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ABSTRACT
3 '

The general problem presented in this paper

is one of estimating the state vector x from the state

equation h=Ax where h, A, and x are all stochastic.*

••Specifically, the problem is for an autonomous Martian

Roving Vehicle to utilize laser measurements in estimating

the gradient of the terrain. Error exists due to two

factors - surface roughness and instrumental measurements,,

The errors in slope depend on the standard deviations of

these noise factors. Numerically, the error in gradient

is expressed as a function of instrumental inaccuracies.-

' Certain guidlines for the accuracy of permissable gradient

must be set.. It is found that present technology can

me.et "these guidlines». ' • :



' PART 1 ' • .

. . . INTRODUCTION . . • '

• ' . •. X:- ''. ' ' ' '.'' : "
. • A comprehensive navigation system will be needed

" '*"

.for a proposed Mars rover to safely traverse the surface

of Mars with reasonable speed, over a long distance..

• Because the roundtrip communication time to earth requires

• more than 40 minutes, the vehicle's terrain modeling and

path selection systems must be autonomous., The system

is designed to collect terrain data within a 3 to 30 meter

range. The range finder, which locates a point on the

terrain, is a laser/dectector which gives a. range

measurement R, azimuth angle 0, and elevation angle ̂ 6«

Two- points along the path of the vehicle determine an

in-path slope, while those across the path compute a cross

•• path slope. However, inaccuracy in measurement.can.

introduce very large errors.in the computed slopes and

.heights,, which are the main factors in path selections..

There are some threshold values for these factors above

2which a change of path is required.



PART 2

METHOD OF APPROACH ' . . . . '

From the measurement data it is desirable to

obtain the maximum slopes and the elevations of the terrain

in front of the vehicle., . . .

A . . Transformation of Coordinate Systems . 1

The quantities R, 9, and J*> are measured with

respect to the coordinate system h", a", and b", fixed to

the vehicle, (see Fig. 1) YJith laser height at 3 meters

we have: '

h"* = 3 - Rsin$ , ' (la)

a" = RcosjBsin9 (Ib)

b" = Rcos,0cos0 (Ic)

The body-bound axis rolls with the angle <j> and

pitches through an angle f about a reference frame .

h, a, and b formed by the local vertical arid"an axis in a

plane containing the heading and the local vertical. The

3coordinate transformation is: . '.

h

where

0

h"

a"

b"

0

cos<J> 0

0 1

(2a)

(2b)



/3- elevof jon angle

. 0 - Qz.'muth angle

- .
I /-.terrain

point

Fig, 1 Vehicle Coordinate System
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0 sin?

0 1 0

-sinl- 0 cosij

(2c)

\v_

B». Determination of Slopes and Gradient

A number of measurement 'points within a certain

small area of surface, say 0.5m by 0.5m, can.be used to

determine a plane in space, which may be written as

h = ax, + bx2 + x- (3 )

where x, and x? are two constant parameters to be ;

determined.. Taking the .differential of equation (3) we get

' . ' • dh • B ££da + |~db = xida + x0db -'- .
• O^ . Q& ' . JL £t

where, 3h '
x, = |— = cross-path slope

JL â

dh . , , ' 4,5x« = ~-r- =t in-path slope ?

C. Q& - .

The corresponding gradient of the plane, which is defined

as the gradient of the. terrain in .that small region on the

planet's surface, is

2 2Sg = (x^ + x2^) . . C4)

If this slope is less than a predetermined criterion, it

.is considered to be safe for the vehicle to travel ahead, •

In order to locate the plane by a number of

measurement points, one may rewrite Eq. (3) as '

. . h. = a.x, + b.x_ + x • (5)
JL • JL JL JL ^ ^

where h., a., and b. are found from R. , 9., /3 . in equations
J_ •!• ' J. . J- JL JL

(1) and (.'2} for each i point. Theoretically, three



points determine a plane (i = 1,2,3). For greater \

accuracy however,, more than three measurements (i = 1,2,3,..,n)
" • • . !

(probably n = 4 or 6) are needed to determine the slopes,

A complete picture.of the terrain in front of the vehicle

can be constructed by modeling numerous adjacent planes,

each covering a small area of surface. . .' ' ' ' ' '



PART 3 ' .
^ "

. ANALYTIC SOLUTIONS FOR PARAMETER ESTIMATION

• .In this section we list the solutions of the least

square estimate, the covariance matrices, and the minimum

variance estimate when n>3.

A... Least Square Estimate .of Slopes •• ;

If a^=a^ and b.=b. are assumed to be true in

Eq., (5J, a least square error estimate can be performed

which minimizes -
vx

.2£ (h -h )' (6)

A
where h . is the actual measured height and h. is the

corresponding height in the modeled plane,.

In matrix-vector notation, Eqe (5) is

where

and

h = Ax

h = (ĥ ĥ , . ..,h )•

v: - (x v x )" **• — \ -"-n J " *•) J •"• *^ /

b

A =

an bn 1

O)

n = 4 or 6

The least square estimate of the parameter x becomes
.. . ĴF 1 rn

X.= (A A) 1Aih (8)

B. Perturbation of the Varieibles

The least square estimate in the previous section
7

assumes the matrix A to be completely c^terministic •

'. 6



In reality, however, there is error involved in the .

determination of a, b, and h, due to the-errors in our

.measured values of <f>, £ , R, 0 , and 0 .

If the symbol S denotes a perturbation, then

Sh,£a, and 8b in terms of £$,-£?» £R, Sj3 » £0, are

Sa
fib

= D(h",a",b", 4> ,^ ) S4>

-' -

where .

SB (9a)

C-h"sin<J>cos^-a'tcos<()~busin<|>sin^

(9b)

and

(-sin/3)

C-Rsir\8sin0) (9c)G(R,e?>8) =
(.-Rcos/3sin$)

The derivation of these matrices are given in Appendix (A-):0-

C». Covariance Matrix of the Variables . . :.

variables as

We can define the covariance matrix of the
*

8

M = E'

h

fib

[8h

(10)

where E denotes expected value.

If 64>, S*j , £R, £fi r and

then from Appendix B v/e have

8
are not correlated1^
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M = D DT + CBG

9
E(SRr

6 i
0

0

2(S/5

. 0

'
0

) 2 0 ; •

E ( S 6 ) 2

GTBTCT (11)

From Eqs. (10) and (11) the standard deviations of h, a,

and b, can be computed in terms of those of <f>, ̂  , R, /3 ,

• and 0 for each point.; These are known quantities that'

dep.and upon the accuracy of the measuring devices.

- D, Covariance Matrix of the Slopes •' ; ..

Eq. (5) can be written as

h = Ax (12a)

If we set h = iT + Sh, A = A + SA, and x = x + g x , (12b)
i

then with the aid of Eq. (7) we get

£h = Agx + SAx (12c)

- SAx) (13)

where • - F = ( A A ) A . (14)

The covariance matrix of the slopes is determined in . .

Appendix C as

+E [gAx( SAx )'T]} FT (15)

The estimate is7

F = (ATA)""1AT

where

• Sh =

8h
n

Ax = (16)

.Since A is in terms 'of a and b, then £n and ^A can be

expressed as functions of S«J> > 8f > §R» S (3, and SB as given

in Eq. (9a). . Eq. (15) can be evaluated as shown in

Appendix D. •



E" Variance of the Gradient '" . . • \ .

If the symbol O^. denotes the standard deviation
i •

of Sg, then from Eq. (4) we have '
O O _1 /O O . O

. . .' dSg.= (x£+x2) •L/^x1dx1 + (x^+xp
• • • 9 '

The variance 'of the gradient is . • .

I •
17)

where CT^ = ECŜ .)2-, o£= S(8x2>
2, .

2 9 • 2
The covariances CTs, , O"v » an<^ O*v ̂

 can ^e found from
A, AZ /̂ /Ai .

Eq. (15)-. . " . , . .

The value of O^Q gives, a rough estimate of the
- ' ' • / • ' 0 •. ' • . '

accuracy in our estimatio.n of the gradiento If the
o o

estimated Sg is 20 with O]~(l=2 , then we can be 68% sure

that the actual slope is between 18 and 22° and 95% sure

that it is between 16 and 24°* This is important when

the estimation is close. to the maximum permissable value.

For the case where x, = x? one obtains from'-

(17a)

Eq. (4)

Thus

i

Cf-, _. [~5 voy 2= v T
.

dSg = V2 dx.

Po Minlraum Variance'

-
and O

Estimate

2.

*
8

• A generalized form of Eq. (7). is

. / ' v = h - Ax . . (18)

where v is the noise due to measurement of h' and A in

Eq« (5).
If the expected values of Eq. (18) are
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- . E(h) = h , E(A) = A U9)> .
then E(v) = v = h - A x = 0 (20)

1

by virtue of Eq.. (12c). Subtracting Eq. (20) from •

• . Eq. (18) with the aid of the definitions of Eq.' (12b), .

one obtains . " . v

v = $h - SAx . (21)

Thus the covariance of v becomes

R = E[VV'̂ ]= E[(£h - £Ax)(Sh - SAx

= EfShSh^j - E^AxSh^ - E[5h(SA3c);T] + E[SAx(5Ax)T] (22)

which is the same as those terms inside the bracket in

Eq. .(15).. These terms are evaluated iin Appendix D«

The cost functional J.can be expressed as .

J = v̂ v̂ = (h-Ax J^R"1 (h-Ax) . ;

T1 1 'T1 T1 ~1 T 1 — —T T1 1 —
= h R~J-h-x A R h-h R xAx+x A R Ax (23)

The minimum variance estimate of x can be obtained by

taking the minimum of J with respect to x. . .

Min- J = -r= = -2ATR~1h + 2ATR~1Ax = 0 C24)
x ^x < )• ' . • "

Thus the minimum variance estimate x becomes
* \ •'

. . ' x = (ATR~1A):"1ATR~1h . , (2.5.)

where R can be obtained from Eq. (22).

The minimum variance estimate given by Eq. (25)

• 'is a weighted least square estimate. It will provide a

better estimate of the gradient then the standard least

square estimate of Eq.. (8) because it gives correct

9weight to the individual measurement points. The minimum
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variance estimate utilizes the value x given by the .least

square estimate to evaluate the covariance matrix R given

.by Eq. (22). . '

However, the numerical results in the example

computed from Eq. (25)" is very close to the results given

by Eq. (8) because the weighting factor in the covariance

matrix R is nearly proportional to an identity matrix.

That is to say, the weighting factors in the diagonal

terms of R are equal„ This is equivalent to an unweighted

least square estimate. The details of the derivation are

shown in Appendix E where R=kl.

G. Determination of'Gradient

Once the values for the cross-path and in-path

slopes are determined from the minimum variance estimate,

the gradient^can be determined from Eq. (4). Knowing the.

value of'the gradient and its variance, the rover can make

decisions concerning safe and unsafe terrain.



PART 4 -.

NUMERICAL RESULTS

It is assumed that the rover will use a split

beam where A j3 is the difference in the elevation angle

between the two beams and A,© is the difference in

azimuth angle between anY two laser pulses. This is

shown in Fig. 2. • ;

The values of fl and B for each data pointy along

with the magnitude of the cross-path and in-path slopes of

the terrain, determine the data point spacing and the

distance of the data points from the vehicle. After a

number of data points are measured, they are transformed

to the non-rotating reference system by Eqs. (la to 2c).

Then a least square estimate of the slopes is performed

which is given by £q. (8). This least square estimate
_ -"' - -

depends directly upon the values of h,a, and b for each
• A

measurement: point. Utilizing the value of .the vector x

found in L'.q. .(8)_, the values of (/>, f , R, ,6, and 6 for

each data point, and the standard deviations of.these

quantities, we can ultimately find the magnitude of the

gradient and its variance thru the proceedures outlined

in sections .3b-3f.

The variance of the gradient depends in part

upon the magnitude of the cross-path and in-path slopes

of the terrain and the accuracy of the measuring devices.

It also depends upon <jf> , ̂ , R,>S, and 9 , or alternately,

1 2
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Side View

Top View

Fig. 2 Split Beam Laser
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upon the roll and pitch angles, the data point spacing, and

the distance of the data points from the vehicle. How

much each of these factors affects the standard deviation

of the -gradient Is to be found. •

The standard deviation in gradient'for any

combination of these con be determined, by utilizing

Eqs. (9b),(9c),(11),(14),(15), and (17). The data point

spacing and the distance, of the data points from the

vehicle can be varied by changing the. values of -/3 and 6 for

each data .point. The vector x completely determines the

gradient of the plane we are 'measuring' and along with,

specified values of <£> , f , f> , and 6 we can geometrically

find the values for R, h,a, b, h"", .a", and b" which are

utilized in above equations.

For simplicity', we first set £ = ̂  = 0* for all

the measurement points; hnd .assume, the reference gradient

of the measured plane to be 0 wherever it may be located.

'By applying Eqs. (9b)s C9c),.(ll), (14 X, (15), and (17'a)

and setting 0$ = O"e =- «.]/ 5 and O^> = o£ = 1° in Eq« 11 we fdnd
•

that for any reasonable: data point spacing at 20 - 30 meters

from the vehicle, &$,_ \ "-s on the order of 30 - 60 . . On •
*"v' . ' •

the other hand, if Cf/ - cr^= 0° in Eq. (11),. Oc,- decreased

to only 2°-3° at that cistance. . •
C,

. . Since it can be expected that.O^ and O^ are really

in the neighborhood of: '.'. (due to the constant rock and

roll of the vehicle air. it traverses the' surf ace), the rover
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will have to be provided with a>'rapid scan' laser.. If

the scan rate is on^the order of. milliseconds, which is

perfectly feasible with electronic scanning, then each

set of 4 adjacent data points is measured practically

..instantaneously, since the rover motion is on the order of

seconds. Each of the 4 data points will have.the same

value for <£ and ^ and therefore all 4 points will retain

the same relative position to each other when they are

transformed from the vehicle, coordinate system to the

fixed system. Consequently, the rover can model the

planes in the vehicle coordinate system and then transform

.the planes to the non-rotating system, instead of first

'transforming each point to the non-rotating frame. In

the analysis, this corresponds to setting <J> = ? = 0 in

Eqs. (9b), (9c), and (11)'and setting h"=h, a"=a, and
-'•-' ' . .

b"=b in these equations. Since the maximum positive or

. negative slope that the vehicle can navigate is i 25 ,
I o

relative slopes might be as high as —50 and still be

navigable. This is shown in Fig. 3. Therefore,, in my
0

analysis, I consider a range of slope changes from +50

to -50* where possible. . • .

.Also, due to rapid scan, the error introduced

by a s.tandard deviation in O^and CC will be consistently

between 1° and 2° because it only involves the error in

••• transforming the already modeled plane from the. vehicle .

system of reference to the fixed system. Consequently,



36

•f- 50 re!, slope

-5O rei. slope

25

Fig.3 Re la t i ve In-Path Slopes
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the effect of the standard deviations in <f> and ^ is not

^considered in the analysis and 0*4, and 0*5 are set to 0

in Eq.(ll). It must also be realized that any relative

slopes between +50 and —50 can represent critical values

.in the fixed system and therefore all relative slopes are

important.. • . . ' . . . . . .

If the vector x=0 in Eqs.-(15) and (17a), CTft= 0*0=1'

and O"R=5cm in Eq. (11)', and A # and AS (and consequently

the data point spacing}, are varied for each set of 4 points,

then the graph shown in Fig.4 results* This corresponds

to collecting data from a flat terrain. Each solid line

represents constant values for A/3 and A0. The quantities

Ab and/ia are the data point spacings along the in-path . •

.and cross-path directions respectively. By looking at

any -solid line it can be seen that for any constant values

of A/3 and A0 , the quantities Ab and &,a decrease very

rapidly as we scan closer to the vehicle and consequently

05. rises very rapidly. . . • •

. • In choosing an 'optimum1 spacing it must be
I - .

kept in mind that by increasing the spacing &b and &a,

•the standard deviation O"SQ decreases. This, also renders'

the data less meaningful., as more terrain has been overlooked.

At the 30 meter range, a general picture of the terrain

with a. spacing of 2-3 meters is sufficient. 'At close

range, (4-7 meters) the points should be at least as close

as 0.66 meters because this is the width of the widest
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Fig. 4 Standard Deviation in Gradient vs.
Distance from Vehicle on Flat Surface.
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2navigable crevice. In Fig, 4, the dotted line represents

C*Sq vs» distance from the vehicle for such a scheme,

.where the data point spacing varies from about ,5 meters

at a distance of 4 riveters from the vehicle, to a spacing

of about 3 meters at a distance of 30 meters from the

vehicle. . '. .

Each of the plots in Figs. 5 and 6 utilize the

same optimum scheme as the dotted line in Fig. 4.. Once

again the vector x=0 (corresponding to flat terrain).. In

Fig. 5, O^ is kept at 5cm inEq.(ll) and G^ and O"& are set

to 0°, ,017°(1'), ; and.lc(6« )_ it is seen that ̂  is

markedly reduced by decreasing Op and O~Q from 61 to 1 ' ,

but any further increases in accuracy will .result in .

bulkier and heavier equipment which is not very beneficial „,

By comparing the plots for O^=CTe=l' and O%=(Te =0°, it

is seen that O^ and CTg have very little effect on
•3

when they have a value of I1. In Fig.6, GTR is varied from

1cm to 10cm in Eq.(ll), while G~A and CT@ are kept constant .

at If(.0l7 .). The quantity C% increases rapidly for each

value of G^ at close range in Fig.6. . . .

Fig.7 plots C£aVs. relative in-path slopes of

from -30° to +50° at 4 meters from the vehicle. This,

means that the vector x is varied in Eq,.(15) and (17) such

that the cross path slope x.. remains 0, the in-path slope

—- o o ' • —
Xp varies from -30 to +50 , and x3 changes in such a

manner that there is always at least 1 data point with a
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Fig. 7 Standard Deviation in Gradient vs. Relative
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height h of 0 meters in each group of 4 points. The graph
o

only extends to -30 because the laser beam cannot 'see1

over a negative in-path slope greater than.this value- at

4 meters distance. .In this graph, O^ = 0^=1' in Eq.(ll)

and O^ is varied from 1cm to 5cm. The data" point spacing

is o6 meters. Fig.8 is also a graph of 0£<,vs. relative

in-path slppe from -6 to +50° at 20 meters from the vehicle.

All the other conditions are the same as in the last graph

except that.the data point spacing here is 1,.2 meters

instead of 0.6 meters. Finally, Fig.9 plots graphs, of O"̂ q

O O
vs. relative cross—path slopes of from 0 to +50 and for

distances of 4 meters and 20 meters' from the vehicle. Once

again Op = CTe =1' and O^ is- varied from 2 to 10 cm.

The data point spacing at 20 meters.from the vehicle is

1.2 meters and the spacing at 4 meters from the vehicle

is 0.6 meters. . "

Present technology cannot improve O"R below 1cm,

and even ohis figure is quite low. It is obvious from

Fig.7 that (J"R should be as close to. 1 cm as possible in

order that Osq will be within an acceptable range at 4

meters distance and high values of relative in-path slopes*

Cross-path slopes do not present .as much of a problem and

a O"o of 2 cm is quite acceptable for the worst cases.
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PART 5 . . '

CONCLUSION .

• ' . -. X: • '. ' ' • •' . " - .
. . . This paper suggests a solution to the general

problem of estimating the state vector x. from the equation

h=Ax where the measurements h and A are all stochastic.

The proceedures outlined here are applied to a specific

case in estimating the gradient of the terrain by laser

measurements from an autonomous Martian Roving Vehicle.

Due to terrain irregularity and instrumental uncertainties,

the four measurement points do not fall in the same plane..

First, a least square estimate is.performed which' assumes

the matrix A. to be deterministic. A", minimum variance

estimate, which takes into account the error in the matrix

A as well as h, gives approximately the same numerical

results because the weighting factors are nearly equal

to one another. The error involved in these algorithms

'can also ] 3 estimated and a complete error analysis has

been presented.. . . " - . . ' .
*

' The variance of the gradient should be as low as

possible but an upper bound of 2 degrees has been set..

Figs..4-9 show that the standard deviation O^ of the

gradient is dependent upon the distance of the modeled plane

away from the vehicle, the data point spacing, the gradient

of the terrain, and the values for O"R , OV > and CT0 . By

using a rapid scan laser,.we do not have to take into

25
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consideration the error due'to the motion of the vehicle.

If O0 and CT0 are reduced below 1 arc minute, bulkier and'

heavier equipment would result.. In fact, v/ithO"^=0e of

1 arc minute very little error is introduced into the.

calculations. Most of the.errors come from CT^ .In

order to keep the upper bound of 0"$̂  within 2 degrees, the

quantity CT0 must be as low as 1 cm. •
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APPENDIX A

DERIVATION OF THE PERTURBATIONS

To prove the result in Eq.. (9), the coordinates

in Eq.. (2) are first perturbed as

" 6h "

*§§*=
. 6b.

*?,6C'U)B(O

" h" '

a"

b" _

+ C(<}>) B(U

' h" '

a"

. *>" .

+ C ( $ ) B ( C )

6h» '

6 a11

.6b" _

tfhere '
*' •

6C=6Ci,J =

'(-sin $<$<{>) (-cos<!>6<i>) ' o"

( cosW) (-sinW) 0

' -G . 0 0_

=

-sinij) ~cosi{> 0

cosi{> -sini{) 0

0 0 0

(A-l)

(A-2)

and

6B=6b. .=

'(-sin£6£)

. 0

.C -cos 560

0 cos£«5~

. 0 0

.°l:fin565-
=

(~sin?) 0 (cosf;)

0 0 0

(-cos?) 0 (-sin£)
(A-3)

perturbing Eq. (la) - (ic)

8h"
6 a"

SR

SG4
(-Rcos/3) 0 (

(cos^sinB) (-Rsin/3sin0) (Rcos/3'cos9)
(-Rsin(3cos0) C-Rcos/3sin0)

S/3
89

(A-4)

By substituting (A-4),. (A-3) and (A-2) into (A-l) one

obtains

Sh"

fia

_8b-

/-
= |c 1 (^)B(^)

t

"h"

a"

b"

.

'CC^B1 /^)

'

h"

a"

b"
~

r "i
S4>

L£l

SR
86
80

(A-5)
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Compart .the above Eq, with Eq.: (9a), to see that

h""
a" :««.'«>.

h""

a"

The first term on the right is determined from (A-2) and' (2c)

cos? 0 sin?

0 1 " 0

-sin? 0 cos?

h"cos?+b"sin?" '

-h"sin£+b"cosC

-a"cos<|>

h""
a"

b".

~

-

-

-

-sinij) -cos* 0

cos* ' -sinij) 0

0 0 0

-sinij) -cos<{) • 0

cosij) -sin* 0

0 0 0

?i r

0

The second term of (A-6) is determined from (2b) and(A-3)

C B1

h"
a"

b"

-h"cos ({sin ? +b"cos*cos

-h"sin<J>sin? +b"

-h"cos? - b"sin?

(A-7)

h"
a"

. b11 .

=

r:

' cos* .-sin* 0 •

sin* . cos* 0

0 0 1

cos* -sin* 0

sin* cos* 0

.0 0 1 _

-sin? 0 cos?

0 . 0 0

-cos? 0 -sin?

'-h"sin? +b"cos? "

0

-h"cos? -b"sin?

h" "

a"

• b" -

By substituting Eqs. (A-7) and (A-8) into (A-6) one obtains

the results in Eq, (9b).. . . .
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APPENDIX B '
t ' • . i

DERIVATION OF THE COVARIANCE MATRICES \

'.' OF THE VARIABLES ' ' ' '

To prove the result in Eq. (11) we multiply Eq . (9 )

'by its transpose..

6a

6b

•f.6h 6 a 6b] "&<
+CEG D +CBG

D

se

^ 50

+CBG
£R
S3
se

T
D .+ D

Taking the expected value of (B-l) one obtains

i - .

[Sh 5 a Sb]

Sb

= D
L5?

^D + CBG n

SR

80

§R S/i

+ CBG

se
D + D EX

GTBTCT

T T T
•" 3 C

(B-l)

(B-2)

Since S^ > S^ > SR, S/3 , S© are not correlated, (B-2)

becomes Eq. (11) in the text.
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APPENDIX C .

DERIVATION OF SLOPE COVARIANCE (I)

Here we will prove Eq. (14) and Eq. (15). SJ

Substituting h=h+£h, A=A+6A, and x=x+5x Into Eq.(12)i

we have .

F+Bh=(A%-5A) (x"-f$x~:)=Ax + SAx + A8x + 5Agx (C-l)

Since h~=Ax, and neglecting the second order term 6ASx,

Eq. .(C-l)- becomes . -

ASx = Sh-5Ax .

— Tby premultiplying the above equation by A

ATA5x = A^CSh-SAx). •

Thus the estimate of 6x becomes

8x. = (ATA)rlAT(Sh-5Ax) = F(Sh-SAx) (C-2)

which is equivalent to Eqs.(13) and (14). Multiply

Eq. (C-2) by .its transpose to obtain • ' .

6x8xT = F(Sh-£Ax~)(6h-$Ax)TFT

(C-3)
t .

The expected value of Eq. CC-3 ) becomes Eq. (150 in the text,
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APPENDIX D . '
) - * .

DERIVATION OF SLOPE COVARIANCES (2)

Replacing, term by term, Eq. (16) into Eq. (15)

we get

x6xT] = EJE[6x6x ]

•E [6h($h J = E
6h
•
•

6hn

6x2

6x3_

[6h ..'.'

(D-D

E(6h1)2

n

E(6h 6 h j ) E(6h 6h 2 ) . . E(6h 6h

; . (D-2)

The different measurement points are uncorrelated. Therefore, the

off diagonal terms are equal to zero. Eq. (D-2) reduces, to

)2 • '6
-E[6h6hT ]

0 .E(6h )2

n (D-3)

Similarly:

T.
E[6Ax6h ] = E

6a XT + 6b
n *• n

[6h ,.-.
n'

[E(6a 16h 1)x 1+E(6b 16h 1)x 2 0

0 [E(6a 6h )xj+E(d;b 6h )x2].
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-NT-,E[6h(6Ax) ] = E

6h I

6h

•n J n

+E6h16b1)x2]

[E(6h 6a 6b ) x2]

E[6Ax(6Ax)T] =E

6 a X}+6b
' n A n

•(D-5)
n * n

I? +E(6b 1 ) 2 x2] . 0

[E(6a )2x2+2E(6a 6b. n i . . nn

Where the expected value terms in Eqs. (D-2X - (D-6)

can be evaluated from Eq. (11).
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APPENDIX E - -.

THE NOISE COVARIANCE MATRIX '

From the quantities of gh and 8Ax given in Eq.(16)

o n e obtains f o r E a . (21) . . .

v &-•-

(E-l).

Since the measurement points are close together, the

expected values of the errors are nearly the same, i.e..,

3f E(8a2) =

E(&b ) '* E(5b ) * E(8b ) = E(5b
-L " £ . O ^*

similarly

(E-2)

From Eqc, (D-3) we have

Similarly from Eqs.; (D-4) and (D-5) one obtains'.

Moreover, Eq.. (D-6) results

, 2-2E[£AX($AX)T] =[E(5a1)
2x2 + 2E(8a15b1)x1x.2 + • E

Substituting Eqs. (E-4), fE-5) and (E-6) into Eq,

R = kl

(E-S )

( E-4 )

(E-5 ).

,2—2 -i

(E-6)

(22) gives

(E-7)
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p
where k = E(Sh,) -2E(6a,$h )x,-2E(6b1Sh,

which is the predicted result in section 3f


