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ABSTRACT

A review is made of the techniques for measuring ionospheric elec-

tron content, the,..most important parameter in the study of transiono-
•"- /*'.i«. "f •?•?.

"*'•• ' -"'!.-..-v .
spheric propagation. Data collected'since.1964 have yielded a synoptic

description of the behavior of the electron content in midlatitudes.

Empirical relationships between the level of solar activity and the elec-

tron content have been developed permitting the prognostication of the

electron content values. Construction of such prognostication schemes

has been stimulated by current efforts to create accurate satellite

borne navigation systems. Marked discrepancies between prognostication

and observation which occur during ionospheric storms, are being studied

to identify their causes. Electron content bite outs during solar

eclipses fall off with distance from totality more rapidly than simple

theory predicts suggesting the action of eclipse induced neutral winds.

Gravity waves propagating in the thermosphere leave a signature in the

electron content records. Studies of such records have allowed the iden-

tification of the position of the gravity wave source, and its radiation

pattern. A one-to-one relationship between these waves and polar sub-

storms has been revealed. Electron content measurements have been used

to monitor the protonosphere with good time resolution. Protonospheric

storms have been observed with this technique. Slab thickness data ob-

tained from content measurements have been used to determine the neutral

air temperature in the thermosphere.
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ILLUSTRATIONS

Fig. 1. The daytime average value of electron content
(0900 to 1500), IAVD, for Stanford. The solid line
is a 31-day running mean through the data. SYNCOM
III observations were used up to July 1966 and
ATS-1 observations began on the last days of that
year.

Fig. 2. The data of Figure 1 are plotted with a correction
for an overhead sun.

Fig. 3. The nighttime average value"of electron content
(2100 tO 0300).

Fig. 4,5, Comparison between the observed electron content
and 6 (I), the prognosticated value (Ip) and the 31-day

mean value loi. Note that the ionospheric storm
on 21 May 1969 caused a severe failure of the prog-
nostication scheme.

Fig. 7. The estimation error reduction (or amplification)
CQ/CT, given by the best linear predictor and a
"practical" predictor is shown as a function of the
correlation coefficient p. When p > 0.5 the "prac-
tical" predictor should not be used because it in-
creases the error rather than diminishing it.

Fig. 8. Correlation between electron content values at
Ely, Nevada, and Stanford, California, a distance
of 700 km. A 30-day interval beginning on day
40 of 1967. Same local time at the two stations.

Fig. 9. Correlation between electron content values at
Honolulu, Hawaii and Stanford, California, a dis-
tance of 4000 km. A 30-day interval beginning on
day 40 of 1967. Same local time at the two sta-
tions.

Fig. 10. Examples of regression between solar radio flux
(S) and daily mean electron content (IMEAN).

Fig. 11. Comparison between predicted (solid trace) and
observed values of daily mean electron content
(crosses). Data for Stanford ATS-1.

Fig". 12. Seasonal behavior of the daily mean electron content.

Fig. 13. Cross-section between electron content and solar
radio flux showing that the content lags by about
2 days (1965 results have no significance. See
text).
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ILLUSTRATIONS

Fig. 14. Electron content bite out during the solar eclipse
of 7 March 1970, observed in the path of totality.

Fig. 15. Plots of the weight function W versus height for
an observer at Stanford. Two families of W are
shown corresponding to geostationary satellites
positioned at 73° W and 105° W.

Fig. 16. Protonospheric electron content observation, during
an uninterrupted period of 7 days.in May 1969, from
Stanford. The geostationary satellite was parked
at 73.4° W.

Fig. 17. Protonospheric electron content on 14 May 1969,
from Stanford. The solid trace curve, Iw, is
the observed electron content of the protonosphere.
The total slant electron content (dash .trace), I,
and the universal geomagnetic index, Kp, are also
shown. The shaded region in the figure corresponds
to the geostationary satellite ATS-3 corrotating
in the nightside.

Fig. 18. Storm time variation of ionospheric disturbance
at midlatltude. From Mendillo[1971].
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TABLES

Table 1. ATS-F group delay experiment. Ambiguities
uncertainties (ly) in the measurement of electron
content using either 40 or 140 MHz signals in con-
junction with the 360 MHz reference signal. Two
modulation frequencies are considered: 0.1 MHz
and 1 MHz.

Table 2. Summary of r.m.s. residual ranging uncertainties
(at 1.6 GHz) when different electron content esti-
mation schemes are employed. See text for explana
tion of e., ... e..
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The earliest uses of radio beacons aboard satellites date back to

the Sputnik ear. Thus, a classical paper on the determination of the

ionospheric electron content was written by Garriott[1960] based on data

collected from Sputnik III in 1958/59. The first beacons designed for

ionospheric propagation studies were placed on low orbiting satellites

and yielded a nearly instantaneous picture of the electron content along

a given track. Typical satellites of this type were BE-B and BE-C, the

former in a high inclination orbit essentially scanning the ionosphere

along a N-S track and the latter in a low inclination orbit scanning in

an E-W direction. Scientists from all over the world made good use of

the availability of these beacons and considerable amounts of data were

collected. Although the interest in low orbiting beacons has waned, it

has not disappeared. For example, Spain is about to launch its first

satellite — the INTASAT -T which has several of the features of BE-B;

in addition, DNA 002 to be placed this year in a circular orbit at 440

km altitude with an inclination of 98.5° will contain a beacon to be used

mainly for scintillation studies.

Beacons placed on geostationary satellites have the distinct advan-

tage of permitting the continuous surveillance of a fixed volume of the

plasmasphere and for this reason, are much more popular at present. I

will confine this paper to results obtained from such beacons.

Use of geostationary satellites for propagation studies began in

1964 when the signals from the VHP telemetry transmitter aboard SYNCOM-III

became available. This satellite was parked over the international date

line so that only stations in the Pacific area could collect data, a
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fact that put the University of Hawaii and Stanford University in a

privileged position. These organizations have observed geostationary

satellites in an almost uninterrupted manner since 1964 up to the present.

Additional impetus to such work was provided by the launching of ATS-1,

in 1966. This satellite was also parked over the international date line

and substituted SYNCOM-III which had drifted out of range of the West

Coast of the U.S. Again, no special equipment was used aboard; the VHF

telemetry transmitter served as a beacon. The same occurred with the next

two satellites of the ATS series: ATS-3 and ATS-5. These, however, in-

corporated a simple modification that caused a small amount of the third

harmonic of the VHF signal to be rpdiated, thus effectively acting as a

dual frequency beacon useful in protonospheric observations as described

later.

The first (and possibly, last) geostationary satellite to be equipped

with a specially designed beacon, is ATS-F to be launched in mid-1974.

The beacon will emit signals at 40, 140, and 360 MHz, modulated by a

1 MHz tone. The 40 and 360 MHz carriers will also be modulated by 100

kHz. Such a combination of frequencies (all coherent) will allow a wide

range of propagation experiments. ' •

Signals from both low orbit and geostationary satellite beacons are

used mainly in one of two different propagation experiments: scintilla-

tion studies and measurement of electron content.

One simple but significant result of scintillation studies is the

discovery that in certain regions of the world, gigaherz signals trans-

mitted through the ionosphere, may suffer strong amplitude and phase

SEL-73-022 2



disturbances. This is particularly true in the equatorial and the

auroral regions and may have a profound influence on the cost of satel-

lite to ground communication systems: enough additional effective

radiated power must be provided to avoid signal loss during deep fading

periods. Such behavior came as somewhat of a surprise to engineers and

scientists comfortably convinced that the scintillation index was pro-

portional to f ^ where T! was supposed to be about 2. It turned out

that the exponent is itself a function of the depth of scintillation

and may become a small number or even a negative one. The study of

scintillation is, however, one outside my own field, and I will therefore

confine this work to the measurement of electron content.

Electron content measurements are based either on the birefringence

of the ionosphere or on its dispersivity. The latter can manifest itself

by the difference in propagation times of signals of different frequencies

or by the fact that the refraction of such signals is not the same. Thus,

by observing the different angles of arrival of signals of different

frequencies coming from a satellite it is possible to determine the elec-

tron content. This technique, at present, does not present advantages

capable of balancing the cost of the necessary radio-interferometers.

When two signals of different frequencies are transmitted from a

satellite through the ionosphere, they experience different retardations

which can be measured by comparing the phases received on the ground.

With the usual combination of frequencies (say 140 and 360 MHz, as on

ATS-F) absolute values of electron content cannot be directly measured

because the difference in retardation is such that the observed phase

3 SEL-73-022



differences can be several hundred times 360°, and the resulting am-

biguity cannot be simply resolved. On the other hand, this technique

is extremely sensitive to changes in electron content. For instance,

the 137/412 MHz pair on ATS-3/5 allows the resolution of better than

14 -2
10 el.m . Since on the middle of an equinoctial day, during sunspot

•to _o
maximum, the slant electron content can be some 10 el.m , a resolu-

4
tion of better than 1:10 can be obtained. The question of determining

the absolute value of electron content from this so-called phase-path

difference technique was resolved a long time ago for the case of low

orbiting satellites (Mendonca[l962]) but only recently for the case of

geostationary ones (Almeida[1972]). The method employed with geostation-

ary satellites is a hybrid one and uses information from Faraday rota-

16 -2
tion measurements. An uncertainty of less than 10 el.m can be

achieved.

The equipment used in the phase-path difference method consists of

phase-locked receivers and is, therefore, expensive and not very appro-

priate to unattended operation. These disadvantages, together with the

difficulties in the determination of the absolute value of electron

content, led workers in this field to the idea of the "group delay exper-

iment". In this case, the phases of the modulation envelope of two

carriers at different frequencies are compared. In the case of ATS-F,

for instance, the phases of the 1 MHz envelopes of either the 40 and 140

MHz carriers can be compared with that of the 1 MHz modulation envelope

on the 360 MHz carrier. Since the wavelengths involved are much larger

than those used in the phase-path difference method, the ambiguity now

SEL-73-022 . 4
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is also much larger and can be resolved easily. Table 1 shows the am-

biguities and uncertainties of the group delay experiment on ATS-F.

Uncertainties are based on a conservative estimate of ± 10' uncertainty

in the phase angle measurement. One basic assumption in this experi-

ment is that the relative phase of the modulation envelopes of the sig-

nals as they leave the satellite is known. This is a crucial question

mark in the experiment.

By far the most popular method of determining the ionospheric elec-

tron content is that based on the measurement of the Faraday rotation of

a linearly polarized signal, in general, at VHP. The great advantage

of this method is the simplicity of the equipment both on the ground and

on the satellite. The latter may simply be an existing VHP telemetry

transmitter: one or two watts of effective radiated power being suffi-

cient. On the ground, the most commonly used equipment is one employing

a mechanically rotating Yagi antenna, developed by Prof. John Titheridge

of New Zealand. Recently more sophisticated VHP polarimeters, using

fixed antennas, appeared on the market.

The main drawbacks of the Faraday rotation method are the substan-

tial uncertainties associated with the conversion of Faraday rotation

angle into electron content values and the fact that the method becomes

progressively less sensitive as the observation site moves closer to

the geomagnetic equator.

Adequate electron content information has been accumulated over the

last few years by stations in or near New Zealand and by those in the

U.S. (including Hawaii and Puerto Rico). Other areas of the world are

SEL-73-022 6



not as well covered. Figures 1,2, and 3 show typical results. The

collected data have been put to good use on both science and engineering.

The increasing use of transionospheric transmissions between earth

and artificial satellites or other astronomical bodies is generating a

growing demand for better knowledge and more accurate predictions of the

behavior of the electron content of the plasmasphere.

With the proliferation of geostationary satellites, communications

engineers require knowledge of the maximum bandwidth that can be trans-

mitted through the ionosphere with a tolerable phase distortion. This

dispersive nature of the medium may cause the bandwidth to be limited

by the electron content; the maximum bandwidth is then a function of the

time of day, the season of year, and the phase of the solar cycle. A

related problem, also dependent on the value of the. electron content,

is the question of the distortion suffered by short pulses transmitted

through the ionosphere.

Efficient launch operations of some satellites as well as accurate

position keeping of satellites already in orbit require the determination

of the spin-axis orientation with a precision of about 0.1°. This can

be done by measuring the polarization angle of a wave radiated from a

satellite antenna mounted along the spin-axis. To obtain the desired

accuracy, it is imperative that the Faraday rotation in the plasmasphere

be taken into account.

The transmission of time signals via satellites offers definite

advantages over the use of HF but again, for the highest accuracy, trans-

mission delays due to the electron content must be taken into account.

7 SEL-73-022
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The capacity of communications channels between a satellite repeat-

er and ground can be doubled by using polarization separation of two

transmissions employing the same frequency. To accomplish this, orthog-

onal, linearly polarized antennas are used, and it is necessary to com-

pensate for the Faraday rotation in the ionosphere when orienting the

ground antennas. Predictions of the expected Faraday rotation are very

useful in designing the system.

Perhaps the most acute need for good ionospheric data comes from

the people who are developing precision navigation systems. The one

system that seems to be more advanced in its development is the DNSS

(Defense Navigation Satellite System) of the Department of Defense of

the U.S. This system employs a constellation of four geo-synchronous

satellites, one of which is geostationary while the other three are

placed in such an orbit that their ground track is a circle of some 30

geographical degrees in diameter centered on the subsatellite point of

the geostationary spacecraft. The three coordinates of the user

(latitude, longitude, and altitude) are determined by ranging measure-

ments to the satellites. Four, instead of three, satellite to user dis-

tances have to be measured because additional information is needed

for the synchronization of the user's clock. Thus, with four measurements,

the four unknowns — x, y, z, and vt — are determined. To obtain t,

v has to be known from independent information, and since the mean propa-

gation velocity depends on the electron content in the intervening medium,

the latter must be known. One should point out here that there is a

requirement that the user be passive, otherwise the capacity of the sys-

11 SEL-73-022



tern would be severely restricted. If the user were able to interrogate

the satellite then there would be no problem of user clock synchroniza-

tion.

As the system is to have a precision of a few meters, uncertainties

in ionospheric delay become important even at the L-band frequencies

used. For this reason considerable effort has been dedicated to the

analysis of the ionospheric effects on the accuracy of the system and

on finding methods to reduce the propagation uncertainties.

Several organizations have constructed electron content prognostica-

tion schemes. Since CCIR has developed tables of coefficients that per-

mit the estimation, on a worldwide basis, of values of fnF2 (and con-

sequently of N ) given time of day, day of the year, degree of solar
rn3.x

activity, and geographic position, and since there is a relationship

between the electron content, I, and N , some of the schemes use thein 3.x

CCIR tables as a starting point.

This requires knowledge of the behavior of the slab thickness, T:

Nmax

An auxiliary prognostication scheme has to be created to estimate

T. This has been done by the Air Force Cambridge Research Laboratories

(Klobuchar[l970l) using observed values of I and N . The University
max

of Illinois (Rao et al.[l97l]) used real time electron content values

and predicted N to obtain an estimated slab thickness. This value
max

of T is then used at a second location together with predicted N
max

SEL-73-022 12



to prognosticate the electron content. The scheme developed by the

Applied Physics Laboratory uses the predicted values of N in conjunc-
max

tion with theoretically derived slab thickness values, to obtain I.

DBA Systems, Inc., derived its prognostication of T from worldwide

top and bottom side soundings (Bent et al.[1972]). It is the only

scheme, at present, that can be applied worldwide.

To avoid the accumulation of errors resulting from the need to

prognosticate two quantities (T and N ), Stanford University
IflclX

(Waldman et al.[l971]) developed a scheme in which the electron content
~ ^ ~ ^ ~ - - - ~ - ̂ ^̂ ™̂ o

is directly prognosticated from its historical behavior in a manner

similar to that used in deriving the CCIR coefficients for fnF2. The

disadvantage of such a method is the present dearth of data that limits

the coverage to North America and Hawaii.

Since the r.m.s. accuracy of all proposed schemes is about the

same at present, (except for the one of Illinois which appears to be

more precise), we will look at some of the Stanford results.

Figures 4,5, and 6 compare the observed diurnal curves of electron

content with those predicted by the prognostication scheme and with the

31-day mean curve.

In Figure 4 one can observe a good agreement between observation

and prognostication. The 30-day mean is somewhat too high owing to the

fact that the 30-day mean solar activity was higher than the activity

on the day under consideration. Figure 5 again shows good agreement be-

tween observation and prognostication. In this case, however, the mean

is too low because the solar activity in the day in question was much

13 SEL-73-022
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higher than the mean. Figure 6 shows a case in which prognosticated

values depart drastically from observation owing to an (unpredictable)

ionospheric storm.

From the above it can be seen that, although statistically the prog-

nostications may be good, on any given day a serious error may be made.

Hoping to ameliorate the above situation, the idea of supplementing

the prognostication by some updating method was introduced. This re-

quires near real time observation of electron content followed by geo-

graphical and temporal extrapolation. Clearly such a scheme can only

succeed if there is substantial correlation between the behaviors of the

electron content at the user and at the observer. In Figure 7, cr /a

represents the error reduction or amplification factor resulting from

updating, for various values of p. Clearly p is unknown to the operators

of the system. It can be seen that there is an improvement only if

p > 0.5. Otherwise updating will increase the prognosticated error.

For this reason, it becomes of interest to study the degree of correla-

tion of the ionospheric electron contents at two points. Figure 8

shows that for stations separated some 700 km and at roughly the same

latitude the correlation coefficient during most of the day can be very

high, thus permitting effective updating. On the other hand, in Figure

9, the correlation coefficient between Hawaii and Stanford is seen to

be always insufficient to permit improvement by updating.

Table 2 summarizes.the results obtained with the Stanford prognosti-

cation scheme. Four different ranging uncertainties (at 1.6 GHz) are

shown. These are r.m.s. uncertainties over the whole period indicated

15 SEL-73-022



T

PRACTICAL" PREDICTOR

BEST LINEAR
PREDICTOR

-O.5 O O.5
CORRELATION COEFFICIENT, p

Figure 7. The estimation error reduction (or amplification) ai/cr, given
by the best linear predictor and a "practical" predictor is shown as
a function of the correlation coefficient p. When p > 0.5, both pre-
dictors provide error reduction and there is little advantage in using
the best linear predictor; when p < 0.5 the "practical" predictor
should not be used because it increases the error rather than diminish-
ing it.
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Figure 8. Correlation between electron content values at Ely, Nevada,
and Stanford, California, a distance of 700 km. A 30-day interval
beginning on day 40 of 1967. Same local time at the two stations.
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-02

Figure 9. Correlation between electron content values at Honolulu, Hawaii,
and Stanford, California, a distance of 4000 km. A 30-day interval
beginning on day 40 of 1967. Same local time at the two stations.

TABLE 2

PROGNOSTICATION ERRORS RESULTING FROM THE USE OF DIFFERENT SCIIKMKS

PREDICTION
AT

Stanford (1)

Stanford (2)

Edmonton

Ft . Collins

Stanford (1)

Hawaii (3)

Arcc ibo

PREDICTOR .
FROM

Stanford (2)

Stanford (1)

Ft . Collins

Edmonton

Hawaii

Stanford (1)

Stanford (1)

' DIST.
km

670

670

1420

142O

38 3O

3830

5910

2
METEKS

1 JAN 68/31 DEC 68 0.34 o|:)5 ' O.46

1 JAN 68/31 DEC 68 0,34 0.3f> 0.57

1 DEC 68/13 XOV 69 0,3d 0.43 ".31

1 DEC 68'13 XOV 69 0.34 0.44

1 JAN 65/31 DEC 65 O,'J3 (I.ill!

1 JAN 65/31 DEC 65 0.39 1.114

K DEC 67'1H API! 68 0.57 O.Hfi

Table 2. Summary of r.m.s. residual ranging uncertainties (at 1.6 GHz)
when different electron content estimation schemes are employed. See
text for explanation of e ... e..
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in the table. e is the error in the prediction algorithm being tested,

i.e., the residual uncertainties after prognostication and updating,

e is the error resulting from the simple assumption that the electron
£

content at the prediction location is the same as that at observing

location. e is the error when prognosticated values are not updated.
O

e is the error incurred when ionospheric effects are completely ignored,

e is equal to several meters and is considered unacceptable for many

applications. When the user is not too far from the observing site,

e and e are comparable to one another and are smaller than e . This
J. ^ «j

means that for short distances, especially if the two sites are at near-

ly the same latitude, it makes no difference whether one uses the pro-

posed algorithm or simply assumes that the electron content at the

user is the same as at the observer. When the user is far from the

observer, updating tends to degrade the results: the best is use prog-

nostication with no correction. At intermediate distances, e and e

are comparable and are the smallest errors. In such cases it makes

little difference whether the algorithm is used with or without updating.

The fact that present prognostication schemes fail drastically on

some occasions, indicates that our knowledge of the different processes

that influence the ionosphere is still incomplete. Thus, we do not

understand the reasons for the large observed day-to-day variations in

the ionospheric electron content, the mechanisms that cause ionospheric

storms are not clearly grasped, and even the seasonal behavior of the

electron content is not satisfactorily explained although several theories

have been advanced. Clearly, the solar ionizing radiation is one of the

19 SEL-73-022
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Figure 10. Examples of regression between solar radio flux (S) and
daily mean electron content (IMEAN).
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driving forces that control our plasmasphere and one that is reasonably

well understood. It would therefore be instructive to remove from the

observed behavior of the ionospheric electron content, that component

that is due to changes in solar EUV: the residual variations in elec-

tron content will then contain the effect of all other agencies (or

would if all processes were linear). One difficulty with this approach

is the fact that we do not have good continuous observations of the EUV

spectrum and must instead, rely on an indirect .index of solar ionizing

radiation: the solar radio flux at 2.8 GHz.

Scatter diagrams of electron content over Stanford versus solar

radio flux were prepared covering the period 1964-1971 and a linear re-

gression was determined for every third day (Figure 10). Under the

assumption that the short term response of the ionosphere to fluctuations

in solar radiation is the same as the long term response, it is possible

to write an empirical expression for the daily average value of electron

content, IMEAN, in terms of the level of solar radio noise, S:

IMEAN =1 + CTS
o

where I and a depend on the day of the year but not on the level of

solar radiation.

Given daily values of S it is then possible to estimate IMEAN.

Figure 11 shows the predicted (solid line) and the observed (crosses)

values of electron content for 1969. It can be seen that the general

trend of the prediction is correct but that there are many marked dis-
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Figure 11. Comparison between predicted (solid trace) and observed
values of daily mean electron content (crosses). Data for Stanford
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Figure 12. Seasonal behavior of the daily mean electron content.
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crepancies whose cause is not known.

It is also instructive to examine what happens when one assumes

that throughout a year the sun's activity is constant: this will bring

out the seasonal behavior shown in Figure 12. At low solar activity

(S = 60) there is more ionization in the summer than in the winter, by

just the amount one would expect based on the smaller zenithal angle and

longer days in the summer. As the solar activity goes up, equinocial

humps begin to appear, the vernal one being more pronounced than the

autumnal. Waldman[l97l] has proposed an ingeneous explanation for this

phenomenon based on the variation of neutral hydrogen content in our

atmosphere.

The influence of neutral winds on the degree of ionization in the

plasinasphere has been recognized by theoreticians (cf. King and Kohl

[1965]) and more recently has been used as explanation for a number of

features in the behavior of the ionosphere. The most obvious effect

caused by the winds is the action of its meridional component in lifting

(equatorward wind, at night) or lowering (poleward wind, at daytime)

the ionization and thus altering the average recombination rate. This

effect is similar to that caused by electric fields and the question

arises which of these two causes is the dominant one. Stubbe[l970]

showed that in a quiet day winds are the clearly dominant. On a dis-

turbed day, electric fields are greatly enhanced and override the wind

effect. These facts are important when one wishes to examine the wind

effect on observed electron content: one must select quiet days.

A recent study of wind effects was made by Bendito[l973] who
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analyzed the interesting feedback mechanism that exists in the plasma-

sphere:

Let us fix our attention to the conditions prevailing during midday

when the neutral winds are essentially poleward and tend to depress

the ionization. Consider a step increase in solar radiation. The

production of ionization will increase almost simultaneously and will

quickly result in an increase in electron content. Since in the F-

region (which is the main contributor to the electron content) the main

restraining force for neutral winds is the ion drag, the increase in

ionization will cause a decrease in the average recombination coefficient,

This causes the ionization to grow further in a positive feedback loop

that searches a new equilibrium point in which h is substantially
nictx

higher. After some time delay (Herman and Chandra[l969]) the neutral

atmosphere reacts to the increased solar radiation by an increase in

temperature. This causes a reduction in the pressure gradients per

unit mass that drive the wind so that there is another increase in the

electron content.

The conclusion of Bendito's analysis is that the wind effect will

cause a relative increase in electron content larger than the relative

increase in solar radiation that triggered the changes. In addition, a

time delay in the ionospheric response to solar changes is predicted.

Experimental observations made during quiet periods in which the solar

energy had sufficiently well marked changes, confirms the theoretical

predictions. Figure 13 shows the cross correlation function between

electron content at Stanford and solar radio noise. It can be seen that
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Figure 13. Cross-section between electron content and solar radio flux
showing that the content lags by about 2 days (1965 results have no
significance. See text.)

for all years, except 1965, the electron content changes lag the solar

activity. In 1965, the fluctuations in solar activity were too small

to permit any significance to be attached to the cross correlation.

Wind effects on the ionosphere can also be detected by observing

the response of the electron content to solar eclipses. Figure 14 shows

the 25% bite out in electron content observed at Eastville, VA, USA,
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Figure 14. Electron content bite out during the solar eclipse of
7 March 1970, observed in the path of totality.

during the 7 March 1970 solar eclipse. The volume of the plasmasphere

under scrutiny was in the path of totality. Simultaneous observations

of electron content made at stations in which maximum obscuration of

the sun was 45%, showed non-detectable bite outs. This lack of reaction

can be explained by postulating a neutral wind flowing towards the volume

of the atmosphere cooled by the sun's shadow (Almeida et al.[l972]).

An interesting use of electron content data is made by workers

dealing with gravity waves. Such waves leave signatures in electron

content records in the form of bumps. Davis[l97l] using a four station
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network measured the vector velocity of these gravity waves and observed

a systematic diurnal oscillation in the travel direction. Average di-

rection was equatorward along the magnetic meridian but a diurnal swing

of ± 20° was clearly detectable. This suggested a s.ource in the auroral

oval at a fixed geomagnetic time. As the earth spins, the source moves

eastward causing the change in direction. Davis was able to pin down

the position of the source in the evening sector of the oval and to

establish a one-tor-one relationship between polar substorms and individual

bumps in electron content. Substantial contributions to the under-

standing of the gravity wave generation and propagation mechanism were

made.

Titheridge has recently been able to use a combination of electron

content and fQF2 data to determine the temperature of the neutral at-

mosphere in roughly the 400 km altitude region. Based on theoretical

considerations, a linear relationship between slab thickness and neu-

tral temperature was derived:

T = T + a To n

in which a hovers between 0.220 and 0.225 and T depends on season and

time of day and. has values between 2 and 22 km. Calculated nighttime

values of T agree with satellite drag values to within ± 5%. Behavior
n

of daytime values resembles more that of values derived from incoherent

backscatter. If further investigation along the lines described above

consolidate our confidence in this method of temperature measurements,

27 SEL-73-022



then a useful tool has been developed for the study of atmospheric

processes.

As pointed out in the beginning of this report, electron content

measurements of the protonosphere have been carried out by Almeida.

This is done by using a combination of phase-path difference and Faraday,

rotation measurements; the former yields the total electron content,!,

up to the satellite while the latter measures essentially the integral:

r
I
J

s
N B_ ds

L

where the electron concentration N is weighted by the longitudinal

component of the geomagnetic field. Thus the difference between I and

I can be written:
r

f
s

I N W ds

o

Clearly, if W has the property of being equal to zero up to a given

height and unity.above that height, then I is a measure of the electron
W

content above that height. It turns out that for certain geometries

of observation, the weighting function W behaves in a manner acceptably

close to the ideal one mentioned above, as can be seen in Figure 15.

Under such conditions it is possible to observe, on a continuous basis

and with good time resolution, the protonospheric.content. Results are

shown in Figure 16 which display the depletion of the protonosphere

following a storm and its eventual build up to normal values. The
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Figure 15. Plots of the weight function W versus height for an observer
at Stanford. Two families of W are shown corresponding to geostationary
satellites positioned at 73° W and 105° W.
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Figure 16. Protonospheric electron content observation, during an unin-
terrupted period of 7 days in May 1969, from Stanford. The geostation-
ary satellite was parked at 73.4° W.
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sharp bump on 14 May 1969 has been interpreted as the signature of a

"blob" of plasma peeled off from the protonosphere by the storm enhanced

dawn-to-dusk electric fields and ejected into the interplanetary space.

As pointed out when prognostication schemes were discussed, there''

are a number of days during the year when the electron content behavior

departs markedly from the expected. These are, by definition, iono-

spheric storms, whose close association with geomagnetic storms was

recognized early.

Although ionospheric storms can easily be recognized from the exam-

ination of ionosonde or Thomson scatter records, the electron content

is by far the simplest and most direct way of observing this phenomenon.

This is specially true when modern polarimeters are used, yielding real

time electron content plots. Figure 17 is a plot of observed electron

content (solid line) compared to the 7-day average (dotted line, taken

as reference) and shows a typical ionospheric storm. The numbers that

appear in the figure are a "disturbance index, D" defined as the ratio

(in percentage) of the mean quadratic deviation of electron content from

its average to the average value. Day 81 is seen to be essentially

undisturbed (D = 6%). The storm starts on day 82 and is characterized

by an enhancement of electron content followed eventually by a depres-

sion and a subsequent recovery.

Examination of electron content records shows that the behavior of

this quantity is strongly dependent on the local time of storm onset,

i.6i, a given storm will cause effects that are dependent on the longi-

tude of the observing station. Thus, it would be of great interest to
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Figure 17. Protonospheric electron content on 14 May 1969, from
Stanford. The solid trace curve, Iw, is the observed electron content
of the protonosphere. The total slant electron content (dash trace),
I, and the universal geomagnetic index, Kp, are also shown. The
shaded region in the figure corresponds to the geostationary satellite
ATS-3 corrotating in the nightside.

borrow a technique from the geomagnetists and, by using data from a

number of equal latitude stations more or less evenly distributed in

longitude, expand the storm induced deviation of electron content in a

Fourier series in function of longitude:

R(T) = R (T)o
+ / , Rn(T)sin[nj&

n

31 SEL-73-022



where R = . -

is the reference value of electron content,

T is the time elapsed since the storm onset,

H is the longitude, and

R . $ are Fourier coefficients
n' n

R is independent of longitude and corresponds to D of
O . S L

geomagnetism.

The behavior of R , R , and $ is of great interest to the investi-

gator attempting to uncover the storm producing mechanisms. Unfortunately,

at present, there is an insufficient number of electron content observing

stations to allow a good determination of these quantities.

If a collection of similar storms, differing only in the universal

onset time were available, then one would have an ergodic process and

R' could be calculated from a large number of storms observed at one

location rather than from one storm observed from many locations. As

individual storms differ greatly from one another such a calculation of

R yields only their average behavior <_R ">.

Mehdillo[l971] calculated R for a total of 28 storms (all with

A > 30) and used the time of the S.C. as the time origin (T = 0).
P

Figure 18 displays his results and shows clearly the positive, the

negative and the recovery phases lasting some 12, 72, and 24 hours

respectively.

Although the morphology of storms has been under study for some

time, there is room for considerably more investigation based on vast

masses of data collected all over the world. A complete study of the
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Figure 18. Storm time variation of ionospheric disturbance at midlati-
tude. From Mendillo[l97l].

dependence of this morphology and various factors such as seasons and

phases of the solar cycle will without doubt be helpful in building a

theory of storms.

Thus, I would like to encourage colleagues all over the world to

take part in a comprehensive program of observation of the ionospheric

electron content.
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