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SUMMARY

This report documents the results of work accomplished by the authors on

a task undertaken to suggest an appropriate approach to the solution of the optimum

two-impulse transfer problem between orbits of specified inclination. The task in-

cluded a literature search to identify the current state of the art and a definition of

the suggested approach for the specific application of a lunar orbit trim. Some num-

erical data available at the start of the study prompted Mr. Pines to undertake some

original research on the subject which was outside the scope of this task. Although

the research study is not reported here, the applications of his results to the pro-

blem of interest is included as Appendix A of this report. The formulation for a

computer program developed under this task following a more conventional approach

is included as Appendix B.
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I. The Problem

The first phase of this assignment was to conduct a literature search to

discover what numerical and/or analytic techniques might be available for the

solution of the following impulsive orbit transfer problem:

1. All orbital parameters are given for an initial elliptic orbit. The

only assumption made on these parameters is that the eccentricity has an upper

bound of .8.

2. The final orbit is to be circular, have specified inclination and

radius specified to within ± 200 km.

The application is to a circular orbit about the moon at critical inclination.

The initial orbit will be achieved by a retro-burn from the hyperbolic approach

trajectory, and will be tracked long enough to establish its elements. One would

hope that this initial orbit would be close to the desired final circular orbit, but

techniques are desired for achieving the optimal insertion into the circular orbit

whether or not this hope is realized.

The second phase of the assignment was to pursue analytic investigations

suggested by the literature search.

II. Results of the Literature Search

The starting point for the search was a comprehensive survey by Gobetz

and Doll (1 ) published in May 1969, which covers work on impulsive transfers

carried out before mid-1968. An extensive bibliography (over 300 references)

is included, and an outline of general results obtained is presented.

An effort was made to review all of Gobetz's references which appeared

at all pertinent to the problem at hand. It was not possible to obtain copies of

all such references; however, enough were reviewed to be reasonably sure

that no general analytic conclusions are available in the literature for this pro-

blem - as, for example, the conclusion that if the orientation of one of the orbits
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is left entirely unspecified, optimality of the transfer requires that this orbit be

chosen coplanar and coaxial with the other orbit.

The papers actually examined from Gobetz's list of references are those

numbered as follows:

9, 17, 19, 20, 35, 37, 54, 55,

56, 61, 104, 105, 106, 113, 123,

124, 125, 192, 193, 195, 213,

214, 216, 220, 221, 241, 251,

276, 277.

In addition, recent issues of Astronautica Acta, the AIAA Journal and the Journal

of the Astronautical Sciences were scanned, and several additional references were

examined (2) - (8) Prior familiarity with the work of the groups at Huntsville

(Hoelker et. al.), G. E. (Altman et. al.), North American (Bender, McCue et. al.),

Stanford (Breakwell and his students) and the work of F. T. Sun made it unnecessary

to look in detail at all of the papers by these authors listed by Gobetz.

It should be noted that my examination of these papers was primarily

directed at looking at the results claimed by the authors in order to determine

applicability of their work to the particular problem outlined above. No effort

was made to follow all the analyses through in detail. Of all these papers, very

few dealt with non-coplanar transfers and still fewer with transfers of more than

two impulses. No useful analytic results were found. H. W. Small's program

for optimal N-impulse transfers appears to have possibilities for our problem.

This program is a culmination of the efforts of Breakwell and several of his

students over some years. It is based on the indirect method, requires some

preliminary numerical work, and requires guesses on the initial values of the

adjoint variables. All trajectories generated are optimal and the iteration in-

volved is to match the terminal conditions. Small has used the program for an
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exhaustive study of coplanar transfers. Our problem is not, however, the pro-

blem of surveying all possible transfers, but rather of optimally matching certain

terminal conditions. S. Pines has criticized procedures such as this on the ground

that the numerical match obtained on the terminal conditions will not be adequate

for practical implementation. Small has made considerable additional material

(in the form of a very rough draft of his thesis) available. Some effort would be

involved in understanding the procedure, if one wished to use his program on this

problem. Its principal attraction appears to be that it would yield the global N-

impulse optimum.

m. Theoretical Work

Construction of a direct theory for a two-impulse solution to the problem

was started, but the time limitations did not permit its completion. The para-

meters tentatively selected were:

1. Argument of latitude of the departure point on the initial orbit.

2. A parameter a related to the radius of the circular orbit by

r=a+p cosa a given

p = 200 km

3. Longitude of the ascending node of the circular orbit.

4. Argument of latitude of the arrival point on the circular orbit.

These four parameters define the initial and final position vectors on the

transfer orbit, and one or two transfer-orbit parameters are required as follows:

5. Any inplane parameter of the transfer orbit: semimajor axis,

eccentricity, argument of latitude of one end or the other, magnitude of the angu-

lar momentum, or transit time.

6. If the initial and final position vectors of the transfer orbit are

collinear, an out-of-plane parameter: either inclination or longitude of the
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ascending node.

The formulation of the problem is such that any choice of parameters which

define the geometry of the transfer is easy to implement. As noted earlier the

theory is not complete; further detail does not seem warranted for reasons which

follow immediately.

About midway through the study, the conjecture (partly based on numerical

results of C. Uphoff) was put forward by S. Pines, that the optimal two-impulse so-

lution to the open-time problem is a 1800 transfer chosen such that the changes in

angular momentum resulting from the two impulses are collinear. The proof of

this will be published independently; however, the application of this solution to the

problem at hand is outlined in Appendix A.

To permit the study of fixed transfer-time transfers, a two-impulse tra-

jectory optimization program based on the indirect technique was constructed.

A general iterator was incorporated in the program which also permits optimi-

zation by direct methods. Although the formulation for this program is suffi-

ciently general to include open-time problems, it will not yield the 1800 transfer

(which appears to be the globally optimal solution) because such a transfer re-

presents a singular solution for the formulation employed. The formulation is

described in Appendix B.

IV. Conclusions

1. The general two-impulse trajectory optimization program is

available for fixed transfer-time problems.

2. Pines' two-impulse 1800 analytic solution is available for open-

time problems.

3. For multi-impulse solutions, Small's program is a possibility.

As noted above, considerable preliminary study is required. The detailed
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material supplied by Small did not arrive in time to carry out such a study, nor

were computer facilities available for familiarization with the program.

4. Because of the last comment, no assessment of the relative merits

of Small's program compared to the first two items will be attempted.
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APPENDIX A

OPTIMAL TWO-IMPULSE TRIM FOR RAE-B

INTRODUCTION

The equations for the optimal two-impulse trim for transferring from an

elliptic conic with given a, e, i, Q, W, and t to a required circular orbit of

given inclination are described herein. The final circular radius is designated by

r. A test is included for the condition where a nonoptimal three- or four-impulse

trim may prove superior for conditions of large changes in the angular momentum

vectors. The results are given without derivation.

NOTATION

i initial inclination
0

if required final inclination

H initial angular momentum vector
0

k unit vector in the direction of the equatorial pole of the planet

h magnitude of H
o o

hf magnitude of the final circular angular momentum vector

unit vector in the direction of the initial ascending nodeo

+ 1800 transfer radius on original conicr1

r1  radius opposite r on original conic

hTi magnitude of the transfer angular momentum vector

e eccentricity on initial orbit
0
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DESCRIPTION OF THE SOLUTION

The optimal two-impulse solution is characterized by a 1800 transfer.

The direction of the two-impulses are anti-parallel. The initial, transfer, and

final angular momentum vectors all lie in a plane and the two vector changes, in

angular momentum are collinear.

EQUATIONS DEFINING THE SOLUTION

Let the minimum possible change in inclination be AiM, then

Ai = i- (1)

The initial unit ascending-node vector is given by

A kxH

S= (2)o sin i
o

where

H = H /h (2a)
o o o

The minimum possible change in angular momentum, corresponding to

Ai M  is given by rotation of H about the initial ascending node o throughO 0
the angle A iM'

sin Ai cos i sin Ai
F(.H M k (3)fM hf os M sini o sin i

o o

where

hA2
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Introducing the single-degree-of-freedom variable, X, as the angle be-

tween the initial and final ascending nodes, we have

f = cos X o + sin X kxf (4a)

The final angular momentum vector is given by a rotation of HfM about

k through X.

Hf = cos X H M+ (1 -cos X) cos if k + sin X kxH (4b)

The corresponding increment in inclination from the initial angular momentum

vector to the final angular momentum vector is given by

-H xHI1 o f
Ai = sin h h (5)

of

The 1800 transfer takes place along the unit position vector on the original

conic and is given by

HxHo f
R = f (6)

h h sin At
of f

The central angle between the original ascending node and R is given by

-1 ^ ^
a = cos (o" R) (7)

The conic radial distance in the positive direction of R is given by

h
2

+ (8)

S jl+e cos(a-w
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The radial distance along the negative direction of R is

h
2

O
= (9)7 [1 - e cos(a -)3 )

The first impulse takes place along the larger of the two radii. If r1> r-, then

the radius vector for the first impulse is

R = r, R (10a)

and the second impulse takes place at the radius vector

R = -r R (10b)

(11)

R, =rR

R2  r R

Figure 1 is convenient to describe the various angles and momenta mag-

nitudes required for the solution.

Hf

.41

Figure 1
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Let the vector change in angular momentum be AH

AH = Hf- H (12)

and its magnitude be

6h = h - 2hf h cos Aif +h (13)

From the law of sines, we have, for the angle between H and AH,
0

sin a = h sinAif (14a)
o

and

h - h cos Ai
osa = h (14b)

The transfer angular momentum has a magnitude given by

h= if (15a)
T r+

or

2 (r r +hT = - if r >  (15b)r+1

In either case, we have, for the angle between HT and AH,

h
sin = sina T (16a)

h
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cos = sign (h - h cos a) - sin P (16b)

The angle between H and H is
o T

Ai = 1r-(X+P)

The transfer orbit angular momentum vector is given by a rotation of H about
o

the unit vector R 1 /rl, where r1 is the larger of rl+ and rl-, through the

angle AiT.

H h T os(+ (a+ H + sin ( r R H (17)
T T 0 r1  1 0

The magnitude of the change in angular momentum after the first impulse is

given by

6h = - H = sin (a+ (18)1 T o sin a

Let the vector dot product of the position and velocity prior to the first

impulse be

d1 =R1 R1 (19)

Then, the vector dot product after the first impulse is given by

d
+ 1

1 6h (0)
1- _

(6h-hl) r1
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The velocity vector after the first impulse is given by

+

S+ HT x R1 d R1
R1 2 + (21)

r, r,

The velocity prior to the second impulse is given by

+
H xR dtR

S  H T  (22)
2 -2 -2

r r

The final circular velocity vector after the second impulse is given by

R2  T 2 (23)
hf r

We may now compute the sum of the two impulses and carry out the one-

dimensional search for the X which yields the minimum sum of the two impulses.

6V = I 1 -  (24)

6V2 = iR 2 - R2 (25)

This is the optimal two-impulse trim unless the condition in the next section is

violated.

TEST FOR MULTI-IMPULSE NONOPTIMAL TRIMS

More than two trims will be better than the two-trim program outlined

herein if
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6h > -1)ho+( -1)hf (26)

For such an event, there is no unique minimum and much better three- or four-

impulse trims can be found for longer transfer times.
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APPENDIX B

GENERAL FORMULATION FOR OPTIMAL 2-IMPULSE

TRANSFER BETWEEN INCLINED, ELLIPTICAL ORBITS

Consider a spacecraft in an initial orbit with elements ao, eo , io , o W 0,

and t which denote the semimajor axis, eccentricity, inclination, longitude of
po

ascending node, argument of periapse and time of periapse passage, respectively.

Suppose it is desired to transfer to a final orbit of specified semimajor axis af,

eccentricity ef and inclination if using two impulses, the magnitudes of which

we denote v and vf, so as to minimize the sum = v + vf. The motion is des-

cribed by the vector equation

R= - l R/r

which represents free flight in an inverse-square force field where R is the

position of the spacecraft, r = RI, and p is the gravitational constant. Clearly,

the position at the time of the first impulse R and the velocity before adding
o

the impulse R - are functions only of the time at which the impulse is applied,

i.e.,

Ro = Ro(to)

R = R (to)

and, thus Ro = R (to) + V

where the plus sign denotes the limit evaluated just after the impulse and V is
o

the impulse velocity vector. With af, ef and if specified, the position and

velocity after insertion in the final orbit may be considered to be functions only

of the final longitude of ascending node 0f and the argument of latitude Of, i.e.,

R = Rf (nf, f)
S+ .+

Rf = R f (nf. Of)
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and therefore

* +

Rf=R (1f, Pf) - f

where Vf is the final velocity impulse.

Proceeding formally with the application of the Maximum Principle, one

may write the adjoint equations for the problem which define the behavior of the

primer vector A.

= (R • A)R- A
5 3

r r

This equation is known to possess the analytic solution

A

where 4 (t o , t) is the state transition matrix for the two-body transfer from

time t totime t. The transversality conditions for the problem are obtained

from the Maximum Principle by applying the general equation

f
diT + A dR - A dR - hV dt =0

where h = A R - A • R is the variational Hamiltonian which is a constant of

the motion. Note that the differentials dR are evaluated at the terminals of the

transfer trajectory; hence, dRo and dRf must be used. Forming the appro-

priate differential, one obtains

dR =R dt
o 0 0

dR = R dt +dV
o 0 0 0
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dRf = (kx Rf)df + (hf xRf) df

dR = (kxR)d + (h xRf )d -dVf

where k is a unit vector in the direction of the North pole of the central body and

hf is a unit vector in the direction of the angular momentum of the final orbit. Let

each of the velocity impulses be defined in terms of a magnitude and two angles

which uniquely define angular orientation. We arbitrarily select one angle, oa, to

be a rotation about the (initial or final) unit angular momentum vector h and the

.other, y, to be a rotation about the unit vector j defined by j = (V x h)/ IV x hi.

Then

V
dV -- dv +(h xV)da +0 xV)dyo v o o Vo o o Vo0 d0o

0

f
dV - - dvf + (xf ) daf + (f xV f) dyf

Finally, writing

d7- dv + dv = dv + dvf
bo o v f o

substituting into the general transversality condition, collecting coefficients of

the remaining independent differentials and setting to zero, one obtains the follow-

ing transversality conditions

(a) k - (F + VfxA f) = 0

(b) hf(F + Vx ) = 0

(c) 1 - (A Vf)/vf = 0

(d) hf (V fx )=0

(e) f (Vf xAf) = 0
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(f) 1 - (A°  Vo)/V ° =0

(g) -ho (Vo x o) = 0

(h) -jo (V x Ao)=0

(i) -hv = 0

0(j) - A ° * R + o " R + hv = O

where F is a vector constant of the motion defined as follows

F=RxA-RxA

The equations (d), (e), (g) and (h) along with the definition of j are sufficient to

conclude that the optimal directions of V and Vf are collinear with A and
o f o

Af, respectively. Equations (c) and (f) indicate that the velocity increments

must also have the same sense as the associated primer and that

IAol = IJf= 1.

Due to the collinearity of the velocity impulse and primer at the final time, equa-

tions (a) and (b) reduce to

(a') k- F = 0

(b') hf F = 0

which means that F will be aligned with the line of nodes of the final orbit.

Equations (i) and 0() arise if final time and initial time, respectively, are

left completely open. If, instead the flight time is fixed, then the two equations

(i) and 0) are replaced in favor of the single equation represented by their

sum, i.e.,
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(i') A * f -A iR =0
0 0 0 0

The above formulation may then be implemented in the following manner.

(1) Estimate the initial time, final time and the longitude of ascending
node of the final orbit and the argument of latitude at insertion into
the final orbit. Along with the specified orbital parameters, these
are sufficient to define the state and time in the initial orbit at de-
parture and in the final orbit at arrival.

(2) Solve Lambert's problem for the transfer trajectory between the two
terminals. Simultaneously, evaluate the state transition matrix for
the transfer.

(3) Evaluate the velocity impulses by differencing the velocities at the
terminals of the transfer orbit and the corresponding velocities in
the initial and final orbits, i.e.,

V + 0 - + -
V R -R ; V =R -R

(4) Define the initial and final primer vectors

A = V /v ; Af= Vf/v
o oo ff

(5) Partition the state transition matrix into four 3 x 3 elements

and solve for Ao and Af as follows

*-1A = B  (Af - AA o )

A = CA + DA
f o o

and evaluate the constants of the motion F and hb.

(6) Solve for the left-hand side of equations (a'), (b') and (i), j) or
(j') and At.
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(7) Initiate an iteration of steps (1) - (6) to solve the boundary value
problem in which to' tf, f and fP are the independent parameters

and the parameters evaluated in step (6) are the dependent para-
meters.

A computer program which successfully implements the above steps has

been developed and delivered to the Principal Investigator. Limited exercising

of the program prior to delivery indicated that the approach exhibited strong con-

vergence properties. A major limitation of the program is that it cannot handle

a 1800 transfer trajectory which appears to be the globally optimal solution for

an open-time transfer. The open-time solution which the program yields is a lo-

cally optimum solution which, for the specific cases investigated, yielded a velo-

city impulse sum about 30-40 percent greater than the 1800 transfer solution.

Care should also be exercised in solving for fixed-time solutions with the program

because the existence of multiple local solutions to such problems are common.

The particular local solution which the program converges to is totally dependent

upon the initial guess of the independent parameters. Therefore, if the existence

of multiple solutions is suspected, one should input estimates of the independent

parameters in the neighborhoods of each suspected solution to find the global so-

lution. The alternative is to map solutions throughout the admissible ranges of

the independent parameters.
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