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PREFACE

During the final period of this grant a theoretical and experimental

study was made of the effect of diffusion on the saturation of the infrared

absorption of radiation by gases. This report contains most of the

theoretical development of a model of a gas absorber including diffusion

and a small amount of the experimental evidence we gathered to support

this model.

The experimental results along with the theoretical model will be

submitted for publication in the near future.



Aba trac t

Effect of diffusion on the saturation and absorp-

tion of the molecular gases is considered.. The analysis

starts with a simple derivation of the multi-level rate

equations.. Incorporating the diffusion term, calculations

are carried out both for the homogeneous and inhomogeneous

broadening cases. Both graphical and analytical solutions

are obtained for the absorption coefficient and the satu-

ration intensity. It is shown that the effect of diffu-

sion is characterized by a diffusion function K ' ( k 2 & ) ,

which varies inversely with the radius of the beam at low

pressures and small beam sizes.. The analysis is done in

terms of two parameters k]_a and k£a, which are simple

functions of the intensity of the beam I, the effective

relaxation rate w, and the effective diffusion constant

D. "a* is the radius of the beam.
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I. Introduction.

Absorption and saturation of infrared radiation

around 10. 6ju in molecular gases has recently been of
1,2,3,1;

considerable interest. Using a two-level model,

where one is only concerned with the lower and upper

levels used in absorption, the variation of the laser

beam intensity, I, is found to be

dl = - oil (1)
dz

where oi is the absorption coefficient which can be ex-

pressed as

°*o (2)

In this expression Ig is the saturation intensity;

o£ is the small signal absorption coefficient; n is 1

when the transition is homogeneously broadened and ,%

when the transition is inhomogeneously broadened.

If we define

M = % + M2

AM = M2 - Mx (3)

m = AM/M

where M-^ and M2 are the lower and upper level populations,
6

equation (2) can be written as



(k)

Even though two-level model gives a very simple

explanation of saturation, it is not totally satisfactory

because of various phenomena that are involved in satu-

rable gases. The most important effects are the tight

coupling between various vibrational-rotational levels

and the spatial diffusion of molecules. If multi-
•7

rotational levels are considered, G.P. Ghristensen et al'

have showed that the results of the two-level model can

be used by replacing relaxation rates and diffusion con-

stants by their effective values as follows:

u
w. m.u

wi = ^ V "I1' (*)

u

In these expressions w-, and w^ are the lower and

upper effective relaxation rates; vi. ' i? the ith rota-

tional level relaxation rate in the upper(lower) band;



m* ' is the corresponding population density; M-j_ and M

are the lower and upper absorption level population den-

sities. Similarly, Dj_ and D2 are the effective diffusion

constants, and D is the diffusion constant. Assuming the

rotational constant B for the upper and lower bands are

the same, D-^ and D^ will be nearly equal. A more simple

derivation of these expressions than was done originally

is included in the appendix.

With the diffusion term included, the rate equation

for the inversion density can be obtained from equation

as6

- (2o-I + w)m = w (6)

where D is assumed to be the effective relaxation rate

for both bands; w is equal to ^f &~ ^3 *n9 absorption

cross-section at the laser wavelength, and I is the

intensity of the beam in photons/cm -sec. Since the

lower level for most saturable absorbers is the ground

state, irh is assumed to be zero.

The absorption coefficient can be written as

od = - 1 dl = me* (7)
T~~dT~ °

where <=»<. is the small signal" absorption coefficient.

Since all the variables are a function of the radial



coordinate r, we would like to define average quantities.

First of all, average intensity I is defined as

P = Tta2 I (8)
av

where P is the power and a is the radius of the beam0

Then equation (7) can be transformed to

= - dlav = <*m (9)
Iav dz

where

2
a

for a Gaussian beam. If the beam is rectangular instead

of H-aussian as discussed in the next section, the equa-

tions would be the same except for

m ' = So ™ 2 Tf rdr
av ?



II. Rectangular Wave Approximation

In order to simplify the analysis, we will assume

a rectangular intensity distribution in the form

I =
I

0

for O ^ r *=. a

for r >• a

Then the differential equation becomes

dr

m(r) + 1 d m(r) -
r dr D D

dr
m(r) H- 1 d m(r) - w m(r) = w r

2~ -r dr D D

Letting

- 2 q~ I •*• w
D

2

We obtain the solution

m = m i o r r

m r > a

(12)

(13)



I0(x) is the modified Bessel function of the first

kind of zero order and K (x) is the modified Bessel func-

tion of the second kind of zero order. A,B,C, and D are

constants to be determined by boundary conditions, which

can be taken as

(1) if t j^(a) = it^a)

(2) m^a) - mP (a)
(16)

(3) 1^(0) = 0

(ij.) mb) = - 1

where b is the radius of the cylindrical absorption cell.

Boundary condition (3) dictates B to be zero. Using

the other boundary conditions, and equation (11), we

obtain

2(k22 " kl2)

* p " -X- 'I?)

° B

where ^^ is tlle first °rder modified Bessel function of the
J. JLj/ 3 I.

E =s k,

P =

By definition, the saturation intensity occurs when mav = - ^
2

Then we find



P fc (19)~
It can be shown that the terms with K (k0b) are

O c-

negligible for reasonable values of b. For example, in
o

oase of SE£, kg is about 1.1? at 1 Torr. If we take b

to be 1 inch, then k2b = 2.98. However, k« is essen-

tially proportional to the pressure, as will be shown

later, so that k?b will be smaller at smaller pressures,

Let us take two extreme cases:

Case 1. k b = .1 k a = .01

K0(k2b) = 2.1|27 K1(k2a) =100

I1(k2a) = 0 I
0

(k2b) = I

KQ(k2a) = 50 I
0

(k2a) = 1

Therefore I1(k2a) Ko(k2b) .̂-c ^(kga) IQ(k2b) and

KQ(k2a) I0(k2b)

Case 2. k2b = If. k2a = \l±

KQ(k2b) = .011 ,K1(k2a) = 2.18

I1(k2a) = ".2 Vk2b) = 13"3

K0(k2a) = 1

Again I1(k2a) KQ(k2b) <1< ^(kga) IQ(k2b) and

Io(k2b) »I0(k2a) KQ(k2b)

So ignoring KQ(k2b), we obtain



E = I (k0b)2

oP =

Then equation (19) can be written as

_2 , o .- T

K1(k2a) k~
(21)

Let us call the right-hand side of this equation Z.

If we let
2X = (kla) = kl2 (22)

¥e have

X = 1 - 2(1^ a) 2 (23)

If we plot equations (22) and (23) together, as

a function of (k-j_a) for various values of (k2a), the in-

tersection point gives the value of k^a as well as X.

Then the saturation intensity is

Is
 = V t X - l] hr (210

C.VF*

Figure 1 is the result of these calculations. The

intersection points determine X as a function of k_a.

(X - 1) versus ka is plotted in Figure 2. For a parti-



FIGURE 1

GRAPHICAL METHOD FOR THE CALCULATION

OP THE SATURATION INTENSITY



cular gas k is equal to Yw/D. Figure 2 shows that the

saturation intensity changes very drastically for small

values of kpa. For large values of k?a, the saturation

intensity does not change much.

We note that the theory includes the effect of the

cylindrical absorption cell walls with the boundary con-

dition m(b) = -1.
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III. Analytical Derivation of the Absorption Go efficient

and the Saturation Intensity

Experimentally we normally measure the output

power as a function of the input power, and deduce the

variation of absorption as the intensity of the beam is

varied. So an important quantity to know is mav as a

function of the input power. We can write equation (1?)
6

as

mav = (1 - 2kia Z) - X
(25)

mav as a function of (X - 1) is plotted in Figure

3 for various values of kp&. We see that the absorption

decreases much faster as the beam size is increased.

Without diffusion, mav changes as

raav = - 1 (26)

Differentiating this expression with respect to I

we obtain

mav = _1 __ 1 (27)

At I = 0, we have

11



When diffusion is included, we should obtain the

same result as I goes to zero. Now we have

° ( o ) = 2 2 1 [ 1 - , 2 1 (29)
w koflilJ- \k £L) P ^i0—L_ + T~

Approximating F/E as before and comparing equations

(28) and (29) we obtain

* = .JL. K(kpa) (30)
3 2tr

where the function K(k_a ) is given by

K(k2a) = _ _ 1 _ (3D

Vga(1o (k2a)
 +KQ

) K1(k2a

w/2o- is the multi-level saturation intensity. The func-

tion K(k?a) is what we called (X - 1) before. It is the

factor that is caused by the diffusion and wall effects,

and is plotted in Figure 20 It is seen that the graphi-

cal and analytical solutions give essentially the same

results.

Experimentally we normally measure output power

versus input power. It is easier to do this measurement
•i

at high power densities. For example, if

12



30

28

26

24

22

20-

18

16

14

12

10

8

6

4

2

0

(x -
20-Ic

w
eff

& Analytical

O Graphical

.2 .4 .6 .8 1.0 1.2 1.4

FIGURE 2"

GRAPHICAL AND ANALYTICAL SOLUTIONS

FOR THE SATURATION INTENSITY OF MOLECULAR GASES
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-l)= 2crl/w

FIGURE 3

INVERSION DENSITY AS A FUNCTION OF INTENSITY
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o o
2,1 W/cm and lreal

 = 2.2 W/cm , we have % error = 5$.
O

At low power densities, if I Qasurecj
 = .0001 W/cm and

2
I , = .0002 W/cm , $ error = %0fo0 However, we need to

show how to interpret the results at high power densi-

ties meaningfully. At large intensities, we can write

- 2o-I (32)
D

This is further justified in the next section. Now

we can write equation (25) in the form

- * 11J (33)
•«• 1"

w

where

Zt =
kl

For large values of k, , we can write

This is further justified in the next section.

Combining equations (9), (32), and (35) # we obtain

_1__J*L_= - K> (kga) o<0 (36)
I dz 2crl + 1

w

15



where

K« (k0a) = 2K1 <k2a) + 1 (37)
<=- i ' a W" (\r a^Koa •"•/-. »"-o«*/

Integrating equation (36), we find

K« (k2a) o^oL = In out + g^_ I - I (38)

At high power densities, the first term on the

right-hand side can be neglected. Then we have

-_«_ K ' ( k a ) « L (39)

Without diffusion, x^e would have

1 dl = - °<o (I|.0)
I dz 1 + I

Neglecting 1 in the denominator, we vjould obtain

Therefore, it is tempting to identify

I « = _w _ K' (k0a) (ij-2)s r - £-
2cr

The actual saturation intensity is given by equa-

tion (30). Therefore if one measures I' experimentally,
S

the actual saturation intensity will be

16



where £ GP] is the correction factor. It is given by

= K(k2a)

K « (k2aT

K(k2&), and K' (k2a) are tabulated in Table 1'

17



TABLE 1

Functions of Interest

x-1 2KL(k2a) +1 OP
KQ(k2a)k2a

0.1
0.2
0.3
0.4
o.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
l'.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3

3l 5
3.6
3.7

3!9
4.0

75.075
24.39
13.74
9.191
6.865
5.473
4.571
3.935
3.481
3.132
2.836
2.639
2.454
2.325
2.195
2.092
2.004
1.928
1.86
1.802
1.751
1.705
1.663
1.626
1.592
1.562
1.533

• 1.508
1.494
1.4^5
1.444
1.428
1.411
1.395
1.38
1.367
1.355
1.343
1.332
1. 321

82.202
28.248
15.845
10.8001
8.1672
6.5835
5.543
4.811
4.278
3.865 .
3.5323
3.274
3.062
2.887
2.729
2 . 601
2.489
2. 392
2.306
2.229
2.16
2.103
2.045
1.986
1.949
1.907
1.867
1.83
1.795
1.772
1.7l4l
1.716
1. 693
1 . 668
1.647
1. 628
1.61
1.59
1.574
1. 558

0.9133
0.8634
0.8672
0.851
0.841
0.831
0.825
0.818
0.814
0.81
0",803
0,806
0.801
0 . 805
0.804
0.8ol|
0.805
0.806
0.807
0.808
0.811
0.811
0.81-3
0.815
0.817
0.819
0.821
0.824
0.827
0.827
0.829
0.832
0.833
0.836
0.838
0.84
0.842
0.845
0.846
0. 848
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IV, The Case of InhoiKogeneous Broadening

At low pressures that are used with the saturable absorbers,

we would expect the Doppler broadening to be dominant over

collisions! broadening. In order to see what happens in this

case, let us rewrite equation (36) in the form

2crl + -L
w

where

. _ 1 + 1 (lj-6)
k a2

We need to integrate equation (!).£) in order to average

over the classes of molecules that are broadened differently.

The variables are <=<-o> o~, and k-^. The integral is

oo

The letters h and i stand for homogeneous and inhomo-

geneous respectively. If the function L(k-j_a, k a) were inde-

pendent o f v - f then the above integral would integrate as in

the classical case to give a result similar to equation (2) .

So let us see how this function behaves. If the beam intensity

2is 1 W/cm , we would have for

19



2o-I =

at the peak of the Lorentzian g(fo). The relaxation rate of
D

SF^ at 1 mm. is about 5>0/sec t However, we need to know the

effective relaxation rate. It is clear, though, that 2o-I

is much larger than w. So at intensities larger than the

saturation intensity, it is safe to say that

fc, = / 2«ri <W1 N/ D

:^ a)/!-, (k]_a) remains close to 1 for reasonable values of

: K0(kpa)/K-j_ (k£a) is close to . 5> and does not change much

with k a. We have
2

_±2_ & / w (14.9)

Letting

O- = 0 g(v) (50)

where C is a constant, and substituting the Lorentzian lineshape

function g(*sr) in equation (I|.8^, we find

k i 22 i TTw T ( Av ) + (-y -Tr

C

g(-r) falls quite rapidly from its maximum value of 2/TTA-r".

It is loss than one tenth of its maximum value when (T - T

20



is equal to ATT. With the two level model without diffusion

we would have

<*h = ~ MGhy (£2)
1 + TTAY I

g(-r) 2 Is

where M is the molecular density. Substituting in gCr), we

find

od = - M Ghy A-T/2TT _

I>--r0)
2 + (Ar)2l~~ J

This is broader than the lineshape function g(Tf) by

/I + I/Ig. Assuming I/Ig to be 100, the width of cxlh would

be about 10 AV. We see that as I increases, the width in-

creases while the peak value decreases.

Let us assume k2a = .1, Io(k_ a)/^ (k-a) = 1, K (k a)/

K - j ^ k a ) = .5, w = 102, 2 o-I = 14. x 106. Then

r_
v 2

= 1/200

Using these values, we define

V(v) = 20 + 1

.01

21



We see that the denominator above changes very little

for (f - v )2/ AT^ ^_ 10. This function is plotted in

Figure 1+. It is seen to be varying very slowly. Therefore,

for all practical purposes, it is safe to assume that L(k-|_a,

kpa) can be assumed to be constant while integrating °^-, "to

find <=•£.»• Then we immediately obtain,

L(k,a, k?a)
^ 2

1 + 2 crl/w

At intensities larger than w/2o- , we can neglect the

modified Bessel functions of the first kind, obtaining

/I + 2o-I/w

Integrating equation (£6) gives
,1 _ l-i ^ut

K t ( k a ) o ^ L
2

r r 1H-2^i?
=: In _ w

L L ,,„ .a
1J

•••• ••• £_

W

+ 2(1*25-1)" ($7)

When 2*rl/w >$>-!, namely at high intensities, we obtain

K'(k 0a) oi L = 2 [IE IVW ~ J^tol (*8)
?
* w v W

In "foe case of the multi-level model without diffusion

we have

22
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_1 dl =
I d f r • •

'3

At high intensities, we would obtain

out •in (60)

as

Therefore, the saturation intensity I',, can be defined
. s '

I! =s (61)

The actual saturation intensity is expected to be some-

what lower than I' as in the homogeneous case.
3
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V0 Summary

The main results of the foregoing analysis can be sum-

marized by the following equations:

(62)

w = effective relaxation rate

D = effective diffusion constant

= /2crl + w (63)/2crl
V D

CT = absorption cross-section

I = photon intensity

a = radius of the beam

K(k2a) =

1 -

K«(k 2a) = 2

(k2a)

(k2aT

Ldc,a,kj,a) = 2 • 1 + 1 (66)"



Homogeneous Case

k a ) (6?)
2o-I

w

= K'(k 2 a) w (68)

L I > w/2o- (69)

(70)

(71)

LOP] = K(k a) / K«(k2a)

Inhomogeneous Case

= L(k^a, kpa)

v/ 1 + 2fj-I/w

= K ' ( k 2 a )

Lout 'in L/2 I

2

(72)

(73)

(75)

(76)
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VI. Conclusions

The results above indicate, first of all, that

diffusion plays a very significant role in the

saturation of molecular gases. Secondly, the satura-

tion intensity in the case of inhomogeneous broaden-

ing is seen to be quite different from the saturation

intensity in the case of homogeneous broadening. As

a matter of fact, using equations (69) and (75), we

can write

Pout - Pin " - ta2K'(k2a)] A (77)

for the homogeneous case, and

v/Pout - /Pin= - IaK'(k2a)] B (78)

for the inhomogeneous case. A and B are constants.

The theoretical results derived herein were

tested with seven molecular gases using various lines

of the COp laser around 10.6 microns. The gases were

SPg, BC1-, C2H3C1, NH3, C2H^F2, CH2CF2, and CCl^.

The most interesting observation during these

experiments was that the output power did not vary

much for constant input power when the radius of the

beam was changed. Going back to equations (77) and

(78), and taking this ob-
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servation into consideration, we can say that if a K1 (k^a)

does not vary much when a is varied, the broadening should

be homogeneous, and if aK1 (k_a) does not vary much when a

is varied, the broadening should be inhomogeneous. Table 2

is prepared for this purpose. It is seen that aK' (k«a) remains
O

more or less constant in a large range of k2a whereas a K 1 (k ? a)

increases quite fast with k,,a. Of course, we would expect

aK1 (k2a) to start increasing linearly with k2a since K 1 ( k ^ a )

approaches 1 for very large values of k2a.

The only way the function of aK1 (kpa) can be constant

with respect to a. is that K1 (k2a) varies inversely with a.

From Table 3, we find

K« (k2a) = 5.15 (79)
a

in the range of k2a indicated in Table 3. This result is

most interesting. Prom a physical standpoint, the variation

of the effect of diffusion inversely with the radius of the

beam is intuitively sensible.

So if the inhomogeneous case is valid at low pressures,

we can conclude that the variation of the output power with

the radius of the beam at constant input power is negligible.

We can write this conclusion in the form

28



TABLE 2

TEST 50 R BROADENING

(k2a)

0.1 8,22 0.82
Oo2 5.65 1.13
0.3 4o75 1.43
0.1]- 4.32 1.73
0.5 it-. 08 2.04
0.6 3.95 2.34
0.7 3.88 2.72
008 3.85 3.08
0.9 3.85 3.^.7
1.0 3.87 3.87
1.1 3.89 4.23
1.2 3.93 4.72
1.3 3.98 5.07
1.4 4.04 5.66

l61.5 4ol6 6.
1.6 li/,23 6.77
1.7 4.31 7.37
1.8 4.38 7.88
1.9 4.46 8.47
2.0 4.54 9.08
201 4.63 10.72
2.2 4.70 10.34
2.3 4o77 11.45
2o4 4.87 12.18
2.5 4.96 12.90
2.6 5.04 13o64
2.7 5.12 14.34
2.8 5.21 15.11
2.9 5.32 15.96
3oO 5.40 16.74
3.1 5.49 17.57
3.2 5.59 18.45
3.3 5.69 19.27
3.4 5.76 20.16
3.5 5.86 21.10
3.6 5.96 22.05
3.7 6.04 22.95
3.8 6.14 23.95
3.9 6.23 24.92

29



Iputl * &l (80)

where the subscripts 1 and 2 refer to beam of radius a_ > and

the beam of radius a_. Equation (80) is expected to be valid

at constant input power and low pressures. Using equations

(70) and (?6), we can also conclude that the saturation in-

tensity varies inversely as the radius of the beam for the

homogeneous broadening and varies inversely as the square of

the radius of the beam in the case of inhomogeneous broadening,

at low pressures and small radii.

30



VII. Appendix

Derivation of Effective Relaxation Rates and Diffusion

Constants

Neglecting Diffusion, the rate equations can be written
6

as :

2i
 M2 * Z wio mi " W(M2 '

(A.2)

+Z wilrfli + W(M
2 "

 Mi} + ^ (A'3)

i i

V - Z ^
i

In these equations various terms are defined as follows:

W = stimulated transition rate between upper and lower absorp-

tion levels.

w, u = relaxation rate of the upper band kth level to all

,_ lower ::,-,•• band levels

P .̂u = pumping rate of the kth upper level

P, 1 = pumping rate of the kth lower level

w^ = relaxation rate of the lower band kth level to all

other lower band levels
w. i - relaxation rate of the kth upper (lower) band level

to the ith upper (lower) band level

31



M1 = &2 K > where g~ and g are the degeneracies of levels
1 • frf"-1 2 and 1

m,u* = population density of the upper(lo^ier) band kth

level

The number of equations and terms are actually infinite

since k can assume any value. At steady state all the deri-

vatives are zero. Adding equations (A.I) and (A 8 2) , we get

o = •
u

i k i k

- W(M2 - Mf
u

The-second and third terms cancel out. Assuming all the

pumping rates are zero except for the upper absorption level,

we obtain

M-

1 « ) + PU = 0 (A.6)

Similarly, considering equations (A.3) and A.ij.), we get

.!*.
a 0 (A.7)
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We can assume all the rotational relaxation rates in

each band are the same, equal to wu and \rt Then equations

(A,6) and (A.?) are the same as the two -level model equations

with the relaxation rate of the upper level replaced by wu2m

M and the relaxation rate of the lower level replaced by

In order to include the effect of diffusion in the rate
<2> ^ . _

equations, we have to add DV M(o) term into equations (A.I)

through (A. If.). For example, equation (A.I) becomes

+ P2
U (A.8)

Again assuming stead-state, if we add all the upper level

equations, we obtain

o ^> m i it
(-XJLJ M

2 "
 W(M2 "Ml * + P2 = ° (A*9)

M2

So we can claim that the effective diffusion constant

for the upper level Dp is D^ m. /I^o* We obtain a similar* 1 i ^

result for the lower level by adding the lower level equations;

namely, the effective diffusion constant for the lower level

D, becomes D "21 m.» /M,. Assuming that the rotational constant
1 i *• '
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for the upper and lower bands are the same, D, and D will

be nearly equal.
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