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ADDENDUM

The results of Volume 2 were discussed recently with Profeésor
John Breakwell of Stanford University. His comments regarding
the matching (Section Al4) pointed up a deficiency in the analysis.,
.. In order for the results of Section Al7 to be valid to order pz, the
guage function discussed in Section Al4 should be p2+a rather than
| w2. This strongér guage function would require the inclusion of
higher order singular terms in both the outer and inner expansions
in order to satisfy the limit defined by Equation (A14-1). The
inclusion of such singular terms is somewhat laborious and has

no effect on the results obtained from the rhatching and the
subsequent initial and boundary value solutions derived from these

results. The matching of such terms will be discussed in a

forthcoming paper by Breakwell and Perko. -

The limits on the overlap domain depend on which singular terms
are included in the matching. The overlap domain 2/5< a<1/2
found in Section Al4 is valid but not unique as other combinations,
such as 1/2< a <3/5, are possible. An overlap domain which
includes o = 1/2 is also possible but requires the inclusion of more
éingular terms than does either of the other overlap domains
mentioned. The actual choice of overlap domain also has no effect

on the results of the matching.

ii
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INTRODUCTION

This report contains' the énalytical derivations of the second order asymptotic
boundary value solutions for lunar and interplanetary trajectories which have
been formulated under Contract No. NAS9-10526 for the NASA Manned Space-
craft Center. It is a supplementary document to the final report of the .
contract study, 1 Whereas the final report presents only the results of the
study effort, this document contains the step by step derivations of both the
initial value solution to the problem of N-bodies and the boundary value solu-

tions which were designated in the contract work statement.

The analysis is divided into three sections. Section A contains the derivation
of the second order asymptdtic solution starting from the differential equations
of motion for the N-body problem. It includes derivations of both the outer
and inner expansions, their behavior in the overlap domain, a detailed dis-

cussion of the matching, and the solution to the initial value problem.

.Section B contains the derivations of a number of boundary value problems
for both lunar and interplanetary applications. These derivations are based

on the results of Section A,

Finally, Section C contains discussions of how the two main types of perturba-
tion terms in the asymptotic solution are evaluated numerically. This
includes explicit formulas for evaluating the well known linear state transition

matrix,

The derivations are given primarily by showing the mathematical steps
involved. A minimum amount of discussion is presented in this document,
For expanded discussions (and a corresponding minimum number of mathe-
matical expressions), as well as numerical results showing the accuracy and
computation speed of the asymptotic solutions, the reader is referred to ‘

Reference 1,



The notation used in this report is a combination of that of Lancaster2 and
Carlson, 3 In general, each paraméter is defined as it is introduced but some
which have only mathematical meaning and serve an intermediary role are
defined only by an equation, Scalers are written as x or X and vectors as

x or X, A matrix G(x) and a tensor H(x) are also used. In addition, a'ba‘r

. over a parameter indicates that it applies specifically to an inner solution,
Finally, the order of a particular term in an expansion is given by the
exponent of the parameter p which precedes the term, i.e., un is o.rde_:r n

or O(n). | |



Section A

SECOND ORDER ASYMPTOTIC SOLUTION TO THE PROBLEM OF

N-BODIES

Al N-BODY EQUATIONS OF MOTION

The problem of N-bodies will be defined as follows: The motion of a small

body of negligible mass is to be determined subject to the gravitational

forces of“a primary body of mass m and N-2 secondary bodies of mass* .

m,, i=12, ..., N-2, where m, << m_ for each i and the motion of the N-2

secondary bodies relative to the primary body is assumed to be a known

function of time. Denoting the position of the small body relative to the

primary body by r* and the positions of the secondary bodies by -El the

diffe;eritial equation for the small body motion is

2 N-2 ‘ E* b
dr xr - &5 =i
2 T Mo O L ™ |TE ﬂ3 t 3

t r i=1 r - p. P.

= il . i
where G is the gravitational constant,
Now define dimensionless variables
- r:,:/L>,<
t = t /T
where
La< = aT = semi-major axis of the motion of the jth body
* * . .th .
2nT = Pj = period of the j~ body motion

(Al-1)

(Al-2)

(A1-3)

(Al-4)

(Al1-5)



Also define the dimensionless mass ratios , S : : o

™ = m, /m_ (A1-6)
Then (Al-1) becomes

er

r
_____-—3..

dt2

!

3 o L, A1

\ - . I

(Al- 7): is the dimensionless diffe f_enfiai equat.ion of the srnall b‘od.y ‘v}heré the

" unit of length is now L:* and'the u_nif of time T Defining

() = - x/x (Al-8)
x - 4% ~ (A1-9)
dt .
reduces (A1l-7) to -
¥ o= £(r) + E(z, p;) . ©(A1-10)
where
N-2 . : . : O
E(_E: El) - = Zl F“i [_f_(£ - —El) + £(£1)] I : R oo “(Al-11)
1= , o . s

4

In (A1-10) £ and f (r) are both of order unity (zero order) Wh_ile__E_ .is‘,orde.r By
(first order), except in the exceptional case where r - b = 0] (p..l) when F is
order pi—l. However, in the analysis of transfer trajectories the exceptional
case is the case of interest since transfer trajectories have at least one-close
approach to a secondary body, The change in the-order of F ifidicates that
(A1-10) represents a type of singular perturbation problem4. This ass&mpf
tion will be verified by developing a solution to (A1-10) by the method of

matched asymptotic expansions,



In addition to (A1-10) the equations of motion of the secondary bodies will be

of interest. For the kth body they are

N-2

B = (L+p)flpy)+ zl Hi'[f—(Ek - B +£(£i)] (A1-12)
1=
i#k

Al. 1 Interplanetary Equations of Motion

For interplanetary trajectories the primary body is the sun and the secondary
bodies are whatever planets one wishes to include in the model, The jth
planet used to determine the length and time scales, L* and T*, will no,r'.xnally
be the target planet of the trajectory, All of the pi‘s will be small, the
largest being about 1073 for the planet Jupiter. In this case it is obvious that
F is small in (A1-10) except when the trajectory makes a close approach to
one of the planets.

M .
In this case the coordinate system is centered at the sun and it is the motion
of the sun about the solar system center of mass ‘which produces the f_(_gi)
term in (Al-11).

Al.2 Cislunar Equations of Motion

In cislunar space the primary body is the earth and the secondary bodies are
the moon and the sun. The jth body will be the moon so that L* is the semi-
major axis of the moon's motion about the earth and 27T is the moon's

period. The coordinate system is centered at the earth and the £(Ei) term in

(A1-11) is due to the motion of the earth about the center of mass,

(A1-10) becomes

F oo L)ty [ - ppp) + £y +eg [£ - pg) + Lipg)] (A1-13)
Siné{e .
HS = mS/mE , '



-Venus

Sun

Figure Al. Coordinate System for Interplaﬁetary Trajectories

Sun

Moon

Figure A2. Coordinate System for Earth-to-Moon Trajectories



it is obviously not small. Let
N Y (Al-14)
M, = ps/p , (Al-15)

S

and (Al-12) becomes
o= of(r) +u“_f(£- Bag) *ERp)| *+ Mg[LE - ) +£(£s)]} (A1-16)

It is necessary to show that the term proportional to MS is actually order u,

i.e., to show that the sun's effect is the same magnitude as the moon's, Let
p, 7 @ P : (A1-17)

where a is the mean distance of the sun from the earth (in dimensionless
units). Then

L-Rg = -as_(—es - 5/3-31,), . _ : (Al-18)

and, since r<<a

fr-p,) = -£(p, -1/ )/’
1 1 1 .
= - i(p,) +— G(p) x +O() o (A1-19)
as a a

S ]

where G(gs) is the gravity gradient'matrix defined in Section A2, Also

() = L(B_s)/az (A1-20)
giving
f(z - pg) + £(p,) = —5 G(p) x +O(4) (A1-21)
a a
S S



or

4 M_G(p,) T
M, [£‘£-£s)+f_(9_s) = O|——— (A1-22)
aS .
In (A1-22)
M, = ps/pt = (ms/mE)/(mM/mE) = mS/mM = .2.7x 107 (A1-23)
G(p,) = O(l) (since p_ = O(1)) ' ‘ (A1-24)
r = O(l) | | ’ | " (A1-25)
: %3 b
ai - a. /L3 = (1au/0.0026 au)®> = 5. 7x 10" | (A1-26)
Therefore
M [_f_(z-gs)irf_(gs) = (Ms/a?s’)xou) = 0,47 x O(1)
= 0(1) (A1-27) -
and
oM |£(x - p) + £2)] = O®) (A1-28)

In later analysis (Al1-17) will not be introduced and it will be implied that
(A1-27 and 28) hold for cislunar space. Thus the sun and moon are expected

to have comparable effects on cislunar trajectories,

A2 EXPANSION OF f_(i)
Let

fx) = £(x) e - (A2-1)



where f.1 are components of f{ and e; are orthogonal base vectors., Also

let

'x = x_ + 6% ' ‘ (A2-2)
— _O —
where
2 3 '
ox = €X4 + € X5 + O(e7) (A2-3)
= bl + ) : \ ' | A2-4
= (Exll XZi o s 0 Si. . ( - )

Substituting (A2-2) into (A2-1) and expanding in a Taylor series gives

2
of. (x ) 9 f.(x )

B i*=o 1 i*“o 3

f.l(§) = fi(x_o) + ij 6xj + > ———axjaxk 6xJ. 6xk + O(6x™)

of (x ) .
- i-0 _ 3
= f.l(ggo) + axj [exl. + € X3 + O(s» )J
2
97f. (x ) : .
1 i=o’ 2 3
t 5 5% 9% © xlj Xk + O(e™) - (A2-5)
j k
Let
8f. (x) x.\ : 9x, ‘
I e A B 8 2 (1 1 i ,
'Gij@'* ox. T ox. \" 3] T " *iox.\_3) " 309%, o (A2-6)
J i\ x j\x x j _ ,
But
2
x = x_ X
m m
B g X
*x, ~ “Tmox

J J



ox *m axm
dx. = x Ox, (A2-7)
J J
and .
8xi :
E = 6ij = kronecker delta ' (A2-8)
Therefore
ox Xj ‘ o .
3—Xj = = . (A2-9)
Using (A2-7) and (A2-9) in (A2-6) gives
) 3x.x. 6., ,
G,.(x) = —2 4 _ 4 o (A2210)
ij— 5 3
x x
Now let
Bzfi(X) a , 5 x'i-xj 6.ij
H.. (x) = — = G..(x) = 3 -
—ijk '3 8xj8xk axk ij axk. X5 ’_‘3
15xixjxk 3 ’
= - = +— (xiéjk + Xjéik + Xkéij) (A2-11)
x x
Sufnmarizing, if
3 .
fix) = -x/x (A2-12)
and
X = X +€ex +s:2x +O(£3) (A2-13)
) =1 =2

10




then

£x) + eGxy) x; e [Oleg) x, + 7

2 3
£(x) = lua)=l] +oed) w219
with
3x.x, 5. :
G..(x) = —gl-—’_;;L (A2-15)
1‘] - X X
15x.1x.xk 3
—ljk(x) = - ——J—x7 + F (xiéjk + xjéik + xkéij) » A2-16)

The matrix G(x) is the gravity gradient matrix and is also defined by

Gex) - ) (A2-17)

2
L 256y,
929G, .(x )
= G..(x )+ 20 lex,. +e°x +O(e3)
ij'=o 5xk 1 2
2
+ 1 ? Sy &) x. x, +O0@E) (A2-18)
2 axkaxl 17712
Let
G, . (x) 105 x
. . X.X.X
- U= _ 9 - K2
Tije = oxax, ° ox, Hik®) = 9 7[5 %5%e i)
+xJ(xk5£-x£6 k)+xk(x6£ xzé )]
3 (6. 6. +6. 6., +6, .6 |
TR TR VT (A2-19)



Then

Glr) = Glx,) + eHxhxy + ¢ [Hex e

%, +:I(§o)§j/2 + O(s3) (A2-20)

Xo'Z1
A3 LINEAR DIFFERENTIAL EQUATIONS; STATE TRANSITION MATRIX
In order to develop an analytical solution to {A1-10) it is necessary to solve
a system of first order differential equations of the form

Io= v, (A3-1)

"

G(t)i? 4£n(t) | | (A3-2)

v
—n

where .G(t) is the gravity gradient matrix and the _I*_’_n(t) are given functions of

time. This system can be written in the condensed form

x = Kt)x + ut) . | | 5 (A3-3)

£ S | | . .
L (A3-4)
—n
©
En = F . ' o (A3—5)
o I\
K = G o S v ‘ . . (A3-6)

The _sql»ution of (A3-3) is well documented3’ 5,6 and can be written in the form

t

x (1) = ot t ) x _(t) +ftI>(t,T)En('r)dT - : (A3-T)

t
o

12



where the matrix ® satisfies the differential equation

de

Lo = Koer), et = 1 (A3-8)
or
21 = e, 8T = 1 (A3-9)

~

It is easily verified that (A3-7) is a solution of (A3-3) by differentiation:

t

X (6) = Gt )x (¢ )+ / bt, e (M7 +e(t, )y, () (A3-10)

t
o]

The last two terms in (A3-10) come from differentiating the integral in

(A3-7). Replacing &(t, t ) and &(t, t) by (A3-8) gives

t

x,(t) = K)o, m)x (¢ ) + f K(t)a(t, T)u, (NdT + u (t)
- . t
o
t
= K(t) fb(t,T)zc;h(to)+ [ 2(t,T)u (r)dr| +u (t) (A3-11)
t
o

Replacing the bracketed term in (A3-11) by (A3-7) gives
x (t) = K(t)fn(t) +_l_1_n(t) (A3-12)
and (A3-12) is identical to (A3-3), QED.

The matrix & is the well known state transition matrix3’ 3 also known as the

2

. 6 . 7 .
matrizant and the fundamental matrix . It is a 6 x 6 matrix which can be

13



partitioned (following Carlson's notation) into four 3 x 3 partial derivative

matrices

or(t) dr(t)
dr(r) v

o(t,7) = (A3-13)
av(t) 9Vv(t)
ar(r) avl(n)
Aft,7) B(t,T)
= , (A3-14)
C(t,7) Dft,T) E
The four partial derivative matrices have derivatives given by3
FEAET) = C(t,T) o (A3-15)
2 B(t,7) = D7) I  (a3-16)
2 Ct7) = Git) A7) (83-17)
5; D(t,T) = G(t) B(t,7) | (A3-18)
S=A(tT) = -B(t,T)G(1) (43-19)
—aB(t T) = -A(tr) . - - (A3-20)
aT —\b ’ , ’ : _
a—ic(t;r)é -D(t,7) G(r) - o ' o (a3-21)
5?;D(t,T) = -C(t,71) (A3-22)
Also3
At,t) = A7) = I : (A3-23)

14



(A3-24)

B(t,t) = B(T,7) = O
C(,t) = C(r,7t) = O (A3-25)
D(t,t) = D(r,7) = 1 (A3-26)

From (A3-15) through (A3-26) various Taylor series expansions can be

derived. Some examples are3

At,7) = I+ G(t)t-1)2/2! + Oft-7)> (A3-27)
_ 3 4 "
B(t,T) = I(t-7) + G(t)(t-1)7 /3! + O(t-7) (A3-28)
C(t,m) = G{t)(t-1) + Ot-7)° (A3-29)
2 3 '
D(t,7) = I+ G(t)(t-7)7/2! + O(t-7) (A3-30)

Some additional forms of the partial derivative matrices are given in

Section C .

Two properties of the state transition matrix which are used in later

sections are

: -1

T @(tz’tl) @(tZQ tO)@(tO’ tl) (A3’32)’

These properties are especially useful in formulating the solutions of -

Section B.

A4 OUTER LIMIT ‘
The outer limit of (A1-10) is the limit where r-p; = 0(1) for all
i=1,2, ..., N-2. Inother words, the outer limit specifically excludes

the exceptional case where r - B = O(pi)' Therefore the function Fin

15



. (A1-10) is always order By in the outer limit., In the outer domain, i.e,.,
the domain defined by the outer limit, the solution of (A1-10) is assumed
to be of the form

2 3
r_:'£o+p£1+|¢_r_2+p£3+...' (A4-1)
where: !

REG s Bps vy by o) .‘ (A4-2)
(A4-1) is a representation of the solution r in the form of an asymptotic
expansion in powers of p. It is an exact solution of (A1-10) when p = Ky =

Bo = «nn = hNo2 = 0 and approximates the exact solution as long as p is small,

A5 OUTER DIFFERENTIAL EQUATIONS
Substituting (A4-1) into (A1-10) gives

1

\

[

LI T e I | (A5-1)
4 2 o1, 2 3, -

f(r) = £(r ) +uG(r )r; + 1 [CE(go)gz +_§|§(_r_o)_r_1] + O(™) _ (A5-2)
N2

F(r,p) = Zl HMi[f_(zo - ;) +uG(x -p)r,;
1=
rowh tEp) | G (A5-3)

where
Mi = p.l/pt : ' (A5-4)

t

Equating power of g in (A5-1) through A5-3) gives

T, ) : ‘ (A5-5)

(A5-6)

Hi
Q
a1
3
pand
-+
xj
[u—
5]
O

16



« ._:L{

or, in general,

rpo= Gler +E (x, o0 rg 10 By) (A5-8)
The fu.nc'cions-l‘_“_1 and EZ are given by
N-2 ' .
Fylry B) = > Mi[f_(zo - B;) +f_(gi)] ‘ (A5-9)
i=1 :
| L | N-2 L
: ' 1 2, '
By rp By 7 g HE) K+ 2 MGl - p)x (A5-10)

The general term En would involve tensors ub to order l(n + 1). ‘ Because of
this behavior it appears somewhat impractiéal to go beyond n = 2 which

already includes the third order tensor H(r ).
S —'—0

The differential equations (A5-5), (A5-6) and (A5'-7) are the zeroth, first and
ol : ! : . . . - 1
second order outer differential equations. The equation for I, is simply the

two-body differential equation while those for r. and r, are of the linear type

2
discussed in Section A3,

A6 OUTER SOLUTION

The zeroth order outer differential equation can.be 'wr'itten

R N -
= -—3 (A6-1)
r : .
o
The solution to this differential equation is well known and many forms exist,
The motion is elliptical with respect to the primary body and a useful form is

o) = L) T (t0) + 8 (t) vo(t,) k)

.
[l

17



where r is the two-body position and v_ the velocity
—0 —o

d-l:-o'
The functions fo and g, are infinite series in time but have closed form
expressions as functions of eccentric anomaly E where

n(t-t )= E-e_sin E. ’ ‘ . (A6-4)

pPo

In (A6-4) n is the two-body mean motion, €, the eccentricity and tpo the

time of pericenter passage. The functions fo and g, are given by

fo(t) = 1- a l:l - cos AE (t, td):\/ro(to) (A6-5)
go(t) = [ro(to) sin AE (t, to)]/(noao)
te_ sinE(t ) [1 - cos AE (t, to)]/no (A6-6)
where_ ,
AE(t, t ) = E(t) - E(t,) : | | (A6-7)

The higher order solutions are obtained by first writing (A5-8) as

Py | | | . (rb-8)

—n —-n
Vo= Oz, +E, (g voen Iy By) | (A6

Since (A6-8) and (A6-9) are similar to (A3-1) and (A3-2) the solution follows
from (A3-7) : ‘

e O\ PR o |
= 2(t, t) + [ a(t, t ) dr (A6-10)
F_(7)

) V(to)
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Using (A3-14) gives

i
rp(t) = At ) r(t ) + Bt t ) vy(t))+ / B(t,T) F,(r)dT (A6-11)
t0
t N
52“)_: Alt, t)) r,(t ) + B(t, t ) volt )+ / B(t, 7) I;Z'(T)dr (A6-12)
. ' t
(o]

The outer solutions are therefore given by (A6-2), (A6-11) and (A6-12), They

are functions of the time t, the initial time to’ and the initial position and

velocity
£t) = r () +ur () +ulr(t) (A6-13)
vit)) = Yolt) +nyy(to) + iy, () (6-14)

It will be shown that using these solutions the outer expansion (A4-1) contains
a non-uniformity when r - By = O(ui). That is, the individual terms in the
expansion do not remain small compared to the preceding terms. In this

case it is necessary to investigate another limit of (A1-10),

A7 INNER LIMIT

When the trajectory repr'esenting'a solution of (A1-10) passes close to one

of the secondary bodies the outer solution is no longer valid due to a non-
uniformity in the outer expansion (A4-1), In order to study another limit the
origin is transferred to the kth secondary body and the length scaled such that

the new position vector is order unity. Such a transformation is given by

ry = (x-p)/ef | (A7-1)"

It is obvious that when r - = 0% thenr,_ =0 (1), Itis also necessa'fy
I - Py k Lo

to make a similar transformation of the inde pendent variable, i,e.,
_ B |
tg = (t - tpk)/p'k (A7-2)

19



where tka is some fixed time, such as time of closest approach, associated

with motion close to by When t - tpk = O(p.ﬁ) then tg = 0(1).

The next step in determining the inner limit is to transform (A1-10) into the

new variables. From (A7-1)
. : ! . o

r = Rk+|,-1§£a ' (AT7-3)

and differentiating gives

dr |
_ a-p_—« : _
= 7 B TP arg o P . e (AT
, .
dr
¥ op +nd P (A7-5)
dtp
Also
fx) = £(p +pgzx))
and, using (A2-14)
o ' ; ’ ' — s e
£(r) = £(p) + 1% Glp )z, + 1o% H(p)ra/2 + O(y%) (A7-6)
Likewise
_ N-2 . |
Elop) = £ ”i'[i(ﬁk“* Mk Lo - By) +"'1'—f-’(3i)]
1=
o - , N-2 ,
_ o ' : . ‘ )
= uk[f_(uk ga),+-f(gk)]+ izlui[_f_(gk - pi) + ()
ik '
e 2a) AT-7

20



where |
fpyr) = £lr)/ny (A7-8)

Substituting (A1-12) into (A7-5) and (A7-8) into (A7-7) and then substituting
(A7-5), (A7-6) and (A7-7) into (A1-10) gives .

. N-2 )
f(py) + 1 flpy) +Zl “1[ (P - p;) +E(p )]
itk
dzr
-2 = 1 2
N Mz F3::1/(1152&/ - £(E-k) + I"Lﬁ'c;(ﬁk)zaf + 2 “ka I:I—(-Ek)—x—'—i
B )

1-2 3a
Fag “T () + e f(py) + Oy )

N-2 .
Y by [f_(_gk - p) £(py)

i=1

ik
+ uf G(gk- p)ra+0(uk )] (A7-9)

or, cancelling similar terms gives

, | |
d're 142p- 2
— = PP ) + 2P G(p)ra +—u§+2‘5 H(p k)r

dtﬁ , :

N-2 |
+uZP 22w Glp, - Ja>ro,+0<u2"’+zFa T (A7-10)

i=1
ik
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(A7-10) still includes functions of t through Py and p;- From (A7-2)

t = tpk+p.£ tg (A7-11)
Let
b = tk+p.{'z T | (A7-12)
giving
¢ =t +pP @ 4Ty : (A7-13)
kP g Tk :

The significance of ty and T will be demonstrated later in the matching.

Using (A7-13)
Ge(®) = Glpyty)) + ul %-G(Rk(tko (tg+ ) +O(ng?) (AT-14)

The derivative dG/dt is found as follows:
From (A2-15)

3x,x.  §..\dx 15x.x, 3x
'diG..(x)‘—(-i- S S e ) D S B LOx L
t Tij= dxk 5 3/ dt 6 9x 5 Tjk
X X k X
: 3_Xl 3'6'1]' ox | .
* 5 &k T T oax, | %k (A7-13)
x X k
Using (A2-9), (A7-15) becomes
d 15x.1x.xk 3 ' S ' .
at Gy = |- x7'L“ M R s T I T )
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Then

(B®) = Gy + ”ﬁ Hy Ek:(tk) (bg + 7y ) + O( chﬁ)

(A7-17)
where
_ A7-18
G = G(Bk(tk)) ( )
H = A7-1
H = Hp () (AT-19)
Putting
N . i
- = AT~
Glpy(t) - Bi(t)) = Gy (A7-20)
(A7-10) can be written
d2£ 1+Z‘33a (r)+ 26Crr+36H p;(t,)Yr (t, +T,.)
w2 'k P Yk Zo T Pk Bk Ptk B 'k
N-2
Lat2p 2 zp’z i
ot o Hex, ey ] szé;
i=1
itk
20+2 +2 :
+ 0ofw k"’ 3 wat2l (A7-21)

The inner limit is partially defined by balancing the in‘erhal term with the
gravitational term of the Kt th body, i.e., matching (d T /dt ) with f(r,). The
two terms will be balanced if both are order unlty This is obtained if

/
1+28 -3a0 = O

(AT7-22)
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Also, from (A7-4)

= (AT7-23)

In (A7-1) it is assumed that the numerator, r - Py is small; this gives a
close approach to the kth body. In (A7-22) it is not necessary for r - —ék’ the
relative’velocity, to be small. In fact, this velocity difference will depend on
the energy of the outer solution and the only conclusion that can be made at
tﬁis point is that it is order unity. Thus it is most reasonable to make the

denominator in (A7-23) the same order, i.e., let

@-p = O (A7-24)
'Thevinner limit wiil be .defined by (A7-22) ana (A7-23), i.e.,

@ =p = 1 - | | (A7-254)

As a result (A7-21) becomes

42
Z0 - ofe ) 402G r 4l |H Pt (6. + 1)
alp | 0 Mk Uk Fe T M | SR Za T T Tk
N-2
1., 2 i 4 |
+s Her + 2 MG, r,|+Of) (A7-25B)
i#k

In the terminology of singular perturbation theory, (A7-24)is called a

distinguished limit.
The inner variables will be defined by

R

e = (& -p) ey | | (AT7-26)

2]
!

k - (t - tpk)/pk (A7-27)
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and the associated differential equation is
K - (R )+ PR p.) - (AT7:28)
- = LR T I8 B B g

where

- | 2
PRy e By) = by O Rk tiy B pk(tk) BBy + il

-2 S

2 z A
Iik R+ & M, W] T oW ¢ L (AT-29) -
i

#k

The term of order Hli in P is included here although it is not actually needed
in a general second order theory., Itis important in problems where ¢ ___Y an
inner solution is used. It may also be important in problems where the
model includes satellites of secondary bodies, i.e., including moons in the
analysis of interplanetary trajectories. Suppose the mt body 1s close to the

kth body such that

Py - By T P, | | ' (A7-30)
Then
. m
Gk = G(Bk—gm)
= G(Eﬁm)
- G(p )/ o (A7-3D)
- -m H . -

Then the term

m 2 3
me M GLoo= (g b, /€) G )



For the moon, earth, sun case

A

B =m /m = 3.7x 10-8
_m m o)
e = 2.6x 10-3 au
so that
3 :
(b, /e) = 2.1 = O(1)
and
3 2 . ,
e M GE‘ = Ofuy) (A7-32)

(A7-32) shows that the effect of anearbymoon (1 e., i M G;n Rk) on the
inner solution of an 1nterplanetary tra;ectory may be the same order of

magnitude as the effect of the Sun (i.e., ”k G, —k)'

In the inner domain, i.e., the domain defined by the inner limit, the,

"solution of (A7-28) is assumed to be of the form

_ 2 3 4.
R ™ Biot M Baz PPk Bis Pl Bia te - (A7-33)

(A7-33) is also an asymptotic representation and reduces to the exact

solution as py — 0.

It should be noted that another distinguished limit exists besides (A7-24). If
the velocity difference in (A7-22) is assumed to be smaller than order unity

then the other limit is
o = 1/3, ﬁ': 0 : (A7-34)

in which case (A7-10) becomes

2

d'r, 1/3

3 = f(r ) +G(p)r,+ Ok ) (A7-35)
t

wN
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(A7-35) is a form of Hill's equation and it's solution is beyond the scope of

this study,

A8 INNER DIFFERENTIAL EQUATIONS
Substituting (A7-33) into (A7-28) gives

2 2 2 2

AR IR 28R, 394 Ry 4
2 = 2 TP Tz RT3 TOly)
as? ds? - ds ds

k k k
f(R,) = £(R, )+pZ GR, )R
LR = LRyg) + iy GlRy) By
3 4
* e OByo) Rygg * Oy

2 3 [ |
PRy B By = b O Byo Tk [Hik B Bio S + i)

N-2

1 2 i 4

P2k Bio t £ Mi Ok Bio| F Ol
ik

Equating powers of P in (A8-1) through (A8-3) gives

dZR

T L)

= GRyg) Bya + By (Byy)

= GlRy,) Bz + B3 (Ry )

27
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where

PoBo) 7 CikBio (A8-7)

| A

) 1 2 .
Pa(Ryy) = 7 H R + Hipp (G )R (S + 7))

-

N-2

+ z M, G R, ‘ (A8-8)
i=1
i#k

The differential equations (A8-4) and (A8-6) are the zeroth, second and third
order inner differential equations. The equation for R

—ko
and R, ; are of the linear type

is simply the two-
body differential equation while those for Ekz
discussed in Section A3,

A9 INNER SOLUTION
The solution to the zeroth order differential equation is hyperbolic motion

with respect to the kth secondary body and can be represented by

Iiko (Sk) - fo(sk) Iiko (Sko) ~l-go (Sk) \—fko (Sko) ‘ . (49-1)

The functions Eo and Eo have closed form expressions as functions of the
eccentric anomaly Fk where

n_ S = e sinhF, - F (A9-2)

k k

In (A9-2) Hk is the two-body mean motion and e

K is the eccentricity. The

functions f_o and go are given by

sl
"

o 1- ak[l - cosh AFk(Sk, Sko)]/Rko(Sko) (A9-3)

o Sk - Sko -[sinh ng(Sk, sk,o) - AFk(Sk, sko)]/nk (A9-4)

oQ
I
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where
AFk(Sk, Sko) = Fk(Sk) - Fk(Sko) / 7 (A9-5)

It was shown by Carlson3 that it is desirable to choose the initial conditions
for the higher order solutions to be zero at pericenter of liko’ i.e., the
higher order solutions vanish at Sk = 0. A .slightly more general approach

is to put

Ri2 ko) = Yialio) 7 Rialio) = VisBiro) = © (£9-6)

so that the higher order solutions vanish at Sk = Sko' Since (A8-5) and

(A8-6) are identical in form to (A5-6) and (A5-7) the solutions will be
similar to (A6-11) and (A6-12)

S
k —
gkz(sk‘)' = [ B(Sk’ o) EZ (o) do . _ ) (A9-T7)
Sko . :
k _
&k3(sk) = B(Sk, o) 123 (o) do : (A9-8)
5 | ,
ko

where B is a partial derivative matrix evaluated along the hyperbola Ryor

The inner solutions are given by (A9-1), (A9-7) and (A9-8). It will be shown
that using these solutions the inner expansion (A7-33) contains a non-

uniformity as Sk — @,

Al10 OVERLAP DOMAIN

The outer expansion has already been given as

xt) = x_(0) +pr () +plr, ) + O | (A10-1)
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Rewriting (A7-26) using (A7-33) gives the outer form of the inner expansion

as
I(t) = p(t) +py Ry (S) +up Ry, (S,) ,

4 5 : |
+ P‘k &k3 (Sk) + O(Hk) (A lAOA"Z)

These two solutions are valid in the outer and inner domains, repectively
It is assumed that both solut1o;s areé valid in an intermediate domain called
the overlap domain which connects the outer and the inner domains around
the. kth secondary body, It will be shown later.in the matching that one of

the conditions for the two solutions overlapping is that for some t = ty

r () = p(t) | (A10-3)
where tk was first introduced in (A7-12). The time tk is the nominal time
at which a close approach to the kth body occurs, The actual closest approach

time is given by (A7-12),

In (A6-13) E—o(to) is the initial position for the two body ellipsel_xlo(t). 1f te is
specified and an ephemeris is used to determine P_k(tk) then (A10-3) gives
the final position _{o(tk) for the two-body ellipse. The initial and final posi-
tions and the time interval (tk - to) constitute the standard Lambert problem,

Solution of the Lambert problem completely determines Eo(t)'

The overlap domain will be defined as the domain where t —~ty in the outer
solution and where IS I —oin the inner solution, Thus the behavior of the
outer solution must be determined in a near ne1ghborhood of the k th secondary
body and the b)la-VIOI' of the 1nner solution must be determined in a region

sufficiently removed from the k body
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All BEHAVIOR OF THE OUTER SOLUTION IN THE OVERLAP DOMAIN

All,1 Zeroth Order

~']_f‘he overlap domain is defined as the domain where t—t,. It is therefore

necessary to expand the outer solution in terms of t - t

K The zeroth order

solution is easily expanded since a two-body ellipse is defined by functions

which can be expanded in Taylor series' about t = ty. The result is

~

go(t)

where

2ok

te (- g% + o((t - tk)s)

r ()

Eo) = vty
Yo/ = £(r t))/2
Fo(t)/6 = ._f._(}'_o(tk))/é

T (2o (1)) Eo (876
r,

G(go(tk)) v, (6, )/6

"_x'"o(tk)/24

ar [0z 00) v, (1] /24

[H-(Eo‘tk)) vaity) +-G(£o(tk)) f(lo‘tk)ﬂ/“

2
+_l_)_ok(t-tk)+_c_ok(t-t A+gok(t_tk)

3

(Al1-1)

(A11-2)

(A11-3)

(All1-4)

(All1-5)

(A11-6)



- OUTER SOLUTION ' \

Unperturbed

Solution \
-0
Overlap {
I Domain |
Perturbed \
Solution ‘ Pr
rit ) .
- o \
INNER SOLUTION
Overlap \\
Domain
Hyperbolic

Solution

Figure A3. Outer Solution, Inner Solution and Overlap Domain
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The expressions for Cok’ g—ok and ok follow from using (A5-5), (A2-17)
and (A7-16).

Since the motion of the kth body is assumed to be a known function of time it

can also be expanded in a Taylor series:
: 2 ' 3
Br(t) = P * Biylt - ty) F Rt - ) ¥ st - )

b ppg -t +O(e - £0°) - (A11-7)

(A11-8)

Pio = Pity)
Pep = Byt | | (AL1-9)
Pro = Bilt)/2

- [_f_(P_k(tk)) ¥ pp_;i]/z (A11-10)
Pz = Bly)/e | |

i [% £<Bk(tkb)) +‘“P-§*]/ ¢

- [G(Rk(tk)) B () + MR;:*]/é (A11-11)

Pra = By (t)/24

- & l:%f_(p_k(tk))]/ZLL + Ofp)

- [Ii<£k(tk)) B2 (6 + S(gyt) f—(Rk(tk))]/ 24
+O@) - ' . (Al11-12)
| 33"




and

o
~
n

(5.0 - £ k“’)]t=tk/“

2
M, '[i(ﬂk(tk) - B;(t)

M( )+

HMZ

+ f_(P_i(tk))] | | (A11-13)

Py - & [Ek(t) - £(Ek(tk)>]t—t /H

e
N-2
- M Gy Bylh) + D M, l: O (Brlti) - B3ty
e
G(p,(t,.)) _éi(tk)] (Al1-14)

The expressions for Pyos Ek3’ Bk4’ -Ek and Eli* follow from using (A1-12),
(A2-17), (A5-5), (A7-16), (A7-18) and (AT7-20),

—ko

Now define r by

= @ok " Bio) + Bo - Biy) -ty

ok~ Byp) - tk)z + oy - -ék3) (t - tk)3

+ (e - Brea) (€ - £ +.O((t ; tk)5> o (a111s)
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where

a n pkO = I-O(tk) ~ Ek(tk)

Sok " Bri T Yolt) - Rylty)

[ r (t) - £ Ek(tk)) - p.pk:]/Z

9ok ™ Bi3 [G o (1) Yolti) - C(Bylty) Byt

“HBy A]/é

Cok ~ Bka .: [H_(Eo(tk)> v (tk) - ( k( .)) :

+G(r, () £(r ) - G ey (ty) £{pylty)) + Otk )] /24

From (A10-3) and (A11-16)

2ok " ko 7 ©
Let
Pok " Bia T o) - Bl =Y

Again using (A10-3) and (A11-22)

Sok " Bz 7 -HRy/2

ok~ B3 7 [ (Bity )) Vi - kR ]/6
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€ok " Bkq = [Ii(gk(tk)) (Xi(tk) - éi(tk))
; O(p)]/24 ' | . (A11-25)

Introducing (A7-18) and (A7-19) gives

X sk 2
To = Vplt - t) - ppt - ty) /2 + [Gk Vi

‘“B:*] (t - tk)3/6 + [Iik<z'§(tk) ] _f)f((tk)):l (t - tk)4/24
4 O((t - tk)5>_ + O(p(t - tk)4) (A11-26)

(A11-26) represents the behavior, in the overlap domain, of the zeroth order
relative position between the trajecfory and the kth body. It is used to

determine the behavior of the higher order terms and in the matching.

All.2 First Order

Let r
ko T Zo tE T E T X

where
X, = Vlt-t) ' | (A11-28)
X, = -ppy(t - tk)/Z 4 , ~ (A11-29)

skesk 3 C )

X, = [Gk V, - up, ] ¢ - 1,0’ /6 o (A11-30)
X, = o<(t St )4) (A11-31)
=3 ~ k .
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Then, using (A2-14)

fr, ) = LX) +GEX) [)_cl +>§2+0(>§3)]

Iro!

+H(X ) [XZ +O(X X )]/2 +O(}£?1)) : (A11-33)

In order to use the solution being developed for both approach to and departure

from the k™ body, let

(t - tk)
Qk = sgn (t - tk) = Tt (Al11-34)
' I* -kl
Then
E(X) = £(Vy (- 1)
3
- /[ )
- @ LVt - £)° (A11-35)
By a similar analysis using (A2-15) and (A2-16)
G(X)) = O G(Y_k)/(t - tk)3 (A11-36)
HEK) = Q HY /e -t | (811-37)
Now (A11-33) can be written
Q, ) '
f(r, ) = ——— [£(V) - LGV py (t- t,)
~"“ko (t - tk)z [ Tk P—k k
| +l¢(v ) (G, V -t )P
6 'Lk’ Wk Lk T PRk " 'k
+ o((t - tk)3)] - (A11-38)
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The first order force function is given by (A5-9), It can be rewritten in

terms of a singular part, Els’ and a non-singular part, Eln’ i.e.,
Filogr By) = By g py) + Epplzy, By (A11-39)
where
sl B = M Lim ) (A11-40)
N-2
Einlzer ) = M ilp)+ 12’1 M;[£(x, - By) +L(py)] (Al1-41)
ifk

Using (Al11-38) and (A11-40) the singular force function is

Q M . :
e My u
Eyp = = [L0) - SO0 B -
(t - tk)
sk - ‘ 3
+%c(vk) GV - Ry ) (t - £ )7 + O((t -t )] (A11-42)

From (A3-28)

B, ) = I{t - )+ G(t) (t - 1)3/6 + O((t - 7)4) | (A11-43)
where
G(t) = G(Eo(t)) '  (A11-44)

According to (A6-11) the first order solution is a function of B(t, 1) E_l(r).
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From (A11-42) and (A11-43)

Y.

(-

_ (t -71)
Blt, 1 E1s ™M = B RS ) R (-7
. K
(t -7)°
+E4k——-2—+o (t -7) (T- tk),
(T - tk)
(t -0 M(t-T)3
(v - tk)z (r-t)
where
B = Qe M L)

By = rQ M G(V) Bk/z

Bae = By )

= QM G(t) f_(Xk)/é

(Al11-45) represents the singular behavior of the integrand in (A6-11).

(A11-45)

(A11-46)

(A11-47)

(A11-48)

(A11-49)

Although only the first term of (A11-45) is actually singular as t - te and

T >t, the other terms play an important role in evaluating the second order

k
solution, It is not necessary to develop a corresponding expansion of

non-singular part of the integrand in (A6-11), i.e., B(t, 1) E_ln(r), as

contribution can be evaluated directly as will be shown,

39

the
this



Now let

8% (t7) = Be,m F, (1)-p, <=Tb . p A=)

B -
Pl (T 7 T Rk Ty
. 3
- By (t=T) = By ) =TI (A11-50)
(T‘ tk)

From (Al1-45)

O S

85 (6,1 = O|(t-1(1-t), , (A11-51)

1k k (r - tk)2 (T~ t,)
The singular part of (A6-11)is

A ¢ |

[ Bt. ) E,g (1 dr = / Brk =7 * By red * By - )

t 4 (-1 k
O o]

.: !t -T!3 s
. 4+ B4k(t) > + &), (t,7)]dr (A11-52)
(T" tk)

At this point (A11-52) is exact since the last term on the right integrates the
error in the expansion (A11-45), The first four terms on the right integrate

to

¢ A
At -7y _
f > dr = - log Qk(t - tk) + log Qk(to -t

t (v~ t

)
k
o k)

-1 4+ (t - tk)/(to - 1) (A11-53)
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Note that (A‘1'1-53) contains a logarithmic singularity as t -t
singular behavior of (A6-11).

[(({L:—Ttlk)?dT = (t, - ty) +(t - t,) log Q(t - t,)
t
o]

3 [1 +log Q (t_ - ti{)] (t, - t)) (A11-54)

[ (t - 1) dr = (t, - tk)z/Z - (e - ) (€ - ty)

O
2
‘it - tk) /2 (A11-55)
t 3
/ (t-f)zd.r - (to_tk)2/2-3(to-tk) (t‘tk)
t (T" tk)
(o]

-3t - 1,)% log Q¢ - )

+3 [1/2 +log Q(t_ - tk)'] (t - tk)2

+ (t - tk)3/(to - tk) - -(A;'1-56)

. This is the
On the other hand, the first two terms in

(A11-50) cancel out the singular behavior of B(t, ) I—?-ls (tr) and gik is finite

2 Therefore the last term in (A11-52) can be expanded about t = tk.
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The form of the expansion is

t

[ &1y (& T = /lgik (t,7)dr

(o]

(e]

> t
d s 2
— / - 2N (t, T)dT (t - tk) /2
dt. <

o]

+
t:tk

+ o - ;k)3) | (A11-57)

The individual integrals in (A11-57) can be evaluated as follows:
t

by
8% (t,7)d S d
By ()T By (e T)AT

t t
O o

t » .
k 1
B(tk, T) EIS(T) +Elk -t tk) dr
7 , )

i

f
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k
+ B4k (tk) f (r- tk)dr

t
o}

N
S
[ Lrok (e ™M™= By (t5 - 1)

(o]
[ B * Bae ] &6 -'tk)z/z (A11-58)
where
850 o T = Bl DE L@+ S(r-t) (A11-59)
t t
= f 8% (t, T)dv - [ ;‘t 85, (tr)dr+ & (1, 1)
1 t
© St=ty © t=t,
t
- / ditgfk(t, 7 dr (A11-60)
t '
(o]
since, by (A11-51)
S
g5, t) = O (A11-61)
Using (A3-16) and (A11-50)
agy, Byx Box
= D(t, 7) Fq (1) - _ =2k 5
dt - —1s (T - tk) (T- tk) 3k
. .o 2 dB,, (t '
gy o LoD TP o
= 7
(7- tk) dt (-1t

> (A11-62)
k) ‘
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. tk 8
) [ [E3k 38,00 -5 By ) (T -t dr

301

(o]
tk ] .
i 211k (e 797 +[E3k + 3By (‘ck-):l(t0 - t)
t
(o]
d 2
- E&k(tk)(to- t,) /z (A11-63)
where
S _ | 2
21k G T) = Dy, ME (- Byp/(r -t ) - B/ (7= 1) (A11-64).
Finally
L t . t
2 . 5 |
il BT 4 48 425
dt” J at
to to
t’f’ck t:tk
: | S
| d s
T f 42 2, (t,, MAT + Of) (A11-65)
t
[e]
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since, by (A11-51)

3 2
Edfgik(t,ﬂ = 0 (T-tk), _gt_-_% ug—f:—)j
(T—tk) k

Fahtm = oot -t w -]

w ) = ot -t | (A11-66)

2. s
d“s .
1k (t -7)
5— = G(t) B(t, 7) E; (1) - 6By, ————
dt _ (r -t

| 2
Pax ¢ -n* T Bak ¢ -1

-6 dt

(A11-67)
(T - tk)2 dt2 (r - tk)2 o

t

k .2 k (t.)
d“ s , Bak'*k
f 2 Bkl A7 = j [G(tk) B lhe D10+ 0 tk)] "
t

[0} (o]

tk s d

= B (o TVd + 65 B () -t

- |
o)

4>

2
2 Larfi) o = 1) /2 (A11-68)
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where ‘
2ok (e 7) = Glt) B (4, TVE, (1) + 68, (6,)/(r- 1) “(A11-69)
Using (A11-49) and then (A11-44) and (A11-25)

T) = G 8> k(tk, T) : : (A11-70)

S
210k (e k20

Substituting the results of (A11-58) through (A11-70) into (A11-57) gives

. 3 , . k )
s _ s . ;
f glk (t, ) dr = f glOk (tk’ +) dT - BZk tk) - ['9_31( )

t

e
+ By (tk)] (t - tk)%/Z + f 27y (e 1A
' 1t
’ o]

¥ [E3k * 30y (tk)] (t, - t,)

d 2

. .
S .
1%k f Eroi (e AT+ 65 dt Py ()t - 1)

: 2 i
: ';dt'i By () - tk)z/2 (t - tk)z/z

+O<(t - tk)3) (A11-71)
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The derivatives of i4k(t) are simply coefficients in the expansion
By (t) = Bt ) += B8, (t)( t)+§i (t) (t t)z/Z
Eadth = Eachd Tartac M T o R Y Barlty) (£ -
3 .
+ O((t -ty ) ) (A11-72)

Substituting (A11-53), (A11-54), (A11-55), (A11-56), (A11-71) and (A11-72)

into (A11-52) and collecting terms gives

t

[ B(t, T)II‘LIS (r)dt = - B,, log Q. (£ - tk) + Bk [1og Qk (t, - t) -1]
ty ‘
e .
+ 20k (tk, T) dT + Boi (t - tk) log Q (t - tk) .
? :
(o]

+ {8/t - 1) - By :log Q (k- t)+ 1]

3

t

k -
+ [ (3T (b TV ATH(E - £))

t
(o)

-3 By () (6 - )% log Q(t - t,)

+ E3k + 384 (8 + 6E4k (t) log Q (t_ - tk')

k 4 :
s 2
+ Gy r &0k (te T)dT} (t - t)) /2

t
o

+ O((t - tk)3) | o (A11-73)
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(A11-73) is an expansion of the singular part of (A6-11), 'Expansions‘ of the

non-singular terms in (A6-11) can be obtained using some of the expressions

found in Section A3 and Taylor series formulas.. The results are

Alt, t) =

f B(t, )

where

-Eln(tk)

t,) + Dty t) (t -t

_Eln(T)dT

A(tk, to) + C(tk, to) (t - tk) |

+ Gy Alty, t) (t - tk)Z/Z; + O((t - tk)3)

!

+ Gy B(t,. to) (t - tk)z/z + O((t - tk)3>

i
j Dit, ™) Ep (1T | (¢ - 1)

(ad

Eln(tk) (t - tk)z/z + O-((t - tk)3) .
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(A11-75)

(A11-76)

(A11-77)



Substituting (

ry(t)

where

|

1k

=1k

MC1k

=1k

M€ 1k

=1k

A11-73) through (A11-76) into (A6-11) gives

P -3 e
[ 4

{t. - tk) + Elk + BC 1k t - tk) 10ngk,- (t - tk)

21k 108 P
d t -t )+ (t-t )+£ t t)zl Q, (t-t)
tdp (t- ) ey (-t )+ Ly (- ) 108 89 7 Rk

Bik (A11-79)

By [1og @ (1 - 1) 1] A e ) 1 (1)

+B (t, t) vy (1) + Kok e to) o (A11-80)
By ' (A11-81)
B/ lty = t) + C (b t) 1y (1) + D (e £5) vy (&)

K e t) . (A11-82)"

K11k
By [1og Qi-( (¢, St + 1] | | (A11-83)
238, () o (A11-84)

By /2 + 3By (1) [log O (b =t)+ 1/2] ipfz

GO [A (e to) Iy (8) + B (b 1) vy (65) + Eyg (e to)]/2

(A11-85)
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and

t

k
Kok b t) = f [2?01& (b 7 + B (t,, TV E (T)]dT (A11-86)
to :
koo | : ,
K|k (t t) = / [g“k (o ) +D (o TVE (T)]d‘l’ (A11-87)
! |
(o]

(A11-78) gives the behavior of r (t) in the overlap doma1n The logarithmic
singularity as t -t produces the non-uniformity in the first order outer
solution mentioned at the end of Section A6, It will be shown that a similar
singularity occurs in the inner solution. The integrals given by (A11-86) and
(A11-87) cannot be evaluated analytically, i.e., expressed in closed form,
They must be evaluated numerically and this problem is discussed in

Section C.

All,3 Second Order

In deriving the first order expansion it was first necessary to derive f (rk )y
c.f, (A11-38), According to (A5-10) the second order force function requires

-an expansion of G(-Eko)' From (A2-20) and (A11-27)

Glrye) = Clxy) ”-{-(Eo)[il Ty h 0(53)J

+T (Eo)[zf + Ofx, 52)]/2 + O(ﬁ) | ' (A11-88)

Continuing the sequence (A11-35), (A11-36) and (A11-37) gives

Te) = QT (V) t-t)° - (A11-89)

q
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Then (A11-88) becomes

G o GV )-EH® )p (t-t)
T = ——3|C () -2 B e (-t

1 - - skl 2
g H (V) G Yy - upy ) (t- 1)

2 v
P8 (v pe® (- 10 1 0(e - tk)3)] - (A11-90)

The second order force function can be written in terms of a singular part,

EZs' and a non-singular part, EZn’ 1..e. ,

Fplrgr Ipp By) = Epg(ry, 2y B + By (m0 20 py) | (A11-91)

where

Fooltyr 2o ) = M G(r ) x, (A11-92)
N-2
_ 1 2 z :
EZn(Eo’ Iy Pi) = EI;I_ (30) n + & Mi G (‘E'o - E—i) r, (A11-93)
itk

. . . A .2
Since r, is a non-zero vector, Ii<£0) is non-singular. The dyadic ry

contributes a factor of (log Qk (t - ’ck))2 but
2 2
(log x) " dx = x (log x)” -2xlogx+2x -0

as x - O, Therefore the vector E(Eo) 33 is finite as t >t and is included in

EZn (also see Carlson, 3 pg. 27).
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Multiplying (A11-78) by (A11-90) and substituting into (A1l
Fos = Sk2ik R +‘(t )3
( = k = k)

log Q(t - t,) '
s .

e (G eqp - T 2g! 3
‘ (t - )

~

-92) gives

>}<_ ke sk 1
* [Gk Ay e G e - i E113] 2
: (t - tk)
I . legQ (t-t)
S S e - T e Y )

[ Tk

-

+ Of(log |t - tkl)

Q
|

My Q G

Sk Mk Qk 1 skl Hz k2
He = o [3 R G Yy - epy )+ T By

sk M Qk

k sk
ki © T 2 BV By

Ty
I

sk sk : ) sk . 2 sk o -
Ok B P He Bre " H T dg - Jkiik] Tt

1
1)

(A11-94)

(A11-95)
(A11-96)

(A11-97)

According to (A6-12) the second order solut_ion is a function of (B(t, 7) EZ(T),
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From (Al1-43) and (A11-94)

B(t, ) F,, () = b, ~-=T

(T‘ tk)

t -

+$3k (T_t )

+ ¥y (t -7 108 Q(T- 1) + ¥,

(T - tk)

t - >

+¢7k (-1t

k)

+O[(t--r logl-r-tl

(T-t)

Y3 = H (G egp - I K 215)

Ypre = G P Gy - thlk)
V.. = G f. +H a 2 5% ¢ )
L Kk S1k

k —1k k Sk ~ M

53

3 log Qk(T— tk) + ¢2k

2 ].Og Q (T" tk) + ¢4k

5 log Q(t - t,) + b,

1og|T- t I

—(E-—T)—logl'r- t |:|

(A11-98)

(A11-99)
(A11-100)
(A11-101)
(A11-102)

(A11-103)



e = Gy g1k+Hkb1k b T dp - v T e (Al1-104)
L T

< G(t) Gk ilk/(’ (A11-105)
Yo =Yg ©

= G Gy by /6 o (511-106)

(A11-98) represents the singular behavior of the integrand in (A6-12), It is
not necessary to develop a corresponchng expansion of the non-singular part
of the 1ntegrand in (A6-12), i;e., B(t, T) F_zn (r), as this contribution can be

evaluated directly,

Now let
s - . Tt - T)
T 6T = Bl D E, (1) -y T3 log Q (r- 1)
(T = tk)

e/ Lk I PR
(T-tk) (T'tk)

ton) oy A=

-y - log Q_(7-t,)
" 4k (7- tk) (T- tk) k k
t - T) (t - T)3‘
-~ Yo (__ Yo () ——5log Q (T~ 1)
(T‘ tk)
- Yo (t)Jt;TL_ (A11-107)
(r- ) |
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From (A11-98)

t -3

3 (t, 7) = O}{t-mlog |-t |,
~2k AN R

log IT -t 1,
k) kl

t -

3 (A11-108)
(t-1t.) :

log l'r-tkl

k

The exéct expression for the singular part of (A6-12) can be written

t . ! t ‘ :
] B(t, T) EZS(T)dT = / {zlk _(_t__% log Qk (- tk) +!"_2k ,(t -T) 3

t t (T-t) (T - t)
(o) (o] -
g (t - )2 log Q (T~ t,) +i‘4k—(t—_l)7
(t- tk) (7- tk)
(t -7) t -7
Pl Tror, ) 18 A (T B Y ek e
tdo(t) —‘t—T% log @, (7 - t,)
(T' tk)
3
(t - 1)
+ $g, (1) d
8k (t-t )3] '
k
t
+ ] &5 (t, 7)dr (A11-109)
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The first eight terms on the right of (A11-109) integrate to

. .
log Q, (t -t )]
t-7 ) [ k k 3
gQ (t-t )dr = +
! (1- tk)’a' k k 2(t - tk) 4(t - tk)
o | A
[1og Q (t, - ) + 1]
(tO - tk)
21log Q (t_ -t )+ 1
+ [ k ‘o 2k J(t _ tk)
4ty - 1) (A11-110)
t
(t -t,)
t -7 1 1 k
dr = - + (A11-111)
[ (1 - tk)3 2t -t) (g - H) o - tk)z 4
(o] .

. ,
. / _it_~_1% log @ (T-t,)dr= - _21.1og2 Q (t - t,) < log Q (t - t,)
A (- tk) .
(o)

1, 2
+5log” Q (t, - t,) -

[log ¢, -t + 1]

-1+ (t-t,)
(to_tky k
(A11-112)
-
‘ ——Z-dr = - log Qk (t-tk)+log Qk (to-tk)
(t-t)
t K
(o}
(t -t,)
L -1+ k. (A11-113)
(ty - ty)
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(t -7) _ :
f rotg o8 S 7 o dr = (e -t [log @ (e -t -1
vt
o]

1 2
F3 (-t )log” Q (t-t)

- (t-t) log @ (t-t)

- [%1og2 Q (t, - t,) _1] (t - t,)

(Al1-114)
t
/ ('(rt-;tl;)- dr = (to - tk) + (t - tk)_ 1.og. Q1~< (t‘ - tk)
ty . : .
- [10g Q (t -t )+ 1] (t - t,) (A11-115)

. |
3 .
[ ((t D2 log O (v- ) dT = [t - ty) [1°g Q (tg -t - 1]

T-tk)

2
(t - t,) log” Q (¢t - t,)

Njw -

+

N w

5 (t-t) log Q (t-t)

- [% log2 Qk (to - tk)l' 142] (t _,tk) '

+ O((t - tk)2> (A112116)
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t ' {

(t-T)3d - log Q _(t-t
———5dr = (t_ -t ) +3(t-t)log Q (t-t.)

- [3 log Q (t_ - t,) - 1](t St ) O((t - tk)z)
(A11-117)

Note that (A11-110), (A11-111), (A11-112) and (A11-113) contain singularities
as t tk. This is the singular behavior of (A6-12). On the other hand, the
first five terms on the right side of (A11-107) cancel out the singular behavior
of B(t, 1) EZS(T) and Egk is finite és t >t Thereforé the last term in
(A11-109) can be expanded about t = tye The form of the expansion is

+ O((t - tk)z) ' (A11-118)
The individual integrals in (A11-118) can be evaluated as follows:
t- | t

. .
) )
f 221( (t, m)dr = f 221( (tk, T)dT

t t
(o) t_tk o

].Og Qk (T' - tk)
2

b
[ B(ty, ™) Epg (r) + 4y
t (-t

k)
(o)
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1 log Qk (t - tk)
K sy Tt

K

o~

. .
= f 250k (e 7) ar - [$5k ¥k (tk)] (tg - t)

to

[1og Q (b - 1) -1] - [ W + gy ()] (kg - )

(A11-119)
where
log Q, (v-t,.)
s _ k k
&0k e ) = Bl 1) Ep (1) 4y P
. (T - tk)
log Q, (v-t,)
1 k k 1
b, — by .y
Y2k A Y S P 24k
(T- tk)_ k (T‘ tk)
(A11-120)
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t

d 5 d
d_tf 25 {(t, 7) dr | = [ d— (t T) dr+ quk (t, )
. _ . t

t:0
t=t ' t=t

kd '
:/ 5 5y (t, Ddr (Al1-121)

since, by (A11-108)

S . .
25 (k) = O o (A11-122)

Using. (A3-16) and (A11-107)

4 @5, (6 7) = D, T) Ey (1) - $ — 3
(T - tk)
) q} 1 ) q} 10g Qk (T - tk)
2k tk)3 3T tk)z
log Qk (T - tk)
-y Y
L4k —( ) t—k)z +5k (r-1t.)
1 it - 1)
- Yox P 347, ) ot ) log Q (- 1))
-t -ty
2 "3
(t - 1) d (t -7)
- 311‘-81( (t)—-—3’- “F L LP (t)-——-—§ log Qk (T~ tk)
(7= ) (T- ty)
d 0 (t)_t_-_ll_ (A11-123)
( - tk)
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t

k d S - tk S . d . .
/ dt 22k (e T)dT = f Lak e Ddr- gu, e
t

(o]

(o]

[1o8 Uclto 1) - 1] - at Tk (f) (g - ty)

(Al]- 124)
- where '

d
221k (tk’ T) = d_ (tk:T) -~ 4}

k(tk) IOg Q (T - tk)

- (Al1-125y

tk

S

JEZk t 7 dr = f 220k (e 7) dr - [‘*‘5k Fe )] ey -t
t

[o] [e) .

[1°‘_°’ Qu t5 - 1)) ‘1] - [i‘ék * g (tk)] (6, - &)

t

k
+ / ~21k (tk, T)dT-_q;?k(tk)(t - k)'
t :

O

[1og o, (tg - 1) -1] . 3 Lai ) b e

+ (e - tk)z)

(A11.126)
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The derivatives of £7k(t) and —LESk(t) are coefficients in the expansions

Yo (6) = o (2 +§T£7k (t )t -ty ) + O\(t - tk)z) (A11-127)

" d

Yot) = wg (t) +x llJ8k(tk)(t -t )t O(t - ) ) . (A11-128)
Substituting (Ali-llO) through (A11-117) and (A11-126) through (A11-128)

into (A11-109) and collecting terms gives

t

. b, log Q (t-t,) 3¢

1k k k' 1k Y 1
/B(t, T) E,  (t)dT = — t-t) +7(2 2k> (t - t)
t

(o]

¢3k1 .
-—5—log" Q (t-t.)- (231( tdy) log Q (-t )

[Log Qk. (t, --tl.() ]y,

i’lk (t0 - tk) - (to - tk):

(1, 2
+ Lp3k LE 10g Qk (tO - 1]

A o~ ‘ tk .
'+E4k log Qk( -t )- 1:’+ j 20k k’ T) dr
t .

L. .

~ 9 . -

1 2
+5 [4451( + 3“’71( (t )] (t - tk) log Qe (t - tk)

| 3
- [ESk - Yok - 2 Y7 (B - 3% (tk)]

(t - tk) log Qk (t - tk)
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[2 108 @ (t, -t + 1]. Yy

+{ ¥ +
+1k 2 _ 2
4(to - tk) : Z(to - tk)

[log Q (t, - )+ 1] Y41
+ -
(tg - tk) . (to - tIY

+ Y3y

- iSk_[% log2 Qk (to - tk) - 1] .
- Eék [log Qk (to - tk) + 1]

- 15
- Yoy () {% log” Q (t, - 1) - —4'}

- g (1) [3 log Q (¢, - ty) - 1]

t

k
+ f %51k (to T) ATt - t,)

t
o

+ O((t - tk)z) (A11-129

Apart from/being fhe longest expression derived thus far, (A11-129)
represents the singular part of (A6-12), Expansions of the non-singular
terms in (A6-12) can be obtained using some of the expressions found in
Section A3 and Taylor Series formulas, The results are given by (A11-74)
and (A11-75) as well as

t ' t

‘ k
-[ B(t, 1) Ezn () dr = [ B (tk: T) Ezn (r) dr
Y %

t

k 2
+ [ Dt ™) E, (r)dr | (t - t,) + O<(t - tk))

% (A11-130)
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which is just (A11-76) with F, replaced by F.

1n 2n’

Substituting (A11-74), (A11-75), (A11-129) and (A11-130) into (A6-12)

gives

-1 -1
) (t) = 321( (t - tk) log Qk (t - tk) +E—2k (t - tk)

+32k log Qk (t - tk) + éZk

2
+ o1 (t - tk) log Qk (t - tk)

+E, (-t ) log Q (-t ) +g, (t-t)

+ O[(t - tk)z, ulog? |t - tkl] (A11-131)
where

25 = ¥y /2 | (A11-132)
gék = (B +24,,)/4 | (Alll'-133)
[ ' (A11-134)

D = - e [1°g Qe (t, - )+ 1] (tg - BT+ (t, - tk)_-l

+ Y [1°g Q (ty - ty) - 1] . 5201{4 (e £)

+ Al t)) Iy (t) + Blty, t) v, () | (A11-135)
ey = [:P—Sk + 340, (tk,)]/z o (A11-136)
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for = - [2351( - 2% - 34, - bdg (tk)] /2 (A11-137)
- -2
g2k = Y1k [2 log Q (t -t )+ 1] (t, - t) /4
-2 -1
+ Yok (to - b /2 + LY (to - tk)
- Yox [1°g2 Q (tg = f) - 2] /2
- Yok [l°g A 1]

NETCN [2 log® Q (t, - t) - 5]/4

- Ygie () [3 log Q (£, -t ) - 1] Kok e b))

+Cltys t)x, (£ ) +D(t, t)) v, (t) (A11-138)
and
tk ]
Kook (& ty) = f [EZOk (tyo 7) + B (t, 1) E,x (T):' dr (A11-139)
1:O
tk . |
Kok (ter to) = [ézm (o T) + D (t, N E, (r)] dr (A11-140)
t
O

(Al11-131) gives the behavior of Ez(t) in the overlap domain. Like the first
order solution it contains singularities as t — tk which must be cancelled by

similar singularities in the inner solution. Also, just as in the first order
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expansion, the ir;tegrals (A11-139) and (A11-140) must be evaluated

numerically; a problem which is discussed in Section C.

All.4 Third Order

The third order solution is not actually used but knowing its behavior in the

overlap domain is important in the matching. From (A5-8)

with a solution similar to (A6-11) and (A6-12)

Ty (6) = Alt, t)r, (t)+B (K, t) v, ()
t

+ f B(t, r) F, (1) dr ‘ (Al1-142)

to

Carlson3 has shown that in the overlap domain
) = ol -t )% log? [t -t ' (A11-143)
I3 ) = K loeT [ty -

Al BEHAVIOR OF THE INNER SOLUTION IN THE OVERLAP DOMAIN

Al2,1 Zeroth Order
According to (A9-1), (A9-3) ;nd (A9-4) the zeroth order inner solution is a

function of the eccentric anomaly Fk' The behavior of the outer solution
in the overlap domain has been developed as a function of time, Therefore |
it is necessary to find the behavior of the inner solution as a function of

time, i.e., find

Fk = Fk(Sk) (Al12-1)
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Such a result is found by inverting (A9-2) but, in general, this is not
possible due to the transcendental nature of the equation. However, the
overlap domain for the inner solution corresponds to the region far out on
the asymptotes of the zeroth order hyperbola, This region is characterized

by large values of the time Sk and this makes it possible to invert (A9-2).

In order to be completely general it will be assumed that on the approach
asymptote of the inner hyperbola Sk and Fk are negative and on the departure

asymptote they are positive, This will require two solutions of (A9-2),
Dropping the subscript k for the time being, (A9-2) can be written

75 = (@’ -z f _2F))2 | (A12-2)

\

For F—o (A12-2) is rewritten as

F - 2rs+2F +3e /e (A12-3)

Since F and e_F are much smaller than eF (A12-3) can be approximated by

F

e’ = 28 S/E+O(F) " (A12-4)
and then
F = log (23_ >+o<—L1°SS> (Al12-5)
e
e F 0(—;;) (A12-6)
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Substituting (A12-5) and (A12-6) into (A12-3) gives

F _ 205, 2 78S log S '
e’ = = +€log<§_>+0< S > (A12-7)
(A12-7) is simply a more accurate form of (A12-4). From (A12-7)
| 2ns) | 1 255 log” S |
F = log [£22]) + == log (£82) + o (252 (A12-8)
€ nsS € SZ
-F e log S A
e = Z"ﬁS+O<SZ > (A12-9)

Substituting (A12-8) and (A12-9) back into (A12-3) gives

- — - _ 2 .
F _ 208 | 2 2nS 2 2nS € log™ S
e = = +% log <_3 > +—?’1€S log <—€ >+_2ﬁs + 0 < 52 > (A12-10)
_— 2nS 1 - 2nS 1 2 [ 2nS
47 S
2ns\ —2 l16g? S ‘
-4log| =2 )-el+o( 22 2=2) (A12-13)
e . 3, 4 .
S
. ' ,
F = T  2ms 1.25 .
e™t = == —S_jog (2 )10 2= . (A12-14)
2nsS ZHZSZ € S3

;

kA12-13) is the explicit form of (A12-1). Two additional useful .e};p’ressions are
. . ‘ ' §

sinh F = (nS + F)/e - (A12-15)

cosh F = sinh F +e_F . B (A12-16)
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For F — -w, (A12-2)is rewritten as

e ¥ - _(2ns+2Fr -y /e (A12-17)

The same sequence of approximations as used for F positive leads to

-F _  2nS , 2 2nS 2 2nS e log |S|
e = - = +§1og <— = >-E€S log <,- €>_ZT{S+Q<.SZ (A'12-18)
_ 2nS 1 2nS 1 2 [ 2nS
F = - log -—€>+—ﬁ_slog - €>+ s 2 log ———€>
) 4n"~S ’
2nS \ =2 log2|S|
-4log|-—]- e +0 (A12-19)
) 3
S .
e F oo L&t g (-228), o Lleals | (A12-20)
2nS —2.2 € 3 .
2n°S S

The function sinhF is still defined by (A12-15) but coshF can now be written

cosh¥ = - sinhF + eF (A12-21)

;The‘departure asymptote with F >0 must overlap with the outer solution where
t - tk'> 0. Likewise, the approach asymptote with F < 0 must overlap with the

outer solution where t - t, < 0. Introducing Qk defined by (A11-34) makes it

k
possible to write one expression for F:

A 20, Sy , 20, 0, Sy
Fk:_ Qk log = =2 log =
k Kk k
2 2 [ 25k 29 51y 2
- > 5 2 log — - 4 1log — - e
4n°s ®k ®k k
Kk k
2
log” |5,
+0 (A12-22)
g3
k
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Using (A12-22) in (A12-15) gives

N

. oS S 29,0, Sy 1 29,7 Sy
s1nth == t3 log { p— t==5 log =
k k ®k kK"K “k
Qk 2 ZankSk A
2 2 log - 4 log — - ey
®k k

€S -
2

log”| 5, <

+ 0 : (A12-23)

Sk

‘Using (A12-14) in (A12-15) and (A12-20) in (A12-21) gives

Q e e 2Q. 1, S

coshF =QsinhF+kk- kl —k kk
k k k 2n, S, - =2

k" k an'S

2
k

log™ |S
+0 —3J—k| (A12-24)
Sk

(A12-22) through (A12-24) represents the first step in the development of the

-

behavior of the inner solution in the overlap domain.

-t 1
Now consider a rectangular x, y coordinate system in the inner orbital plane

defined by Rk .

plane and the x, y reference plane with x positive toward the ascending node

1!
If the x axis lies along the line of nodes between the orbital

then the motion is given by

— 1
X = A -% coshF - B=& ginhF (A12-25)
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v o= B -
where

A' = eacosw

B! = ;Zsi;z

c = (&2-1)

1
coshF + Aé_C

H
sinhF

1/2

(A12-26)

(A12-27)
(A12-28)

(A12-29)

'Here » is the argument of pericenter measured in the orbital plane from the

ascending node.

Using (A12-24) X' and ¥' become

+A'[i-

;I - __%(Bl

+Bl[1-

Differentiating with
i .

) % (A' + QB'C') sinhF.

2

0 1 2QnS
5as T T2 21°g< 5 >+°<
n-S

QA'C') sinhF

(B -

2nS 2—2

respect to S gives

ar'c) comnr 25

e

— _Q 1 11 _d_F‘. —l
= _€(A +QBC)coshFdS+0

coshF =+ 0
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)

S

3

The subscript k has again been temporarily dropped.

<)

Q_,_ 1 log <2%ns>+ 0<
2
n- S .

(A12-30)

(A12-31)

(A12-32)

(A12-33)



Differentiating (A9-2) gives

dS

HH_F = e coshF - 1 (A12-34)
or

dF _ . n

dS T E coshF - 1 (A12-35)
Then

dF _ _n coshF L ' ‘ :
coshF 35 " ScoshF -1 : . (A12-36)

As F—- o, S—o and

dF n Q sinhF
coshF 4= —~ = sinhF - 1

—- .g; (A12-37)
beéausé of (A'12-23)., Therefore the velocity compdnents as S —wmare given by
ﬁ;";idfs—': QT (A +QB'C') / 2 \
= -T (B'C' + QA') / &2 ' (A12-38)
V = %—% = - Q7 (B - QAC) /&%
= T(A'C'-QB') /% | (A12-39)
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. The components U' and V' are the orbital plane components of the hyperbolic

excess velocity, Vm

(A12-30) and (A12-31) can now be written

<|

In the

ol

|

z .

reference X, y, z coordinate system the motion is given by

+

1 log <2Q—ﬁs>
onés? €

U'e . 0
= sinhF + A'! [l - 355
2 l
S
Ve . 0
= sinhF¥ + B' [1 - 325
lo 2ISI
+0 2212
'S3

x' cos 2 -y sinQcos i
A

x'sinQ +y' cos Qcos i

y! sin i

+

1 log <ZQHS>

(A12-40)

(A12-41)

(A12-42)
(A12-43)

(Al12-44)

Where Q is the argument of ascending node and i is the inclination as shown in

Figure A4,

Figure A4.

) Orbital
k Plane

-y

Inner Coordinates
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Using (A12-40) and (A12~41) gives

7

FoTemraalie g (:’-&S)
n 2 2n°S €
2
+ O(LOE?LSI) (Al2.45) .
S
- Ve Q ] 2QnS
Y = “R-sinhF + B 1.5 t —— log (—:—-)
2RS 2_ZSZ s
2 ' ‘
+ o(1° > S’) (Al2-46)
S
z =2 mr,a V-5 +—1 10 {2085
2n"S €
lo ZIS’ | |
S : ‘
where .
U - T cos Q - V' gin Qcos ¥ (A12.48)
V = U sing + V' cos B cos i (Al2.49)
W= ¥ sinT (A12-50)
A ":‘A'cosﬁ- B'sinQcos T o (Al2-571)
B = A sinﬁ-l-B'cosﬁcosT o (Al12-52)
C = B! '

sini . . ‘ (Al2.53).
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U, V and W are the components of V _in the reference coordinate system,

i.e.
Vo= U_gl + V_e_2 + W_e_3 (Al2-54)
Letting
L = Ag_l + BEZ + 033 (A12-55)
and
R, = xe, +ye, + ze, (A12-56)
gives
e Q- 2Q. n, S
R, = —V _ sinhF, +L, |1-=s=b > _1og|—K KK
—ko = —ok k = =k anSk 2_ZSZ &
k Pk
1°g2lsk|
ro|l—=5— , (A12-57)
Sk \

Replacing sinth by (Al12-23) gives
| B _A
RioBi) = Ay Sy F By 108 Sy + Sy + Dy Sy log Q Sy

-1 -2 2 -2 _
+ Eko Sk + Eko Sk log Qk Sk + c—;ko Sk log Qk Sk

-2 3. 3
+H _S;°+0 (sk log xlskl) (A12-58)
where
Ay = Vo (A12-59)
B, ==V (A12-60)
—ko . —wk
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Q 28\ | .
Cro = m-log|=— V (A12-61)

| 1
Do ™ 2 Yk (A12-62)
n
' ' 2n T Q o ' ‘
N k _k o
o ¥ 1°g< e )’ka “Zm, Tk - o (A12-63)
n k k .
k
Qk
Fpp = - —s Vo, (A12-64)
2n
k
Q 2R Q :
_ k k k 1 |
Sgo T T3 los (—g )Ymk R e N - (A12-65)
P ‘ k e B "
Q 25\ Q. [2E)\
_ k 2 “"k 'y k
Heo = - =3 log (‘a‘ >Y-ook =3 1°g< : )Ymk
. 2n k n k
k , k
812( 1 2n, -
+ ZE Ycok +T2' log = Ek (A12-66)
n, an k

Com s,
§

(A12-58) gives the behavior of Pik;)ksk) in the overlap domain, The singular
behavior for large Sk must be matched with the singular terms in the outer
solution. The matching must also relate the cons‘can’cs'\_/’cok and Ek with
constants of the outer solution. Note that once '\lmk and Ek are specified the
hyperbola R, ~is completely determined since Ek and Ek can be obtained from
Y-uok and I:'-k‘
Al2,2 Second Order

The exact form of the second order‘inner solution is given by (A9-7). Itis

an extremely difficult and laborious task to determine the behavior of (A9-7)

in the overlap domain, i.e., for large Sk’
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The integral form can be written

S
k
R, (S) = f B(S,, ) G, R, (¢) do (A12-67)

Sko

Carlson uses a Taylor series expa.nsion3 for B(Sk’ o) but this approach is
not satisfactory in a second order theory. The largest term in‘the Taylor

series expansion is
- L 3
B(S, o) = LS, - o)+ 0((s, - o) (A12-68)

From (A12-58)

R, (0) = A ¢ +O(log]s|) \ (A12-69)

v

Therefore the largest term in R, , is proportional to

k2

s S

f (S - o)odo j (S-0)[s-(5- o)]d (S-0)
S o
(o] .

S
2 3 '
3 S 3 S
S 0 S o)
> ( - —S) - —3 (1 - _S ) (Al12-70)

o]
Since, in general, SO\ <S

: s3 - ,
(S - o)ods = = + O(S) (A12-71)
S
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Therefore the leading term in the expansion of sz is order Si and is.easily

found. The higher order terms cannot be found by this approach, however.
¢

In the expansion of B the higher order terms are proportional to

n

d——G(R ) (S 2% )3
as™
Forn=20, 1, 2
a° ' '
—EG(I_{_O) = G(BO) (A12-72)
ds : 4
al d \dB-O By
0’ = R CRJGs = HR,) 35 (A12-73)
2 2
o® Gr) - SHR )= ¢ HR )
42 d5—==0’ds T ='%o) 12
R Y
= IR)\3s /) +HER)—= (A12-74)
ds
From (A12-58)
R, = A_S+O(log Ishy (A12-75)

Comparing (A12-72) - (A12-75) with (A11-28), (A11-36), A11-37) and}
(A11-89) gives ‘

G(R_)

R, G(AS) + O(log |s])

—137 Gia,) + O(log4|Sl> . (A12-76)
S S
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=
(LFU
I

H(A_S) + O (log [s])

_ 1 log | S|
- SpHA) O(_?—> | (12-77)

) = T(A_S)+O (log |S)

1 log |sl
- Lgay o)

S S

Putting (A12-76) - (A11-78) into the derivatives of G leads to the conclusion
that ' 4

in_G(R, - ol | (A12-79)
gs? o’ T gn+3 -

The higher order terms in B are thus proportional to

(S - U)n+3/sn+3

Multiplying each of these terms by (A12-69) and integrating gives the

contribution of the higher order terms in the Taylor series expansion of

B, i. eo'
(S n+3 So
S-¢ _ 1 _ ont3
n+4 n+5

_ SZ (1 S°> SZ <1 icl)

(n + 4) - S " (n +5) - S
SZ

= = + O(1) (A12-80)

n~ +9n + 20
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Therefore every term in the Taylor series expansion of B contributes at

least one term of-order 512(.

become large and after n = N the terms could be ignored. However, in

Eventually the denominator in (A12-80) would

. . . 2 1
order to obtain a reasonable approximation of the Sk contribution to the

expansmn of R, , N would have to be quite large. It will be shown that in

—k2
order to complete the matching sz must be expanded out to order Sk

therefore the Taylor series expansion of B is unacceptable,.

‘What is actually needed is an asymptotic expansion of B(S K’ o) for both S
and o large. Such an expansion can be shown to differ from the Taylor
series expansion since no assumption ie made that Sk - ¢ is small. An
“attempt was made tc expand B(Sk, o) to such an order that (A12-67) would
be represented by an expansion to order Sk‘ The amout of algebra encoun-
tered was horrendous and even stymied an attempt to use Formac, It was
finally determined that such an approach could, at best, only approximate
the S, term with an extremely complicated expansion, This approach was

therefore also considered to be unacceptable.

Based on (A12-71) and the previousiy derived behavior of gko’ (A12-58), it
can be assumed that Iikz has the follovﬁhg expansion:
R (S.) = A S+ SlogQS+C s?
—k2 "k —k2 "k k2 k —k2 Tk
+ DkZ K 1og Qk S, 4+ E S log Q
S, +0l(lo 3 S : . (A12-81)
* E2 Sk e” | kl) S | . i

(That the expansion of R, , would have this form was strongly indicated by

—k2
the work done with an asymptotlc expan51on of B(Sk, o). Some of the terms
were actually derived but each successive term requ1red an exponentially
increasing amount of algebra.) Differentiating (A12-81) twice gives

2

d Ryo

dsz :6ékzsk+2B longS +3Bk2+2C_3kz
k
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log Q S,° 2D, +-_£_:k25 - [1og A|sk|

- OE k2
4 2Dy, e ~= xe 5 (A12-82)
_ k %k Sy
' - ’ ' .
Now“using (A2-20) and (A12-58) gives
GR, ) = G (A SJ)+H (4 S)B  log Q S
. . o e Sy
R By S G PO E By B TS
. T (A, S)) log" |sk | - . (A12-83)n
Using (A12-76) - (A12-78) in (A12-83) gives
GiA, ) log Q, S,
. o —ko \ ~k "k
G(I—{-ko) - S3 +H (éko) §-ko . S4
k - k
. 2
Ly : - [log S - ; :
FH (A, )C, 2 40 ———I—kl  (Al2-84)
— “—ko’ =ko 54 '85 .
k k
Multiplying (A12-81) by (A12-84) gives
GRyo) B = G (44 845 + [G (Aio) Bra
1 log Qk Sk
FH(8) By A0 —s_ G254 k2
f ' i , . 1
s N 1 log2 I-Skl__ R .
CFH AL, ) S Ay 51O 2 (Al2-85)
: 1k Sy
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Substituting (A12-58) and (A12-85) into (A8-5) gives

2
d A
o2 sk2 i) = Gy Byeo S + G Byep 108 9y 5y
K
* G(éko)AkZ + Gk C—ko
+ G4, )B

—ko ka —ko Kk
log’|s, |
+ 0O > (A12-86)
Sic
Equating functions of S, in (A12-82) and (A12-86) gives
A, = G a6 (A12-87)
Ber = Gy Ekolé , (A12-88) -+
| r / |

Sz ® S0 * G G0 7 3 lékz] 2 (A12-89)
Do = |G(44) By + B4 B, + Gy 12ko]/z (A12-90)
Bip = Gl t A G A+ Gy By - 2Dy, (ALZ9D)

Since F_‘kz appears as a linear term in Sk

the second derivative,

tion, However, (Al12-81) can be rewritten in the form

82

Thus it is not possible to get 17_‘k2 by

nol

in (A12-81) it vanishes when taking sd

direct substitu- svs
00
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D logZQkSk+l§ 1ogQ S + F

D2 K2 L)
- s,)/s s2 . S, log Q, S
= Rip(S,)/Sy - Ay Sy - By Sy log 9
log |S |
-G St o5 (A12-92)
Letting
Se = Ot | C (A12-93)

n (Al12-92) gives

2
Do log” wy - Epp logmy + 5y

- b Qe Ry (9 /i) - [“fcz Ay ! Q) By, log by -
url o ka] +0 (b log> p.k> | (A12-94)
where
Qk/“‘k'
Ryp (Q fi) = [ B(Q) /iy ©) Gy By (0)da (A12-95)
S, -

The left-hand side of (A12-94) is exactly the expression which will appear in
the matching For very small pk's such as in interplanetary applications the

log My and log pk terms will be much larger than ]_E_“kz, and F LIPS

be ignored. In such a case (Al12-94) is not needed since ka and E 2

evaluated directly from (A12-90) and (A12-91)., For the larger value of My

can probably .

can be

corresponding to the earth-moon system it may be necessary to evaluate

(A12-94), This requires first evaluating (A12-95) by numerical quadrature,
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Then the subtraction indicated on the right hand side of (A12-94) must be

performed with significant care since it involves the difference of two large

numbers, i.e,, the difference of two numbers which are both order |.L1'<2.

The behavior of R in the overlap ciomain is thefefdre given by (A12-81).

—%k2
It has stronger singularities than does liko but it is also multiplied by pi so
the effect of the singularities is somewhat diminished, The coefficients of
the expansion (A12:81) can be found as functions of the coefficients in the

expansion of R

Al2,3 Third Order .
Only-thé large st term in the expansion of -&k3 is of interest. ' Since the dif-
(A8-6), is similar to that for R, , it is assumed

ferential equation for lik3’
to have a similar expansion, Let

_ m m-1 . i : R .
Ri3 = A, S0+ o(sk log Q, sk) | | (A12-96)

where m is unknown. The second derivative is

2 . o :
4 B3 s o2 m-3 |
—2 = mm s PR O gl ) 0 a29m
k . .

Multiplying (A12-96) by (A12-84) gives

s34+ ofspr4 log|Sk|)  (A12-98)

GRy JRy5 = Gllyo)ys S

According to (A8-8)

A ~ . 2
PBio By2) = 2He Bpo P OB
- Ly AZ Asz+o(s log|S ) ) (A12-99)
2 =k ko "k . 1og|Sy| '
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d“R
231 2 2 ( m-3
22 - SH A S, + -o(sk log,Skl) + OS2 ) (A12-100)
ds
k
Comparing (A12-97) and (A12-100) gives
m = 4 (A12-101)
, | ‘
A, = H AL [ o (A12-102)
Therefore, in the overlap domain the behavior of Bk?: is given by
1 2 4 3.
R3(5) = 37 Hy Ay S, + O[S, log|s, |) (A12-103)

Al2.4 Fourth Order

Like the third order outer solution, the fourth order inner solution is not
actually used but its behavior in the overlap domain is important. This
behavior can be deduced without rigorous proof, It has already been shown

that in the overlap domain

Iiko B O<Sk) '
Ria = O<Sl3<)
s, - of)

R, = o(s5> - (A12-104)
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Al3 INTERMEDIATE LIMIT
The overlap domainrhas been defined as the region where t-tk is small in

the outer solution and S, is large in the inner solution, In this region a

k

new independent variable &

Kk is defined by

o = (t-tpk)/pi, Osacacaysl (A13-1)

Note that if @ = O, R simply shifts the time scale without any scaling., The

limit @ = O is then the outer limit. If @ =1, (Al13-1) reduces to (A7-27) giving
the inner limit, The variable range ao.<d<._oz1 will be defined as the intermediate

limit and a, and o, must be defined by the matching.

1

From (A7-12) withp =1

e = bt i T (A13-2)
Substituting (A13-2) into (A13-1) gives the outer variable

t-tk = -Hick A+ M Tk . | | (A13-3)
Using (A5-4)

t-t, = n& Mgak +p M T (A13,4)
The last result gives t-tk in terms of 1 and shows explicity that 1:-1:k is
small, i.e., order “a', Substituting (A13-1) into (A7-27) gives

Sp = “‘11 -lffk

Tzl Ma_lv - | . (A13-5)

(A13-5) gives Sk in terms of T and shows explicity that Sk is large, i.e.,

a-1 . . .
order p - 7, since a-1 is always negative.
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(Al13-4) and (A13-5) must now be used to transform the outer and inner
solutions into functions of & common variable ) Then the.matching can .

be carried out.

Al4 MATCHING

It has been assumed that both the outer solution, (A10-1), and the inner
solution, (A12-2), are valid in the overlap domain. The ndatching of these
two solutions is most simply stated by requiring their difference to be small .

in some appropriate limit, Cole4 states this limit has

lim (outer solution)e-(p()inner solution) | = O (Al4-1)
n—0
) constant

where e() is a guage function, For a second order theory e(u) is most easily

chosen to be HZ. The limit (Al14-1) can be written

Ixo L |
lim > +T+£2 tpr, -
p—0 v M
T constant
M, R :
k —ko 3 2 .4
T e M Bt M Ry,
" g3 MY R, +...)| = O (A14-2)
K Bpg toee !

In order for this limit to hold all terms which are singular or constant as
p.—0 must vanish, For the singular terms, the coefficients of the different
functions of ¢, must vanish identically since the limit must hold independently

k

of the value of O

In each of the expansions for Tyo Lys Iy I liko’ &kZ’ &k3 and B:k4
certain terms have been ignored and entered only as order something. These
terms must all vanish in the limit given by (A14-2). In general these terms

will vanish in the limit if the exponent of 1 is positive, That is, px vanishes
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if x>0, is constant if x = 0, and is singular if x<0, as p—0. In order to

make these terms vanish the a of (A13-1) must be restricted as follows:

5 4
(t-t,)°  (t-t,)"

2 2’
K K :

5g-2  4a-1
=0(ua .ua)

Both terms vanish if a>2/5.

3
r. o [(t-t.)
1 ~0 k _ O(H3a-1>
m m

This vanishes if a>1/3.

. ~O<(t-tk)2’ u) 3 O(MZQ’ u)

'fhis vanishes if >0,

pry~ Of—+—) = o
(t-t,)

The effect of r, vanishes if a<1/2.

3

Iiko 1 - O<p2_3a)

=9 .0
IJ" HS3

This vanishes if a<2/3.

“'R-_kz ~0 (FL)

This vanishes for any «a.

2 2 .3 3a-1
b 13k3"‘o(” Sk) - O(“ )
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This vanishes if a>1/3.
3 3.5\ ( 5a_2)
" gk4~o<L sk> - ofu

This vanishes if @>2/5. All of these restrictions aré satisfied if

2 1. ) :
§-< o< > (A14-3)
Therefore
_ 2 (Al4-4)
%, T %
1 . (Al4-5)
0’1 - 2 .

It is assumed from this point on that (A14-3) is satisfied and that all of the
above terms vanish in the limit., Therefore these terms need no longer be

considered in the limit (Al4-2).
Al15 INTERMEDIATE FORM OF THE OUTER SOLUTION

Al5.1 Zeroth Order
From (Al13-4)

e I VAL (A15-1)
1
2
(t-t,)
k 2a-1 a 2 o l+a
- +0 3
m M Top+2ut M o (1) | :_.(A1_5 2)
(t'tk)3 30-2 . 20 3 2%l 104 2
— = W Mk T + 3p Mk Tk Tk
+ 3u% MiHYTE 5, + Ofu) " (A15-3)
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(-t )*

2
.

40 4 3a-1 3)
Mk O‘k-}-O(p. o)

4a-2
M

+ o(pz"’ oﬁ + ofu1* «k)+ O(p.z) . (A15-4)

Substituting these expansions into (All-26) gives

—*ko 2 -1
Lz (2ok - Byo) * [“ My e e * 0(“)]
-2 ..« o l+o
+"k[ M V- Mo mppy

+ _;_Ha M2TE 2 o v+ O(HHQ)-J

k 'k Y%
2 1 20-1, 20 % 1 20-1, 1420 _
+"k['i“ MR tar T M e G Yy

¥ o(pz")J + ol [%f“'z MG v, + o(p3"‘1]

4o-2 40-2 -
4l n 2 " 2 da
+ o, (T H v, () -5 H By (tk)) M,

" o(p‘*"" 1) (A15-5)

where the leading term has been carried explicitly in order to show that
the matching verifies (A10-3) and (A11-21).

Alb,2 First Order '
From (Al3-4)

-1 -1 e l-a
p o log Qk (t-tk) = p  log Ek + [ Mk Tk/a'k

+ O<|J.1_20/712<). (A15-6)
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2-a
(t-tk) log Qk (t—tk) = p. Mk I log Ek + O( /Uk)
+ O(p log zk)

H-l (t-t, ) = w2 M, o M T

k %% T Mk Tk
"1 et )2 log Q (t-t,) = p2e-1 ME® o2 log T,
+ 2 M o log T
Fu M o

where

.Z :p,Q

k k "k

Substituting these expansions and (Al15-2) into (Al11-78) gives

r

1 [ -1

a-l1 |« oo, o l1+o
f"k[“ My v Mgt Mo e
o, lt+a ' Treyl
+ ?.p Mk Tk g-lk + O(p )_I

2 [ 20-1 20 24
+"k[“ My &1k+o(“ )]
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+o(p1“2°/ci) S o (A15-11)

Al5,3 "Second Order
From (A13-4)

-1
(t-t,)7" log Q (t-t,)

= M;(Q/trk log T, + o(ul'za 01'(2 10g‘2k) - (A15-12)
-1 _ e - . 1-2a / 2 _ ,
(t—tk) = W Mk /crk + O(;.L\ /O'k) {Al15-13)
_ _ leaf - ’ '
log Qk (t-tk) = log Zk + O(g /o-k) (Al5-14)

5
(ﬁ-tk) log Qk (t-tk)

a 2 , 2
K % log Zk~+ O(p. log Ek)

+ O(}J.‘Z—a.//ﬁ'l’{)"f’ 0<H2'3"’ 61;2 log zk> (A15-15)

:HQM
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(A11-131) can now be written

r, = [dy + O]

o o < 1+Q’)
+0’k[|.1. Mk52k+0p
+ log Zk l:SZk + O(p.)]
o L@ 1+a)'
+ o log Zk [}.L Mk f—Zk +'O(|J. ]
2 o o ( 1+Q’)
+ %\ log Ek l:p. Mk €k + O\

1 -a L -0 l-o
[ e o)

log

k -0 - l-o
S [” My 321<+O("’L )]

+ O<|¢1'2a 01;2 log Ek) + O(p. log2 Zk>

A15,4 Third Order

The effect of r

3 1s vanishingly small since a<l/2,

Al16 INTERMEDIATE FORM OF THE INNER SOLUTION

Al6.1 Zeroth Order
From (Al13-5)

log Qk Sk = log‘ Ek - log My .
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(A12-58) can be written

M, R
k =ko _ a-2 .« -1 C
m =0 M A g v M B (log By - log )
log Z, - 1o )
-1 o . 2. (log 2y - log ik
e M Gt M Dy o
' o 2-a 1 1-2a 2. 2 . o
e M Eko 0—_k + O(p S0 log Zk) (A16-2)
Al6,2 Second Order
(A12-81) can be written
3 3022 . 3a 3
M Ryp = o0 Mp &2 %
20-1 , 142 '
+ Mk BkZ (log Zy - log pk) )
2a-1 142« 2
* M G %

o 2+e 2 | .
+ Mk ka <log Zk -2 log M log Zk

2 o 2ta
+ log p.k)O'k + W Mk EkZ (log Zk

- log ) o +u® MFE ' (A16-3)

k k2 "k

A16, 3 Third Order
(A12-96) can be written

¥ 4 s o
A s o\ -‘(A16-4)

_ p4a—2 M

2 4 4
b M Ry k
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Al16.4 Fourth Order
The effect of Ry is vanishingly small since a<2/5,

A17 RESULTS OF THE MATCHING

From each of the terms in (Al14-2) similar functions of g, can be collected
from (A15-5), (Al15-11), (A15-16) (A16-2), (A16-3) and (A16-4), Since the
limit in (A14-2) must be satisfied independgntly of the value of R the
coefficient of each function of o must vanish. The following results are
then obtained.

(a) Terms proportional to L

-2 . o l+te % 1 a.2ta 2
oMV e M e Rt M T G Yy

-1 _ o o .. o 1+o
P Mdy b Mpey e M
o 1+o @ O l+o
+ .21 Mk T £k +u Mk o1 + O(p. )

o a , 2+ 2
he T M Ay - M Dy, log ey

2+«
* Mt R log p, - n% M12<+al~:k2 -0 (A17-1)

or

3 ,
PM e Ee PP ME T By t ng> + O(u”) . (A17-2)
{(b) Terms proportional to log Zk:
Lot +O(). -1v B - 0O
B2 T Sk H) - k Bro = (A17-3)
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or

Ta reM e 4 owd (A17-4)

Bio = My 25 k Sk

(c) Constant terms:

2 -1 -1
BTy m By T M T Yy B by v My dyy

, _1 i j
+d, + O +p”" M B logp -p MG = O (Al7-5)

or

| -1
Cro Bro OB =k (iok‘Rko)+TkYk+Mk Pk

-1 2
+ p,(Tk d—lk + Mk QZk) + O(p7) (A17-6)

It is clear that in order to balance the left and right hand sides of

(A17-6) that the order |J.-1 term must vanish, i.e.,

2k~ Pro = O , (A17-T7)

(A17-7) is equivalent to (A10-3) and (A11-22) and verifies the

earlier assumption., Then (A17-6) becomes.

-1

So = BroloBry ¥ Yt My By
tufr 4, +MLa k)+o(“2) (A17-8)
PUk S ™ Y 22

(d) - Terms proportional to 0‘1'(1 log Zk:

~o - -x e 2= _ ,
v Mk _a_1_2k+0(|.L ) - R Mk ]—D-ko = O (A17-9)
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or

2
Dro = My 2z * O

(e) Terms proportional to 01; :

~a 1= ) -a -0 lea
BMe T eae b My By # 0T
+ ¥ M5 %D 1 CMECE 2O
H k —ko OBHE H k ko
or
E = D, 1 + M +M%b, +0 )
Pro T Do toB Ry t M T 2yt My by + O
(f) Terms proportional to (rl:i:
21;“30-2 M3 Gy !k + O(M3af1) ELEY- Mia ékz
‘or
A, = La v, +0@
%2 T 6 Tk k
(g) Terms proportional to 0'12< log Ek:
2001 | 2« 2 2a-1 | 142« B
My L F O - M o B, = O

or
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AN

(h) Terms proportional to ¢

142a
1 2a-1 2a % 1 2a-1
-zE T Mgtz T M e G Yy
+ HZa-l M}Z{a E.lk + O(HZQ) + 2a-1 .M11<+20Bk log e
20-1 142« o
- M “%Cp, = O (A17-17)
or
C.. = B .1 M ioFidle g v
)2 T 2k2 OB MR 7 VR B TZ ok Yk Tk
-1 '
+ M gy, + Ok) (A17-18)

(i) Terms proportional to o logz Zk:

o .2t

b M e, ow!™® - M*D, = O | (A17-19)
or
D, = M’ e, + Ol 7 (A17-20)
;) Terms propo'rtignal to o) log Zk:
o a0 a l+a O ..Q
BT M et A M e S e M Doy
ot 4+ 22 Mi*"‘ D, , log i
S MITPE, = O | | (A17-21)
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or

1

B = 2D logmy + M7 &gy +2 My Ty Ly
-2 . '
+ M2 £, + O(u) (A17-22)
- . 4
(k) Terms proportional to Ot
1 [ 40-2 . 4o 2 40-2 Ao .. -2
?Z‘[“ Mt H vo ) -k M B By (tk)]
+ o1y _ 4e-2 Mia A, = O (A17-23)
or
A _ = H 'vz(t) -'Z(t) /%4+-oun ' (A17-24)
K3 Zr | Yo Yk 7 Bk Yk

(1) The terms not accounted for so far are of the following orders:

40-1 1-20
b ) B y M

These terms vanish identically in the limit u—0,

Al8 SOLUTION OF THE INITIAL VALUE PROBLEM

The expressions presented in Section Al8 contain the solution to the following
problem: given a set of initial conditions at t = t, what are the parameters
defining a close approach of the kth body at or near t = tk?

£(t) = roltg)ur(t0) +u® ry(t) (46-13)

v(b)) = wlbg) + i v ) +u® Yyl (A6-14)

Given these constants plus to and tk defines all the constants of the outer
solution (including integral constants),
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The constants of the inner solution are the vectors Iiko (Sko) and Y—ko (Sko)

which appear in (A9-1). The higher order terms are set to zero in (A9-6)
meaning that at Sk = sko the zeroth order inner solution (an hyperbola) and
the second order inner solution (a perturbed hyperbola) are equivalent,
Therefore the compiete inner solution is determined at Sko if the corre-
sponding zeroth order hyperbola is known,

Rather than determining Iiko (Sko) and Sko) as functions of L(to) and

Yo |
l(to) it is more convenient to determine the elements of the zeroth order

hyperbolé, They are

)
]

semi-major axis
e - eccentricity
: i-k - 1inclination
_ (Al18-1)
Qk - argument of the ascending node
J’k - argument of pericenter
tpk - time of pericenter passage.

Usually it will be desired to determine the inner solution at closest approach,
Then Sko = 0 and the elements of the zeroth order hyperbola can be used
directly to calculate the closest approach distance, etc.

In order to determine the relationship between the set of elements (A18-1)
and the initial position and velocity it is necessary to rewrite (A17-2) and
(A17-8) in a new form, From Battin® the unit normal to the plane of motion is

1_\I_k = (sin Qk sin i, - cos ©, sin i, cos 1k) (A18-2)
The impact parameter vector is defined as the vector normal to Y—cok with

magnitude equal to the semi-minor axis b where

)

i /s A\1/2 , .
bk = ak(ek-l) | ) . _‘ (A18-3)
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Figure A5. Impact Parameter Vector

For the trajectory shown in Figure A5 the unit normal lik is out of the .plane

such that Ek’ \ka and uk form a right handed system.' Then
v :
o5 [ Eex
Ek = bk <mG> X Iik (A18-4)

Substituting" (Al12-54) and (A18-2) into (Al18-4) and then using (A12-38) -
(A12-39), (A12-48) - (A12-53) and (A12-55) eventually gives

!

i .
where
- = =3/2
n = 3 (A18-6)

Then (A12-61) becomes

Qk Zﬁk : '
o = H |8\ 7 ) | Leor T Rxe (A18-7)
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and C

The'expressions for Creo’ (A17-2) and (A17-8) become

éko
o ' 2
Veop = Yy trdy t1 [Elk t B T My Ty (ilk t 281

¥\ 1.2 2 2 2
- pk)*iMka G Yy t My (ka log™ 1y

. 3 o
- E_l 2 log e + F] 2)] + O(n™) _ (A;8—8)
Q 20
k k
b, -1, V = — |lo = -1 Vv
+ M'1 (b, +pd,, )+ Of 2) | A(A18_9)
k 21k T P2k M

Since (A18-9) is only accurate to order p the uz term in Y_wk can
temporarily be ignored. Also, since hk is normal to \_I_wk, taking the inner

Aproduct of (A18-9) with \ka gives

" 20y 2 ‘ 2

Subtracting this result from (A18-9) gives

T

b - L (1. T=k Tek (b, +pud, )+ Ow?) (A18-11)

e Vi 2 21k T M2k K

. k VOOk : o : !
where Iis the unit diagonal matrix and _'\_/'Zk is the transpose of \Lmk-,,. The-
transpose is introduced through the identity

- T S :
(x.¥yY)y = (yy)x o o _ (A18-12)

\" \ yo \."‘ \" . \ v .
. SN b ' \ ' Voo
The solution is now possible,, The, first two'teims !bf (%\518-8)\arel used to \' P

i

evaluate Y_mk. Then | v !

3, - 1/V°2°k | (A18-13)
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and ﬁk is found from (A18-6).. .Next {(A18-11) is used to determine b, and

k
bk - ‘Ekl ] o (A18-14)
2l 2 1/2 L . : C
- _ ) R o )
8 = (1 + bk/ak) (A18-15)

3

Since ﬁk and —ik are as yet unknown, the unit normal is determined‘ from
N = B x Vo /By Ve | (A18-16)

Then from (A18-2)

cos Tk = lik- €3 Os'i_ks T (A18-17)
“sin Qk = (N-k . El)/sm ik - ‘ .: ' ' (A18-18)
cos Qk :} - (Iik . 32)/sin ik : (A18-19)

Finally, inverting (A12-48) and (A12-49) gives

al

' - — — L= ' v y
K T Uk cos Qk + Vk sin Qk . (A18-20) -

(Vk cos szk - Uk cos Qk)/cos ik (A18-21)

<l

il

!
k

and using (A12-27), (A12:28), '(A12-38) and (A12-39) gives

o ai/z o /2 _, .

sin © = - .ék ek—l> Uk + Qk Vk : (A18-22)
511(/2 L, \/z N ’

cos By = ék ek-1> Vk - Qk Uk | , (A18-23)
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Enough information is now available to evaluate (A12-94) and this, along
with (A18-10), allows the order pz term in (A18-8) to be evaluated.

The time of pericenter passage is found from (A13-2), i.e.,

t T (A18-24)

pk = HtET

The complete set of orbital elements def'ihing the zeroth order hyperbola
can be evaluated from the gxpressions for éko and gko obtained through the
matching, The remaining expressions obtained from the matching in
Section A17 give redundant information which can be used as an analytical

check on the matching process. For example, from (A12-60)

DBy, = - Q (V) i |  (A18-25)

After some manipulation, (A17-4) can be reduced to.

d,. + o2 (A18-26)

(V) dyye

Bio T " LI G

- Equating (A18-25) and (A18-26) gives

i('\imk) = (V) + GV, )4, + o) - | . (A18-27)

Comparing (A18-27) with (A2-13) and (A2-14) leads to

_ ) ,
Ver = Vit e d + 0w’ . . . (A18-28)

Since (A18-28) is contained in (A18-8) no new information has been. obtained.
As another example, (Al12-62) gives . o

6 .
Do = Vor /Yo, | wae2)
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while (A17-10) cah be reduced to

N ) | ,
_ Al8-
Dy, = '\Lk/Vk+O(|¢) (A18-30)

using the identity
: 5 _
= Al8-
G(V) YV, = zgk/vk (A18-31)
Comparing (A18-29) and (A18-30) gives

A\ =

—ok

Vit Ofp) . (A18-32)

a result which is also contained in (A18-8).

It can also be shown that E—ko reproduces information contained in (-:—ko' The

proof involves replacing Iik by Ek using (Al18-5) in (A12-61) and (A12-63)
then taking scalar products With-'\Lcok and Ek' The algebra is long and tedious

and requires certain identities such as

Gy x = (x- y) | (A18-33)

X

Since the algebra is so lengthy and complex no further proofs will be given
~here but only the statement that such proofs have been worked out and the
matching appears to give a consistent set of equations reléting the constants

of motion of the inner and outer solutions,

Although the notation is different the results obtained by Carlson are contained
in (A18-8) - (A18-11) except that he has one order less accuracy in each
expression., In terms of a common notation the results are identical to first

order for Vg and to zeroth order for e and Ek' The idea of decomposing

(A18-9) into orthogonal components to solve for T and Ek independently

~comes from Carlson who introduced Bk directly into the development of the

inner solution prior to matching, In Section Al2 the vector Ek was introduced
and, from (Al18-5),-

S A

(A18-34)
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The representation of L, in terms of b, and Vox is certainly advantageous
for solving the initial value problem, as presented in this section, but it
is not unique. Other representations may also be useful, in particular for
two-point boundary value problems., Therefore the solution developed in

this study and contained in the expressions for ‘A—‘ko and gko in the preceding

section is somewhat more general than that of Carlson as well as being of a
higher order. The development of the boundary value solution from éko and
gko appears in Section B,

106



1. Section B
SECOND ORDER TWQ-POINT BOUNDARY VALUE SOLUTIONS

Bl FUNDAMENTAL SOLUTION

The fundamental relationships between the constants of the outer and inner
solutions in the second order asymptotic solution of the problem of N bodies
were derived in Section Al7, In Section Al8 it was shown how these equations
can be used to formulate an initial value solution. In this section it will be
shown how these same equations are used to formulate certain boundary value

solutions of practical interest.

The fundamental equations resulting from the matching were shown in Section
Al7 to be (A17-2) and (A17-8), They can be rewritten as

Ao = Cltgt) [z t) + wlr, )] + Dty t ) vy k) + 02w, ()

Sk 2 s
PVt Rdy P e (B Pt Ay + My (6, + 28, - Ek)

1.2 2 3
3 M 1o lek]’f_o () (B1-1)
MiSio " M\ Tk ¥ 73 108 B[40 = Al ) |z1t) + ury )
ko
+Blt,t,) [ )+ wY, (b )]
bY 4 oudl 4 0(u? B1-2
+—1k+“—2k+ (}J- ) ( - )
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By = By - Al t) () - Bl t) vyt - (B1-3)
N 'ilk- = di - C(tk’ to) El(to).' D(t i to ) ll(to) (B1-4)
-g_Zk = ng = 'A( k’ t ) r (to) - B(tk: to) _Y__z(to) (B1—5)
e - o - 1 ot : _
22k = gy = Clt,t ) ry(t ) - Dit,t ) ¥o(t)) A .. (B1-6)
A‘* ~—-r‘M2(D logzp - E - log + F ) ' S (B1-7)
- R\ k2 k©=k2 OB PR T I |

G1ven initial conditions along the outer solution', (B1-1) and BI;Z) gii/e the
values of Ak R ‘:gko and Ty the constants of the inner solution, ‘Howeve‘f,
using (A3-13) and (A3-31), (B1-1) and (B1-2) may be inverted to give the six

component state vector,

| | Q,
M Cro "M {7 * A3 tog by ) 44,
= &(t, t) '
o' 'k A
——ko /H
Yy by
+ fp (B1-8)
by u
where
Y = bk (B1-9)
e = omdgy (B1-10)
Ly = -dy | o (B1-11)
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* * * 1 :
Y = Epk St A - Ml 28y - Be M GY,) BL12)

Given initial conditions along the inner solution (B1-8) gives the perturbations
to the zeroth order ellipse at t = to’ Thus (B1-8) is an inverted form of (B1l-1).
and (B1-2), Either form may be considered as the fundamental solution from

the matching.

B2 ASYMPTOTIC BOUNDARY VALUE SOLUTIONS

The fundamental solution from the matching is essentially an initial value
solution. However, with a little algebraic manipulation the solution can be
transformed into a boundary value solution where some variables are pre-
scribed at each end of the tré.jectory and other variables at each end are
dependent on the prescribed values, The goal then is to write (B1-8) in such
a form that the dependent variables appear as explicit functions of the inde-
pendent variables with the independent variables chosen to represent a

realistic boundary value problem.

It is first necessary to derive some expressions for the inner hyperbola,

Suppose the excess velocity, V the inclination, Tk’ the pericenter radius,

ok’

pk, and the time of pericenter passage, are assumed to be known for a

*pk’
close approach to the k—ll- body. The excess velocity has cartesian components

defined by

v - T, V. W

The vector X-cnk in the (x; v, z) coordinate syetem is shown in Figure Bl,

From Figure Bl

- 2, 72\1/2
sin )\k = Vk/(Uk + k) (-BZV-Z_)
cos X, = /U + V)2 " (B2-3)
k ~ k k
— = [=2 =2\l/2 = o
tan a, = Wk/<Uk + Vk) y =z S = 3 (B2-4)
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Figure Bl. Hyperbolic Excess Velocity V ook

Since the plane of motion must contain ka, the ascending node must éatisfy

(cf_Ba.ttinS, P, 179)

G, = N EO H(LE1)n/2 : ‘ | - (B2-5)
where .
Fk = tan Ek/tani— 020 =< 1w/2 (B2-6)

k'’ k

'

With some manipulation (B2-5) becomes

H = 1
-1 : =
= _ [=2 2) - )= = — [(—2 —2) 2z —2]2 _
cos Qk = (Uk + Vk ctn i Vka FU, Uk + Vk | ta.? i W :(BZ 7)
. 1
s (=2, 2Y =% .v [ .2 2.—'__.—212.
sin Qk = -(Uk + Vk) ctn i Ukw'k + Vk [(Uk + Vk) tan i \Wk (B2 -8)
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It is obvious that

2

: r 2> =2 =2 , T2
tan i Wk/(Uk+V

giving a minimum -i_k which is compatible with ka. In (B2-5), (B2-7) and

(B2-8) the upper sign is to be used if the approach or departure is to be over
the kth body (Ek &3

departure is under the body-(_b_k c e, <0).

> 0) and the lower sign is to be used if the approach or

3

The pericenter radius is defined as
;k = Zk(Ek - 1) (B2-10)

where the semi-major axis is given by

z = v "¢ B - (B2-11}.

Then the eccentricity is

e, = 1+5p, mGz (B2-12)
From (A18-22) and (A18-23)

sin &, = -“kl/z [(éi - 1)1/Z T, + Qle'(] /e, (152-13)

cos wy = ;11/2 [(-e—i - 1)1/2 Yy - Qkﬁl'cl/gk 4 | (B2-14)
where, from (A18-20) and (A18-2 ll)

U, = T cos @ +V, sinT_ ~ (B2-15)

e |

Vk = (Vk cos Qk - U, sin Qk) / cos i " (B2-16)

= W, /sin i (B2-17)
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Equati'ons (B2-7) - (B2-17) define the orbital elements (in addition to -i—k which
is assumed known) for the inner hyperbola. From (Al2-27) and (A 12-28)'

A = Ekgk cos wy - . | : o N " (B2-18)

B, = a.e, sin x‘;k G e i o o (B2-19)
and from (A12-51) - (A12-53)

A = A cos - B' sin cos ? ‘ 2 . (B2-20)

k k k T Tk k k o

B_k = A'k sin ﬁk + B;{ cos ﬁk cos Ik | _ (B2-21)

C, = Bi{ sin I - . (B2-22)
Then, from (A12-55)

Ek = (Kk, §k, Ek) (B2-23)

The two vector constants of the inner hyperbola are given by (A12-59) and
(A12-61), i.e., ’

Ao * ka : ' (B2-24)
Q a— .\
_ k nk
Cro ° £k+ﬁ_k 1°g<€k>y-ook ) | | (B2-25)
where
i
a - v (B2-26)
k ~ wok :

The equations of this section show that known values of ka, Ik and Fk are
sufficient to define the inner hyperbola and its two constants, éko and gko'
It is now possible to proceed with the boundary value solution.
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B2. 1 Midpoint-to-"I‘arget Body Solution :

The basic midpoint-to-target body solution is shown in Figure B2. The initial

time, to’ and position, £(to)’ as well as the pericenter time, tpT’ radius, ET’

'and-ihclination; TT’ for a close approach to the target body k=T are all spec-
ified, The initial velocity at t = t, is unknown and must be determined. An
‘épherheris is required giving positions and velocities of the N-2 perturbing
bodies with respect to the primary body. The ephemeris fixes the coordinate

system of the asymptotic solution,

The initial conditions for the asymptotic solution are given by (A6-13) and
(A6-14)., They are

rte ) +pr )+ el ) | - (B2-27)

zlt) = xg

. . o 2.
V() = V(b)) +pY (E )+ pSy, () (B2-28)
From Figure B2

©e)  (B2-29)

r(t) =
therefore ‘ |
El(to) = _Ez(to) = 0 | o . (B2-30)

For simplicity let the initial velocity perturbation be defined by 6_\5(%), i.e.,
!.‘-'5'1; = v (t v, (t ' | "B231
vit) = Yt )+ py,t) (B2-31)

From Figure B2 the final position of _{o(t) is

r (tp) = pplty) _ (B2-32)
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where, from (A13-2)

t = t (B2-33)

pT ~ P17

and Pr is the position of the target body obtained from the ephemeris. The
parameter T, is not presc ribed by the boundary conditions and can, without

loss of generality, be set equal to zero.

The two position vectors given by (B2-29S and (B2-32) define a Lambert
problem and the solution gives I, (t), shown as the dashed line in Figure B2,

and the velocities, v (t ) and v (tT)
'Now let k = T and Qp = -1 (cf. (A11-34)) with
o= IJ,T ’ ’ (B2-34)

M = 1 | (B2-35)

and substitute (B2-24), (B2-25), (B2-30) and (B2-31) into (B_1—8). Using
(A3-31) gives

5 L hper ¢ 6

Bt t)) sv(t)) = Lo - TR log 2% Vor tYptrip  (B2-36)
-1

D(tp t) v(t) = p™ (¥ o - Vo) + b + pig (B2-37)

Solving for i\_{(to) and XQT gives

) -1 1 Pt
§__"_(to) = Bty t)) L - TT'_log(Zn ) Yer

Yo+ pby (B2-38)

2 , ' 2
Vor = Yp*#Dlqty) 6v(ty) - wby - kg . (B2-39)
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These two expressions are not explicit since XmT appears in (B2-38) and
§l(to) appears in (B2-39), However, if (B2-39) is substituted into (B2-38)
an expression involving only fﬂ(to) results. Rather than solving such an

expression for é\_f(to) the solution can be obtained as follows:-

1. Solve the Lambert problem defined by (B2-29) and (B2-32).. This
gives lo(to) and zo(tT)'

2. From (All-22)

Vo o= v (tp) - polty) | (B2-40)

where p (t..) is obtained from the ephemeris.
Brity

¥

3. ‘Let XmT = Y-T' -This gives the zeroth order excess velocity.

4, Evaluate (B2-1) - (B2-26).

5. Evaluate (B2-38) using the results of step 3 and 4 and with ET =

- This gives the first order velocity correction,

6. Evaluate (B2-39) using the results of step 5 and with T]T = 0. This

 gives the first order excess velocity, . |
7. Repeat step 4 using the first order excess velocity.

8. Evaluate (B2-38) using the results of steps 6 and 7. This gives the

second order velocity correction, : - . : SRR

1

-9, Evaluate (B2-39) using the results of step 8, This gives'the second i

order excess velocity,

-10. Using the results of Steps 1 and 8 in (B2-28) gives the second order

initial velocity

vit)) = (b)) + pév(t)) (B2-41)
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11. Repeat step 4. This gives second order orbital elements at the.
target body. "

Throughout all the steps the prescribed values of £(t0), ET’ ‘;T and t remain

pT
constant., Steps 10 and 11 represent the second order solution to the boundary

~ value probiem.

B2.2 Launch Body-to-Target Body Solution

This solution is shown in Figure B3, The perice.nter time, tpk’ radius, ;k’
and inclination, ik are prescribed at both the launch planet, k = L, and the
target planet, k = T, The hyperbolic excess velocities at both planets are
unknown and must be determined. An e>phemeris is required giving positions
and velocities of the N-2 perturbing bodies with respect to the primary body, °

The ephemeris fixes the coordinate system of the asymptotic solution.

From Figure B3 it can be seen that the zeroth order ellipse pasé.es through

the launch body at t = t. and through the target body at t = t, where

L T

be = bt BTy - - | , (B2-42)

where again v can be set equal to zero without loss of generality. Then

k

EL(tL) .- : o (BZ-‘%3)

T) = Pplty) (B2-44)

where Py, and Py are the positions of bodies k = L, and k = T obtained from the
ephemeris. The two position vectors given by (B2-43) and (B2-44) define a
Lambert problem and the solution gives Eo(t)’ shown as the dashed line in

Figure B3,: and the velocities; Xo(tL) and Xo'(tT)’

Now let k = L, T with

b= g oT . . (B2-45)

Qp = +1 . | (Bg-46)
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(B2-47)

(cf (A11-34)> and substitute (B2-24) and (B2-25) into (B1-8) for each k., This
gives two equations each of which have the same left hand sides. Assuming

the position and velocity continuous at t = t  allows the two right hand sides to

be equatedlo. Using (A3-31) and (A3-32) gives

+ Bty t; )

R 1, )
VIR SRR VI P ST (s s 24 | BV
=L "My |TL TR, 98 2m; )| ~oL "L Bap,

L
' 1 breT
MpLp - My [IT " HT1°g< 28 >] YoT

| -1 . o
\H (Vor, - Yp) +8p * knp,

+Yp tpbp ' (B2-48)
- . e 1 . pLeL .
C(tT, tL) I_V:I-LQL“_ ML [TL +%L-_ log —zﬁ; XcoL + XL + H_ZD_L. + D(tT’ tL)
. | . .
. - 4 = - B2-4
{” (Vo - Yp)#8p+en = b (L yp - Vp) +op trap  (B2-49)

Solving for y_mL and y_mT gives

-1

o | 2 PR
Vou = Yy -#yp - e Blpty) T MpLp - Mo [TT

-1 -

1 “TeT>] .
- —— log — X + _Y_ + HE
np < ZnT oT T T_

- (B2-50)

1 FLL :
MLy, - My, [TL toa o8 < 25, >]KmL tYy b kb
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can be obtained as follows

=Ly

Evaluate (BZ 50) using the results of steps 3 and 4 and with :LL

-V

= - 1
B, €
L

ny,
oL T X1,

+ H_I;..L

+ Dbt ) | Vo -

5
VL + ng + W 1y,
If the excess velocities are used to calculate orbital elements then the position
and velocity at pericenter.are defined by the well known expressions

(B2-51)

(B2-52)
, L (Lo \1/2 ey
Yok = T 5.\ 7 E

P Kk \ Pk k

4

(B2-53)
The two expressions for the excess velocities are not explicit but the solution

gives lo(tL) and v _(t

Solve the Lambert problem defined by (B2-43) and (B2-44)
—o T)'

From (All-22) with k=L, T

This
vV, o= v () - By (ty) (B2 -54)
where Ek is obtained from the ephemeris
Let V
veIOC1t1es

= Vk’ k=1L,M, Thls gives the zeroth order excess

Evaluate (B2-1) - (B2-26) with k= L, M

This gives the first order V

L
oL’
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6.  Evaluate (B2-51) using the results of steps 3, 4 and 5 and with r\T

= Z“L =N = 0. This gives the first order v T

7. Repeat step 4 using first order excess velocities.

8. Evaluate (B2-50) using the results of steps 5, 6 and 7. This gives

the second order V. _,
—oL

9. Evaluate (B2-51) using the results of steps 7 and 8, This gives the -

second order y-wT'

10, Repeat step 4 using second order excess velocities, This g"i've's"

second order orbital elements.

11, Evaluate (B2-52) and (B2-53) using the results of step 10. Thi;§f:gives
second order positions and velocities at the pericenters of the hyper-

bolic trajectories close to the launch and target bodies.

pk’ pk and lk’ k=L, M

remain constant. Steps 10 and 11 represent the second order solution to the

Throughout all the steps the prescribed values of t
boundary value problem.,

Although the midcourse t1me t does not appear explicitly in (BZ 50) and ,

(B2-51) it does enter 1mp11C1t1y since all of the constants are evaluated

L o) o T

either between t. andt_ or betweent andt,.. The midcourse time is not
fixed and may be defined by -

b= (b +tp)/2 ” (B2-55)

The first order position and velocity perturbations at t = to are needed to |

evaluate the second order constants. They are obtained directly from (B1-8),
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i.e.,

Ty
) (ty) MpLp - Mgy [TL +— log < 21;—11114)] Y oL
= Bt ,tL){ np
vt (Vop, - Y /u
W\
A%} \
+ f (B2-56)
s, /1
y

B2.3 Non-linear Solutions

Evaluating (B2—3~8) and (B2-50) requires the inversion of thé B-matrix, This
inversion may tend to give inaccurate results in cases where the linear state
transition matrix is not a good approximation due to large non-linear effects,
Such cases arise if one of the endpoints is close to pericenter or apocenter of
the zeroth order.ellipse. The form of (B2-36) (B2-37) (B2-48) and (B2-49)
suggests an alternative approach, This approach has been called the non-

linear solution by Carlson. 3

The zeroth order ellipse is defined by its position and velocity, 30(1:) and }_r_o(t).

Suppose a neighboring ellipse is defined by

rL(®) = r(t) + parg () | (B2-57)

v (t) '_Vo(f) + poy () (B2-58)

where A_r_o(t) and A"lo(t) will be called the offset position and velocity, Since
E(‘)(t) and 'Xé(t) also define a two-body trajectory the offset positions and

velocities at any two times t, and t, are related by

2

Ar,(ty) ar,(t))
= @(tzn tl) (Bz-sg)
AV (t,) Av (t))
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Now define X, and lk by

Q) BicCi
Lo ™ M "M et R e 2 )] Yok T Nt ke - (B2-60)
-1
Yo = N -Vt +upn (B2-61) -

Then the midcourse solution, (B2-36) and (B2-37), becomss
= Bt t) (B2-62)
Y bv ()
while (B2-48) and (B2-49) become

=T [ =L
= <I>(tT, tL) (BZ-63)

Yt X

Now note the similarity between (B2-59) and (B2-62) and (B2-63)., This sug-
gests that (B2-62) and (B2-63) represent the propagation of offset end condi-

tions for a new zeroth order solution,
For the midcourse solution, comparison of (B2-59) with (B2-62) gives
Azo(to) = 0 (B2-64)
Ar_(tp) = X (B2-65)
Then from (B2-57)

i) = r (k) | (B2-66)
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X

) ) * KXy (B2-67)

The end points Eé)(to) and E(')(t,l_.) define a new Lambert problem, the solution
r

of which gives _(')(t), shown as the dashed line in Figure B4, X_(')(to) and X(')(tT),

Again comparing (B2-59) with (B2-62) gives
Azo(to) = 615(1:0) (B2-68)
= XT , (B2-69)
By combining (B2-41), (B2-58) and (B2-68) the initial velocity becomes
'i(tO) = vi(t) | (B2-70)

By combining (B2-58), (B2-61) and (B2-69) the excess velocity at the target

bddy becomes

. -'. i 2 l- .
— L - -
Yor = Yp-#lp-rap | (B2-71)
where
Vo = Yoltp) - Brlty) | (B2-72)

Equations (B2-70) and (B2-71) represent the non-linear solution., They replace
(Bz-38), (B2-39) and (B2-41) of the solution discussed in Section B2, 1.

For the launch body-to-target body solution comparison of (B2-59) with (B2-63)

gives
AEO(tL) = Z(—L (B2-73)
AEO(tT) =. —)S-T (B2-74)
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Then from (B2-57)
1 . - .
roltr) = r (k) +uX; o _ (B2-75)

I(t

é&

= r (tp) +pX (B2-76)

T) T
The end points r' (tL) and r' (t ) define a new Lambert problem, the solution
of which gives r t), shovvn as the dashed line Figure B5, v (t ) and V (t

Again comparing (B2-59) with (B2-63) gives

I
=

AV _(t (B2-77)

L) =L

INKC:

1
~

) = It (B2-78)

By combining (B2-58), (B2-61), (B2-77) and (B2-78) the excess velocities

become

Voo ° ‘Y_L‘-HQL -“ZQL (B2-79)

Vor = Vi & p. Nr ' , (B2-80)
where

Vio= wiitp) - ppity) (B2-81)

Vg o= hleg) - Byl . = jtf(1_32-82)

Equations (B2-79) and (B2-80) represent the non-linear solution. Theyl'r,eﬁlace
(B2-50) and (B2-51) of the solution discussed in Section B2, 2.

Since )_gk is a function of \lmk the non-linear solutions, like those of Sections

B2,1 and B2.2, must be evaluated in a sequence which uses the bést available
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approx1rnat1on for V ok’ i,e., the nth order solution for \imk requires the
(n- 1) order value of Kmk to evaluate the offset ehdpoint )Sk
The non-linear solutions require more computation time than the linear or
standard solutions since solving a second Lambert problem is, in general,

- ‘
more time consuming than inversion of the 3 x 3 B-matrix.

B3 APPLICATIONS OF THE BOUNDARY VALUE SOLUTIONS
The solutions of Section 3 can be used to solve several boundary value prob-

lems., They are discussed in the following sectlons

B3.1 Earth-to-Moon

The simplest earth-to-moon boundary value problem is shown in Figure B6.

‘The initial time, to’ the initial position relative to the earth, -E(to)' and the

pericynthion radius, , inclination i,,, and time, are all prescribed.

. Pr T tpT’
The initial velocity relative to the earth, _\i(to), is unknown and must be

determined,

This problem is solved using the midpoint-to-target body solution of Section
B2.1. The primary body is the earth and an ephemeris is required giving
the motions of the moon, sun and any other significant bodies in cartesian
coordinates wiéh the earth at the origin. Although the sun's mass is large
compared to the moon's mass, its effect is diminished by its great distance
from the earth. As discussed in Section Al, 2 both the moon and sun contrib-

ute effects of order u where W is the dimensionless mass of the moon.

In this problem the subscript T of Section B2, 1 refers to the target body which
is the moon, The effects of the sun and any other bodies enter only through

the constants X-T’ 8,

7 o 2nd g

B3.2 Earth-to-Moon Midcourse

In the previous section the initial position, z_(to), was implicitly assumed to
be close to the earth, The same analysis may also be used for a midcourse
maneuver where the position, E(to); represents a point between the earth and

the moon as shown in Figure B7., The solution is identical to the Earth-to-Moon
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solution of the previous section. Assuming the velocity, y_(t;), just prior to

the midcourse maneuver is known, the velocity correction is given by
av(t) = vit) - v(tD) (83-1)
where '}L(to) is determined from the asymptotic solution,

B3,3 Interplanetary Midcourse

The interplanetary midcourse problem is shown in Figure B8. The initial
time, to’ the initial position felative to the sun, E(to)’ and the pericenter
radius, P inclination, iT’ and time, tpT’ at the target planet are all pre-
scribed. The initial velocity relative to the sun, 'X(to), is unknown and must

be dete rmihed.

This problem is also solved using the midpoint—to—ta.r‘get‘body solution of
Section B2.1. The primary body is the sun and an ephemeris is required
giving the planetary motions in cartesian coordinates with the sun at the
origin. In this problem the subscript T refers to the target planet and the
effects of all other planets enter only through the constants Y—T’ & E’—T
and Depe

- B3.4 Interplanetary

The interplanetary boundary value problem is shown in Figure B9. The peri-
center radius, Ek’ inclination, _ik, and time, tpk’ are presc‘ribed at both the
launch planet, k = L, and at the target planet, "k = T,” The hyperbolic excess

velocities at both planets are unknown and must be determined.

This problem is solved using the launch body-to-target body solution of Sec-
tion B2.2. The primary body is the sun and the same ephemeris as is used
in the interplanetary midcourse solution is required. In this solution the

perturbing effects of the planets from t=t_tot = to are included in the con-

L

stants Y., &, —Q-L and Uiy while the effects from t = t,tot=ty are included
‘in'Y

131



Target

Planet T 3
\
\
r(t)
Pty
) - ®

/ Launch .

Planet -

r(t,)
Sun

Figure B8. Interplanetary Midcourse Solution
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B4 SPECIAL MOON-TO-EARTH SOLUTIONS
In this section two special moon-to-earth problems are considered. In both

problems the boundary conditions are the initial and final times, t, and te,

1
the initial position relative to the moon, 'li(tl), the entry radius relative to the
earth, T the inclination relative to the earth, ie’ and the entry flight path
angle, Ye. Also in each problem the trajectory prior to t = 1&1 is assumed to

be an orbit about the moon with velocity \i(tp

just prior to ty. The first prob-
lem involves finding the velocity \_/_(t-llh) which results in a trajectory satisfying

the earth entry conditions. This constitutes a single impulse problem where

+ - .
AV, = V(] - Vi) (B4-1)

is the impulsive velocity.

In the second problem the velocity after the impulse is assumed to be of the

form
V(E]) = (1+ 1) VD , | (B4-2)

which gives an impulsive velocity of

(B4-3)

The new velocity does not necessarily result in a trajectory satisfying the
earth entry conditions and a second impulse A\_/_Z is applied at t = t2 where

t, - tl) is small COmpafed to thge total flight time, (te - tl). The second

2 4
impulse must give a trajectory satisfying the entry conditions. This consti-

tutes the two impulse problem.

B4.1 Modified Lambert Problem

In the standard Lambert problem two position vectors are prescribed as well
as the flight time from one position to the other. Solution of the problem
gives the two-body trajectory connecting the two positions., Lambert's

theorem is stated in functional form as
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t, -t = Fla, xp +x,, c) o ' : (B4-4)
f{'f .AU «1 bhs )
where
2 2 1/2
| c = (xl + Xy + Z?CIXZ éos 8) (B4-5)
AR ST : DR
When the two position vectors are given
cos ® = (x - §2)/(xlx.2) (B4-6)

Solution of the Lambert problem requires solving (B4-4) for a. Once a is
known a set of equations is solved to eventually give x(t). Several forms of
(B4-4) have been proposed, all of which require numerical techniques to

solve for a.

For certain problems with prescribed entry conditions the final position X5 is
.not known, only its magnitude is given., However the inclination and entry
flight path angle are also prescribed and allow for a solution. The angle 6
between the two positions is defined as

0 = f,-f ' (B4-7)

where f1 and f2 are the initial and final values of true é.noma.ly given by

-1 Fa(l-ez) - x - ’
fl = COS 1 , msf <2u (B4-8)
-1 . : L ex, 1 : :
¢ = -1 a(l‘ez) - X2 < f. <2 B4-9
2 = cos e, LTS, S 2n (B4-9)

The range of f1 and fZ' comes from restricting the flight time to be less than
that for © = 7 and having the entry before perigee. The eccentricity can be

written as
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e = [az + x5 (x2 - 2a) cos2 Y2]1/2/a . . (B4-10)

where YZ is the flight path angle at t This modified Lambert problem

requires a simultaneous solution of (B42-4), (B4-5) and (B4-7) - (B4-10) for
a, ¢, 0, fl, f2 and e, i,e.,, six equations for six unknowns,

In Section B2. 1 the approach of Ba.ttin5 was used to determine the ascending
‘node of the inner solution. A similar approach is now used to determine the
ascending node of the modified Lambert solution. Let the initial position X,
have components ‘(gl, Ny Ql) and, using Figure B2 with \Lw replaced by Xy

define

sin A = ”1/(§21 N ni) 1/2 (B4-11)
cos N = gl/(g? + ni) 1/2 ' | (B4-12)
tan ¢ = gl/(g? + ﬂzl) 1/2 (B4-13)

Since the plane of motion must contain X, the ascending node must satisfy

Q= Nxo+ (1x1)n/2 - (B4-14)

where
"¢ = tan o/tani (B4-15)

and i is the presc ribed inclination. The * sign indicates two possible solutions

satisfying the prescribed inclination. The unit normal is now defined by5

n = (sin Qsini, -cos Qsini, cos 1) o ' (B4-16)

Using standard formulas for'elliptic motion (cf Battin) the initial .position and
velocity are ‘

x(t)) = x (B4-17)

=1
' 136



where
V.(t)) = e sin f,/(nab) (B4-19)
Viity) = (1 +e cos £;)/(nab) : ~ (B4-20)
and |
- 27372 (B4-21) .
b = a(l - e2)/2 | (B4-22)

The final position and velocity are

x(t,) = %,
*2 :
o (cos @ x + sin @ nx x,) (B4-23)

x(t,) = ;1; [Vr(tz) xp + V(L) I_I_X_JE_Z] | (B4-24)
where

V_(t,) = e sin f,/(nab) | (B4-25)

Vylty) = (1 +ecos f,)/{nab) | - (B4-26)
The solution at any time t is given by (A6-2), (A6-5) and (A6=6), i.e.,

x(t) = £(t) x(t)) + g(t) X(t)) (B4-27)
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where

f(t) = 1-a(l - cos AE)/x, - (B4-28)
g(t) = (x, sin AE)/(na) + e sin B, (1 - cos AE)/n (B4-29)
and |
AE = E - E, | ~ ; ' (B4-30)

The eccentric anomaly E is defined from , i

n(t - tp) = E-esinE ‘ (B4-31)
or by ’
sin E = (l.- ez)l/2 sin f/(1 + e cos f) o ' (B4-32)
] BERAN
cos E = (cosf+e)/(l +ecosf) . (B4-33)

Since e and _fl are known (B4-32) and (B4-33) can be used to determine El‘
Then from (B4-31) the time of pericenter passage, tp’ is :

/

t, o=t - (B - e sin E,)/n |  (B4-34)

The equations derived in this section completely define a two-body ellipse
satisfying the prescribed values of the initial position, X the inclination,
i, the final radius, X5 the final flight path angle, YZ’ and the time tz - tl,
where both t, and t, are given.

B4.2 Single Impulse Solution

B4.2,1 Outer Solution
The boundary conditions which are prescribed for the outer solution are the

earth entry time, te, radius, T inclination, ie’ and flight path angle, Ye.
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Thus in the modified Lambert problem the subscript 2 is replaced by e, i,e.,

tz’ =ty _. (B4-35)
Xy = X, (B4-3l6)
i, = i | | ‘ ~ (B4-37)
Y, = Y _ (B4-38)

An additional boundary condition for the outer solution is the initial time .
“The initial position for the modified Lambert problem is taken as the position

of the moon at t = tl, i, e.,

X, = Ppgity) | (B4-39)

This forces the Lambert solution to pass through the center of the moon as in

the earth-to-moon solutions, /

Solution of the modified Lambert problem gives the zeroth ofder outer solution
from (B4-27), i.e.,

T (t) = x(t) : : ' (B4-40)

The position and velocity at t, are given by (B4-17) and (B4-18)

1

rty) = x(t) (B4-41)
vo(t) = X(t)) (B4-42)

and at te by (B4-23) and (B4-24)
r(t) = x(t)) | (B4-43)

v () = ‘g(tz)_ ' . (B4-44)
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The boundary conditions on the higher order outer solutions come from (32-29)
and (B2-30)

r(ty) = %(te) + pzl(te) + |J.2 Ez(te) . (B4-45)
';l'(te) = Xo(té‘) tuvy(t ) + Hz y_z(te)‘ B (B4-46)

The effect of the higher order boundary conditions will be considered shoi'tly.

No further information about the outer solution is reqﬁired at this point.

B4 2.2 Inner Solution

"The éhly'bOundary condition prescribed for the inner solution is the initial posi-

tion &M at t = ty- However B—M is actually a function of the inner variable
Sy = (- tpM)/p (B4-47)
where tpM"is the time of pericenter passage of the inner solution and = bape

the dimensionless mass of the moon, From (Al3-2)
(B4-48)

where tM and ™ must be determined. (In the previous boundary value solu-
tions it was stated that T could be set equal to zero without loss of generality,
The effect of a non-zero T will be demonstrated in the next section.) When

t=t, t}nen SM = SMl and the initial ppsition 1s B_(SMI).

From (A12-54) the hyperbolic excess velocity is

v .. = (U,,, V.., W

The excess velocity and the initial position are sufficient to determine the

inner solution as follows:
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"The position and velocity at any time S are given by3

(B4-51)

&M(SM) = RM(SM) cos M(SM) e, t RM(SM) sin M(SM) e )
)| .= - -

XM(SM) = - 71\; [mn fM(SM) e, + [eM + cos fM(SM)] Sb] (B4-52)
where

Ry = lI_{_Ml ‘ (B%—53)

— = =2 1/271/2 o

Lyp * [aM (eM - 1) ] (B4-54)
and TM is the true anomaly, The unit vectors ga and gb lie in the orbital plane
with E—a directed toward pericynthion as shown in Figure B10,

Figure B10. Orbital Plane Coordinates for Inner Solution
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Now let

Ryt = BmGwmt!
Vi = YauSur!
fvr = B Smr)

Then (B4-51) and (B4-52) may be solved for [ and ey giving

. - eM+cos fMl R ) RMliln fMl v
—a IZ —-M1 o ,VM =M1
M
sin_fMl B—Ml cos?M1
& == VI T VYm1
ﬁM M. : .

Substituting (B4-58) and (B4-59) into (B4-51) gives

~-2 _ —_ —~2
Ry = [fM - Ry * Ry cos By - fMl)] RMi1/im
+ R, R sin (fM—fMl)'\_/_Ml/ﬂM

M "Ml

Now define ¢ by

_ lim 11M
and ¢ by
lim = -
A SR Ve VS L
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(B4-56)

" (B4-57)

.(B4-58)

(B4-59)

(B4-60)

(B4-61)

(B4-62)



Then, from (B4-60) and (B4-61)

R

e =
—_

v

/. Solving for Y—Ml gives

1 M1l .
-= (1 -cos ¢) 13M1+7M—51n¢\iM1

v - IZM zch + (1 - cos. ¢) IiMl
M1 Ryrp sin ¢ V°°M IM sin ¢ Ry
1
where e has been replaced by Xqu using
Lo °© XmM/Vch

(B4-63)

(B4-64)

(B4-65)

i, e., the radius vector becomes parallel to the velocity vector at infinity

<cf. (A12-58)).

- Now define Y, and the unit vectors e  and e

B

The velocity V can be written

—M1

\ =V

VM1 cos Yl ga+V

M1 M1 Sin Yy e

p

Also

e =

0 cos¢ga+s1n¢g

P

Eliminating e , gives

p

v = VMl (cos Y1 - sin Yl/tan ¢) ga+V

M1
Using (B4-65) and

e, = R

o _Ml/R

M1

143 .

as shown in Figure Bll,

M1 sin Yl/sin $e.

)
1

(B4-66)

(B4-67)

(B4-68)

(B4-69)



Figure B11. Orbital Plane Coordinates at t =t

1
gives , :
) sin VY R sin Y v
V. = V cos Y, - + Vv - (B4-70)
M M1 < 1 tan <p_> RMl ',an.,S.lnq’.VcoM
Equating coefficients of V_, in (B4-64) and (B4-70) gives
lM = RMl VMl‘_sin Yl ’(B4—7"1)

i
1

which is simply the definition of the scalar é.ngular momentum which agrees

with (B4-54). Equating the coefficients of ng gives
- PR ) e R !
sin Y1 (1 - cos ¢)
VM1 <cos Yi - T ¢> = _[M tan ¢ ‘ - : (B4-175)
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Eliminating Yl using (B4-71) and solving for VMl givesb.

2 7
VMl G

+

M cos ¢, (1-cos ﬂ]_z ' (}34-"{'6)
1

M
RIZ\/[ RMI sin ¢ £M4751n ¢

From the conservation of ene rgy

2 2 . .
-t e (B4-77)

Substituting (B4-76) into (B4-77) a.nd solving for?M gives

_ RMl VmM sin ¢ 4
2

Ly, = 1+ 1+ -
RMl Vw-M(1+cos o)

(B4-78)

M 2

where the plus sign'is used in front of the radical in order to satisfy (B4-54).

Using (B4-78) in (B4-64) eventually gives

4

1
v = 5 |1+ [1+ v
M1 2 2 —oM
Ryri VcoM (1_+ cos ¢)
' Vm . !
TR L — Vel (B4-79)
M1 . I%Ml VooM(l+Cos ) B : S

. 1

This expression gives the initial velocity Y—Ml in terms of YmM and BMI since

{

cos ¢ = Ry - VY o)/ Ry Vi) (B4-80)

o
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Finally the inclination is defined by

cos-i_M = e,* H * (B4-81)

where I—_IM is the unit normal to the orbit plane and is defined by

Hy = Ry x Y 7/ v (B4-82)
Therefore, combining (B4-81) and (B4-82) gives
cos iM = ('33 . &Ml X YMI)/EM | {B4-83)

Substituting (B2~11) and (B4-54) into (B2-10) gives

- 2. 1/2- 2. : : =
Pr = [(1 + VoM 2M> - 1] /va (B4-84)

It was shown in Section B2 that prescribed values of the hyperbolic excess
velocity, the pericenter radius and the inclination are sufficient to determine
‘the inner hyperbola and its two constants, éMo and C——Mo' Equations (B4-83)
and (B4-84) give the radius and inclination as functions of the excess velocity
‘and the initial position vector. It has therefore been shown that the excess
velocity and initial position do indeed determine the inner hyperbola as was !

stated at the beginning of this section. o ’ 3

A final parameter which must be determined before proceeding to the boundary

value solution is T In the previous boundary value solutions it was stated

‘that T Was arbitrary. Such is not the case now, as can easily be shown. The
hyperbolic eccentric anomaly, F, at time SM = SMI is given by the standard
expréssions (cf. Carlsons). .

F. = (3 o 4-
cosh F1 | (aM )/(a.M M _ . (B4-85)
sinh F, = (V )/ (e 1/2) (B4-86)

1 7 YOvmiT Ema M M i
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Then from Kepler's equation, (A9-2),

Sppy = (EM sinh F, - F)) /HM , (B4-87)
and, from (B4-47) and (B4-48)
(S . :SMI = () =ty - B T /HM . (B4-88)

The time tM is the time at which the zeroth order outer solution passes

through the center of the moon, But from (B4-39)

t =t ‘ . . (B4-89)

s - -s (B4-90)

(Note: It would be possible to choose tM‘different from t and.still obtain a
solution, However, the value of tM is required before Sl can be calculated
because the inner solution requires knowledge of the zeroth order outer solu-
tion to get the zeroth order approximé.tion for XwM_. This means that tl’ tM

and S1 are always fixed in (B4-88) and T,, is then given by

M

. ™ = SMl + (t1 - tM) /n (B4-91)

“Thus T,, is never arbitrary. (The choice of tM = t1 gives the simplest result.)

M

B4,2.3 Boundary Value Solution

The single impulse boundary value problem is shown in Figure Bl2. It is
(Esimilar to the earth-to-moon problem shown in Figure B6, The te';rminal

conditions at the earth are given by (B2-27) and (B2-28) with to = te' From
{+Figure B12 ‘

r(t) = x(ty) o (B4-92)

147



uoyniog YiIeq -03-uooy asdury arSuig

-

‘214 2an31g

m7 | A,_zasm .

148



therefore

rylte) = 1,(td = 0 ~ (B4-93)

apd,_ as in (B2-31), let

Bv(te) = v (te) + 1 v, (te) o . (B4-94)
Now let k = M with

Y : (B4-95)
Q. = +1 S . (B4-96)

and substitute (B2-24), (B2-25), (B4-93) and (B4-94) into (B1-8), Since

tM = t1 {(B1-8) reduces to | : :
B(t,, t) dvite) = I_J_M - [TM + ﬁ.l iog <“§%I1.eM> \—,ooM Yt P_rzM (B‘4-97)

M M
Ditys t) Su(t) = v (Y SV + Sag B g (B4-98)

where .z
Vo = v (E) - By (8) A (B4-99)

should not be confused with XM(SM) defined by (B4-52), Solving for 6'w_/_(te)
and chM gives ’

¥R EMl , (B4-100)
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VoM = Yt B Dl te) 6Y(E) - ubyy - 1"y (B4-101)

These two expressions are not explicit since V and 6'X_(te) appear on the

oM
right hand sides. The solution is obtained from the following steps:

1. Given the initial time tl solve (B4-39) and (B4-41) for £o(t1) using

the ephemeris for p, (t,).

2. Using the prescribed terminal values of te’ T Ye and ie solve the
modified Lambert problem given in Section B4, 1, This gives Xo(tl),
r_o(te) and '_Yo'(te).

3. Solve (B4-99) for \_/'M where p_M(tl) is obtained from the ephemeris,

ke

-V his oi : Lty
4, Let y_mM \_/’M This gives the zeroth order excess velocity

evaluate (B4-78) - (B4-84),

5, Using the prescribed initial position B—Ml

6. Evaluate (B2-1) - (B2-26) and (B4-85) - (B4-90).

7. Evaluate (B4-100) using the results of step 6 and with éM = 0. This

gives the first order éx(te).

8. Evaluate (B4-101) using the results of step7 and with TlM = 0. This

gives the first order excess velocity.
9, Repeat steps 5 and 6 using the first order excess velocity.

10, Evaluate (B4-100) using the results of step 9. This gives the second
order 6'X(te). '

11. Evaluate (B4-101) using the results of step 10, This gives the

second order excess velocity.,

12. Repeat step 5. This gives the second order initial velocity KMI'
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.13, The single impulse is given by

AVa = Y - Y Sm) (B4-102)
where \iM(SMl) is the velocity just prior to the impulse.
. 1A4. The entry position and velocities are given by (B4-92) and -
vite) = v (te) +udv (te) : _ (B4-103)

Steps 12, 13 and 14 represent the solution of the single impulse problem using

the standard technique. A nonlinear solution is also possible using

1 MM
bm - [TM VR <‘z—n-]4— Yom

FYy, HQ_M’ » | (B4-104)

r(t) = r(t)

instead of (B4-39) - (B4-41) as the endpoint for a new modified Lambert

3 3 1 !
pro‘blern7 So}lu{non of the new Lambert proglem gives Xo(tl) and !o(te).
Then (B4-101) is replaced by

VoM = Vv By - u? ﬂM (B4-105)
where
Vv T %) - B (t) o | (B4-106)
and (B4-103) is replaced by
vite) _ v (t) ; A : | o | (B4-107)
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The non-linear solution must also be evaluated in the sequence of the standard
solution since the right hand side of (B4-104) is a function of '\in. In practi~ |
cal applications the entry will always be near perigee and the non-linear solu-
tion is probably preferable to the standard solution since it bypasses the
errors introduced by the linear matrix B(tl, te). An even greater advantage

of the non-linear solution over the standard solution is the fact that the latter

does not satisfy the entry conditions exactly while the former does.

In the linear solution, the modified Lambert solution (the zeroth order solu-

tion) satisfies the entry conditions exactly but because of (B4-94) the first and
second order entry velocities are slightly different. Thus the entry conditions
remain satisfied only to order unity. In the non-linear solution the total entry

velocity,
2
z(te) = Vot ) vt ) T v, () (B4-108)

is replaced by (B4-107) which comes from the modified L.ambert solution.
Since the Lambert solution satisfies the entry conditions exactly so does the
total entry velocity and the entry conditions are satisfied to second order,

The non-linear solution is shown in Figure B13,

B4,3 Two Impulse Solution

The two impulse problem might be thought of as an extension of the single
impulse problem. It is, however, a somewhat different problem since the
'irhpulse which gives a trajectory satisfying the earth entry conditions occurs
not in the inner region, as in the single impulse case, but rather in a region
which is more closely associated with the overlap domain, Since both the
inner and outer solutions are valid in the overla.p-dornain it should be possible
to represent a trajectory in this region by either solution. This leads to two
alternate approaches to solving the two-impulse problem, These approaches

‘are developed in the following sections.

B4.3.1 Inner Solution

(Sy,

M)' Then according to

The inner velocity prior to the first impulse is V

-M
(B4-3) the first impulse is
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AV, = 1, V,, (8] (B4-109)

The value of I, must be chosen to give a hyperbolic trajectory after the

impulse, thus

112 <\‘/2/RM(SI)) /VM (SI) -1 (B4-110)

where RM(SI) is the initial inner radius, Then the velocity following the
impulse is

. s )

Y—M (Sl) = (l+11) !M (Sl) o (B4-111)
The velocity Y—M (S{), which is assumed known, uniquely defines the zeroth

order inner hyperbola. The elements defining this tfajectory can now be

obtained, Thev are

L= Ry (5))x Vyy (8]

= angular momentum vector (B4-112)
7]

= angular momentum ' ' (BA4-113)
N = 4T

= unit normal vector ' (B4-114)
B - v, 0% /2- 1R, (5)

M1 M 71

= energy ' (B4-115)
a = 1/(2k)

= semi-major axis . (B4-116)
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e = (1+ Zh_lzz)l/z

= eccentricity

2-3/2

=
1

= mean motion

cos_1 (N ° 9_3)

|
"

= inclination

In addition, there are the argument of the ascending node,

sin = (N ° 9_1)/Sin—i-
cos Q = - (N * g_z)/sip_i—

the initial eccentric anomaly,

sinh F, = [gM (5)) " Yy, (s’;)]/(a e)
cosh Fl = [Z+ Ry (sl)]/Z'e‘

the initial true anomaly,
sinf, = [Z @ - )1/2 sinn fl]/RM (s
cos fl, = ‘Z(g - cosh f‘l) /RM (S,)

and the.argument of pericynthion

w = W, -f

1 1
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(B4-118) .

(B4-119)

(B4-120)

(B4-121)

(B4-122)

(B4-123)

(B4-124)

(B4-125)

(B4-126)



where

[e3 = Nx Ry 5))]
R(S,) sin1

.~
sin ¢y =

(B4-127a)

3 x 8- Ry )]
R(Sl)vsin—f

€

coés & = (B4-127b)

All of these expressions are derived from standard two-body relationships. .

Finally, from Kepler's equation for a hyperbola

-F)/n o ~ (B4-128)

while the inner time is defined by (A7-27) and (A13-2) as

;o

S, = (t1 -ty - ”TM) / u ' (B4-129)

Equating (B4-128) and (B4-129) gives

STy T (tl-tM)/p-*-(Fl-e sinh Fl)/n (B4-131)
In thislparticular problem t1 is fixed and.tM is arbitrary. Putting tM = t1

gives

T = (F

M - e sinh Fl) / n (B4-131)

1
. ' .
Using the elements defined here it is possible to determine the behavior of
the inner solution when S is large using the results of Section A12. The
values of A', B' and C' are found from (A12-27) - (A12-29), the values of
T' and V' are found from (A12-38) and (A12-39) with Q = 1, and the values

of chM and EM are fpund From (A12-48) - (A12-55),
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The values of _YmM and EM can be used in the fundamental solution to deter-
mine the position and velocity at some later time, i.e., the time of the second
impulse. This approach would be followed if the second impulse were to be

added strictly in the outer domain.

If the second impulse occurs in a time period appfoxirnately 11 to 18 hours
after the first impulse then it occurs in the overlap domain where both the
outer and inner solutions are valid. Therefore, rather than using the funda-
mental solution, which includes the matching of the inner and outer solutions,
the position and velocity prior to the second impulse can be determined from
an inner, perturbed hyperbola alone. Carlson has derived somesimple -

- formulas to achieve this,

The position and velocity at any time S, where S > 1, can be found from

' 2 3 ' :
Ryo ) 1 EMZ (S) + u” Ry, (S) (B4-132)

Ry, (S) ;

1]

. 3 N
Vu G)r+u v
M, M,

2

Vg ) = Yy 6+ (s) (B4-133)

where IiMo and XMo are the two-body position and velocity,

R ) - G |R.. ) s/2-v, (58 / 3 (B4-134)
Bm, )= Gy | Fmo Y Mo | - (B4

V. (5) = Gy Ry, ©)5-V, (58] 2 (B4-135)
—M2 B M| —Mo - —Mo

and

R, = A, st (B4-136)
Rm, = 23 -

V. = 4A,S° B4-137)
~M,; ~ =3 (B4-
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The two-body position can be obtained from any standard expression, (A9-1)
is an example. The two-body velocity can then be obtained by differentiation
with respect to S or by standard velocity expressions. The equations for

B—MZ and ZMZ are simplifications of Carlson's expressions found by substitut-

ing GM, which is defined by
G = G(BM(tl)) (B4-138)

for his time averaged gravity gradient matrix. The expressions for 5M3‘and
\—IM3’ found from (A12-102) and (A12-103), make a first order correction for

the substitution of the constant matrix G,, for the time averaged value which

. M
he used. Using GM simplifies his expressions considerably with very little

loss of accuracy,

The eXpre"ssions for R and V were derived using Taylor series expan-

M2 M2
sions3 while the expansion for RMZ

The two forms are equivalent if the product nS > 1, however the algebfa neces-

in Section A1l2 is an asymptotic expansion.

sary to show this is long and tedious. For moderate values of nS, (A12-81) is

not a good approximation and (B4-134) is preferred.

B4.3,2 Overlap Solutions ‘

The second impulse is to be applied at some prescribed time t = tz. The . .-
impulse must result in a trajectory satisfying terminal constraints at a

later time., In order to calculate the impulse it is necessary to determine

the position and velocity at t;, i,e., at the instant just pfior to adding the

impulse. There are two possible ways of achieving this, -
The first method involves the use of the fundamental solution. This requires
knowledge of a zeroth order outer solution, As in the single impulse solution,

(B4-39) - (B4-41), let

T (t)) = By, (E) | | | (B4-139)
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This gives the initial position, Now solve (B4-99) giving

v (t)) = éM (t) + Vg (B44140)

This is the initial velocity. In other solutions XM has been used as the first
approximation to \_me. Since V ./ was determined in the previous section

let

Vo = Vo (B4-141)

Then at any time t the zeroth order solution is given by (A6-2) and its

derivative
r(6) = () (k) +g (&) v (t) (B4-142)
v = E @)z () +g () v () _ (B4-143)

These expressions can be used to find the zeroth order position and velocity
at t = tz.

Since the moon corresponds to the launch body the perturbations at t, are
found from (B2-56) by letting t, =t

terms from (B1l-8), The result is

2 L = M and adding the second order

— — 1 e
zy(tp) ez, () Iy - [TM t 3 log <§?>}‘—%M
~ IO
vylty) + v, (t) . 0
Ym Em |
+ . (B4-144)
Sm M

where the constants \_(M, éM’ -E’—M and Ny 2re evaluated along zo(t).
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The position and velocity at t = t_ are found by combining (B4-142) - (B4-144)

2
giving
) = gou;)+-uziwg)+-p2£2u;) (B4-145)
v(t) = _Xoa;)+-pzla;)+-H2X2a;) (B4-146)

By c'o'nside“rin‘g all of the error terms in Sections Al2 and A13 it can be shown
that in the region of interest the dominant error in (B4-145) is 0<p3/(t2 P t‘1)2>,

The following table for position error can be constructed:

t2 - tl’ hours 5 11 18 20
o . 2/3 1/2 2/5 - 3/8
Ot, - ty) n / n / 1 n
2 1 , , .
3 2 1.67 2.00 2.20 2.25
O(u™/(t, - £1)%) n " n b
Thus as t, - t, increases the theoretical error decreases (i.e., thg exponent

2 1
of p increases), Although the first term ignored in (B4-145) is order |_L3 the

error shown in the table is somewhat larger.

The second method does not use the fundamental solution but rather the per-

turbed hyperbola discussed in the previous section. Solving (A7-26) for r

gives
r = BM + HP_\M (B4-147)
and differentiating with re'spect to t gives
dR :
dr ot =M ’
dt M = dS _
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Letting dr/dt = v(t) and dI_{M/dS = KM(S) gives
E_(tz) = EM(tZ) + pf_{_M(SZ) (B4-149)

(B4-150)

where Pm and P—M are the position and velocity of the moon at t = t; and

IiM(Sz)__ and XM(SZ) are obtained from (B4-132) - (B4-—138‘). The value of SZ

is fpund from

S, = Sl+(t-2-.tl)/p, (B4-151)

Based on Carlson's reSults3 the dominant error in (B4-149) is O(H(tz - t1)2>

which results in the following table for position error:

t2 - tl, hours 5 11 18 20
2 2.33 -2. 00 1.80 1.75
0 (u(t, - t;)7) " o K i
This solution has an increasing theoretical error as t2 - tl increases (i.e.,

the exponent of . decreases), which is just the opposite of the fundamental
solution, At 5 hours the perturbed hyperbola is more accurate, at 11 hours
the accuracy is the same for both solutions, and at 18 and 20 hours the funda-
mental solution is more accurate. It would therefore appear as if one solution
or the other should be used depending on the value of t_, -~ t.. The following

2 1
points, however, should be,considered:

1. The perturbed hyperbola solution was evaluated for a hyperbola of

moderate energy. At 5 hours the actual error was p2'81 rather

2.33 2. 05

than the predicted p At 20 hours the actual error was

rather than the predicted Hl' 75. Thus the actual errors are less

than predicted.
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2. Numerical analysis has shown that errors associated with the second

order fundamental solution are usually larger than predicted.

3. The perturbed hyperbola solution is much easier and less time con-
suming to evaluate since it does not involve any definite integrals and

uses basically two-body functions.

Although either (B4-145) and (B4-146) or (B4-149) and (B4-150) give the posi-

tion and velocity at t2

the latter is preferable.

B4.3.3 Outer Solution

The outer solution will be that part of the trajectory which follows the second
impulse. The boundary conditions are the position E(tz) and the entry condi-
tions of time, te’ radius, T inclination, ie’ and flight path angle, Ye. In
the modified Lambert problem the subscript 1 is replaced by 2 and the sub-
script 2 replaced by e so that '

tl = t2 (B4-152)
X, = z(tz) (B4-153)
t, = te (B4-154)
X, = Tg (B4-155)
12 = ie (B4-156)
Y, = Y . | (B4-158)

Solution of the. modified Lambert problem gives the zeroth order outer solution

'£o(t) for t = t2'

The first and second order outer solutions are obtained directly from (A6-‘10)
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giving

£, () + () 1, (te) + pr(te
= a(t,t)
y_‘l(t) + pz‘z(t) vylt) + w5 (tg)
Lo (tte) Ly (b te)
where
t
Lo lbt) = / B(t, 1) F,(7) dv (B4-160)
te
t
Ly bt = / D(t, 7) F, () dr (B4-161)
t
e
t
Lo (6t) = / B(t, 7) E,(7) dt (B4-162)
t
[S]
t
Ly (ht) = / D(t, 7) E,(7) dv (B4-163)
&
e

B4, 3,4 Boundary Value Solution

The two-impulse boundary value solution is shown in Figure Bl4. The termi-
nal conditions at the earth are given by (B2-27) and (B2-28) with to = te' From
Figure Bl4

(k) = r(t) .  (B4-164)
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so that
il(te) = zz(te) = 0 (B4-165)
Since the velocity perturbations do not vanish let

dbv(ty) = y_l(te) + ”Xz(te) (B4-166)

¢

The outer position and velocity at t = t; is then

+ ot +
x(t}) r (t]) /B(t], t,)
+ + + :
vit,) v, (t5) DIt} to)
(th, t) T, o(th, ¢t
Lio%2e %\ [Lz02r %
+ + g (B4-167)
: + +
However, from Figure Bl4
r(t3) £(t5)
= . . ' - (B4—168)
+ e '
v(t3) v(£) + AV,
and
+,o_ - : : )
x(ty) = r () = r(t) (B4-170)

2

where z(t;) is found from the inner solutiﬂon.' Then (B4-167) reduces to

_ + -1 + +
bV(te) = -B(th, t) [L‘lo(tz, t) + pLyo(tas te)] (B4-171)
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AV, = go(t;) - ¥(t,) +p [D(t;’ ty) ovi(t,)

+ 2 +
+ le(t2: te)] tu —I:Zl(tZ’ te) (B4-172)

The solution is obtained from the following steps:

)s Qelocity XM(S_I_) and impulse I

1. Given the initial position RM(S 1
evaluate (B4-111) through (B4-131).
2. Using the results of step 1 and the appropriate equations in Section

A12 find the position and velocity at ty from either (B4-142) - (B4-l46)
or (B4-149) - (B4-151). '

3. Using (B4-170) for the initial position and (B4-154) - (B4-157) for the
terminal conditions solve the modified Lambert problem of Section

B4.1. This gives Xo(tz)’ _{o(te) and Xo.(te)'
4. Evaluate (B4-171). This gives the correction to the entry velocity.

5. Evaluate (B4-172). This gives the second order AVZ, the second

~ impulse.
6. The entry position is given by (B4-164) and the entry velocity by

vit) = v (t ) +pdv(t) | (B4-173)

Steps 5 and 6 represent the standard solution for the two impulse problem. As
in the single impulse solution the entry conditions are not satisfied exactly
because of the non-zero 6V(t ). A non-linear solution which satisfies the
entry conditions exactly to any order is obtained by first rewriting (B4- 167)
and (B4-168)
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x () 0 ol te)\ [ Tooltarte)
+ - M - u
v(£) AV T, (th e ) C, (tht)
2 2 =11'"2 21V 2
r (t1) 0
— + '
- +pd(t], ¢ ) | , (B4-174)
v (tz) sv(t,)

The right hand side of (B4-174) is the sum of a two-body solution plus the
propagation of initial variations at t‘e" Thus the right side is a pure two body

function and can be replaced by

- + ‘ +
| EALPY) 0 Cpofta te) Doolta te)
| 2
| + - e - e
‘ ' v(t) AV r. (t5t ) ottt
| A RAL) ) ALt te Doplbp te
q
’ +
|
x o (t5)
= o . (B4-175)
4 +
vo(ts)

This defines a new modified Lambert problem for which the new initial posi-

tion replacing (B4-170) is

r' (t+

1
X r5(t5)

- + 2 +
= Z(tp) - wLyolt t) - w Lp0(ts te) o (B4-176)

Solv1ng the new modified Lambert problem between x! and the entry conditions

-1
g1ves v (t ) zo(te) and Xo(te)' From (B4-175) the velocity impulse is

— s o - + 2 + _
AV, = wifty) - V() + uly, (b5, t) + p Ly (t5, £ ) (B4-177)
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while the entry position and velocity are

xit))

i)  (B4-178)

n

z(te) vo(t) . C B4-179)

Since (B4-176) and (B4-177) come from the modified Lambert solution they

will satisfy the entry conditions exac_:tiy to any order. The non-linear solution

o

is shown in Figure B15,

Second
Impulse

Figure B15. Non-Linear Version of Two-Irripulse Moon-to- Earth Solution
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Section C

EVALUATION OF PERTURBATION TERMS
Cl TYPES OF PERTURBATION TERMS ' o _
» Tﬁe n-th order outer solution is given by (A6-10). it consists of two types of
terms: (1) two-body prépagation of the nth order initi.al conditions, aﬁd (2)
integrated effects of the nth order perturbations due to the N-2 perturbing
bodies. Both of these effects enter into the boundary value solutions through
the cohstants lk» Ek, _Q_'k', and Nk which in turn are functions of partial
derivative matrices and definite integrals (plus algebraic and trigonometric
terms). Formulas for evaluating the partial derivative matrices and the . .

~definite integrals are given in the following sections.

C2 PARTIAL DERIVATIVE MATRICES

The partial derivative matrices are evaluated on the zer-oth order outer
solution £o(t). - The formulas given here were derived by Goodyear11 and the
notation is similar to that of Carlson. 3 Two forms are presented; the first
can be used for direct calculation of the matrices and the second is useful in

evaluating the definite integrals.

C2.1 Goodyear Formulas

The state transition matrix <I>(to, t) is a function of the two times, to and t.

The eccentric anomaly difference .
u = E -E (C2-1)

will be chosen as the independent variable.” The Goodyear formulas then

require the following functions of u:

a
ro(to)

f(to,t) = 1 - (l-cos u) (C2-2)
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£t t) =

g(tos t) =

glt . t) =

P(to, t) =

vr{tor t)

Ayt t)

RR(to’ t)
BRV(to’ t)

BVR(to’ t)

i

2 .
na_sin u

r (t)) r (t)
r (t) [ - (1-cos u) - sin u]

na (o]

1. a(l-cos u)
EEACHE

3(sin u-u) + e sin Eo(l-cos u)2

+ (l-cos u) e cos Eo sin u

. 2 ro(t) ro(to)
o

- a [(l-cosgu) 4 sin2 u:I
(t)

{l-cos u)sin u
n ro(t) ro(to)

_ @ p(to’ t) (l1-cos u)sin u
- 3 - 2
nr_"(t) ’ nr "(t)
(l1-cos u)
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(C2-3)

(C2-4)

(C2-5)

(C2-6)

(C2-7)
(C2-8)
(C?-‘))

(C2-10)

(C2-11).

(cz-lzj

(C2-13)



]
vvite ) = 33
n- a

[3(s%n u-u) + (l-cos u) sin u] (C2-14)

_ t ,t) = na2 cos u 4 1
RR'0’ - ?o(t) ro(to) ro(t) ro(to) ro~2(t)

4

na  P(t ,t)
+— sinu - — ‘; (C2-15)
r (to) T (t) r (to)
C (t ,t) = a sinz u (l1-cos u) C2-16
RV’ T 2 r (t) r (t) (C2-16)
r (to) o o' o : _ |
CVR(to,t) = - ARR(_to’ t) ‘A (C2-17)
CVV(to,t) = - ARV(to,t) . (C2-18)
DRR(tO, t) = CRV(to,t)l : ’ (C2-19)
. a Pt ,t) .
DRV(to’ £) = (l-cos 2u.)sm u 3o (C2-20)
' nr “(t) nr_ ~(t )
o "o, . o o
Dypltyt) = - Ayl ,t) ‘ (C2-21)
DVV(to,t) =. - Bpyl(t,,t) ‘ (C2-22)

where ro(to) and ro(t) are the radii of the zeroth order outer solution at to
and t; a, e and n are the semi-major axis, eccentricity and mean motion of

r (t);‘ and
ae
= e— 1 sk -
o (¢ )sm Eo C2-23)
oo
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~After some modification Goodyear's results can be expressed in the form of

the transition matrix, i.e.,

At t) Bt_,t) A%(t_,t) B(t ,t) E*(t_, t) F* |
= . (C2-24)
* F* E*(t ,t
Clt,,t) D(t_, t) CH(t , t) D*(t_, t) (ko t)
where’
CUAN(E ) = | Bt . t) App(t ,t) Apylty t) Ayp(t ,t) Ayt t)] (C2-25)

-glt s t) Bpp(t . t) Bpylt,, 't)‘ Bygr(ty t) Byyltys t)] (C2-26)

b

artor t) Crylty ) Cyglt , ) Cyylt, t)] (C2-27)
D#(t ,t) = [ £, &) Dpp(t ) Doy (e, t) Dyplt, t) Dyylt t)] (C2-28)
I
ro(t.) go(t)T
E‘*(to, t) = £ (t,) z’o(t)T , , (C2-29)
v, (t) zﬂ(t)T
volty) v ()
o)
o)
i = o | (C2-30)
o)
o)
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1

The elements of A%, B%, C%*, and D* are all scalars while the elements of E*
are all 3 x 3 matrices, I being the identity matrix and §XT being the outer
product of x and y (the superscript T indicating the transpose of the vector).
Thus, each partial derivative matrix is the sum of five terms, >each of which

is the product of a scalar times a matrix.

These formulas for the partial derivative matrices may be used either for a
variable t, as in the definite integrals or for a fixed value of t. The unique
characteristic of this formulation is that each partial derivative matrix can
be written as a function of scalars and vectors (plus the identity matrix) which

are easily obtained from the zeroth order two-body solution.

C2.2 Modified Goodyear Formulas

Although the independent variable u was introduced in the previous section
the formulas still contained £o(t)’ ,.Xo(t), and ro(t). In the definite integréls
it is advantageous to remove this dependence on t by introducing the modified

derivative matrices

_ _o - . |
B (t,t) = —= B(t_,t) : | (C2-31)
r (t) ‘
D_(t,t) = ———Dl(t_,t) (C2-32)

and replacing r (t) and _v_o(t) in the previous formulas by

o!

ro(t) = f(t,t) xr (t ) +glt ) v (t) (C2-33)
v (®) = L, t) r (t)) + &t t) v (t,) | (C2-34)

The last two expressions are simply another form of (A6-2) and A6-3). The

4following functions of u are now defined:

u, = cos u- K(l-cos u) (C2-35)
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r (t )

o O
na

[c(1-cos u) - sin u

r (t )

0.0
na

[cos u - o sin u}

(l-cos u) sin u
nr (t)
o' o

_ (l1-cos u)2

n a

"na(l-cos u) u

4 + a(l-cos LLLZ

2 sin_ u +
fz(t ) . ro(‘to)
o o :

nu, + (l-cos u)

—uzu/n

9

u u5/(na) + B

1 rvitor t) U3

/(na) + BRV(to’ t) uy

U Ys
ay u6/(na) + BV?V.(to, t) uy

u, u6/(na) + BVV(to’_t) u,

174

. 1‘o(to)

|

(C2-36)

(C2-37)

(C2-38)

(C2-39)

(C2-40)

(C2-41)

(C2-42)
(C2-43)
(C2-44)
<§2-§§>
(C2-46)

(C2-47)

i(CZ-48)




u,/n ' .. (C2-49)

Dy = vy 44
D, = u, u,/(na) + Dpylt_,t) u, (C2-50)
D, = u, u,/(ma)+ Dpylt,t)u, (C2-51)
D3 = u u8/(na) + DVV(tO,t) u, (C2-52)
D4 = u, u8/(na) + DVV(tO,t) u, (C2-53)
After some manipulation (C2-31) and (C2-32) become
B (t ,t) = B.I+B r (t)r (¢t )X +B,yr (¢t )v (t )L
r o 0 l1—o0‘0o" =00 2 0o’ -0' o
T K ’ " (C2-54)
+ Bzzo(to)go(to) + B4 Xo(to)zo(to) ,
D(t,t) = DyI+D,r (t)r (¢t)X +D, r (t)v (t )%
r'o’ 0 l—0'0" =00 2 0'0o’ —0'0’
+Dv(t)r(t)T+Dv(t)v(t)T (C2-55)
3—0'0o’" v0'o 4 —0''0o’' 00

In these expressions for Br and Dr the outer product matrices are functions
only of to and are therefore constant for fixed to' The scalar coefficients
~are explicit functions of u (or of t through (C2-1)). Thus, ast varies‘only

the scalar coefficients need to be evaluated. -

'C3 DEFINITE INTEGRALS
The four integral constants of the outer solution, (All-86), (All-87), (All-139),

.and (All-140), can be written in the form

t .
k B
(o)
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£ | . A
K gt t) = 'n [t m F 41 7] d. (C3-2)

t
. k
K, ot t) = [ [Bit, ) Ep(r) + Lyt m) ] dr . (C3-3)
(o] .
t
k
Ky (bt ) = [Pl By + 1, ]ar (C3-4)
tO
where
Liglte ™ = gy (o 7) - Blty, 7) Ejglr) (C3-5)
I (6 = 8% (&, 7) - Dlt,, ) E ((7) (C3-6)

L™ = 85 (5o m) - Pl M Easm o (C3-8)

The &'s and F's are defined in Section All.

The integrals (C3-1) - (C3-4) cannot be integrated in closed form and must
therefore be evaluated numerically. The integrands are finite over the entire
range of T giving each integral a finite value. At T = b however, both the
F's and the I's are singular and the value of the integrand, which is actually
the difference between thS lar‘ge numbers, must be determined by a limit
prdcess. This problem is eliminated by using a numerical technique such as
Gaussian quadrature, which does not require the value of the integrand at »
either endpoint of the interval of integration. Thus the integrand is evaluated
only at interior pomts t <T<tk, whereé both the F's and I's as well as the

total integrand are finite.
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C3.1 Change of Independent Variable

The’accuracy of the integration technique for a fixed number of sub-intervals
within the interval to_s T<t can be improved3 by introducing the eccentric

anomaly through Kepler's equation

ntT = E - e sin E - : (C3-9)
Then
dr = (l-cos E)dE
n
r -
= 24K
na
Ir
= -—24du : ' (C3-10)
na

where (C2-1) has been introduced in the last step. Introducing (C3-10) into
(C3-1) - (C3-4) gives ‘ i

/uo — Toliolte ™ ’

Kol ty) = J Bl g+ ——o—— | du (C3-11)
: /uQ PD | ro—Ill(tk’T)- A
¥ ‘ - ' ! l .
| [‘10 | Ty Loglte )] |
¢ ' - : - J .b,
)= /“o Toda1(te™) 2

EZlk(tk, to) = ) Dl‘(_tk,T) EZ(T) + —na—-— du ] , (C3— 14)
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where -

T o= tk - %[u ~ e(l-cos u) sin Ek - e sinu cos Ek] (C3-15)
T :' a [1 - e.cos(Ek - u] | ' (C3-16)
u = Ek - E | (C3-17)
-and
ug = Ek - Eo | | (C3-18),

Equations (C3-11) - (C3-14) have an additional advantage over (C3-1) - (C3-4)
which ;s not necessarily one of accuracy. It is that r__ appears both expli-
citly as r and implicitly in determining L3 and EZ' With u (or E) as indepen-
dent variable, r, (u) can be_ evaluated directly. With v as independent
variable, T, (v) requires an iterative solution of Kepler's equatioh. Therefore

using u as the independent variable reduces the computational requirements.

. C3.2 Analytical Approximation for First Order Integrand

‘Even though Gaussian quadrature does not require the values of the integraﬁds
at the endpoints, the point nearest u = 0 in (C3-11) - (C3-14) at which the
integrands are evaluated may cause computational difficulties. This is
because the integrands represent the differences of two large numbers when

u is close to zero.

Theoretically the zeroth order outer solution passes through the center of th?‘

kth body at u = 0 (i.e., att = 'tk).

. problem may not satisfy this requirement at t = tk but may contain a small

Actual numerical solutions of the Lambert

residual difference between T, and Py at t = tk‘ EXpeI"ien'ce has shown.that
this small residual is greatly magnified when taking the difference between

two large numbers. Therefore it is advantageous to have the first quadrature
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point as far from u = 0 as possible., This may be accomplished by breaking

the integration interval into two parts, i.e., let each of the integrals have

the form
1:sk tk
:E(tk, to) = -+ ) (C3-19)
to tsk
u u .
o 5
= [ + f (C3-20)
u o
s
'where
u, = Ek - Esk . ' ‘ (C3-21)
and
ts - .tsk<<l (C3-22)

Over the interval from b tO b the integrands can be replaced by analytical

approximations obtained from Section All. First recall that the force El can

be divided into a singular part, ¥, , and a non-singular part, F,,- Neart, -

ls
the non-singular force can be expanded in a Taylor series

F () = E, (t)+0@-t) (C3-23)

Then; using (A3-28) and (A3-30)

Bt Eppm = B (ben + Q((T - tk)z) (C3-24)

(C3-25)

or D(tk, T) F_ln('r) Eln(tk) + Ot~ t

1)
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Substituting (C3-24) and (All 45) into (C3 1) and mtegratmg from t

glves e

sk to tk

t

k
. ] [Blte 0 B 0+ 1 g ] ar = Byl - 50+t
sk

()] b= b%72
+ O[(tSk - tk)3, p(tsk-t‘k)zl (C3f26)

Substituting (C3-25) and the defivative‘ with respect tot of- (A11;45) into - -
(C3-2) and integrating gives ' ‘

t -
f [D(t L TYE (1) 4+ 1) ( k,T)de - -[g3k+3g4k(tk)
tsk o . -

* Eln(tk)] (toy

f+o[(tsk-tk)2]' S '(c3-.27)

A similar analysis of the second 6rder int:egrals shows that over the interval

tsk's T < tk both contribute terms of order (_tsk - tk) log 'tsk -t

k|

Therefore (C3-11) - C3-14) can be written

' (t,, 7)
o lO k

’ By - ) * [93k Bty +:}-]—'?-ln(tk)] |

| | o
S tk)Z/Z e [(tsk S e )7, e - ) ] (C3-28)
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u ' r I (t,,7T)
Ko (t,t) ° D (t,,T)F (v)+ o =117k du
—11k‘“'k’ o r 'k’ -1 na

S
- E31< 3B () T E () (B - )

+ o((tsk - tk)z) ' (C3-29)

u

o . T I (t 3 T)
- _ o—=20"k
Kookt to) - / [Br(tk’ ™) Ep(r) 4 na ] du

u
S

+ o((tsk - ty) loglt_, -ty |), ' | (C3-30)
/
. u
o r I,.(t,T)
_ o—21""k
—I—EZIk(tk’ to) - f [Dr(tk’ TA) Folm + n ] du
. u .
s
+ o((tsk - t,) log|t,, - tkl) o (C3-31)

The interval (tsk - tk) must be chosen to make the effective error of each

approximation smaller than order uz. ‘Letting

_ n
tew -t = O®7) - . ‘ (C3-32)

the effective error of each integral'is

143n 242 +r
HEIO - O(p. m ) n) R T KZO -‘O‘(}LZ n log un)

142
Ky - O(“ n) mE,p - O(”Z.m log “n)
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These error are all smaller than O(}LZ) if n >1/2. In actual numerical studies

the value used was

_2/3 )
Itsk - tkl = n (C3-33)

This eliminated' the problems associated with the residual error in the
Lambert solution. If only a first order solution is desired then any n >0 will

suffice, n = 1/3 would be a likely choice.

C3.3 Analytical Approximation for First Order Solution

The second order integrals are functions of the force l:‘ which, according to
(A5-10) is a function of r and 5%. When integrating over the interval

r, (T) must be determined from (A6-11) which itself involves an

k' -1
integral function. Thus the second order integrals are actually double inte-

St =2T2t
o

grals and difficult to evaluate efficiently by numerical techniques without

using a large number of quadrature points.

An alternative approach is to approximate r, with an analytical function.
Such an approximation, valid for t near tk’ is given by (A11-78). The range
of this approximation can be extended by adding additional terms and fixing

the coefficients to give r, the correct magnitude and slope at t = t,- There-

o 1
fore (A11-78) is rewritten as

£(1“) = Ipoft) - Byy log Q (It - ) Bk [1°g Qlty - )+ l]
+ Kok (b ty) 8y (- 1) log Q (t -t )+ [glk/(to*- ty)
T E e ';o) - Bax [bg"Q’k(to - h) 1” '(t - )
. 3g4k (t,) (¢ -.tk)2 l-og Q (t ) b+ [E3k +30,, (t)
+ 6B 4 (t,) log Q (t -t ) + G K, (t,, t.)

+ Bii] (t - tk)Z/Z J,’flK (t _-' tk)3 + 95 (b - tk)4 (C3-34)
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where
Tiolt) = Altt)x (¢ )+ Bt £ ) v (t ) (C3-35)

Taking the derivative with respect to t gives

v (6 = v Blk(t-t)+EZk[10gQ(t-t)+1]

*Elk/(té" b * Kllk‘ Kt Bax ll°g Qs - tk).+ 1]

- 3yt - tl;) 2 log Q (¢ - tk)- ¥ 1] [ 34t

+ 6041 () log Q (¢, - t) + Gy K gty ) + P i) - e

+ 39 (t - t_k)z +dg, (bt ) | . (C3-36)
where

viplt) = C(t,'to)ll(to) + DIt, t(‘))‘ ‘Xl('to) (C3-37)

At t = to (C3-35) and (C3-37) reduce to

o) = ()  (C3-38)
viglty) = ¥p(t) ‘ (C3-39)
. Putting t = t, in (C3-34) and (C3~36) and. solving for P and Pk gives
4¢% ' ¢ v
1k = e 2k 2 (C3-40)
(b, - )™t - )
$ 39%
Lok = 2 3" 1k i (C3-41)
(t - tk) (tO = tk)
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where

e

$11c = 2B - Kyl to) - [511k(tk' E)+ P-Zk] (tg- ty)

- [Esk 3Lyt + Gy By ot o)

+ f_;](to - t)%/2 (C3-42)
for = - Kb to) - [E3k * G ot to)
)
(C3-43)

+"gk] (t, - t)

Equations (C3-34), (C3-35) and (C3-40) - (C3-43) give an analytical approxi-
mation for 51' which has the correct behavior at both endpoints of the interval
It is in these regions that the second order integrals are most

to <t S-‘tk'
and therefore the effect of errors in the middlie of

susceptible to errors in T,

the interval is minimized.
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