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TUE BMW ANALYTIC AERODYNAMIC DRAG METHOD

FOR Tifi] VINT!I SATELLUTE THEORY

J. S Watson
G. D, Mistretta

N. L. Bonavito

ABSTRACT

In order to rclain separability in the Vinti theory of earth satellite motion
when a non-conservative force such as air drag is considered, a set of variational
equations for the orbital elements are introduced, and expressed as functions of
the transverse, radial, and normal components of the non-conservative forces
acting on the system, In this approach, the Hamiltonian is preserved in form, and
remains the total energy, but the initial or boundary conditions and hence the
Jacobi constants of the motion advance with time through the variational equations,
In particular, the atmospheric density profile is written as a ‘litted' exponential
func&ion of the eccentric anomaly, which reproduces tabular values of static model
atmospheric densities at all altitudes to within ninety-cight percent and simulta-
neously reduces the variational equations {o indefinite integrals with closed
form evaluations, whose limits are in terms of the eccentric anomaly. The values
of the limits for any arbitrary time interval are obtained from the Vinti program.

Results of the BMW (Bonavito, Mistretta, Watson) theory for the case of the
intense air drag satellites Sap Marco-2 and Air Force Cannonball are given.
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These results indicate that the satellite ephemerides produced by the BMW
th:ovy in conjunction with the Vinti program are of very high accuracy. In ad-
dition, since the prograni is entirely analytic, several months of ephemerides

can be obtained within a few séconds of computer time..
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THE BAMW ANALYTIC AERODYNAMIC DRAG METHOD

FOR THE VINTI SATELLITE THEORY

INTRODUCTION

In this paper we shall treat the varviation of Izsak- elements caused by «lis-
turbing forces acting on an orbit. ']'hcse. clements, an inirinsic part of the Vinti
theory, are obtained as functions of time and then by a process of re-initialization,
the Vinti equati&ns of motion are solved for thé position and velocity of the satel-
lite. We should note that the air resistance of a body has in general six com-
ponents, three being forces and three being moments of forces, which tend to
make the motion of an asymmetric body very complex. However, for the case of
a noh—rotating‘ -sphcre, the resistance can be reduced to a single component di-
rected oppositely to the velocity of the sphere. In this treatment we shall intro-
duce semi-empirically determined ¢ mponents of dra.[,r force which are functions
of the eccentric anomaly. W.ith_use of these, the differential equations for the
varizition with time of the lzsak elements can be solved along with the Vinti equa~

tions of motion.

I. DRAG VARIATIONAL EQUATIONS
Here we present equations for the time rate of change of the Izsak orbital

clements of the Vinti satellite theory {(Reference 1). In our treatment, we shall assume
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that these equations represent instantancous departures due to aerodynamic drug

or perturbing forces on a Vinti orbit, These departures in the Vinti-Izsalk ovbital

elements are then integrated as functions of eccentric anomaly for the instant ef

time under consideration.

- -The differential equations representing variations of orbital clements are:

l_iil
dt

de
dt

dew
dt

where n is related to a by n? a’ = GM,

na oM

na? Y1~ ¢? sing 7 nale de
__Losi (('G)
na? V1 -¢? sini

1 aﬁ)

na? y1 - ¢? sini g1

=1, G is the gravitational constant, and

M, is the mass of the Earth, Any perturbing force F can be represented



instantancously as a potential pradient. Let § be that potential, We now

resolve the perturbing force F into the following components:

R, in the direction of the position vector from the force center to the satellite.

T, is the 15crpendicul:u' to R, lies in the orbital plane, and is positive in the

direction of motion.

W, is mutually perpendicular to R and’ T and completes a rignt handed set of

component directions,

The partial derivatives agpearing in equations (1) are given by:

U (l‘

Ta R 7)

ou 2+ ecos v .
Je¢ " Racosv o« T -7 2 rsinvy
o 1-¢

U o

Ta r Wsin i

al _ o

ga ¢ Treosi - Wreosyisini)

a0

g ’ rT \

;}l—} ;‘_1—'1 - (_i)




“where ;. is the argument of latitude. Substituting (2) into (1),

da a3\1 2 i : ] '
T - 2 - = [RL' sinv i T(l tecos .\')]

e ayl? - :
:']u? - (T;\I Yi-e- [R sinv * T(cos v+ cos l-:)}

—— r \
Y1 -2 (l'—))sin\' L
b ( reosising |\
na? ¥1-c¢? sini/

_(_l_‘_ ‘(71 -¢? cosv
dt R nae ' T nae
d0? : Fsiny \
a6 o ¥ 2 y 7 cini/
n: 1-¢% sini
r
. i-e? (l*—)s'nv
oM (1-e?) 2r ( ) P/t
T - ntR ——7;‘—,—(—4 cosv - — 1 - T nae
na/

dt
The Vinti parameter related to the orbit inclination is

S = sin?i
From this, we have
: ds s .. . di
; b P 2sini cos i at
{
4
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or,

< ',,, )
a7 fb Yi-S 57 - (5)

The variation of the inclinaticn can then be written as

d_§ _ "vrS(l -$) r\\ cos .
dt e (6)
Let [i=/,, = ., and using
p n(l -t )
n-* 613 IR
sini - VS,
we have,
dﬁz Ir’g LaR 1-e ) cosv-r(2+ecosv) Tsin v]+ rWesiny¥vl - l
dt L (/J-a)l/? er 'l_ei
and
di, _ iny

At T (ua) 2SS Y1 e? (7
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The mean anomaly is _fclated to the time of perigec passage | by the expression,

M - n(t *-’,")',, . (8)
From'_this,
M dn 4
dv 7 dt (t +"’l) AL T n
or,
o=
1 a 1 [dM dn .l 19
= oalm - (ee8) B -l 9)
and
dn _ 3 71 ~§72 d’d 10
A S I 1 - @0

d3

| 3 d 3 da 2r R
- -3 -1 82 - -3242 ¢ 12 ,-s2 U2

dt 7 £y @0 Gt (22 {2 te dq " hayl 2

* (‘1‘;:‘2‘) (;31\)12 [R cosv-T (1 + ;(lr—_e;))]} - (A1)

Summarizing our equaticns for the time rate of change of orbital elements, we

have:
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R

e AVt e o - ' .
m’~ ’ (—) Y1 -¢- -{R sinw 'l’(.«-ui Vo cos F,)}

ds 2SSl - 8) rw cosw

dt (,u.’l_)l ",i—_‘ or
dt LR LR (L

a3 ’ ({Q [:\R( 1 e¥ycosv-r(2tecosv)Tsin \'] VreWwsin V1 - §
Jz - - ..

(.a)' 2 fSerl-e?

d3
4 3 o da ) 3 ; la 2rR
CRE A R GRS MR & S WAL

.oat (,La)‘ 2

(1 --(‘1) a 1'12[ L
et (:) Rcosv -T(l ¢ ”———z—‘)] .
. a(l —e) (12)

Let us now substitute for R, T, and W in terms of the ecceniric anomaly as

given in reference 2, page 165:

. . dE
aesV sinE 53

. 1
R =~ =3 dt

Com

(1 -e cos E)'ﬂ dE asy -

oLl A 2412 dE
T i _2cnm(1‘° ) B,DV -d (1-02) dt

Y




! S
v Ca Gy v T a3
(1 ¢cosEy? Ys cos . el

where V is the velocity of the satellite defined by the equation

AL 2
v (?) (1 recosEy P 21 -cc()sE)'l':[(lfrrosf'ﬁ)
SRS D cosli)] (1)
where
d “_,.“/*’ .'1"/2(1--03)‘/2(l*S)‘/2 (15)
where

w, = angular velocity of rotation of earth
p = atmospheric density

A = projected area of satellite

m = mass of satellite

C, = drag parameter (usually 1rornd 2.2)

cCos v




. M=oyt 25inE : .
Sty - T cosE (16)

Since the coo.rdinate n (Pt Qsin ) “sin i, and the quantity - of the Vinti
potential is approximately 7'kilometer.s, we then assume ¢ © & 7 acl - ¢ cos E),
where , is an oblate spheroidal coordinate. Now substituting cquations (1) and
| (15) into ecquations (13 ,.and inserting these results with equations;i (16) into

equations (12), we get

da

Y G {<1~v cosEY V(1 te cosEY! 2[(1 tc cosE)

dE
- d(l—ecosE)]?}m‘
(_l(_’ - 1 . A . 2 - 4
dt =32 CD_XT{ ra(l =c”) {[(‘ ‘tecosk) l’.(l -e COSEYJ z [(1 +tecoskE)

--d(l.—ucosE)]] : {c-sian*(l—c"’)"' [(1—.37)

- dl-e L‘OSE)z] [(Cos E~e)tcosE(l~e cosE)]]} 3—%‘



T

i G Y’-\T!""\_l AT g}-—:-))"’ -

[$ R

s E,
: {msf‘- i meeon B3 (1 eeos 80T 0L v cos By Sl e e %:,]} Ty

A :
. oracTl 1~ eyt {osin Ccos (1-8)yH L 22

}
to] e

IS
Do

- 3y -
( ~¢ cosEY V2~ cosE Y 2 [{1 c ¢ vosEY

~ (1 -¢ co.\-E)] “(1=eccosEY P (1 -ccosE)Y Y2 l(l t ¢ coskE)

- (1l -¢ CnsF.)] [2 SINE(L =4y - ded sinE(] 102 (‘OSEE) +de sinE cos E

5 " £
-~ JedsinE(l - d roszE) - 2e? sin E(5~2¢“ -e* CQS?E)]} —

E CD m e d

x {sin ycos J(1-ecos E)® "‘(i -ecos E)y 17 [(1 t ecos E)
dE
- d(1l -e cosE)]} at
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. . d_-:: —— (_I_.""3
Pt -ey 2= - V1-S
.

; A ) : 12 syl 2 .
4 CD worae [mnE(] ~ccosE)Y (1l tecoskE) [(1 e cos E)

JdE 31 ila
- d() ¢ cosE )]] "'“_} -3 (10 - ‘) AT a7)

If we indicate the eccentric anomaly at time t, by | and at time t, by E,, the

solutions of equations (17) are given by the following:

£,

A -, —a? { , (l-ecosF)y12(14ecosFY120(14ecosF)
-E|

-d(l - ecos B2 dF

F

1. A nal . . g
-E‘D-"T(l-(‘)a £ 4i(l + e cos E) 2()1 - ¢ cns F) (1 - e cos E)
E

Ne =

1

—d(l =ccosF)] lesin?F + (1 -eY Y [(1-eD)

-d4(1 -ccosEY?! [(cosE~e)scosE(1l-ecosF)] }dE
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»

(1 .-.l'(‘('.\tG Fy-d(l +scos Fy : dF

BN TR "‘,)-‘

E,
. J sros (Y -eosE)S T,

w

K,
L2yl 2‘[ cresing, cas (- 2 -q.."’ 2 )

P T PR

S —5(");1”“- (1 - A
. I
cos F)

S e ros TS 2 .(‘ e

« (1 4+ e cos EY V2 (1

'.‘)‘3 2 1

v (1 - e cos § cecos FYTV2 L L e cos E)

-~ d (1 - e cas E)j

25inF (1 M- da2sinF(l b deos?) o 26t 5in R

-d (1 - ¢ cos E)j

tde?sinf (1, e2cns?2 Ry desinFeos E(S -202, ¢2cos?2 )} dE

A TH2 80y Lpe2yc12

r.,"
Fosin fcens o (1 - ¢ cns )5 2] ,cgosE)"" [(1 tecos E)

—d¢{l -ccosE}} dE
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p
v 3 tor, sl
1 - ( 2 -‘) ‘;-2‘ ! t
S eV TR
.F.'.
~ A e -1 2 -1 2 .
¢ Ty oosin F ol coens L2 0y e cos B T2 (1 . e cas k)
.Hl
cd (1 mecns B AR -3 Lo oy
2 a ! ! (18)

O. ATMOSPHERIC DENSITY REPRESENTATION
At this point we consider the expression for atmospheric density variation

given by King~Ilele (Reference 3). An expression for the atmospheric density

as a function of the eccentric anomaly is given by

o]
]

=4 {1 4+b(r~1r ) exp (— r—:—:E>
P P

Fo {1 + bx? (1 - cos E)?} exp {“Hi (1 - cos E)} (1)

P

where x = ac, H, = density scale height at perigee which in ecquation (1) is
assumed to vary linearly with the perigee height,

Let us r »w write equation (1) in a more general form so as to cepresent
the atmospheric density variation over any interval within the orbit in which

the boundary conditions are known. A generalization of (1) is desirable for

13



our purposes to insure tl-mt the resultant analytic atmospheric model rigidly
adheres io a Labu_lar set of densities at all altitudes. To obtain this generalization,
let the subscrilz)-ts.. I.and U r('-:.fcr to a lower and upper pofnt of 'm interval
respectively. This intérval [EL, EU] is judiciously chosen (by 2 mecthod discussed
later in this éection) to allow ;- to be given by an expression of the type of

equation (1), over this restricted domain [EL, EU]. Let,

¥ -rT
p(ry=p, {1 +h(L, U) (r -~ 1 )? exp <. i ')} r,Sr<r,

= {14b(L.U) x?(cosE cosE)?}exp {—I—':—(cos Ex_—cosE)}. E <SEZE,
L

(1.1)

where p and H are available from density tables, E, and EU are available
from the orbit theory (as are L and r,) and b(L, U) is derivable from (1.1)

by setting p = , and forming the inverse transformation

b(L. U) = b(L, Ui g, py. 10 1y HOD. (1.2)

If equation (1.1) abcve is substituted into (I-18), the resulting expressions

for the variational equations reduce o the form

L d

C

2
f’ sin” E cos™ E exp {~ (x/H,) (cos E,; - cos E)} dE 2)

E.

14 .



where H, is bcld constant over the runge of a subinterval of integration and x is

held constant over the entire range of integration, Since however, the parameter -

n can assume the value zero, we are forced to alter the form of (2) so as to insure

that the expression under the integral sign-is integrable while simultancously

maintaining its theoretical physical conicnt. In short, the variational equations

cannot be evaluated by the Fundamental Theorem of Calculus since an antideri-
n

vative of sin" E cos™ Eexp / ~ (x/IIL) (cos E, ~ cos E): is not expressible in -

terms of ¢lementary functions,

To achieve this purpose, let us now consider the following:

Rewrite the expression for atmospheric density (1) in the form

/114 b U) %P (cos By = cos E)?] b, (E) cxp (b, (EY-E:
. SEZE, 3

where b, (E), b, (E) are arbitrary functions of E which will be chosen to presecrve
closed form integrability of the variational equations (f-18) while retaining near
complete numerical agrecement with the exponential term of the King-llele's

expression for  (E).

The selection of the two functions b, (E), b, (E) between an upper limit of
integration E, and a lower limit E, will be made in the following manner.. Con-
sider the interval (E], E}}subdivided into a collection of n nonoverlapping sub-

intervals I , (£=1,2, ..., n), deﬁned by the portitioning
1

15



For auy subinterval I, = ix, i X ), define

b, (E) =

{
n
—
Q
-
o
AN
y
A
Ed

(4)

i
c.

b,(E) =

where ¢, , d, are constants, The determination of Ciy d; wili be accomplished
by applyving the technique of classical weighted least squares. In this manner
the definition of b, (E) and b, (F) over the domain [ET, E;] are Lthe step

functions

b, (E) = ¢, x, £ E < x

= c, >41_*§F,<x2

= Cq n-l"'E"')'n

(5)

b2(E) =dl Xp <E<x1

= d, x, £E <x

=dn X"_IS.ESXH

16




- Consider observational data Y, generated with 1.7 by repeated evaluation of
the function

h(E;) = exp {~ti(cos E, ~cos E)]

where (' = x/lll and x;_ < Ei < Xy To define the pseudo-regression situation

governing our estimation problem, consider the implicitiy linear, exponential model

Y".‘ﬂle

exp(ﬂin) i=1,2 - 'm (6)

i
relating the concomitant variable FE and the dependent or response variable Y

that, unlike the general regression response variable, displays no random variability,
Hence, the random variables ¢, denoting the dispersion characteristics of Y,

about the theorectical regression line become meaningless in the curve fitting
analysis. That is, the random variables <, are degenerate in the sense that

their probability density fuactions p (« ,) are given by

(7)
=0 otherwise
where B, can be considered a "fitting bias" at E = E; since
E(e,) - B, Var(e,) 0. (&)

While all practical statisticil properties of the regression analysis become
lost, the lechnique is not degraded as a numerical tool for approximating with

great precision complex functional forms over restricted regions with relatively

simple functions.

17



~to display the implicit linear form of (), we take the natucal dogarithm of

both sides of (6) and -obtain the cquivalent torm

Y., In o, ...E & in-
[N 1 2 1 t
or
Y, oo, E el G0 2w T ()
If nonnegative weights. ;, .5, « .+, -, are available and they, are evaluated
from y! =Inh ()= -"t{cosx,_ | -cos E.), then the well known result
. _.“_.' -1 n ll'_‘ -1 m
I ’
b) . 2 ("'i E - :/l - hZ g : . § 2] ' E‘
1 1 1 1
™ : / w -1 1 n (10)
. ‘.. W] 1 ’
2 woy B~ 2 “i z Y z E,
1 1 1 1
b, -
2 m m -1 m 2
E .« E? . E E . E
1 [} 1} 1 1)

1 1 1

’
are the values of .-, ;7, that minimize the weighted sum of squazes

2 ““'.iri'2 : .j. “y (Y; "’["; —E,EDR a1)
T

Thus, b, = exp (_b;) and b, are the classical weighted least squares estimates

of /3y, £, respectively.

The selection of the mesh points over-an interval of integration RS, 1-2 is
obtained through an automated search approach utilizing the constrai.xied :
weighted least sdu:ires process previously described. This technique selects
subintervals of maximum size while retaining a user selected error tolerance
between the true and predicted function.

18
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Furthermore, if one sets i-,‘t =0, ¥ = and derives a set of coefficients

5
for the n selec:ed subintervals in the manner previously defined, the functions
h(E) and . () will have been fit for all values of E over which x has becn as-
sumed constant. This is true since h(F) is a periodic function with period 2 -
and in the fundamental period (0, 2 ) is symmetrically distribu.ted about the
axis of symmetry I =".

With the use of more general expression for density (¢), the variational
equatjons (I-17) integrated between EF and E* where 0 < EY < E¥ <, take on
the following form:

. '_—l\ a1 ) ) . )
N T ity exp (dHlE) PdG (E) (k= 1, 2 .- 6). (12)
)

1
1=0 x

Having f{it h(E) from (0 ~+ ), the integration of the variational equations between

any two arbitrary limits ET 20, ;~:§ > Er, takes the general form

e S
Wit

v x,”
Agy Z LI {t ., exp {d“l E} dG, (E)
i=0 X
n-1 27-x.
’ / ’ ’ ~
+ E Mo, f {t3,; exP [d2“_j E]} dG, (E)
=0 27-x !
(13)
E‘zmod 27
+ J t; exp (d:— E) dG_ (E)
xe
xn R
s J- ty exp (@Y E)dG, (B) (k=1.2 -, 6) A
E; mod 27 ‘

19
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FCVE

whe‘r_e er_, (" =1, 2, R 2n}), are noxmegati\fe integers; t-l, t;, d:_(j =1, 2, .44
n), (k = n 4-..1:.- n+2, ... 20)are .fu.r.-ctions of C;» dJ; ‘ ig .an integer between 0
and 2nl.—'.-2; ., is an integer between 1 and 2n - 1; the grid points x| ’-X...z ’
ooy :{2" are defined from x ,, X, . . », X_; and (t:, t]) may he cither (t:, t.),
(tey t.), (t;, t_' )s (tz, t]) depending upon .the values E} mod 2+, I!; mod 2. The
logical structure of (13) and the determination of the above parameters is too
lengthy to be given here but is presented in Appendix for completeness. Jt
must be emphasized that (13) is general for all computations, but is valid only

while x is assumed constant, whereby a new fit is obtained and new constants

are determined to integrate (I-13) by the general form (13).

Using these results we can now solve the density expression for the value

of b within each of the selected or fitted intervals from the expression,

b(L' U) - -pL + pU exp [(rU - rL)/HL} (]4)
pLlry = 1)}

where the subscripts U and L still refer to the upper and lower points of an in-
terval. For example, r is that value of density at the initial point of the inter-
val which is known from the tables, and the corresponding density scale héight

H, canthenbecomputed. Theendpoint r is knownasafunctionof E. Thereforeli is
also 'advanced'in a sim_{lar fashion as Py during the fitting of the exponential.

The above method of fitting King-Hele's expression over several intervals of

an orbit is sufficient to 'reproduce! the tabular model atmosphere to within -

20



ninety-cight percént at all points, and si:nultnneoﬁﬂy vield closed form inte-

grable equations, fo.r tl}e variation of the clements. Table .I provides a list of
- computed versus static'model atmosphere densities for- vax‘iOL;s altitudes and
the differences, as experienced by th-e San Marceo-2 satellité during a revoiution
qsihg the Spring-I-all Model with an Exosi»hcfic temperature of 1100"K. Where
the density is high, as for e.x::rmple the critical region around pefigec, the differ—
ence between caleulated and tabular values are 1272 grams/(km)® or less.
Since (L, U) is determined by r, to beat the upper end of each arc, then the

density differences at this peint become vanishingly small,

IIl. SOLUTION OF'.VARIATIONAL LQUATIONS

In light of the analysis done in section IT above, we now return to the vari-
ational equations (1-18). If we now combine the radicél terms in (I-18), we ob-
tain a et of expressions containing the forms (1 + %)% and (1 £ )77, .where :
n=1/2and  =e? cos? E. If onc assumes that y will never get too large,
that is, for drag sétellites, e will not be larger than 0.2, then the above terms

can be expanded as,

(1 ;_x)n.-,linmf‘(—”z,ﬂx’.
and
-n - n(-n l) . .
(2™ =1 vnyx s —L2y2 )

P4

Adopting expression (I11-1.1) for atmospheric density variation, the variational

equations are then reduced to Solving a set of indefinite integrals-of the ferm

21



k exp - (% Hp ) (Cos B - oS E: cas B osin? LB RN

where k, is simply the constant cocfficient of cach correspording integral, It
on the other hand, the cceentiricity is somewhat lzn‘gér than normal, say n_mu.nd
0.5 or so, then it witl be necessary to include several more terms in the ex-
pansion (1) above. This however is an algebraic prob-lcm, and computationally
speaking has only the effect of changing the overall coefficients, 7 k -, inthe

final algorithm, The integrals are still of the form (2) above. Utilizing the fitting

desceribed in section 11, the exponential of the density can now be represented as

b (E) exp b, (E) -El _ (3)

in which b, (E) and b (E) are determined for on2 or several segments within an
orbitai revolution. Results indicate that b, (£} and b, (E) remain {ixed for a
considerable iength of the satellite's lifetime. Refitting becomes necessary only
when a and e change apareciably. This is found to occur more frequently near
the end of the satellite's lifetime. In any event, the fitling proceduce is

instantaneous, and the calculation proceeds without interruption,

Using these resuits, equation (2) can now be rewritien as

E
2 ,
f - by(E) exp {by(E) L] costE-sin? EdE 4
E.
1
22
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Here p takes the values 0, 1, and 2, When p = 0, © takes on all values from zero
through twelve. When p == 1, ! goes from zero through eleven, and where p = 2,
»

- ranges trom zero through ten, When p = 0, equation (4) is a recursion solu-

tion given by a swinmation whose terms take the form

; . E.
exp [b(E)E cos® -1 E(b,cosE+ " sinE)

E
. ) u f .
. " ._.(:. — f cxp [1)2(]:‘,)'13] cos("TEAE,
b+ 1 b+ Ey : . '
()

where b, is taken constant within the subinterval (EL. EU] of the interval ‘Ff li;'],

When p = 1 or 2, the recursion solution summation terms become after some

reduction,

) PN B et T 1
~exp [b,(E)'Ej cosE . _’}_ exp [bz(E)'E] cos{ E dE. (6)
4 <

If in the drag acceleration one desires to express the velocity and density
exponential so as to involve the product of J., the coelficient of the earin's
second zonal harmonie, and the air density s, one can follow the procedure of

Sherrill (Reference 4) and write these terms as,

2

_2°—i(ﬁ)(l'-—“— o) —"- * 3—)41 e 7'____.__3 cos’ ¥
a? n(l__::) I I 1_.’72
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and ¢? is approximated by ¢’ = J2RP2 , where R is the value of the earth's

equatorial radius (Reference 1). If c¢?is taken to he zero here, then these

cross products in v are ignored and (7) and (8) reduce .0 those cxpressions
given in Section I, R'(.asults from low perigee satellites such as OAR~-901 (Cannon-
ball} show that the ¢? terms of equation (7) make differences only in the sixth
deecimal place in the variational equations. In addition, the cross term in the

_ exponential iz 10° limes those corresponding terms in the velocity, Since this
correction is accounted for rather simpiy by the fitting procedure, the cross

term is retained in the exponential,

The solutions of the variational equations are added to the epoch values of
the Izsak elements in the Vinti program, thus enabiing the program to produce
an ephemeris which includ s the effect of aerodynamic drag. In cffect, the
original separability is maintaim_ad, and the initial or bouﬁdary conditions are

advanced using an analytic or closed form solution for the variational equations,




. RESULTé '

In ordér _i.o'LeS.'t. the IDMW theory, two heavy air drag satellites witi s.o-me-
whet dissimil:.lr éharactcristics are considered. These are the Italian San
ALirco-2 and the US Air Force Cannonhuzll (OAR-901). Data on these spacecrafits
iz as follows:

San Marco-2:

Mass m =129.27383 kgm,

Projected Area A = 3425.3397 cm .

Drag Coefficient C, = 2.1

Initiai opoch: April 26, 1967, 10 bours, 12 minutes.

Initial conditlions:

X = 4+0,58725272, x = -0.82890608
y = +0.84923499, y = +0.56396878
z = -0.05068537, z = +0,01219124

Here, X, ¥, and z are in units of earth radii (6378.166 kilometers), and f{, j/, and
z in units of earth radii per canonical unit of time (806.812 seconds).
Apogee height = 736.00 kilometers
Perigee height = 205.60 kilometers
Eccentricity = 0,0387
Inclination = 2.87 degrees.
Cannonball:
Mass m = 362.87392 kgm. ’ A

Projected Area A = 3423.6195 cm?

o x,\_\,.ﬁ'_.. -
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Drag Coefficient C, = 2.1
Initial Epoch: August 7, 1971, 0 hours, 20_in_i.nutes. -
Initial Conditions:

-0.9428339, % = -0,26977565

.
y = -0.28161629, C oy = -0,40945775
z b

+0,28038380, z =-1.0092100
Apogee height = 1957.20 kilometers
Perigee height = 130.16 kilometers
Eccentricity = 0,1230
Inclination = 92.00 degrees.

‘In both cases, the boundary values of the atmospheric density profile
given by ¢, are taken from a static model, namely, the 1966 U. S. Standard
Air Force Supplements. The profiles used heré include a Spring-Fall
model with an 11(»() deg-rec exospheric temperature, a Winter, 800 degree
model, Iand a Summer 1000 degfee model. While these profiles are
adequate if chosen carefully, it is felt that a somewhat more sophisticated and

dynamic model such as given by Jacchia (Refcrence 5) would not only improve

results but also make them more reliable.

Figure 1, shows the variation over one orbital period (from time of in-
sertion) of the semi-major axis, eccentricity, and (£, + /'3) respectively for

San Marco-2. Here, a, and ¢, are taken to be the initial values of these

. para.neters. For the semi major axis, we have initially a secular decrease of

LG
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198 parts in 10" per revolution, with a periodic variation superimposed, of nb:out
25 parts in 10° with the orbital period. The eccentricity shows a secular de-
crease of approximately 97 parts in 10" per revolution, and a periodic variatioﬁ-
superimposed on it with an amplitude of about 22 » 10-%, with the orbital period.
Figure 1 shows that (, + - ) shifts back and forth by about 8.3 seconds. Figure 2
is a similar graph for Cannonball. It is scen that the variations for a and e
here are somewhat larger than for San Marco-2 while the shift of (.-, +,-3)is
considerably less., This behavior is what one would expect considering the dif-
ferences in the orbits.

Figures 3 and 4 are graphs of semi~major axis versus time (days from in-
sertion), for San Marco-2 and Cannonball during an actual lifetime study for the
two satellites. The circles are those values of a, predicted by the BMW theory
using only the initial conditions given above, while the crosses indicate those
arcs of data supplied by orbit improvement routines utilizing tracking or ob-
servational data to update the orbital elements. The orbital improvements were
necessitated by the rapid deterioration of the orbital parameter quality due to
inaccurate force modeling (particularly air resistance accelerations) in the ;
equations of motion. The accerted date of re-cntry inlo the earth's atmosphere
for San Marco-2 was on October 14, 1967 at approximately 13 hours. Thus, the
total lifetime was abeut 171 days. The BMW program computed a lifetime of
165 days, for a re-entry on October 8, 1967. Cannonhball's re-cntry date was

approximately January 28, 1972, a lifetime of about 173 days. BMW computed

oHry 1
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170 days. In chesc two cases, the ‘[71-'.(.)[..{1‘.'1121 cvaluated the -li.mits of the variational
equ:)..tioylx.s. io.r values of the eccentric anomaly corresponding to fivell::y intervals.
This whs done so as to allow the BMW progranm to compare at intermediate
points, its ;/alucs for semi-major axis \;rith the observed cnes., In actual prac-
tice, th.ese limits would be evaluated for thosce values of eccentric anomaly
corresponding Lo those regions of an orbit over which a fit of the density variation
remained fixed. Using a change in perigee height criterion (preselected at 1 km),
results from Cannonball show that the first region is the lirst 65 days, the
second is the next 55 days, and so on, until within the last month of life the regions
are only of 5 day durations. As a result, the entire cphemeris is computed
rapidly. Using the IBM 360/91 electronic digital computer, the complete San
Marco-2 and Cannonball ephemerides computed at 5 day intervals were exe-
cufed In less than 18 seconds of computer CPU time.,

These results show that the BMW program was within 4 percent of the
*true’ lifecimes of both satellites, desgite the fact that Cannonball had a re-
latively high eccentricity and low perigee. In addition, it must be pointed out
that the initial conditions used in the program were obtained from orbit im-
provement routines other than the Vinti Orbit Deterrination System (References
6, 7), since this was the only data available. To be more consistent, and to im~
prove acciracy, one should utilize, if possihle, only those initial or epoch values

obtained from the Vinti Orbit Determination System.

28



In gpite of the s.taz'tlh';;;.succoss vith San _.\Iarco—.? and Cannonball, imprr_)ve-
ments to the present B-M\\' computer program are heing. c-onsidered. Prime
among these is the incoxl'poration of a dynamic model atmospheric density pro-
file suchas Jdacchia's. Asis well known a élight miscalculation in the exospheric
témperaturc for a static mod'el would drastically alter the resulting density |
profile, and consequently, the computed sphemeris of the satellite.

‘The distinct advantage of the BMW method over numerical integration tech-
ﬂiqucs is that being analytic or closed form, it is not subject to large error
accumulation due to Ljoundoff and truncation. In addition, an entire ephemeris
can be obtained in a inattcr of a few seconds on p_resent generation computers,

while such a task might be prohibitive with a numerical integration.

With the atmospheric approximation of this paper, equation (I1I-3) could be

expressed in terms of Bessel functions, for example,

1 j exp (c cos E)y cos™ EAJE - I, (c) (n = 0)
7
(i

I, (o) (n=1)

Hi

1"

1, (c)-% 1,(c) (n=2)

and so forth. The disadvantage here, besides the limited step size over which

to parform the summation, is in the difficﬁlty of handling intermediate points
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within the limits. A Bes_sel function approach would appear to be better ein-
ployed in a study of atmospheric density inference {rom calculations of thé
period decrement.

King-Hzale (Reference 3) has studied the contraction of orbits in a closed
form manner, Four situations are considered:

1. Normal e, Thase 1: approx. 0.02<e- 0.2 3 - (ae/l{p) - 30 approx.)

2. Normal e, Phase 2: 0-e-0.02 approx. (0 < (ae/H,) 3)

3. Circular orbits: e = 0 (ae/H, = 0).

4. ligh eccentricity: e 0.2 (ae/llp = 30 approx.).
It is felt that the regions covered by the equations of motion in these four cases

are also covered by the BMW theory. Even though a static model atmosphere

profile was used in the calculations, BMW does have the latitude of utilizing a
density profile such as the Jacchia model. In addition, the reference orbit is

not an exact ellipse, but the Vinti orbit. As a result, it is felt that the BAMW
method has contributed to the program for calculating both accurately and rapidly,

the orbits of sutellites experiencing aerodynamic drag.

At the present time, the Vinti differential correction algorithm (Reference 7)
eraploying a classical weighted least squares technique is being appropriately
modified to accommodate the augmented force model. The bulk of the imple-
mentatjon requires the reformulation of the partial derivatives {3y, /'aq,(to)}
to reflect air drag where (yi} are tracking observables apd {q_j (to)} are the

_q
set of "epoch' Vinti orbital elements and an atmospheric parameter iteratively

30
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estir'natcd'li_v the differentis l coricection technique, It ay-)p'enrs that complete

analyficity can be retained for thesc partial derivative expressions, thus merging
the theoretical developments presented here with the practical application of

orbit estimation. This work will be fo-rthcomin;,r in a future report.
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TABLE 1

Heoyeht

Statie ATM Densaty

—

HHO

1510 38

0.2050020000001,
0.2060000000007)
0.207000000000D
0.2050000600001)
0.2096000000001
0.210000000000D
0.211060000000D
€.212000000000D
0.213009300000D
0.214000000000D
0.2150000000001)
0.2160000000001
0.217000000000D
0.216000000000D
0.219009000000D
0.220000000000D
0.221000000000D
0.222000000000D
0.223000000000D
0.229000000000D
0.233000000000D
0.237000000000D
0.245000000000D
0.250000000000D
0.270606000000D
0.27600000000D
0.21,50000000C0D
0.299000000000D
0.342000000000D
0.410000000000D
0.480000000000D
0.550000000000D
0.650000000000D

03
03

03
03
03
03
03
03
03
03
03
03

0.301060802633D 03
0.2925818573910 03
0.284373995477D 03
0.2764275412684D 03
0.268733199509D 03
0.261282040805D 03
0.251063482185D 03
0.247075275161D 03
0.240703434560D 03
0.233742515394D 03
0.227385009955D 03
0.221223530490D 03
0.215252498448D 03
0.209464193246D 03
0.203852741559D 03
0.198412107074D 03
0.193136480719D 03
0.188020271319D 03
0.183958096672D 03
0.156242633526D 03
0.141611890377D 03
0.1283039466K0D 03
0.105646314722D 03
0.937586310738D 02
0.590301268805D 02
0.482902323517D 02
0.423415114719D 02
0.313821645875D 02
0.134720611316D 02
0.398871539430D 01
0.120181693081D 01
0.449473286944D 00
0.132075750808D 00

6.::01000&02«;3“;
0.292581857391D
0.284373956942})
0.276427541284D
0.26873312976AL
0.20128!90641_5‘0
0,254065482155D
0.247075072937D
0.240302027238D
0.233741317168D
0.227383376171D
0.221222099643D
0.215250815844D
0.209463097141D
0.203852741359D
0.198417201332D
0.193156793127D
6.188064£45792D
0.183135719948D
0.156564335714D
0.141508571597D
0.128303946660D
0.105642771€38D
0.937487761412D
0.590233812922D
0.482397020943D
0.423456464834D
0.314306095484D
0.134712759807D
0.408449712729D
0.123155554315D
0.453450297264D
0.112756896810D

.0
0.1:96H6837722D-12
0.384845234662D-04
0 113686837722D-12
0.701411933051D-04
0.134389793506D-03
0.213152320726D-13
$.2632240498900-03
0.667321502976D- 03
0.118822619084D- 02
0.163178351055D- 02
0.1830B474285D-02
0.168260392789D- 02
0.109610524396D-02
0.248689957516D-13
-0.519426438754D-02
-0.203124082286D-01
-0.446744726403D-01
-0.776232757051D-01
-0.421702188640D 00
0.331878055081D-02
©.284217094304D-13
0.554308315159D-02
0.965493260362D-02
0.674538833808D- 02
0.530257381655D-03
-0.412552152300L 768
-0.484447609329D-01
0.785150004546D- 03
-0.857817329940D-01
0.221396651137D-03
-0.397701031821D-02
-0.681146001936D-03
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APPENDIX

'DEVELOPMENT OF VARIATIONAL EQUATION CONSTANTS

For k=1, 2,' . « « 65 the general expression for the change ih the Vinti
orbital elements due to atmospheric drag hetween the a.rbitrai'y limits E¥, E¥is

given by:

ne1

(] x,‘ol
4q, = 5—‘ m J' {t 141 CXP [dHl El} dG, (E)
;—.0 x)’
n-1 27T-x ,
+ E my. {t2n-—j exp [dzn_j E:} dG, (E)
j=0 2-"'""*1

(A-1)

E;mod 27
+ J tz exp [dz E] dG, (E)

*n * *
+ t, exp (d, E] dG, (E)

Without loss of generality, assume that the fitting process is perforn: .d over

the interval [0,7] i.e,

0=xg<X; <Xy <o <X,y <X =7, A ) S
the coefficients t 4 are expressed by
4
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;=g [1+IXL. Uy x2 (cos E, = cos £)2) (£ 71,2 - .'i). (A-2)

where ¢ is a previously defined fitted parameter in the interval I, x._,, X!

£=1,2,...nx= ze, and b(L, U) is derived bj' (11-14). From symmetry

consideratjoas define

Xand ¥ 20 - Xg (A-3)

iy = (2= xg0 27 = xg ) (A-4)

o aieg = €7 EXP(27 d,}l')‘[l +b(L,. Uy x? (cosE, - cos E)?2] £ = 1, 2, n  (A-3)
dioter = - 42 | (A-G)

(A-7)

,
c2n-'€+l - Cﬁ

where d ; is the othe_r previous.ly defined, subinterval dependent, fitted parameter.
The remainder of this appendix shows the procedure utilized to derive the
values 6( the non negative integer mulitiplicity factors m . m,_ ¢ £4=1,2,...n;
the value £, an integer between. 6, 2n - 2; the value of n, an integer between
1, 2n - 1; and (t}, t7) which may be (t, t,), (t;, t ) (t,, t), or (t;, t;) depeﬁding
_ upon whether E;' mod 2+ and E; med 2 are less than or equal to or greater ‘

than =, for arbitrary E’l', E; and for differen! modes of operaﬁon of the orbit
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program. Prior to defining this procedure, consider the following definitions

concerning (A) modes of operation of the Vinti orbit generator program, (i3)

integration intervals of the variational equations, and (C}. Fortran variable

definitions.

(A)

(B)

Mode I

The Vinti orbit gencerator program is operating in mode I vhen the time
span of the variational equation integration [or implicitly, the integration
interval (E’;,E;)] is sufficiently small so that there is not a complete fitting
subinterval imbedded between the integration limits. Mode I will be the
dominant mode for definitive ephemerides or an ephemeris computed to support
a differential correction.

Mode II

The Vinti orbit generator is operating in mode II when the time span of
variational integration has one or more imbedded fitting subintervals be-
tween the limits of variational equation integration. This mode will be
utilized in lifetime studies when large intervals of integration wiil be per-
formed. Note that mode II implies the assumption of a valid fit (or x =

ae constant) over large periods of time than does mode I where new {its will

he performed as frequently as is required.

Class I Interval

A class I interval is an intz2rval such that both boundary points are adjacent

grid points of the mesh Kop X jpoeey X o

U T
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_ Class I Interval
A class 1I interval is an interval such that one beundary point of the interval
is a point x; of the mesh X, X4, ..., X, while the other boundary point ig a

non mesh point between

x. and x. -
j i+

(C) Fortran Variable Definitions
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The following describés the subtasks associated with defi_hing the full set of
ihtegratio’r’n parémeters in (A~1), Th= detailed logic is preseni.:d in the flow-
chart given in Figure A-1. | |

(® This algorithm will test whether E* and EJ are within the same sub- _
interval, will store the proper interval of ix;teg'ration and gssociated constants
into ARRAY, and exit. This simplified logic Is. most useful in Mode I orbit
genarations.

@ This algorithm defines the Class I intervals associated with the arbi-
trary limits E’;‘, E’;, (i.e. [%.,E¥mod2n] and [E’r med 2, xn] ) and stores them
and the associated constants into ARRAY.

(© This algorithm checks to see if any of the Class I intervals are near
7/2 or 3 /2 in order to avoid underflow difficulties during evaluation of the
integrals.

@ To assist the task of deleting unnecessary computations in Mode I gen-
erations, this algorithm establishes the necessary intervals and associated con-
stants when I'T and E} are in adjacent subintervals and in the same multiple
of 2r.

@ This logic stores the entire set of Class] subintervals and azscciated
constants into ARRAY a.ﬁd checks the Class i subintervals for negligible length.
If such a Class Il interval is found, it is eliminated from consideration. -An

arbitrary interval length of 1 X 10~7 {s the criterion presently used.
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- (® This algorithm defines m., m _ ; . It is predominantly usec in Mode 11

‘orbit generations. :

" (© This algoritkm redefines ARRAY to eliminate Class? intervals with a

- niultiplicity factor of zero and ClassIl intervals whose multiplicity factor hzis

been reset from one to zero by (E) when its length is negligible.







