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PREFACE
During the final period of this grant a theoretical and experimental
study was made of the effect of diffusion on the saturation.of the infrared
absorption of radiation by gases. This report contains most of the
theoretical development of a model of a gas absorber including diffusion
and a small amount of the experimental evidence we gathered to support

this model.

The experimental results along with the theoretical model will be

submitted for publication in the near future,.
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- Abstract

Bffect.of diffusion on the saturation and absorp-
tion of the molecul ar gases 1s considered, The anal&sis
starts with a simple derivation of the multi-level rate
equations, Incorporating the diffusion term; calculations
are carried out both for the homogeneous and inhomogeneous

broadening cases, Both graphical and analytical solutions

are obtained for the absorption coefficient and the satu-

ration intensity, It 1s shown that the effect of diffu-
sion 1s characterized by a diffusion function K'(kza),
which varies inversely with the radius of the beam at low
pressures aﬁd small beam sizes, The analyéis is done in
terms of two parsmeters kja and kya, which are simple
functions of the intensity of the beam I, the effective
rel axation rate w, and the effective diffusion constant

D, o is the radius of the bean,
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I, Introduction

Absorption and séturation of infrared radiation
around 10,61 in molecular gases has recently been of

1,2
22535 Using a two-level model,5

considerable interest,
where one is only concerned with the lower and upper
levels used in absorption, the variation of the laser
beam intensity, I, 1is found to be

4l = -l B (1)

dz |

where o is the absorption coefficient which can be ex-
pressed as

ol =

— o - (2)

o
n
1 + 2 ]
1g

In this expression Ig is the saturation intensity;

SIS is the small signal absorption coefficient; n is 1
when the trensition is homogeneously broadened and ,5
when the transitionkis inhomogeneously broadened,

If we define

M= +M,
AM =M, = My (3)
m= AM/M

where Ml and M2 are the lower and upper level populations,

equation (2) can be written as



M= - 1 (L)

AEven though two-level model gives a very simple
"explanation of saturation, it is not totally satisfactory
because of various phendmeﬁa that are invo;ved in satu-~
rable gases, The most important effects are the tight
coupling between various vibrational-rotational levels
and the spatial diffusion of molecules, If multi-
rotational levels are considered, C,P, Christensen et al7
have éhowed that the results of the two;lével model can
be used by feplacing relaxation rates and diffusion con-

stants by their effective values as follows:

1
_ Zw mU
WZ" i i 1
_ M, |
S . e 1 _ '
W = iwiMlmi (5)
u
D, -p & ™y
M,
1
D1=D}:-T oy

In these expressions W and Wy are the lower and
0L

upper effective relaxation rates; g 1S the ith rota-

tional level relaxation rate in the upver(lower) band;



u;l

3 is the corresponding population density; M; and M

2
are the lower and upper absorption level population den=-
sities, Similarly, bl and D2 are the effective diffusion
constants, and D is the diffusioﬁ constant, Assuming the
rotafional constant B for the upper and lower bands are
the same, Dl.and D, will be nearly equal, A more simple.
derivation of these exprgssions than was done originally
is included in the appendix, |

With the diffusion temrm incldded, the rate eduation
for the iInversion density can be obtained froﬁAequation
(1) ‘as® | | |

DVZn - (20T + w)m = w (6) .

where D is assumed to be the effective relaxation rate
for both bands; w is equal to wo; o~ 1is the absorption
crogss-section at the laser wavelength, and T is the
intensity of the beam in photons/emZ-sec, Since the
lowér\level'for_most saturable absorbers is the ground
state, w 1S assumed to be zero.

The absorption coefficient can be written as

®=- 1 4TI ='mov.o (7)
I dz

where ¢ is the small signal absorption coefficient,

Since all the variables are a function of the radial



e e

coordinate r, we would like to define average quantities,

First of all, average intensity I, 1is defined as

P = na® T (8)
av )

where P i1s the power and a 1s the radius of the beam,

Then equation (7) can be transformed to

= al -
Xy = - Il dav = A My (9)
av 2
. oL
where ...r2/a2
Mgy = Sgo me : 2TMrdr | (10)
a

for s Gaussian beam, If the beam is rectangular instead
of Gaussian as discussed in the next section, the equa-
tions would be the same except for

. ¢ o .
m, = So m 2 I7 rdr (11)

a2




II, Rectangular Wave Approx:‘mation

In order to simplify the analysis, we will assume

a rectangular intensity distribution in the form

I for O £r £ g
I = . (12)
0 for r > a :

Then the differential equation become'sﬂ

a2 mir) + 1 4 m(r) - (263+w) m({r) = w o&r&
dr2 r dr - D | D
42 m(r) + 1 d mr) = w m(r) = w r>a
Letting
kl2 = 2 ol + ¢y
_ D ‘ X
' (1)
k22 = W :
. D
We obtain the solution
m = ml okr<& g
m, r>a L2 (15)
m = AL (lgr) + BK (kgr) - 2
% 2
1
‘my = CI (k,r) + K _(r) -1



Io(x) 1is the modified Bessel function of the first
kind of zero order and Ko(x) is the modified Bessel func-
tion of the second kind of zero order, A,B,C, and D are
constants to be determined by boundary conditions, which
can be taken as

(1) m(a) =my(a)
(2) m(a) = ty(a)
(3) mo) =0

G) my(b) = -1

(16)

where b is the radius of the cylindrical absorption cell,
Boundary condition (3) dictates B to be zero. Using
the other bdundary conditions, and equation (1l1), we

obtain6

2
2(¥3 ;kle) I (ky a) ,
= kv a

I'o(kla-) + % klIl(kla) 1&2

I(x) is the first order modified Bessel function of the
first kind and

E =k, [Ty (k,a)ky(kyb) + K, (kya)T_(k,b)]
F= [ K, (kya)T_(kyb) - I (kya) K (k,b)]

where
(18)
By definition, the saturation intensity occurs when mgy = - L |

2.
Then we find



k12 - kp2 = 1

I, (kya) . F kl'] (19)
mprcec i S YD

It can be shown that the terms with Ko(kgb) are
negligible for reasonable values of b, For example, in
case of SF@, ky, is about 1.17 at 1 Torr'.8 If we take b
to be 1 inch, then kp,b = 2,98, Howevex',‘ k, is essen-
tially proportional to the pressure, as will be shown
later, so thatﬁ k2b will be smaller at smaller pressures,

Let us take two extreme cases:

Case 1. kb =,1 k2a = ,01
Ko (kpb) = 2,427 EKy(k,a) =100
Il(kza) =0 Io(kzb) = 1
f_‘o(kza) = 50 I0 (kza) =1

Therefore Iy (kya) K (k,b) << K(k,a) I (ky,b) and

Ko(kza) Io(kzb) >>Io(k2a) Ko(kZb)

Case 2. kb = L koa = LL
- K (ky;b) = 011 Ky (kya) = 2,18
I (kya) =72 I (kyb) = 11,3
K (kya) = 1,115 I (k,a) = 1,04

Again Il(kza) Ko(kzb) <L Kl(kza) Io(kzb) and Ko(kza)
Io(kzb) > Io(kga) Ko(kzb)
So ignoring Ko(k2b), we obtain



o

E =1 (k;b) K(kya) ky
o (20)
Then equation (19) can be written as
2
k) - kp? [I e R o) 1] (21)
a 2 - 2 I {k a) Ky (k,a)
k= O " 7 2107) LL ! 112
Lot us call the right-hand side of this equation Z,
If we let- ’ ' A
2 o
x=M|a)" - 1 | (22)
We have
X= 1~ 2(kal (23)
l - (kla)ZZ

If we plot equations (22) and (23) together, as
a function of (kja) for various values of (kpa), the in-
tersegtion point gives the value of kja as well as X,
Then the saturation intensity is.
I,=w _ [x-1] mr (2l)
2a- '
Figure 1 is the result of these calculations. The

intersection points determine X as a function of k2a.

(X - 1) versus ky® is plotted in Figure 2, For a parti-
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FIGURE 1
GRAPHICAL METHOD FOR THE CALCULATION

OF THE SATURATION INTENSITY



cular gas k, is equal to Jw/D. Figure 2 shows that the
saturation intensity changes very drastically for small
values of kza. For large values of k2a, the saturation
intensity does not change much,

We note that the theory includes the effect of the
¢ylindrical absorption cell walls with the boundary con-

dition m(b) = "1.0

10



ITI, Analytical Derivation of the Absorption Coefficient

and the Saturation Intensity

Experimentally we normally measure the output
power as a function of the input power, and deduce the
variation of absorption as the intensity of the beam is

varied, So an important quantity to know is m,, as a

function of the input power, We can write equation (17)

6

as

m, = (1 = 2kya 2) - X

(25)
(2k1a Z) X

m,, 2 a function of (X - 1) is plotted in Figure

3 for various values of ksa. We see that the absorption

o

p 43 -
decreases much faster as the beam size 1s increased,

Without diffusion, m changés as

av

me, = = 1 (26)
av T+ 1/T, -

- Differentiating this expression with respect to I

we obtain

m, = 1 1 (27)
I, @ +1°
s
At I = 0, we have
%av (o) Tg'= 1 (28)

11



When diffusion is included, we should obtain the

same result as I goes to zero, Now we have

0
(o) =2 1 - 2 2
Mav '0 -—5:- [ T __If._]] (29)
=+ E
| | ’ a[;l(kza)

Approximating F/E as before and comparing equations
(28) and (29) we obtain ‘
I, = _¥_ K(kpa) (30)
2o :

where the function K(kga) is given by

l - 2
kza( IO (kZa) +K0 (kga) )

I) (kya) Ky(kya

Ww/20- 1is the multi-level saturation intensity, The func-
tion K(kza) is what we called (X - 1) before, It is the
factor that is caused by the diffusion and wall effects,
and is plotted in Figure 2, It is seen that the graphi-
cal and anaglytical solutions give essentially the same
results.v

Experimentally we hornwlly measure output power
versus input power, It is easier to do this measurement

Y

at high power densities, For example, if Imeasured =

12
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FIGURE 2.
GRAPHICAL AND ANALYTICAL SOLUTIONS

FOR THE SATURATION INTENSITY OF MOLECULAR GASES
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INVERSION DENSITY AS A FUNCTION OF INTENSITY
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=2,2 W/cmz, we have % error = 5%,

2

2
2.1 W/em™ and Ire :
20001 W/em® and

al
At low power densi;ies, if xmeasured =
I.eay = #0002 W/em , % error = 50%, However, we need to
show how to interpret the results at high power densi-

ties meaningfully., At large intensities, we can write

1o

X. 2

1 (32)

N
olq
4

This is further justified in the next section, Now

we can write equation (25) in the form6
D 1 +1
Mov = = i W _a ] (33)
2ol + 1 :
W
wherse
Zt =2a 2 (3L)
K
For large values of kl, we can write
z0 = 1 Kolk,a) (35)

2 K (kea) ko

This is further justified in the next section.

Combining equations (9), (32), and (35), we obtain

1 ar = - Klepa) (36)
T Tz Zol_+1
W

15



where

K (kya) = 2Ky (kpa) 4y (37)
k,a Ko(kza)

Integrating equation (36), we find

_ I :
K (kga) o(.oL = In “out + 2 o [Iout - I:‘Ln] (38)
' Iin W

At high power densities, the first term on the
right~hand side can be neglected, Then we have
= - ]
Iout Iin Ztr K (kza) ctoL (39)

Without diffusion, we would have

dI = - Koo (40)
dz

£
I 1+ 1
: Il

Neglecting 1 in the denominator, we would obtain

Iout =Lin- LI} (1)

Therefore, it is tempting to identify
I'= w_ XK' (koa) , (L2)
2o .

The actual saturation intensity 1is given by equa=-
tion (30); Therefore if one measures Is' experimentally,

~the actual saturation intensity will be

16



= [er] 1
= [er] 1 (L43)
where [ CF] is the correction factor, It is given by

[cF] = K(kpa) (L)
X! (kya)

fcrl, K(kza), and K! (kza) are tabulated in Table 1,

17
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N
P

l

TABLE 1

Functions of Interest

. ® L] L L4 L L]

* [ ] * L L [ ] L]

¢ 6 & 5 & & S o T °* e+ 9

FLwwLWWWWWWLWLWMNINNINPDONNVVVHFHEHMEMEHEFEFFOOOODOO0O0O0OO

x =1 2Ky (kya)
1 75.075 82,202 9133
2 2l 39 28,248 L8630
3 13.74 15,845 8672
L 9,191 10,8001 .851
5 6,865 8,1672 J8L1
6 5.473 6,5835 831
8 3,935 4,811 818
9 3,581 4,278 W81h
0 3,132 3,865 .81
1 2.836 3.5323 .803
2 2.639 3.27h ,806
3 2.45h 3.062 801
L 2. 325 2,887
5 2.195 2,729
6 2.092 2,601
7 2,00l 2,489
8 1,928 2.392
9 1.86 2,306
0 1.802 2.229
1 1,751 2.16
2 1,705 2,103
3 1,663 2,045
L 1,626 1,986
5 1.592 1,949
6 1,562 1,907
7 1,533 1,867
8 1,508 1,83
9 1,48l 1,795
0 1,165 1,772
1 1. 40 1,711
2 1,128 1,716
3 1,011 1,693 0.
I 1.395 1,668 0.8
5 1.38 1,647 0.8
6 1. 367 1,628 0.8L
7 1. 355 1,61 0,84
8 1,343 1,59 0.8
9 1,332 1,574 0,846
0 1. 321 1,558 0,818

18



IV, The Case of Inhomogeneous Broadening

At low pressures that are used with the saturable absorbers,
we would expect the Doppler broadening to be dominant over
collisional broadening, In order to see what happens in this

case, let us rewrite equafion (36) in the form

= L0gekpa) W)
2ol 4 3
W
where
L(kla,kza) = 2 1 ‘ o+ (4L6)
ko2 Io(kla7k2 R Ko(kga)

We need to integrate equation (L4L5) in order to average
over the classes of molecules that are broadened differently.

The variables are Xy T and kl. The integral 1is

oLy = S: dh(vo)vp(vo)dro (7).

The letters h and i stand for homogeneous and inhomo-
geneous respectively, If the function L(k,a, kza) were inde-
pendent of'rb, then the above integral would integrate as in
the classical case to give a result similar to equation (2),

So lét us see how this function behaves, If the beam intensity,

1s 1 w/cme, we would have for SFgs

19



20T = ,,07 » 10°

at the peak of the Lorentzian gfr ). The relaxation rate of
SFg at 1 mm. 1s about 50/3608, However, we need to know the
effective relaxation rate, It is clear, though, that 2e¢I
is mach larger than w, So af intensities_larger than the

saturation intensity, it is safe to say that

ky "—‘ / ZS—I : ' (48)

Io(kla)/l1 (kya) remains close to 1 for reasonable values of
ka : K'o(kga)/Kl (kpa) is close to .5 and does not change much

with k2a. We have

ky &+ [ (49)

kl 201
Letting
o = C glr) (50)

where C 1s a constant, and substituting the Lorentzian lineshape

function g(’f)g in equation (48}, we find

kp ]rrw L (av)2+ -] (1)
) 5

CIAYw
g(r) falls quite rapidly from its maximum value of 2/TTA~,

It is less than oné tenth of its maximum value when (v - 'ro)

20



is equal to A=, With the two level model without diffusion
Wwe would have
Xy, = - MChyr | (52)

1l + WAy I
g(x) 2 Ig

where M 1s the molecular density, Substituting in glr), we

find |
oty == _MChr Aw/27T (53)

[('r-ro)2 + (A-_r_)‘?] Ly S

2 I I

This is broader than the lineshape function g(¥) by

[1 + I/Ige Assuming I/I4 to be 100, the width of o, would
be about 10 AY, We see that as I increases, the width in-
creases while the peak value decfeases.

Let us assume k,a = ,1, Io(kla)/Il(kla) =1, Ko(kZa)/
Ky (kya) = .5, w =102, 2o I=1 x10% Then

, W = 1/200
2o 1

Using these values, we define

V(v) = 20 + 1 (8
01 \/'.25 + (r-v)2 +.5
Ax?Z

21



We see that the denominator above changes very little
for (v - Yo)z/ Axe £ 10, 'Ihis function is plotted in
Figure L. It is seen to bé varying very slowly., Therefore,
for all praétical purposes, it is safe to assume that L(kla,
k,a) can be assumed to be constant while integrating o< %o

h

find oci. Then we immediately obtain,

oy = L(kg 8, kya) o

(55)

J1 + 201/w

At intensities larger than w/2¢— , we can neglect the

modified Bessel functions of the first kind, obtaining

oLy = Kt (k2a) VR

(56
J1 + 20 1/u >¢)

Integrating equation (56) give36

1 Iout,
- z(mvn’z] (57)
W Iin

1
(1+2I)5 - 1
K'(kzg)oéoL = |In [ W - ]
1+2g-I)w + 1
w

When 2o l/w ==>1, namely at high intensities, we obtain

K'(kZa) o&oL = 2Ji2§5. [Jjout - Jf;;] | (58)

In the case of the milti-level model without diffusion

we have

22
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1 dI = -«
I

1
. '(’1 ™ %T_)§ (59)

Qs

At high intensities, we would obtain

wp 2 [ [ - ]
g

Therefore, the saturation intensity I!., can be defined
8’

as

—

I o= [K'(ka)]® w | (61)

20

The actual saturation intensiﬁy is expected to be some-

what lower than Ié as in the homogeneous case,

~

24



V. Summary

The main results of the foregoing analysis can be sum-

marized by the following equations:

k, = w/D (62)

Ww = offective relaxation rate

D = effective diffusion constant

kg = \/20“1 + W : (63)
D .
O~ = absorption cross-section

I = photon intensity

a = radius of the beam

Klkpa) = L (6ﬁ)

1 - 2
kza[ Io(kya) + K (kya) ]
Il(kza) Ky (kza)

K! (kaa) = 2Ky (kza) e 1 (65)
k,a K, (ka)
L(k a,kpa) = _2_ . 1 +1 (66)
k,a Iy Kk, a) kya . K _(k,a]
I, Ie)  Ka X, (k,a)

25



Homogeneous Case

o =  Likja, kpa) o

2ol + 1
W

al = Ki(kza) o I> w

2o

2o + 1
W

Tout = Iin = =TI} ¢, L I > w20

1 =
IS w Kt (‘kza)
29

1, = [cr] 12

[cFr] = K(kza) / Kt (kya)

Inhomogeneous Case

o = L(ka, k2a) < o
J1 + 20I/u

o = K'(kya) o, Io u
J1+ 20T/u

V Iout - \I Iin = - ,I I'S O(o L/2 I>__Tll_

I = _w [K'(kza)]2

26

(67)
(68)

(69)
(70)

(71)

(72)

(73)

(7h)

(75)

(76)



VI.  Conclusions

The results above indicate, first of all, that
diffusion plays a very significant rolé in the
saturation of molecular ‘gases. Sebondly, the satura-
tlon intensity in the case of inhomogeneous broaden-
ing is seen to be quite different from the saturation
intensity‘in the case of homogeneousvbroadening. As

a matter of fact, using equations (69) and (75), we

can write
_ 2
Pout =~ Pyn = - [a7K'(k,a)] A (77)
for the homogeneous case, and
VPoue - VPy,= - laK'(k,a)] B (78)

for the inhomogeneous case. A and B are constants.
The theoretical results derived herein were

tested with seven molecular gases using various lines

of the CO2 laser around 10.6 microns. The gases were

C.,H.C1l, NH

SF¢, BC1 HHs

C2HuF F,.

CH CF2, and CCl2 5

3 3° 2’ 2
The most interesting observation during these
experiments was that the output power did not vary
much for constant input power when the radius of the
beam was changed. Going back to equations (77) and

(78), and taking thils ob-

27



K1 (kea)

sefvation into consideration, we can say that if a
does not vary much when a 1s varied, the broadening should
be homogeneous, and if aK'(kza) does not vary much when a
is Varied,'the broadening should be inhomogeneous, Table 2
is prepared for this purpose, It is seen that aK'(kza) remains
more or less constant in a large range of k2a whereas aZK'(kaa)
Increases quite fast with kza, Of‘coursg, we would expect
gK‘(kZa) to start increasing linearly with k2a since K‘(kza)
approaches 1 for veryllarge values of kya.

The onlj way the function of aK'(k2a) can be constant
with respect to a is that K'(kza) varles inversely with a,

From Table 3, we find

XK' (kya) = _5,15 (79) -
. a ’ .

in the range of k2a indicated in Table 3, This result is
most interesting, PFrom a physical standpoint, the variation
of the effect of diffusion inversely with the radius of the
beam 1is Intuiltively sensible,

So if the inhomogeneous case is valid at low pressures,
we can conclude that the variation of the output power with
the radius of the beam at constant input power is negligible,

We can write this conclusion Iin the form

28
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TABLE 2
TEST FOR BROADENING

kaaoK’(kza) (kza)ZoK'(kga)
8,22 0,82
.65 1.13
.75 1.43
% bl
3.95 2.3
3.88 2,72
3.85 3.08
3.85 3. 47
3.87 3.87
3.89 .23
3.93 L.72
iﬂB ggz
.0 o
u;lg 6.21
.23 6,77
Lo 31 737
Iy, 38 7.88
o !
4,63 10,72
W70 10, 34
L. 77 11,45
.87 12,18
4,96 12,90
5.0l 13,64
5.12 1, 3L
5.21 15,11
5.32 15,96
5,10 16,74
5.49 17.57
5.59 18,15
5.69 19,27
5.76 20.16
5,86 21,10
6,0l 22,95
6,14 23.95
6.23 2L, 92

29°



I >

out, + 85 (80)
T 2

outl al

where the subscripts 1 and 2 refer to beam of radius a) and
the beam of radius 80 Equation (80) is expected to be valid
at constant input power and low pressures, Using equations
(70) and (76), we can also conclude that the saturation in-
tensity varies inversely as the radius of the beam for the
homogeneous broadening and varies inversely as the square of

the radius of the beam in the case of inhomogeneous broadening,

at low pressures and small radii,

30



VII, Appendix

Derivation of BEffective Relaxation Rates and Diffusion

Constants

Neglecting Diffusion, the rate equations can be written

. u u u _u -~ ' u
My = - vy M, - 2;-“’21 M, + Z_ wy, my o= WO, = M)+ BT (ALL)
i

o U _ u_u u _u uo u '
Te == W "?Wkimk'*zwikmi*f’k (A.2)
_ i
o 1 1 1 . ! 1
My == w M) =5 wyy M P2 wyim, F WO, - M) 4 Py (A03)
i i ’
e 1 1.1 _ 1 1 1
M= - Ty Zwkimk MR R (A4
i i
In these equations various terms are defined as follows:
W = gtimulated transitidn rate between upper and lower absorp=-
tion levels,
wku = relaxation rate of the upper band kth level to all

. ‘lower - band levels

Pku = pumping rate of the kth upper lével

Pk1_= pump ing rate of the kth lower level

wkl = relaxation rate of the lower band kth level to all

1 other lower band levels
ﬁ;i” = relaxation rate of the kth upper (lower) band level

to the ith upper (lower) band lavel

31



¥£ = &> Mi, where go and gl are the degeneracies of levels

g
1 2 and 1

= population den31ty of the upper(lower) band kth
1evél

The number of equations and terms are actually infinite

since k¥ can assume any value, At steady state all the deri-

b}

vatf&@s are zero, Adding equations (A.l) and (A.2), we get

o = _[zi: wiu.miu ] M2 _ Z Z wklmk + ZZ wlkmk

1
}2_

- wip - 1)+ 2 p" . (4.5)
k

The ‘second and third terms cancel out, Assuming all the
pumping rates are zero except for the upper sbsorption level,

we obtain

- Y : . ) .
[ r Ot ] MZ-W(MZ-MJ_")+1>2“ =0 (4.6)

Mo

Similarly, considering equations (A,3) and A.lL), we get
1 1
-= Wy
i

] Ml"!'W(MZ - M_L') + pll = Q (£.7)
M
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We can assume all the rotational relaxation rates in
each band are the same, equal to w® and w', Then equations
(A'.é') and (A'.'?.) are the same as the two-level model equations
with the relaxation rate of the upper level replaced by w'Zm;%/

M2 and the relaxation rate of the lower level replaced by
1 1
W Zmi /M .

In order to include the effect of diffusion in the rate
equations, we have to add szl-i(?:) term into equations (A,1l)
through (A.l4). TFor example, equation (A,1) becomes

o = . u 2‘ - u ) u u
M2 w2 M2 + DV MZ 21_'_ wzi M2 + Zi ”12 :m:1

- WM, - 1) + P | (A.8)

Again assuning stead-state, 1f we add all the upper level

equations, we obtain

u
m .
- M, + pv2( X" ) M, - WM, M)+ B = 0 (a.9)

2

So we can claim that the effective diffusion constant

for the upper level D, is D2 mim/MZ', We obtain a similar
i

result for the lower level by adding the lower level equations;
namely, the effective diffusion constant for the lower level

1 .
D, becomes D Z mny /Ml. ‘Assuming that the rotational constant
3 .
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for the upper and lower bands are the same, Dl and D2 will

be nearly equal,
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