60.69 cm in diameter. The gradation curves for Yuma and Mortar sands are
given in Fig. 7.4. Results are summarized graphically in Fig. 7.5. It can

be seen that predicted and measured values of ¢ agree well.

Cohesion-Friction Seils

Lunar Soil Simulant No. 2

The procedure for the determination eof the in-situ properties (cohesion
and friction angle) of cohesion-friction soils was applied to the results of
static cone penetration tests in dense Lunar Soeil Simulant No., 2 (see Fig.
6.19). Because data were available for one-size cone only penetration
resistance values (qf) corresponding to relative depths of 5, 10, and 15
were considered. This was justified because it was known that the soil pro-
file was homogeneous. By the application of Equations 7.20 and 7.21 and
the previously described procedure, strength parameters of c=0.137 psi.

(0.945 kN/m?) and ¢= 46.6° were obtained. Directly measured values of strength
parameters for the simulant, corresponding to e=0.57 and w=1l.4% were

c=0.121 psi. (0.834 kN/m?®) and ¢=47.0° (triaxial). It can be seen that
agreement between predicted and measured values of both ¢ and ¢ are excellent.

Apoello 15 Soil Mechanics Experiment

The Apolle 15 mission to Hadley Rille provided for the first time in the
U. S. Lunar Program, quantitative measurement of forces of interaction
between a penetrometer and the lunar seil. Quantitative analysis of the in-
situ-mechanical properties (c and ¢) of the lunar soil can be made using the
data obtained by the self-recording penetrometer (SRP) shown in Fig. 7.6.
The SRP was used t¢ obtain penetration versus force data in the upper part
of the lunar surface. The Apolle 15 SRP could penetrate teo a maximum depth

of 76.0 cm (30.0 in.) and could measure penetration force to a maximum of 111 N
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Table 7.1 SUMMARY OF PREDICTED FRICTION ANGLES
OF MONTEREY SAND NO. O

Void Predicted ¢ ~deg.
Depth Range Ratio, e -
(D (2) (3) ) (5)
0.728 39.5 39.5 39.2 39.7 39.5
D/B<5 0:665 41,2 | 41.7 | 41.2 | 42.0 | 42.1
0.599 44,5 | 44.3 | 43.8 | 4s.2 | 45.3
0.728 40.0 40,1 39,5 39.7 40.1
D/B<10 0.665 41.7 42,7 41.5 42,0 43.7
0.599 44 .5 45.5 44,9 45,1 46,1
0.728 - 40.2 - 39.7 40.1
D/B<15 0.665 42.2 43.7 42.0 42,1 44,0
0.599 44,8 46.5 45,2 44,9 46.1
(1) o = 90°, 8/¢= 0.5; (2) a = 15°, &8/¢= 0.5;
(3) o = 15°, §/¢= 0.9; (&) o = 30°, &/¢= 0.9;
(5) o = 30°, 6/¢= 0.5 (B=0.8 in. Wedges)
Void Ratio Predicted* Meagured*®*
e p~deg. ¢peak —deg. ¢ult ~-deg.
0.728 39.8+0.3 39.7 39.2
0.665 42,240.6 42.6 41.8
0.599 45.0+0.5 45.4%0.2 44,570, 2

* For all depths and penetrometer configurations
*%Triaxial friction angles
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Table 7.2 SUMMARY OF PREDICTED FRICTION ANGLES
OF MONTEREY SAND NO. O

Void Predicted ¢ ~deg.
Depth Range Ratio, e
‘ (1) (2) (3) (4) (5
0.728 39.1 | 41.7 | 39.5 - -
0.665 40.4 - | 42.0 - -
D/B<5 0.659 = | s26 | - - .
0.599 43.8 | < | 44.9 | 44.8 | 44.8
0.575 - 45.0 - - -
0.728 39.1 | 40.2 | 39.1 - -
0.665 41.0 - 42.0 - -
D/B<10 0.659 - 42.8 ~ - -
0.599 44,2 - 44,9 | 45.2 | 45.4
0,575 - 46.3 - - -
0.728 39.1 | 40.0 ? - -
0.665 41.7 - ? - -
D/B<15 0.659 - 43,2 - - -
0.599 44.5 - 45.1 | 45.3 | 45.7
0.575 | 45.5 - - -
(1) o =90°, 8/¢ = 0.5; (2) o = 15°, 8/¢ = 0.5
(3) o =15°, §/¢ = 0.9; (4) o =15°, §/¢ = 0.3
(5) o =30°, &/¢ = 0.3 (B = 0.8 in. Cones)
Void Ratio Predicted* Measured*#*
e ¢-deg. ¢peak ~deg. ¢ult ~-deg.
0.728 39.7 39.7 39.2
0.665 41.5 42.6 41.8
0.659 42.9 42.9 42.0
0.599 44.9 45.6 44,7
0.575 45.6 46.8 45.6

% For all depths and penetrometer configurations
*#*Triaxial friction angles
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CONE AND PLATE
STOWAGE ASHEMBL

FI6. 7.6 SELF - RECORDING PENETROMETER
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(25 ppunds). The record of each penetration was scribed on a recording drum
contained in the upper housing assembly. Detailed information about the SRP
is given by Mitchell et al (1972a).

As reported by Mitchell et al, (1972a), because of the tendency of the
lunar reference plane to ride up on the penetrometer shaft precise values
of penetration were not known for the penetration tests on Apello 15, and
the exact shape of the force versus depth curve was not obtained. None-

theless, estimates of the penetration were possible as indicated in Table 7.3.

Table 7.3 SUMMARY OF APOLLO 15 CONE PENETRATION TEST
RESULTS FOR 0.5 SQ. IN. CONE
(after Mitchell et al, 1972a)

Location Near Penetration at Relative
Traverse Station 8 qf=50.0 psi., (cm) Depth (D/B)
Adjacent to soil

mechanics trench 8.25 4.06

In LRV track 5.25 2.58

The c-¢ relationship for the lunar surface material may be deduced by
using the procedure described earlier and the information listed below:

(1) Roughness (6/¢) is approximately equal to 0.5. (Based on the
results of friction measurements between a ground basalt lunar
soil simulant and hard-anodized aluminum similar in roughness to
that used for the SRP cones).

(2) Unit weight of soil Ys=l.8 g/cm® (under earth gravity).

(3) Ultimate resistance qf=50.0 psi. (34.5 N/cm?).

(4) Measured values of relative depth. (Table 7.3 indicates that the
relative depths (D/B) for these penetration tests fall in the
range of about 2.5 to 4.1). Thus the value of D/B=3 may represent
the actual conditions reasonably well,

The results of these calculations are shown in Fig. 7.7. Another c~-¢
relationship was established during the Apolle 15 mission by excavating a
trench and failing the wall of the trencl Wy a kitown boundary loading. The
c~¢ relationship for the soil mechanics trench has also been plotted on

Fig. 7.7. The intersection of this curve and the c-¢ curve for the penetra-

tion tests provide values of ¢ and ¢ which simultaneously satisfy the results
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of both the trench and penetration tests., For D/B=3, the required cohesion
is 1.1 kN/m® (0.16 psi.) and the angle of internal friction is 46.0°. It
should be remembered that this value is expected to be close to the residual
value of friction angle. The value obtained agrees closely with that
obtained by comparison of the observed penetration behavior with that of
terrestrial simulants.

Detailed analysis of Apollé penetration tests are presented in the
Preliminary Science Reports for Apollo 15 and Apollo 16 (Mitthell et al,
1972a and Mitchell et al 1973).

Lunokhad-1

The procedure for deduction of cohesion and friction angle from the
results of static cone penetration tests was applied to penetration resistance
data for the lunar surface obtained by the Soviet Lunar Rover Lunokhod-l which
were obtained in the western side of Mare Imbrium. Data were obtained from
the report of Leonovich et al (1971),

Investigations with the Lunokhpd-l1 were made using a special imstrument
by penetrating and rotating a conical~bladed punch in the ground. With the
penetration of the punch it was possible to determine ground carrying
capacity¥*, and with rotation of the vanes the resistance to rotational shear
(torque resistance#*) was determined, During the three months of Lunokhod
operation there were 327 measurements of mechanical properties by means of
penetration of the conical~bladed punch at different ground locations; e.g.,
craters, concentrations of rocks, horizontal and sloping surface sectors,

Summaries of the data provided by Leonowich et al (1971) are given in
Tables 7.4 and 7.5, Fig. 7.8 shows a histogram and curve of the statistical
distribution of ground carrying capacity and torque resistance along one of
the trajectory segmants.

Analysis of vane shear tests

Usually interpretation of vane shear test results is based upon the
assumption of a uniform distribution of shear resistance on the whole surface
of the rotating cylinder, including the two ends. The same assumption appears
to have been made by Leonovich et al (1971) leading to an estimation of the

* Ground Carrying Capacity was defined as the specific resistance on the punch
for a depth of ground penetration equal to the height of the punch.
**Torque Resistance was defined as required cohesion neglecting the contri-

bution of friection to vane resistance.
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Table 7.4 SUMMARY OF TECHNICAL DATA FOR CONE-VANE
PUNCH (after Leonovich et al 1971)

Maximum force on the penetrometér 196>N
Depth of penetration 50-100 mm
Angle of punch rotation up to 90 deg.
Maximum torque on punch 0.5 kgm
Diameter of cone base 50.0 mm
Diameter of blades 70.0 mm
Height of cone-blade punch 44,0 mm
Blade thickness (square cut edge)* 1.1 to 1.6 mm
Surface roughness of cone* 0.3 to 0.5
*Estimated from the photographs

Table 7.5 SUMMARY OF DATA FOR THE MECHANICAL
PROPERTIES OF LUNAR GROUND
(after Leonovich et al, 1971)

Range of Values

Carrying capacity 19.6 to 98.0 kN/m?
Torque resistance 1.96 to 8.82 kN/m?
Density of soil 1.5 to 1.7 g/em®

Highest frequency values

Carrying capacity 33.3 kN/m?

Torque resistance 39.6 kN/m?
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highest frequency cohesion (or torque resistance) value of 39.6 kN/m?® (0.683
psi). The estimated range of cohesion from Surveyor and Apollo data was only
0.345 to 1.38 kN/m®*. The high cohesion value estimated from the Lunokhod-1
data may be due to the fact that the contribution of friction to torque
resistance was ignored by Leonovich et al, (1971). Even if it was assumed
that a cylindrical failure pattern was actually obtained, the distribution
of stresses around the circumference could not be uniform for soils in which
there is an appreciable contribution of friction to the resistance. A uniform
shear strength distribution is correct only for ¢=0 soils, where shear strength
is independent of normal stress.

Farrent (1960) derived the following expression for torque in c-¢ soils

by assuming that shear strength, 8, develops at both ends and immediately
behind the blades:

4m

T= % mels, + gi:fup s, (e " e -1) (7.22)
where T = torque
r = radius of vane
n = number of blades
L = length of wvane
s, = shear strength of soil
¢ = angle of internal friction of soil

When the contribution of friction is considered, the minumum value of

shear strength (so) can be calculated by the following relationship (after
Cox, 1967):

s, = c(1 + singd) (7.23)

For the analysis of Lunokhod data (n=4 and L=1.25r) the following

relationship can be written:

4

3
_ 4 3 S5r’c(1+sin¢) . mwtand _
T=3mr c(1+sing) + Ttand (e 1) (7.24)
or, in dimensionless form:
Ttan¢
T _ |4 5(e -1)
zic |37 + 2tan¢ ] (1+sind) 7.25)

167



It can be shown that for ¢=0 soils Equation 7,25 reduces to:

;gz._ %m + %ﬂ = 3%1 Z12.0 (7.26)

The same equation can be obtained by considering the development of uniform
shear strength (cohesion) on the both ends of the vane and on the cylindrical
failure surface.

Values of the dimensionless parameter T/ (r3c) for different values of ¢

were calculated from Equation 7.25 and are summarized in Table 7.6.

Table 7.6 VALUES OF DIMENSIONLESS PARAMETER T/(r’c)
FOR DIFFERENT VALUES OF ¢

$(deg.) 20 25 30 35 40 45 50

T/r3c 25.4 31.3 39.6 52.4 70,5 102 161

It can be seen that T/(r3c) increases with increasing ¢ for c-¢ soils indicat-
ing that the necessary cohesion should decrease with increasing ¢ for a given
T (torque) value. Consequently, the ratios of T/(rc) corresponding to c~¢

and ¢=0 analysis can be determined from the following relationships:

T
e oo 2 o
—————————— T . a
_T | Ttand _
(rsc) (c-9) {%ﬂ + 5<e2tan¢ 1)] (1+sing)

or

sr | 5(e"tand -1)] .
(@) (4=0) [3—' "7 tand (;+Sln¢) (7.27b)
© (-9 &r

The calculated values are summarized in Table 7.7 below:
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Table 7.7 TIHE RATIOS OF COHESION VALUES CALCULATED
FROM ¢=0 AND c-¢ ANALYSIS

$(deg.) 20 25 30 35 40 45 50

C —
-——-CW"Q) 2.11 | 2.61 | 3.29 | 4.36 | 5.85 | 8.46 | 13.4
(c-9)

The value of cohesion ¢=39.6 kN/m? (0.683 psi) reported by Leonovich et al
(1971) corresponds to a ¢=0 analysis. Corresponding c-¢ relationships were
calculated using Table 7.7 for c~¢ analysis, and are shown in Fig. 7.9. It
can be seen that for ¢=45° the calculated value of cohesion from c-¢ analysis
is 8.5 times smaller than the value calculated from ¢=0 analysis.

The variation in c-¢ relationships for different ground locations may be
determined using the range of torque resistance values (1.96 to 8.82 kN/m?)
reported for these locations. The corresponding c-¢ relationships have been
calculated and are shown in Fig. 7.10. The c-¢ relationship having the
highest frequency is also plotted in Fig. 7.10. It may be concluded on the
basis of these data that the mechanical properties of the lunar ground can vary
over an extremely wide range.

Analysis of cone penetration tests

The cone penetration data from Lunokhod-l also provide c-¢ relationships
for the lunar soil. The penetration resistance of the soil to the cone-vane
punch has two components; (1) resistance due to end bearing of vane blades, and (2)
resistance due to the cone. The largest contribution to penetration resistance
comes from the cone, because its bearing area is much larger than the bearing
area of the vane blades. The highest frequency value of ground carrying
capacity (qf) is 33.3 kN/m®. If it is assumed that the contribution dué to
end bearing of the vane is negligible and the so0il disturbance due to the
penetration of the vane is insignificant, for 0=30°, §/¢=0.5 (assumed) and
D/B=0, the calculated c-¢ relationship is as shown in Fig. 7.11,

The effect of the end resistance of the vanes may be evaluated by
considering the blades of the vane as two strip footings with a width of 1.5 mm
and length of 70 mm. For a penetration of 44 mm, the relative depth (D/B) is
approximately 30. For comparison, the calculated c-¢ relationship consider-
ing both cone and vane resistance is also plotted in Fig. 7.1l.

The effect of cone roughness must also be considered. Calculations for
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Fig. 7.11 were based on the assumption that the cone roughness (§/¢) was

0.5. For a smooth cone surface roughness will be close to 0.3. The cal-
culated c~¢ relatienship feor §/¢=0.3 (neglecting end bearing of vane) is also
shown in Fig. 7.11. It can be seen that the curve for &/¢=0.5 with end
bearing of vanes neglected represents a good average of the three alternatives
considered.

The variation in c-¢ relationships for different ground lecations may be
determined using the range of carrying capacity (19.6 to 98.0 kN/m?) reported
for these lecations, The corresponding c-~$ relationships-have "been calculated
and are shown in Fig. 7.12. The c-¢ relationship having the highest fre-
quency (qf = 33,3 kN/m®) is alse plotted in Fig. 7.12.

Comparison of c=¢ relationships

A comparison of the c~¢ relationships obtained from two different analyses
tvane shear and cone penetration) is shown in Fig. 7.13. Considering the
different failure mechanisms involved, the ¢c-¢ relationships are quite
comparable. The test results for the more dense soils (higher values of ¢)
show higher values of strength parameters for the vane test results than for
the penetration tests. This may be because the vane tests were done at
somewhat greater depths, and also becuase the analysis of vane data may be
expected to yield values of ¢ close to the peak; whereas, the cone results
reflect more closely the residual strength parameters. The difference between
peak and residual values for most soils generally increases with increasing
density (and therefore increasing ¢). Further, the c-¢ relatienships developed
from the cone-vane penetration data reflect the assumptions made regarding
appropriate value of §/¢ for the come (a value of 0.5 was used for the curves
shown in Fig. 7.13) and the contribution of the vane (neglected for the curves
shown in Fig. 7.13).

Change in shear strength properties with depth

Leonovich et al (1971) present separate penetration data in the form
of force versus penetration for different ground sectors as shown in Fig. 7.14,
Separate analysis of each individual curve can be made, and the change in
shear strength properties with depth can be studied. This can be done only
if the .change in bearing capacity factors with depth are formulated. As
discussed in detail in Chapter Four, bearing capacity factors can be cal-
culated from Equations 4.6 and 4.9 as functions of relative depth (D/B).
As an example, the penetration data for horizontal ground sector (curve 1

in Fig. 7.14) were analyzed. The penetration data obtained from Fig. 7.14
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are summarized in Table 7.8 for different relative depths.

Table 7.8 PENETRATION DATA FOR LUNAR SURFACE AT A
HORIZONTAL GROUND SECTOR
(after Leonovich et al, 1971)

Relative Depth Force Unit Penetration
(D/B) Q (kg) Resistance, q.
kg/cm? kN/m?
0.00 7.2 0.367 36.0
0.10 8.0 0.408 40.0
0.25 9.8 0.500 49,0
0.50 12,8 0.653 64.0
0.70 15.8 0.806 79.0

For a given relative depth (D/B) using the procedure outlined in this
chapter, corresponding c-¢ relationships were calculated. The calculated
relationships are shown in Fig. 7.15. It can be seen that there is a slight
increase in shear strength parameters with depth. This may be an indication

of an increase in soil density with depth.

SUMMARY

Procedures for the determination of in-situ soil strength parameters
from the results of static penetration tests in cohesionless, purely cohesive,
and cohesion-friction soils have been presented. These procedures have also
been illustrated by application to laboratory test results, to penetration
data obtained from the literature, and to penetration data for the lunar
surface obtained by the Apollo 15 self-recording penetrometer and the Soviet
Lunar Rover Lunokhod-l. Comparisons of measured and predicted strength para-
meters have been made where possible. These comparisons indicate very good

agreement between measured and predicted values.
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CHAPTER EIGHT

SUMMARY AND CONCLUSIONS

GENERAL

This study was undertaken to develop practical analytical procedures
which would provide a theoretical basis for the understanding and utilization
of the results of static penetration tests for the determination of in-situ
lunar soil properties in support of the Lunar Soil Mechanics Experiment.

Model tests were used to establish a rational basis for theoretical develop-
ments and to improve the understanding of penetrometer-soil interaction.

The effects of penetrometer to soil friction, soil friction angle, base apex
angle, and relative depth (ratieo of penetrometer base depth to the base

width) on the failure mechanism were investigated. A failure mechanism has
been proposed based on the interpretation of features observed in the models
and the results of previous studies, Knowledge of the failure mechanism

has permitted the development of new relationships for determining the ultimate
base resistance which account explicitly for such important parameters as base
apex angle, base roughness, soil friction angle, and relative depth.

Values of input variables (soil friction angle and penetrometer to
soil friction angle) for a fine sand (Monterey Sand No. 0) and a silty fine
sand (LSS No. 2) were determined in order to experimentally evaluate the
proposed relationships. Carefully controlled laboratory penetration tests
were conducted on both of these soils. The measured values of input variables
were uged to predict the penetration resistance of these soils in accordance
with the theory présented, Comparisons were made of the measured and pre-
dicted penetration resistance values, and agreement was found to be very .
good.

Analytical procedures for the determination of in-situ soil strength
parameters from the results of static penetration tests in cohesionless,
purely cohesive and cohesion-friction soils have been presented. These
procedures have been illustrated by application to (1) laboratory test results,
(2) penetration resistance data obtained from the literature, and (3) penetra-
tion resistance data for the lunar surface obtained by the Apollo 15 self-
recording penetrometer and the Soviet Lunar Rover Lunokhod-l, Comparisons
of measured and predicted strength parameters have indicated very good

agreement.
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FATLURE MECHANISM

From the results of model tests it was found that a failure surface as
shown in Fig. 3.11 represents closely the actual failure surface associated
with wedge penetration. A plane shear zone exists adjacent to the base of
the penetrometer. The dimensions of this plane shear zone depend on both
the penetrometer to soiY friction angle (§) and soil friction angle (¢), as
described by Equation 3.9.

A logarithmic spiral bounds a radial shear zone to a point of vertical
tangency, above which the failure surface rises vertically to the ground
surface for large depths of penetration. For shallow penetration depths, the
logarithmic spiral breaks out at ground surface before vertical tangency is
reached. This failure mechanism associated with the penetration of wedges is

consistent with those suggested also by Biarez et al (1961) and Hu (1965).

‘THEORY

Equations 4.3, 4.6 and 4.9 describe the resistance to penetration of
wedge shaped penetroﬁgters in terms of soil friction angle, cohesion, and
density and base apex angle (2a), base roughness (§/¢), and relative depth
of penetrometer base (D/B). This solution to the static penetration problem
provides a generality not previously available.

For determination of penetration resistance of comes, bearing capacity
factors corresponding to strip loading must be modified by proper shape
factors. Equations 4.26 and 4.32 can be used for calculation of these shape
factors.

It has been shown that the use of bearing capacity factors formulated
for general shear failure conditions will cause overestimation of the penetra-
tion resistance of compressible soils, such as loose to medium-dense silty
fine sands. As a result of soil compressibility, the shear surface is
restricted to a smaller zone around the penetrometer tip. A procedure has
been suggested for determination of bearing capacity factors for compressible
soils. However the general validity of this procedure has not yet been
established.

For resistance of wedge and cone shaped penetrometers the following
conclusions can be drawn from the theory:

(1) For rough wedges and cones with obtuse base apex angles, the

bearing capacity factors are nearly equal to those for plane and

horizontal contact areas.
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(2) The bearing capacity factors for rough bases increase with decreasing
values of base semi-apex angle (0) below approximately 15°.

(3) For perfectly smooth wedges and cones, the bearing capacity factors
increase with increasing base apex angle.

(4) The bearing capacity factors for a given roughness should not be
estimated by linear interpolation between perfectly smooth and
perfectly rough values.

(5) Base roughness has little or no influence on the penetration
resistance encountered by plane and horizontal contact areas in
cohesive soils. However, at the surface of a cohesionless soil, a
smooth flat-ended penetrometer will encounter less penetration
resistance than one having a rough base.

(6) TFor relativie depths greater than a critical relative depth depen-
dent on the particular angle of internal friction, base apekx angle,
and base roughness:

(a) There will be no change in the bearing capacity cohesion
factor Nc with further penetration.
(b) The increase in bearing capacity friction-surcharge factor
NYq with further penetration will be proportional to the increase

in depth.

DETERMINATION OF STRENGTH PARAMETERS

From the results of direct shear interface tests, it is concluded that
the roughness (6/¢) has almost an unique value for a given soil and penetro- )
meter., In other words, §/¢ is not sensitive to soil density. It has also
been shown that 6/¢=0.3 - 0.5 for a smooth cone and §/¢=0.9 for rough surfaced
cones.

The use of friction angles corresponding to plane strain peak wvalues
will cause overestimation of the penetration resistance of soils. Because
the ultimate values of shear stresses control the resistance at large defor-
mations, friction angles corresponding to ultimate (residual) values of shear
stresses should be used in the analysis of the continuous static penetra-
tion problem. It is common practice, in shear testing, however, to obtain
only peak values of the friction angle and to terminate the test before
accurate ultimate values are obtained. It has been shown that the use of
peak triaxial friction angles could cause approximately 20 to 30 percent

overestimation of the penetration resistance for dense sands. Further, the
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use of peak values of friction angle for less dense sands will yield correct
values of penetration resistance, because peak and ultimate values of fric-
tion angles agree closely for such soils.

Several examples have been presented to show that predicted and measured
shear strength parameters of both cohesionless and cohegion-friction soils
agree well, Therefore, it is concluded that the proposed analytical method
(Equations 7.1 through 7.21) with the aid of the developed theory can
satisfactorily be used for the determination of in-situ shear strength

properties of soils which fail in general shear.

RECOMMENDATIONS

It is recommended that further efforts be directed to:

(1) Verification of the proposed analytical method for a greater
variety of cohesionless and cohesion-friction soils,

(2) Further investigation of the effect of soil compressibility, and
development of an analytical method for determination of penetra-
tion resistance of compressible soils,

(3) Development of a method for analysis of the penetration resistance

of layered soils (in which properties differ greatly among layers).
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APPENDIX A

DERIVATION OF FORMULAS FOR
BEARING CAPACITY FACTORS

DETERMINATION OF BEARING CAPACITY FACTOR N

The failure mechanism and associated free body diagram are given in Fig.
A.1. According to solutions of equilibrium equations for a weightless body,
the radial shear zone‘is defined by a logarithmic spiral and any radial
plane is a failure plane. Therefore OC is a plane tthere full mobilization
of shear. strength takes place, consequently stresses‘gb and Tb can be répre-~
sented by point B on Mohr's envelope. Stresses Oo and T, are stresses on

plane OD. Stress Gb can be written in terms of 00 as follows:

T

b R
Gb = 00 + 050 [sin(2e+d)—sind] (A1)
where T, = c+cbtan¢ (A.2a)

By substituting Equation A.2a into Equation A.l:

(c+0b

b o cosd

tand)
*[sin(2e+¢)~-sind] (A.2b)

By rewriting Equation A.2b:

cos¢ Go+[sin(2€+¢)—sin¢]c

b [cosp-tand[sin(2e+d)-sind] ] (A.2¢)
From equilibrium of the logarithmic spiral bounded by OBC:
IM =0 (A.3a)
o
rg rf ) )
O3 0.3+ é crdd = 0 (A.3b)

6tan¢)

From the general equation of a logarithmic spiral (r=r e and by substituting
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¢:Cot ¢ = CaCot &

FIG. A1 FREE BODY DIAGRAM FOR DETERMINATION
OF BEARING CAPACITY FACTOR N¢

189



into Equation A.3b and solving for O.» the following relationship can be
obtained:

_ 20 tan¢ c , 20 tand _
o, =e"0 o, +'E;E$(e o 1) (A.4)

Since OB is a slip plane:

T, = ¢+ 0, tand (A.5a)

Substituting Equation A.4 into Equation A.5a:

T, = (c + Oy tan¢)e260tan¢ (A.5b)

{
Substituting the value of O, from Equati&n A.2c into Equations A.4 and A,5b:

b
[l+tan¢(sin(2€+¢)—sin¢)]ezeotan¢‘c+sin¢ ezeotan¢ Uo (A.6a)
e = ‘ [cosd-tand(sin(2&+d)-sind)]
. . [sin(2&+$)-sind] ¢ + cosd o, ,6 tand
¢ ~ Tcos$-tan¢ (sin(28+§)-sindy] °
+ c cot¢(ezeotan¢ ~1) (A.6b)

From Fig. A.l stresses op and Tp can be written in terms of Oc and T, as follows:

T

1l c c
0p = [sin¢+Sin(2Y—¢)] cosd  tand (4.7a)
and
T =T o cos (2y-9) (A.7b)

P c cosd

By substituting Equation A,6a into Equations A.7a and A.7b the following

expressions can be obtained for Op and Tp:
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g = [1+s8ind Sin(2y-¢)]c‘e29°tan¢
P S,ind) COB¢ - - tan¢

[(sin(2£¥¢)—sin¢) cosd ¢ + 00]'[l+sin¢ sin(Zy—¢)]ezeotan¢
+ (A.82a)
cosz¢[cos¢-tan¢ (ein(2&+9) ~sind)]

[(sin(26+¢)—sin¢)c'cos¢+0°] tand cos(2y—¢)ezeotan¢
T =

P cos¢[cosp-tand (sin(2+¢)-sing)]
_ _ 20 tang
+ cos(2y-db)e“ o c (A.8b)
cosd
From equilibrium of wedge 00'A:
'=0 + T_ tan¥ A9
q . p tam (A.9)

By substituting values of Op and Tp into Equation A.9 and recalling that Nc
is the constant corresponding to cohesion(c), the following relationship is
obtained:

- [ltsin¢sin(2Y~¢)]ezeotan¢ + cog (2y~¢)*tan¥ e
c sind cosd cosd

Zeotand)

1 N [8in(2E+d)-sind] [1l+sind sin(ZY—¢)]e290tan¢
tand ”cosz¢[cos¢-tan¢(sin(2£+¢)-sin¢)]

tan¢ tan¥ cos(2y-9) [sin(2Y+¢)-sin¢]ezeotan¢
cos¢[cosp-tand (sin(2&+¢)~sing)]

(A.10)

However, because it is assumed that no shear stress develops on vertical plane

CD, angle £ can be taken equal to zero, and Equation A.10 simplifies to:

N = [1+sind sin(Zy_¢)].e290tan¢ 1
¢ sin¢-cosd tand
cos (2Y-4) -tany-e2% 3¢

+ (A.11)

cosd
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DETERMINATION OF BEARING CAPACITY'FACTOR NY

The failure mechanism and associated free body diagram is given in Fig.

A.2, From static equilibrium of the body OCEFG, the sum of the moments about
point O must be zero:

z Mo =0 (A.12a)

or

e

Fb.Lb + PSI'Lsi'=‘?52.LSZ + Pl'MLPl + P2'Lp2 + Wl.LWl (A.12b)

Note that moments of F forces are zero because they pass through point 0.

Determination of W, L

1l “wl
Refering to Fig. A.2, the area of logarithmic spiral segment OLlL2 is:
dA = 1/2 r?d® (A.13a)
where r=rx, e@tan¢ (A.13b)

By substitution, the previous two equations yield the following relation-

ships:
= 1/2 £} o28tand 4 (A.13¢)
and
= 1/2+y or} o29tand, 4q (A.13d)
The moment around point 0 becomes
dM = dW'LW (A.l4a)
where LW = 2/3- rl°eetan¢ cos(Go-B—B) (A.14Db)
and by substituting Equation A.l4b and Equation A.13d into Equation A.l4a:
= 1/3°Ys°r§ e36tan¢ cos(GO—B—e) de (A.15)
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thus,

0 0
2] o
- = . O 39tan¢ _a_
WL _] au = 1/3+y er f e cos (8_~B-8) O

0 0

If the integral in Equation A.16 is designated as

4]
o
I =-J'e36tan¢ cos(Oo-B—e) de

0
then the following felationship is obtained:

WL . = 1/3-ys-r?-1

17wl 6

Determination of IG

By partial integration:
6 )
1

[o} 0
N 30tand _aL _ 1 30tand Al
I, = 3tang © cos (6 -B-6) ‘|) 3tand Of e sin(_-B-6)do

Similarly the second term may be partially integrated:

1 30tang _aL _ 1 30tand
19 3tan¢ e cos(eo B-6) 9tan?¢
0
o )
_a - 1 30tand e
sin(e0 B-8) 3;;;76-‘[0e cos(e6 B-9) do6
0 0

It can be seen that the last term in Equation A.19b is the same as Ie;

therefore, the equation may be rewritten as:
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(A.16)

(A.17)

(A.18)

(A.19a)

(A.19b)



1

- 1 30tan¢ _a.8Y —
@+ Seanzp) To {“"'—3tan¢ : cos (§,-6-0)

9tan“o

___Lz__ esetan¢ sin(eo_e;_e)}

0
o

0 -

(A,19c)

Considering the boundary values, the following expression for Ie is obtained:

1 1

8 = 1+9tan?¢

[eseotan¢sin8 + sin(eo—B)]}

Determinatiog‘of Plel

From Fig. A.2 the following relationships can be written:

and

- ftan¢
OE r2 rle

tand

OH = OE sinB = rleeo sinB

HE = OE cosB = rleeotan¢cosﬁ

Pl = 1/2Y5'0H°HE

It is readily apparent that

Py

=1/2 Ysrf sinB cesB 28 tand
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{3tan¢[eseotan¢cosﬁ - cos(eo-B)] +

(A.20)

(A.21a)

(A.21b)

(A.21c)

(A,22a)

(A.22b)



and
ta

g

0
) LplgfwﬂE%Qﬁf 1/3 r e o

and thus,
- 3 2
Plel 1/6 Yg Tl sinf cos“B

Determination of P.L
27p2

From Fig. A.2:

EF = 0G-OH = D - rlsinB e

By introducing, m = D/B, Equation A.24a may be w

6 ta

EF = mB sinB e'o

1

The force P2 is given by:

-]
]

Y, * EF+HE

no

cosB

egeotan¢

Gotan¢

ritten as

n¢

By substituting Equations A.2lc and A.24b into Equation A,24c:

r.s

tan¢
(mB -
1

)
P2 Yq rlcosB eo
From Fig. A.2:
L., =HE/2=1/2r cosBee
p2 1

From Equations A.24d and A.24e:

Pszz =1/2 Ysr%coszﬁeeotan¢(m3 -

Determination of P .L
sl sl

The average value of earth pressure on vertical plane EF 1s given by:

P o=1/2K (® -D
sl o Vs -
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ing eeotan¢)

otanq)

rlsinBeeo

g’

tan¢)

(A.22¢)

(A.23)

(A.242a)

(A.24D)

(A.24c)

(A.244)

(A.24e)

(A.25)

(A.26a)



The force PSl may be written as follows:
- ey o(D -D,)? '
P =1/2 K *Yg (0 DB) (A.26Db)
The moment arm le is given by:
Lgy = 1/3 (@ + 2Dp) (A.26¢)

Combining Equations A.26b and A.26c and making the substitutions D = mB and
DB = m'B yields the following expression:

P Loy = 1/6 v, B3 K (m - n")%m + 2m') . (A.27)

Dgterminatlon of Psstz

The average value of earth pressure on the vertical plane OG is given
by:

* .
P82 = 1/2 K.YS.D (A.ZSa)

The force PSz may be written as:

P82 = 1/2 K'Ys‘D (A.28b)
The moment arm L82 = D/3, consequently;
PsZL

o2 =1/6 K°YS‘D3 (A.28c)

or by substituting D = mB:
= 3.3
Psstz 1/6 K Yo B°m (A.29)

It should be noted that the coefficienty Ko and K which appear in Equations A.27
and A.29, respectively, are lateral earth pressure coefficients. In computing
the N values presented later in this appendix, they are assigned the value

Yq
KO = K = l-ging.
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Solution of Moment‘Equation

The moment equation (Equation A.12b) may now be resolved by taking
Lb =-% ri and by substituting the expressions given in Equations A.18,
A.23, A.25, A.27, and A.29:

=1
F, = 2 Y. r I

b s 1 6
1 2 2, . O tand
+ 7 Ys T sinB cos“B e "o
.3 55 20 tan_, o & tand.
+ 7 Yg T cos Be o (mB r; sinB e o )
+-£ Ky (B%r) md
4 s 1
....l 3 132 '
7 Ko Yq (B /rl) (m-m')* (m+2m') (A.30)

Development of Expression for NYq

Bécause 0C is a éliﬁ pian;, séresses on plane OC can be represented by
point A on Mohr's diagram. The plane OA is not a slip plane; however,
stresses on this plane can be determined by the intersection of envelope
T = otanS and the Mohr's circle at point C. From the geometry of Mohr's

circle, the following relationships can be written:

oD = GP = 00'+0'D (A.31a)
where 00' = (0'A/sin¢) and 0'A = (AB/cos¢), and
‘o AB
00 050 sind (A.31b)
0'D = 0'C sin(2y-¢) (A.31c)
where 0'C = 0'A = (AB/cosd)

AB sin(2y-¢)

' =
and 0'D cosd

(A.31d)

Recognizing that AB = Tb’ and substituting Equations A.31b and A.31d into
Eﬁuatioﬁ A.3la:

T
5 =,.._,.L[1

p éb$¢ éin¢'+ sin(ZY—¢4’ (A.32a)
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By substituting T, = O, tan¢ into Equation A.32a:

b b
- [1+sin¢ sin(2y-¢)]
op oy 0520 (A.32b)
Normal forces on planes OC and OA are given by:
Fp = cp r and\Fb,= Oy Ty (A:33a)
or
Fp/Fb = (Gp/O'b) (ro/rl) (A.33b)

Recalling the identity sino = cos (90°-0), the following relationship may
be written:

- - cos (y- ,
rl r cosd (A.33¢c)

By substituting Equations A,.32b and A.33c into Equation A.33b

F =F 1l + sind sin(2y-¢)
P b cos¢ cos(y-9)

(A.34)

By substituting F, from Equation A.30 into Equation A.34, the following

b
relationship is obtained:

_[1 4 sing sin@y-9)] {1 2
Fp N ~ cos¢ cos(Y-9) J [2 Yg T I

+ %’Y r.2 sinB cos?B e

36 _tand
s 1 °

A cos?B e 20 tand (mB-r sinBe eotan¢)

~lw

K Y, (33/r1) m?

L L

Ko g (Balrl) (m-m')? (m+2m'ﬂ (A.35)
Denoting the vertical component of FP as F v where va = Fp/cosG and
considering the vertical equilibrium of the force qB/2 exerted downward

on the penetrometer and the resisting force, the following relationships

are obtained:
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qB = 2 va cos(p-8) . _ . (A.36a)

and

qB = z‘p, EEEﬁﬂigl (A.36b)
cos®
Considering the weight (W) of the soil wedge"forvflat—én&ed"benetrémeters,
Equation A.36b is modified as follows:
2 F

- p cos(y-0)
1 B cosd

W ,
-3 (A.36c)

Also, the following relationship should be aﬁplied to the expression for FP:

" _ B cos(y-¢) e
b ) cosy cosd (4.36d)

Then substitution of Equation A.36d into Equation A.35 yields the following:

- F [l + sing sin(2y- ¢)]
p " cosd cos(y-9)

1 2..cos’ )
[8 Yg B° cos?y cosz¢ Ig

+‘i%'? B? £2§_£1;927_ sinB cos?Be 36°tan¢

cos2y cos4¢

+ %fY B cos(y=¢) coszﬁe 29otanq)(mB —-%

cosy cosd:

cos (Y=¢) sing e otan¢)

cosy cos¢

1 2 cosy- cosd 3
+ KRy, B cos(y-¢) O

1 B2 cosy cosd . 4 2 '
-5 Ko Ys cos (Y-0) (m-m') (mr+2m 4
(A.36e)

Utilizing the relationship

it wogesly=0) o4 0 tand

2. cosy cos¢d

Equation A.36e may be further simplified and combined:
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cos cos(y-9)

2 (y-9)
{ Ys B os“Y cos2¢ I6

Cc

F o= [1 + sind sin(2y- ¢)}

+ %‘Y p2 co8_(y=0) ., 25 20 tand () _ %-m')

8 cosy cos¢

1 2 cosy cosp 3
+ 2 Ky B cos (y-0) m

1 B2 cosy cosg c;"&72 g ' ¥
- 2~Ko Yq cos (v-6) (m-m')* (m+2m )] (A.36§)

Substituting the expression for Fp given in Equation A.36f into Equation
A.36c the following relationship is ob tained:

cos (Y-8)|, |1+ sind sin(2y-¢) |,
cosd cosd cos (Y-¢)

1 cos? £Y~9)
[4 cos?y cos?¢ Ig
3 cos (Y=9) cos? 260tan¢ (m _2 m')
3

4 cosy cos¢

+ K COSQ COSQ ma
cos (Y-9)

= (YS B)[

cosy cos
- K E;;m??—a% (m-m')? (m+2m' 4

Yo B tany
-t (A.37)
Considering that 9 = cNé + Yq B NYQ’ the following expression is obtained

for the N factor:
Yq
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- [ cos (Y-8) |1+ sing sin(2y-9) |,
NYq | cosd cosd cos(Y-9)

1 cos? gx-9§= ~
7 o

[Z cos“) cos

+ %.EEE_QI:QL cos?B e 26 tand (m - %-m')

cosy cos¢

K COS!E COSQ ms
cos (Y-¢)

+

. . COSY COS8 1N 2 1 - tan
- K ;3;2?7:$? (m=m') (m+2m.)] ——Zw

where Ie is given by Equatign A.20.
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CURVES FOR BEARING CAPACITY FACTORS
FOR DIFFERENT VALUES OF ANGLE OF INTERNAL
FRICTION (¢), BASE SEMIAPEX ANGLE (a),

BASE ROUGHNESS (S8/¢), AND RELATIVE DEPTH OF BASE (D/B)

Note: In computing values of NYQ’ the lateral earth pressure coefficients, K

and Ko (see Equation A.38) were assumed as KFK°=1—31n¢.
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A COMPUTER PROGRAM FOR THE DETERMINATION OF BEARING
BEARING CAPACITY FACTORS OF WEDGES AND CONES
The following computer program which consists of a main program (NC or
NGQ) and one subroutine (ANG) was written for the determination of bearing
capacity factors Nc and NYq of wedges and cones.
Subroutine ANG calculates angle Y (the topmost angle of the plane shear
zone) from Equation 3.27. Programs NC and NGQ calculate bearing capacity
factors Nc and N

Yq
calculated in the main program and Equations 4.26 and 4.32 were used for the

from Equations 4.5 and 4.9 respectively. Angle B is

shape factors in the calculation of cone bearing capacity factors,

Data Input
Control Card (I 10)

Columns 1~10 Number of factors to be determined (N)

Note: Each set of o, 8/¢ and D/B corresponds to a single bearing
capacity factor to be determined.

Penetrometer Property Card (3 F1l0,0)

Columns 1-10 Semi-apex angle of penetrometer (a-ALFA)

Columns 11-20 Roughness of penetrometer (3/¢-FAS)

Columns 21-30 Relative depth of penetrometer (D/B-DPT)

N number of cards are required

Notes: (1) Bearing capacity factors for both wedges and cones are
calculated for 20°<$<50° with increments of 5°.

(2) Separate Input Data should be prepared for program NC

and program NGQ.
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LISTING OF THE COMPUTER PROGRAM FOR THE
DETERMINATION OF BEARING CAPACITY

FACTORS OF WEDGES AND CONES
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e o e e i e o i s B vt et b i o e s i e o st ot i oo e e e

PROARAM Ne (INPUT.OUTPHT)
PROGRAM CNANE RESISTANCE NC FACTORS
N= NUMRBRER OF nATA &F TS
ALFA= HALF APLX AMGLE
FAS= ROUGHNESS
VPT= DEPTH TO DIAMETER RATIN
FI= ANGLE OF INTLRNAL FRICTION
ATAR= SHAPL FACTNAR
DELTA= PENFTRONITFR 10 SHATL FRICTINN ANGLF
READ 1 s N
1 FORMATI(I1IO)
Cwxxsse READ AnD oRINT WEDGE AMGLEs nalGHMESSs ofF |, DEOTH sepewvepnymrny
DO 30 K=1sN
READ 1O,ALFA9FAS,DPT
10 FORWAT(?r]O 0)
PRINT 21sALFASFAS.DPT
21 FORMAT(IHT1 94X snHAL FA=sF1ves//

DO YOy N

1 5Xs 1OHROUGHME SS= o FRe s //
7 ﬁx510HQEL-DEPTH:9F“ﬂ“9//)
ALFAR=ALFA/57e.28

FI=20.

PRINT 24
24 FORMAT (/9 1UXs2HFlw15XsaHPST e \9’Hh\‘u*1thQHTETAaOXSRHDFLTA3QX1
1HWLOGE FACTORS 85X 4 12HIARE FACTARS, /)
DO 25 J=71+10
FIR=FI/57.28
ATARZz7 0+ 0 2+ {TAN(FIR) ®¥%s)
CHRIFFXCALCILATION OF  ANAL T AA G K830 %0 505 5000 35 538 26 56 36 503 5030 30 30 30 303858 0 303050 30 30 3536 262036365
C-/\LL AN\J(FI s AS s GANMA)
Ve=STN{FIR) /CUS(FIR
DCLTA= F"\)'EI
DELTAR=DILTA/R 742N
IF (FAS=1.0) R, 37 527
32 FlS=4%e~tT1/20
IF (ALFA-FIS) 185415214
16 PSI=FIS+FI
GO 70 17

15 CONTINUF
33 PSI=9Ce=ALFA
17 PSIR=PSI/67428
Cwsedse CALCULATE "o TA 0¥ JToRATTON  e3earer o0 weyr e sey a3 0 50 3 M 3 30 308t 530 30 30 30 30 20 0383

BETA=1e%F I
BETAR=BETA/57e202
GAMAR=CGAYMA/STe 20
TETA= 1R80.-PLL+BETA-GAYA
TETAR=TETA/57.728
WELUPT=zve bk (COo{OAVARF IR} )L SIn (ETAR ) )2 XD{{TETARRLIN(FI2) )/
1COSHFIRIIZICOS(FIR)#CSINSIR))
PRINT 44 4nrnPT
G4 FORMAT (/45X s4H0Ce=sF 10,
IF (DEDPT-NPT) 11171917
12 ETA=1RO-—P?I-—G/\“,\
SOTA=0,
ETAR= FTA/57.28
F1=2e %P THCOS U IRIACOLIPSIRI/{LCOSIGAVARFIR) S (EXD(FTAR®V A ) ))
BOR=ATAN(T1)
BO= BOR*67,28

2./)
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IF(BO~-FI) 310s53710.23717
311 g0=F1
210 CONTINUF
DO 101 I=1+20
TP THC0@(FIRIACOSIPSIR)ZLeNLIGAMARP T IR )2 (FXP ( ( (10, =PAT
1~GAMA+BO) /87«28 )% VA1) ) )
Ta=T2/{S5QRT{1e=Toxx2)) . R
BNR=ATAN(T?)
BN=RNR*57,28
IF(ABS (ON=830)=Je1) 5BUTsR0Ls502
01 GO 7O 102
:302 150:(%:"54”{50)/7.
101 CONTINUE
102 BETA= 8N
BETAR= BETA/576728
PRINT 668.1
468 FORIMATIAX S 1OHITERATION=s124/)
PRINT Asa9, {1FTA
6AO FORMAT (AXsnHBLTAz sF 7018 /)
3% CﬁL(ULﬁTF NPT AND CONT m A TORS 3280058 303030 5030 22000 3530 30 30 1 A0 03031 5008 30 35 28 3030 30 34383
TLETA= 180e—-PSI+BETA-GAMA
TETAR= TETA/R7e78 '
GO TO 70
11 CONTINUE
i={2e#LOS{FIR)I#CAS(PEIRI%LPTI/{CNS(CAVARLFE [0 ) w5 (s TAR ) eI (TET
R#*Vg )
GSIR=ATAN(RT )
NSI=Q51R*¥57.28
S5O0TA=0.
70 SOTAR=50TA/57.28
Ci1=sIN(FIR)
C2=COS(FIR)
C3=SIN( 2 #GAMAR~FIR)
CL=FEXP (2% TFTAR®VA)
Cu=SIN(2ex30TARFF IR
CoE=COS (2 ¥*GAMAR-FIR)
Cr=5INIPSIRI/ZCDS(PSIR)
CB=({1e+CT#C3)/{C14C2) I 20+ {{Cr=Cr {1 a+C1a2CA ) i/ {(Crux2) 3 (Cr=-Val
10C8Cy) ) ) ) u2lp=1e/Ve+{lauCo20n)/Co
Co=(VexU7xCa% {ralr) #la ) /(Lo {Cr=Vee ((a~C1)))
ENC=C8+CH
ENCO=ATAR#*INC
PRINT 6 s FIsPOl s GAMASTETALLDEL TASENC,ENCO
20 FORMATIGRsFLlualo TXsFLlu,,lo3XsFl0,109Xsmlu,ls3Xscl, 2:6Xsr1ln,1:.9%ss
1101}
FI=Fl+5
CONTINUE
CONTINUE
END

—

[SVR NN EN
[@RC
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11
81
13

W

NN

SUBROUTINE ANO(FI ZFASson{W)
CALCULATINN NF GAMA ANGLE

DELTA=FASxHFI]
DELTAR=DELTA/57e28
IF{(FASebWatle) 0O TO 2
IP(FAC).i{)‘O') 50 TO 3
QSI:(]_D*F-/-\,C))%(/.;E)Q’FFI/?.)
QSIR=QSI/57.28
FIR=F1/57.728

VALO= o dNIUun L TAR) /CoS(uL L TAR Y ) {1+ S IN(FIRI#SIN(2.#N5IR-FIR))

1=SIN(FIR)#COS(2a%nSIR-FIR)

DO 81 K=1,150
QSI=Q8I+0.1
QSIR=0NST1/57e28

VALN=(SIn(DLLTAR) /COS(DE

LTARI I 2 {1 +STHLFIR)#SIMN(2,3#NSIP-FIR))

1=SIN{FIRI*COS (D« NSIR-FIR)

VAL=VALN#®VYALO

IF (VAL) 12917311
VALO=VALN
CLONTINUE

QNEW=QST

GO TO 4

DAST=(VALN/ (VALN=VALD) ) *

QNEW=QST-NNST
GO TO 4
QNEW=45e+F1 /20
GO TO 4

CJNE\Izﬂ .
CONTINUF
RFTHRN

END

Col
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i

PROGRAI NaY (INPUT,,CUTPIIT)
CoNE AND Wewven RESISTAMIL nGn FACTNRS
N= NUMRER OF PATA &FTS
ALFA= HALF APFX ANGLL
FASs ROUAHNESS
DPT= DEPTH TO DIAMETFR RATIN
FI= ANGLE OF INTERNAL FRICTTINAM
ALEW SHAPE FACTOR
DELTA= PENETROMETFR TO SOIL FRICTIOM AMGLF
RFAD 1 s N
1 FORMAT(I10)

i1l

AN NONTY D OY Oy

Caue®x READ AND PRIMT WFDGE AMGLE. ROUGHNESSs 0t . DFPTH

DO 30 K=1,N
READ 109 ALFABFA%,.)DT
10 FORMATI(3F10.0)
PRINT 21s ALFASFAS.DPT
21 FORMAT (1M1 44X s BHALFA=sF 112,/ /

1 5X s 1OHROUGHNE SS=eFRe2e//
2 AX TUHREL«VEPTH=2Fge2s//)

ALFAR=ALFA/57428
PRINT 24

VIRV
IR

3 5 3036 SRR

24 FORMAT (/2 1uX s 2HF T 15X 22HPS s 7 XagHGAVA s 14X s AT T A OXsBHDELTASE X s ]

1hWEDGE FACTORSs8Xs12HCANE FACTORS: /)
F1=20.
DO 25 J=1 .7
FIR=FI/857428
ALLM‘:‘v‘é""(]AOS/(lo/DPT'f'(lor\/( -A+(TAN(FI:‘
C*%***CALCULATIUN UF ANALE GAMA*%%%*%**%W%AXﬂi
CALL ANG(FI.FASsGAMA)
Ve=SIN(FIR)/COS(FIR)
DELTA= FAS*FI
DELTAR:DELTA/C‘7A 7.,0
IF (FAS=-1.0) 274372 57372
32 FlS=45a=F1/2e
IF (ALFA-FIS) 1515914
16 PSI=FIS+FI
GO 1O 17
15 CONTINUE
33 PSI=0N~-ALFA
17 PRIR=PS1 /57,28

CrusxxCALCULLATINN nF axc U fF BETA BY TTERATT OMIE R kX 08388

BETA=FI

BETAR=BETA/ST7 75
GAMAR=ZGAA/5T P8

TZTA= 1804—-P3I+BETA-GAMA
TETAR=TETA/5T7 28

VEDPT={UennCOS{OAMAR-FIRI#SININETARY #LXPITETARRVA ) )/ (COS{FIR)#CNS

T(PSIRYY
PRINT 44 ,neEnPT
G4 FORMAT (/oo h o HUCe=sF 1. 029/ )
IF{DELDPT~DPT) 171s11417
12 DEDPT=DPT
ETA=180e~PSI~CGAMA
ETAR= U TA/5 7620

D=2 e¥0PTHCOSIF IR« CH L IPEIRY I/ {CASOANAR=F IR s (EXD (FTAR®VA)))

BOR=ATANI{TI )
BO= RBOR#*#57.28
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IF (BC-FI) 310527104211
311 B0=FI
310 CONTINUE

DO 101 I=1s20

Toal{2e#DPTHCOS{FIn) 2COSIDSIPYIY/{CAS{CAARSFIR)

1A+BO) /B5T7e?R)%VA) ) )

Ta= T?/(Q(DPT(T.—T?-**?))
BENR=ATAN(TR
BN=RNR*57, 78
IF(ABS (BN=-BU) «1 ) 5071 +68MN7 9509
a0l GO TO 102
502 BO={BN+B0)/2e
101 CONTINUE
102 BETA= BN
BETAR= BETA/"7478
PRINT AAR8s 1
668 FORMATIAX s uHITLRATION=2129/)
PRINT 669s BETA
6560 FORMAT{AX smnripb TAz syF7e15/)
TLfA:]PUQ—-PEJ’.*G/"\MA'*L)CT[.\
TETAR= TETA/RT7a0%2
11 CONTINUE
RADIS=DIDPT/TANIRITAR)
PRINT 454RADIS
45 FDRNAT(/a1A94HRQ.—-F]V.7~/)
C R R /\LCULA][U»\ JFOINGW F’\(-—]U'\u“ R R R L i R I P S A A R N
WEIGH=S5IN(PSIR) /(5% COS(PSIRY)
Ir { ALF A= f?u-) 139145172
13 WEIGH Do
14 CONTINUE
V]-’—er"’( Z W HTFTARFVVA)
Vo=V1#COS(BETARI=COS(TFTAR-BETAR)
2=V IS IN(BETAR) +5IN({TeTAR-0 L TAR)
V=73 o ¥VERYI Y3
VE=V4 /{1 a0 a®(VaFx2) )
J1=CO5{GAMAR~FIR)
U2=COS({FIR)
U3=COS{PSIR)
Ua=COS(HRTAR)
UBR={"1 ¢/ et {UTH Aoy uVr/{ {(tiakna ) { fatea)]
U7=FEAP{ 2. %TETAR®V )
U=l (Uaxsp )/ Ul°v- 17
U=(Ra/le 1 RURARUTH(DPT={2a/3, J¥0FLPT)
Dé=1-—SIN(FIR) _ ,
Do=((DaxU2xu2 )/ {Jd1) )y {{DPT=DIDnT e} {0 T w24 v inT)
Da={{D6¥UaxUP ) *(DDTx%2) ) /1]
P1=AUg+UG=D2+u /) 2 (COS{RSIR-DELTAR) /CAS(UT| TAD) )
Po=({qe+2In(FIR)%SINI{D2exGAMARFIRPY Y/ (U2xlUq) ) 2",
EMGAQ=P2-w IGH
ENGAC=ALEM*ENGAQ
PRINT 26sF1lspSlsGAMA»TLTAsi TAsENGAN I LAC
206 FORMATI(GAsFLUGl o7 XN oFluals3AaFl JleovXaFloalo3Xegl0,220%.F
iFloe1)
rI FI+.:.O

25 CONTINUF
30 CONTINUF
FND
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SUBROUTINE ANG(FI5FAS " ME)
C /‘\ L C U L f\ T I ON O i GAM A A 2 0 LE

DELTA=FAGHF]
DELTAR=DELTA/DTePa
IF(FASeEDeT ) GO TO 2
IF(FASe(lQeDe) ‘GO TN =
Q51=(1e~FASI* (454 +F /2]
USIR=QS1/57.28
FIR=F1/57.78

3

VALO=(OINIDEL TARY Z7Cno o LTARI I (1o +SIMFIR)I%SIN(2 e #0SIR-FIR)]

1-SIN{FIR)I#COS(2eng R~ T
DO 81 K=14150
WHST=Q51+0.1
USTIR=QS1/R7.28

Vg N=lalnonpTap) Zunslovny Tarm) e
1=SIN(FIR)I#CUS( o #NG TI—i T 5

VAL=VALN®VALD

IF (valh) ]7,1’-2),1-!
VALO=VALN

CONTINYF

ONFW=GST

GO 70 4

Daol=(VALM/{VALMNLVAL O) ) »

WNFW=GST=n05]
GO TO 4
ONEW=65e+F1/2e
GO TO 4
GNEW=04

CONT INUF
RETURN

Enn

™)

el
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APPENDIX B
SPREADER BOX CALIBRATION

Pluvial compaction, the deposition of air-dry sand by allowing it to fall
as a rain to build up a bed, was used to produce a large range of densities,
Sand was stored in 55 gallon (~0.22m?®) drums between tests. Prior to deposi-
tion, the frame travel micro-switches were adjusted and the spreader box was
filled with sand using a barrel turner attached te a fork 1lift truck. Motion
of the frame was iniated one foot from where the roller started to eject sand
to ensure that the frame reached its required speed and that transient vib-
rations had died out. A second micro-switch started the deposition which
continued until a third switch was contacted stopping the rain of sand. A
fourth micro-switch reversed the direction of travel allowing the frame to
move back and forth spreading out about a 1.0 in. (25.4 mm) thick sand layer.
The spreader box was intermittently elevated to maintain a constant height drop.
The procedure was repeated until the required sample height was attained.

In order to determine the uniformity of the sand layer deposited by the
spreader box, the sand density at various locations in the layer was measured
by weighing the quantity of sand deposited into volume calibrated cylinders.
Cylinders of 3.0 in. (76.2 mm) diameter and 3.0 in. (76.2 mm) height were
used as recommended by Kolbuzewski (1948). 1In several tests, cylinders were
placed along the transverse and longitudinal direction of the box motion.
Figs. B.1l and B.2 show the variation of sand density along these directions
of the box. In several tests, cylinders were placed at different elevations
to check if there was any density change due to additional sand deposition.

It was found that the variation in density was negligible, even for loose sand
deposits. The overall average density was determined by weighing the quantity
of sand deposited into the test box.

The density of sand deposited using the spreader box is related to
roller speed for a given gap width and height of fall so that once cali-
brated, it is possible to reproduce any required density by properly adjusting
the roller speed. The calibration curve obtained for Monterey Sand No. 0
is shown in Fig. 8.3. It may be seen from Fig. B.3 that obtainable relative
density range is quite large, 34 to 100 percent.
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VOID RATIO, e
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