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ABSTRACT

The general problem presented in this paper
is one of estlmatlng the state vector x from the state
. equatlon h=Ax where h, Ay and x are all etochastlcu
*Specifically,'the.problem is for an autonomous Martian
Roving Vehicle to utiliée.laser measufements'in estimating
the gradient of the terrain. Error exists due to tﬁo-
factore'— surface roughness andfinstrumehtal measurements.»
The errors in slope-depend on the‘standatd.deviations of
these noise factots; Numerically, the error in gradient
- is eipressed as ' a function of instrumental inaccuraciese..
'Certaln gu1d11nes for the accuracy of permlssable gradlent.

'must be set.. It is found that present technology can

meet the e guldllnes.
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“ PART 1
INTRODUCTION

N\

A comprehensive navigation system will be needed
.for a'proposed Mars rover to safely traverse-the surface
'of Mars w1th reasonable speed over a long dlstance.
3Because the roundtrlp communlcatlon tlme to earth requlres
© more than 40 minutes, the vehlcle s terraln modeling and
path selectlon systems must be autonomous. The system
is designed to collect terraln data w1th1n a 3 to 30 meter
range;- The range f;nder, whlch locates a’p01nt on the
térrain, is a laser/dectector whlch gives_a:‘range
measurement‘R% asimuth angle'e,fandfelevation angle;B,_
Two.points along the path of the vehicle determine an l.
'1n-path slope, while those across the path compute a cross
path slope° however, 1naccuracy in measurement can
introduce very large @rrors. in the computed slopes and
,helghts, wh1ch4are_the maln factors in path selectlons,
There are some thresholdivalues for these factors,above

.

which a change of path is requiredg ) .



PART 2

METHOD OF APPROACH - z

From the measurement data 1t is de51rable to

o obtaln the maximum slopes and the elevations-: of the terralnd‘

in front of the vehicle. .'j:”

A.. Transformation of Coordinate Systems ';;!

The quantities R, 8, and 3 are measured w1th
respect to the coordinatehaystem h", a", and b", fixed to

the vehicle. (see Fig. 1) With laser height at 3 meters

i

we have: L o o :
‘h™ = 3 - Rsinf o :, : | (1a)
a" = Rcoqﬁéiae» _ S o (1b).
b" = Rcosﬁcose - : (1c)

The body-bound axis rolls with the angle ¢ and

pltches through an angle $ about a reference frameA
. h, a, and b formed by the local vertical and an axis in a

plaﬁe containing the heading and the'lqcal vertical. The

coordinate transformation> is: o | .
h » h" .
lal = c($) B(g) |an 4_ (2a)
b | . A b."A . " E . . . .A . I’

'whe;e
vcos¢ -sindé 0 | -~
C(¢) = |sin¢ cos¢ O ~ (2b)
0 o 1| '



0:'.'

" B = » \;"\.; : .“ 7./ ’
. - . T " g ’ -
- . -~ \V Ay o,
/3- elevotion gngle T~ plterrain - -

e-azfm_u'fh angle . -] point
'R -range measurement o

. Fig 1 Vehicle Coordinate System



COSE.. 0 sinf ‘ , |
- B(§) = |0 1 o | - (2c).
AN -sin§ . 0 cos¢| 4

B.. Determination of Slopes and Gradient

‘A nunmber of measufemeht'poiﬁts'wifhin a .certain
small area of surface, say 0.5m by 0.5m, can.be used to -
determine a plane in space, which may be written as

h = axy

| | + bx, + X4 ' o " (3) =
‘where x, and x, are tWo'constaﬁt parameters to' be

determined, Taking the differential of equation (3) we get

ahdbﬂ: x

h ,_ ’
“=da lda +,x2db

a2 * 3p

f

~dn

where, o : .
) 3 §_1_1_ . . _ . o
X, = 33 = cross-path slope

oh

Ain—path slope4’5_

Thé_corpespdhding gradiént~of the planey which is defined
as - the g:adiént of thefterrain'in‘that’smail région on the .
Aplahetlé su;fade, is- . .

; L T S 1/2 - :
cn ¢ , .

| Sg ”’(XI + x2 ) ) . . (4)
If this slope is less than a predetermined criterion, it
is considered to be safe fbr the vehicle to travel ahead. -
In.order to locate the plane. by a number of

measurement points, one may rewrite Eq. (3) as

hy = agx) + D%, v xg 0 B
.where.hi, a5 and bi are found from R., Gi, Bitin equations
th

(1) and (2) for each i°" point. Theorectically, three



points determine a plane (i = 1‘.,‘2",3).' For gréa't_ei: -

accuracy however,. more than three measurements (i = 1,2,3,..,n)

(prébably'n ¥\4_br 65_are needed to determiﬁe the slopes.
A compiete pictufefof.the terrain in front of the vehicle
'can be .constructed by modelihg‘humerous adjaéenf plahes,

 each covering a small area of surface..

L



PART 3

ANALYTIC SOLUTIONS FOR PARAMETER ESTIMATION -

_In this section we list the solutions of the least
square estimate, the covariance.matfiCe35 and the minimum

“variance estimate when n¥»3,’

A.. Léast Square Estimategof Slopes - :§
| If a;=a; and bi=bi are assgmed-to bg true in
Eq.. (5), a least square error estimate can be performed

which minimizes

Ms

., L .
Z By A o (6)

. —_— - : . A -
where 'h, is the actual measured height and h; is the
corresponding height in the modeled plane;‘

-In matrix-vector notation, Eg. (5) is

R o= Bx E IR & D!
. o . _ : :
"‘Jhere ) ) h = (hl h2’ ooo,hn)
X 2 (X X, ,%X4) T
) . l’ 2,3
and _ a, bl' 1 O
A = fa, ?2 } n=4or 6
: a ‘b1
L | .
The least square estimate of the parameter x becomes6
& - (BT | B C:2Y

'B. Perﬁurbation of the Variables

The least square estimate in the previous section

' ; : Y
assumes the matrix A to be completely <eterministic o



In.;eality, ﬁowever, there is error inﬁolved in ﬁhe:
' aeferminetion of a, b, and h due to the-errors 1n our
.measured values of ¢, §, R, ﬁ s and 9

If the symbol 8 denotes a perturbatlon, then

i Bh,Sa, and 8b in terms of 8¢5,8$, &R, 88, 86, are

Shyi{ g : ¢ ! SR

sa| = D(H",a",b'v é,% )[SE] + c(¢)B(€)G(R 8,B){88 (9a)

§b » L . $B _
where

D.(.h n-, an ,blnz;¢),s )
C—h"sinécoeg-a"Cos&—b"sin¢sin§)i‘(—h"cos¢sin§+b"cos¢co$§)

z |( h"cos¢cosg-a"sing+b"cos¢sing) (-h"sin¢sin§+b"sindcosk)| (Sb)
' 0 ". ':(;h"cdsﬁ—b"sins)

" and _ 4

| (-sinB) (~Rcosp) 0

G(R,0,8) =|(cosBsin®) (-RsinB8sin®) (/ RcosBcoshH) (%¢)

|(cosgcosf)  (-RsinBcos®) (~RcosBsing)

The derivation of these matrices are given in Appendix (A)..

Ce Covariance Matrix of the Variables

¥We can deflne the covariance matrlx of the .
variables a58

[Sh 5a 8b]

where E denotes cynected value.
If 5¢, €, bR, 5B 5 and 89 are not correlated8

then from Appendix B we have



|ew$)® o | EGSR)Z 0 - 0 :
' T ’ 2 ] GTRT AT
M =Dl (ge)2|D + CBG| 0 E(Sp) 0 , G'BTCT  (11)
L : 0 0. E(86)°

 From Egs. (10)'and (11) the standard dcv1atlons of h, a,
~ and b, can be compubed in terms of those of ¢,5 s R, B,
fand'e'for each point.. These are known quantities that

depend upon'the accuracy of the measuring devices.

. De Covariance Matfix of the Slopes
Eq. (5) can be written as.
h = Ax o o - (12a)
If we set h =h + 6h, A S+ 8A,i§ﬁd~x = X + §X, (izb)

then with the aid of Eg. (7) we get |

§h = Apx + SAX o . (12¢)
The esfimate is’ ,5% = F(§h - §AX) S (13)
where - - . F = (ATE) Gl - - - (14)

~The covarianée matrix of the slopes is determined in

Appendlx C as !
e[s3s%7] = F{ [;hsh ]—u[SAXSTT]—u[Sh(SAX)?]+L[}AX(SAX) ]2 (15)

where

a , " 1 [(sa. % <
§x = | 5%, * 8h = ] Ax = i (16).
8%, Shﬁi B (sanxlbehxz) |

.Since A is in terms of ‘a and b, theb-Sh and §A c§ﬁ be
expressed. as functions of §¢, 5§, SR, §B, and §6 as given
in Eg. (%9a). . Eg. (15) can be evaluated as shown in

AppeﬁdiX'D.



.E 'Variance.‘ of the Gradient - R \

If the symbol 0‘53 denotes the standard dev1atlon

of Sg, then from Eq. (4) we have

.2 .24=1/2 2, 1/2
| ng:_ (xl+§2) X dx; + (x fx ) 2dx2
‘The variance of thé>gradient9 is . . S ——
2 §?' 2 X, BE L e
Og, = o— + 0‘2 + 2—5—5O - ' '(17)
3 §24;2 Xy Re4R2 TR R24x2 XX A
‘ 1%%2 S X 1% S o
where © Oy = E(8%?, O - (5%, 2, g2 BG5S §%,)
} . 2 _ xz Az 1
The covariances G?\ R o’x and o'x Xs cac_bc found from

(15)
‘_ _ The value of" O’ss glves a rough estlmate of the
accuracy in our estlmatlon of the gradlent, If the_ [

estimated Sg is 20° with Oé then we can be 68% sure

_ L g=% .
that the actual .slope is bc—:tween’lS° and’ 22'°_ and 95% sUre8’
that it is bétween 16" and 24°. This is important when

- the estj..niation is CIOS.e.._tO_ the maximun ~pe.rmissa'b1e value,.

"_Fo_r the c'a.:se' 'v}here_xl = X, one obtains from

‘ "/_2"x_,L

qu (4) ._1 ' Sg ' . .
: | | 5 ‘> |
J2 dxy _. and -O’SQZ.ZO‘N | '-(l7a)‘ .

it

i

Thus dsg
N _

. P v - g . - . . 8
Fo HMinimum Variance Estimate

. A geh'eral_ize'd form of Eq. (7). is._
I -~ ae
\'v.here' v is the no.l 5@ due to measuremcnt of h and A .:m
Eq. (5). ‘ ‘

Tf the expected values of Eq. (18) are



10

E(h)

I
=i
Q)
P~
)
St
[
>|

a9
R -FX =0 o

it
<l
1l

then ‘ E(v)
by Viyﬁue of'Eq;~kl2c). Subtracting ﬁq; (20) from.
Eq. (18)_wi£h the aid of the definitions of Eq. (12b),
one obtains _‘ _ ' '
R ¥ sh = A% L (1)
Thus the_covariaﬁce of v becemes . | | '. - .
R = E[vv'] = 5[t6n - 6 AX) (8n - 5437 | _
| E[ShSth - E[SAxSth - E[sh(SAx) ] + E[SAX(SAX)I] (22)

which is the same as those terms inside the bracket‘ln
Eq. (15). ‘These terms are evaluated;in-Appendix D,

The cost functional J. can be expressed as

J = VTR-lv =i(h-A§7TR_l(h—A§)'

TR hEATR Thon'r le+xTATR Iax (23)

The minimum variance estimate of X can be obtalned by

taklng the minimum of J w1th respect to x.'

S A, a-
Min— J = = -2A R "h + 2A R "Ax = 0 (24)
X . bx u A

'

Thus the minimum wvariance estimate X becomes

~

% = (aTr"1a) “LaTr"1n - | (25)
‘'where R can-be.obteined from Eq.«(22).

The minimum variance estlmate glven by Eq. (25)
1'15 a welghteé least square estlmate. It will prov1de a
better estlmate of the gradient then the standard least
_square estimate of Eqg. (8) beceuse it gives eorpect."

s o e e : ' . S -
weight to the individual measurement points: The minimum



variance estimate utilizes the value Q given by the least

- square estimate to evaluate the covariance matrix R given .

by Eq. (22).
o HoweVer;.the numefical fesults in the example

e computed ffom}Eq- (25) is Very.close to thé results given
~by Bq. (8) becausé”the weighting factor in the covariéncé
matrix R is ﬁeafly proporﬁiopal-toAan identity matrix.
That is to say, the weighting factors in the diégqnai.
terms of R are équai, -This is:quivalent té an unweighted’
léast square estimafe, The details of the derivation-arel

" shown in Appendix E where R=kI,

‘G. Determination of Gradient

Once the values for the cross-path and‘in—péth
élopes are determined from the minimum variance estimate,
: tﬁe gfadién?/can be determined from Eg. (4). Knowing the
value of'thefgradieﬁt-and its variance,'the rover ¢an make

decisions concerning safe and unsafe terrain.

1



PART 4
NUMERICAL RESULTS

It is assumed that the-:over will heeda-split
beam where’A}3ié‘the'difference in the elevation angle
'betdeeh'the two beams add Ae-.ls the difference in
azimuth‘angle'between anY_twd laser pulses.-'Thls'ls
shown in Plg; 2. | |

The values of B and 9 for each data p01ng along.
w1th'the nagnltude of the cross- path and 1n—path slopes of
the terrain, deternlne the data p01nt soac1ng5 and the
distance of the data p01nts fron the vehlcle. After a
number of data polnts are meaaured, they are transformed
.‘to the non-rotating referehee system by Egs. (la to 2c).
Then a least square estimate of,the'slopes is performed
which is éiven by Bg. (8). This least square estimate
depends direEtly upon the'valuee of h,a, and b fofueach
- measurement point. UtlllZlng the value of the vector x
found in Ege. (8), the values of ¢,g ,}Q‘g, and 0O for
eaeh data point, and the standard deviations of. these
quantltles, we can ultlmately find the nagnltude of the
gradient and 1ts variance thru the proceedures outllned_
.1n sectlons .3b-3f. |

- The variance of the dradient depends:in part
upon the-magnitude of the cress;path and in-path slohes
of the terrain and the aceuracy of the measurihg devices.

It also depends upon 4>,§ y Ry B, and B , or alternately,

12 -
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.14

upon the reil.and piteh angies,.the data"point'spacihg; and
the distance ofjthe datalpbints frem the yehicle;A How |
mucﬁ each‘of these fectorsieffeete the standard detiation_,
of the grodlent is to be found. o _A.' o 2 .f,
The standard dev1atlon in gradlent for any | o
. eombination_of these-can be determined,by_utilizing
.Eqs. (9b),(Qc),(il),tlé);(ls), and (17). The dataApeint‘
| spacing and the distaﬁce_of the data points from'the
.thicle can be varied by changing the values ef B and & fef
each data point. The vector k tompietely_determihee the |
.-gredieht of the blaee we are:'heasuringf'and along with.
'épecified Yalues-of QK;'Q ,‘ﬂ-, and 6 .Qe:caﬁ geoﬁetrically
fiﬁd.the.values for R, h;a,"b;-hh}_a", and bérwhichvaret |
utlllzed in above equagtone. | |
- For s1ﬂ011CIL/, we flrst.set b 'g - 0" for all
the mcasurement points &nd assume the reFerence gradlent
of the measured plane.:u be 0° ~wherevervlt ‘may be 1oceted,"
By applying Eqs. (9b), (9¢), (11), (14), (15), and (17a)
and setting bb::O}:# oinj'and Cﬁy£€%= 1ﬁih.Eq. il we fdnd.
that for any reasoﬁabia data point spacing at Zb - 30 meters
’frem the, vehicle,'c%{ygs'oﬁ the epder of 30°;'606,_On_ o
" the o ther hand ‘ Gy = O¢= 0° in Eé._(ll);. O;SdecreaSGd‘
to only 2°-3° at that ¢ stance. .'A' . V | |
Slnce 1t can e ‘expected tnat O} and O% are really .

"in the neighborhood df +® (due to the constant rock and

roll of the vehicle as it traverses the surface), the rover

-



nill_have to be provided with a;'rapid scan‘ lasep. AIf
the scan rate is on, the order of,milliseconds,.which is
perfectly feaslble with electronic scanning} then each
" set of 4 aéjacent data points is measnred practlcally
ilnstantaneously, since the rover motion is on the order of
seconds. Each of the 4 data p01nts will have. the same
value for ¢-and € ‘and therefore all 4 points will'retaln
the ‘same relatlve 0051t10n to each other when they are
transformed from the vehlcle coordlnate system to the
fixed system. Conseouently, the rover can model the
planes in the vehlcle coordlnate system ano then transform
. the planes to the non-rotatlng system, instead of first
'transferming each point to the non—rotating frame. In
the analysis, this corresponds to setting-¢y=:g = Oéln
Egs. (9b)' (9c) and (11)iand.setting h"=h, aﬁ:a, and
b"=b 1n these equations. Since theemaximun positive or
negative slope that the vehicle can:navigate is:t25b
relative slopes might,be as hlgh as SO and stlll be
navigable. This is shown in Fig,. 3.. herefore, in my
-analysis,. I eensider a range of slope changes from +50°
.tp -50° where possible. ’ |

AAlso, due to rapid scan,.the efror introduced
..by a tandard dev1at10n in Oaano C% will Dbe con51stently
between l and 2 because lt only involves the error in
-rtransformlng the already moceled plane from the. vehlcle-:

system of reference to the fixed system. Consequently,

15



Fig.3 Relative In-Path Slopes
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the effect of the standard deviations:in:¢ andfﬁ s not
conaidered in the‘analysis‘and Oa'and~dg are set-..to'o,°
in Eq.(11). It nust:also be realized that-any.relative
slopea'between +gOé and -50? can represent cnitical valuesd
:in thé'fiked system and thefefote'ali.felatiﬁe slopes are
'1important; - ) | N A
| - If the vector x—O 1n.uos (15) and (17a) = Cg=1"

-Aand O"g =5cm in Eq. (11), and ABand AB (and co_nsequently
:Athe data p01nt spac1ng)iare'vanied for each.set'of'4 points,
then the‘g:aph shown'in<Fig;4 tesuits,' This corresponds
" to collecting data»from a flat terrain.~‘Each‘soiid line .
tepfesents'constant valdes:ﬁh;ABand AB. .The quantities
Ao:andna are the data pointﬁspacings along tne;in—pathdg
4and cross—path dlrectlons resoectlvely° By 1ooking at

any SOlld llne 1t can be seen that for any constant valuos
of AB and Ae , the guantltlea~Ab and Aa decrease-very
rapidly as wc scan clooer ‘to the vehlcle and conseguently
togsrlses very rapldly.- | |
o In ch0051ng an 'optimnm' spacing it nust be_d
kept in mind that by incre asing the spacing Ap:and Aa,
.the standard dev1atlon CE%<decroases. This also fenderS"'

the data less meanlngful. ‘as more terrain has been overiooked.

At the 30 meter range, a gencral plcture of the terlaln

w1th a. ‘'spacing of 2-3 meters 1s suff1c1ent. At close
':ange, (4~7 meters) Lho p01nts should be at least as_cloée

, as:O.66 meters because this is the w1dth of the widest

st
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Fig.4 Standard Deviation in Gradient vs.

Distance from Vehicle on Flat Surface.
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névigable crevice? In-Fig.4, the dotted line rebresents
tﬁ% VS disfance from the vebicle_for such a sche@e,
.where the data point spacing.varies.f;om about ;S_metérs
atva‘distahce df‘4 meters from thé vehicle; to a spacing
 ,of.ébout 3 meters at a"disﬁanté of 30 métefs‘from.the
vehiélea. | | |

Each éf the ploés in figs,5 and 6 utilize'the
same optimuh scheme as the dotted line in Fig°4; 'Onée
again the vecﬁor ;ib (cortespoﬁding to flat terrain).. In
Fig.S, S is.kepﬁ ét 5cm'inEq.(ll)'and Op and Op are set
" to 07, .017°(1%), and.1°(6%). It is seen that O is
markedly reduCed'by.decreasimg3Géahd Cu from 6' to 1},
- but any further increases'ih‘éccuracy will result in .
‘bulkier and.ﬁeavier equipment which is not'very beneficial..
By (_:ompa-ring/ the plots for GCp = O."’ei=l' and Op=Cg =_O°, it |
is ;éeﬁ that Op andl‘;é have’very little effect on Cﬁ%
when'they have a vaiue of 1'.,_in Fig.6, Ogdis varied frcm_
| 1ém to:lOcm in Eq.(11). while 'db ahd‘o@ afé>kept'consfant_
at 1'(.017 ). i‘he qua-ritity O '

9
vélue_of Oz at close range in Fig.6.

increases rapidly for .each

Fig.7'plots cggvé,vyelative_inupagh slopes.of.
from -30° to +50° at 4 meters from the vehicles ThisA"
means that the vector x is-varied.in.ﬁqﬁ(lsyland (17) such
that the cross path_slope.zlvremains Of the iﬁ—path ;lope

. o o .= . .
X, varies from -30 to +50°, and X4 changes in- such a

2
manner that there is always at least 1 data point with a
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height h of-O metefs in each groﬁp of 4 points. The graph
' 6niy extends to -30°because the laser beam cannot ‘'see
_oQérAa‘negative in—péth slopé greater thanAthis v$lue-at
4 heters diétance; In this'graph;Cﬂg; Op=1' in Eq;(ll)
o and‘(ﬂzis varied from lcm to Scm. The data poinﬁ spacing
is'.é metérs.. Fig;8 is also.a Qrapﬁ of_Cgsvsg reiati#ev-
in—path_slgpé from f6° to +50° at 20 meters from the Vehicle.
All the other conditions arélthe same és inAtheilast.graph
except that the data point spacing here is 1.2'me£ers
instead of Q.G_méfefs. Finallf, ffg.9 plots graphs. of <5$3
' Vs; relative cross-bath slopes of frém O° to_+50° and for
disEances Qf 4 meters and 20 meters’ from the vehicle. Oncé
- again Cs = Opg =1' and Og is- varied from 2 tb 10 cm.
The data point spacing at 20 meters_from the wvehicle is
Mlq2 meters and tﬁe spacing at 4 méterslfrom the thicle
is 0;6 meters. | |

| Present técﬁnology cahnpf improve.Cﬁ;beléw icm,
and even :his figure is quite low}o -it is obvious_frbm
Fig.7 that (j% should be as close to.l'cﬁ as possible in
order that ng will be within an acceptable raﬁée at 4
meters distanée'and high values of relative in-path slopes.
Cross-path slopes do not presént_as<mﬁcﬁ of a'probleﬁ_ahdi

a 'Og of 2 cm is qﬁite acceptable.for the worst cases.
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" PART 5

. CONCLUSION
S~ a

Nas ;
lhis paperlshggests a. solution to the-general

'prdblem of eStimaﬁinglthe state-vecto:~x from the equation’
h=Ax where the.measurements h and A are all stochastice.
The proceederes eutlined hefe are applied to.a~speCific"
case in estimatiné the g;adient of the.terfain‘by laser
measurements from'an autonomous Martian RovinQ.Vehlele.

Due to.terrain.irregulariﬁy ahd instfumental uncertainties;
'A‘the four measurement points do not fall in the some.plane.
Flrst, a least square estimate is. oerformed which assumes
the ﬁatrlx A to be deeermlnlst;c; ‘A.mlnlmum-varlance
estimate, which takes into account the'error ln the matrix
4A as Qell ~as-h, gles approx1mately the same numerlcal
results because the welghtlng factors are nearly equal
to orne anether. The error 1nvolved in *hese algorlthms
‘canfalso‘] 'estlnated and a complete error analysis hoS
been presented.. |

P The variance'of thevgfadieetishould be‘as low as

possible but an upper bound of 2 degrees has been sef.. |
.'Figso__'4—9 show that the standard'devi'at.:i.on 'o_*ss of the
4 gpadient-is dependent upon the distance ofithe modeled.plane
away f;om_the'Vehiele, the_data poinﬁ spacingi the-gradient
of the terrain, and the values fOr Or s o',_,) . '“and Cp . By

using a rapid'scaﬁ laser, we do not have to take into

25 f
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éonﬁideratié_n the error due to the motion of t:h'é_ irehicl'e_; ‘
If Tp aﬁd Ty are rec_luced below 1 arc.A .min»utve, bu"l_k,ie-r and-.
heavier eq\;ip.rrién'.t'wo.uld result.. in fact, withQ’é:d‘e of
1 av‘rc.]m‘inute Ver§ Iit;;fle error is ilntrqc.iuced into ‘the.
.calculatic'n‘as.l _Mos£ of the;-érro'rs ‘come  from ‘A'O'g '. . Iﬁ
6rdér to keep the up;;‘)e_r bpund.'qf 0‘59 within.»2- degrfées, the

quéptity Og must be as low as 1 cm.
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APPENDIX A

" DERIVATION OF THE PERTURBATIONS

To prove the result in Eq;.(9), the coordinates
. in Eq. (2) are first perturbed .as

A

[ enn ]

_ o “h."; | : f n® ]
-'6,»60.‘(.¢)_B(€) { a" | +cl¢ B(g) | a" | +c(e)B(E) | 6a" -
’ b" o b" | ' 6b" | (A1) -
. ﬁ(-sin¢6¢) (-cosdsé) O] [ —sin¢ ;cos¢ " 0]
© 80=8C;, =|( cos¢ss) (-sings) O = | cos¢ ~sind 0|64=Clss
' 6.0 0] 0 0 . 0 (A-2)
and - :_ - - o
' “T(~singst) 0 cosgst] (~sinf) 0 (cosk)
6B=6bij= 0 o0 =10 0 . 0 |er=Blsg
. __(-003555) 0 -sinfsE] [(~cosE) 0 (-sint) (A-3)
perturbing Eq. (la) - (lc) _
§h' | - [sr
Jpa"| = G(R,6,B) 188
33 56 o
| (~sinB) (-Rcosp) 0, | 18R

(cosPsinb) (-Rsinfsin®) ~(Rcosﬁcose) $B (A=4)
(cosBcosB) (~RsinBcos@) (-RcosBsing) 50

By substituting (A-4),. (A-3) and (A-2) into (A-1) one

_ “obtains ‘ ,
$h : hvf. . |h" B . SR
sal = {ct4rBey |an|ic(drBl(e) |av Eg}cw)ms)cm,&,e) Y

' ‘ ' ' 50

Sb b b | '
' - : (A=5)



Compare the above Eq. with Eq.: (9a), to see that

h |‘l

D(n",a",b"¢,£) = Jcl(¢)B(E) | u|:C(e)BI(E). | v o _
' : ) ». ) b“ . b" ) ) ) (A"G)
i.Thg first term on the right is detefmined from (A-2) and (2c)
h"] [-sin¢ -cos¢ 0] [ cost 0 sing] [n"]
(12511 a"l= | cos¢ -~ -sing 0. 0 R a"
"] | O 0 .0 | |-sing 0 cosg] [b"|

T . o o . ,A-v-w
~-sin¢  -cos¢ h"cosg+b"sing -

= | cos¢ ~sin¢ 0 . a"

0 0 0] |-n"sinf+b"cosE |

)

[-n"sindcosE eb"sin¢siﬁ£ —a"cos¢]

it

+h" cos¢cosE +b"cosdsing —a"sin¢J .

L 0 (A7)
"~ 'The second term of (A-6) is determined from (2b) and(A—é) . |
Bt [ cos¢ -sing O ] [_sinf .0 cosg|| h"
¢ B! a" |= sing’ .~ cos¢ 0 - 0. 0 .0 - a"
"t | O "b' 1l "_-9055  0 -sint b?
' [ coé¢A ;sin¢' 1 [-h"sinf +b"cosE
=| sing¢ cos¢ 0 . o
0 0 »_'1 J |-h"cosf -b"sing
)eh"cos4siﬁg +b"cos gcos £
= [~h"sin¢sinf +b"singcosg | .
"|-h"cost - b'sing . - ~ (A-8)

éy substiﬁuting Eqé.,(A—7) and (A-8) into (A?G) one obtains

the results in Eq. (9b).
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APPENDIX B
DERIVATION OF THE COVARIANCE MATRICES %

. OF THE VARIABLES
‘To prove the result in Eq; (11) we mﬁltiply Bqe (9)
by its transpose.. -

éh]{éh sa &b) -
§D

iSrt»- | ¥ 'VM SRy T - N
_GE}+CBG §£j§ %J) {6?}+CBG B } . : : o

da ) =. .
- p [Se)lsesel T e gi [6R 88" 50 1 TyT,T
§E : ' T
SN . _ 59
| C[se]feesel  [BRSE SO~ . -
~ 4CBG |58 o+ p|%¢ ¢3¢t (B-1)
| i sg| R .

Taking the expected value of (B-1) one obtains

sh] [5n 52 53]

V ZAM':: Hl§a
- \lsp |
_ oR BR 1Y 8@ ,

- D B (8¢ 5] pT + CBG H|sR cTrTcT
' 3 - 50 -

5E|[5¢ &€ | . -

m 2 §B 86 . . .
+ CBG E{|SB o & p 8o ‘Jsfafcr © (B=2)

0 (lse ey |

- Since 3¢ 1 65 3 3R, 8B , §0 are not correlated, (B-=2) -

. Becomes Eq. (11) in the text.
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APPENDIX C

DERIVATION OF SLOPE COVARIANCE (1)

Here we will pfove Eq. (14)'and Eé. (15)., &2

- Substltutlng h= h+8h A= A+8A and X=xX+§X into Eq.(12)

‘'we have . : ' | |
H+555(K+5A)(§+5x)=X§ + SAX + 382 + SASX ‘ _ 3 - (c-1)

Since F:X;, and neglecting-the seéond ofde; term SASX,

Eq. (C=1) becomes B |

. KSx = Sh-§AX

. by'premultiplying the abQQe equationbby AL

. RTASx = AL(Sh-5AX).

_Thﬁs the,eé%imate of Bx becomeé‘

~1 T(Sh SI\X) = F»(Sh-S‘AE) ‘(C-Z)

5% = (ATR)!
which is edﬁivaleht to Egs.(13) and (14)., Multiply
Eqge (C-2) by 'its transpose to obtain

s>‘<5>‘<T F(5h-§AX) (6h—§AX) TP T

n

F [ShShT-chEShT_—SH (8A§)T+SA;(8A§) T] Pl
| " (c-3)

The expected value of Eq. (C-3) becomes Eq. (159 in the text.
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APPENDIX D

?

DERIVATION OF SLOPE COVARIANCES (2)

Repla¢ibg,.term by term, Eg. (16) into Eq. (15)
we get . “ | '

. ' a“ a 6)‘21 [_6)(1‘5);2 8)(3]
E[6x6x" ) = EX| . »

63| S AR (p-1)
6% 3 E
~fren 1 fen .. en )] [ E(8hy)2 E(8hysh,) ... E(Shyéh )
E [snan") = E 4] : A = | n
o in ) E(6hy6hy) E(ghy)? E(6hysh )
- n L 2 L] .

_E(6hn6h})_E(6hn6h2).. E(Ghnéhn)
(p-2)
The different measurement points are uncorrelated. Therefore, the

off diagonai terms are equal.to zero. Eq. (D-2) reduces to

\ ‘ [ E(en)® - 70
Elshen” ) - = S o o S
' -0 E(sh )2] - o - (D-3)
Similarly: 5 | |
. _ i .
6a1x; + &byx, | [6h c.u8h ]
E[6A%6h ] = E | .

§a_x; + &b x
ba x) Gbnxz

[[E(8a16n))%)+E(6b,6h;)%, 0 - -
T ‘ . .-.. . ' (D-‘q.)

0 : [E(éanshn)x1+E(ébnéhn)§;]_
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6h 1 [Bayx;+ 6by59). . .(-qgniﬁsbn;zl
- E[sn(6rX)T) = E o -

oo Len
- - n
:[E(6h16a1);'+E6h16b1);é] .o
0 S [E(en sa ) +E(en 8b ) xp)
o o (p-5)
. Galxl+§blxz [(5a1){1+5b1X2 ) .(Ganx1+5bnx2)]
E[64%(645) "] =E | | B

Ganxl V(Sbnxz :
[E(62))252+2E(8ar8b)x %, +E(60))252] . 0

o '“:'[’E(Gan)2;§+2.}‘3(Ganébn);l;zﬂ'«l(ébr-l)z;g]
“(D-6)
" Where the expected value terms in Egs. (D-2) = (D-6)
. can be eyéluqted from Eqge. (11). | |



APPENDIX E

" THE NOISE COVARIANCE MATRIX

From the quantities of §h and §AX given>in Eq§(16)
one obtains for Eq. (21)
| . 8h1~$alxl-8blx
Vo= . .
§h,=§a,%,=6by%, ' o j(E—l)
Since the measurement points are close togethe;; the

expected values of the errors are nearly the same, i.e.,

P

E(Shy) = E(sh,) E(Sh,) ¥ E(8h,)

E(§a;) ¥ E(5a,) % E(ga,) * E(sa,) |
| E(3b;) & E(8b,) ’=".E.(45b3) £ E(Bb,) (E-2)
'similarly _ . '
| 2 2. - 2. 2
| E(sn)%= E(sh,) % B(sny)7 E(shy)
“E(sél)zs B(sa2 2 E(8a3)25 E(Sa4)2 | _
. N2 2. 20 - 2 , —q)
| E(§D) )72 E(FD))7x E(gb)°% E(5py )" - - (B-9)
From Eq.. (D-3) we have A ' _ |
E[gnsn”) = E(sh)?T - o (E-4)

Similarly from Egs.. (D-4) and (D-5) one obtains’.
E [5A_3<‘5h T] £[Bh (5ax) T] |
| [E(6ash) )%, + E(SD,5h)X,]T  (E-5)

1

Moreover, Eg. (D-6) results '
 Te,=rea=sT 2=2. e - = \2=2
L{§Ax(8Ax) ] =[F(8al) Xy + 2b(8a15pl)xlx2 +'9(8b1) x2:}I
' (E-6)
Substituting Eqs. (E-4), (E-5) and (E-6) ihtq Eqe (22) gives

R = kI - (E=7)



. - . y o o _
whgre .K = E(Shl) —25(5a18hl)xl—2a(8b1$hl)x2

+B(8al )2§§_+2E.'(Sal§bl }§l§é+a(5bl )2%

which is the predicted result in section 3f.

2
2

(E-8)
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