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ADDENDUM

The results of Volume 2 were discussed recently with Professor

John Breakwell of Stanford University. His comments regarding

the matching (Section A14) pointed up a deficiency in the analysis.

In order for the results of Section A17 to be valid to order |j. , the

guage function discussed in Section A14 should be p. rather than

(j.2. This stronger guage function would require the inclusion of

higher order singular terms in both the outer and inner expansions

in order to satisfy the limit defined by Equation (A14-1). The

inclusion of such singular terms is somewhat laborious and has

no effect on the results obtained from the matching and the

subsequent initial and boundary value solutions derived from these

results. The matching of such terms will be discussed in a

forthcoming paper by Breakwell and Perko.

The limits on the overlap domain depend on which singular terms

are included in the matching. The overlap domain 2/5 < o-< 1/2

found in Section A14 is valid but not unique as other combinations,

such as 1/2 < a < 3/5, are possible. An overlap domain which

includes a = 1/2 is also possible but requires the inclusion of more

singular terms than does either of the other overlap domains

mentioned. The actual choice of overlap domain also has no effect

on the results of the matching.

ll
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INTRODUCTION

This report contains the analytical derivations of the second order asymptotic

boundary value solutions for lunar and interplanetary trajectories which have

been formulated under Contract No. NAS9- 10526 for the NASA Manned Space-

craft Center. It is a supplementary document to the final report of the

contract study. Whereas the final report presents only the results of the

study effort, this document contains the step by step derivations of both the

initial value solution to the problem of N-bodies and the boundary value solu-

tions which were designated in the contract work statement.

The analysis is divided into three sections. Section A contains the derivation

of the second order asymptotic solution starting from the differential equations

of motion for the N-body problem. It includes derivations of both the outer

and inner expansions, their behavior in the overlap domain, a detailed dis-

cussion of the matching, and the solution to the initial value problem.

•

Section B contains the derivations of a number of boundary value problems

for both lunar and interplanetary applications. These derivations are based

on the results of Section A.

Finally, Section C contains discussions of how the two main types of perturba-

tion terms in the asymptotic solution are evaluated numerically. This

includes explicit formulas for evaluating the well known linear state transition

matrix.

The derivations are given primarily by showing the mathematical steps

involved. A minimum amount of discussion is presented in this document.

For expanded discussions (and a corresponding minimum number of mathe-

matical expressions), as well as numerical results showing the accuracy and

computation speed of the asymptotic solutions, the reader is referred to

Reference 1.



The notation used in this report is a combination of that of Lancaster and
3

Carlson. In general, each parameter is defined as it is introduced but some

which have only mathematical meaning and serve an intermediary role are

defined only by an equation. Sealers are written as x or X and vectors as

x or X. A matrix G(x) and a tensor H(x) are also used. In addition, a bar

over a parameter indicates that it applies specifically to an inner solution.

Finally, the order of a particular term in an expansion is given by the

exponent of the parameter (i which precedes the term, i.e., jx is order n

or O(n).



Section A

SECOND ORDER ASYMPTOTIC SOLUTION TO THE PROBLEM OF
N-BODIES

Al N-BODY EQUATIONS OF MOTION

The problem of N-bodies will be defined as follows: The motion of a small

body of negligible mass is to be determined subject to the gravitational

forces of a primary body of mass m and N-2 secondary bodies of mass * .

m., i = 1, 2, . . . , N-2, where m. « m for each i and the motion of the N-2

secondary bodies relative to the primary body is assumed to be a known

function of time. Denoting the position of the small body relative to the

primary body by £* and the positions of the secondary bodies by £.* the

differential equation for the small body motion is

dt * "
+ (Al -1)

where G is the gravitational constant.

Now define dimensionless variables

r = r ' / L

* , *
t = t /T

( A l - 2 )

(A l -3 )

where

* • * th
L = a.. = semi-major axis of the motion of the j body

J

th
2irT = P. = period of the j .body motion

(Al-4)

(Al -5 )



Also define the dimensionless mass ratios

LI. = m./m^i i o (Al-6)

Then (Al-1) becomes

N-2
dS r V
-~T = 3 " ^ ^i
dt r i=l x

(A 1-7)

(A 1-7) is the dimensionless differential equation of the small body where the

unit of length is now L* and the unit of time T*. Defining

f(x) = - x/x

X =
d2x

dt
(Al-9)

reduces (A 1-7) to

= (Al-10)

where

N-2

X " ( A l - l l )

In (A 1- 10) V and f_(_r) are both of order unity (zero order) while F is .order fj,.

(first order), except in the exceptional case where r - p. = 0 (\j..) when F_ is

order \±. . However, in the analysis of t ransfer trajectories the exceptional

case is the case of interest since transfer trajectories have at least one-close

approach to a secondary body. The change in the"order of F indicates that
4" :••.

(Al -10) represents a type of singular perturbation problem . This assump-

tion will be verified by developing a solution to (Al-10) by the method of

matched asymptotic expansions.



In addition to (A 1-10) the equations of motion of the secondary bodies will be

of interest. For the k body they are

N-2

i- 1
ilk

Al. 1 Interplanetary Equations of Motion

For interplanetary trajectories the primary body is the sun and the secondary

bodies are whatever planets one wishes to include in the model. The j

planet used to determine the length and time scales, L* and T*, will nqrmally

be the target planet of the trajectory. All of the (j.. 's will be small, the
-3 x

largest being about 10 for the planet Jupiter. In this case it is obvious that

F_ is small in (A 1-10) except when the trajectory makes a close approach to

one of the planets.

•

In this case the coordinate system is centered at the sun and it is the motion

of the sun about the solar system center of mass which produces the f (p.)

term in (Al- 11).

A1.2 Cislunar Equations of Motion

In cislunar space the primary body is the earth and the secondary bodies are

the moon and the sun. The j body will be the moon so that L* is the semi-

major axis of the moon's motion about the earth and 2irT* is the moon's
•i

period. The coordinate system is centered at the earth and the f ( p_. ) term in

(Al-11) is due to the motion of the earth about the center of mass.

(Al-10) becomes

L(L - £3) + i

Since

= mS/mE
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it is obviously not small. Let

= M-M

M

(A 1-14)

(Al-15)

and (Al-12) becomes

r = f ( r ) £(r.- pg) +I( (Al-16)

It is necessary to show that the term proportional to M is actually order |j.,
s

i.e., to show that the sun's effect is the same magnitude as the moon's. Let

- a ps —s (Al-17)

where a is the mean distance of the sun from the earth (in dimensionless
S • .

units). Then .,. :

r - p = -a (p - r/a )
— ^s s — s — , .s,', (Al-18)

and, since r«a

£ ( £ - £ ) = - f_(_P - r/a )/s s

(Al-19)

where G(P ) is the gravity gradient-matrix defined in Section A2. Also

(Al-20)

giving

f(r - p s ) + f ( p s ) = ± G(£ g ) r_ (Al-21)



or

r i A
[ l ( r -£ 8 ) + f_ (£ 8 ) ] = Of-

s
3 (Al -22)

a
s

In (Al-22)

Ms = n s / j i = (ms/mE)/(mM/mE) = mg/mM - 2. 7x 10? (Al-23)

G(P ) = 0(1) (since £ = O ( l ) ) ' (Al -24)
*~S S

£ = 0(1) (Al-25)

a3 = a* /L*3 = (1 au/0.0026 au)3 = 5. 7 x 10? (Al -26)
S S

Therefore

M
s[!(£-£s>

 +l(£s
)] = (M s / a 3 )x 0(1) = 0 . 4 7 x 0 ( 1 )

= 0(1) (Al-27)

and

jiM If (r - £ ) + £ ( £ ) ! = 0(|i) (Al-28)
b 1 —' — o o J

In later analysis (Al-17) will not be introduced and it will be implied that

(Al-27 and 28) hold for cislunar space. Thus the sun and moon are expected

to have comparable effects on cislunar trajectories.

A2 EXPANSION OF f_(x)

Let

f_(x) =

8



where f. are components of f_ and e_. are orthogonal base vectors. Also

let

x = x + 6x (A2-2)

where

= EX, + e x_ + O(e

U + £ X2i + ' ' ' ^ -i

(A2-3)

(A2-4)

Substituting (A2-2) into (A2-1) and expanding in a Taylor series gives

9fj(x ) l 92fi(x )
f. (x) = f. (x ) + — 6x. + •=• -5—3 6x. 6x, +i— i—o 3x. j 2 9x.9x, j k

J */ i \j- J
J K

i -2 -> 71 1^0 2 . 3,^ ^ ^ e x,. x,. + O(£ •)2 9x. 9x, li Ik v '
J k

(A2-5)

Let

3f.(x)
..

9
9x.

x.

X

— — X
3x. V - /

_
3 9x.

J
(A2-6)

But

x X Xm m

3x.

-
r\ox.

_
. r\ •m ox.

J



9x
ox.

J

x 9xm m
x 9x.

J
(A2-7)

and

i

n;— = 6 . . = kronecker deltaax. „ (A2-8)

Therefore

a x-ox _ j
~ ~~ (A2-9)

Using (A2-7) and (A2-9) in (A2-6) gives

3x.x. 6..

-V1 - -%
X X

(AZ^IO)

Now let

a2f.(x)
ax.ax, = 9x.j k k

x.x. 5.

ISx.x.x, ,
^J - + — P- (x. 6., +x .6 . . +x 6 . . )^ 5 v i jk j ik k ij; (A2-11)

Summarizing, if

f ( x ) = -x/x' (A2-12)

and

2 3
x = x , + e x, + e x_ + O(c ) (A2-13)

10



then

f ( x ) = f (x ) + eG(x )x.
— — — — ̂ 0 —~O ~~J.

) x + H ( x ) x + O ( e ) (A2-14)
• ~~~£ C* ~"~~ ~~O

with

3x.x.
(A2-15)

x x

ijkv-; •

ISx.x.x,

7
X X

e (x. 6.1 + x.6 + x. 6 . . )5 i jk j ik k ij'
A2-16)

The matrix G(x) is the gravity gradient matrix and is also defined by

G(x) =— dx
(A2-17)

An expansion of G(x) is similar to (A2-5):

9G..
= G..(x )

i — o
6x,

92G ;;(x
6x.x t±o' k r 9x,9x, Ak A£

K K £

9 H /v ^ou; -P—n' T 2 ^
iJ—- exv 4 e x,. 4 O ( t )
dxt L !J 2J

j 9 G..(XQ)

2 9x, 9x.
(A2-18)

Let

2
3 G..(x)

~T
105 x.x.x. x. , c—if^i-4

X X

x. (x.6.j - x 6.. )e. jk'

+ x.(x, 6- „ - x.6.. ) 4 x, (x.6. „ - x f t . . )
y k it. S. ik' kv i j^ (. ij'J

- -^ (6. ,6.. + 6. ,6., + 6, . & . . )
5 v i? jk j£ ik k? ij' (A2-19)

11



Then

G(x) = G(x ) + eH(x )
— o — O ~~"~ O — L

T(x )x
"v* — O *~"

O(e3) (A2-20)

A3 LINEAR DIFFERENTIAL EQUATIONS; STATE TRANSITION MATRIX

In order to develop an analytical solution to (A 1-10) it is necessary to solve

a system of first order differential equations of the form

r = v— n — n

v = G(t)r + F (t)— n — n — nv

(A3-1)

(A3-2)

Where .G(t) is the gravity gradient matrix and the F_ (t) are given functions of

time. This system can be written in the condensed form

. ,= . K(t)xn (A3-3)

whe re

(A3-4)

. —n.

K =

(A3-5)

(A3-6)

The solution of (A3-3) is well documented ' ' and can be written in the form

x ( l ) + / t , ( l T ) u M d T ,
n o I nxQ(t) = *(t, (A3-7)

12



where the matrix $ satisfies the differential equation

( t ,T) = K(t)*(t,T), «( t , t ) = I (A3-8)

or

(t ,T) = -*(t,T)K(T), $(T,T) = (A3-9)

It is easily verified that (A3-7) is a solution of (A3-3) by differentiation:

t

xn(t) = / -i^'^n(r)dT + $(t, t )un( t ) (A3-10)

The last two terms in (A3-10) come from differentiating the integral in

(A3-7). Replacing $(t,t ) and $(t, t) by (A3-8) gives

(t) = K(t)*(t,T)x (t ) + / K(t)$(t,T)U ( T ) d T + U (t)— n o i "~n —n

= K( t ) (A3-11)

Replacing the bracketed term in (A3-11) by (A3-7) gives

xn(t) - K(t)xn(t) + un(t) (A3-12)

and (A3-12) is identical to (A3-3). QED.

3 5The matrix $ is the well known state transition matrix ' , also known as the

matrizant and the fundamental matrix . It is a 6 x 6 matrix which can be

13



partitioned (following Carlson's notation) into four 3x3 partial derivative

matrices

ar(r) 9v(r)
*(t,T) =

I v ( t ) 9V( t )
^FTFT TVTFL

(t,T) B( t ,T)>

y C ( t , T ) D(t,T)y

The four partial derivative matrices have derivatives given by~

,T) = C(t ,T)

= D(t.r)

= G(t) A ( t , T )

aTD(t» = G(t) B(t ,T)

-B( t ,T) G(T)9TA(t'T) =

= -A( t ,T)

:= -D(t,r) G-(T)

= -C(t ,T)

Also"

(A3-13)

(A3-14)

(A3-15)

(A3-16)

(A3-17)

"(A3-18)

(A3-19)

(A 3-20)

(A3-21)

(A3-22)

A ( t , t ) = A(T,T) = I (A3-23)

14



B(t , t ) = B(T,T) = O (A3-24)

C(t , t ) = C(T,.T) = O '. (A3-25)

D(t , t ) = D(T,T) = I • ' (A3-26)

From (A3- 15) through (A3-26) various Taylor series expansions can be

derived. Some examples are

A(t ,r) = I + G(t) ( t -T) 2 /2 j + O(t-r)3 (A3-27)

B(t,T) = I(t-t) + G(t)(t-T)3/3! + O(t-r)4 (A3-28)

C(t,r) = G(t)(t-r) + O(t-r)2 (A3-29)

D(t,T) = I + G(t)( t -T) 2 /2J + O(t-r)3 (A3-30)

Some additional forms of the partial derivative matrices are given in

Section C .

Two properties of the state transition matrix which are used in later

sections are

, t 2 ) ~ . (A3-31)

= ' *(t2, t0)*(to, tj) (A3-32)

These properties are especially useful in formulating the solutions of

Section B.

A4 OUTER LIMIT

The outer limit of (Al-10) is ,the limit where £ - £• = 0(1) for all

i = 1, 2, . . . , N-2. In other words, the outer limit specifically excludes

the exceptional case where £.-£• = 0(fi.). Therefore the function F in

15



(A 1-10) is always order |JL. in the outer limit. In the outer domain, i.e.,

the domain defined by the outer limit, the solution of (A 1-10) is assumed

to be of the form

£ = £0 + M-£j + |JL £, + fi £ _ + . . . . • (A4-1)

where .

, fJ-2 ' ••" ^N_2^ ' • (A4-2)

(A4-1J is a representation of the solution r in the form of an asymptotic

expansion in powers of JJL. It is an exact solution of (A 1-10) when |j, = (j. . =

^2 = . . . = JJ.-NT o = 0 and approximates the exact solution as long as (j. is small.

A5 OUTER DIFFERENTIAL EQUATIONS

Substituting (A4- l ) in to (Al-10) gives

r = £• + H i r +jj.2f + 0(^3) ' (A5-1)
™~ t/ ~~~" X ~~~L*

) (A 5- 2)

N-2 . ' .

F(r ,p . ) = y |aM. f f ( r - p . ) + p . G ( r -p. )r .— — J-i .^ r i [_— — o —i ^ — o — i — l

. . (A5-3)A J

where

M. = a./u. (A5-4)i i

Equating power of |JL in (A5-1) through A5-3) gives
( f , {

£o = l(£o> (A5-5)

£• = G^£o'-l + -l(^o' ^ ' • > (A5-6)

16



£2 = G(£o)£2 + 5^, £l' £i) " (A5'7)

... - • • ' ' -o-f • /: • . - ' . - ' . . - H i • • • •

or, in general,

The functions F, and F_ are given by

N-2

y Mi[l(£o - PI) + KBi) I : <A 5-9)
1=1

: • . ' • ' - , r * • - *

. .N-2 .

Mi

The general term F would involve tensors up to order (n + 1). Because of

this behavior it appears somewhat impractical to go beyond n = 2 which

already includes the third order tensor H(r ).

The differential equations (A5-5), (A5-6) and (A5-7) are the zeroth, first and
' ". • . • • . i • ' i
second order outer differential equations. The equation for r is simply the

two-body differential equation while those for r and r_ are of the linear type
1 — ̂

discussed in Section A3. .

A6 OUTER SOLUTION

The zeroth order outer differential equation can.be written

d2r - 'r
-^ ' -=$ (A6-1,
dt r .

o

The solution to this differential equation is well known and many forms exist.

The motion is elliptical with respect to the primary body and a useful form is

r t ) = f ( t ) £ ( t ) + g ( t ) v ) (A6-2)

17



where r is the two-body position and v the velocity

dr

^o = -5T •

The functions f and g are infinite series in time but have closed formo o
expressions as functions of eccentric anomaly E where ;

n (t - t ) = E - e sin E " (A6-4)ov po7 o . '

In (A6-4) n is the two-body mean motion, e the eccentricity and t the

time of pericenter passage. The functions f and g are given by

fo( t ) = 1 - ao [l - cos AE (t, to)]/ro(to) (A6-5)

+ e sin E (t ) [l - cos AE (t, t )l/n (A6-6)
o o L ° J/ °

where

AE(t, tQ) = E(t) - E(tQ) (A6-7)

The higher order solutions are obtained by first writing (A5-8) as

r = v (A6-8)

Since (A6-8) and (A6-9) are similar to (A3-1) and (A3-2) the solution follows

from (A3-7)

= *(t,to) + / *(t,to) I Jdr (A6-10)
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Using (A3-14) gives

£l(t) = A(t , to)£ l( to) +B( t ,

o

£2(t) •= A(t . to)£2( to) + B(t. tQ) v2(tQ) + / B(t ,T) F2(T)dT (A6-12)

t

The outer solutions are therefore given by (A6-2), (A6-11) and (A6-12). They

are fund

velocity

are functions of the time t, the initial time t , and the initial position and

r(to) = ^(V ^(tj + ^ £ 2 ( t o ) (A6-13)

X(t0) - Vo<t0) + ny^V + ̂ v2(t0) (A6-14)

It will be shown that using these solutions the outer expansion (A4-1) contains

a non- uniformity when £ - JD. = O(|JL.). That is, the individual terms in the

expansion do not remain small compared to the preceding terms. In this

case it is necessary to investigate another limit of (A 1-10).

A7 INNER LIMIT

When the trajectory representing a solution of (Al -10) passes close to one

of the secondary bodies the outer solution is no longer valid due to a non-

uniformity in the outer expansion (A4-1). In order to study another limit the

origin is transferred to the kth secondary body and the length scaled such that

the new position vector is order unity. Such a transformation is given by

It is obvious that when £ - JD, = 0((j.P) then £ = 0 ( 1 ) . It is also necessary

to make a similar transformation of the independent variable, i .e . ,

tp = (t - tpk)/n£ (A7-2)
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where t , is some fixed time, such as time of closest approach, associated

with motion close to p, . When t - t , = 0(|j.r) then tg = 0(1).

The next step in determining the inner limit is to transform (A 1-10) into the

new variables. F rom(A7- l )

r = p, + u.,0' r
— -Me ^k — a

(A7-3)

and differentiating gives

r = (A7-4)

r = (A7-5)

Also

and, using (A2-14)

(A7-6)

Likewise

N-2

F(r.£.) =

2 a,. (A7-7)
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where

Substituting (Al -12) into (A7-5) and (A7-8) into (A7-7) and then substituting

(A7-5), (A7-6) and (A7-7) into (Al -10) gives

N-2

f (Rfc) + ̂ JLtet) + ^ M- K K K .= 1

<2'a^ = f (p. ) + |1«2 — -t-k k
ardtp-

N-2

i= l

+ V.° G(£. - p.) ra + O^ ) (A7-9)
K. K. —1 —• K J

or, cancelling similar terms gives

. ,
)ra + ̂  ^

dt . , .

N-2
/V"L'ft u) '(A7-10)

21



(A7-10) still includes functions of t through JD, and JD.. From (A7-2)

t = tpk + n g t p (A7-11)

Let

t = t, + n£ T (A7-12)

giving

t = t, +-nP_ (t, + T,_) ' . (A7-13)

The significance of t, and T, will be demonstrated later in the matching.

Using (A7-13)

(Bk(t)} = G^)) + n£ ̂ G(^(tk)) (tp + rk) + On( (A7.14)

The derivative dG/dt is found as follows:

From (A2-15)

, /3x.x. g .Adx , f 15x.x. „ 3x.
d i °i\ k _ i j. 9x i

36

Using (A2-9), (A7-15) becomes

(A7-16)
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Then

13 Mk ?k ^k* (t(3 + Tk* + °(fJ'k'3) (A7-17)

where

Gk - G(pk(tk)) (A7-18)

Hk - H(pk(tk)) (A7-19)

Putting

' = G,1 ' : (A7-20)

(A7-10) can be written

N-2
u 2 , 2P V ,aH. r + a, > |JL. G. r ..
— k — a k /j 1 k— a •

i= 1 * '

(A7-21)

The inner lirr^it is partially defined by balancing the iriertial term with the

gravitational term of the k body, i. e. , matching (d £a/dt ) with f_(^a). The

two terms will be balanced if both are order unity. This is obtained if

1 + 2p - 3a = O -(A7-22)
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Also, from (A7-4)

dt (A7-23)

In (A7-1) it is assumed that the numerator, r - JD, » is small; this gives a

close approach to the kth body. In (A7-22) it is not necessary for f - p., the
— -~~K

relative'velocity, to be small. In fact, this velocity difference will depend on

the energy of the outer solution and the only conclusion that can be made at

this point is that it is order unity. Thus it is most reasonable to make the

denominator in (A7-23) the same order, i .e. , let

a - (3 = O (A7-24)

The inner limit will be defined by (A7-22) and (A7-23), i.e. ,

a = (3 = 1 (A7-25A)

As a result (A7-21) becomes

«2*̂
2 = f (rj + uf; G. r +

dt2(3 - ~° k k -*

N--2

r, (tp

(A7-25B)

In the terminology of singular perturbation theory, (A7-24) is called a

distinguished limit.

The inner variables will be defined by

(A7-26)

(A7-27)
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and the associated differential equation is

dS
£k, £i) (A 7-; 2 8)

where

P(Rk> £k> £4) k

o -I ---I • z^ M. G; R,2 —k —k f-^, i k —k

N-2

(A 7-29)

The term of order (j., in P is included here although it is not actually needed
K ~~"

in a general second order theory. It is important in problems where only 'an

inner solution is used. It may also be important in problems where the

model includes satellites of secondary bodies, i .e . , including moons in the

analysis of interplanetary trajectories. Suppose the m body is close to the
f-Vi ' : ' • , - '

k body such that

—m (A 7-30)

Then

Then the term

(A 7-31)

M
m

i,m k
G(p )—m'
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For the moon, earth, sun case

= mm/mo

e = 2. 6 x 10 au

so that

(M-m/E3) = 2. 1 = 0(1)

and

3
Mm

(A7-32) shows that the effect of a nearby moon (i. e. , JJL, M G, R, J on the

inner solution of an interplanetary trajectory may be the same order of

magnitude as the effect of the Sun (i.e. , p., G, R_k ).

In the inner domain, i.e., the domain defined by the inner limit, the

solution of (A7-28) is assumed to be of the form

(A7-33) is also an asymptotic representation and reduces to the exact

solution as jj., -* 0.

It should be noted that another distinguished limit exists besides (A7-24). If

the velocity difference in (A7-22) is assumed to be smaller than order unity

then the other limit is

a = 1/3, ( 3 = 0 (A7-34)

in which case (A7-10) becomes

d2r
— =2L = f_(£ ) + G(£ k )£^+0( f J L 1 / 3 ) (A7-35)
dtp
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(A7-35) is a form of Hill's equation and it's solution is beyond the scope of

this study.

A8 INNER DIFFERENTIAL EQUATIONS

Substituting (A7-33) into (A7-28) gives

d2R.
— k d2R.— ko , d2R. _ , d2R, ,2 — k2 3 — k3

dS dS dS dS
(A8-1)

fe. £k. £i -

N-2

(S

+ 4- H, R? + / M. G^ R,2 —k —ko A—>i i k —ko

(A8-2)

(A8-3)

Equating powers of JJL, in (A8-1) through (A8-3) gives

d2*ko

dS2 ^ko' (A8-4)

dS,
(A8-5)

dS
(A8-6)
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where

= Gk*ko

V

N-2

The differential equations (A8-4) and (A8-6) are the zeroth, second and third

order inner differential equations. The equation for R, is simply the two-
~~~KO

body differential equation while those for R, _ and R, _ are of the linear type

discussed in Section A3.

A9 INNER SOLUTION

The solution to the zeroth order differential equation is hyperbolic motion

with respect to the k secondary body and can be represented by

R. (S, ) = f (S. ) R, (S. )+g (S. ) V. (S. ) (A9-1)— ko v k' ov k' — ko ko' &o v k' — ko v ko' '

The functions f and g have closed form expressions as functions of the

eccentric anomaly F, where
K.

Hk sk -• Fk sinh Fk - Fk : (A9-2)

In (A9-2) n, is the two-body mean motion and e, is the eccentricity. The

functions f and g are given by

fo = 1 - Ik[l - cosh AFk(Sk, Sko)]/Rko(Sko) (A9-3)

*o= Sk - Sko
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where

AFk<Sk> Sko> = Fk'Sk> - Fk<Sko> ..

It was shown by Carlson that it is desirable to choose the initial conditions

for the higher order solutions to be zero at pericenter of R, , i.e., the

higher order solutions vanish at S, = 0. A slightly more general approach

is to put

so that the higher order solutions vanish at S,= S, . Since (A8-5) and

(A8-6) are identical in form to (A5-6) and (A5-7) the solutions will be

similar to (A6- 11) and (A6- 12)

r k -Rk2(Sk) •= / B(Sk, o-) P2 (<r) do- . (A9-7)

,ko

/Rk3(Sk) = B(Sk. o-) P3 (o-) dcr • (A9-8)

»i • 'ko

where B is a partial derivative matrix evaluated along the hyperbola R, .

The inner solutions are given by (A9-1), (A9-7) and (A9-8). It will be shown

that using these solutions the inner expansion (A 7-33) contains a non-

uniformity as S, -»°°.

A 10 OVERLAP DOMAIN

The outer expansion has already been given as

r( t ) = r (t) -f f j i r^t) + H i 2 r ? ( t ) +0(^ 3 ) . (A10-1)
— — ĵ ~™ J. ^—£4
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Rewriting (A7-26) using (A7-33) gives the outer form of the inner expansion

as

r( t ) =

(A 10-2)

These two solutions are valid in the outer and inner domains, repectively.
b . . . . - . . • '- .

It is assumed that both solutions are valid in an intermediate domain called

the overlap domain which connects the outer and the inner domains around

the k secondary body. It will be shown later in the matching that one of

the conditions for the two solutions overlapping is that for some t = t,

(A10-3)

where t, was first introduced in (A7-12). The time t, is the nominal time
th

at which a close approach to the k body occurs. The actual closest approach

time is given by (A7-12).

In (A6-13) r (t ) is the initial position for the two body ellipse r (t). If t, is
•Q Q , ' '^O K

specified and an ephemeris is used to determine P i ( t , ) then (A10-3) gives

the final position r (t, ) for the two-body ellipse. The initial and final posi-
—O rC

tions and the time interval (t, - t ) constitute the standard Lambert problem.
K O

Solution of the Lambert problem completely determines r (t).

The overlap domain will be defined as the domain where t -»t, in the outer

solution and where |S, I -«-coin the inner solution. Thus the behavior of the
th

outer solution must be determined in a near neighborhood of the k secondary

body and the behavior of the inner solution must be determined in a region
tVi

sufficiently removed from the k body.
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All BEHAVIOR OF THE OUTER SOLUTION IN THE OVERLAP DOMAIN

Al l . l Zeroth Order

The overlap domain is defined as the domain where t-»t, . It is therefore

necessary to expand the outer solution in terms of t - t, . The zeroth order

solution is easily expanded since a two-body ellipse is defined by functions

which can be expanded in Taylor series' about t = t, . The result is

Io<t) = ^k + ̂ k (* - tk) + c^ (t - tk)2
 + d^ (t - tk)3

- /)
where

- - , r ( t ,dr —o^ k' J — o k

= G (l0
(tk))

<y]/24
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Overlap
Domain

Hyperbolic
Solution

Figure A3. Outer Solution, Inner Solution and Overlap Domain

32



The expressions for c , , d , and e , follow from using (A5-5), (A2-17)

and (A7-16).

Since the motion of the kth body is assumed to be a known function of time it

can also be expanded in a Taylor series:

£k(t) = £ko
 + £kl(t - V

where

£k

= £k(tk)/z

**i i,
^k J/6

£k(tk) +^*] /6

4

33



and

£k At = tk/

N-2

(Al l -13)

N-2

(All-14)

The expressions for jv. 7» £kV £k4' £k an<^ £k-
(A2-17), (A5-5), (A7-16), (A7- 18) and (A7-20).

from using (Al-12),

Now define r, by— ko '

r, = r -— ko — o

V

- 5)
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where

£k2 = [l(lo(tk)) - l(£k(tk)) - m£

o^tk) - G(£k.(tk))

- G(£k(tk}) l(£k(tk}) + °^]/24 (AH-20)

From (A10-3) and (All-16)

^k-£k o = O (All-21)

Let

^ok-£kl = Vo^V- ikV-Xk (Al l -22)

Again using (A 10-3) and (Al l -22)

(A11-24)
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£ok - £k4 = [_-(

+ 0(ji)]/2

Introducing (A7-18) and (A7-19) gives

24

- t) - ^ p ( t - t ) 2 / 2 + [ck - - k k

o

(t -

((t - tk)
5). + 0^(t - tk)4j (A 11-26)

(A 11-26) represents the behavior, in the overlap domain, of the zeroth order

relative position between the trajectory and the k body. It is used to

determine the behavior of the higher order terms and in the matching.

A l l . 2 First Order

Let

r. = X. + X. + X, + X.—ko —o —1 —2 —3

where

^0 = Vk(t - tk) , ( A l l - 2 8 )

X_1 = -M-£k(t - tk)/2 . , (A 11-29)

= o ((t -
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Then, using (A2-14)

K£ko) =

Xj + 0(Xl X2)l / (Al l -33)

In order to use the solution being developed for both approach to and departure

from the k body, let

(t - tk)
Qk = s g n ( t - t k ) = .. «. . (Al l -34)

Then

- tfc))

= Qkl(Yk)/(t - tk)2 (A 11 -'3 5)

By a similar analysis using (A2-15) and (A2-16)

) = .Qk G(^k)/(t ' V3 (A l l -36 )

= Qk H(Vk)/(t - tk)4 (All-37)

Now (All-33) can be written

o((t-tk)3)] (Al l -38)
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The first order force function is given by (A5-9). It can be rewritten in

terms of a singular part, F, , and a non- singular part, F, , i.e.,

where

Using (All-38) and (All-40) the singular force function is

(A11-39>

£k) = M k f_( r k o ) (Al l -40 )

N-2

+ ^ G(Vk) (GkVk - >!£**) (t - tk)2 + o((t - tk)3)] (A 11-42)

From (A3-28)

B(t, r) = I(t - ,) + G(t) (t - T)3/6 + o((t - T)4) (A 11-43)

whe re

G(t) • = G^t)) ' (A 11-44)

According to (A6-11) the first order solution is a function of B(t, T) FJ(T).

38



From (A 11 -42) and (A 11 -43)

, r, F (T) =
- t,

( t - T ) ( T - t ) ,

(t -
- «k'

(Al l -45)

where

= Qk Mk l^ ( A l l - 4 6 )

( A l l - 4 7 )

(Al l -48)

(Al l -49 )

(A l l -45 ) represents the singular behavior of the integrand in (A6-11).

Although only the first term of (Al l -45) is actually singular as t -» t, and
K

T -* t, the other terms play an important role in evaluating the second order
iC

solution. It is not necessary to develop a corresponding expansion of the

non-singular part of the integrand in (A6- 11), i .e. , B(t, T) F, (T), as this

contribution can be evaluated directly as will be shown.
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Now let

i l k ( t .T, =. _ l s 6- P
(t "

lk 7
I T - t )

(t " T)

(T- t, )
k

( A l l - 5 0 )

From (Al l -45)

T) =. O (t - T) (T- t , ) ,
) 4 f t - r ) 3

(A l l -51 )

The singular part of (A6-11) is

B(t, r) F_ls (T) dr = 3 (t " T)^ 3 (t " T) I 3 ( t - r
- - ~ (

( A l l - 5 2 )

At this point ( A l l - 5 2 ) is exact since the last term on the right integrates the

error in the expansion (A 1 1-45). The first four terms on the right integrate

to

(t - T) dr = - - t
k

)

- n - ( t - t k ) / ( t o - t k ) (A l l -53 )
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/ ?rVrdT = (to - tk) + (t - tk) log Qk(t -J ( r - t k ) o k k k

o

- [ l + l o g Q k ( t o - t k ) ] ( t o - t k ) (Al l -54 )

dT = (to - tk)2/2 - (t -

+ (t - t )2/2 (A 11-55)
k /

* ,3

2dr = (to - v2/2 - 3(to - v(t -

- 3(t - tk) log Qk(t - tk)

log Qk(tQ - t fc) (t -

+ (t - tk)3/(to - tfc) (A 11- 56)

Note that (Al l -53) contains a logarithmic singularity as t -» t, . This is the
K

singular behavior of (A6-11). On the other hand, the first two terms in

(A 11-50) cancel out the singular behavior of B(t, T) F, (T) and $.. is finite— Is IK
as t t,. Therefore the last term in ( A l l - 5 2 ) can be expanded about t = t..
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The form of the expansion is

(t, T)dT =

< /%dt j *lk ( t ,T)dr (t -

= t.

72 / « i k ( t - r )d r fn
t=t,

o((t - tk)3) (Al l -57)

The individual integrals in (Al l -57) can be evaluated as follows:

l l k( t ,T)dr r'k1 *Ik (tk' T ) d T

t=t.

|B(t.. r J F , dr

^2k7
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4k
A

J (T-

rtk
= J *10k -v

(A11-58)

where

(Al l -59)

, T)dT t)

Jt=t,

i ( t , T) dr ( A l l - 6 0 )

since, by ( A l l - 5 1 )

(t, t) = O (Al l -61 )

Using (A3-16) and ( A l l - 5 0 )

!1S

IT = D^' T) 51i

dt (A l l -62 )
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Tt ri D(tk, T ) F l s ( T ) -
J-Zk

( T - t

_d_
dt

dr

(t -

(A 11-63)

where

T) =
(AH-64)

Finally

.d2: r' .i
d,2: J 4ik

o

(t, T ) d T

t = t,_

^ JJ d,2
O

i/
O

dt2 ^
(A l l -65 )
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since, by ( A l l - 5 1 )

< T - V

= 0 [ ( t - t k ) > ( t - V-

= 0 ( t - ( A l l - 6 6 )

Using (A3-18) and ( A l l - 6 2 )

dt
= G(t ) B(t, T) F l g ( T ) -

(t - T) _

(T - t f c)<

-6 ( t - T ) ( t - r )
( A l l - 6 7 )

dt
*,Jtu.T) dT =2 l k k G(t fc) B (tk,

P4k ( tk )

< T - t k )
dr

'o

6

rfck
J !i2k(VT

dr

dt
(Al l -68 )
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where

i?2k>k' B < T- V

Using (A 11-49) and then (A 11-44) and (A l l -25 )

tk, T) . (A 11-70)

Substituting the results of (A 11-58) through ( A l l - 7 0 ) into ( A l l - 5 7 ) gives

(t, T) dr =

(t - tk)

(t -

o((t - tk)3)

T)dT

( A l l - 7 1 )
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The derivatives of _^4^.(t) are simply coefficients in the expansion

It -4k
at

(t -

o(" - V3) (Al l -72)

Substituting (A 11-53), (All-54), (Al l -55) , (Al l -56) , (Al 1-71) and (A 11-72)

into (A 11-52) and collecting terms gives

f
j B(t. T) Fls (T) dT = - plk log Qk (t - tfc) -f filfc [log Qk (to - tk) -l]

J k

-
(tk- T) dT + P2k

 (t - * k > l o g Qk

rtk s
J i i i k < V T ) d r ( t - t )

- 3£4k (tk) (t - tkr log Qk(t - tk)

Qk (to -

/k

J «Iok (V T) dT

o(( t- t k) 3)

47
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( A l l - 7 3 ) is an expansion of the singular part of (A6-11). Expansions of the

non-singular terms in (A6-11) can be obtained using some of the expressions

found in Section A3 and Taylor series formulas.. The results are

A(t. to) = A(tk,

(t - tk)
2/2. + o((t - tk)

3) (A 11-74)

B(t' to) = B(tk' V + D(tk' to) (t - tk)

, to) (t - tk)2/2 + 0((t - tk)3)

/ B(t, r) F l n(T)dr = / B(tfc, T) F ln(T)dr

( A l l - 7 5 )

rt

J
(t -

rt

J

where

(t - t-^f/Z .+ O ((t - tk)3j (A 11 - 76)

( A l l - 7 7 )
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Substituting (Al l -73) through (Al l -76) into (A6- 1 D.gives

' ' Ii(t) = alk log Qk'(t - tk) 4 blk + nc lk (t - tk) log.Qk (t - tk)

+ d (t - t) + ne fc (t .- tk)-> Tlk (t - tk)2 log Ok (t - tk)

where . .

( A l l - 7 9 )

t ) X ( t ) + K1Qk (tk. t o )o o

P k / ( t 0 ^ tk) + C.(tk. :to.) £l (to) + D (tk. to) vj (t0)

Llk

(A 11-81-)

(Al l -84)

k/2 + 3L' ^k> [log °k (to " -V- + X

Gk [A (V to) ^1 (to) + B (V - to) il (to} + ^10k (tk'
(Al l -85)
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and

T) U ( T ) d T

K i i i r f t i r ' t ) = I *i 11, (tf T) + D tfir' T> Fi W dT (Al l -87)^-1 IK K O ^ |_—1 IKK K in J

t
O

(A 11-78) gives the behavior of r 1 ( t ) in the overlap domain. The logarithmic

singularity as t -* t, produces the non-uniformity in the first order outer

solution mentioned at the end of Section A6. It will be shown that a. similar

singularity occurs in the inner solution. The integrals given by (A 11-86) and

(Al l -87) cannot be evaluated analytically, i.e., expressed in closed form.

They must be evaluated numerically and this problem is discussed in

Section C.

A l l . 3 Second Order

In deriving the first order expansion it was first necessary to derive f_(jtV )»

e.f. (A'H-38). According to (A5-10) the second order force function requires

•an expansion of G(£, ). From (A2-20) and (A 11-27)

+H(xo)[x1 +x2 + 0(x3)J

+ T (x )x . + 0(x. x , ) 2 + 0 ( x ) (Al l -88)
~~ —o [_—l —1 —i J/ —1

Continuing the sequence (All-35) , (Al l -36) and (Al l -37) gives

- t ) 5 (Al l -89)
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Then (Al l -88 ) becomes

(t

°k r
-^-3 G d
- tiJ. L

(t -

(A l l -90 )

The second order force function can be written in terms of a singular part,

F,, , and a. non-singular part, F_ . i . e . ,

F _ ( r , r,,— 2 — o — 1 .) - F_ (r , r,, p. ) + F0 (r , r,, p.)-i' —2s — o — 1 ^k — 2n v— o — 1 *i (All-91)

where

F_ (r , r,,
— 2s — o — 1

M. G (r, ) r,k — ko — 1 (A l l -92 )

N-2

F_ (r , r., p.)
—2n —o —1 ri G (Al l -93)

Since r is a non-zero vector, H(r ) is non-singular. The dyadic _r.

contributes a factor of (log Q, (t - t, )) but

f 2 2
[(log x) dx = x (log x) - 2x log x + 2x — O

as x -* O. Therefore the vector H(r ) r, is finite as t ->t, and is included in
—. —Q —* J_ J^

F_ (also see Carlson, pg. 27).

51



Multiplying (Al l -78) by (Al l -90 ) and substituting into ( A l l - 9 2 ) gives

log Qk(t -
F- = G. a., - : - z - +-2s k~ l k ( t - t k ) 3 ( t - t k ) 3

+ V- K £ lk - Jk a lk)
log Qk(t - tk)

-lk + Hk-l r*c 1rk £ikj
Qk (*' - tk)

(t - 1 , )

-!' *' ' - * • 2 * '
G. g.. + H. b.. - u. 'J, d,. - [i J. 6j,k —lk k —lk r k —lk n k —lk (t -

+ 0(log It - t I)
i *^ i

(Al l -94)

where

G(Vk) (Al l -95)

H,
M k Q k H(Vk) (Gk Vk -

k £k
( A l l - 9 6 )

2 -
( A l l - 9 7 )

According to (A6-12) the second order solution is a function of (B(t, T)
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From (A 11-43) and (A 11-94)

( r - t k r
Qk(r- tfc)

(t - T)

< T - . t k ) ( r - t k r

(T- tk)

where

+ O (t -T) log IT- t
'

(t "T)

l o g l r - t .

(t - T)

- t fc)

3 l o g | r - t k

di., = G. d,, + u (G. e., - J. b,, )-!-4k k —Ik r k —Ik k —Ik

= G k k l

(A l l -98 )

(Al l -99 )

(All-100)

(A 11-101)

(Al l -102)

(All-103)
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^ Gk ilk + Hk *lk - * Jk *lk - Jk

*7k * 47k (t)

= G(t) G* a.lk/6 (Al l -105)

= G( t )G*b l k /6 (AH-106)

(Allr -98) represents the singular behavior of the integrand in (A6-12). It is

not necessary to develop a corresponding expansion of the non- singular part

of the integrand in (A6-12), i.e., B(t, T) F_ (T), as this contribution can be

evaluated directly.

Now let

Qk

(A 11-107)
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From (Al l -98)

(t-T)log IT - t I, ( t " T)
 2 log |T- tj,

I K | / . \L
( V

(t - T)
(All -108)

The exact expression for the singular part of (A6-12) can be written

.B(t, T)
(t - T) ̂

(T- t, T

log Q, (T- t, )
(t -T) ^

(T -1. )-

log Qk (T - tk) *

-7k log Q, (T - t, )

(t -

> T) dT (Al l -109)
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The first eight terms on the right of (A 11-109) integrate to

rj ^t? 2( t . ,k ,

Qk (to -
t - 1 , )o k

[2 log Qk (t (t -1,j2 v k'
4(to ' V (All-110)

r*J i^f 3 dT - 2(FTTT- (T-hrr* t .2 ( A l l - i l l )
k o k Z (t - t. )

r*
J (t " T?

2 log Qk (T - tk) dr = - i log2 Qk (t - tk) - log Qk (t - tk)

2 Qk

[log Q (t - t ) + l]
° (t - t

(Al l -112)

i + .. . /t - ti + (t - t. ) (t lk1 o k

fZr
- T)

2 dr = - log Qk (t - tk) + log Qk (to - tk)

(t - t )
1 + L^ (All-113)

(t - t. )v o k;

56



. t . ' - . . . . .
J £^j log Qk (T - tk) dT = (to 1 tk) [log Qk (to - tk) - l]

(t - tk) log Qk (t - tk)

(t - tk) log Qk (t - tk)

f ^ - T)

J . < T - * k

O

- V

Q

(t -
,3 r

- l L l o g Q k ( T _ t k ) d T = ( t 0 - t k ) [ l og

(All-114)

(All-115)

(t - tk) log Qk (t - tk)

- V log Q k ( t - tk)

O(" - (All-116)
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(t - T)-
dT = 3 (t - tk) log 0,^ (t -

(A 11-117)

Note that (A 11-110), (A 11-1.11), (A 11-112) and (A 11-113) contain singularities

as t t, . This is the singular behavior of (A6-12). On the other hand, the

first five terms on the right side of (A 11-107) cancel out the singular behavior

of B (t, T) F, (T) and $f, is finite as t —t, . Therefore the last term in
^~w S ~~"L» K K

(A 11-109) can be expanded about t = t, . The form of the expansion is

(t, T)dT = 'T)dT

^ o

(t - tk)

t=t,

o((t- tk)2) (All-118)

The individual integrals in (All-118) can be evaluated as follows:

izk T)dT

-It=t,

• r log Qk (T - tk)
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where

log Qk (T - t )

^4k (T - t. )v k'
dr

|>5k

/t

J
dr

J dT

r*k
= J IzOk^k '

Qk (to - *8fc ^o - V

(All-119)

10g Q (T - t)

log Q, (T - t.)

,2 T^3k (T- t. ' -4kv
< T - t k )

(A l l -120)
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dt (t, T) dT t)

t = t.

t, T)dT (Al l -121)

since, by (Al l - 108)

*"—2k (Al l -122)

Using. (A3-16) and (Al l -107)

d s
= D(t. r) F2s(T) - j,

log Q (T -

(T - t-k>
3 '
3

Q (T - t )

( T - t f c ) . < T - t k r

log (T - tk)

T-

(Al l -123)
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- * ,
dt i-2k (tk' T) dT -

where

d^sk <y ^0 - tk)
(Al l -124)

gives

(Al l -125)

t. T) dr = I
J -20k (tk' 4*.

[log Q, (t.

- v

(All.126)
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The derivatives of 4sk(t) anc^ ^«k^^ are in the expansions

- V (Al l -127)

0((t - (Al l -128)

Substituting (A 11-110) through (A 11-117) and (A 11-126) through (Al l -128)

into (A 11-109) and collecting terms gives

7 B(t, T) F_ (t) dr = —$
' —2s v ' 2

^3k, _2l o g Q k (t - tfc) - log Qk (t - tk)

Q -5-2 k
(t - t, )v o k (t - t, )v o k'

Qk ('0 - V -

lo* Qk (to - tk) -
-r O /^ \

i20k
 (V T)

+ 34>7k (tfc) (t - tk) log Qk (t - tk)

(t - tk) log Qk (t - tk)
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Q V ^2k

[log Qk (to - tk)

fro - V

(to - tk) -

Qk ^0 - V

- V -

3 108 Q

., T) dT fr - V

o( ( t- tk)2) (Al l -129

Apart frorrybeing the longest expression derived thus far, ( A l l - 1 2 9 )

represents the singular part of (A6-12). Expansions of the non-singular

terms in (A6-12) can be obtained using some of the expressions found in

Section A3 and Taylor Series formulas. The results are given by (A 11-74)

and (A 1.1-: 75) as well as

r* A
I B(t. T) F, (T) dr = / B ( t , , r) F, (T) dr

(Al l -130)
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which is just (A 11-76) with F. replaced by F .

Substituting (All -74) , (Al l -75) , ( A l l - 1 2 9 ) a n d (All-130) into (A6-12)

gives

L2 W = *2k (t - V" l log Qk (t " tk) + -2k (t - V~ 1

+ '2k log Qk (t - tk) + ^2k

(t - t fc) log2 Qk (t

+ o[(t - tk)2, HLlog2 t - tfc|] (Al l -131)

where

Qk (to - tk) + l {to -

V

1-134)

A(tk. to) r2 (to) +B(t k , to) v, (to) (A 11- 135)
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L2k = - [2*5k - 2*6k - 3*7k - 6*8k <V] /2

- tk) -

Qk (to -

- 3^7k <tk) [2 log2 Qk (to - tk) - 5]/4

- ^8k (tk) [3 l0^ Qk (to - tk) - l] + ^2 Ik (V to)

V ^2 (to) + ° (V

and

s

o

(tr, to) = J I *;nL. (tu, T) + B (t,,, T) F9> (T) | dr (All-139)

o

V = J I *21k (V T) + D frfc' T) ^2n ^ I dT (All-140)
t

(Al l -131) gives the behavior of £?(t) in the overlap domain. Like the first

order solution it contains singularities as t -» t, which must be cancelled by
K

similar singularities in the inner solution. Also, just as in the first order
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expansion, the integrals (A 11- 139) and (A 11- 140) must be evaluated

numerically; a problem which is discussed in Section C.

All . 4 Third Order

The third order solution is not actually used but knowing its behavior in the

overlap domain is important in the matching. From (A5-8)

£3

with a solution similar to (A6-11) and (A6-12)

r 3 ( t ) = A(t. to) r3 (to) + B (t.

B(t, r) F3 (T) dT (All-142)

3
Carlson has shown that in the overlap domain

(t) = 0((t - tj " log" |t - tJJ (All-143)

A12 BEHAVIOR OF THE INNER SOLUTION IN THE OVERLAP DOMAIN

A12. 1 Zeroth Order

According to (A9-1), (A9-3) and (A9-4) the zeroth order inner solution is a

function of the eccentric anomaly F, . The behavior of the outer solution

in the overlap domain has been developed as a function of time. Therefore

it is necessary to find the behavior of the inner solution as a function of

time, i. e. , find
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Such a result is found by inverting (A9-2) but, in general, this is not

possible due to the transcendental nature of the equation. However, the

overlap domain for the inner solution corresponds to the region far out on

the asymptotes of the zeroth order hyperbola. This region is characterized

by large values of the time S, and this makes it possible to invert (A9-2).

In order to be completely general it will be assumed that on the approach

asymptote of the inner hyperbola S, and F, are negative and on the departure

asymptote they are positive. This will require two solutions of (A9-2).

Dropping the subscript k for the time being, (A9-2) can be written

nS = (e~eF - ee~F - 2F)/2 . (A12-2)

For F—-co (A 12-2) is rewritten as

eF = (2n S + 2F + ee"F)/e _ (A12-3 )

-F F
Since F and e are much smaller than e (A 12-3) can be approximated by

eF - Z n S / e + O(F) (A12-4)

and then

F = I o g + 0 j ( A 1 2_5 )

e"F = O fc|) (A12-6)

67



Substituting (A 12-5) and (A 12-6) into (A 12-3) gives

(A12-7)

(A12-7) is simply a more accurate form of (A12-4). From (A12-7)

F = (A12-8)

_ _
.-v ri2nS (A12-9)

Substituting (A 12-8) and (A 12-9) back into (A 12-3) gives

F 2nS . 2 . /2nS\ , 2 . /2nsV "e , _ /log2 S
e = -=- +— log \—=r- ] + =r=^ log ^^j + ̂ rrr- + 0 —^^—6 \ e / neS 6 V e / 2nS \ 2

\ / \ / \ o /
e" e" (A12-10)

„F = 2nS 2 log 2 /2nS

. . / 2nS A -2- 4 log ^^ - e + 0
' 2log S

S '
(A12-13)

- F e e

S

lo (A12-14)

(A12-13) is the explicit form of (A12-1) . Two additional useful .expressions are

sinh F = (n S + F)/e

cosh F = sinh F + e -F

(A12-15)

(A12-16)
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For F — -co, ( A 1 2 - 2 ) is rewritten as

e~F = - (2nS + 2F - eeF) / e (A12-17)

The same sequence of approximations as used for F positive leads to

„ , / 2nS \ 1 . / 2nS
F = - Log - -=r- + — log - -7=7- + —

nS . 2C24n S
2 log'

2nS

. . / 2nS \ -2
4 log -— - e + 0 log |S|

(A12-19)

-F e - e
2nS _— 202

2n S

2nS n log|S|
° — ̂ ~~

C3
S /

(A12-20)

The function sinhF is still defined by (A 12-15) but coshF can now be written

coshF = - sinhF + e (A12-21)

The departure asymptote with F > 0 must overlap with the outer solution where

t - t, > 0. Likewise, the approach asymptote with F < 0 must overlap with the
K "•

outer solution where t - t, < 0. Introducing Q, defined by (A 11-34) makes it
K K

possible to write one expression for F: . ' •

2Q. n,S.
k k k

k k

2Q. n. S.
k k k

Q, , , 2Q. n. S. \ /2Q. n, S. . ,
01 2 / k k k \ . . / k k k I —2
2 log ( = J - 4 log ( ) - e,

+ 01
log2 |S.

(A12-22)
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Using (A12-22) in (A12-15) gives

'2Q, n, S,
sinhF,

n, S Q
k k , k 1 /2QknkSk_ * iog

 k-k k
n. e. S. 6 \ e,

k k k y k

2 log
2 / 2QknkSk

- 4 log |
2Q, n. S, . ,

k k k I —2
1- e,

+ 01 (A 12-23)

Using (A12-14) in (A12-15) and (A12-20) in (A12-21) gives

coshF
M /2Q, n. S.
k , / k k k•log

+ 0
WjsJ

(A 12-24)

(A 12-22) through (A 12-24) represents the first step in the development of the

behavior of the inner solution in the overlap domain.

t i
Now consider a rectangular x, y coordinate system in the inner orbital plane

T
defined by R, . If the x axis lies along the line of nodes between the orbital

KO *

plane and the x, y reference plane with x positive toward the ascending node
Q

then the motion is given by

x = A - ^- coshF - **==*-sinhF (A 12-25)
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13 I A I (- I

y1 = B1 - -Er coshF + ̂ ^- sinhF' e e (A12-26)

where

A' = e a cos u>

B' = e a sin

C- = ( e 2 - ! ) 1 / 2

(A 12-27)

(A12-28)

(A12-29)

Here to is the argument of pericenter measured in the orbital plane from the

ascending node. The subscript k has again been temporarily dropped.

Using (A 12-24) x1 and y1 become

x' = - -: (A1 + QB'C 1 ) sinhF

+ A1

e
(A12-30)

= _-§. (B1 - QA'G' ) sinhF

+ B1 i i
" 2nS "*" ,-2G2n S

(A 12-31)

Differentiating with respect to S gives

= -§(A- + QB'C- ) C oshF§ + oU
\o /

(A12-32)

.do
(A12-33)
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Differentiating (A9-2) gives :

j o

ndF = e coshF ~ l (A12-34)

or

dS e coshF - 1 \~it.-^}

Then

, _, dF n coshF . . . , _ _, .
G O Sh FdS =

 e coshF - 1 (A12-36)

As F -* co, S ^-00 and

, dF n Q sinhFcoshF -rz •=-dS "e Q sinhF - 1

— -|- . -. . . (A12-37)

because of (A'12-23). Therefore the velocity components as S —*-oo'are given by

I J,..!

U = = - Q n ( A ' + QB'C' ) /

= - n (B'C 1 + QA1) / e2 (A12-38)

V = = - Q n (B1 - QA'C') / e2

= n (A'C1 - QB') / e2 (A12-39)
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The components U1 and V are the orbital plane components of the hyperbolic

excess velocity, V .

(A12-30) and (A12-31) can now be written

U'e .
n

sinhF + A1 1 - Q

2n2S2

/2Qns\

+ 0 (A12-40)

y1 = 4=2. sinhF + B' 1 - Q
— 2C2

2n S

, /2QnS\log I — = — ]& e

+ 0
.CS

(A12-41)

In the reference x, y, z coordinate system the motion is given by'

x = x' cos $1 - y sin Q cos i (A12-42)

y = x' sin ?2 + y1 co s^cosT (A12-43)

z = y1 sin i (A 12-44)

Where £2 is the argument of ascending node and i is the inclination as shown in

Figure A4.

z

, Orbital
/5~ Plane

i /

Figure A4. Inner Coordinates
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-
log

y = ZE-

\
O

z = We

where

U = .

V =

COS —cos i

= V' si

A =•

sin F

COS —cos i

= A1 sin O

<in S e

(A12-45)

(A12-46)

(A 1-2-47)

(A12-48)

(A12-49)

(A12-50)

(A12-51)

(A12-52)

(A12-53)
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U, V and W are the components of Y.co*n tne reference coordinate system,

i, e.

(A12-54)

Letting

L = Ce_ (A12-55)

and

(A12-56)

gives

R, = —- V sinhF, + L.—ko —. —ook k —k
nk

+ O

-21TS- ^2T2
k k 2n, S.

k k

(A12-57)

Replacing sinhF, by (A 12-23) gives

k QkSk + ^ko + °ko Sk
-1

+ E, S"1 + F, S."2 log2 Q. S, + G. S."2 log Q, S,—ko k —ko k " k k —ko k 6 k k

(A12-58)

where

A. = V ,—ko —ook

QkB. = =^ V .—ko n, —ook

(A12-59)

(A12-60)

75



Q, /2n \

k \ k

^U (A12-62)
nk

(A12-63)v '. - .
e, — wk 2n, — k

Qk

^3-2nk

G, = * log ^± V . +-4 V . + —^ L. (A 12-65)
_|£Q < O \ t* I rrtb- < rr\lr • ,S. Ir . ^ '

. .e, —cok —3 —o>k ~—2 —k

(A12-66)

(A 12-58) gives the behavior of R, (S, ) in the overlap domain. The singular

behavior for large S, must be matched with the singular terms in the outer

solution. The matching must also relate the constants "V , and L, with

constants of the outer solution. Note that once V , and L. are specified the—ook —k ^
hyperbola R, is completely determined since n, and e, can be obtained from

V . and L,.—ook —k

A12.2 Second Order

The exact form of the second order inner solution is given by (A9-7). It is

an extremely difficult and laborious task to determine the behavior of (A9-7)

in the overlap domain, i .e., for large S, .
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The integral form can be written

(S) = B ( S ' cr) G ? (<r) dff (A12-67)
.ko

Carlson uses a Taylor series expansion for B(S, , or) but this approach is
K

not satisfactory in a second order theory. The largest term in the Taylor

series expansion is

B(Sk, o-) = I(Sk- o-) + o((Sk - cr)3) (A12-68)

From (A12-58)

R, (o-) = A, a + O ( l o g | o - | ) (A12-69)
—KO ~~~KO * * %

c

Therefore the largest term in R, 7 is proportional to

fs Ts
I (S - or)o-do- = / (S - a) [S - (S - «r)]d (S-<r)

S S

S 2 3 / S 3

Since, in general, S «x < S

r
o

3
(S - <r )<rdc r = ~- + O(S) (A12-71)
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3
Therefore the leading term in the expansion of R, ? is order S, and is.easily

found. The higher order terms cannot be found by this approach, however.

In the expansion of B the higher order terms are proportional to

—G(R ) (S V )n+3

dSn ~°

For n = 0, 1, 2

GCRJ = G(RQ) (A 12-72)

dR dR

^ (A12-73)

dR d2R

do

/dR \2 d2R
) - ' " (A12-74)— — o ,02do

From (A 12-58)

R = A S + 0(log |S|) (A12-75)— — '— o — o

Comparing (A12-72) - (A12-75) with (Al l -28) , (Al l -36) , Al l -37) and

(Al l -89) gives

o(iog

= G(A ) + o (A12-76)~
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H(R ) = H(A S) + O (log |S|)
—o

(A12.77)

(A12-78)

Putting (A 12-76) - (Al l -78) into the derivatives of G leads to the conclusion

that

The higher order terms in B are thus proportional to

(S - <r)n+3/Sn+3

Multiplying each of these terms by (A 12- 69) and integrating gives the

contribution of the higher order terms in the Taylor series expansion of

B, i .e.i

,s -

n+4 _ , _ v n + 52 / S \"T* _2 / S V
- s (i _2) S (, o )
~ (n +4) V " S / ' (n + 5) V1 ' S/

n2 + 9n + 20
+ 0(1) (A12-80)
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Therefore every term in the Taylor series expansion of B contributes at

least one term of-orde-r S, . Eventually the denominator in (A 12-80) would

become large and after n = N the terms could be ignored. However, in

order to obtain a reasonable approximation of the S. contribution to the
iC -

expansion of R, ? N would have to be quite la'rge. It will be shown that in

order to complete the matching R, _ must be expanded out to order S,

therefore the Taylor series expansion of B is unacceptable.

What is actually needed is an asymptotic expansion of B(S, , <r) for both S,
- ' K. K.

and cr large. Such an expansion can be shown to differ from the Taylor-

series expansion since no assumption is made that S, - <r is small. An
^_

attempt was made to expand B(S. , (r) to such an order that (A 12-67) would
rC

be represented by an expansion to order S, . The amout of algebra encoun-

tered was horrendous and even stymied an attempt to use Formac. It was

finally determined that such an approach could, at best, only approximate

the S, term with an extremely complicated expansion. This approach was

therefore also considered to be unacceptable.

Based on (A12-71) and the previously derived behavior of R, , (A 12-58), it

can be assumed that R. _ has the following expansion:
—k<£

R. 7 (S. ) = A. , sl + B. , sl log Q, S. + C. , sf—k2 k —k2 k —k2 k ° k k —k2 . k

°k2 Sk l0* Qk Sk + Sk2
 Sk 10S Qk Sk

. (A12-81)

(That the expansion of R, 2 would have this form was strongly indicated by

the work done with an asymptotic expansion of B(S, , <r). Some of the terms
K

were actually derived but each successive term required an exponentially

increasing amount of algebra. ) Differentiating (A12-81) twice gives

= 6 ^k2 Sk + 2 ?-k2 lQg Qk Sk
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+. 2
log Qk S.J 2 D2 + E 2 /log I SI

Dk2 , ::.g
k k + ~k g • k^ + O I 2'

 K|

k =

Now using (A2-20) and (A12-58) gives

(A12-82)

Qk Sk

Sk) C O
log |S I

t > I K.IH (A. S ) c— —ko k S

s

Using (A12-76) - (A12-78) in (A12-83) gives

(A12-83)

G(R,
— k

G(A ) log Q S
, ,

— v— ko — ko

+ H (A, ) C. -4r + O— —ko' —ko C4
^ik

(A12-84)

Multiplying (A12-81) by (A12-84) gives

G(R, ) .R. _ = G (A. ) A. -—ko —k2 —ko —k2

+ H (A, ) B -
— —k-n —Ir ^-k2

log Qk
G(A. )C. ,—ko' —k2

s
(A12-85)
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Substituting (A12-58) and (A12-85) into (A8-5) gives

,2
-~R, 9 (S, ) = G. A. S. + G. B. log Q, S.,2 — kZ v k' k — ko k k — ko 5 k k

G(A, )A. , + G. C,— ko k2 k — ko

I
G(A. )B, , + H(AV )B, A. , + G,x - ' - — — '— —

log Q
-^ko'^2 ' —v^o;^o ^k2 ' ~k ^ko\ S,

-J K.

G k S -

10g2|S+ o - Ui (A12-86)
Sk

Equating functions of S. in (A12-82) and (A12-86) gives

= G, B

- 3 B 2 (A12-89)

Z (A12-90)

i
E, , = G(A. )C, _ + H(A. )C. A. _ + G. E. - 2D. _ (A12-91) .^—k2 —ko'— k2 — -4co — ko — k2 k — ko — k2 i . -> !

Since F, _ appears as a linear term in S, in (A12-81) it vanishes when taking sd

the second derivative. Thus it is not possible to get F, _ by direct substitu- ive
' "~^C^

tion. However, (A12-81) can be rewritten in the form -or>

LA)

82



E log

Sk - ^k2 Sk lQg Qk Sk

Letting

(A12-93)

in (A12-92) gives

Qk

where

The left-hand side of (A12-94) is exactly the expression which will appear in

the matching. For very small (J., 's such as in interplanetary applications the
2log fjL, and log |j.k terms will be much larger than F, _, and F, _ can probably

be ignored. In such a case (A12-94) is not needed since D, 7 and 5t? can ^e

evaluated directly from (A12-90) and (A12-91). For the larger value of \i,

corresponding to the earth-moon system it may be necessary to evaluate

(A12-94). This requires first evaluating (A12-95) by numerical quadrature.
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Then the subtraction indicated on the right hand side of (A12-94) must be

performed with significant care since it involves the difference of two large
-2numbers, i.e., the difference of two numbers which are both order (JL, .
rC

The behavior of R, _ in the overlap domain is therefore given by (A12-81).

It has stronger singularities than does R, but it is also multiplied by p., so
~

the effect of the singularities is somewhat diminished. The coefficients of

the expansion (A12-81) can be found as functions of the coefficients in the

expansion of R, .
• — ko

A12. 3 Third Order

Only the largest term in the expansion of R, _ is of interest. Since the dif-
""TKJ

ferehtial equation for R, _, (A8-6), is similar to that for R^_ it is assumed

to have a similar expansion. Let ' . . . .

where m is unknown. The second derivative is

sm-2

Multiplying (A12-96) by (A12-84) gives

(Al.2-98)log|Sk|)

According to (A8-8)

84



Substituting (A12-98) and (A12-99) into (A8-6) gives

(A12-100)

Comparing (A12-97) and (A12-100) gives

m' = 4 (A12-101)

1 (A12-102)

Therefore, in the overlap domain the behavior of R ^ is given by

V = 14 "fc ̂ o Sk + °(Sk ^kl (A12-103)

A12. 4 Fourth Order

Like the third order outer solution, the fourth order inner solution is not

actually used but its behavior in the overlap domain is important. This

behavior can be deduced without rigorous proof. It has already been shown

that in the overlap domain

= OK)

= °ti)

«)= °

From this sequence it is assumed that in the overlap domain

-= 0(S5) (A12-104)
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A13 INTERMEDIATE LIMIT

The overlap domainthas been defined as the region where t-t, is small in

the outer solution and S, is large in the inner solution. In this region a
1C

new independent variable cr, is defined by

°k =
Note that if en = O, cr, simply shifts the time scale without any scaling. The

tC

limit a = O is then the outer limit. If « = 1, (A13-1) reduces to (A7-27) giving

the inner limit. The variable range a <a<a, will be defined as the intermediate

limit and a and Q-, must be defined by the matching.o 1

From (A7-12) with (3 = 1

S>k = 'k + h^k (A13-2)

Substituting (A13-2) into (A13-1) gives the outer variable

t-tk = nfo + fxk rk (A13-3)

Using (A5-4)

t-tk = v." Mg<rk + R Mk rk (A13-4)

The last result gives t-t, in terms of cr and shows explicity that t-t, is

small, i.e., order \ia . Substituting (A13-1) into (A7-27) gives

' a -1
Sk = ^k ^k

^ (A13-5)

(A13-5) gives S, in terms of cr and shows explicity that S, is large, i. e. ,

order [JL ~ , since cc-1 is always negative.
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(A13-4) and (A13-5) must now be used to t ransform the outer and inner

solutions into functions of a1 common variable cr Then the^matching can ,

be carried out.

A14 MATCHING

It has been assumed that both the outer solution, (A10-1), and the inner

solution, (A 12-2), are valid in the overlap domain. The matching of these

two solutions is most simply stated by requiring their difference to be small
4in some appropriate limit. Cole states this limit has

lim
M.-O
or, constant
k

(outer solution) - (inner solution) = o
(A14-1)

where E(|JL) is a guage function. For a second order theory e(p.) is most easily
2

chosen to be (j. . The limit (A14-1) can be written

lim

constant

^-ko , ^1
2 HL

_
—Z ^3 -• —

M-

M. R.k—ko

M = O (A14-2)

In order for this limit to hold all terms which are singular or constant as

(j.-*0 must vanish. For the singular terms, the coefficients of the different

functions of or must vanish identically since the limit must hold independently

of the value of <r, .
k

In each of the expansions for £., r,, r__, r__, R, , R, _, R, _ and R, .

certain terms' have been ignored and entered only as order something. These

terms must all vanish in the limit given by (A14-2). In general these terms
_ V

will vanish in the limit if the exponent of (j. is positive. That is, p. vanishes
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if x>0, is constant if x = 0, and is singular if x<0, as pi-^0. In order to

make these terms vanish the a of (A13-1) must be restricted as follows:

r . /(t-t. ) 5 (t-t. )" i /co A i \
~~k° ~ Q( k' v k' • 1 _ Q/ Ba-2 4a-l\

2 . V ? ' n / \ ^ " » H " /
M-

Both terms vanish if a>2/5.

_ _ u t f = WIL.3«-1'^ ~ v\ i wiL

This vanishes if g>l/3.

p, ~ o^-^)2, ,) = o
\ /

This vanishes if a>0.

The effect of r__ vanishes if «<l/2.

^~ O

This vanishes if cc<2/3.

This vanishes for any a

2

v-



This vanishes if

3 '3 5\ \ 5tt-2\
/

This vanishes if a>2/5. All of these restrictions are satisfied if

!•<« < i ' • - (A14-3)
O £i

Therefore

2 (A14-4)
"o = -5

1 . (A14-5)
al = 2 ' . -

It is assumed from this point on that (A14-3) is satisfied and that all of the

above terms vanish in the limit. Therefore these terms need no longer be

considered in the limit (A14-2).

A15 INTERMEDIATE FORM OF THE OUTER SOLUTION .

A15. 1 Zeroth Order ".

From (A13-4)

£- = p."-2 M,. o-,. + HL- 1 M,. T,, (A15-1)

~ k 2a-l T.,2a 2 , _ a ,, , ,-,., \ / A , C o\M, <r + 2|j. M T cr + O(fi) (A15-2)
fJL ~ ** ^k k ' ^ ^k 'k k

-.Za 3 J..
2tt-1

 A / f l+2a 2
Mk ^k + 3^ Mk Tk %

o- + 0(n) ' (A15-3)
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(t.tk) 4o'-2 -tAct 4JL M, <r
Jtv iv

(A15-4)

Substituting these expansions into (All-26) gives

-1

aV. - |o. M
-k r . T.

k k

1 a ,,2+ a 2 1 + cA

,,2 a * , 1M. p. + -=-r 1v/fl+2Q' _ ...M. T G, V.k k k — k

+ O

+ cr:

1 3o-2
M, G. V. + 0<

k k —k

4a-2
_ H. v (t. ) - _ PL p (t. ) M,
24 — k — o v k' 24 — k. k v k'/ k

A

of4"-1) (A15-5)

where the leading term has been carried explicitly in order to show that

the matching verifies (A10-3) and (All-21).

A15. 2 First Order

From (A13-4)

log Qk (t-tk) = n~ log 2k +

l-2o'/_2 (A15-6)
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(t-tk) log Qk (t-tk) = M *k log Zk t

+ O((i log Sk) (A15-7)

(t-tk) = fJi0' Mk crk + MkTk (A15-8)

(t-tk)2 log Qk (t-tk) = PL20' ! M2tt a2 log

log S (A15-9)

where

°k (A15-10)

Substituting these expansions and (A15-2) into (Al l -78) gives

,

[ 2o-l
»

2ot
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L-1 a , f c + 0(11)1

,k log

, « l-2cc Z

A15. 3 Second Order

From (A13-4)

(t-tk) log2 Qk (t-tk)

<rk log2 2k + oL log2

(A15-12)

(A15-13)

logQk(t- tk) = logZ k + o n - < r (A15-14)

log S (A15-15)
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(All-131) can now be written

o- log

log

log S. -a -a 1-o-

+ o log log

A15.4 Third Order

The effect of r_ is vanishingly small since »<l/2.

A16 INTERMEDIATE FORM OF THE INNER SOLUTION

A16. 1 Zeroth Order

From (A13-5)

log - log

(A15-16)

(A16-1)
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(A12-58) can be written

M. R, 7 i
k ~k° = n M? A. o-, + JJL" L M, B, (log S. - log n, )IJL k —ko k r k —ko v 6 k ° k

M C. + HI M" D' r

' 10g

, . . -k — ko' r k ^co <r

^Z-cr 1 1 _ / l - 2 o ' - 2 . 1 2,-, / A I ^ O X
Mk ^ko F. + °^ - ""k 108 S (A16-2)

K.

A16. 2 Second Order

(A12-81) can be written

..3 D 3ff l2- ,3« A 3M. R. ~ = |a M. A. _ o-k -^2 ^ k —k2 k

„ n _ . . 2B k2 (log 2k - log nfc) crk

2o--l , l+2a

D^ (log2 2k - 2 log HLk log

log2 ,cr + M (log

- log (i ) o- + |JL M F o- (A16-3)

A16. 3 Third Order

(A12-96) can be written

rf (A16-4)
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A16. 4 Fourth Order

The effect of R, . is vanishingly small since a<2/5.

A17 RESULTS OF THE MATCHING

From each of the terms in (A14-2) similar functions of <r, can be collected

from (A15-5), (A15-11), (A15-16) (A16-2), (A16-3) and (A16-4). Since the

limit in (A14-2) must be satisfied independently of the value of cr. the
K

coefficient of each function of cr must vanish. The following results are

then obtained.

(a) Terms proportional to IT , :

°- 1,01 „ a .,1 + a * 1 a
V - M - H M T £ + n

.. .. l fk —Ik ^ k —Ik r k k —Ik

a

Q'-2 ,,a A a »^
-^ Mk

= O

or

lrk k k

(A17-2)

(b) Terms proportional to log 2 •
Jx

= O (A17-3)
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or

B. = M.'1 a., + |aM.~ 1 c_, + O(|a2) (A17-4)—ko k —Ik r k —2k ^ '

(c) Constant terms:

H~2 (a. - p, ) + n"1 M. T. V. E tT1 b.. + M. T d^ —ko *-ko' ^ k k —k ^ —Ik k k —Ik

+ d_. + O((JL) + u.'1 M. B. log n, - (a."1 M. C, = O (A17-5)—2k vr; r k ^co 6 rk ^ k —ko v

or

C. - B. log n, = (j.'Va . -p. ) + T. V. +1^"^.,—ko —ko 6 ^k I —ok ^-ko/ k —k k —Ik

It is clear that in order to balance the left and right hand sides of

(A17-6) that the order fj." term must vanish, i. e. ,

(A17-7) is equivalent to (A10-3) and (All-22) and verifies the

earlier assumption. Then (A17-6) becomes.

C. = B. log a, +T V. + M." b..
L-~ f\ —L- f̂  If If IT- If -^ I If

JX JX I\. JV J. JX.

(A17-8)

(d) Terms proportional to (r~ log 2, :
K. • K.

= O (A17-9')
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or

(e) Terms proportional to cr

-en T . f l - a , -a ,,-
Mk Tk^-lk + ^ Mk

or

E^ = D. log jo-, fM." 1 ^ a.. + M"2 b_. + O(JJL) (A17-12)—ko —ko 6 ^k k k —Ik k —2k r v '

3(£) Terms proportional to cr, :

3or-1 x 3a-2 ^ f3a . .-. / A i - 7 i - > \= O (A17-13)

or

(A17-14)

(g) Terms proportional to or, log S,

O,,2") - ^"1 M B = O (A17-5)

or

(A17-16)
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(h) Terms proportional to <r •

2a-l ..2a * A 1 2a-l
Mk £k + 2^ Mk

k log

2or- - , ^, ^ / A I T i -7 \M, C, - = O (A17-17)

or

C, _ = B. , log ji, - T M." ! p f + i T, G. V,— k2 . — k2 S r k 2 k 1 1 k 2 k k — k

2
(i) Terms proportional to tr, log 2, :

or

(j) Terms proportional to Q-, log 2, :

Q •» fa , -> O •»^ r i i^
Mk S.lk + 2^ Mk Tk^lk + M- M

k
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= O (A17-19)

D^ = Mk
2 e_2k + O(fji) (A17-20)

ilog

M2+° = O (A17-21)



or

(A17-22)

4
(k) Terms proportional to cr :

1 f 4a-2 .Ac* „ Z .. . 4a-2 ̂ Aa ., -2. .-=-r-|u. M. H. v (t. ) - PL M. H. p. (t. )24 r k —k —o v k' r k —k nk v k'

, ,-., 4fl?-l. 40--2 ,,4 . ^ / A i n oo\+ O(|JL ) - [a. M, A_ = O (A17-23)

or

(tk) - ( t k ) 2 4 + 0(,) (A17-24)

(1) The terms not accounted for so far are of the following orders:

M- » M- t M-

These terms vanish identically in the limit |j.-»0.

A18 SOLUTION OF THE INITIAL, VALUE PROBLEM

The expressions presented in Section A18 contain the solution to the following

problem: given a set of initial conditions at t = t what are the parameters

defining a close approach of the kth_ body at or near t = t, ?
~ K

l(to) = I<)(
to) + ̂ l(to) + ^2i.2(to) (A6-13)

(A6-14)

Given these constants plus t and t. defines all the constants of the outer
o k

solution (including integral constants).

•\
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The constants of the inner solution are the vectors R. (S. ) and V. (S, )
- v ko' -4co v ko'

which appear in (A9-1). The higher order terms are set to zero in (A9-6)

meaning that at S, = S the zeroth order inner solution (an hyperbola) and
K. iCO

the second order inner solution (a perturbed hyperbola) are equivalent.

Therefore the complete inner solution is determined at S, if the corre-

sponding zeroth order hyperbola is known.

Rather than determining R. (S. ) and V. (S. ) as functions of r(t ) and& —ko v ko' —ko v ko' — o'
y_(t ) it is more conve

hyperbola. They are

y_(t ) it is more convenient to determine the elements of the zeroth order

a - semi-major axis

e - eccentricity

i - inclination
_k V (A18-1)
£2 - argument of the ascending node

K.

co - argument of pericenter
K.

t , - time of pericenter passage.
pk

Usually it will be desired to determine the inner solution at closest approach.

Then S, =0 and the elements of the zeroth order hyperbola can be used

directly to calculate the closest approach distance, etc. . .

In order to determine the relationship between the set of elements (A18-1)

and the initial position and velocity it is necessary to rewrite (A17-2) and

(A17-8) in a new form. From Battin the unit normal to the plane of motion is

k, - cos sin ^ (A18-2)

The impact parameter vector is defined as the vector normal to V_ , with

magnitude equal to the semi-minor axis b where

/ 2 \1 /2

b, = i. I if -1] ; (A18-3)
k k\ k / i - "
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Figure A5. Impact Parameter Vector

For the trajectory shown in Figure A5 the unit normal N, is out of the plane
^j£

such that b. , V _. and N. form a right handed system.'' Then—k' —°°k -k B '

b, = b. x N. (A18-4)

Substituting (A12-54) and (A18-2) into (A18-4) and then using (A12-38) -

(A12-39), (A12-48) - (A12-53) and (A-12-55) eventually gives

Q,'
(A18-5)

where

Then (A12-61) becomes

Q,
loi hr —k

(A18-6)

(A18-7)
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The 'express ions for A. and C. , (A17-2) and (A17-8) become
~~ ~~

= V. + ad.. +
— k r— Ik

*- f i kH
log

[±lk + £ 2 k + M k T k ( l l k + 2 £ l

(^
7 7 ?
. rf G, V. + M. . ,
k k k —k • k —k2

- f e k - T k ^ « k

Q,
n.

25,
log -1

(A18-8)

l (A18-9)

Since (A18-9) is only accurate to order jj. the (j. term in V , can
— u^K

temporarily be ignored. Also, since b, is nor,mal to V , taking the inner
^~K . "™~*^iC

product of (A18-9) with V^, gives

2n.

(klk

Subtracting this result from (A18-9) gives

Vr

(A18-10)

(A18-11)
COl

where I is the unit diagonal matrix and V^, is the transpose of V ^. The
K ~~~ K.

transpose is introduced through the identity

(* r y)y_ s (A18-12)

> \ \ ( \ \ ' \ \ \ ^
The solution is now possible., The^ first tw,o'te|ms jof (A)18-8)iare used to \ \ ^

evaluate V . . Then
— cok

(A18-13)
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and n. is found from (A18-6). .Next (A18-11) is used to determine to, andk —k

1/2

(A18-14)

(A18-15)

Since £2, and i, are as vet unknown, the unit normal is determined from
k k '

Then from (A18-2)

sin

cos ft, ~ - (N • e_ )/sin i

Finally, inverting (A12-48) and (A12-49) gives

U.' = U. cosk k

= (vk cos cos

and using (A12-27),' (A12-28), (A12-38) and (A12-39) gives

1/2 uk+ Qk vk

COS V,' - Q. U.'k k k

(A18-16)

(A18-17)

(A18-18)

(A18-19)

(A18-20)

(A18-21)

(A18-22)

(A18-23)
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Enough information is now available to evaluate (A12-94) and this, along
2

with (A18-10), allows the order n term in (A18-8) to be evaluated.

The time of pericenter passage is found from (A13-2), i. e. ,

t = t. + n T (A18-24)

The complete set of orbital elements defining the zeroth order hyperbola

can be evaluated from the expressions for A, and C, obtained through the

matching. The remaining expressions obtained from the matching in

Section A17 give redundant information which can be used as an analytical

check on the matching process. For example, from (A12-60)

(A18-25)

After some manipulation, (A17-4) can be reduced to

-ko " - Qk ^(V + * G(^k) ^-Ik + 0 ( f x ) (A18-26)

Equating (A18-25) and (A18-26) gives

) (A18-27)

Comparing (A18-27) with (A2-13) and (A2-14) leads to

) . . (A18-28)

Since (A18-28) is contained in (A18-8) no new information has been, obtained.

As another example, (A12-62) gives . >

D. = Vml /v|. (A18-29)
— ko — «k °°k
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while (A17- 10) can be reduced to

' " (A18-30)

using the identity

G(Yk)Vk ^ Zvjv3 (A18-31)

Comparing (A18-29) and (A18-30) gives

(A18-32)

a result which is also contained in (A18-8).

It can also be shown that E, reproduces information contained in C. . The—ko ^ - — ko
proof involves replacing L^ by b_, using (A18-5) in (A1Z-61) and (A12-63)

^iC ""JK

then taking scalar products with V^,, and b . The algebra is long and tedious
~~ -K ~"~rC

and requires certain identities such as

G ( x ) y _ . x = -L-(x. y_) (A18-33)
x

Since the algebra is so lengthy and complex no further proofs will be given

here but only the statement that such proofs have been worked out and the

matching appears to give a consistent set of equations relating the constants

of motion of the inner and outer solutions.

Although the notation is different the results obtained by Carlson are contained

in (A18-8) - (A18-11) except that he has one order less accuracy in each

expression. In terms of a common notation the results are identical to first

order for V , and to zeroth order for T. and b. . The idea of decomposing
K K, 1C

(A18-9) into orthogonal components to solve for T. and b. independently
k — K

comes from Carlson who introduced b_, directly into the development of the

inner solution prior to matching. In Section A12 the vector L, was introduced

and, from (A18-5),

Qk
^k = 4 - HJ- ^«k (A18-34)
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The representation of L, in terms of b, and V, is certainly advantageous

for solving the initial value problem, 'as presented in this section, but it

is not unique. Other representations may also be useful, in particular for

two-point boundary value problems. Therefore the solution developed in

this study and contained in the expressions for A, and C, in the preceding

section is somewhat more general than that of Carlson as well as being of a

higher order. The development of the boundary value solution from A. and

C_, appears in Section B.
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1- Section B

SECOND ORDER TWO -POINT BOUNDARY VALUE SOLUTIONS

Bl FUNDAMENTAL SOLUTION

The fundamental relationships between the constants of the outer and inner

solutions in the second order asymptotic solution of the problem of N bodies

were derived in Section A17. In Section A18 it was shown how these equations

can be used to formulate an initial value solution. In this section it will be

shown how these same equations are used to formulate certain boundary value

solutions of practical interest.

The fundamental equations resulting from the matching were shown in Section

A 17 to be (A 17-2) and (A 17-8), They can be rewritten as

Ako = C(tk. to) nr l ( to) + K £ 2 ( t 0 ) + D(tk, to) V

Mkrk(f

M
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,-whe re

- C(tk' to) £l t to>.- D( tk' to ) ^

d" = d,. - A(t. , t ) r,(t ) - B(t. , t ) V _ (t )—2k —2k l k o — 2 v o k o —2 l o

(Bl-3)

(Bl -4)

(B l -5 )

( B l - 6 )

(Bl -7 )

Given initial conditions along the outer solution, (Bl-1) and B l - 2 ) give the

values of A. , C. and T. , the constants of the inner solution. However,
—KO —KO K

using (A3-13) and (A3-31), (Bl-1) and ( B l - 2 ) maybe inverted to give the six

component state vector.

where

/ Q

M. C. - M. (T. +-
k — ko k \ k .3

A ko

L. A.
k/ — ko'

(Bl -8 )

(Bl -9 )

(B l -10 )

(Bl-11)
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Given initial conditions along the inner solution (Bl-8) gives the perturbations

to the zeroth order ellipse at t = t . Thus (Bl-8) is an inverted form of (Bl-1)

and (Bl-2). Either form may be considered as the fundamental solution from

the matching.

B2 ASYMPTOTIC BOUNDARY VALUE SOLUTIONS

The fundamental solution from the matching is essentially an initial value

solution. However, -with a little algebraic manipulation the solution can be

transformed into a boundary value solution where some variables are pre-

scribed at each end of the trajectory and other variables at each end are

dependent on the prescribed values. The goal then is to write (Bl-8) in such

a form that the dependent variables appear as explicit functions of the inde-

pendent variables with the independent variables chosen to represent a

realistic boundary value problem.

It is first necessary to derive some expressions for the inner hyperbola.

Suppose the excess velocity, V^ , , the inclination, i, , the pericenter radius,

p, , and the time of pericenter passage, t . , are assumed to be known for a
th p

close approach to the k—body. The excess velocity has cartesian components

defined by

^cok = <Uk, Vk, Wk) . (B2-1)

The vector V . in the (x, y, z) coordinate system is shown in Figure Bl.—coK

From Figure Bl

~ (B2-2)

c o s X k = U,,/(u: + V:r- (B2-3)

f £%S | (B2-4)
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k

Figure Bl. Hyperbolic Excess Velocity V^,

Since the plane of motion must contain V , , the ascending node must satisfy
c ~~ ̂ *^-

(cf Battin , P. 179)

(B2-5)

where

<r = tan a /tan i., 0 5 or < -n/2 (B2-6)

With some manipulation (B2-5) becomes

cos n. - ) ctn i. { V. W. T U, [(U2 + V2) tan2 i. - W^:/ k k k kl\ k k/ ; k 1<
(B2-7)

-1
c t n i ± V k

i, -,W' "(B2-8)
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It is obvious that

tan2ik * w2/ (Tj2 + y£) (B2-9)

giving a minimum i, which is compatible with T , . In (B2-5), (B2-7) and

(B2-8) the upper sign is to be used if the approach or departure is to be over

the kth body (b. • e_ > 0) and the lower sign is to be used if the approach or
- -K — j

departure is under the body (b. • e_, < 0).

The pericenter radius is defined as

?k = ak(ek - 1) (B2-10)

where the semi-major axis is given by

a. - V "2 (B2-11)k cok x

Then the eccentricity is

e". = 1 + p". V . 2 (B2-12)
k rk cok v '

From (A18-22) and (A18-23)

where, from (A18-20) and (A18-21)

Uk = Uk cos Sk + Vk sin nk (B2-15)

= (\ COS "k ' ^k 5in "k> ' COS rk (B2-16)

- Wk /s inik (B2-17)
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Equations (B2-7) - (B2-17) define the orbital elements (in addition to i, which
' *^

rs assumed known) for the inner hyperbola. From (A 12 -27) and (A 12 -28)

Ak = *k®k COS

B k = *k^k sin'™k • > • • ' t-.ur, - : l . . - { - . . . (B2.-19)

and from (A12-51) - (A 12 -53')

A~. = A cos n '- B! ! sin fi. cos i, ' ; . (B2-20)
K. K K. K~ K K.

B~. = A! sin Q, + B! cos fi, cos I. (B2-21)
k k k k k k .

C". = B! sin I. (B2-22)
k K K •

Then, from (A12-55)

, Bk, Ck) (B2-23)

The two vector constants of the inner hyperbola are given by (A 12 -59) and

(A12-61), i.e.,

A, = V , " (B2-24)— -ko — ook

C, = L, + — iogf^JV , (B2-25)-ko -k e - ® k -

where

n. = V3, (B2-26)
k cok

The equations o£ this section show that known values of .Vgj i , ^-u anc^ PI, are

sufficient to define the inner hyperbola and its two constants, A, and C, .

It is now possible to proceed with the boundary value solution.
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B2. 1 Midpoint-to-Target Body Solution

The basic midpoint-to-target body solution is shown in Figure B2. The initial

time, t , and position, _r(t ), as well as the pericenter time, t , radius, p ,

and inclination, i_,, for a close approach to the target body k - T are all spec-

ified, The initial velocity at t = t is unknown and must be determined. An

'epherheris is required giving positions and velocities of the N-2 perturbing

bodies with respect to the primary body. The ephemeris fixes the coordinate

system of the asymptotic solution.

,The initial conditions for the asymptotic solution are given by (A6-13) and

(A6-14). They are

(B2-28)

From Figure B2

= r(to) (B2-29)

therefore

= r2(to) = 0 (B2-30)

For simplicity let the initial velocity perturbation be defined by 6v (t ), i. e. ,
> . . — ~~ o

^Q) = ^l ( to ) + ^2(to} ' ( B 2 - 3 1 )

From Figure B2 the final position of r (t) is

rjt^ •= £T(tT) (B2-32)
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where, from (A13-2)

(B2-33)

and £ is the position of the target body obtained from the ephemeris. The

parameter TT is not prescribed by the boundary conditions and can, without

loss of generality, be set equal to zero.

The two position vectors given by (B2-29) and (B2-32) define a Lambert

problem and the solution gives r (t), shown as the dashed line in Figure B2,

and the velocities, V^(t ) and v (tT).

Now let k = T and QT = -1 (cf. (A 11-34)) with

v- - HT
(B2-34)

(B2-35)

and substitute (B2-24), (B2-25), (B2-30) and (B2-31) into (Bl-8). Using

(A3-31) gives

B ( t T , t 0 ) 6 y ( t o ) = L

-1,

<BZ-36)

(B2-37)

Solving for 6v(t ) and V „, gives
'~"~ O —CO 1

6v(tQ) = B(tT , to)
-1

+ 1T + KJLT

V T = y_ + j iD( t T , t ) 5 v ( t ) -ni,

(B2-38)

(BZ-3^)
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These two expressions are not explicit since V ^ appears in (B2-38) and
— col

6jv(t ) appears in (B2-39). However, if (B2-39) is substituted into (B2-38)

an expression involving only 6v( t ) results. Rather than solving such an

expression for 6v( t ) the solution can be obtained as follows:

1. Solve the Lambert problem defined by (B2-29) and (B2-32). , This

gives j { t ) a n d

2. From (Al l -22 )

-T = ^o(tT) " BT(tT) . (B2-40)

where £T(tT) is obtained from the ephemeris.
1 ' - '

3. Let V _ = V_. -This gives the zeroth order excess velocity.
—co 1 —1

4. Evaluate (B2-1) - (B2-26). . .

5. Evaluate (B2-38) using the results of step 3 and 4 and with 4™ = 0.

This gives the first order velocity correction.

6. Evaluate (B2-39) using the results of step 5 and with n_ = 0. This

gives the first order excess velocity. , i

7. Repeat step 4 using the first order excess velocity.

8. Evaluate (B2-38) using the results of steps 6 and 7. This gives the

second order velocity correction. • • . . - • »

9. Evaluate (B2-39) using the results of step 8. This gives'the second i

order excess velocity.

10. Using the results of Steps 1 and 8 in (B2-28) gives the second order

initial velocity

,) (B2-41)
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11. Repeat step 4. This gives second order orbital elements at the

target body. -• . . •

Throughout all the steps the prescribed values of r_(t ), P,_, -i and t remain

constant. Steps 10 and 11 represent the second order solution to the boundary

value problem. • .

B2.2 Launch Body-to-Target Body Solution

This solution is shown in Figure B3. The pericenter time, t , , radius, p. ,
_ P .

and inclination, i, are prescribed at both the launch planet, k = L, and the

target planet, k = T. The hyperbolic excess velocities at both planets are

unknown and must be determined. An ephemeris is required giving positions

and velocities of the N-2 perturbing bodies with respect to the primary body. '

The ephemeris fixes the coordinate system of the asymptotic solution.

From Figure B3 it can be seen that the zeroth order ellipse passes through

the launch body at t = t and through the target body at t = t-, where
i-j J.

where again T can be set equal to zero without loss of generality. Then

ro(tT) = p_T(tT) -. - . . (B2-44)

where £ and £_ are the positions of bodies k = L and k = T obtained from the

ephemeris. The two position vectors given by (B2-43) and (B2-44) define a

Lambert problem and the solution gives r (t), shown as the dashed line in

Figure B3,: and the velocities, v (tT ) and v (t-,). .— o J_j ' — o J.

Now let k = L, T with

V- = HL or |JLT . . (B2-45)

QL = +1 (B2-46)
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QT = -1 (B2-47)

let (All-34)) and substitute (B2-24) and.(B2-25) into (Bl-8) for each k. This

gives two equations each of which have the same left hand sides. Assuming

the position and velocity continuous at t = t allows the two right hand sides to

be equated10. Using (A3-31) and (A3-32) gives

A(tT, MT LT - MT TT +-L—L L, L n

-1 = Mr V T—coT

Y_T
(B2-48)

c(tT . tL) ML - M T +=-log—J_i — nT 2-5 D(tT,

-1
(52-49)

Solving for V T and V _, gives—coi_i —col

= ^L - ^L
-1

-T
ACt^, t. )

MT LT - MT TT +-- log ?_
L-L L I L n B 2n

L L / j
(B2-50)
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MT L - MT TT + —log~

2n -L D(tT, :LL T ^L
(B2-51)

If the excess velocities are used to calculate orbital elements then the position

and velocity at pericenter.are defined by the well known expressions

.—pk T$-±a, c| ixk k
(B2-52)

—^pk a, e (B2-53)
k k

The two expressions for the excess velocities are not explicit but the solution

can be obtained as follows:

1. Solve the Lambert problem defined by (B2-43) and (B2-44). This ,

gives v ^ a n d ^ ^

2. From (Al l -22 ) with k = L, T

- £k(tk)

where ^, (t, ) is obtained from the ephemeris.

3. Let V . = V. , k = L, M. This gives the zeroth order excess— l~oo K K
velocities.

(B2-54)

4. Evaluate (B2-1) - (B2-26) with k = L, M.

5. Evaluate (B2-50) using the results of steps 3 and 4 and with TJ_ = £

= CT = 0- This gives the f irst order V T .—J_i —co JU
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6. Evaluate (B2-51) using the results of steps 3, 4 and 5 and with TV

= 4T = HT = 0. This gives the f irst order V ^. "•••'
— J_i — JL — co I

7. Repeat step 4 using first order excess velocities.

8. Evaluate (B2-50) using the results of steps 5, 6 and 7. This gives

the second order V _ .
— coj_i

9. Evaluate (B2-51) using the results of steps 7 and 8. This gives the

second order

10, Repeat step 4 using second order excess velocities. This gives

second order orbital elements.

11. Evaluate (B2-52) and (B2-53) using the .results of step TO. This 'gives

second order positions and velocities at the pericenters of the hyper-

bolic trajectories close to the launch and target bodies.

Throughout all the steps the prescribed values of t , , p, and i. , k = L, M
pK K. K,

remain constant. Steps 10 and 11 represent the second order solution to the

boundary value problem.

Although the midcourse time t does not appear explicitly in (B2-50) and

(B2-51) it does enter implicitly since all of the constants are evaluated

either between tT and t or between t and t^. The midcourse time is notLJ o o T
fixed and may be defined by

tQ - (tL + t T ) /2 ' (B2-55)

The first order position and velocity perturbations at t = t are needed to

evaluate the second order constants. They are obtained directly from (Bl-8),
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i. e.,

nO

(B2-56)

B2.3 Non-linear Solutions

Evaluating (B2-38) and (B2-50) requires the inversion of the B-matrix. This

inversion may tend to give inaccurate results in cases where the linear state

transition matrix is not a good approximation due to large non-linear effects.

Such cases arise if one of the endpoints is close to pericenter or apocenter of

the zeroth order ellipse. The form of (B2-36) (B2-37) (B2-48) and (B2-49)

suggests an alternative approach. This approach has been called the non-

linear solution by Carlson. 3

The zeroth order ellipse is defined by its position and velocity, r (t) and V (t).

Suppose a neighboring ellipse is defined by

(B2-57)

VL (t) = V (t) + (iAv (t) (B2-58)

where Ar (t) and Av (t) will be called the offset position and velocity. Since

r1 (t) and V (t) also define a two-body trajectory the offset positions and

velocities at any two times t, and t_ are related by

(B2-59)
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Now define X. and Y. by
~~~K ~~~rC

r Qk k
=- l°ghr— X + Yk + ^k . (B?.-60)

k n J

(B2-61)

Then the midcourse solution, (B2-36) and (B2-37), becomes

'O

= *(tT . t0)( | (B2-62)

6v (t )— v o

while (B2-48) and (B2-49) become

= «(tT, tL) | 1 (B2-63)

Now note the similarity between (B2-59) and (B2-62) and (B2-63). This sug-

gests that (B2-62) and (B2-63) represent the propagation of offset end condi-

tions for a new zeroth order solution.

For the midcourse solution, comparison of (B2-59) with (B2-62) gives

) = 0 (B2-64)

= — T (B2-65)

Then from (B2-57)

( t ) = T ( t ) (B2-66)
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r^(tT) = .^(t^) + ^XT (B2-67)

The end points r1 (t ) and r' (t^,) define a new Lambert problem, the solution

of which gives r1 (t), shown as the dashed line in Figure B4, v1 (t ) and V (t ).

Again comparing (B2-59) with (B2-62) gives

Av (t ) = 6v_(t ) (B2-68)

AX(tT) = —T (B2-69)

By combining (B2-41), (B2-58) and (B2-68) the initial velocity becomes

J5L(fc
0) = V;(t0) (B2-70)

By combining (B2-58), (B2-61) and (B2-69) the excess velocity at the target

body becomes

VmT - V^-^T-^\T (B2-71)

where

} ' - ( t ) (B2-72)

Equations (B2-70) and (B2-71) represent the non-linear solution. They replace

(BZ.-38), (B2-39) and (B2-41) of the solution discussed in Section B2. 1.

For the launch body-to-target body solution comparison of (B2-59) with (B2-63)

gives

Ar (t. ) = XT (B2-73)
—o Li —I-/

(O =- X^ .. - (B2-74)
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Then from .(B2-57)

(B2-75)

(B2-76)

The end points r1 (t ) and r1 (t ) define a new Lambert problem, the solution
—O i_i ~~O 1

of which gives £^(t), shown as the dashed line Figure B5, VJt ) and .v1 (tT).

Again comparing (B2-59) with (B2-63) gives

L) = XL (B2-77)

) = ^ • (B2-78)

By combining (B2-58), (B2-61), (B2^77) and (B2-78) the excess velocities

become

V = V' - H6™ - V - r \ (B2-80)
—co i —1 —1 —J.

where

YL = -vi(tL) - £L(tL) (B2-81)

•*.. '

-T = Z0(t
T

) ~ £T ( tT ) (B2-82)

Equations (B2-79) and (B2-80) represent the non-linear solution. They replace

(B2-50) and (B2-51) of the solution discussed in Section B2. 2.

Since X, is a function of V the non-linear solutions, like those of Sections

B2. 1 and B2. 2, must be evaluated in a sequence which uses the best available
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approximation for V . , i. e. , the n order solution for V . requires the
,-1 COrC • —COrC

(n-1) order value of V to evaluate the offset endpoint X, .

The non-linear solutions require more computation time than the linear or

standard solutions since solving a second Lambert problem is, in general,

more time consuming than inversion^of the 3x3 B-matrix.

B3 APPLICATIONS OF THE BOUNDARY VALUE SOLUTIONS

The solutions of Section 3 can be used to solve several boundary value prob-
/

lems. They are discussed in the following sections.

B3. 1 Earth-to-Moon

The simplest earth-to-moon boundary value problem is shown in Figure B6.

The initial time, t , the initial position relative to the earth, r(t ), and the

pericynthion radius, p_,, inclination iT, and time, t , are all prescribed.

The initial velocity relative to the earth, v(t ), is unknown and must be

determined.

This problem is solved using the midppint-to-target body solution of Section

B2. 1. The primary body is the earth and an ephemeris is required giving

the motions of the moon, sun and any other significant bodies in cartesian

coordinates -with the earth at the origin. Although the sun's mass is large

compared to the moon's mass, its effect is diminished by its great distance

from the earth. As discussed in Section A1.2 both the moon and sun contrib-

ute effects of order JJL -where jj. is the dimensionless mass of the moon.

In this problem the subscript T of Section B2. 1 refers to the target body which

is the moon. The effects of the sun and any other bodies enter only through

the constants Y_ , 6_T, £T and rj_T.

B3.2 Earth-to-Moon Midcourse

In the previous section the initial position, r(t ), was implicitly assumed to

be close to the earth. The same analysis may also be used for a midcourse

maneuver where the position, j-(t ); represents a point between the earth and

the moon as shown in Figure B7. The solution is identical to the Earth-to-Moon
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solution of the previous section. Assuming the velocity, y_(t~)> just prior to

the midcourse maneuver is known, the velocity correction is given by

where v(t ) is determined from the asymptotic solution.

B3. 3 Interplanetary Midcourse

The interplanetary midcourse problem is shown in Figure B8. The initial

time, t , the initial position relative to the sun, £Jt ), and the pericenter

radius, p™, inclination, i , and time, t _, at the target planet are all pre-

scribed. The initial velocity relative to the sun, y_(t ), is unknown and must

be determined.

This problem is also solved using the midpoint-to-target body solution of

Section B2. 1. The primary body is the sun and an ephemeris is required

giving the planetary motions in cartesian coordinates -with the sun at the

origin. In this problem the subscript T refers to the target planet and the

effects of all other planets enter only through the constants Y™, 6™, ̂ _T

and

B3. 4 Inte rplanetary

The interplanetary boundary value problem is shown in Figure B9. The peri-

center radius, p, , inclination, i, , and time, t , , are prescribed at both the

launch planet, k = L, and at the target planet, k = T. The hyperbolic excess

velocities at both planets are unknown and must be determined.

This problem is solved using the launch body-to-target body solution of Sec-

tion B2. 2. The primary body is the sun and the same ephemeris as is used

in the interplanetary midcourse solution is required. In this solution the

perturbing effects of the planets from t = tT to t = t are included in the con-
Lt o

stants YT i 6T , £T and ri while the effects from t = t to t = t_ are included—LI —LI —LI —LI o i
inY_T, 6.T> £_T and n_T.
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B4 SPECIAL MOON-TO-EARTH SOLUTIONS

In this section two special moon-to-earth problems are considered. In both

problems the boundary conditions are the initial and final times, t. and t ,
l e

the initial position relative to the moon, R( t , ) , the entry radius relative to the

earth, r , the inclination relative to the earth, i , and the entry flight path
G C

angle, Ve. Also in each problem the trajectory prior to t = t, is assumed to

be an orbit about the moon with velocity V(t7) just prior to t,. The first prob-

lem involves finding the velocity V( t . ) which results in a trajectory satisfying

the earth entry conditions. This constitutes a single impulse problem where

™-l = v<v - V f t j )

is the impulsive velocity.

In the second problem the velocity after the impulse is assumed to be of the

form

V(t+) = (1 + Ij) V(t~) (B4-2)

•which gives an impulsive velocity of

&Ll = li V(t~) (B4-3)

The new velocity does not necessarily result in a trajectory satisfying the

earth entry conditions and a second impulse AV~ is applied at t = t_ where

(t_ - t,) is small compared to the total flight time, (t - t ). The second
Cj J. ' . 6 X

impulse must give a trajectory satisfying the entry conditions. This consti-

tutes the two impulse problem.

B4. 1 Modified Lambert Problem

In the standard Lambert problem two position vectors are prescribed as well

as the flight time from one position to the other. Solution of the problem

gives the two-body trajectory connecting the two positions. Lambert's

theorem is stated in functional form as
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F(a, , c) (B4-4)

where

1 c = (x^ + x2 + 2x^2 cos 6) (B4-5)

When the two position vectors are given

cos 9 = (B4-6)

Solution of the Lambert problem requires solving (B4-4) for a. Once a is

known a set of equations is solved to eventually give x(t). Several forms of

(B4-4) have been proposed, all of which require numerical techniques to

solve for a.

For certain problems with prescribed entry conditions the final position x_ is

.not known, only its magnitude is given. However the inclination and entry

flight path angle are also prescribed and allow for a solution. The angle 6

between the two positions is defined as

(B4-7)

where f and f_ are the initial and final values of true anomaly given by

f, = cos

fz = cos

-1 a(l-e ) - xj
ex. , , TT < f < ZTT

-1 a(l-e ) - x2

ex. , TT < f < ZTT

(B4-8)

(B4-9)

The range of f, and f_ comes from restricting the flight time to be less than
' J . L * ; - . . ' ' •

that for 9 = TT and having the entry before perigee. The eccentricity can be

written as
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= fa + x2 (x2 - 2a) cos Y2~| /a (B4-10)

where V is the flight path angle at t_. This modified Lambert problem

requires a simultaneous solution of (B4-4), (B4-5) and (B4-7) - (B4-10) for

a, c, 6, f,, f_ and e, i.e., six equations for six unknowns.

In Section B2. 1 the approach of Battin was used to determine the ascending

node of the inner solution. A similar approach is now used to determine the

ascending node of the modified Lambert solution. Let the initial position x,

have components (£. , r \ . , t, } and, using Figure B2 with V replaced by x. ,

define

s n

cos X = e^i + i l j ) 1 / 2 (B4-12)

tana = * , ( ( + \ ) (B4-13)

Since the plane of motion must contain x. the ascending node must satisfy

« = X. ± o- + (1 ± 1) iT/2 (B4-14)

•where

o- = tan a /tan i (B4-15)

and i is the prescribed inclination. The ± sign indicates two possible solutions

satisfying the prescribed inclination. The unit normal is now defined by

n. = (sin SI sin i, -cos $1 sin i, cos i) (B4-16)

Using standard formulas for : elliptic motion (cf Battin) the initial .position and

velocity are

x ( t j ) = Xj (B4-17)
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. (B4-18)

where

V ( t j ) = e sin f /(riab) ' (B4-19)

V ( t j ) = (1 + e cos f^ / fnab) (B4-20)

and

n = a~3 / 2 , (B4-Z1)

b = a(l - e2)1 /2 (B4-22)

The final position and velocity are

X2
(cos 9 x, + sin 9 n x x,) (B4-23)

Xj 1 1

_1_
X2

where

V r( t2) = e sin £2/(nab) (B4-25)

V (t2) = (1 + e cos f2) / (nab) (B4-26)

The solution at any time t is given by (A6-2), (A6-5) and (A6-r6), i.e.,

x( t) - f ( t ) x j t j ) + g(t) x ( t x ) (B4-27)
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where

f( t ) = 1 - a(l - cos A E ) / X j (B4-28)

g(t) = (x s inAE)/(na) -f e sin E (1 - cosAE) /n (B4-29)

and

AE = E - Ej (B4-30)

The eccentric anomaly E is defined from , i

n(t - t ) = E - e sin E (B4-31)

or by

sin E = (1 - e2)1 /2 sin f / ( l + e cos f) (B4-32)
•: ti

cos E = (cos f + e ) / ( l + e cos f) (B4-33)

Since e and f. are known (B4-32) and (B4-33) can be used to determine E..

Then from (B4-31) the time of pericenter passage, t , is

/

t = -tj - (Ej - e sin E^/n (B4-34)

The equations derived in this section completely define a two-body ellipse

satisfying the prescribed values of the initial position, x., the inclination,

i, the final radius, x_, the final flight path angle, Y_, and the time t,, - t.,

where both t7 and t are given.
Ct 1

B4. 2 Single Impulse Solution

B4. 2.1 Outer Solution

The boundary conditions which are prescribed for the outer solution are the

earth entry time, t , radius, r , inclination, i , and flight path angle, \ .

138



Thus in the modified Lambert problem the subscript 2 is replaced by e, i. e. ,

t2' = t . (B4-35)

x~ = x (B4-36)
LJ G

(B4-37)

• Y2 = Ve ' (B4-38)

An additional boundary condition for the outer solution is the initial time t,.

The initial position for the modified Lambert problem is taken as the position

of the moon at t - t , i. e. ,

) (B4-39)

This forces the Lambert solution to pass through the center of the moon as in

the earth-to-moon solutions. /

Solution of the modified Lambert problem gives the zeroth order outer solution

from (B4-27), i. e. ,

r (t) = x(t) • (B4-40)

The position and velocity at t, are given by (B4-17) and (B4-18)

r^tj) = x ( t j ) (B4-41)

V^tj) = x ( t j ) (B4-42)

and at t by (B4-23) and (B4-24) .
6

ro(te) = x(t2) (B4-43)

v (t ) = x(t,l (B4-44)
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The boundary conditions on the higher order outer solutions come from (B2-29)

and (B2-30)

L(^ = £o^e* + ^l(te) + \±Z £2(te) ' (B4-45)

"v(t ) = v (t ) + uv,(t ) + u v_(t ) (B4-46)— e —o e ' —1x e —2 e

The effect of the higher order boundary conditions will be considered shortly.

No further information about the outer solution is required at this point.

B4. 2.2 Inner Solution

The only boundary condition prescribed for the inner solution is the initial posi-

tion R^ at t = t,. However R_^ is actually a function of the inner variable

SM = (t - t^J/fi ' ' (B4-47)

where t ,. is the time of pericenter passage of the inner solution and PL = [i ,

the dimensionless mass of the moon. From (A 13-2)

t ., = t., + U.T., (B'4-48)
pM M ' M v

where t. , and r, must be determined. (In the previous boundary value solu-

tions it was stated that T could be set equal to zero without loss of generality.

The effect of a. non-zero T will be demonstrated in the next section. ) When

t = t, then S,, = SM, and the initial position is RjS^,).

From (A12-54) the hyperbolic excess velocity is

V A/T = (U*f V,,, W.J (B4-49)—coM M M M

The excess velocity and the initial position are sufficient to determine the

inner solution as follows:
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The position and velocity at any time S are given by

= RM (SM> C°S fM (SM> ^a + RM (SM> Si (B4-51)

e + e
~a L

sin L .(S. .) e + e., + cos £,,(5. ,)Mv M —a M Mv M (B4-52)

where

RM

M
- f-2 n l / 2 ] l / 2

M ( M '

(B4-53)

(B4-54)

and f,., is the true anomaly. The unit vectors e and e, lie in the orbital plane

with e directed toward pericynthion as shown in Figure BIO .
cL

Figure BIO. Orbital Plane Coordinates for Inner Solution
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Now let

= *M(SM1>

TM1

Then (B4-51) and (B4-52) maybe solved for e and e, giving~~ —~

-
+ COS f,, RTv/n

M '

(B4-56)

M
M

s m f Ml V /^Ml C O s f M l .
(B4-59)

Substituting (B4-58) and (B4-59) into (B4-51) gives

r-z — — "1 —2
-M = rM " RM + RM COS (fM " £M1JJ -Ml^M

+ R,, R... sin (f - f ) V.. . /I- . . (B4-60)M Ml M Ml —M1 M

Now define e by— co

-MR / (B4-61)
M \ M/

and 0 by
•f \

• ' • ' i •

<j> = lim
oo (f -~t ) (B4-62)RM -» oo M . Ml
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Then, from (B4-60) and (B4-61)

T
X.-*. rM

1VJ.

(B4-63)

f Solving for V,,, gives

T M s i n 0 -64)
>

where e has been replaced by V ,., using
— CO V ' — ooM &

e ' = V . ./V . .-co — coM oo M
(B4-65)

i. e. , the radius vector becomes parallel to the velocity vector at infinity

(cf. (A12-58)).

Now define V, and the unit vectors e_ and e_ as shown in Figure B l l .

The velocity V can be written

= VM1 C°S Vl ^+ VM1

Also

e_ = cos <f> e_ + sin <f> e_

Eliminating e_ gives

(B4-67)

= VM1 (COS Yl - Sin Vtan Vl /S in

Using (B4-65) and

1*
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Figure Bl 1. Orbital Plane Coordinates at t = L ,

give s

'= vM1

/. sin YA R
v _ - I ~C°S 1 " tan I R

vV
sin Y. V~°

. ..
Ml M1 sin A V -.ooM

(B4-70)

Equating coefficients of V ^ in (B4-64) and (B4-70) give.s

\* = R ^ / r l V iv / r l sin !M Ml Ml 1
(B4-71)

•which is simply the definition of the .scalar angular momentum, which agrees

with (B4-54). Equating the coefficients of R^i gives

/ sin Y
V.,, (cos Y. -Mix 1 t an

1 (1 - cos 0)
J. tan d>
M • r

(B4-75)
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Eliminating V, using (B4-71) and solving for V - j . gives

2

M cos
Ml

+ (J. - cos

M
(B4-76)

From the conservation of energy

V
Ml
2

coM
R

(B4-77)
Ml

Substituting (B4-76) into (B4-77) and solving for t gives

R,,, V sin 0
Ml coM

2 1 1 / 1 1 4

V R'T. , , V •-, (1 + COS 0)V Ml coM v r

(B4-78)

where the plus sign is used in front of the radical in order to satisfy (B4-54).

Using (B4-78) in (B4-64) eventually gives

-Ml
1 + 1 +

R-. , V (1 + cos 0)Ml ooM T
—ooM

'M
2 R

Ml
1 - 1 +

V'.. (1 + cos
(B4-79)

This expression gives the initial velocity V,, , in terms of V and R . since

t •

(B4-80)cos R,,! -V .) / (R.. , V • .)
—Ml — coM v Ml
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Finally the inclination is defined by

COsTM = £-3 ' ^M ' (B4-81)

where H-. is the unit normal to the orbit plane and is defined by

H™ = ( R A*I x v iv / r i ) f\* (B4-82)—M —M1 —M1 M '

Therefore, combining (B4-81) and (B4-82) gives

cos7x, = (e, • R.,, x V. ,,)/! . <B4-83)M —3 —M1 —M1 M

Substituting (B2-11) and (B4-54) into (B2-10) gives

PM ~ ir T YooM ̂ ML\ i

It was shown in Section B2 that prescribed values of the hyperbolic excess

velocity, the pericenter radius and the inclination are sufficient to determine

the inner hyperbola and its two constants, A_ and C_. . Equations (B4-83)

and (B4-84) give the radius and inclination as functions of the excess velocity

and the initial position vector. It has therefore been shown that the excess

velocity and initial position do indeed determine the inner hyperbola as was '

stated at the beginning of this section. »

A final parameter which must be determined before proceeding to the boundary

value solution is T . In the previous boundary value solutions it was stated

that T was arbitrary. Such is not the case now, as can easily be shown. The

hyperbolic eccentric anomaly, F, at time S., = S-.., is given by the standard

expressions (cf. Carlson ).

cosh F,- = (a" +R ) /(£i e~ ). (B4-85)

sinh F, = (V... • R... J / fe" . . a.,1/Z) (B4-86)
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Then from Kepler's equation, (A9-2),

SM1 = <*M Sinh

and, from (B4-47) and (B4-48)

:SM1 = (tl - *M - ^M TM> ' *M ' .

The time t. , is the time at which the zeroth order outer solution passesM
through the center of the moon. But from (B4-39)

= t (B4-89)

and therefore, from (B4-88)

TM = - SM1

(Note: It would be possible to choose t-, different from t, and, still obtain a

solution. However, the value of t, .. is required before S, can be calculated

because the inner solution requires knowledge of the zeroth order outer solu-

tion to get the zeroth order approximation for V , ,. This means that t,, t,.,— «>M 1 M
and S, are always fixed in (B4-88) and T\, is then given by

TM = - S M l + (tl - W^ (B4'91)

; 'Thus T is never arbitrary. (The choice of t^. = t, gives the simplest result. )

B4. 2.3 Boundary Value Solution

The single impulse boundary value problem is shown in Figure B12. It is

'"similar to the earth-to-moon problem shown in Figure B6. The terminal

conditions at the earth a,re given by (B2-27) and (B2-28) with t = t . From

/.Figure B12

£o(V = i^e) - (B4-92)
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therefore

= £z(te) = 0 (B4-93)

and, as in (B2-31), let

(B4-94)

Now let k = M with

(B4-95)

QM
(B4-96)

and substitute (B2-24), (B2-25), (B4-93) and (B4-94) into (Bl-8). Since

t = t (Bl -8) reduces to

B(t r t e ) 6v(te). = LM
i . PMCM—— log I -=—

n\r \ ^n,,M \ M -coM -^ 1M (B4-97)

-1
-M

(B4-98)

where

(B4-99)

should not be confused with V, . (£! - f ) defined by (B4-52). Solving for

and V , , gives
—coM ° . • • ' . •

6v(te) = B( t r t e )
-1

M

V-1 "

HM 2n
M —coM

(B4-100)
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D(tl' fce> ̂ e* - ̂ iM - (B4-101)

These two expressions are not explicit since V ,, and 6 v(t ) appear on the

right hand sides. The solution is obtained from the following steps:

1. Given the initial time t, solve (B4-39) and (B4-41) for r ( t - ) using

the ephemeris for

2. Using the prescribed terminal values of t , r , Y and i solve thee e e e
modified Lambert problem given in Section B4. 1. This gives v (t ),

r (t ) and v (t ).— o e — o e

•
3. Solve (B4-99) for V where £,,,(1,) is obtained from the ephemeris.

*

4 Let V , , = V, ,. This gives the zeroth order excess velocity.
— ooM — M

5. Using the prescribed initial position R, ,, evaluate (B4-78) - (B4-84).
— WL 1

6. Evaluate (B2-1) - (B2-26) and (B4-85) - (B4-90) .

7. Evaluate (B4-100) using the results of step 6 and with |_ = 0. This

gives the first order 6_v(t ).

8. Evaluate (B4-101) using the results of step 7 and with r^. = 0. This

gives the first order excess velocity.

9. Repeat steps 5 and 6 using the first order excess velocity.

'10. Evaluate (B4-100) using the results of step 9. This gives the second

order 6y_(t ).

11. Evaluate (B4-101) using the results of step 10. This gives the

second order excess velocity.

12. Repeat step 5. This gives the second order initial velocity V , .•Ml'
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13. The single impulse is given by

AY. .. = V.., - V..(SA . ,)—Ml —Ml —M Ml (B4-102)

where ,) is the velocity just prior to the impulse.

14. The entry position and velocities are given by (B4-92) and

Xo^e) (tj (B4-103)

Steps 12, 13 and 14 represent the solution of the single impulse problem using

the standard technique. A nonlinear solution is also possible using

—coM

(B4-104)

instead of (B4-39) - (B4-41) as the endpoint for a nev/ modified Lambert

problem. Solution of the new Lambert proglem gives v' ( t , ) and v' (t ).

Then (B4-101) is replaced by

(B4-105)

w^here

(B4-106)

and (B4-103) is replaced by

v(te) = V(te) (B4-107)
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The non-linear solution must also be evaluated in the sequence of the standard

solution since the right hand side of (B4-104) is a function of V ^ . In practi-

cal applications the entry will always be near perigee and the non-linear solu-

tion is probably preferable to the standard solution since it bypasses the

errors introduced by the linear matrix B( t , , t ). An even greater advantage

of the non-linear solution over the standard solution is the fact that the latter

does not satisfy the entry conditions exactly while the former does.

In the linear solution, the modified Lambert solution (the zeroth order solu-

tion) satisfies the entry conditions exactly but because of (B4-94) the first and

second order entry velocities are slightly different. Thus the entry conditions

remain satisfied only to order unity. In the non-linear solution the total entry

velocity,

£(V = X0
(te) + H L^l ( te ) + ^ ^2(te) (B4-108)

is replaced by (B4-107) which comes from the modified Lambert solution.

Since the Lambert solution satisfies the entry conditions exactly so does the

total entry velocity and the entry conditions are satisfied to second order.

The non-linear solution is shown in Figure B13.

B4. 3 Two Impulse Solution

The two impulse problem might be thought of as an extension of the single

impulse problem. It is, however, a somewhat different problem since the

impulse which gives a trajectory satisfying the earth entry conditions occurs

not in the inner region, as in the single impulse case, but rather in a region

which is more closely associated -with the overlap domain. Since both the

inner and outer solutions are valid in the overlap domain it should be possible

to represent a trajectory in this region by either solution. This leads to two

alternate approaches to solving the two-impulse problem. These approaches

are developed in the following sections.

B4. 3. 1 Inner Solution

The inner velocity prior to the first impulse is V (S~ ). Then according to

(B4-3) the first impulse is .
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(B4-109)

The value of I, must be chosen to give a hyperbolic trajectory after the

impulse, thus

I 1^(v /2/RM (S 1 ) ) / VM (Sp - 1 (B4-110)

where R^ / f(S,) is the initial inner radius. Then the velocity following the

impulse is

^M (S1> = ( 1 + I 1 ) ^ M ( S 1 )

The velocity V-, (S,), which is assumed known, uniquely defines the zeroth

order inner hyperbola. The elements defining this trajectory can now be

obtained. Thev are

= angular momentum vector (B4-112)

= angular momentum (B4-113)

N = tjl

- unit normal vector (B4-114)

h = V M (S | ) 2 / 2 -1^(8^

= energy (B4-115)

I - l / (2k)

= semi-major axis (B4-116)
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e = (1 + 2h*2)1/2

= eccentricity (B4-117)

n = a'3/2

= mean motion (B4-118)

T = cos (N ' e~)

= inclination (B4-119)

In addition, there are the argument of the ascending node,

sin n = (N ' e^) / sinT (B4-120)

cos n = - (N • e_2) / sinT ' (B4-121)

the initial eccentric anomaly,

sinh ?! - fe* < s i ) ' ^M f s t )] /<»1 / 2 ^ (B4-122)

cosh Fj = Fa + RM (S^l /ae" (B4-123)

the initial true anomaly,

sinlj = Fa (e"2 - 1)1/2 sinh F j l /R j^ . (Sj) (B4-124)

cos Fj = a(e - cosh F j ) / R M (S^ (B4-125)

and the argument of pericynthion

u = w - f (B4-126)
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where

x NX R . (S
(B4-127a)

j) sin i

fe x N • R (S )]
•= L~3

P ~ TM-. 1 J (B4-127b)
R(S ) sin i

All of thes.e expressions are derived from standard two-body relationships.

Finally, from Kepler's equation for a hyperbola

Sj = (e sinh F1 - F ̂  I n (B4-128)

while the inner time is defined by (A7-27) and (A 13- 2) as
J

Sl - < ' l - t M

Equating (B4-128) and (B4-129) gives

TM = (tj - tM) / ^ + (Fj - e sinh Fj) / n (B4-131)

In this particular problem t, is fixed and tM is arbitrary. Putting t^ = t^

gives

..
M

= (-F. - "e" sinh F , ) / n (B4-131)
l 1

Using the elements defined here it is possible to determine the behavior of

the inner solution when S is large using the results of Section A 12. The

values of A1, B1 and C' are found from (A12-27) - (A 12-29), the values of

U1 and V1 are found from (A12-38) and (A 12-39) with Q = 1, and the values

of V ..; and L... are found from (A 12-48) - (A12-55).
— ooM — M
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The values of V , , and L,.., can be used in the fundamental solution to deter-
— coM — M

mine the position and velocity at some later time, i.e., the time of the second

impulse. This approach would be followed if the second impulse were to be

added strictly in the outer domain.

If the second impulse occurs in a time period approximately 1 1 to 18 hours

after the first impulse then it occurs in the overlap domain where both the

outer and inner solutions are valid. Therefore, rather than using the funda-

mental solution, which includes the matching of the inner and outer solutions,

the position and velocity prior to the second impulse can be determined from

an inner, perturbed hyperbola alone. Carlson has derived some1 simple

formulas to achieve this.

The position and velocity at any time S, where S > 1, can be found from

S) + H-2 * (S) + ^ * (S) (B4-132)

where R-. and V... are the two-body position and velocity,

- GM ^ (S) S 2 - ^ 3 (B4- 134)]

= GM to[

and

VM = 4A3 S3 (B4-137)
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The two-body position can be obtained from any standard expression, (A9-1)

is an example. The two-body velocity can then be obtained by differentiation

with respect to S or by standard velocity expressions. The equations for

R,,? and V^_ are simplifications of Carlson's expressions found by substitut-

ing G,.,, which is defined by ' .

(B4-138)

for his time averaged gravity gradient matrix. The expressions for R-, 'and

VM , found from (A12-102) and (A12-103), make a first order correction for

the substitution of the constant matrix G, , for the time averaged value which
M °

he used. Using G, , simplifies his expressions considerably with very little

loss of accuracy.

The expressions for R_M? and V were derived using Taylor series expan-

sions^ while the expansion for R^? in Section A12 is an asymptotic expansion.

The two forms are equivalent if the product nS » 1, however the algebra neces-

sary to show this is long and tedious. For moderate values of nS, (A 12-81) is

not a good approximation and (B4-134) is preferred.
>

B4. 3. 2 Overlap Solutions

The second impulse is to be applied at some prescribed time t = t_. The . , . . • • >

impulse must result in a trajectory satisfying terminal constraints at a

later time. In order to calculate the impulse it is necessary to determine

the position and velocity at t_, i.e., at the instant just prior to adding the

impulse. There are two possible ways of achieving this.

The first method involves the use of the fundamental solution. This requires

knowledge of a zeroth order outer solution. As in the single impulse solution,

(B4-39) - (B4-41), let

(i ) (B4-139)
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This gives the initial position. Now solve (B4-99) giving

-M (B4-140)

This is the initial velocity. In other solutions V, , has been used as the f i rs t

approximation to V , . Since V ... was determined in the previous section

let

V = V—M —ooM
(B4-141)

Then at any time t the zeroth order solution is given by (A6-2) and its

derivative

(B4-142)

ct). v o ( t l ) (B4-143)

These expressions can be used to find the zeroth order position and velocity

at t = tz.

Since the moon corresponds to the launch body the perturbations at t_ are

found from (B2-56) by letting t = t , L, = M and adding the second order

terms from (Bl-8). The result is

1 , /u.e
=-log I •&=-
•n * I 7 r\2n -coMl

(B4-144)

where the constants Y_M, _5_-.. , ^M and r^M are evaluated along £ (t).
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The position and velocity at t = t_ are found by combining (B4-142) - (B4-144)

giving

£(fcP = Io(t~) + Liiijtt") + H2£2(
fcP (B4-145)

+ ^ 2 ^ ( t ) (B4-146)

By considering all of the error terms in Sections A12 and A 13 it can be shown

( 3 2\p. / (t_ - t.) \.

The following table for position error can be constructed:

t2 - tp hours 5 11 18 20

' . v 2/3 1/2 2/5 - 3/8
' ? - t,) jj. p |j. p.

n, 3 , , , , .2> 1.67 2.00 2,20 2.25
°((J. / ( t o - ti ) ) W. M- M- \J-

£ X

Thus as t_ - tT increases the theoretical error decreases (i.e., the exponent
3

of p. increases). Although the first term ignored in (B4-145) is order p the

error shown in the table is somewhat larger.

The second method does not use the fundamental solution but rathe.r the per-

turbed hyperbola discussed in the previous section. Solving (A7-26) for r_

gives

(B4-147)

and differentiating with respect to t gives

(B4-148)
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Letting dr/dt = _v( t ) and dR /dS.= VM(S) gives

(S2) (B4-149)

(S2) (B4-150)

where _p_, , and _£,, are the position and velocity of the moon at t = t and

-M^S2^ and -M^S2^ are obtained from (B4-132) - (B4-138). The value of S

is found from

S2 = Sj + (t2 - tj) / p. (B4-151)

3 / 2\Based on Carlson's results the dominant error in (B4-149) is 0(|j.(t_ - t ) 1

which results in the following table for position error:

t - tlf hours 5 11 18 20

n , ,. f >2. 2. 33 2. 00 1.80 1. 75
0 ((J.(t2 - t^) ) |JL (JL (J. |JL

This solution has an increasing theoretical error as t_ - t^ increases (i.e.,

the exponent of JJL decreases), which is just the opposite of the fundamental

solution. At 5 hours the perturbed hyperbola is more accurate, at 11 hours

the accuracy is the same for both solutions, and at 18 and 20 hours the funda-

mental solution is more accurate. It would therefore appear as if one solution

or the other should be used depending on the value of t_ - t . The following

points, however, should be, considered:

1. The perturbed hyperbola solution was evaluated for a hyperbola of
2 8 1moderate energy. At 5 hours the actual error was JJL ' rather

o o o o r\c
than the predicted p. ' . At 20 hours the actual error was ^ '

1 75rather than the predicted pL ' . Thus the actual errors are less

than predicted.

161



2. Numerical analysis has shown that errors associated with the second

order fundamental solution are usually larger than predicted.

3. The perturbed hyperbola solution is much easier and less time con-

suming to evaluate since it does not involve any definite integrals and

uses basically two-body functions.

Although either (B4-145) and (B4-146) or (B4-149) and (B4-150) give the posi-

tion and velocity at t_ the latter is preferable.

B4. 3. 3 Outer Solution

The outer solution will be that part of the trajectory which follows the second

impulse. The boundary conditions are the position j^(t_) and the entry condi-

tions of time, t , radius, r , inclination, i , and flight path angle, V . In
6 6 6 6

the modified Lambert problem the subscript 1 is replaced by 2 and the sub-

script 2 replaced by e so that

tj = t2 (B4-152)

x_j = r ( t 2 ) • . (B4-153)

t2 = "te (B4-154)

x2 = re (B4-155)

(B4-156)

V2 = Ye , (B4-158)

Solution of the. modified Lambert problem gives the ze'roth order outer solution

r (t) for t > t_.
—o 2

The first and second order outer solutions are obtained directly from (A6-10)
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giving

'^(t) + H£2(t) ^e.) +

= *<t , t £ )

'r10(t,te)\ /r20(t,te)

rn ( t , t e ) / \ r2 1 (t , te)

where

-10 ^'

rn (t, t£)- = / D(t. TjF

e

= A D(t, T)F

(B4-159)

~ / B(t, T) F (T) dT (B4-160)
J

(B4-161)

t

(t, t£) = / B(t, T) F 2(T) .dT (B4-162)

t

F21 (t, t£) = D(t, T ) F 2 ( T ) d T (B4-163)

te

B4. 3. 4 Boundary Value Solution

The two-impulse boundary value solution is shown in Figure B14. The termi-

nal conditions at the earth are given by (B2-27) and (B2-28) with t = t . From

Figure B14

£0
 (te} = i(te} (B4-164)
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so that

Z^e* = Z2(te} = ° (B4-165)

Since the velocity perturbations do not vanish let

The outer position and velocity at t = t is then

^2}

6v(te)

,v(tj)/ Vvo^) . "

However, from Figure B14

'^fc2r

Vl( fc2)/ \ v ( t 0 ) + AV,

and

(B4-166)

+ HL (B4-167)

(B4-168)

(B4-170)

where £( t_) is found from the inner solution. Then (B4-167) reduces to

+, g-1 [r10(t+ te) + ^(t*. ') (B4-171)
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= v o ( t ) - v(t2) + v D ( t , te) 6v( t e )

+ Ell ( t2' te )] +^E2 l ( t2' te ) (B4-172)

The solution is obtained from the following steps:

1. Given the initial position R-^(S ), velocity V- . (S . ) and impulse I1

evaluate (B4-111) through (B4-131).

2. Using the results of step 1 and the appropriate equations in Section

A 12 find the position and velocity at t^ from either (B4-142) - (B4-146)

or (B4-149) - (B4-151).

3. Using ( B 4 - 1 7 0 ) f o r the initial position and (B4-154) - (B4-157) for the

terminal conditions solve the modified Lambert problem of Section

B4. 1. This gives v (t_), r (t ) and v (t ).
i 6 — ov 2" — ov e' —o e

4. Evaluate (B4-171). This gives the correction to the entry velocity.

5. Evaluate (B4-172). This gives the second order AV_, ^e second

impulse.

6. The entry position is given by (B4-164) and the entry velocity by

v(t ) = v (t ) + n 6 v ( t ) (B4-173)— e —o e ^ — e

t
Steps 5 and 6 represent the standard solution for the two impulse problem. As

in the single impulse solution the entry conditions are not satisfied exactly

because of the non-zero 6v(t ). A non-linear solution which satisfies the

entry conditions exactly to any order is obtained by f i rs t rewriting (B4-167)

and (B4-168)
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- M-

(B4-174)

The right hand side of (B4-174) is the sum of a two-body solution plus the

propagation of initial variations at t . Thus the right side is a pure two body

function and can be replaced by

(B4-175)

This defines a new modified Lambert problem for which the new initial posi-

tion replacing (B4-170) is

l— i

2- te) - ^2E20 ( t2' te ) (B4-176)

Solving the new modified Lambert problem between x1 and the entry conditions
i , ? •- —1

gives ^Q(t2), ^(tg) and v1 (t ). From (B4-175) the velocity impulse i s

v(t-) + f l r 1 1 ( t f t e ) + F1 i : 21(t te) (B4-177)

167



•while the entry position and velocity are

_r( t ) = £' (t ) (B4-178)

v(t ) = v1 (t ) . ' B4-179)

Since (B4-176) and (B4-177) come from the modified Lambert solution they

will satisfy the entry, conditions exactly to any order! The non-linear solution

is shown in Figure B15.

^ First
*^r\t" Impulse

Moon

Second
Impulse

Figure B15. Non-Linear Version of Two-Impulse Moon-to-Earth Solution
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Section C

EVALUATION OF PERTURBATION TERMS

Cl TYPES OF PERTURBATION TERMS

The n order outer solution is given by (A6-10). It consists of two types of

terms: (1) two-body propagation of the n order initial conditions, and (2)

integrated effects of the n order perturbations due to the N-2 perturbing

bodies. Both of these effects enter into the boundary value solutions through

the constants \_k, 6_k, ̂ _k. and ]Vfc which in turn are functions of partial

derivative matrices and definite integrals (plus algebraic and trigonometric

terms). Formulas for evaluating the partial derivative matrices and the

definite integrals are given in the following sections. . .

C2 PARTIAL DERIVATIVE MATRICES

The partial derivative matrices are evaluated on the zero order outer

solution r (t) . The formulas given here were derived by Goodyear and the

notation is similar to that of Carlson. Two forms are presented; the first

can be used for direct calculation of the matrices and the second is useful in

evaluating the definite integrals.

C2. 1 Goodyear Formulas

The state transition matrix

The eccentric anomaly difference

The state transition matrix <£(t . t) is a function of the two times, t and t.
o o

u = EQ - E (C2-1)

will be chosen as the independent variable. The Goodyear formulas then

require the following functions of u:

(C2-2)
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f ( t 0 . t ) = 2 .
na sin u

(C2-3)

g ( to' f c ) = ~a *o(to] (C2-4)

t) -' C ' r (t) (C2-5)

P(t , t) = 3(sin u-u) + e sin E (1-cos u)

+ (1-cos u) e cos E sin u
o (C2-6)

ARR(to'
_a | (1-cos u) sin u

r o< f c ) ro ( to>
(C2-7)

A it- t-\ - (1-cos u)sin u
A RV { o ' ' ~ n r (t) r (t )o o o

(C2-8)

a P(t ,t)
AVR ( to' t} = —3

(1-cos u)sin u

n r o ( t ) n
(C2-9)

A VV ( t o ' f c ) =
(1-cos u)

n2 a ro(t)
(C2-10)

BRR ( t
0 ' f c ) = ARV ( to' t } (C2-11)

(t-
RV ( to'

- (1-cos u)
- — - ~

n a ro( to)

(C2-12)

BVR ( to' t ) = (C2-13)
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Bvv(t , t) = —r—- [3(sin u-u) + (1-cos u) sin u]
n a

(C2-14)

CRR(to'
na

r (t) r (t )
o o o'

COS U 1

r (t) r (t ) 2,,.,
o oo r ( t )

o

sin u -
P(to. t)

r 3(t) r 3(t )
o o o

cR V(to , t) = sin u (1-cos u)

. ro ( t> ro( fco) J.

(C2-15)

(C2-16)

'i) = ~ ARR ( to' f c )

'^ = - ARV ( to' t }

DRR ( to' f c ) =

(C2-17)

(C2-18)

(C2-19)

(1-cos u ) s i nu
w /t . ,. .ri r (t ) n r (t )

o o o o

(C2-20)

(C2-21)

(C2-22)

•where r (t ) and r (t) are the radii of the zero order outer solution at to o o o
and t; a, e and n are the semi-major axis, eccentricity and mean motion of

r t ) ; a n d

a e7o o
*C2-23)
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After some modification Goodyear's results can be expressed in the form of

the transition matrix, i. e. ,

/A(tQ, t) B(to , t ) \ /A*(tQ ,t) B*(tQ, t)\ /E*(tQ, t) F*

, t) D(to , t)/ yC*(to,t) D*(tQ, t)/ \ F* E*(tQ,

' *> CRR( to' t} CRV ( to' t} CVR ( t
0 ' fc)

(C2-24)

where'

' " ' 'A*(tQ) t) = [g(to, t) ARR(to, t) ARV(to. t) AVR(to, t) Avv(to, t)] (C2-25)

B*(to , t) = [ -g( t 0 , t ) BR R(to > t) BR V(to . t) BV R(to . t) Bvv(to.t)] (C2-26)

D*(to, t) = [f(to, t) DRR(to, t) DRV(to. t) DVR(to. t) Dyv(to, t)] (C2- 28)

E*(to .t) = W ^(t)1 | (C2-29)

v (t ) r (t)T

-ov o' —ov '

v (t ) v (t)T

—ov o —ov '

F* = I O I (C2-30)
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The elements of A*, B#, C*, and D* are all scalars while the elements of E*
T

are all 3x3 matrices, I being the identity matrix and x _y_ being the outer

product of x and _y_ (the superscript T indicating the transpose of the vector).

Thus, each partial derivative matrix is the sum of five terms, each of which

is the product of a scalar times a matrix.

These formulas for the partial derivative matrices may be used either for a

variable t, as in the definite integrals or for a fixed value of t. The unique

characteristic of this formulation is that each partial derivative matrix can

be written as a function of scalars and vectors (plus the identity matrix) which

are easily obtained from the zero order two-body solution.

C2. 2 Modified Goodyear Formulas

Although the independent variable u was introduced in the previous section

the formulas still contained r (t), ..v (t), and r (t). In the definite integrals

it is advantageous to remove this dependence on t by introducing the modified

derivative matrices

r (t)
B (t , t) = —— B(t ,t) (C2-31)

r o na v o

r (t)

^ (C2-32)

and replacing r (t) and v (t) in the previous formulas by

(C2-33)

v , ( t ) = f^ . t j r j t j - fg^ . t )^ ) (C2-34)

The last two expressions are simply another form of (A6-2) and A6-3). The

following functions of u are now defined:

u, = cos u - K( l -cos u) (C2-35)
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r (to)
u_ = [(r(l-cos u) - sin ul (C2-36)

Li T13, •*

u_ = —77—: sin u (C2-37)
5 W

r (t )
u. = •— fcos u - cr sin u] (C2-38)
.4 na l J

= (1-cos u) s i n u (C2-39)
5 n r (t )

o o

(1-cos u) tr-7u, = - 2 (C2-
n a

t 0 na(l-cos u) u. ,, >2~|• 2 , 4 , a l l -cos u) Ir,~. ., \3in u + —nn—+ r (t > (C2-41)
o o . ov o J

. . . . 'o o

ug = - u5 . (C2-42)

u_ = nu + (1-cos u) (C2-43)

B = - u u/n . (C2-44)

= U l u5/(na) + ' B ( t , t) u " (C2-45)

B2 = u2 u5 / (na) + BRV(tQ, t) u4 . (C2-46)

B3 = Ul u6 /(na) + B v v ( t o , t )u 3 . . ; • ' (-C2-47)

; , t) u, (C2-48)
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DQ - Uj u9/n (C2-49)

= Uj u? /(na) + DRV(tQ, t) u3 (C2-50)

u / ( n a ) + D ( t , t ) u (C2-51)

= U l u g / (na) + D ( t , t ) u . (C.2-52)

= u z ug/(na) + D ( t > t ) u (C2-53)

After some manipulation (C2-31) and (C2-32) become

B2 W Io^o) + B4

Dp(to . t) =

D4

In these expressions for B and D the outer product matrices are functions

only of t and are therefore constant for fixed t . The scalar coefficients
' o o

are explicit functions of u (or of t through (C2-1)) . Thus, as t varies only
> i

the scalar coefficients need to be evaluated.

'C3 DEFINITE INTEGRALS

The four integral constants of the outer solution, (All-86), (All-87), (All-139),

and (All-140), can be written in the form
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/v
J [D(tk'T (C3-2)

r fck
J Nk' (C3-3)

rfck
= J [D(tk,T

K o i i ( t , » t ) = / p(t, , T) F O (T) + I 9 1 ( t . , T) dr (C3-4)t I \r * ir-' n* m I * If* * y x ' y I x ly* 'I » '

•where

» = *,m, ( t , , . r ) - B ( t . , T ) F I C ( T ) (C3-5)

I_n(tk,,T) = *ilk ( t k ,T) - D(tk, T) F I S (T) (C3-6)

(C3-7) ,

(C3-8)

Them's andjT's are defined in. Section Al 1.

The- integrals (C3-1) - (C3-4) cannot be integrated in closed form and must

therefore be evaluated numerically. The integrands are finite over the. entire

range of T giving each integral a finite value. At T = t, , however, both the

F's and the I_'s are singular and the value of the integrand, which is actually

the difference between two large numbers, must be determined by a limit

process. This problem is eliminated by using a numerical technique such as

Gaussian quadrature, which does not require the value of the integrand at

either endpoint of the interval of integration. Thus the integrand is evaluated

only at interior points, t <r<t , , where both the F's and I's as well as the
O rC —

total integrand are finite.
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C3. 1 Change of Independent Variable

The'accuracy of the integration technique for a fixed number of sub-intervals

within the interval t < T < t, can be improved by introducing the eccentric
Op K

anomaly through Kepler's equation

nr = E - e sin E (C3-9)

Then

dr =
(1-cos E) dE

n

= -* dE
na

na
du (C3-10)

where (C2-1) has been introduced in the last step. Introducing (C3-10) into

(C3-1) - (C3-4) gives . 1 :

/

u

„

/

u•

/

u
0

.

na

na

du

du

du

(C3-11)

(C3-12)

(C3-13)

D (t.,T) F_(T) + " "r k —2 na
du (C3-14)
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where

T = t, - — u « e ( l - c o s u ) s i n E 1 - e s i n u c o s E, (C3- 15)
K U [_ K .. KJ

:Q = a M - e cos(Ek - u)l (C3-16)

u = E, - E (C3-17)k

and

u = E. - E (C3-18)
o k o

Equations (C3-11) - (C3-14) have an additional advantage over (C3-1) - (C3-4)

•which is not necessarily one of accuracy. It is that r appears both expli-

citly as r and implicitly in determining F, and F~. With u (or E) as indepen-
O ~"" i ^r

dent variable, r (u) can be evaluated directly. With T as independent

variable, r (T) requires an iterative solution of Kepler's equation. Therefore

using u as the independent variable reduces the computational requirements.

C3. 2 Analytical Approximation for First Order Integrand

Even though Gaussian quadrature does not require the values of the integrands

at the endpoints, the point nearest u = 0 in (C3-11) - (C3-14) at which the

integrands are evaluated may cause computational difficulties. This is

because the integrands represent the differences of two large numbers when

u is close to zero.

Theoretically the zero order outer solution passes through the center of the,
fVi "^

k body at u = 0 (i. e. , at t = t, ). Actual numerical solutions of the La'mbert
1C

problem may not satisfy this requirement at t = t, but may contain a small
K

residual difference between r and p. at t = t. . Experience has shown that
-o -k k r

this small residual is greatly magnified when taking the difference between

two large numbers. Therefore it is advantageous to have the first quadrature
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point as far from u - 0 as possible. This may be accomplished by breaking

the integration interval into two parts, i. e. , let each of the integrals have

the form

/vK(tk, tQ) = / • + / (C3-19)
"t "t .

o sk

f • / (C3-20)

u

where

(C3-21)

and

t - t . « 1 (C3-2Z)
s sk

Over the interval from t , to t, the integrands can be replaced by analytical

approximations obtained from Section A l l . First recall that the force F. can

be divided into a singular part, F, , and a non- singular part, F. . Near t,~~"J. s ""~l n ic
the non- singular force can be expanded in a Taylor series

Then, using (A3 -28) and (A3 -30)

(tk-r) + O((T - tk) (C3-24)

O ( T - t ) (C3-25)
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Substituting (C3-24) and (All-45) into (C3-1) and integrating from t , to t.
S K K

gives — . ' .

/

!»•

[ B ( t k . T ) F l { T ) + I 1 0 ( t k , T ) ] d T =

t I

Substituting (C3-25) and the derivative with respect to t o f - ( A l l - 4 5 ) into

(C3-2) and integrating gives

/'
'sk

- tk)2j (C3-27)

A similar analysis of the second order integrals shows that over the interval

t , < T < t. both contribute terms of order (t , - t, ) logsk k sk k &

Therefore (C3-11) - C3-14) can be written

t , - t. I.
sk k

/
u°r ro-!io ( tk>T )

na
u
• s
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ft-u L

s

Hduna

( tsk

°((t sk

u°
u

s

(C3-30)

ru°r ^^i^^)
/ P r ( t k - T ) ^ 2 ( T ) + ' ni
u L

s . .

The interval (t , - t, ) must be chosen to make the effective error of each

approximation smaller than order |o. . Letting

fcsk- fck = ° ( M - ) ' (C3-32)-

the effective error of each integral" is
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These error are all smaller than O(|J. ) if n > l / 2 . In actual numerical studies

the value used was

1 -2 /^
= H (C3-33)

This eliminated the problems associated with the residual error in the

Lambert solution. If only a first order solution is desired then any n >O will

suffice, n = 1/3 •would be a likely choice.

C3. 3 Analytical Approximation for First Order Solution

The second order integrals are functions of the force F_ which, according to
2

(A5-10) is a function of r. and r,. When integrating over the interval

t > T > t, , r1 (T) must be determined from (A6-11) which itself involves an
O 1C •• 1

integral function. Thus the second order integrals are actually double inte-

grals and difficult to evaluate efficiently by numerical techniques without

using a large number of quadrature points.

An alternative approach is to approximate r, with an analytical function.

Such an approximation, valid for t near t, , is given by (All -78). The range

of this approximation can be extended by adding additional terms and fixing

the coefficients to give r, the correct magnitude and slope at t = t . There-

fore (All-78) is rewritten as

Qk (t - ^ + i ik [log Qk(to -

to) + ^2k (t - V L°g Qk (t - tk)

(t -

(tk) log Qk (to - tk) + Gk K1Qk (tk, to)

(t - tk)3 + ̂ 2k (t - tk)4 (C3-34)
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where

,£1 0( t) = A( t , t o ) £ l ( t o ) + B(t, to) v^tj (C3-35)

Taking the derivative with respect to t gives

•where

At t = t (C3-35) and (C3-37) reduce to

*1 lk(tk' V -

log Q (t - t)

log Qk(to - tfc) + Gk K1()k(tk, to) + Pg (t - tk)

tk)2 + 4^2k(t - tk)3 (C3-36)

vjQ ( t ) = C( t , t o ) £ l ( t o ) + D(t,to) ' Vj'^) (C3-37)

(C3-39)

Putting t = t in (C3-34) and (C3-36) and solving for ^., and £ gives

(C3-40)

,„., ,, , .
4 (C3-41)

)
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where

<V tk)

- t,J2/2 (C3-42)

= - K j lk( V V - 4k + Gk ^
\ L

• + P * ] < t 0 - t k ) (C3-43)

Equations (C3-34), (C3-35) and (C3-40) - (C3-43) give an analytical approxi-

mation for r^ which has the correct behavior at both endpoints of the interval

t < t < t . It is in these regions that the second order integrals are most
O """" """" K

susceptible to errors in r^ and therefore the effect of errors in the middle of

the interval is minimized.
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