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, I .  S .  \i’atson 

G. 1). 3listrett:l 

X. I>. I3onavito 

equations  for t.hc orbital  elemants arc introtluced, and espresseti ns functions of 

the transverse,  radial, and normal  components of the  non-conservative  forces 

acting  on  the  system.  In  this  approach,  the  Ilmniltonian  is  preserved  in  iorm, and 

remnins t h e  tatd energy, but the init ial   or boundary  conditions and hence the 

In particulu-,  the  atmospheric  density  profile is written as a ‘fi tkd’  eqonentinl  

function of the occentric U ~ O I U ~ J L J ’ ,  which reproduccs  tabular  values of static model 

atmospheric  densities at ‘dl altitudcs to within  ninety-cight percent md simulta- 

neously reduces t h e  variational  equations to indefinite  integrals with closed 

form  evaluations,  whosc  limits are in tsrnls  of the  eccentric  anomaly. The values 

of the  limits  for any arbi t rary  t imc  interval   arc  ohtaincd  from t1.c Vinti  program. 
-\ 
\ 
. .  

Iiesults  of  the RMV‘ (Ronavito,  Mistretta, Watson) theory fnr the  case of the 

intense air drag satcllitcs Scan Marco-2 and Air Force Cannonball are givcn. 
. ... ” 
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These results indicate tnat thc satellite  ephclrleridcs produced IJY the L%XlJf' 

th,?o:y in conjunction with the Vinti program are of vcry high accuracy. In ad- 

dition, sincc the program is  entireiy analytic, sevcr'd months of ephemerides 
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IN'I'IIODUC'I'ION 

the  Vinti equations of motion nrc  solved lor the  position and velocity of the  sntcl- 

make the  motion of an asymmetric body very cc,nq'lox. I I O W C V C ~ .  h -  tho C ~ S A  of 

a non-rotating sphcre, the  resistance C:UI be reduced to a single  component di- 

rected  oppositely t.o the velocity of the sphere. In this  treatment \ve shall  intro- 

duce  semi-empiricnlly  tletccnlined c >mponents of drag force which are functions 

of the  eccentric  moninly. With use of these, the differential cquntions for the 

variation with time of c ! ~  1zsal.c clemcnts  can be solved alonr; with  the  \'inti cqua- 

tions of motion. 

I. D I U G  VAIIIATTIONAL  1:QTJATIONS 

Here we present  cquntions for the  time  rate of change of tho Izsak orbital- , 

elements of the Vinti satellite thcory (Rcfe:.cncc 1). 111 our treatment, \vc shall assume 

1 
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elements *are then integrated as funct.ions of eccentric ;umnnly for thc i n s t u t .  af 

timc under consideration. 

-.The tllfiercntial  equations  rcprescnting v.vintions of orbital c*lcmentY &arc: 

where n is related to a by I? a3 = G31E = 11.. G is the gravitational  constant, and 

ME is the mass of the Earth. Any perturbing force I;' can be reprcscnted 
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T, is the pcrpcndiculw to it, lies in the orbital pl:uc* and is positive in t!lc 

direction of motion. 
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From this, WG have 
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0 1.- , 

we have, 



From this, 

and 

together with dh,I/dt rrom (3). we find 

Summarizing our equzticns for thls time rate of change of orbital elements, wo 

have: 

da 1 
dt Re s i n v  + T ( l  + e  cosv)] 
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Let us now substitcte for R, T, and W in terms of the ecccn'ric  anomaly a s  

given in reference 2, page 165: 

(1 3) 

., . 
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r l  

where 

os = a n g u l a r  velocity of ratation of earth 

tJ = atmospheric denslty 

A -= projected area of satellite 

111 = mass of satellite 

CD = drag parameter (usually Trorlnd 2.2) 

- c o s  \’ 
(‘os E - C’ 

1 - c cos E 
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where is an oblate spheroidal coordinate.. X a v  sllbstituting  cquations (14j anci 

- c l (  1 - c cos E ) ]  2} dE 



- d(1 ' P  cosE)]) 
r i E  
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If we indicate the eccentric  anomaly at time t ,  by E,  and at time t, by E, ,  the  

solutions oi equations (17) are given by the following: 

. .:d 
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= i:p (1 + I,x2 (1  - cos E)*! r .xp {-e ( 1  - c o s  E) 1 
where x = ac, It,, = density scale hcigllt at perigce which i n  cquatio!l (1) is 

assumed to  vary  linearly wit11 the perigee i1eight. 

Let u s  r AV write  equation-(l) in a more  gcncral form so as to ccpresent 

&he atmosp!leric  density  variation ovcr any interval within thc orbit in which 

the boundary conditions are known. A gcneralization of (1) is desirable for 

13 
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(1.1) 

wllere p, and I I L  are available from density  tables, E, and E, are available 

from the  orbit  theory (as are rL and r,), and b( L, V) is  dcrivable from ( I  .l) 

by setting p = pL and  forming the inverse  transformation 

b(L. V) = b(L, U; pL, P,, rL, ru, 11,). (1.2) 

If equation (1.1) abcve  is  substituted  into (I- lS) ,  tilo resulting  expressions 

for the  variational equations reduce to the form 

sin" E COS"' E exp <- (x/HL) (cos E, - c o s  E)) clE 

14 



maintaining its lhcorelical  physical  con;rnt. In short, thc varialiollnl cqu:tlions 

To achicve  this purpose, lct u s  now consitlcr the fo1lmvinK: 

Hewrite  the  csprcssion for atmospheric  density (1) in the form 

where b, (E), t, (E) are arbitrary  functions of E which ~511 he choscu  to  preserve 

closed form intekqahility of the variational  equations (1-18) while ~ t a i n i n g  near 

complete numericad  agcemcnt  yith  the exponcntial  term of the King-Ilele's 

expression for !'.I (E) .  

Tho selection of the two functions b I (E), b, (E) between an upper limit of 

integration 13, and a lower  limit E, will  he  made in the following manncr.. Con- 

sider  the interval [E:, E:] svbdivided into a collection of n nonovcrlapphg %I>- 

intervals I<, , (2 = 1, 2, . . . , n), defined by the  pmtitioning 
c 

e , .  
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For any subinterval I., = ix. x ), define 

, , - I '  I 

where c, , d ,  are constants.  Thc  detcrtnination of c,;,, d, w i  
.I ~ 

l i  be accornpl 

b, (E) = c 1  x. S E x ,  

= c 2  XI  5 E < x 2  

= d, x 1  5 E= x1 

= dn S E C x n .  



the  function 

relating  the  concomitant  variable E and the  dependent or response variable -k' 

that, unlike the  general  rcgression  rcspome  variable,displays no randon) variabi!iLy, 

FIcnce, the  rm~dom  variables E denoting the  dispersion  charact.eristics of Y 

about  the  theoretical  regression line become  mcmingless in the  curve  fitting 

analysis.  That is, the random variables c I are degenerate in the  sense tha t  

their  probability  density  fuctions p (6. are given by 

P ( t i )  : 1 t.. 7 n .  

0 o t h r r w i s c  

where 13, can  be  considcred a ,Wting bins" at I.: = Ei Since 

E ( E  i )  : B, Var ( e  j :- 0. (5) 

Wllile all practical statistic;;l propcrties of the regression .analysis become 

lost, the  technique is not degraded as a numerical tool for approximating  with 

grcat precision  complex  functional forms over restrictsd  rcgions wit11 relatively 

simple  functions. 
. .  
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of I ; ,  , P 2  respectively. 

The selection of the mesh points over-an  interval of ,integration ! E:, E;; is 
! 

obtahcd through an automated search approach utilizing the  constrained . . 

weighted lcast  squares process previously  described. This technique selects 

subintervals of maximum size while retaining a user  selected error lolernncc 



Having fit h (  E;) from (0 - 71 ), the  integration of the  variational  equations  between 

any two arbitrary limits E: I 0, I:; ? E:, takes  the  general form 

t; cxp (dr E) c l G k  (E) 
x c  

19 
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n), (IC = n 4- I, n + 2, . . ., 2n) are fucctionv of c ,  , d ,  ; i is an integcr lxtween 0 

and 2n - 2; T is an  Integer between 1 and 2n - 1; the grid points x,, ,  , , x,,, , 
. :-..._ 

. . ., x?,, are defined from x(,, xI, . , ., x,,; aad.(t:, t f )  may be either (t,:, t . ) ,  

(t;, t?),  (t;, t' ), (tt, t:) depending upon the  values mod 2.:, 1-1; mod 2 ' 7 .  The 

logical  structure of (13) and the  determination of the above pa ra~nc tc r s  is too 

lengthy to be givea  here byt is presented in  Appendix Tor cornplcleness. Jt  

must be emphasized that (13) is general  for  all  computations, but is valid or??!: 

while x is assunled  constant,  whereby a new fit is obtained and new constants 

are deter~ni.ned to integrate (1-13) by thi; general form (13). 

Using these results we can now solve the density  expression  for t h e  value 

of b  within each of the  selected or fitted  intervals  from  the  expression, 

where  the  subscripts U and L still refer to the upper and lower poinls of a n  in- 

terval. For example, /', is that value of densiw  at  the  initial  point of the  inter- 

val which is bown from  the  tables, and the  corresponding  density scale height 

H can then be cornpied.  The end point ru is known as a function of E. Therefore IfL is 

also 'advanced' in a similar fashion as p ,  during the fittiug of t h e  exponential. 

The  above  method of fitting  King-IIele's  expression  over  several  intervals of 

an  orbit is sufficient to 'reproduce'  the  tabular model atmosphere to wlthin 

20 
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cornputeci versus static moclel :~tmospl~ere  densities  for  various altitutlc.; and 

111. SOLU’I’ION OF. VARL4TIONA.L I:QUA’I‘IONS 

In light of thc analysis done in section I1 above, w e  now return to the vari- 

ational  equations (1-18). If we now combine the radical  terms in ( I - l B ) ,  u.e ob- 

tain a .jet of esprcssions  conkthing the  forms (1 f x) “, and (1 f x)+’, where 

that is, for drag  satellites, c will  not LC larger than 0.2, then  the  above terms 

c m  be espanded as, 

Adopting nxpression (11-1.1) for atmospheric  density  variation,  the  variational 

equations are then redaced to solving :I set of indefinite integrals of the fcrm 

21 



in which t+ (E) and b; !E) are dctcrmincd for on2 or several scgtnents within nn 

orbital revolution. Results indicate tlwt 11,  (I') and b 2 (  E) remain fisec? for a 

considerable ;ength of the satellite's lifotinw.  Refitting I,ecomes necessary only 

when a and e chm1g.c np.>rcciahlp. T h i s  is found to  occur more frcclucntly  nc:lr 

the  end of the satellite's  lifetime. In any event,  the  fitting p rocedux  is 

instantaneous, and the  calculation proceeds without  illterruption. 

Using these results, equation (2) can no':; ?IC rewritten as 



reduction, 

If in tllc drag nccelcration one desires to eqress  the velocit;v and density 

eqonent ia l  so as to- involvc the  product of J ?, the coefficient of the e win's 

second zonal harnwnic, and the air density i:, one can follow the procedure of 

Sherrill  (Reference 4) a ~ l d  write these terms as, 

v = (&) 2 [(;) - 1] s./2 

\ 
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nnd 

cquatarial radius (Rcferc~:cc 1). If c 2  is tallten to be zero hcrc., then tllcse 

cross  products in v a r e  ignored and (7) and ( 6 )  reduce i o  thoscl cxpressions 

given in  Section I. Results  from low perigee  satellites such a s  OAR-901 (Cnnnon- 

1x111) shou. that tile cs2 terms of equation (7) make  differellces  only in the s i x t h  

. .  . 

dccimal placc in the  variational equations. In adciition, the cross term i n  thc 

exponential is lo3 l imes  those  corresponding t e r m s  in the  velocity.  Sincc t h i s  

correction is accounted for rat,her simpiy by :he iitting  procedure, thc c ross  

term is retained in the  exponential. 

The solutions of the  variational  equations a r e  ad.ied to th, epoch  values of 

the Izsak elements in the  Vinti program, thus  enabiing  the progrwn to produce 

an ephemeris which  inc1ud.s the effect of aerodynamic drag. L-1 effect,  the 

original  separability is maintained, and the initial or boundary co~~tlitions are 

advanced  using an analytic or closed form solution  for  the  v'wiational  equations. 

. .. 
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In order 1.0 tcst the I;>I\V theory, two heavy n l r  drag sntellitcs with sorne- 

1vhc.t disstmilar  chnractcristics are consi.ic.,l~d. 'l'hcse arc t l ~ c  Italian Sm 

3L'irco-2 and the U.S. Air Force Camonb,:!lI (C>AI{-!KU). 1):1Ln on thcsc  spncccrnfts 

j.!; as follows: 

San Alar co- 2 : 

Mass m = 129.27333 kgm. 

l'rojected A w n  A 7- 3425.3337 cm2. 

Drag Coofficicnl: C ,  = 2.1 

Initiai ?poch: April 2G, 19G7, 10 bours, 12 minutes. 

Initial conditions: 

X = -1-0.58725272, k = -0.82890608 

y = +0.84923499, $ = ".0.56396878 

z = -0.05068537, i = +0.01219124 

Here, s, y, and z are in units of earth  radii (6378.166 kilometers), m d  2, y, and 

i i . ~  units of earth radii per canonical unit of time (806.812 seconds). 

Apogee  height = 736.00 kilometers 

Perigee  height = 205.60 kilometers 

Eccentricity = 0.0387 

Inclination = 2.87 degrees. 

Cannonball: 

Mass m = 362.87392 kgm. 

Projected  Area A = 3422.6195 cm2. 

- .. - - - -.- ~ " " .  . 
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Drag  Coefficient, C,, = 2.1 

Initial Epoch: August 7, 1971, 0 hours, 20 ininutes. 

Initid Conditions: 

X = -0.9428339, i = -0.26977565 

y = -0.281GlG29, 2. = -0.409.15775 

z = +0.28038380, i, ‘1 -1.0092100 

A ~ O ~ C C  11eig11t = ia57.20  Icilomctcrs 

1;’erigee hcjght = 3 30.16 kilometers 

Ecccntricity = 0.1 230 

Inclination = 92.00 degrees. 

In both cases, the boundary values oi the  atmospheric  density  profile 

given l q  I ar,- taken from a static model, namely,  the 19GG U. S .  Standard 

Air Force Supplements. Thc profilcs used here include a Spring-Fall 

model  with an 1100 dcgrec exospheric  temperature, a [Vinter, 800 degree 

model, and a Summer 1000 degree model. While these profiles are 

adcquate if chosen  carefully, it is felt that a somewhat more sophisti.cated and 

dynamic  model such as given by Jacchia  (Ilefczence 5) would not only improve 

results but also make them more reliable. 

Figure 1, shows the  variation  over one orbital  period  (from time of in- 

sertiou) of the semi-major axis, eccentricity, and (/‘ 2 + /<3) respectively for 

San AIarco-8. Here, at, and co are taken to be the initial values of these 

parameters. For the semi major axis, we have initially a secular decrease of 

n.. 





ThSs was done s o  as to allow the 13XIlV program to comparc at intcrnlcclinte 

points, its values for scmi-mnjor =is with the obser3"cd ones. bl ;~ctunl prac- 

ticc, these  limits would be cvdu:lted  for  thosc  vnlucs of ccccntric  monxdy 

corresponding  to  those  regions of .an orbit  over whicb a fit ol' the  density  variation 

remaincd fixed. Using a chnngc in  perigee  height  criterion  (presclcctcd at 1 km), 

results from Cannonball show that t h e  first region is the Cirst G5 cl:iys, the 

second is thc ncct 55 chys, and so on, until  within the 1:lst tnonth of life  the  regions 

arc only of 5 day durations. As a result,  thc ent.ire cphemeris is computed 

rapidly. Using tho IBhl 360/91 clcctrofiic  digital camputer, the complete San 

hlarco-2  and Cannonball ephenlerides computed at 5 day  intervals were exc- 

cuted  in  less  than 18 seconds of computer C J X  time. 

These results show that  the 13hnV program was within 4 pcrcent of the 

"true" lifetimes of both satellites,  despite  the fact that Cannonball lad  a re- 

latively high eccentricity and low perigee. In addition, it must  be  pointed  out 

that the initial conditions used fn  the program  were obtained €rom  orbit im- 

, yrovement  routines  other  than  the Vinti Orbit Deter,+nation System  (References 

6, 7), since this was the only data  available. To he  more  consistent, and to im- 

prom accrracy, one should  utilize, i f  possihlc, only those initial or epoch  values 

obtained from  thc Vinti  Orbit  Determination  System. 



~ 

I ' ,  

. .. 

among  these is the  incorporation of n dynamic mcxlc~ :ttmosphcric  density pro- 

file s u c h n s  Jacchin's. As is well Itnown a slight miscalculnl.ion -in the csosphcric 

temperaturc for a static n l o d e l  would drasticdly :dter tile resulting tlcllsity 

profile, and consequently,  the  computed  ophemcris of the  satellite. 

The distinct :idvanLqe of t!w 13rllU' lnclhod over nulnerical  integration Icch- 

niqucs is that being nn:rlytic or closed form, it is not subject to largc error 

can be oblaind in n mattcr of n few seconds on present  generation  computers, 

whilc such a task might be prohibitive  with a numerical  integration. 

With tbz  atmospheric  approximation of this  paper,  equation (111-3) could be 

expressed in t c rms  of Uessel  functions, €or cxample, 

1. 1 cxp  ( C  cos E) cos" EdE .: I ,  ( c )  
n 

(n : 0 )  

= I ,  ( c )  -; I ,  ( c )  (n = 2)  1 

and so forth. The dis,?-clvantage here, besides the limited step s i ze  over wllich 

to pcxform tho summation, is In the difficulty of handling intermediate poin'k 

.., 1 .  
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within thc  limits. A 1:esscJ. function appl*o:lch wuuid :tl)pe:u' Lo I J C  I)cttc!r c1n- 

ployed in a sfudy of atmospheric  density  inference  from  cdculations of thc 

period  decrement. 

King-1131e (Itefcrence 3) has otudictl the contraction of orbits in a closed 

form mannur.  Four  situations are considered: 

1. Normal e ,  I'hase 1: approx. 0.02 ( e -  0.2 (3 s' (ae/Ii,,) ' 30 approx.) 

2. Normal e, Phase 2: 0.- e 0.02 approx. (0  I: (ae/r-l,,) .. 3) 

3. Ci.rcul;w orbits: e -= 0 (ae/II, = 0). 

4. Iligh  ecccctricity: e l  0.2 (ae/Ilp 2 30 approx.). 

It is felt that the  regions  covered by the  cquations of motion in these  four cascs 

are also covered by the BIvlW theory. Even though a static model dt1nOSphe:'e 

profile was tised in the calculations, BMU' does have the  latitude of utilizing n 

density  profile  such as the  Jacchia model. In addition, the  reference  orbit is 

not CUI c x a d  ellipse, but tho Vin t i  orbit. As a result, it is felt  that  the BMIV 

method has contributed to the  program  for  calculating both accurately and rapidly, 

the orbits of s:rteIlites experiencing  aerodynamic drag. 

A t  t h e  present  time, t h e  Vinti differential  correction  algorithm (Reference 7) 

employing a classiczl weighted least squares technique is being  appropriately 

~noriif:ed to accommodate t h e  augmented  force  model. The bulk of t he  imple- 

mentation requires  the  reformulation of the partial  derivatives { 3 yi /a q , (to) 1 

to reflect air drag where {yi) are tracking  observables  and {q,j (t,)) are the 

set 01 "epoch" Vinti orbital e1en;ents  and an  atmospheric  parameter  iteratively 

'\ 
\ '. 
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orbit estimation. This work will I E  forthcoming in a future report. 
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DEVELOPMENT OF VARIATIONAL EQUATION CONSTANTS 

For k = 1, 2, . . ., 6; the general. expression for the  cltangs in the Vinti 

orbital elements due to  atmospheric drag Ixtwecn the arbitrary limits E;, E f  is 

given by: 

Without loss of generality, assume that the fitting process is perform ,d over 

the intcrval 1 n, 771 Le. 

! 
$ .  

the coefficients t t  are expressed by 
. .  



. .  

! ,. I 

x 2n"Z = 2..r - x,:, (A -3) 

where d; is the other previously  deflned,  subinterval  dependent,  fi,tted  parameter. 

. The remainder of this  appendix shows the  procedure  utilized to derive  the 

values of the non negative  fnteger  multiplicity factors m a  mrr+t 4 = 1, 2, . . . n; 
the  value 5 ,  an integer between 0, 2n - 2; the  value of 7 ,  integer between 

1, 2n - 1; and (ti, t;) which may be (tF, t,,), (ti, t,), (t(, t;), or (t;, t i )  depending 

upon whether E; mod 2 71 ail E: mod nre less than or equal to or greater 

than n, for arbi t rary E:, E: and for difforen! modes of operation of the  orbit 

A -2 
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program.  Prior  to dclinin:: this  procedure,  consider  the following definitions 

concerning (A)  mcjdes of operation of the \'inti orbit  generator  program, (Z) 

integration  intervals of the  variational  equati ms, and ( C ) .  Fortran  variable 

dcfinitions. 

. .  

Male I 

The Vinti orbit  generator  program is operating in mode I vhen  the  tinlc 

span of the  variational  equation  integration  [or  implicitly,  the  integration 

interval (ET,E,*) 1 is sufficiently  small so that there is not a complete  fitting 

subinterval imbedded  between the  integration  limits. illode I will be the 

dominant  mode  for  definitive  ephemerides o r  an ephemeris computed to  sdpport 

a differential  correction. 

Mode I1 

The Vinti  orbit  generator is operating in mode II when the  time  span of 

variatioml  integration  has one or more imbedded  fitting subintervals be- 

tween  the  limits of variational  equation  integration.  This mode will  be 

utilized in lifetime  studies when large intervals of integration  wiil be per- 

formed.  Note  that  mode 1I imp1.ies the  assumption of a valid f i t  (01' X = 

ae constant)  over large periods of time  than  does  mode I where new fits will 

!x performed as frequently as is required. 

Class I Interval 

A class I interval is an intxual such that both  boundary  points are adjacent 

grid points of the  mesh xo, x ,, . . . , x . 

A-3 



Class I1 Interval 

A class II interval is an interval  such that one bcundary point of the  interval 

is a.point x of the  mesh xu, x ,, . . . , x,, while  the  other !,oundary baht is a 

non mesh point between 

x .  a * ~ d  x ~ , ~ .  

(C) Fortran Variable  Definitions 

Fortran  Variables hkthematical Description 

E l  ET 

E2 E; 

NOINTV 2n 

1 

COEFF ( I ,  J) J :. 1 
OINTV 
2 t 2 ,  to C 2 n  

NOINTV , I = 2," d ,   t o d n  
2 



I 

4 

. .  

; .'. 

I = 2  

J = 1  

5 x 2  

J = 3  

J = 4  

J . - 5  

f J = 3  m-C 
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The  following  describes  the  subtasks  associated with defining the full set of 

integration  parameters  in (A-I).  73-1.: detailed logic is presen;’. ? d  iri the flow- 

clx-irt given  in  Figure A-1. 

@ This algorithm wili test  whether E: and E: are within the  satnc sub-  

interval, will store  the  proper  interval of integration and associated constants 

into ARRAY, and exit. This  simplified  logic Is most  useful in Mode 1 orbit 

generations. 

@ This algorithm  defines  the Class Il intervals associated  with  the  arbi- 

tmry  l imits  E:,  E:, (i.e. [xE, F:f mod2r) and [E: rr_& Z T ,  x- j ) and storcs them 

and  the  associated constants into ARIIAY. 

@ This algorithm checks to see if any of the Class JI intervals are near 

n / 2  or 3 77/2 in order  to  avoid  underflow  difficulties  during  evaluation of the 

integrals. 

@J To assist the  task of deleting  unnecessary  computations in Mode I gen- 

erations, this algorithm  establishes  the  necessary  intervals and associated con- 

stants when and EX are in adjacent  subhtervals and in the same multiple 

of 2r. 

0 This logic stores the entire set of Class1 subintervals and  a?scciated 

constants into ARRAY and  checks the Class G subintervals  for-neg€tgable length. 

If such a Class I1 interval is found, It is eliminated from consideration. -An 

arbitrary  interval  length of 1 x lo” is tho  criterion presently used. 
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@ This  algorithm def.ineu m,., Inn+$, . It is pradorninantly uem. in hlotlc 17 
I 

orbit  generations. 

@ This algorithm  redefines ARRAY to  eliminate Class! intervals with ;L 
' .  

multipl.icity factor of zero and Class Il intervals wkosc multiplicity  factor 'his 

been reset from one to zero by @ when its length is negligiihle. 

! 

. 
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