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Abstract

The elastostatic plane problem of an infinite strip contain-
ing two symmetrically located internal cracks perpendicular to
the boundary is formulated in terms of a singular integral equa-
tion with the derivative of the crack surface displacement as
the density function. The solution of the problem is obtained
for various crack geometries and for uniaxial tension applied to
the strip away from the crack region. The limiting case of the
edge cracks is then considered in some detail. The fundamental
function of the integral equation is obtained and a numerical
technique for solving the singular integral equations with this
particular type of fundamental function which is characteristic
of the edge cracks is described. The stress intensity factor
for the complete range of net ligament-to-width ratio O< a/h <1
is calculated. The results also include the solution of the
edge crack problem in an elastic half plane.

1. INTRODUCTION

Within the past decade the plane elastostatic problem of an

"edge crack" has been considered by many investigators using a

variety of techniques. Among the notable contributions, we may

mention [1,2] where the Wiener-Hopf technique is used to solve

the problem, [3,4] where a variety of crack problems are formu-

lated as integral equations in terms of some weight functions,

[5] in which the problem is treated by using the mapping

This work was supported by The National Science Foundation under
the Grant GK 11977 and by The National Aeronautics and Space
Administration under the Grant NGR-39-007-011.
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technique, and [6,7] where the finite element methods are used.

In this paper the problem is reduced to a singular integral

equation with the derivative of the crack surface displacement

as the density function. The method offers certain flexibilities

which become very useful in dealing with the cracks in nonhomo-

geneous materials. One of the primary aims of the paper is to

show that the numerical techniques developed for solving singular

integral equations with weight functions w(x) = (l-x)'(l+x)%,

(-1 < Re(a,f) < 0) [8] may be extended to treat the problems in

which formally a or B is zero, which invariably is the case for

the edge cracks.

First the problem of an infinite strip with two collinear

cracks perpendicular to the sides will be considered. The limit-

ing cases of this problem are a single crack when the distance

between the inner crack tips becomes zero [9,10], and the edge

crack when the distance from the outer crack tips to the sides

becomes zero. The results for the edge crack in a half plane [2]

will also be given largely for the purpose of verification of

the technique.

2. THE INTEGRAL EQUATIONS

Consider the strip problem shown in Figure 1. Let the

geometry of the medium and the external loads be symmetric with

respect to x=O and y=O planes. Thus, using symmetry considera-

tion and the superposition technique, the singular part of the

solution may be obtained by solving the problem under the
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following boundary conditions :

u(O,y) = 0 , xy(0,y) 0 ,

xx (h,y) = o , oxy(h,y) = 0

ayy(x,) = 0 , axy(X,) = 0 ,

(O<y<o) ,

(0<y<) ),

(O<x<h),

axy(x,0) = o ,

ayy(x,0) = -a(x)

a v(x,) = ,a x

(O<x<h), (4)

(a<x<b),

(O<x<a, b<x<h), (5.a,b)

b
f a_- v(x,0)dx = 0 ,
a

(6)

where u and v are the x and y-components of the displacement

vector. The conditions (5.b) and (6) are clearly equivalent to

v(x,O) = 0, (O<x<a, b<x<h). The solution of the problem satis-

fying the necessary field equations and the conditions (1), (3)

and (4) may be expressed as [8]

u(x,y) -= - |f me (K2 - py)e)PY sin(px)dpo p 2

- I {[f(s) - g(s)]sinh(sx)
+

+ xg(s)cosh(sx)lcos(sy)ds

If the external load is the uniform tension ao as shown in
Figures 1 and 2, then in (5a) a(x) =a0. However, in formulating
both problems it is assumed that the crack surface traction may
be a function of x. This may arise from symmetric but irregular
loading of the strip and the half plane.

-3-

(1 .a,b)

(2.a,b)

(3.a,b)



v(x,y) = 2 J m(P) (K 2 + py)e-PY cos(px)dp

+ - {-[f(s) + -I- g(s)]cosh(sx)
0

+ xg(s)sinh(sx)}sin(sy)ds , (7.a,b)

where K =3-4v for plane strain and K= (3-v)/(l+v) for general-

ized plane stress, v being the Poisson's ratio. In (7) m, f, and

g are jinknown functions and may, in principle, be determined from

the remaining boundary conditions (2) and (5). From (7) the

stresses may be obtained as

1 = 2
2
1 _xx - I m(p)(1-py)e

-
P Y cos(px)dp

2
co

-f [f(s)cosh(sx) + sxg(s)sinh(sx)]cos(sy)ds

0+ ! | {[f(s) + 2g(s)]cosh(sx)

+ sxg(s)sinh(sx)}cos(sy)ds

21 _x2 fypm(p)e-PY sin(px)dp

2O x

+ J {[f(s) + g(s)]sinh(sx)
0

+ sxg(s)cosh(sx)}sin(sy)ds , (8.a-c)

where p is the shear modulus. Substituting from (8) into (2) it

is found that
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2 o h
f(s)cosh(sh) +shg(s)sinh(sh) 4= - 4 > cosh(ph)dp ,

o (p2+s2)2

[f(s)+ g(s)]sinh(sh) + shg(s)cosh(sh)

4s 2
4s I p2 m(p) sin(ph)dp . (9.a,b)

o (p2+s2) 2

The only unknown function is now m(p) which is determined

from the mixed boundary conditions (5). (7.b), (8.b) and (9),

substituted into (5), give a set of dual integral equations for

m(p). However, a more direct approach to solve the problem would

be defining a new unknown function G(x) as

G(x) = v(x,O) , (O<x<h) (10)

and from (5.b) and (7.b) observing that

K+l b
- T21 m(p) = f G(t)sin(pt)dt . (11)

a

Thus, substituting from (8.b), (9) and (11) into (5.a), we obtain

an integral equation to determine G(x) of the following form:

b I+K

f H(x,t)G(t)dt = 14U TO , (a<x<b). (12)
a

It may easily be shown that at x=t the kernel H(x,t) has a Cauchy-

type singularity. Separating this singularity, it is found that

b 1 l 1+Kb 1 + 1 + k(x,t) - k(x,-t)]G(t)dt = - 1 + ot-x t+x 4
a

(a<x<b), (13)

where

k(x,t) = f K(x,t,s)e- (h-t)s ds
0
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K(x,t,s) = e-Sh{-[l + (3+2sh)e-2Sh]cosh(sx)

- - . -9ch - -~L
- 2sx sinh(sx)e ' s" - [2sx sinh(sx)

+ (3 - 2sh + e-2Sh)cosh(sx)][l - 2s(h-t)]}/(l

+ 4she 2 h - e- 4 sh) (14.a ,b)

The index of the singular integral equation is +1; hence, its

solution is determinate within an arbitrary constant which is

determined from (6), or by (10), from

b
f G(x)dx = 0 .
a

(15)

Similarly,

find [11]

b G(t)dt +

c t-x

N(x,t) = -

for a semi-infinite plane shown in Figure 2 we

b +K
f N(x,t)G(t)dt = - 4ao- 'T
c

1 + 6x 4x2 b
t+x (t+x)2 (t+x)3 c

(c<x<b), (16)

G(t)dt= O. (17.a,b)

For O<a<b<h and O<c<b<- the kernels k(x,t), k(x,-t), and

N(x,t) are bounded, and hence (13) and (17) are ordinary singular

integral equations with fundamental functions

w(x) = [(x-a)(b-x)] 1 / 2 , w(x)= [(x-c)(b-x)]- 1 / 2 (18.a,b)

and may be solved in a straightforward manner (see, e.g., [8]).

3. LIMITING CASE: THE EDGE CRACKS

In the limiting case of a=O, b<h, the problem reduces to

that of a single crack (-b,b) in an infinite strip which was

considered in [9]. For this case, noting that G(x) = -G(-x),
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(13) becomes

b
bf [t + k(x,t)]G(t)dt 1+ ro- (-b<x<b), (19)

-b tx

where the bounded function k(x,t) is given by (14). The funda-

mental function of (19) is w(x)= (b2 -x2 )- 1 / 2 and the solution

subject to

b
f G(x)dx = 0 (20)
-b

may be obtained by following any one of the standard techniques.

In the other limiting case, i.e., for a>O, b=h, the problem

becomes one of.two edge cracks in a strip. In this case, through

an asymptotic analysis, it can be shown that as both x and t

approach the end point h the kernel k(x,t) in (13) becomes un-

bounded and hence influences the singular nature of the solution.

Since the integrand K(x,t,s) in (14) is bounded and continuous

everywhere in O<s<-, the unbounded terms in k(x,t) will be the

consequence of the asymptotic behavior of K(x,t,s) for s-* .

Thus, adding and subtracting the asymptotic value of K(x,t,s) to

and from the integrand in (14.a) and using the relation [12]

I sme-s(2h-t) sinh(sx)ds d sinh(sx) ds

o (cosh(sx) dtm o cosh(sx)

dtm (2h-t)2 _2 2h-t}] (21)

we obtain

h 1tic + ks(x,t) + kf(xt)]G(t)dt = - l+K
f [- + ks(xt) + kf(x ,t)]G(t)dt =: - - X o2T,
a

(a<x<h), (22)
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d 2d 1ks(x,t) = [-1 + 6(h-x) - 2(h-x)2d t (2h-x)

kf(x,t) = (t+x)
1
- k(x,-t) + |[K(x,t,s) - K(x,t,s)]e-(h-t)ds,

0

Ko(x,t,s) = e-sh{-cosh(sx) - [1 - 2s(h-t)][2sx sinh(sx)

+ (3-2sh)cosh(sx)]} . (23.a-c)

The first two terms of the kernel of (22) give a generalized

Cauchy kernel. To obtain the fundamental function w(t) of the

integral equation, let us first proceed in a routine manner [13,

Chapter 4] and investigate the possibility of power singularities

by defining

G(t) = r(t)w(t) , w(t) = (h-t)-e(t-a)- ,

F(z) 1 G(t) dt - 1 r(t)ediotdt (24.a-c)

tza t-z a (t-h):(t-a)8(t-z)

where r(t) is Holder-continuous in a<t<h and (t-h)a(t-a)B is

any definite branch which varies continuously in a<t<h. In (24)

it is assumed that

r(a) f 0 , r(h) O0 , 0< Re(a,B)< 1 (25)

Noting that the point (2h-x) is outside the cut (a,h) on the real

axis, (24) gives the following asymptotic relations [13]:

F(z)- r(a)e"1B 1 r(h) 1 + F (z)
(h-a)%sinir (z-a) (h-a)sina (z-h) 0

1 h G(t)dt = r(a) cot'B r(h) cotr+a
~(_a) 8 =_+ Fh 1a t-x (h-a) (x-a (h-a)6 (h-x) 1

J G(t)dt - F(2h-x) = - r(h) + F(x)
a t -(2(h-a)Ssin~r (h-x)a

(26.a-c)
-8-



where the functions Fj(z), (j=0,1,2), are bounded everywhere with

a possible exception of the end points ck, (cl=a, c2=h) near

which [13]

Ck
IFj(Z)I <Pk< Re(a,,), (j=0,1,2; k=1,2), (27)

Ck and Pk being real constants. Substituting now from (26) into

(22), multiplying both sides first by (x-a)B and letting x= a,

and then by (h-x)a and letting x =h, it is found that

r(a)cot7S = 0 ,

r(h) [2(1-a)2 - 1 - cosral] = . (28.a,b)
si n:r' 

(25) and (28.a) give 8 =0.5 which is the well-known result. For

r(h) A 0 the only possible root of (28.b) is a =1 which is unac-

ceptable. It is, therefore, clear that the function G(x) does

not have a power singularity at the end point x =h. Before pro-

ceeding with the determination of the fundamental function w(t),

it should be pointed out that (28.b) is identical to the charac-

teristic equation resulting from the asymptotic behavior of the

solution for a 90-degree wedge. For example, if the wedge

(O<r<-, 0<0<r/2) is subjected to boundary tractions

aoG + iare = 0 , (e =: , O<r<-),

a0 +C icrr = a(r) , (0=0, rl<r<r2),

it can be shown that

4 -p 2 1 ,O =-| td i J t dX
l+TI Br uer,) a(t)dt 2-rri X D(- '

r+ 1ric-io r D

D(X) = [2(1-X)2 - 1 - cosrX]/sinrX ,

(29.a,b)

(30.a,b)
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where D(X) is the characteristic function.

Since the function G(x) must have an integrable singularity

at x=a, and since the foregoing analysis indicates that it cannot

have a power singularity at x=h, the next step is to look for a

solution of the following form:

G(x) = ro(x)(t-a) , (0< Re() < 1) (31)

where ro(a) and ro(h) are bounded and nonzero. Defining again

the following sectionally holomorphic function

F(z) G(t) dt (t)dt (32)
F(z) : ~Ta t - (32)

a tza (t-z)(t-a)B

we obtain

r (a)ei r (h)
F(z) = sinrB ( + ° log(z-h) + F3(z)

(z-a)B 7(h-a)B

G(t)dt _ ro(a)cotnr + ro(h)

a t-x (x-a (h-a) log(h-x) + F4 (x)rO(h-a)

1if G(t)dt = F(2h-x) - ro(h)
a t -(2h-x F(h- x) (h-a B log(h-x) + F5 (x)

1(h-±x)d f G(t)dt F
(h-x) r dx a t -(2h-x (x) 

2 1 d2 h
(h-x)2 1 d 2 G(t)dt F7(x) (33.a-e)

r dx2 at -(2h-x)x

where the functions F3 and F4 are bounded everywhere except

possibly at the end point z=a where they have a behavior similar

to (27); in particular they tend to definite limits as z+ h and

x h. The functions F5, F6 and F7 are bounded and tend to defi-

nite limits as x +a and x- h. Now substituting from (33) into

-10-



(22) it is seen that the logarithmic singularities are cancelled

and the power singularity (x-a)- B can be eliminated by requiring

that cotw: = O, which again gives = 1/2. We may thus conclude

that the solution of (22) is of the form (31). Formally then

the weight function of the integral equation is (h-t)0 (t-a)
-
1 / 2

with the related polynomials Pn(0'-l/2)(t) Similarly in (16)

for c =0 by letting G(t) = rl(t)(b-t)-B (where r1 is a bounded

function), it may easily be shown that = 0.5. It should be

pointed out that for c= 0 and b= h the general solution of (16)

and (22) no longer contains an arbitrary constant; therefore the

conditions (15) and (17.b) are not necessary for a unique solu-

tion which is also suggested by the physics of the problem.

4. ON THE NUMERICAL SOLUTION OF THE INTEGRAL EQUATION

Consider the singular integral equation (16) which, for

c =O, has a generalized Cauchy kernel. To solve the integral

equation numerically by techniques similar to that described in

[8], we first normalize the interval (O,b) by defining

T = t/b , 5 = x/b ,

G(t) = ¢(T) = rl(t)(b-t) = R(T)(1-T) 1 /2 (34)

Using (34) (16) may be expressed as

1
f M(,T)(T)dT = - - r(b) <(O<<1 ) ,

M(S,T) = (T-g)- 1 + bN(bE,bT) . (35.a,b)

To solve (35) numerically the most practical technique appears

to be to extend the definition of ¢(T) in an appropriate manner

-11-



into the interval (-1,0) and to use the corresponding Jacobian

integration formula with the related orthogonal polynomials

Pn (1/2''1/2)(T). Noting that ¢(O) fO, an appropriate extensionPn

of c may be an even continuation as follows:

¢(T) = p(T)(1 -- 2
)- 1/2 p(T) = p(-T) (-<T<),

p(T)(+T)
-

1
/
2 = R(T) , (0<T<1). (36)

With (36) (35) becomes

| M(E,T)O(T)dT = 2 M(,ITI) P( 2 1'/ = 4
0 (1 lT2)l /2 41I

(0<5<1). (37)

Using now the integration formula corresponding to the

weight function (l-T2) 1 / 2 [8] and from (13), (16) and (17)

observing that T=O is a zero of M(&,T), we obtain

2n+l
l+K Tc(bj)1 X AiP(Ti)M(jITil)4 i=l

n
AiP(Ti)M(EjTi) , (j1,...,n), (38)

i=l

T Co 2i-1 A=_A
T2n+l(Ti) = O = (n 2 i ,2n+1

U2n(j) := O , j = cos(2 1r) (39)

(38) provides a system of n linear algebraic equations to deter-

mine the unknowns p(Ti), (0<Ti<l, i=l,...,n). Once the density

function G(t) is obtained the stress intensity factors and the

crack surface displacement may be obtained from (see Figure 1)

k(a) = lim /2(a-t) a (x,O) = lim 4- T2K(t-a) G(t) ,
t-+a y t+a 1+K

-12-



k(b) = lim /2(t-b) a(x,O) = - lim +b- G(t)
t-*b YY t-tb

x
v(x,O) = f G(t)dt . (40.a-c)

a

5. NUMERICAL RESULTS

As a first example consider the half plane problem shown

in Figure 2. The numerical results given in this section are

obtained for a uniform pressure a(x) = a0 applied to the crack

surface which corresponds to the uniform tension applied to the

strip (Figure 1) or the half plane (Figure 2) perpendicular to

and away from the plane of the crack.

Table 1. Stress intensity factor at x = b for the

half plane (a
o
=(b-c)/2, c

o
=(b+c)/2).

Co/a
o

1.05 1.01 1.001 1.0 l.O(Ref.2)

k(b)
a
0
V- 1.2540 1.3303 1.3987 1.5869 1.5861

0o 0ao

The results for the half plane are given in Table 1 which also

shows the result given in [2]. The agreement appears to be quite

good. Further results for larger values of cO/a
o

and the values

of k(c) may be found in [11]. Figure 3 shows the crack surface

displacement for the edge crack, Co/a
o
=1 and for an internal

crack, Co/a
o
=1.01 obtained from

d
v(x,O) = - f G(t)dt . (41)

x
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The normalizing constant v
o
shown in the figure is

v
o

= Oao (l+K)/4 . (42)

The results for the strip are given in Tables 2 and 3, and

in Figures 4 and 5. Table 2 gives the results for two symmetri-

cally located collinear internal cracks shown in Figure 1. In

limit when a=O the results reduce to that found in [10] for a

single (central) crack. As the size of the net ligaments 2a and

(h-b) approach zero, the corresponding stress intensity factors

go to infinity. These limiting values are indicated in Table 2

by an arrow. From the Table it is seen that the rupture of one

of these ligaments causes a sharp increase in the stress inten-

sity factor at the other crack tip (for example, compare the

lines 1,2 and 5,6).

Table 2. Stress intensity factors for collinear internal
cracks in a strip (Figure 1, a

o
= (b-a)/2).

a/h b/h k(a) k(b)

0 0.4 (-- 00) 1.5690

0.1 0.5 1.1746 1.1169

0.2 0.6 1.1102 1.0961

0.4 0.8 1.0984 1.1250

0.5 0.9 1.1290 1.2278

0.6 1.0 1.6080 (+ o)

0 0.8 (-. co) 2.5680

0.1 0.9 1.6730 1.7451

0.2 1.0 2.1769 (+ A)

0.5 0.95 1.1960 1.4711

0.5 0.98 1.2713 1.9008

0.5 1.0 1.6228 (-* co)

-14-
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Table 3. Stress intensity factor for the edge cracks in
a strip of finite width (b = h, a

o
= (h-a)/2,

net section stress: a1 =aoh/a).

a/h k(a) k(a)
ao/a-o c14 .

0 2 =0.63662

0.1 2.9467 0.62510

0.2 2.1769 0.61572

0.3 1.8744 0.60738

0.4 1.7136 0.59361

0.5 1.6328 0.57728

0.6 1.6080 0.55703

0.7 1.5970 0.51749

0.8 1.5915 0.45014

0.9 1.5883 0.33690

1.0 1.5869 + 0

Table 3 gives the results for the edge cracks which are also

shown in Figure 4. The limiting values of these results are

that of the edge crack in a half plane for a/h+l (see Table 1)

and infinity for a/h-O. For the case of (h/a) =- the closed

form solution is given by (e.g., [14])

ay(x,0) = P (-a<x<a),

k(a) = lim /2(a-x) a (x,O) = P (43.a,b)
xP~a YY T/ay

where P is the resultant load (per unit thickness) acting along

the y-axis. Defining now a net section stress o1 by

P h
falo 2a Wo a

for a/h 0, the stress intensity factor becomes

(44)
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k(a) = 2 = 0.63662 .(45)
iT

The two stress intensity factor ratios shown in Table 3 and

Figure 4 are related by

k(al k(a) [2h (1 a)]1 /2 (46)
al1 o aoa 2h

Note that for h/a-r , for a fixed a k(a) is proportional to

aoh or aoao. Hence the ratio k(a)/(O a a)+ o as h/ar+c or

ao/a -+ .

Examples of the crack surface displacement v(x,O), (a<x<b)

for the internal and edge cracks in the strip are shown in Figure

5. The normalization constant v
o

used in Figure 5 is also given

by (42).
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